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The penetration of an .MP field, such as a plane wave incident upon and a
surge arrestor current terminated at a shielding plate, through a ferro-
magnetic conducting slab made of iron or steel is investigated. The diffusion
of the electromagnetic field in the highly conducting slab is complicated by
the presence of the nonlinear saturation of the ferromagnetic permeability
i, due to the large amplitude of the incident DMP. Such a saturation,
compared to the no-saturation constant u case, makes the field diffuse faster
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in the slab and admits a stronger penetrated field Inside the shielding if the

slab is thin and the pulse duration is long, as expected. On the contrary, if the
slab is thick and the pulse width is short, as the practical cases are, the
saturation reduces the penetrated field but maintains its time shape. In this
report, first we solve analytically the one-dimension plane wave incidence problem
for a slab with a constant v. Then we use the results to partly predict and to
interpret the numerical values obtained by using a finite difference code for the
case of a nonlinear u. These comparisons reveal axcellent agreement. Second, we
solve the constant p, cylindrical wave incidence problem by an approximate but
extremely useful analysis, with its validity parameters clearly established. The
results, shown to bear a simple relationship to those for the one-dimztzion
problem, enable one to make use of the one-dimension results and predict easily
the penetrated fields caused by a cylindrical incident current. Then for the
nonlinear p case, we justify and extend that relationship by which the behaviors
of the cylindrically diffused fields are obtained from those numerical results
of the one-dimensional problem.
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ScTION 1. INTRODUCION AINt SUMMRY

A.. 1 INTRODtCTION

In protection against an 74P [I1 (electromagnetic pulse), ferromagnetic

metallic shielding is one of the simplest and mst cousnly used effective
- 7 sch~es [2!. The eff&zrtvenes4 of the vhfledine, measured by the ratio of the

field penetrated across the shield to the incident field, depends of course

on the B4 properties and the geometry of the shielding material. Generally

speaking, the dominant material properties are its conductivity a and

permeability p, and, if the shielding enclosure has its radius of curvature

j •much larger than the wave length of the incident field and is free of

seams and cracks, the only important geometrical factor is the thickness

of the shielding plate.

In this report, we investigated the shelding problem for the incident

221 in the form of a cylindrical T24 wave, such as a wire carrying a

surge arrestor current terminated at an iron or steel shielding plane [3].

Because of the large strength of the incident field, the nonlinear

ferromagnetic saturation of the plate plays an important role in deter-
mining the peak and the shape of the transmitted field. This problem,

based on and together with its one-dimensional plane-wave-incidence

version, is solved analvtically for a constant ý. case. The analytical
results are then used to partly predict and to interpret the numerical

results for the one-dimension nonlinear case, obtained by using a finite

difference code DIFUSN, and to help predict the behaviors for the

cylindrical nonlinear case.

In the following, Section 1.2 briefly summarizes the results found in

this report; Section 2 solves, analytically and numerically, the one-

dimension plane-wave problem; based on this, Section 3 solves the cylin-

drical incidence probiem.

S. . . . - " " ' • " • l • . '• . . .. . . . . . . . . . • . .. . ... . . .7 7 . .. . . . .. .. .. . . . . . .. ... . . . -- . - • . . . .. . .'



As to the system of units in this report, rationalized MS is used.

I. 2 Sth"IARY

We briefly sumarize here the results obtained in this report. Details of

them are given in the subsequent text.

1. For wavelengths large compaxed to the shielding's radius of

curvature, high-j0 conducting plates shield EMP very effectively.
For short nulse and thick slab, the diffused-through transmitted

field varies as -(w U a2d3 )- 1 . This gives a peak transmitted
o r

field -3 x 10- ihar of the incident peak value for a typical

w 0 - 3 x 106 radian/sec, r %,10 • 1i0' mho/meter, d,3= . The

time width of the transmitted field varies as auod , giving

S"3.3 x IO- sec for the typical example. This makes the shieldiag

"better for the higher frequencies, and thus substantially shifts

downward the transmitted wave's frequency contents.

2. The non-linear saturation of the ferromagnetic permeability,

which saturates dB/dH to smaller values for stronger field,

slightly reduces the transmitted field but leaves virtually

intact its time shape. This is caused by the fact that for the

relatively narrow EV in a relatively thick slab, the saturation

disperses and disrributes more evenly the diffused field and

mitigates the build up of its local peak value, in surprising

contrast to the simple intuition, naively extrapolated from the

constant-u case, that a smaller permeability admits more field

in a shorter time, an extrapolation valid only when a wide pulse

saturates the whole thin slab.

3. The cylindrical problem, with a wire carrying a large current,

such as a surge current arrestor. ter•.imted at a shielding

wall, is solved approximately. Its results are simply related

to those of the one-dimensional problem, enabling us to msake



i use oft. one-dimensional results for the cylindrical pre-

dictics. Roughly speakiag, the main part of the cyliudrical

I difused fields are av tisms that of the one-dimensional

OOS for p9a and go to zero for D-*o, with minor deviations

J being complicated functions of the various parameters of

the problem.

The ab-vq -azrults are found either analytically or numerically, or both.

From then we can saaely conclude that for practical EP shieldings using

the highly eafective high-u conducting plates, the ferromagnetic saturation

only slightly enhances the shielding effectiveness. A side result is that

the presences of holes, cracks, or seams at the shielding plate probably

constitute more important modes of penetration for the incident FY?.
7T

S- -

I, g
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SECTION 21. THE ONE-DIND4NSION SLAB PROBLEM4

1 2.1 ANALYSIS FOR THlE CONSTANT u CUSE

Consider the one-dimensional problem depicted by Figure 1. A plane elactro-

magnetic wave with fields

inc tZ) Hin(t,) H
IC (t•.z) _i fxt ) (la}0~ c

,inc (t,z 2 n b T)

Z)O
4 

z- E -)CZ

0

is incident from z -• normally upon a slab of thickness d at position

z - 0. The medium to the left and to the right of the slab is uniform

and has a dielectric constant c,. a permeability u, and a velocity of

light c C c V11 2 ta)- The slab itself is also uniform and has a
0 0

* dielectric constant c ro, a permeability u u and a conductivity

u such that

0

or equivalently

where w is the angular frequency of the fre-t,-ncy of intrn@r Notrice

thar tfis condition of high slab conductivity is assumed .thu hour this
107 /U'report. in typical cases, we have m O r7ho/m for steel, 10- Farad/M,

and k 10' radian/sec for the incident FIM; thus (2) or (2') is amply

satisfied. The problem is to find the electronagnpric fields everyvhere,

especially in and transmitted through the slab.



