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PREFACE

The work performed by the Communicad!ons group of the University

of Alabama in Huntsville for the U. S. Army Missile Command (MICOM) under
I contract DAAHOI-71-C-1181, during the period June 1, 1974 to July 31, 1975

lconsists of two tasks. The first task is documented in UAH Research Report

No. 176 entitled, "A Study of the G-H-K Tracking Filter" and the second

task will be documented in a UAH Research Report entitled, "Quantization

Effects in Digital MTI Filters". This effort will be denoted as fourth-

year effort because it is an extension of a contract on EAR simulation

studies started on May 18, 1971. The goals of these four consecutive efforts

are reviewed briefly, to place them in the proper perspective.

.~The overall objective of the first year effort was to develop,

implement and exercise a detailed digital computer simulation of the experi-

mental Array Radar (EAR) system in order to support and complement the

experimental work being performed by MICOM personnel. The specific objec-

S tives of the study were to: (1) duplicate in a software form the operation

!'  of system hardware and its performance as measured in the test bed, (2) to

simulate proposed changes of the hardware and predict performance improve-

ment, and (3) to experiment with alternate digital and data processing tech-

niques.

The objectives of the second year effort were to: (1) refine and

I: update the baseline EAR simulation program and develop subprograms to study

critical components of the system, (2) expand baseline EAR simulation pro-

grams to include multiple target handling, (3) investigate via simulation a

constant-false-alarm-rate (CFAR) processor, and (4) investigate the feasi-

bility of glint error reduction through the use of frequency agility, pulse

compression or both.

-- - - - -- - - -



The objectives of the third-year effort were (1) A/D converter

evaluation by digital computer analysis and (2) an expansion of the scope

of EAR simulation studies to include (a) design of experiments and (b) an

investigation of command guidance requirements.

In the fourth-year effort presently ending, the goal of the first

task was to help the Army in the selection of an adaptive tracking filter

which could track a maneuvering target. The goals of the second task were

to investigate quantization effects for various types and realizations of

Ii digital MTI filter and to recommend a filter which represents the best com-

promise between performance and hardware requirements.

Huntsville, Alabama ( Robert J. Polge
~ July 1975
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ABSTRACT

This report is concerned with the investiga ion of the g-h-k
filter for tracking maneuvering targets. The selection o the filter
coefficients is based on the amounts of noise and maneuver, and other
system considerations such as critical damping or best transient response
for specified smoothing. Several filter initialization schemes were tested.
For low acceleration maneuvers, a considerable amount of smoothing can be
achieved without losing track. However, in order to track severely maneu-
vering targets, one must select coefficients which give a faster transient

I, response at the expense of smoothing capability. Therefore, it is logical
to use an adaptive filter with a good smoothing capability when the target
is not maneuvering and a fast response during a target maneuver. Clearly,
the main problem is to detect the maneuver in a reasonable amount of time.
This can be done using a simplified matched filter followed by a threshold

V detector. The proposed adaptive filter was evaluated through computer simu-
v {lation using typical trajectories. The performance of the adaptive filter
I, is limited by the number of samples required by the detection filter and

could probably be improved using a more complex maneuver detection filter.
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CHAPTER 1

INTRODUCTION

1.1 Prologue

In radar tracking systems, the raw measurements of a target

position must be processed to provide the predicted position of the tar-

get at the next time a radar action is scheduled for this target. This

estimate, in radar coordinates, is then used to steer the antenna beam

in the predicted direction at the next tracking instant. In order to

maintain the track, the prediction accuracy must be high enough that the

target will be located within the beam and within the range bin centered

Ui around the predicted range. Prediction requires not only a knowledge

of the present position, which can be measured, but also an estimate of

the rate (and possibly higher derivatives) of the target motion, which

may not be measured by the radar. In view of the fact that the measure-

, U ments are obtained at discrete intervals of time, some form of digital

u filter suggests itself for the prediction system.

1.2 Tracking Filters

In order to design a tracking filter, it is necessary to have

an adequate mathematical model for the motion of the target. In practice,

I the trajectory will not be a polynomial for all time, but can be piece-

wise approximated over short intervals by a polynomial of suitable degree.

Tracking filters [1] may be non-recursive (open-loop) or recursive (closed-

loop). A well-known filter of the non-recursive type is the polynomial

filter [2]. However, the most widely used tracking filters are of the

L recursive variety. Prominent among these are the Kalman filter [3,4],

the g-h filter [4-6] and the g-h-k filter [7,8], all of which are based

on polynomial models. The Kalman filter minimizes the mean-squared error

if the model is exact and the order of the filter is one more than the
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degree of the polynomial. The feedback gains of a Kalman filter are

different at each step. The g-h filter is a second-order filter and is

a simple observer (9] for constant velocity targets, whereas the g-h-k

filter is a third-order observer for constant acceleration targets. While

the gains of a Kalman filter are derived on the basis of statistical con-1"

siderations, those of the g-h and g-h-k filters are chosen via practical

-- considerations. In their most common forms, the g-h and g-h-k filters

have constant feedback gains.

The design of a tracking filter must take into account two

sources of error, modeling and noise. The modeling or the dynamic error

is caused by the target motion not exactly fitting the assumed model. This

is especially severe when the target is maneuvering, either due to atmo -

spheric turbulence or due to an evasive maneuver. The noise is due to the

radar measurement errors, and can ba adequately modeled by a white noise

sequence. The requirements for rapid dynamic response and smoothing of

the noise are always in conflict and a suitable compromise is necessary in

i1 designing the filter. The response to a changing input improves as the

L feedback gains are made larger, but this results in a decreasing ability

to smooth out random fluctuations. Other factors to be considered in de-

signing a tracking filter include the choice of the coordinate system and

the tracking interval. Among the various coordinate systems available [10]

are (i) tne spherical coordinates, range, azimuth and elevation, (ii) the

rectangular coordinates and (iii) a mixed coordinate system. The tracking

interval may be constant or varying.

1.3 Scope and Organization of the Report

The main objective of the task reported here is to study the

applicabiliry of g-h-k filters to track maneuvering and non-maneuvering

I
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targets. The study consists of two parts: (i) the selection of the coeffi-

cients g, h and k based on analytical considerations and (ii) the develop-

ment of a procedure to dynamically adjust the coefficients to adapt to

changes in t'.e trajectory.

Throughout this report, it is assumed that the tracking interval

remains constant, 'hat the prediction is performed in the range, azimuth

and elevation coordinates and that the three filters are independent of each

other. It will also be assumed that only position measurements and no ve-

locity measurements are available.

The g-h-k tracking filter is briefly reviewea in Chapter 2. Input-

output relations for the filter, in both the time-domain and the frequency

17 Idomain are presented.

The selection of the g-h-k filter coefficients is discussed in

Chapter 3. Equations are derived to express two of the coefficients, h and k,

in terms of the third coefficient g assuming one of the following criteria:

(i) critical damping, (ii) b.ast transient response fnr specified smoothing

-r (optimal), and (iii) use of steady-state Kalman gains. The choice of g should

reflect the compromise betVeen speed of response and smoothing capability.

The performance of fixed coefficient g-h-k filters is studied in

Chapter 4 via simulation. The filters are applied to maneuvering and non-

maneuvering trajectories. The peak and RMS errors are computed for dif-

ferent maneuvers, different noise strengths and for various values of the

filter parameter g. Both optimal filters and critically damped filters are

considered.

A scheme for the detection of a target maneuver is proposed in

.. Chapter 5. It is bask2d on detecting a bias in the filter residual sequence

and is an approximation to the decision theoretical method. Also presented



in Chapter 5 is a procedure to adjust the filter coefficients dynamically

when a maneuver is detected. The method is simulated and validated using

k typical trajectories.

Chapter 6 contains the summary and conclusions of the report

along with recommendations for future work.