7>> we, we

i0

110

SHog(t + z/c)

0

-f(t < 0) 0

Figure 1. The One-Dimensional Problem
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2.1.1 General Solution

I Being a one-dimension problem, the only fields are plane waves with a
magnetic field in the y-direction and an electric field in the x-direction.
In the region z < 0, the reflected fields, in addition to the incident
ones given by (1), are

Href(t,z) H0 g(t + Z (3a)

-- • reft Uo zf(tz) -HR0°7 g(t + (3b)

In z > 0, the transmitted fields are

H trans(t,z) -HO T(t - -d)) (4a)

-trans - (z-d) (4b)

-tz) = H / T(t

- finally, in the slab 0 < z < d the high conductivity condition (2)
combines with the Maxwell Equations to give a simple diffusion equation

a2 a
- H(t,z) - a - i (t, z) 0, 0 < z < d (5)

az a

for the magnetic field H(t,z) co which the electric field is related by

i: E(t,z) H z (t, z) (6)

Now to find the fields, we merely have to solve (5) and (6), subject
"to the boundary conditions that require continuous magnetic and electric

fields at both slab surfaces z - 0 z d z - d. In tern of the magnetic

field in the slab, these conditions are (Appendix A)

j 6



I

- (Et,o) -, 1' l(t,0) -2 L a f(t) (7a)

H1(t,d) + L aoH(t,d) 0 (7b)
0

Thus, the problem reduces to solving (5) and (7).

To express the field in a convenient and simple form, we make use of the

Laplace transform

&• (s,z) H(t,z) e-st dt - L[H(t,z)](8

0

Then from (5) and (7), the resulting transformed fields in 0 < z < d

are (Appendix B)

H(SZ) 2H0 (s) EA(s) e-~ V~sz + B(s) e '1Sz] (9a)

"i(s,z) .-2H f(s) A(s) e- '/• Z + B(s) ev'S z] (9b)

where

kA(s)h gies(+-1 -- -s d

B +s ( 1 7 ,V -s) (r,- , /is) e-2 VOasd

In particular, this gives the transmitted magnetic field

7



S4 • H f(s) e- usa

T(S) - (s,d) - ( -r2 ,t("0)

2 Ho i(s) ,--'(1-

0 C if N• < 1 (101)
Sh(,ýfja- d)

and the total magnetic field at the incidence side of the slab

Ho[(s) + +(s)] P(s,0) = 0 e2' do

} I + --o 5 ) - 1 -2 -~

.: (11)

2H f(s) -- )

00
2++ ad

"ifs 0 o d I 1 (ii')

8

"= 11 i )- e2 d

[1

i '~d

__ _

|r «
, a Id !< (11")



From these expressions, various approximate simple formulas can be derived

for fields in the time domain, as will be shown in the following. Such

formulas serve to predict the approximate physical behaviors of the fields

and to give insights and provide cross checks to the numerical results.

Only response to a delta-incidence, Hinc . 6(t - =, is examined in detail

analytically. Responses to other incidences can be obtained by a convo-

lution. In particular, the response to a "narrow" incident pulse is

obtained by simply multiplying the time-integrated area undi'r that pulse

by the 6-response. The condition for such a "narrowness" is

L lies in (t(s) } and (t >> 't ) (12)
(6)°

where {t(6) } are the times in which the S-response expression is valid

and At is the time-width of the incident pulse.

2.1.2 Fields Near the Incident Surface in a Thick Slab

First, for incident waves with frequency contents not too large nor too

small

1(13)

or, equivalently, at times not too early nor too late

VT 73 d (13')

........................... 9



Equation (12) clearly gives R(s,O) - 2H0 f(s), a total magnetic field at

the incident side of a highly conductive thick slab being twice the

incident value, as it should be. If the incident pulse has its peak

time within (13'), as is usually the case for EMP, then at position

z - 0 the magnetic field has its peak time the same as that of the inci-

dent one, but has its peak value twice that of the incident one.

Second, under a restrict4.on on the frequency or time ranges that differs

slightly from (13),

24 a, > (14)

or equivalently

<< '7d (14')

and at positions in the slab near but not on the left surface and not

close to the right surface such that

< (15)
2a

7011

-• the field can be obtained from (9) by ignoring terms containing

N_ t.exp(-A'is d). Such a magnetic field, for a 6-incidence, is (Appendix C)

(6) _______2/4 ____

HM (t~z) V-70 -4Z2A (16)

i • t +2ct

-j As a function of time, at a given z satisfying (15), the magnetic field

(16) has its peak value
i

• 10



H pkzZCe ( 17a)
St pk/z (I + -Jczl

at the peak-time (with given z as a parameter)

2

(t) 2 (17b)

Obviously, the condition (15) on z ensures that t"d) satisfies thepk/z
condition (14') on t, and therefore the results (17) are valid under

the sole restriction (15).

77 Viewed differently as a function of position, at a given t satisfying

(14"), the magnetic field (16) has its maximum value

T, , (6) (27axt 1 ' (S,

-- t l + •Or

at the maximum-position (with given t as a parameter)

M It ax(18b)

which diffuses to the right with velocity

" (t) d (i) . (18c)
z ax dt ~max/t viflit

Again, the condition (14') on t ensures that zmax/ tisfies the

condition (15) on z, and therefore Lhu results (18) are valid under

the sole restriction (14').

11
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1 2.1.3 Fields at the Shielded Surface of the Slab

£ For a highly conductive slab satisfying the first inequalities in (14)

and (14'), without any restriction on the slab thickness, the S-iuesponse

transmitted magnetic field at z - d is (Appendix C)

i (19)

i At times that (19) is valid and converges fast,

22
viC- 2 <(<-1 i-zvi ua (0

(19) reduces to

H (t,d) --j'rsoo ( pn 1 - 2t542 (21)

It

This transmitted field has its peak amplitude

nN'7

SI

12
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at a peak time

t 1k/d 2 8 ad 2 2.31 =-xd 
1 2

(22b)

The time-width of the peak at 10-1 strength is

(Atpk/dl/1O - 0.3 ad2 - 7.54 x 1 0 -- a 7 d 3 )

pk/d 1/12x10 7 k10-3

(22c)

Notice that the second inequality of (20) is always satisfied by

S.. t(s)pk/-' and the first one is also satisfied by t(s) if

1- << (ad ) (23)

For real shielding problems, (23) is always amply satisfied. Thus,

results (21) and (22) are valid approximations in the realistic time

interval of interest (20).

Before going into the nonlinear case, we make the side remark that the

transmitted field H(s,d) for a slab of thickness d is much smaller than

the transmitted field Hf()(s,d) at a depth d in a semi-infinite (half-space)

I slab of the same material. In fact, for a >> r e 0s, their ratio is

H(s,d) 1 + e-2' d << (24)

1.3



5 Intuitively, this is clearly plausible because the diffused field

reaching z - d will leave the slab surface and propagate into z > d much

faster for the d-thick slab case than it does for the semi-infinite slab

case, and therefore the H(s,d) has less opportunity to pile up than the

H (s,d) does.

2.2 THE NONLINEAR u CASE

For a ferromagnetic material, the permeability depends on the magnetic

field strength and it is the differential permeability

jd E 'dli) B 1J (H) lj( 5

that enters the field equation [5]. Tn a strict sense, hysteresis makes

dB/dH not a single valued function of H. However, for the transient

field behaviors, not the steady state behavior, that we are investigating,

we can use approximately [6) the magnetization curve BWH) to get pR(H).

Such a uR(R) for a typical iron saturates at a magnetic field strength

CHc of the order of several hundreds of amp/m, from a uR(H<Hc) 1 104 to
:3

10 to " UR(H>Hc) 1 10 to 1, in a range of change in H of the order of

Ail rtens of amp/meter.

A very simple expression to approximately fit such a magnetization curve

can be

(R+ a ) (26)- - I + eZ6

where 'Ro >> I and eak - 1. This fit gives a LR(O) V Ro, a

R R(H>>H c) 1, and makes the saturation transition occur in a range

AM N i/a about H H . The no-sazuration case is simply represented
c

by :

14



Al

Sthe following, we first make several theoretical remarks, then solve

the nonlinear ij problem numerically, and finally establish the agreement

between the numerical and the aaalytical results.

2.2.1 Theoretical Remarks

For the linear u case, u being a constant throughout the whole slab and

independent of tie, at fixed positions in the slab a smaller j results

in a stronger diffused field (a uI, see (17a) and (22a)) being diffused

to there in a shorter time (w u, set (17b) and (22b)). Viewed differently at

fixed times, the spatial profile of the field diffuses and reaches its
"equilibrium" shape, peaked and symmetric about the center of the slab

after the incident pulse, faster (diffusion distance and velocity = -1/2

-[! see (18)). As a result, a constant smaller v not only enhances the

diffused and transmitted L _ldd, but also enhances the higher-frequency

part more than it does the lower frequency part. The latter statement

can be seen for the case of interest 1 << 1 from (Appesix D)

(fios >pdfl i(ftS>,d) Sh(draT~) sh(dVa~~T)

\fJfI\RS <),d)) I h~ >av 1hdcr (27)

-where > > U< and s> > s<, or from (16), (17), (21), (22) directly.

Now for a slab with a nonlinear ,x, which saturates to smaller values

where the field is stronger, the diffusion results are very different

but can still be carefully extrapolated from the linear results. First,

at constant times the spatial profile has its stroug-field center part

diffuse faster than the low-field edge part. Thus the strong-field

spreads out in a wider range and retains a lower value than it does

without saturation, and it overtakes but is "confined" by the low-field

edge part, in a manner somewhat similar to a shock phenomenon. fn short,

the saturation makes strong fi•lds diffuse more easily, And thus acts to

distribute the field more evenly and mitigates the build-up of a localized

strong field.

15



Second, if the pulse timae-.idth is long compared with the saturat#d peak-
diffusion-time through the slab, tpk/d wi(see (22)),

pd"saturated (e 2b)
then the diffused and transmitted fields behave the same as if the whole

slab has the smaller permeability 1 wsaturateC ith larger peaks and shorterStimes as described above in the beginning paragraph. However, if the pulse

width is short, i.e.,

at < t L~t < 1-t2ur at d-0 pk/dUsaturated 0- 2 s

(28)

and the slab is thick relative to the incident wave such that the

transmitted magnetic field is much smaller than the H , i.e.,

0 0 AtI 29Jo 2d 3o6.5X 10-2 X a< )2 (29)

.2%10~ 10-3

the maximum field at given times and the peak transmitted field at 2 - d] .becomes smaller than they are without saturation, due to the first effect

just mentioned. For a highly conductive slab that has a >> » oioR(H),

4 _saturated or not, the amo ut of field admitted into the slab, from (11"),

is virtually independent of w. The maximum field at a given time is roughly

inversely proportional to its spatial spread at that time. Thus, approxi-

mec.ely we have the ratio of the maximum transmitted fields with saturation

to that without saturation (Appendix E)

H(t pkd,d)(N.L. sat.) Z(no sat.)

(no sat.) (N.L. sat.)(
pk/dr a/i c

where the superscripts N.L. sat. and no sat. denote, respectively, the

case of nonlinear saturation and no saturation, the t is the time at
C

16



° I
which the taxl= magnetic field for the no-saturation case decreases

through the aR n C z2 iX/tc is the distance the maxinim field reaches at

tine t . From (2-1i) and of course under its validity condition (14')

we ran express

The value of :(N±L sat.) Larger than ( :sat.) as dicussed t• •~%a /te ,Irc hnMax/t a dssedn h is

remark, canot be obtained analytically in the present analysis, but
its numerical value can be used, together with (31), in (30) to relate

tha nonlinear maximum transmitted field to the linear one.

Third, the t 11d and the (atpkid)ul§ for the nonlinear case is about the

same as that of the no-saturation case, as long as (23) and (29) are

satisfieg. For under such cenditions the field is well dispersed below

Hc long before it diffuses to z d, and thus it is the unsaturated LRo

that controls the tk/d*

Finally, for the DT shielding cases of practical interest, (28) and

(29) are satisfied. This is easily seen by substituting typical numbers

into those expressions. Thus, the above observations are practically

applicable.

2.2.2 Numerical Method and Results

Tb- numerical code DXFIJISN solves the one-dimensional nonlinear " diffusion

problem by finitely differencing (5) and (7) with IR(H) replacing the

constant UR. An implicit "T" finite difference scheme, stable in the

round-off error and the differencing grid sizes, is used [7]. The code takes

as inputs any nonlinear function UR(H), any incident pulse shape HOf(t),

and the prope:ties ;o of the ambient medium and c, a, d of the slab.

So.'-



~ -U output$ it gives at each time step the fields at some selected fixed

positions, including of course z - 0 and z - d, the value and the location

of the maximum magnetic field (in 0 < z < d) at that time, and the two

locations between which the magnetic field at that time exceeds a selected

value such as the H about which the saturation occurs. A listing of

the code DIFUSN is included in Appendix F.

Numerical results for a nuber of parameter values of practical interest

are obtained and plotted. In these results, the pR(H) of (26) is taken

to represent the non-linear permeability, and the expression

ine 2
H (t,z) aH sin W (t-!) 0 < t CK L

0 0 C C ý1

0. otherwise (32)

is used as the incident wave. The resulting plots and their comparisons

rwith analysis are given in the following.