%:
1 7
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CHAPTER 2

THE G-H-K FILTERH'2.1 Introduction
The g-h-k filter, also known as the c-0-y filter, is a poly-

nomial predictor-corrector filter of the third order and is of the linear

recursive type. It is simply an observer designed to reconstruct the

position, velocity and acceleration of a constant acceleration target based

on position measurements. Therefore, it can track a constant acceleration

trajectory with no systematic errors in the steady state. In addition to

the predicted estimate, the g-h-k filter also provides a smoothed estimate

of the present position which may be useful for guidance and weapon control

functions. In its standard form, the g-h-k filter uses only the position

measurements, and must be modified to include any available Doppler measure-

ments.

2.2 The Filter Equations [10]

Let x be, in general, the coordinate in which the filter operates,

so that x represents either range, azimuth or elevation. Assume that the

smoothed estimates of the position, velocity and acceleration at time tAn

are known and denoted as R(n/n), x(n/n) and x(n/n). Then, the predicted

state at time t is computed as,
xn+ln T^nn ~/) 2 x(21

k(n+l/n) = (n/n) + T x(n/n) + (n/n) (2.1)
n

c(n+l/n) = (n/n) + T x(n/n) (2.2)
i n

x(n+l/n) = x(n/n) (2.3)

where

T = tn+1 - t . (2.4)

After the position measurement x (n+1) has been received at time tn+l, the

predicted state can be corrected resulting in the smoothed estimate at tn+l"
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0 (n+l/n+l) = 9(n+l/n) l ( n+l) "(n+l/n)) (2.5)

I(n+f/n+l) = i(n+l/n) +-h 8+ (x (n+l) - x(n+l/n)) (2.6)

'X(n+I/n+l) =x(n+lln.) + -Tr- (x m(n+l)_R(n+i/n)) (2.7)

n+l

where gn+l' hn+I and kn+l are the gain coefficients. Denoting the vector

made up of x, x and x by X, i.e.,

X (2.8)

P equations (2.1) to (2.7) can be written asI {iA
X(n+i/n) = 4(n) X(n/n) (2.9)

X(n+i/n+1) X(n+i/n) + K(n+l)[x m(n+l)-H X(n+l/n)] (2.10)

where

w H [ 0 0 (2.11)

K [n+lj (2.12)IT n+lL 2kn+l_

and the state transition matrix O(n) is given by

L [1 T n]

D(n) 0 1 (2.13)" rnLo- 0 1J
Since only the predicted estimates are of interest here, (2.9) and (2.10) can

V be combined ast. ,,A

X(n+l/n) = (a)[1-K(n)H] X(n/n-1) + (n)K(n)x(n) (2.14)

= (n) X(n/n-l) + i(n)K(n)x (n) (2.15)

where

: '(n) = D(r:)[I-K(it)H] (2.16)
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and I is the third order identity matrix.

UIn the analysis in this report, it will be assumed that the

tracking interval Tn, and the gain coefficients gn h and k are constant.
n n$ n n

This will eliminate the dependency of T, D and K on the time variable n,

and (2.15) becomes,

X(n+l/n) TP R(n/n-1) + r x (n) (2.17)-- m

(I where

1 g - h -k T T 2

'P = h+2k)/T 1 T (2.18)

L 2k/T2 12
F h +2k)/Tj (2.19)

2.3 Frequency Domain Representation

The system represented by (2.17) is linear and shift invariant

with x (n) as the input sequence, X(n+l/n) as the vector output sequence.

Therefore, it can be analyzed in the frequency domain using its z-transfer

1" function. To compute the transfer function, a z-transform is taken on both

sides of (2.17) which yields,
-1 A

Z[X] = z -IZ[XI + FZ[x 1 (2.20)
m

where the operator Z[.] denotes the z-transform. Equation (2.20) can be

written as,

Z[X] = (z I-T)-I zJZ[x] . (2.21)

Using (2.18) and (2.19), the above equation can be simplified to give the

transfer functions for the predicted position, velocity and acceleration.
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Each transfer function is of the type,

1()=a 3  +az + a z
H(z) 3 212 (2.22)

z + + blz + b0

Ell where the coefficients are given in Table 2.1.

TABLE 2.1 G-H-K FILTER TRANSFEL. FUNCTION COEFFICIENTS

COFICIENS

TYE a3  a2  a b2  bI  b0

PREDICTED POSITION g+h+k k-2g-h g

P h+2k -2h-2k hPREDICTED VELOCITY T T . g+h+k-3 3-2g-h+k g-1

PREDICTED ACCELERATION 2-4k 2k

I~~ ~ Ti____ ______

It can be seen that the characteristic polynomial (denominator of the

transfer function) is the same for all outputs and is given by

W c- (3-g-h-k)z 2+(3-2g-h+k)z-(l-g) . (2.23)

Using standard z-domain techniques [111, it can be shown that the system

is stable if the following conditions are satisfied:

i g>O

h(2.24)

Sk> 0

2g+h < 4

j 2g > k

g(h+k) >2k

It can also be shown that the poles of the transfer function move towardq

the unit circle as the coefficients g, h and k are decreased. This re-

sults in a reduced bandwidth which provides good smoothing at the same

V" time producing a sluggish dynamic response. On the other hand, an increase

in the filter coefficients improves the dynamic response at the cost of

poor noise smoothing.



CHAPTER 3
SELECTION OF THE FILTER COEFFICIENTS

3.1 Introduction

It can be seen from the filter equations presented in Chapter 2,

that the g-h-k filter is completely defined by the three coefficients g,

h and k. As was discussed earlier, in the selection of the coefficients,

one must compromise between the conflicting requirements of good noise

f ~ smoothing (narrow bandwidth) and of good transient capability (wide band-

width). A very practical selection scheme would be to express two of the

coefficients in terms of the other based on theoretical considerations and

Smaintain only one parameter for the compromise. The choice of a value for

this parameter must depend on the system application where t'.e relative im-

portance of smoothing and dynamic response can be ascertained. In this

chapter, expressions for h and k, in terms of g, are derived based on three

different criteria. The merits and demerits of each are briefly discussed.

v A fourth coefficient selection scheme is described which should be useful

during heavy transients.

3.2 Critically Damped G-11-K Filters

Since the g-h-k filcer i3 a third order observer designed to

track a constant acceleration trajectory, the steady-state tracking error

for such a motion is zero in the absence of noise. However, tracking

errors do occur during transients caused by improper initialization and by

changes in the trajectory. The amount of time required for the transient

errors to die down, is a function of the damping of the filter. An under-

damped filter undergoes periodic oscillations before settling down. Under-

damping is caused by the presence of a pair of complex conjugate poles and

can be avoided by forcing all the poles to be real. Three real and unequal

poles produce no oscillations but the response will be slow, resulting in
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Ioverdamping. Critical damping provides a fast response while still pre-
venting oscillations.

Critical damping of a third order system can be achieved by

forcing all the poles to be positive, real and equal. This can be accom-

plished by selecting the coefficients g, h and k such that the character-

istic equation given by (2.23) has three real and equal roots. Assuming

the roots are given by z = 8, critical damping is obtained if the following

equation is satisfied:

3 3 2
(z-) = z -(3-g-h-k)z +(3-2g-h+k)z-(l-g). (3.1)

Equating the coefficients of like powers of z on the two sides of (3.1)

yields,

3a = 3-g-h-k (3.2)

382 = 3-2g-h+k (3.3)

and 3 = 1-g. (3.4)

Solving (3.2)-(3.4) for g, h and k yields,

g = - (3.5)

h = 1.5(1 -2)(1-) (3.6)

i 3k = 0.5 (1-0) (3.7)

V Given the value of g, (3.5) can be solved for 8 which is then used to

determine the values of h and k from (3.6) and (3.7). Alternatively,

can be retained as the compromising parameter. Stability requires that

0 < < . (3.8)

- When $ = 0, no swoothing is applied to thr. data and the amount of smooth-

1. ing increases as a increases. When 1 = , all the filter coefficients

are zero and the filter output becomes independent of the input. Fig-

ure 3.1 shows the variation of h and k as g varies from 0 to 1.
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-The stringent condition that there be no oscillations could

result in an excessive transient period, especially following a severe

maneuver. In such cases, it may be advantageous to allow oome oscilla-

Htions in order to improve the dynamic response.

3.3 The Optimal Filter

Here again, only one parameter will be left free for the com-

promise. But for every value of this parameter, the other two will be

chosen to give the maximum noise smoothing for a given transient capa-

bility. It is in this sense that the filter is optimal and the synthesis

_procedure is similar to the one used in [6] for g-h filters. Before

attempting a compromise, it is necessary to define suitable measures of

noise reduction and transient performance.

For noise smoothing, the performance measure will be the vari-

ance reduction ratio, i.e., the steady-state variance in position output

when the input is a unit variance white noise sequence. If {g(k)} is the

impulse response sequence for the predicted position, then the output for

an input sequence of {f(k)} is
~k

c(k) - I g(j) f(k-J) (3.9)

J =0
The autocorrelation of the output is,

K(n) E[c(k)c(k-n)]

k k+n
= ~ g(i)g(j)E[ f(k-j)f(k+n-.i)] (3.10)I: j=0 i=0

where E[-I denotes the statistical expectation operator. If the input

is a zero mean independent sequence, (3.10) becomes, in steady state,

K(n) = g(j)g(j+n) . (3.11)
J=0
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Thus, the variance of the output sequence is given by

K(0) g 2 g(j) .(3.12)

r0

IFor transient performance, the mEasure is based on the capa-

bility to follow a constant acceleration input. The input considered is,
~x(k) = (k2 + k)/2 ,(3.13)

If the predicted position output sequence is {r(k)}, the transient per-

formance measure is,

D : [x(k) - r(k-l)] (3.14)
k-O

This simple input is chosen to facilitate analysis, however, it retains
L the important feature of constant acceleration.

i J The optimum filter is synthesized by selecting the impulse re-

sponse sequence {g(k)} so as to minimize K(O) for a given D, or vice versa.

IA [The problem can be solved in the framework of constrained optimization in

which one wishes to minimize

J = K(O) + XD (3.15)

Iwhere X is the Lagrange multiplier.
The z-transform of the input sequence (3.13) is,

1; 2
X(z) = z (3.16)

(z-l)
3

Therefore, if G(z) is the transfer function (z-transform of the sequence

V {g(k)}), the z-transform of the output sequence is given by
1'

R(z) X(z) G(z)

z2  (3.17)
z

(z-l)
3 (z)

Rearranging (3.17) yields,
z 3_3z 2+3z- 1

G(z) = 2 R(z) (3.13)
i" z
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An inverse z-transform of (3.18) gives,

g(k) = r(k+l) -3r(k) +3r(k-l)-r(k-2) (3.19)

Using (3.19), (3.12) and (3.14), (3.15) becomes,

00
J = [ [{r(k+l)-3r(k)+3r(k-l)-r(k-2)} 2  (3.20)

k=0

fil 
+ X{x(k)-r(k)} 2

In order to find the first variation of J, the optimal r(k) is perturbed by

r(k) - r(k) + c h(k)

where C is a constant and h(k) is an arbitrary variation. The optimal

r(k) is foundl by equating the first variation of J to zero, .L.,.,

DJ[r(n) 4eh(n)] 0 (3.21)

Substituting (3.20) in (3.21) yields,

[{r(k+l)-3r(k)+3r(k-l)-r(k-2)}{h(k+l)-3h(k)+3h(k-l)-h(k-2)}
i k=0 ('4.22)

+ X{x(k)-r(k-l)}(-h(k))]= 0

The realizability of the filter requires that,

h(k) = 0
for k < 0 .(3.23)

and r(k) = 0

Using (3.23) and rearranging the summation indices, (3.22) becomes,

• h(k) [r(k+2)-6r(k+l)+15r(k)-20r(k-l)+15r(k-2)
k=O

-6r(k-3)+r(k-4)-X{x(k)-r(k-l)}] = 0 . (3.24)

rSince the variation h(k) is arbitrary, the quantity inside the brackets

must be identically zero, i.e.,

r(k+2)-6r(k+l)-,-15r(k)-20r(k-l)+15r(k-2)-6r(k-3)

L +r(k-4)+Xr(k-l) - Xx(k) 0 (3.25)

for all k > 0.

Co
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Because the left hand side of (3.25) is zero for all k, its z-transform can

have poles only on or outside the unit circle. Thus,
rig 2-6+1 -z 1+5 -2 -3

F(z) = (z2-6z+15-20z-+15z-26z-+l+Xz- )R(z)-Xx(z) (3.26)

has all its poles on or outside the unit circle. Rewriting (3.26), yields

(-)6 + Z3
F(z) 4 (z-l) + Xz R(z) - X X(z). (3.27)

z

Since X(z) given by (3.16) has no poles inside the unit circle, the real-

izable poles of R(z) must match the roots of

6 3(Z-1 + X z =0 (3.28)

It can be easily seen that if z = a is a root of (3.28), then z = 1/a is

also a root. Let a, b and c be the three realizable poles of G(z),

i.e., a, b and c are the roots of the characteristic equation

z 3-(3-g-h-k)z 2+(3-2g-h+k)z-(l-g) = 0 . (3.29)

Since the realizable poles of R(z) and G(z) are thB same, it follows that,

(z-a) (z-b) (z-c) (z-l/a) (z-l/b) (z-l/c) (z-l)6-Xz3  (3.20)

where

a + b + c = 3 - g - h - k (3.31)

a b c = I - g (3.32)

ab + bc + ac = 3 - 2g - h + k (3.33)

Equating coefficients of like powers of z on both sides of (3.30) and

using (3.31) - (3.33), yields
2

g = h(2-g) - gk (3.34)

and h2 = k2 + 4 gk. (3.35)

The above equations can be solved for h and k in terms of g, giving

h (2g 3_4g ) + 4g 6-64g 5+64g 4 _  (3.36)
8(l-g)
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2
and k = h(2-g)-g .

g

This method of selecting the coefficients was based on minimizing K(O)

for a given D. Equations (3.36) and (3.37) are the expressions for h and

k in terms of g. The optimal g depends on X, which is selected in such a

way that the value of D equals the specified value. Figure 3.1 shows the

variation of h and k as g varies from 0 to 1. Once again, high values of

g result in poor smoothing and the amount of noise reduction increases as

g decreases.

LThis set of coefficients can be shown to result in a slightly

of the trajectory model. Therefore, the filter is very well suited in situa-

tions where the motion is sufficiently steady. However, if the target accel-

eration is changing rapidly, its transient performance may not be adequate.

I U3.4 Use of Steady State Kalman Gains

In the case of the optimum filter described in the previous sec-I;
tion, the squared error in the predicted position was minimized assuming

a deterministic model. The Kalman filter [12] is based on a statistical

model and minimizes the mean squared errors in the three outputs.

The message vdel under consideration is given by
V

A) " X(n) + W(n) (3.38)

where the vector X is made up of the position, velocity and acceleration

as defined in (2.8) and {W(n)} is an independent vector noise sequence in-

L cluded to account for modeling inaccuracies. The state transition matrix

(Dis

0 1 T (3.39)

0 0
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The noise sequence {W(n)} is assumed to have zero mean and covariance

matrix Q, i.e.,

E[W(n)] = 0

E[W(k)WT(n)] = Q if n = k (3.40)

= 0 otherwise,

where 1Q3 Q2 Q13-1
Q = Q12 Q22 Q23 -

i 1Q3 Q23 Q33-.J

The measurement sequence x (n) is given by
m

x (n) = H X(n) + v(n) (3.41)
m

where H = [1 0 0] (3.42)

and v(n) is a zero mean independent noise sequence with variance R.

Since the Kalman filter algorithms have been widely published, onl, the

(1 final equations will be repeated here.