The results for a typical example of iron shielding wich a ýaR(H) whose- iO4'
" "Ro - , Rc 400 amp/m, and a - 1/50 mr/amp, a thickness d - 3 mm,l7 5

a conductivity a - 101 mho/l, and an incident H - 10) amp/m and

WO W 3 x 106 rad/sec are plotted in Figure 2 to Figure 5. Corresponding

results for this same case but with constant w. a ;Ro *0 UR(O) and

u- URm(-), the limiting values of the nonlinear .RkH), are also

computed and plotted together. The plots show the maximum magnetic field

H(tz •) of the diffusion profile first increases as twice the incident
max/ t

wave (Figure 2-1) at the incident surface of the slab (Figure 2-2), then

breaks away from the incident wave and decreases (Figures 2-1, 3-1, 4-1)

while diffusing into and toward the center of the slab (Figures 2-2, 3-2,

4-2). For the con.tit u cases, the values and the location of H1(t,za )max /t,
agree very well with those given in (18) (in its region of validity (14')

of course) from the previous analysis (labeled curved in Figures 2-i. 3-1,
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.= " =. 104

a , 1/50 meter/amp

a=10o7 mho/mater
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Figure 2-1. The Incident Magnetic Field and the Maximum Maqnetic Field
Ht. zmat) as Functions of Time

19



UT

d -=3 mm
HO •105 ampimewt~ Hc -4 x 1012

wo 3 x 106 radian/sc (,R =1)
I /•Ro".104 /

a .=1/50 moter/amp
a . 107 mho/moterS~/
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Figure 3-1. The Maximum Fields in the Slab H(t, Zmaxlt) as Functions

of Time (Continuation of Fig. 2-1)
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FROM (18-b) FOR AR I do

--

'U 1
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E 10'
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Figure 3-2. The zmax t for the Maximum Magnetic Field in the Slab as

Functions of Time (Continuation of Fig. 2-2)
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(Continuation of Fig. 2-3)
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Figure 4-2. Continuation of Fig. 3-2
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The value of I(r,z !) for the nonlinear u case must be less than the

larger of those for the corresponding limiting constant v cases; it

approaches that for pr I if the pulse has long duration and strong

amplitude to saturate the whole thin slab (i.e., (28) and (29) inequalities

"reversed), and vice versa. But it does not do so monotonically, because

of the competing saturation effect, causing the strong field near the

z - 0 end to diffuse faster both in the +z direction penetrating the slab

and in the -z direction escaping the slab. The location z of

H(tZ for the nonlinear u case, however, always lies between those

for the corresponding constant u cases (Figures 2-2, 3-2, 4-2), as it

should, because the smaller saturated u under the peak permits it to

diffuse faster. Further, the spatial region within which the H(t,z)'

exceeds the H of the nonlinear ýi case is plotted (Figures 2-3, 3-3).

This region is roughly the extent within which the nonlinear saturation

occurs, and its disappearance marks approximately the end of the satura-

tion effect.

The transmitted magnetic fields H(t,d) for various parameters are shown

in Figure 5 to Figure 9. First, the limiting constant U results exhibit

excellent agreement with the analytical formulas (21) and (22), for the

typical example (Figure 5) and for other variations of parameters (not

plotted), when the (practical) thick plate condition (23), thus the condition

(20), and the short pulse condition (28) are satisfied. Second, satisfying

the additional but still pra.tical condition (29), the H(:,d) in the

typical nonlinear example has the same time shape as but is slightly

lowered near its peak by a factor -0.8 from the H(t,d) in the same typical

example but with a constant 15r = PRo (Figure 5). This agrees with (30)

as it should. Third, under the restrictive but practical conditions

(23), (28) and (29), the H(t,d)/H0 with different H substituted in thek0

typical nonlinear problem (Figure 6) decreases slightly near it3 peak for

larger Ho, approximately according to (30), but has its time shape

virtually unchanged. This is as expected from Sectr,)n 2.2.1. Similar

variations in wo, in view of the 'iultiplicative factor iHo 1/(2w ) to

convert the 6-response to the narrow-pulse-response (32), expectedly
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Figure 5. The Transmitted Magnetic Fields H(t, d) as Functions of Time
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give similar results (Figure 7). Fourth. under these same conditions but

varying the slab thickness d (Figure 8) and the u o - (0) (Figure 9),

. •respectively, in the typical nonlinear example shows a time scaling

proportional to i%0d and an amplitude dependence approximately as
S"23 but slightly less than such a scaled value. Again, this is

expected from (22) and Section 2.2.1.

We conclude this numerical section by stating again that for short pulses

and thick slabs, under condition (23), (28), and (29), the transmitted

* amagnetic field for the nonlinear u obeys approximately (22), with v

UIo, but becomes slightly smaller as corrected by (30).
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" flu SECTION 3. THE CYLINDRICAL-INCIDENCE SLAB PROBLEM

Consider Figure 10, an incident cylindrical TEM wave

ISina t'3ad H, (t,0,z) - f -

_ L Ein(tpz) 0 j/ f (t - (33b)

carrying a z-flowing current I 0 - z/c) on the surface of a perfectly
S-u conducting wire of radius a impinging upon a slab as shown. In the

cylindrical coordinates (pl,z), the 0-symmetry makes fields functions
of (tp,z). The parameters in Figure 10 have the same meanings as in

i Figure 1.

.i Before solving the problem, we must make several remarks here. First,

one can, of course, solve the problem numerically either by finitely
differencing the field equations subject to the bounda onditions or

by finitely patching the perfect-conductor mixed surface integral equations

to solve for the surface current density on the wire and then to obtain
the field from the surface current density. Second, with its end surface
present the semi-infinite cylinder does not have its surface as one of
the coordinate surfaces of the eleven coordinate systems that permit the
separation of variables for the Helmholtz equation. Thus in using the
familiar method of solving by the separation of variables and summation
of the products of the eigen functions (in this case the Hankel transform
for P or the (2-sided) Laplace transform for z), not only are the coeffi-
cients mixed by the boundary conditions but also the expansion does not
converge at the edge of the cylindrical end where the electric field goes
to infinity (although weakly if edge condition of finite energy is imposed).
But to match boundary conditions means that we would have to manipulate
and evaluate the coefficients of a series at precisely the place where the
series representation is not valid. As a result, no con. istent solution

can possibly be obtained by such a familiar method. The rigorous analytical
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solution, even to the simplified problem without the presence of the slab,

is therefore still an unanswered question [8].

In the following, we solve the cylindrical-incidence problem by an

japproximate method whose validity range is established to be of practical

interest. The resulting formulas, being simply related to those for the

one-dimension problem, enable us to make use of results in Section 2 for

the present cylindrical problem.

3.1 ANALYSIS FOR THE CONSTANT p CASE

To find the diffused fields and the transmitted fields in z • 0, the only

physical quantity we really need from the incident z < 0 side is the

tangential field, either electric or magnetic, at z 0 0. Although it

does not matter which one we start with if we can solve the problem exactly,

it does make a difference in solving the problem approximately depending

on which approximation can be made more easily and more accurately.

Now, for the real problem both the "wire region" p < a. z < d and the
"surrounding slab region" p > a, 0 < z < d are highly conducting. The

magnetic field at the "inside" boundary p Zý a-Sw, z = 0, where 6 is the

skin depth of the wire region and is << a, is clearly much smaller than

the H at the "outside" boundary p > a, z - 0, regardless of the existence

of the conducting surrounding slab. In fact, without the slab's presence

4 this has been used to justify the incident current I° being associated

to a cylindrical TEM wave outside the wire, and with the slab's presence,

and reflection, this is even more pronounced. Moreover, the area of the

"inside" boundary, ýa2, is much smaller than the area of the "outside"

boundary, -. This makes the diffused and transmitted fields, being the

surface integration of the cross product of the H,! and the gradient of

the Green's function, depend even less on the "inside" magnetic field.

Thus, the H$ at the "outside" boundary alone predominatly determines the

diffused and transmitted fields. However, a similar result does not hold
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- I for the boundary electric field. Because the "inside" boundary electric

field EP, though negligibly small relative to the "outside" boundary one£ when there exists no conducting surrounding slab, is not comparatively

negligibly small when the conducting surrounding slab is present and makes3 the "outside" boundary E also vanishingly small. Consequently, we

must use the magnetic matching, not the electric matching, if we use the

I "outside" boundary fields only as an approximation.

Finally, for the case of narrow incident pulse and thick slab of practical

interest ((28) & (29)), the approximate "outside" boundary magnetic field

can be found easily. Since the slab makes the H at p > a, z - 0 not

sensitive to the geometry beyond z > d, the H• there is virtually unchanged

if we extend the wire beyond z - d to z = =. Furthermore, since the wire

is itself highly conducting, as far as fields on it are concerned we can

replace it by a perfectly conducting wire. The following analysis follows

Tsuch an approximation procedure.

- i3.1.1 Formulation and Analysis

-- If the perfectly conducting wire extends to all z, then the incident TER
S~wave (33) produces only TEM waves. Their wave forms for a constant p slab

are just the one-dimensional results with H w replaced by Ho a/P where

H a I /(2wa), and with E and H substituted by EO and H respectively.0 0 x y
In particular, from (11)

w )2(s)(U+a) - (l-c)e2)cd
A(wie)I . - a d]

H (s'pO) " r (I+Q) (1-a)22 -2/U•i d > a

=0, p < a (34)

where a £ j@E )lj)2
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Now, for the real problem of a terminated wire with 0-symmetry, the TEM

wave cannot exist in the region z > 0 because of its necessarily accompanying

singularity at P 0. Further, a TE wave, under the condition 3/ZO E 0,

has only E?, HTE, and Hz as the non-vanishing componeats. But the

boundary conditions, the continuity of tangential fields at z - 0 and z - d,
do not couple this TE mode to the incident TM wave at all. Thus the TE

wave has its existence independent of the incident wave and can be taken

as identically zero. Finally, a TM wave does exist, with non-vanishing
components HTM, TM and El" In z > 0, this is the only mode existing, and

its superscrip ;s are omitted in the following.

Similar to the one-dimension problem, the diffused fields in the highly

conducting slab 0 < z < d satisfy (2) and obey the equations

HE (35a)

°gz - (pl (35b)

""•2 p ap 2 2 3tap 0 az

"In z > d they obey similar equations as (35) but with a replaced by

"C 3ai. To solve the problem, in addition to the Laplace transform in time
-- we make use of the Hankel transform in p (9).

•(P) - dK JV(Gp)(K), p > 0 (36)

Now, requiring as usual a + z traveling wave in z > d, finite fields at: • ^ ( " w i r e )- 0, continuous E and HR" at z = d, and that H (s,p,0) = (swpir)

of (34), the magnetic field in 0 < z < d is (Appendix G)
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[I where
(nK ) Kd l(~KA)eKZ

-K>d (38)

n1(,is e Kd(1+8) - eKd (1-8)

and

I J (Ka) (S) e-
q(K,s) - -- (l+.) - (1-a) (39a)

( 2 (u) 2 (l+a)2j 2 1 ýo-s d

sa K>1o (39b)

K> /K ,Z R~eal{K>} > 0 ,(390)

K < = /KL+Uts2 Real{K<} > 0 (39d)

The electric fields in 0 < z < d are given immediately by (37) and (35a,b)

The fields in z > d are (Appendix G)

HS0 dK Kp(Ks)J 1 (K•) e (z-a)

-I. d(40b)
"(s,sO,z) a KK<p(K,s)J (Kp)e-<

E (s.p,z) - K p(K,s)J (KO)eKd-d) (40c)4 aZ

where

p(Ks) - S Kd 28 (41)
sse (1+) - e (-Kd_)
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S3.1.2 Results and Their Relatiotts to the One-Dimension Problem

For a highly conducting (a << 1, condition (13)) thick (ad•-- o• 1,

condition (23))slab, 6, n, and p reduce to (Appendix G)

n(K,s))•ff 2rSh(K>d) ~ \ e-K~di (42)

I J (Ka)f(s) >

p(K,s) J2 (Kaf(K) (43)

We examine next such cases in detail.

From (40b), (41), and (43), the transmitted radial electric field at

z d is (Appendix H)

r-K 2ti

E (t,P d) -0-s dt'f~-t''1--ý ilt O~-IdKJ (Kp)J(Ka)e J
t~ t

64o pid) 0aj t 0 1d'~

-PorP2 (44a)
~~ 0 Oit 4t'

4- -ro• dt f(t-tl) 1-e 4t
if P >> mna (44b)

I2

if P *c< max (af 1  (44c)

_ •and becomes
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I

E(6) (t.P,d) [a dK -J(IK)J (0a)e

P ~~ad Ifdt 4\j d112 p 4a

I I
if p >> min a, t  (45b)

a- d e $ • t 4t, 4 t I

ad 7t4

if p << max a,4T) (45c)

for a S-incidence H inc(t,p,z) - 6(t-z/c)a/p. Here 84(vMT) is one of the

Theta functions [10].