The algorithm for the predicted estimate at the (n+l) th stage

based on measurements up to and including the n th stage is

X(n+l/n) = [-K(n)H]X(n/n-!)+(K(n)x m(n) . (3.43)

-he gain vector K(n) is computed as

K(n) = P(n) HT[H e(n)HT + R1 (3.44)

where P(n) is the predicted error covariance,

P(n) = E[{X(n) - X(n/n-l))[X(n)-X(n/n-l)} (3.45)

The error covariance matrix is computed from the recursive relation,

P(n+l) = f[I-K(n)H]P(n) PT + Q. (3.46)

A casual examination of equations (2.14) and (3.46) reveals that the

Kalman filter i3 identical to the g-h-k filter except for the way in

which the gains are selected. The Kalman filter gain K(n) is time vary-

;I

ing as can be seen from (3.44) and (3.46). However, it can be shown that,

after a large number of steps, the error covariance matrix and hence the
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II gain vector reach steady states after which their values remain constant.

Therefore, this set of constant gains can be used as the feedback coeffi-

cients of the g-h-k filter.

Let Pij and Ki denote respectively, the elements of the co-

variance matrix and the gain vector, k.e.,

Ii 11l (n) el12 (n) el13 (n)'t

Pi e(n) = P12(n) P22 (n) P23 (n) (3 .47)

1P13 (n) P23 (n) P3 3 (n)j

1 KI (n)]

and K(n) K2(n)I (3.48)

K (n)I

{J Equation (3.44) can now be expanded to give

P11 (n)
Kl(n) = e(n)+ R )

P 1 e2 (n)K2(n) = n R (3.50)

2 [} P1 3(n)

KP n)
3 P (n) + R (3.51)

Using (3.49) - (3.51), (3.46) can be expanded to yield [81,
Pll (n+l) KIn)R + 2 K2(n) R T + K3 R T 

2  (n) K2(n) T2

3" n T 2  T3() 2 n

- P13 (n) K2 (n) T + P2 2 (n) T + P2 3(n) T

-1/4 P 3 (n) K3 (n) T
4 + 1/4 P33 (n) T

4 + Q (3.52)

P 12 (n+l) + K2(n) R + K 3 (n) R T - e12 (n) K2 (n) T + P22(n) T

i + 3/2 P23 (n) T
2 - 3/2 P 2 (n) K3 (n) T

2

331 3
-/2 P13(n) K3(n) T3 + 1/2 P33(n) T3 + Q2 (3.53)

22

' e13 (n+l) K K3(n) P. - Pe12(n) K 3(n) T + P 23 (n) T + 1/2 Pe33 (n) T 2

- 1/2 P13 (n) K3(n) T
2 + QI3 (3.54)
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P22 (n+l) = -PI2 (n) K2 (n) + P22 (n) + 2 P23 (n) T -2P12 (n) K3 (n) T

-P1 3 (n) K 3(n) T2 + P33 (n) T2 + Q22 (3.55)

P23 (n+l) = -P12 (n) K3(n) + P23 (n) - P1 3(n) 
K 
3 (n) T + P33(n)T + Q23 (3.56)

P33 (n+l) = -P13(n) K 3(n) + P33 (n) + Q33 (3.57)

In order to find the steady state gains, it is necessary to assign values

to the system covariance coefficients Qij" Assuming that the target is

moving with constant acceleration except for an uncertainty in the acceler-

ation, the covariance matrix Q can be adequately modelled as,0 0 0m
Q 0 0 (3.58)

0 

The quantity 02 is the maneuver variance, and may be approximated from the

maximum expected target jerk. Using Equation (3.58) and the fact that, in

steady state,

ei (n+l) = P(n) for i, j = 1, 2, 3

Equations (3.49) - (3.57) can be manipulated to show that the steady state

gains satisfy,
2 2

I"2 T K 3  K 1I(KI1 + K 2 T + K 3 T-) (3.59)

2  = 2K1 K3  (3.60)

and 2 2K3  0
3 m (3.61)

1 K 1 = R1-K R '

The first two equations can be used to express two coefficients in terms

of the third, which is then chosen using the last equation. Comparing

(3.48) with the g-h-k filter coefficients, it can be seen that

K1

K2  hiT (3.62)
2k

K 2k:° K~3 2=

4 T
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11 Use of (3.50) in (3.59) and (3.60) yields,

2h = g(g + h + k) (3.63)

h, = 4 g k (3.64)

which can be solved to give,

h =-2g + 4 -4 T--g (3.65)

k = /g. (3.66)

Since the main intent of this analysis is to express two coefficients

in terms of the third, (3.61) will not be discussed further. Given a

value of g, (3.53) and (3.54) can be used to compute the corresponding

values of h and k. Figure 3.1 shows the variation of h and k as g varies

from 0 to 1.

As can be seen, the steady state Kalman gains and the optimum

gains are identical except at large values of g. Since the steady state

k gains are used, it should be expected that the filter has a poor transient

performance. Further, the optimality of the Kalman filter depends entirely

( i on the validity of the message model. Since the assumed model is not

adequate when there is a severe maneuver, the filter will not perform

satisfactorily. The coefficient seiection is useful mainly during steady

periods, where high noise smoothing, or a small value of g, is desired.

However, since the gains are the same as the optimum gains for small values

U of g, the optimum gains could be used in all situations.

3.5 Coefficients to Improve Transient Performance

All the three selection schemes discussed so far were based on

optimizing the steady-state performance. However, in cases where heavy

transients are expected, it may be desirable to design the filter to pro-

Svide a good transient response.
Iepne



The method suggested here assumes the same message model,

(3.38) - (3.42), as the Kalman filter. Using this model and the equation

(2.17) of the g-h-k filter, it can be shown, by elementary linear system

covariance analysis methods, that the error covariance matrix P follows the

difference equation,

P(n+l) = P(n) 'T + PR r + Q . (3.67)

The covariance matrix P is symmetric and hence has only six unknowns. Let

S denote the vector made up of these six elements of P, i.e.,

i P11 (n)

P12 (n)

(n 13 (n) (3.68)
P2 2 (n)

P 23(n)

[ P3 3 (n)

Using (2.18) and (2.19), after a modest amount of manipulations, (3.67) can

be written as,

U S(n+l) = B C S(n) + B y + a (3.69)

L where 1 2T T2  T2  T3  T4/4

F 2 3L 0 1 T T 3T2/2 T3/2

2
B= 0 0 1 0 T T/2 (3.70)

0 0 0 1 2T T

V 0 0 0 0 0 1

(1-g) 0 0 0 0 0

-h(1-g)/T (1-g) 0 0 0 0

-2k(1-g)/T 2  0 (1-g) 0 0 0 (3.71)
2 2h2/T -2h/T 0 1 0 0

B 3 2010
2kh/T -2k/T 0 1 0

-4k2/T4 0 -4k/T 2  0 0 1
4kT0 -k/

2.
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'H 2

gh/T

2gk/T2

y R h2/T2  (3.72)

2kh/T3

I~ 4t
ii 4k2/T4

Q12

L and 1 =Q3 (3.73)

3! Q22
Q23

The method suggested here minimizes the cost function

I' ii NSJ I Pn11(n) (3.74)
7 - n=O

A S(n) (3.75)

I: n=O

where A [1 0 0 0 0 0 (3.76)

[7Tn (3.76), N is the number of steps over which the transient performance is

optimized. A small N results in improved transient performance, whereas

the filter reduces to the one described in Section 3.4 as N tends to infinity.

Assuming the initial condition S(O) is given as So, the minimization can be

1. approached from an optimal control point of view. The Hamiltonian is given

by H = A S(n) - A (n+l) [B C S(n) Ay + a) (3.77)

where X is the Lagrange multiplier vector. The optimal solution satisfies,

S(n+l) = B C S(n) + By + a, S(0) = So (3.78)

T BTA(n) = A - C B (n+l) , A(N+l) =0 (3.79)
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N N
-(n+l)B ag S(n) + + ] (3.80)

n 0 3HN n=XT( )[ a

and =0 (n+l)[ S(n) + D + a] (3.82)nI n =0

The optimization requires the solution of a two point boundary value prob-

ii lem. Analytical expressions for g, h and k cannot be obtained since the

~matrix C and the vector a contain nonlinear functions of g, h and k. A

simple steepest ascent algorithm similar to the one used in [13] can be

II utilized to solve the problem.