Similarly, from (40a) the transmitted magnetic field is

; • i (t,d) - 7;7 EP(t,p,d) + H (t,p,d) (46)
0 Etpd devt'

Here, H (t,p,d) is the part of magnetic field which deviates (in its
O,dev

relation to E ) from that of a pure TEM wave (Appendix H)
p

dt'-1 J dt"f(t-t' 0"

-K
2 t "

dX Ul iO(•a)Jo()e (47a)
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I I~olir~f dt:"tnt ff-'-" [a 431::)

.- CI ~2 + j2 (toc1t2

At" 1 2tll

ii if a -c< max(p, ct') (m

iit~ 
ddto

0 , f(t-t'-tC') ( 21n"

(2t-a )

if a »> max (p, et') (470)

~ U and its 6-response becomes

t f t-t" a

H 6)(~-d 2: J dt" j dtt~ 80
*,dev 0d

_K2 ti

i~ 1 ( .)JO(Ka)J 1 .(Kp)e ti (3a

2

2 d 7 LZ:' )eT 4 liftt wad40

22

if 2 a, e -""a t/4 n 1 ( 8b

IA - Td dt 84OJi2)]e 4t 4

itp cca(480)
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Thus at large p and small p the total magnetic fields, respectively, are

22J ~ 1(6)td)~~~~ ±6(~~ La (-Ia (i )/(4t)(I +
Ua 2dd U a

if p >> a, e(Uap 2t)/4 >> 1, (49a)

2.p [)(4t) 2)/(4t) ijaa2

if p << a (49b)

for a Hic Ctp,z) - 6(t - -1) a/p.

Comparing (45) to (49) with the one-dimension results (4) and (19), we

see that

SoneD(td) - e(P 2)/(4t) (+o 4t

if a >> a, e(wac 2 t)/4 >> 1 (50a)

2 2(S) p lia (-uap )/(4t)
one-D a 4t

+ g-hl(a 2 -p 2 )1/4 oaa2]

if p << a (SOb)
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SIj and

(6 6)aL0(t,p,d) E (t,d) LII- 2 /O(tj

if p >» min (a, Z•-a) (Sla)

M lia -Z)(t) a2 e(-U00 2)1(4t)

E (t) 0)2
Sone-D a 4t

if p << max(a, t) (Sib)

The relations (50a) and (5la) for large p » a are intuitively plausible:

at early times before the effect of the wire region diffuses there,

t << U1P2/4, the fields do not feel the termination of the wire and are

just the diffused cylindrical TEM wave with the one-dimensional fields

multiplied by alp, and at later time, the fields become smaller than such

a TEM version because they diffuse into the wire region. The normalized

ratios HM6)(tpd)/(Ho6 e (t,d) a/p) and E()(, d_ (t)/(E (td) alo)*one-D P 02onD
Sas functions of a normalized time X t/0100 ) show (Figure 11) such

4} • •-behaviors. The one-dimensional peak diffused-through time Xpkid -

2
S .. t.,kd/(Pop ) (see (22b))as a function of d/p shows (Figure 11) that for

d.p d , 1 the diffused fields are virtually a pure cylindrical TEM wave up

to the peak.

For small p << a. the HM)(t,p,d) and E((t,pd) given respectively byp
(50b) and (51b) go to zero at least as fast as p, a consistent behavior

with a finite E and a finite total (conducting and displacement) currentS~z
density near p - 0, and, of course, start from zero at t - 0. The ratios

-M• t~d)/'(6)-- (t,d) and E(6)(-- p,d)/E(6)o (,.d) siow such behaviors

(Figures 12-1, 12-2, plotted similarly to Figure 1' but with p replaced
S(•a2)

by a for the normalized time t/u.aa ) and with p as a parameter).

44
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FP OM 422b). X~ktd "-.1 x 10.2 (dip)2

ZZ\

10 .

10"2 10"

X z t(M0, 2 )

Figure 11. The Normalized Ratios H W(t. p. d)/(H 0 (to d)•) and

p , d)/( D0 , d) from~ thep>.>a Expressions (50-a)
and (51-a) as Functions of NOrmalized Time ti(gap2 ), and

the Normalized 1-0 Peak rime xpkid d tpkid/ 2
as a Function of (d/p)
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/3 - 10"

10.2 ,

..-f Ypkld 9.18 X 10.,2 (d/&)2 from (22b)
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10,2 10"I 1 10

S~ Y E OA• a a2)

SFigure 12-1. The Ratios H,)ft,• p, d)/H ()t, d) from the o<< a

Expression (50b) as Functions. of N'ormalized Time t/(Moa2

Sard the Normalized I-D Peak Time Y pkld 2'tpkjd/(,ca 2)

as a Function of (d/a)
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10 2

" P/a 3 x 10"1

C,,

U. " INp. .N • -~

U. 7N ,-

0- P/a1 .1

N' 0
10.'2 r0" W

Y-V j 9.18 x 10'~(i)

FROM (22b) - (/)

10,31 I I I I 11 t1 ,

10-2 101 1 10
Y = t/ aoa2)

Figre 1-2. The Ratio Ey(t, p, d)/E 1-(t, d) from thep<<a

Expression .51b) as Functions of the Normalized Time t/

1 2
('puad ) , and the 2Normalized 1-D Peak Time Y pk~d=

tpkid/(Paa ) as a Function of (d/a)
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& Now consider p . a. From (45b), the EM((t,p>>a,d) expression is also
r9 (a) 2, p

valid for E (t<<cca 2,pa,d). Similarly from (45c), the expressionT p
p (6) (62

E(P)(t,p<<a,d) is valid for E(P)(t>>aa , P-a,d). Thus, for o - a, the

ratio E 6)(t,a,d)/E•_ (td) at early times t << iaa2 is given by the
p one-flI large p curve (the F-curve, X -< 1 part in Figure 11 with p - a) and at

late times t - ur a is given by the small p curve (the Y >> 1 part of
a~2'

the p - a curve in Figure 12-2). At t a a2, they do join smoothly

at %O.2 (the E-curve at X % 1 in Figure 11 and the p/a a 1 curve at

"Y 1 1 in Figure 12-2) which should be the right value. Similar conclu-

sions hold for the H 6(t,pIýa,d)/H(S_ (t,d). This is because at P O' a
0 one-f

the part of magnetic field which diverts (see (46)) from the TFM-like

behavior is negligible for early times and for late times, respectively,

in the large p expression (50a) and in the small P expression (50b).

We conclude by restating that (50) and (51) (plotted in Figures 11,12)

are valid relations between the cylindrical and the one-dimensional

solutions for highly conducting thick slabs of practical interest. From

these relations, we can multiply the one-dimension fields obtained in

Section 2 by a cylindrical-effect factor to make predictions for the

cylindrical-incidence problem.

3.2 THE NONLINEAR ' CASE

The nonlinear saturation effect can only occur in a region

H
Sa - p 4-- a (52)

H
c

From Section 2.2 we have found that for the practically interesting

cases of highly conducting thick slabs with narrow incident pulses

(conditions (23), (28), (29)), saturation only reduces slightly the

transmitted fields but leaves intact their time shapes. Such are the

effects the cylindrical transmitted 'fields in region (52) will experience,
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I •with (50) and (51) still being the formulas to relate to those of the

one-dimension nonlinear problem which are solved semi-analytically or

numerically.

For p not in the region (52), the constant-a results in Section 3.1 apply

directly.

Finally, we shall conclude with an example. Consider the typical problem

in Section 2.2.2, but with a wire of radius "0.5 cm carrying an incident

I - 2r all0 -3.14x 103 amp. The transmitted magnetic field in the

region p x 1.25 m is approximately the H a 10 amp/m curve in Figure 6

multiplied by the cylindrical factors (50) or its plots (Figures 11, 12--1).
For example, at p N a, the transmitted field has a peak value

H H(tpdP~a,d) 105 x 3.8 x 10-13 x 1.0 xT - 3.8 x 10-8 amp/m

H 0 one-D at Pfrom kk/d a

Figure 6 from
Figure

--- ¢
with a peak diffusion time 4I.I x 10 sec and a diffused pulse width

(At) 1 / 1 0 , 4.0 x 10 sec, same as for the one-dimensional case. For
p > a, the peak field is smaller by a factor -a/o, but that factor approaches

^-(0.8)-l a/p as p >> 1.25 m. At p < a, the peak decreases from (53) at
P nu a to zero at p - o, roughly proportional to p as p . a and according

to (50b) as p<<a.
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APPENDIX A. BOUNDARY CONDITIONS (7)

From the Maxwell equations, by ignoring e 0/at compared with a, we have
" in the slab 0 < z < d

BE a - " -(A- 1)

j3z " oat

S- -
-- - (A-2)

- which immediately give (5). Now the boundarl conditions at z - 0 are

H(t,o) H o[f(t) + g(t)] (A-3)

3z H(t,o) -olft g(t)] (A-4)

which immediately give (7a), and the boundary conditions at z d are

H(t,d) = H T(t) (A-5)

•, : 8__.H(t,d) e-i_• HoaT(t)(A6

:, az 0

which immediately give (7b)
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L APPENDIX B. DERIVATION OF FIELDS IN THE SLAB, ONE-DIMENSIONAL PROBLEM

In the Laplace domain, (5) reads

2
1H(s,z) paiis H(S'Z) 0 (B-1)

where H(t<O,z) 0 has been used, and (7) reads

•- Hs~) /•o"s~) -2 ' Hofs (B-2)
.dCo 0 0

3z H (s,d) + at (s,d) - 0  (-3)

Thus, the solution of (B-1) is

ft(s,z) - A(s) e Z + B(s) e' z (B-4)

where A(s) and B(s) are to be determined. Now, from (B-2) we have

(-+B 4as~- a(A +B) -~2a jH 0 ?(s) (B-5)" '(-A + B) if _;- FF(A + 0•- •

0 0

and from (B-3) we have

(-A e- ý7as d+ B e Vwas d T + C a(A e- Vu as d + B e d 0

(B-6)

Solving for A(s) and B(s) from (B-5) and (B-6), substituting their values

into (B-4), and using (6) yields (9) and (10).
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APPENDIX C. DERIVATION OF SOME APPROXIMATE FORMULAS

j First, under the condition exp[, 5 7• (z-2d)] << 1, the magnetic field

obtained by using only the A(s) term in (9a) for a 6-incidence is

E -t ) .2ase erf C at .21)

(C-1)

: which reduces to (16) if 2az p C > 1. Here k --- z and

Second, from (11') the result

Si e

SH((t,d) L-1 a

(43)ua- 2[) I

-• t __ d da

2 2

V "_'70[• pad e- (a-1/2) pad2/t

1r O - -2 d 2t e-4

(C-2)

is used in (19)
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U APPENDIX D). HIGH FREQUENCY TRANSMITTED FIELID RELATIVE INCREASE

UFrom (11'), for v a the ratio of the transmitted magnetic field

at a frequency s s> to that at s s< < S> is
LtA

ju7 ((D-1d)

where h dI-E. Now we want to prove that for a smaller a 14< theLI
R(u<) becomes larger, i.e.

R(u< > R (I>) (D-2)

or rewriting it equivalently

* Shix > Sh x
f .- Sh(Zrx) Sh(rx)

Here x 5 hs > 0, r S->1 adi - vrV7 1. But the function

Sh(Qx)/Sh(Zrx), viewed as a function of Z, is monotonically decreasing

since r th y > th(ry) for r > 1 and y > 0. This establishes (D-3) and

completes the proof.
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1 APPENDIX E. ARBUIE FOR EQUATION (30)

Since the slab is highly conducting with a >> urw, whether it be saturated

or not, the "amount" of field admitted into the slab is about the same for

either case (see (II')). Now think of the U field as the density (one-

dimensional in z) of some particles that diffuse in the slab. Then the

71 -total number of them

fHdz ^v (H mx)(Az) H(tctzmn/t z a/

is about the same without and with saturation, if the pulse is narrow and

I the slab is thick (see (28) and (29)). After t, both cases diffuse in

- : the same manner and should roughly give a peak transmitted field propor-

tional to H(%cZmax/tc). This makes (30) plausible.
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APPENDIX F. THE CODE DIFUSN
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e vCiorF TP4E Pwflt.,J.u

IF (TPQub~t'J,1) s.T~c

IF fILRU.UQq ) #4C PqrT sF2

30' FW'.T ib SLA 1 T~C t St-' 1.0.5~ T~m NI'(,- ~MPLIyU) Tt LQ IrlIC AL
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40 Fow %4 ar (i1.,/
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IF fALPHAI(0iI(1,,JLJ.b4CplTI,G?,3floj Lo !T0 i30

I r YeI (t35L

130 J (.Ljý AI .' U.1$.LI A.J~.FMhj.p3.b ) S 1 1 JL )-I*OZ* dI
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APPENDIX G. DERIVATION OF FIELDS, CYLINDRICAL PROBLEM

The 0-independent cylindrical TM mode in the highly conductive slab

0 < z < d, from (35), assumes the form

f d K J f(y) IF s) e- + n(K,s) e

0

(G-l)

-M ... .. f dK [ + pas JJ(Ko) (K,s) eY7 a z
_-•; p p r •z a

-- + n(K,s) e ]SZ (0-2)
0

+ rj(K,s) e r] (G-3)

tTM=• 1 1• (p•, +i K Jo(Kp) (K,s' e- V • z

where the finiteness of the fields at p = 0 has been used to choose the

Bessel function of first kind. Similarly, the fields in z > d can be

expressed as

2 iT2 2 )E v(S'P'Z
Ez z 2 w- 0 • (s•z

- •, • f dK • p(K,s) J,, (Kp) e
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0 .