3.6 Conclusions

I [ Three methods were presented where two of the filter coefficients

i are expressed in terms of the third in such a way that meaningful criteria

are satisfied. The selection of the third coefficient is entirely dependent

~on the practical situation. All three schemes were derived using a constant

acceleration trajectory. Assuming that the coefficients remained constant

LI for all time, the methods attempted to optimize the performance for all time.

1' However, in some cases where heavy transients are present, it may be de-

sirable to optimize the performance over a short period of time. A coeffi-

I cient selection scheme was presented where this is accomplished using opti-

mal control principles.
ia N

X+

Tk=0ak(.2

n 0n=
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IIICHAPTER 4

IPERFORMANCE OF THE FIXED COEFFICIENT G-H-K FILTER
4.1 Introduction

[1 As previo-:oly discussed, the choice of a value for g is

based on a compromise between speed of response and noise smoothing capa-
ri

jbility. Another factor of importance is the selection of the initial state
which is required to start the recursive filter. In order to evaluate the

H performance of the fixed coefficient g-h-k filter, it was simulated on a digi-

tal computer and applied to simulated measurements. The purpose of this ex-

periment is twofold: (i) to splect a filter initialization scheme which

[IH results in the best transient performance and (ii) to compare the perform-

ance of the filter, using several values of g and different coefficient se-

lection schemes, for tracking trajectories with varying amounts of noise

Ii and maneuver. It is assumed throughout that the tracking interval is con-

stant and equal to 0.1 sec. All the computer programs developed for this

study are listed in Appendix A.

4.2 Measurement and Filter Simulations

4.2.1 Subroutine TRAJ

u This program is used to generate samples of range and azimuth of

a maneuvering or nonmaneuvering target. It is assumed that the target

velocity, the tracking interval and the target altitude are constant. The

simulated trajectory in the x-y plane consists of three segments. a

L. straight line path from time t = 0 to t = T seconds, (ii) a maneuver to

the right from t = T to t = T2 at a constant acceleration and (iii) a

straight line path from t = T2 to t = T3. Three typical trajectories

I which are used in the analysis are shown in Figure 4.1. Note that a non-

maneuvering trajectory can be obtained by setting T, = T2 = T In addi-

tion to the tracking interval DELT which is transmitted as an argument,
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[I C 3000 m

YO = 1600rm

0 3 rad
y 0

meters T 1  6 6sec

T 2  12 lsec

300 T 3  t T 3  ... 8sec

200T 
- 60 rn/sec 2Maneuver

2 ~ 30 rn/sec 2Maneuver

r ~No ManeuverT

1000 y

IYO

-1000 1000 2000 3000
meters

FIGURE 4.1 TRAJECTORIES USED IN THE ANALYSIS
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the following inputs are read in:

XO, YO the initial position of the target

Z the constant altitude
I/

VEL the constant velocity

THETA the initial angle measured from the x-axis

~ ITl, T2, T3 the times corresponding to TV, T 2 and T3

AC the constant radial acceleration during the

maneuver.

SThe outputs of the program are the number of samples N, and two arrays,

R and A, consisting of N samples each of the range and azimuth. All the

outputs are returned through arguments.

I .. The equations used are:

i x(n) = XO + n.T.V cos
S"for n T < Tl (4.1)

y(n) = YO + n.T.V sin e

2
r = V /a

a~(n) = V(n.t-Tl)/r

x(n) = x(-j)+r[cos(0-7F/2)-sin(a(n)+T-0)]VTl{ for T I<nT<T2 (4.2)
I L TI]

y(n) = y(T)+r[sin(0e-/2)-cos((n)+- 0 )I

x(n) = x( T)+(n.T-T2)V cos(O-a (T2))
for T2<nT<T3 (4.3)

g " I"y(n) = y( _ +(n.T-T2)V sn(-a T

where

T = DELT

0 = THETA

V = VEL

a = AC

and r = radius during maneuver,

The range and azimuth samples are calculated as,
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R(n) /+2( (4.4)

A(n) = tan- I (y(n)/x(n)). (4.5)

4.2.2 Subroutine NOISE

This program computes the simulated measurements by adding noise

samples to the range and azimuth samples generated by TRAJ. The noise sam-

ples form a zero mean, Gaussian independent sequence with standard devia-

tion RSTD and ASTD for range and azimuth respectively. In order to achieve

a Monte-Carlo type simulation, this program is written so that it provides

Sa different noise sequence every time. In addition to RSTD and ASTD, the

inputs include the arrays R and AZ which contain samples of range and azi-

muth and N the number of samples. The outputs are the arrays MR and XMA

1. consisting of N samples of the simulated measurements in range and azimuth.

All inputs and outputs are transmitted as arguments. The noise samples are

generated using the subroutine RANDN of the UNIVAC 1108 library.

4.2.3 Subroutine GHKFIL

This program simulates the g-h-k filter in one coordinate based

on the equations given in Chapter 2. An input INIT is used to selecc one

of three different initialization schemes described in the next section.

1. Other inputs are the array of measurements XM, the number of samples N,

tha tracking interval DELT, and the filter coefficients G, H and K. The

outputs include the arrays XP, VP and AP containing predicted position,

velocity and acceleration, respectively, and an array RES containing the

residual sequence

RES(n) = x (n) - H X(n/n-l). (4.6)
m

All inputs and outputs are transmitted as arguments.

4.3 Filter Initialization

As can be seen from the equations in Chapter 2, the implementa-
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tion of the recursive filter requires that the initial states be specified.

It is important to choose these states properly since it is undesirable to

have large transients. Assuming that three measurements have been made,

Cthree different initialization schemes are considered:

I-i ^(3/3) = X (3)

(ix (3) x (2)
()= m (4.7)

T

R (3/3) =0

x(3/3) = X m(3)

A x (3)- x (2)

(2)= T (4.8)

(33 Xm(3) - 2x m(2)+x m(l )
T

5x m(3)+2x m(2)x m (1)

A(3/3) m m
T

x (3)-x (1)
(3) m 2T (4.9)

K(3/3) = 0

The first set of equations is denived assuming a straight line between the

second and third samples. In the second scheme, the position and velocity
!

Lare based on a straight line between the second and third samples while

the acceleration assumes piecewise straight lines between adjacent samples.

I The third alternative is derived through a least squares straight line fit

between the three measurements. By setting INIT = 1,2, or 3, while calling

subroutine GHKFIL, the corresponding initialization procedure can be utilized.

" In order to compare the three initialization schemes, a main pro-

gram TSTINI was written and exercised on a nonmaneuvering trajectory. Since

the simulation results depend upon the particular noise sequence employed,
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three different noise sequences were used. The basis of comparison was

the absolute maximum value of the prediction error in the first fifteen

tracking instances, both in range and angle. The results of this test

are given in Table 4.1. The nonmaneuvering trajectory shown in Figure 4.1

Ji was used along with the following parameters:

RSTD = 6m, ASTD = 7.5 m.rad

g = 0.5 with optimal selection of h and k.

From the table it is apparent that initialization scheme 2 has

the worst transient performance. This is probably because three samples

are not sufficient to estimate the acceleration. Schemes . and 3 yield

comparable results with scheme 3 being slightly better. Therefore, it will

!i 4 be used for initialization in the rest of the analysis.

4.4 G-H-K Filter Performance

I In an attempt to evaluate the performance of the filter under a

variety of conditions, a main program TSTGHK was written. The program was

LJ exercised for tracking three different trajectories, with two different

noise levels. Several values of the coefficient g were tested and the

coefficients h and k were selected using both the optimal and the critical

damping methods. The bases of comparison are the abaolute maximum error

and the RMS error in both range and angle. Once again, the experiments

L. twere repea'ed for three different noise sequences. Typical results are given

in Tables 4.2 through 4.7 where a and a denote RSTD and ASTD respectively.
R

Since noise sequence No. 3 provides a performance which is in betweei, those

of the other two sequences, all comparisons are made with respect to that

sequence. For ease of comparison, all the resulcs using noise sequence

1- No. 3 are repeated in Table 4.8. The following different values of the

parameLers are used in the experiments whose results are shown in the tables.
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g : 0.3 0.5 and 0.7

1 h,k : optimal and critical damping methods

( three trajectories shown in Figure 4.1
Trajectory no maneuver, 30 m/sec2 maneuver and

p 60 m/sec2 maneuver

Noise Levels: = 4m and a0 = 5 m.rad

HR = 8m and ae = 10 m.rad

Examination of the results reveals the following observations:

(1) Low values of g provide the best performance when the

target is not maneuvering. But a target maneuver has a

deteriorating effect.

(2) Target maneuver has no effect on the errors at high

values of g. However, they have very poor noise

smoothing.

(3) At low values of g, the optimal filter is better than

the critically damped filter, whereas the opposite is

true at high values of g. This is because the optimal

filter becomes highly underdamped at high values of g.

(4) For the particular noise and maneuver parameters chosen,

a moderate value of g, i.e., g = 0.5, seems to provide

the best compromise.

7i From the results, it is apparent that a single value of g cannot provide a

satisfactory performance for all types of trajectories. A small value of

g is adequate for tracking nonmaneuvering targets but may lose track in

case of a maneuver. On the other hand, a large value of g makes the per-

formance insensitive to target maneuvers, but may lose track because of

its poor noise smoothing capability.

Li
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4.5 Conclusions

The performance of fixed coefficient g-h-k filters for tracking

maneuvering and nonmaneuvering targets was studied via simulation. Three

different filter initialization schemes were evaluated in the light of

good transient performance. The tracking capability of the filter was
,I

studied by varying the filter and target parameters. The main conclusion

is that a single set of filter coefficients is not sufficient to provide

an adequate performance for both maneuvering and nonmaneuvering targets.

Thus, an adaptive filter suggests itself, whereby the coefficients are

altered when changes in the trajectory are detected. A method of making

the filter adaptive to target maneuvers is discussed in the next chapter.

SIL

j L

°P

g{
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1CHAPTER 5

ADAPTIVE G-H-K FILTER FOR TRACKING MANEUVERING TARGETS

5.1 Introduction

p The most commonly used tracking filters, i.e., the Kalman fil-

ter, the g-h filter, the g-h-k filter, etc., operate satisfactorily pro-

H vided the dynamic model on which the tracking algorithm is based is a

correct representation of the true state of the target. Usually, the

Hmodel is based on the assumption that the target follows a constant ve-
locity or a constant acceleration trajectory. However, such a model can-

not adequately describe a maneuvering target, not only because the con-

stant acceleration assumption is invalid, but also due to the inherent

uncertainty in the time at which the maneuver is initiated. Singer [3]

has suggested that a maneuvering target is well modeled by a linear accel-

eration model driven by random noise of proper variance, and hence, a

Kalman filter can be used. This filter maintains track throughout the

maneuver, but suffers significant degradation when the target is not maneu-

vering. This is analagous to the conclusion drawn in the previous chapter

that a single set of g-h-k filter coefficients cannot provide a satisfactory

performance for both maneuvering and nonmaneuvering targets.

One approach towards resolving this problem is the use of adaptive

* trackers, wherein the filter senses deviations of the trajectrry from the

model and modifies the algorithm accordingly. An adaptive Valman filter is

proposed in [14] where the predicted estimate is the weighced sum of two

Kalman predictors, each of which is based on a diffetent model. The rela-

tive weights are based on a likelihood ratio which reflects the possible

occurrence of a maneuver. In the adaptive estimator described in [151 and

(16], target maneuvers are modeled as unknown random variables which are

estimated along with the target state. The unsupervised cracking scheme



41

given in [17] is a feedback filter where the gains are selected to force

Horthogonality in the residual sequence. The gains themselves are computed

using a stochastic approximation algorithm. A decision-directed adaptive

1! tracker is explained in [18], where a maneuver is detected from the bias

U in the residual sequence of a Kalman filter. The filter is reinitialized

and a different value is used for the system noise covariance when a maneu-

Sver is detected. Linear regression filters are used in [191 for tracking

maneuvering aircraft targets in cartesian coordinates.

U In this chapter, an attempt is made to design an adaptive g-h-k

F[ filter. The procedure is to use a fixed coefficient g-h-k filter with

high noise smoothing capability when the target is not maneuvering. How-

U ever, when a maneuver is detected, the coefficients are modified so as to

provide a good transient performance. Target maneuvers are detected by

processing the residual sequence of the g-h-k filter. The procedure is

simulated and exercised on maneuvering and nonmaneuvering trajectories to

ascertain its validity. All the programs used are listed in Appendix B.

5.2 Maneuver Detection

5.2.1 Principle of the Method

Using the same notation as in ChapLer 3, a maneuvering target is

modeled by the s,,.tem equations

X(n+l) = * X(n) + A(n) (5.1)

x (n) =H X(n) + v(n) (5.2)

where 1 T 2 /

[= 1 I

H=[0 0 01

H 1 0
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'and the vector forcing function A(n) is included to account for the tar-

get maneuver. Assuming that the maneuver was initiated at n = n where

n is unknown,
V 0

A(n)= 0 for n<n . (5.3)
0

The filter equation is given by,

X(n+l/n) = X(n/n-l) + 0 K V(n) (5.4)

where V(n) is the residual sequence,

v(n) = xm(n) - H X(n/n-1) , (5.5)

and the gain vector K is given by

49

K= hiT (5.6)

2k/T2L _J
Consider a nonmaneuvering system given by,

. Y(n+l) = Y(n) (5.7)

Ym(n) = H Y(n) + v(n) (5.8)

L with the same initial condition as that of (5.1). The corresponding pre-

diction equation is,

Y(n+l/n) = Y(n/n-l) + OK Vl(n) (5.9)

where ''1(n) = ym(n) - Y(n/n-1) (5.10)

It can be easily seen that,

X(n/n-l) = Y(n/n-l) (5.11)
for n <n

U and V(n) = V1(n)

If the Kalman gains were used for the feedback gains in (5.8), it is well

known that the residual sequence would be a zero mean white noise sequence.

While this is not true in general for the g-h-k filter, under thE condition

that the filter is in steady state, it can be assumed that the sequence V (n)

is a zero-mean independent sequence. However, this property is dependcnt on

the model (5.7) being a true representation of the trajectory. If the target
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is maneuvering, the residual sequence develops a bias which reflects the

maneuver. The residual sequence V(n) can be written as

V(n) = vI(n) + b(n) (5.12)

where b(n) = 0 for n < n (5.13)
-0

Therefore, detecting a bias reduces to the followin hypothesis test:

H : no maneuver : V(n) = Vl(n)

i 1 : maneuver : V(n) = vl (n) + b(n)

where V 1 (n) is an independent sequence. That is, detecting a maneuver is

equivalent to detecting for the presence of a deterministic signal of un-

known amplitude and time of arrival in a background of zero-mean white

it' noise.

F p5.2.2 Equation for the Bias

Comparison of (5.2) and (5.8) gives

x m(n) = y m(n) - H Y(n) + H X(n) . (5.15)

Combination of (5.5) and (5.15) yields ,

.V(n) = Y(n) - H Y(n) + H X(n) - 11 X(n/n-l)

% A A

= Ym(n) - H Y(n/n-l) + H(X(n) - Y(n)) - H(X(n/n-l)-Y(n/n-l))

I 1 (n) + H(X2 (n) - X3 (n)) (5.16)

( where

X2(n) X(n) - Y(n) (5.17)

X3 (n) X(n/n-1) - Y(n/n-i) (5.18)

From (5.1) and (5.7), it is easy to show that,

K (n+l) = X (n ) + A(n) (3.19)

I and (5.4) and (5.9) can be manipulated to give,

SX,(n~i) =*(I-K{)X.(n) + K H X2 (n). (5.20)

Z Defining,

' " n X,(1) - X,(1) (5.21)
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equations (5.19) and (5.20) can be combined to yield,

!(n+l) = $(I-K H)4(n) + A(n). (5.21)

Comparison of (5.12), (5.16) and (5.21) shows that the bias sequence can

be expressed as,

[I b(n) = H 4(n+1) . (5.23)

Since the maneuvering and nonmaneuvering models assume the same initial

Iconditions,
2()= 0. (5.24)

Equations (5.22), (5.23) and (5.24) provide a model for the bias in the

residual sequence.