Sf dK K2 p(K,s) o( ,) e- Yoc0 5 2 (z-d)e

n : dK" K p(K,s) J 1 (Ko) e- K2+i 0 C 3 s 2 (z-d)

0
S4.

G(0-5)

-T 2

P S 0  ý?3W

C *•Os J ) -K 2 +,poEos 2 (z-d)= dK •K•K2 + 4 S S P(K,.s) Jl(Kp)e

0

(G-6)

where the V(s,p,z) is the cylindrical TM Hertz potential, and the require-

ment that the wave be positive-z traveling has been used to choose the
negative exponential expression. In the above, the choices of branch cuts (as

a function of s) are such that

Real +> 0 (G-7)

Real {' k v c s9 }> 0 (G-8)
0 0
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Now at z d, the continuity of R gives

-} •(Ks) e-K~d + n(K,s) e s K p(Ks) (G-9)

and the continuity of EP gives

[-ý(Ks) eK>d + n(K,s) e r xK< p(K,s) (G-10)

wher = and Ks2 - At z 0, requiring that the

total magnetic field be the approximate value (34) and using the integration

expression

7J
dK J(KP) Jo(Ka) P, a (G-1)

P < a (G-12)

gives

o 2f(s)f(l + •), - ,.(I - c,),, e-2's d1
C(K,s) + n(K,s) - (- Jo(Ka) -+ -

2 o( + a)2 2-2Aas d

q(K,s) (G-13)

Solving (C-9), (G-10) and (0-13) gives

1(1+6) eK>d ) q(K,s)
(q(Ks)) -e(i - 8) e-K>d

((K,s) I eK~d (I - $) -e-6d(l -3)
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P(K,S) *Kd28

0 e + (1+)-e 1  (1-8)

NIS~where a =- se K>/((,K<). These give (38), (39) and (41).

.1 << 1, thus s < 1, and cd o I, a

practical condition as stated in (23) which implies

a Sh(N/l~ad s)

and

8 Ch(K d)
Sh<(K>d) < 1 (G-17)

then n, n, and p are simplified to

+ eK>dr - ChV di

X(,) (K _ () e + , S (l~ d) Sh( fTUs d)

) -K2Sd Sh()>d)

e 8[ + - Ch(_K>d) -Ch( ps d)
X• (K, s) hK) S( psd

S2Sh (Kd)
-- d~ BCh (K.,d) a • ]\Ia d)

Sh(K>d) Sh( p d)

((G-18)

s X(Ks) K> [ iCh(Vcs d) 8Ch(K>d)
p(Ks) ,oK KSh(K>d) Sh( uos d) h(d) (G-19)
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where

XC) I .J (Ka) f(s)x0 0Ks (c--20)

These give (42) and (43).
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I APPENDIX H. APPROXIMATE EXPRESSIONS FOR CYLINDRICAL PROBLEM

SFrom (40b) and (43), we have

V (t~p,d) L dK J() (Ka) if 2(s)
f 1 1• a "h K>- d
0

I dK J1 (Kp) ; (:a) L-1jQ!)KeW 0- f 0 Sh K~d

0 .. = Jo--- f dt tK ) Jo ( O d ' f(t t ) e](-K

00

T 2

0-J dt' f(t t') a iTot'Ia 4 uo d

of dK J 1 ( p ) J o0(K a ) e ( -K t ') / ( O H I

I a r'/4 ')t-'4 1 I

if p >> min(a .--Z ) (H-2)

~~~~ ilia( *

e % dx' f(t - t' ) (e.-3 )Ty~ ad dt 4J0 4t'
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Thus tat 6-response for an incident R a 6(t -z/c)/P, lio f. t

iis
2(a aei,~w (-&2t) IJO.c)E~(ta,,d) 2 al 4(01L-) J0(Ka

pad

if p m in (a, 04,1-)H5

r 2

ad (dc4( lild2  4t

if p << miax a, t~ (H-6)

Similarly, from (40a) and (43), w.e have

SEdK 00 _____K
H (tp~d) L dKj 1 Kp)J0(a) --c K Sh(K>d)

00

-..dK J (1) E I( (s,K,s.) )
0
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d- I ' Kp c -0 L[ptK~d)
0

*E(t) K K

0~i [E (,cp,d) - dK J1 (Ko) dtl

0

Er e(tO 2 )] -f dK J, 1K) J(Ka t 1K)e(K

0 fo OF-
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4tpd [dt" d sod

1 ti dt' f(t-t'-t") dK i Kt J0(Ka) J1(rp)

0

u~/Ep(tI0.d) + H d~(tip~d)(H7

from which

0tpd dt dtO f(t-t'-t") d_ e u
H,detsv d uadw 4 4t4(01 ucd2)

0s e bira e)I(4t))(]~t
200

-~if a << max orzaLn) (H-8)

ua w 0  jtl t tt f(t-t't) drr

0! fI f0a
00 0

if a »> max 0o1 -ý) (H1-9)
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& Thus, the S-response for a H a 4(t -- )pis
C

HM (tlpd) adt Parý*t"
t ~ ~adu, f4 "[dt t tt~ 64(0111d-I

0 0

22
ej.± K ____0(K )_____a_-K_" pa

ff

0

dt
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-%2a [dr -11(0 I4~) - 2 )/(4t) i~u

(H-11)

Here a condition on the time

e (~cc2 t)/ 4 >1(-)

has been used to validate the third equality in (H-11). For cases of

practical interest, (H-12) is amply satisfied for times up to the peak

diffusion time tpk/d ' 10 - 1 vad 2 at z - d, because usually we have

011 (pacd) 2 
>' 1 - 1.4 x 1012 x 932xlO7 x d

i (H-13)

On the other hand, if a >> p the H(S) becomesSdev

6 '•) -2a _" j

-- IA

fi,dev a~~duo - d t" [ (iTt-w'( )I!~ :2

iiE tic~ .o(a2+c 2 (t-t") 2 )/(-4t") _____________

" •-T C o at -2t"-

S 2 a F [Tdt 8 I t )] e (-i aa 2 )/(4 t) w op . (oa-2

(H- 14)
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