'The initial effect of a target maneuver can be adequately

modeled by a sudden change in acceleration, i.e.,

LI
F A(n) 0 for n = n (5.25)

U [ etherwise

Using (5.25), it can be shown that the z-transform of the bias is given

B(z) a z-no(z+l) 
(5.26)

3 2
z -(3-g-h-k)z + (3-2g-h+k)z-(l-g)

Assuming that the filter coefficients are selected to provide critical

damping according to (3.5) - (3.7), the bias sequence can be shown to be

of the form,

2 2 (n-no)
b(n) = c T (n-n) (5.27)

where c is a constant. A large value of g results in a small value of B

and hence a small bias. This is in agreement with the earlier result that a

large value of g produces a fast reaction to changes in the trajectory.

5.2.3 Bias Detection

As stated before, the maneuver detection reduces to a hypothesis
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Itest where it is required to detect the presence of a deterministic signal
7 b(n) and its time of occurrence no in a background of white noiQP. The: O

classical decision theoretical method is to pass the residual sequence v(n)

through a matched filter []2] which is matched to,

m(n) = (nT) 2 n (5.28)

and subject the output to a threshold detector. Assuming that the detection

must be completed within p steps of the occurrence of the maneuver, the

1 impulse response of the matched filter is,

y(n) = m(p - n) 0<n<p (5.29)

4= 0 otherwise (.9

It is desirable to implement the matched filter as a recursive filter so

as to avoid excessive computation and storage. An impulse response of the

type given in (5.29), requires a filter of order k. In order to simplify

the implementation, the impulse response y(n) is approximated by an expo-

nential, which can be synthesized as a first order recursive filter. De-

noting the new impulse response as,

X(n) = n, (5.30)

11 the difference equation governing the matched filter is given by,

1i(n+l) = a p(n) +T v(n+l) (5.31)

.. where p(n) is the output and the input is the residual sequence v(n). The

output sequence p(n) is passed through a threshold detector. If the out-
.

put exceeds the threshold at n Z,, a maneuver is detected and the time of

its occurrence is estimated as

no= - p. (5.32)

The remaining problems are the selection of proper values for p and ct.

A large p results in more maneuver data in the matched filter, thereby

making it easier to detect, but the lag between the occurance of the maneuver

and its detection may be unacceptable. If p is small, detection is based on

V
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few samples containing maneuver information, and the performance could be

quite poor. The value of a should be chosen so that X(n) approximates

y(n) and is therefore a function of g.

5.3 Adaptive Filtering Scheme

-i The maneuver detection method explained in the previous section

is utilized to design a g-h-k filter which is adaptive to target maneuvers.

ti It is assumed that the target is initially on a straight line path and that

it is being tracked with a g-h-k filter using a small value for g to pro-

vide good noise smoothing. The residual sequence V(n) is passed through

the first order filter given by (5.31) for maneuver detection. The output

Up(n) of this filter is compared to a preselected threshold 6. If at n = nI ,

S(n) = p(nI) exceeds the threshold 6, a target maneuver is indicated. In

such a case, the filter coefficients are increased in order to provide a

fast response to trajectory changes and the filter is reinitialized. In

order to reinitialize the filter, the I latest measurements and smoothed

values are stored. When a maneuver is detected, the filter is applied using

the new coefficients and starting from the earliest available smoothed values.

Since large values of coefficients also result in poor noise smoothing, the

. filter coefficients are switched back to the original values after I track-

t

Ing intervals following the maneuver detection.

Subroutine GHKADA implements the above scher" for one radar coordi-

nate. The input to the program transferred through arguments are the array

of measurements XM, and the threshold 6 for detecting the maneuver, denoted

as THR. Other inputs transferred through a common statement are the number

of samples N, the tracking interval DELT, the filter coefficients GN, HN,

KN for the nonmaneuvering part, the coefficients GM, HM, KM tor the maneuver-

ing part, the detection filter weight a (see (5.31)) denoted as WEIGHT, and



SI 47

and the values of I and It denoted as ISTORE and ITRANS, respectively.
S t

The outputs are the arrays XP, XV and XA containing predicted position,

velocity and acceleration, respectively, and are transmitted as arguments.

Main program TSTADA is similar to TSTGHK developed in Chapter 4.

} P It is used to find the maximum and the RMS values of the error in the pre-

dicted position for various trajectories generated using subroutine TRAJ.

! 5.4 Adaptive Filter Performance

To evaluate the performance of tha adaptive scheme, the sir la-

Ution program was exercised on typical trajectories described in Chapter 4.

Ii jThe experiment was repeated for various combinations of the filter coeffi-

cients and target maneuvers. A typical set of results is presented in

Table 5.1. During the nonmaneuvering position of the trajectory the op-

timal coefficients with GN = 0.3 are used. The value of the detection

I bfilter weighting coefficient WEIGHT was chosen as 0.85, since this selection
provides a good approximation to the matched filter when g = 0.3. The

threshold for maneuver detection in range was set at S =4.0, which was

selected based on preliminary experimental results. For the types of tra-

1! jectory used, the target maneuver does not have an appreciable effect on

the angle tracking filter. Therefore only the results of the range track-

ing filter are given. The table gives the peak range error with GN = 0.3

using the adaptive and the nonadaptive filter. The adaptive filter uses

, GM = 0.5 and 0.6 with both the optimal and critical damping coefficient

selection schemes. The values of I and I used are 3 and 10, respectively.
s t

VThe results of Table 5.1 and others not presented permit the

following inferences.

(1) The adaptive scheme reduces the maximum error for high

acceleration maneuvers.
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(2) During the maneuver, the selection of the filter

coefficients based on critical damping is better than

than the optimal selection. This is to be expected

since the optimal scheme is slightly underdamped and

therefore, not ideal during transients.

U (3) The selection of I is not critical. In fact, the
s

simpler choice of I = 1 gives almost an identical

performance to I = 3.

(4) The maximum error occurs before the maneuver is de-

Itected. Therefore, the adaptive scheme would work
better if the maneuver were detected earlier.

I"

1.i

li

I-
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CHAPTER 6
SUMMARY, CONCLUSIONS AND SUGGESTIONS FOR FUTURE EFFORTS

6 .1 Summary

aChapter 2 is a review of the g-h-k tracking filter and presents

all the relevant equations. The selection of the filter coefficients is

discussed in Chapter 3. Two of the filter coefficients can be expressed in

terms of the third based on performance criteria, which involve noise smooth-

ing and speed of response. The purpose of Chapter 4 is twofold: (i) to

Bselect a filter initialization scheme for best transient performance and
(ii) to select the filter coefficients for various amounts of noise and

i maneuver. Since the best choice of the filter coefficients for nonmaneu-

vering and for maneuvering targets is quite different, it seems logical to

make the filter adaptive, that is, to change the coefficients as soon as

a maneuver is detected. Chapter 5 proposes a technique for maneuver detec-

tion which is based on the bias in the residual sequence. The performance

of the adaptive filter is evaluated through computer simulation.

6.2 Conclusions

L The selection of the g-h-k filter coefficients is very important

and must be a compromise between the conflicting requirements of good

noise smoothing and of good transient capability. Assuming either critical

damping or optimal transient response for a specified amount of smoothing,

one can express h and k in terms of g, where g is chosen to satisfy the

smoothing/transient compromise.

The performance of the fixed coefficient g-h-k filter is quite

good for a nonmaneuvering target and is still adequate for a wide range

of maneuvers. The filter initialization has a serious effect on the per-

formance and a scheme is proposed based on a straight line fit through the

is ww-"
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three measurements. At low values of g, the optimal filter is better than

[1 the critically damped filter, whereas the opposite is true at high values

of g. This is because the optimal filter becomes very underdamped at high

LI values of g. A large value of g provides the best performance when the

target is maneuvering and should be used in conjunction with ctitical damping.

Trajectories were generated where a straight line path is fol-

lowed by a high acceleration maneuver. It was shown that the maneuver in-

troduces a bias in the residual sequence. A technique which approximates

matched filtering followed by threshold detection was proposed to detect

the maneuver. The detection requires at least eight samples after the

maneuver starts. An adpative filtering scheme was suggested where the

coefficients are selected for good smoothing performance prior to maneuver-

ing and for good transient performance following a maneuver detection. It

Uis necessary to reinitialize the filter when the coefficients are changed.

The use of the adaptive filter reduces the tracking error during maneuver-

ing. The maximum error occurs before detection of the maneuver.

6.3 Suggestions for Future Efforts

The performance of the adaptive filter is limited by the detec-

tion capability. It could be greatly improved if a maneuver were detected

in fewer samples. Therefore, one may want to use a better approximation

for the matched filter. The fixed threshold was determined experimentally,

and a more systematic procedure is recommended.

All the study assumes a constant tracking interval. However, if

the radar ir used to track several targets, it may be advantageous to in-

crease the sampling rate for a short interval following maneuver detection.

One could consider other reinitialization techniques than the one described.
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The filter was made adaptive to target maneuvers. In addition,

II one could also make the selection of the g-h-k coefficients a function of

the RMS value of the noise to be estimated from the residual sequence.

I-

I

I ii:

I.

..'
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APPENDIX A

PROGRA"S FOR EVALUATION OF FIXED COEFFICIENT G-H-K FILTERS

ais appendix contains the FORTRAN listings of the programs

which are used for the evaluation of g-h-k filters. The programs are:

subroutines TRAJ, NOISE and GHKFIL, and main programs TSTINI and TSTGHK.

All the programs are described in Chapter 4.

!p

~ i



SUBROUTINE TRAJ(RANDELT)LI DIMENSION R( II Al )
READ) 1,xOsY0,ZsVELjTHETA
PRINT 2,X0,Y0,ZeVELoTHETA

II RLAU 1,TIsT2,T3,AC
14 PRINT 3,TI ,T2sT3,AC

I FORMATI)
2 FORMAT(SX90 XO YO Z VEL THETA 'v5F12s5)
3 FORMAT(SX,' Ti TZ T3 AC '.'IF12*5)

£0IeA !V!IIHAaVLOVE/AC

Y.Y04V T*ST
R(N I*SQRT (X*02+Y*024Z*021
A (N) uATAN2 Y ,X)
TwT+DLLT

(.0 TO 10

It CONTINUELi IF(ACeLT.I.) RETURN

12 IFIT*GT.T2) GO TO 13I Li Ai.PHA*VEL$ITwTI )/RAD

v XwX1.RA0*(ST+S1N(ANG) I
* L YNYI+RADO(mCT+COS(AN6))

R (NI uSQRT IX**2+Y**2+Z.*2)
I AIN)aATAN2(Y*X)

GU TO 12
Ji13 CUNTINUE
V X20X

v PHI uTHETA-ALPHA
CPscs( PHI)
bPoSINcPHI I

14~ IFIT*GToT3) RETURN

I. VTOVELO(T-T2)
XOX2.VTOCP
YuY2+VT*SP
RI NI SQRT iX**d.Y**2+Z**2)
A IN) AT AN2 I vXI
1.1 .DELT
G0 TO 1'I
END)
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Ti SUBROUTINE NOISE'NAZsNXMRsXMAsHSTOASTDI
U ~DIMENSION R( l; *AZ fl ,XMR(1) ,XMA(I1) XN(qO0u)

DATA SAVE/l'$76*/

N2829N
CALL IRANDN( XNN2 .U.Cs * 0)
DU 10 Iul #N
XmR( I .R I )+RSTDf*XN( I)

10 XMA I )NAZ(1I +AST.xiq( I*N)
SAVEwA8S(XNlN2)le'43576

RETURN

END

SUBROUTINE (iMKFIL (XM,NXP,VP ,AP ,UELTGH,KR.ES, INIT)

iT I I ~~ DIMENSION XM( II XP( I VP(I) ,AP( 1,RESC I)
REAL K

~ 12 GO TOf20,21 .221 ,INIT
2U XSwXM13)

VSwIXM131-Xrl(2H/UELT

L GO TO I I
21 X5.a XM (3~

VS=(XM(3)-XM(2) 1/DELT
A~ntXp (3)s2.XM(2I+XMIH/(tUELT..2)
GO TO I I

22 X~m(5**xm(3)+.**xmI2)-xm(j))/6*FVS=(XM(3)-XmHH)/(2*DELT)
11 CUNTINUE

V DU 12 1840,
XfiI).XS.DELT.VS.AS.IDELT..z/2.)
VP I )xVS.DELT*AS
AP I I ) xAS
RES( I )Xm( I)-XP( 1)

1. XS.XP( I )G*RES( I)
VSNVP (II+HES (I) *H/DELT

V12 ASwAPCI)+RES(I)*129*K/0ELT**2)
RETURN

END
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MlAIN PROGRAM TSTGHK

H L3DIMLNSIU14 R(2UU) ,AZ(2U) XMH(20U? ,XMA(20U)
DIMENSION RP(2U(J) RV(2UU) ,RA(2U01 ,RES(200)
DIMENSION AP(2UU) ,AV (200) ,AA(203) ,AES(200)

REAL KA'! I FURMAT()
2 FORMAT(SX,' 6 H K 1,3FI2ob)

III3 FORMAT(bX.' RStU A$7Uto ', FIZ.b)

bFURMAT(/SX,' RL.SULT , FOR~ INOISL a oW
9 20# KU,' AN(bL MEAN SQAkHE ERROR a ',F12*b/

j I ZOX:' IKANGE, R L NRON a s*2b

* 2OXo' ANGLE R m 5 LRROR ',F12*5/
* 2COXII ANGLE MAXIMUM ERROR 09'F12*5?

I7 FORMAT(SX,l DELT #sF295)
9 It EAD) 1,WELT

Li ~FRI14T 7sDEL7
* 4REAU I stH,K

PRINT 2 9G ,H,9KIL]HEAD IstSTDASTD
PRINT 3okSTDASTL)

IREAU I ,I NI T
P PR INT 4 1,41 T

Li CALL TRA)'R,AZ, iGELT)
DO 1i" IiNOISErs1,3

IL SSQA*0.
LRMAXR=Uo
ERMAXAmOtIL CALL NOISL (t,AZ,1,XtIR,;h A,RSTU,ASTD)
CALL (3KFIL(XMRIdRPRVRADELT,G.HK,RES, IN! TI

CALL GH9FILXMANoAPAVAADELT,G,HKAES, INIT)
DO I I IN16,N

L H~xAtB5(R(II-RP(IH)
IF (RL*GT .ERwIA;K) ERIAXHrRL

AEuAbS(AZ( I )AP(II))iiIF(A~oGisERMAXA) RAmA
11 5SQAaSSW~A+AE**2

XrSQRwS5WR/FLOAl(U 5
XmSWAx5bfWA/FL0Af(i5
HMSQRxSqdk I(XMS~Th)
kmSWAaS~4RT(XMS5jA)
PRINT bINOISE#XMS(,RMGQrtEAMAAR,XMSlAHMSQA ,ERMAA

IUCONTINUE
S105.
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I h ~~~MAIN PROGRAM TSTINI;XRU MA20

DIMENSION~ AP(2OD) ,AVIZUO) ,AAh(lO) AES(200)
REAL K
F UtM ATI %)

1FQXMAT(5Xv9 (a H K '%3F12v5i)

3FORMATISX,f R5TD ASTD ', F12*5)ii ' FURMAT(5X,t INIT 9,15)
5FORMiAT(/5X.' RESULTS FOR lNOlS: I15//
0 -40W' RA14GL MEAN SQUARED ERROR qst4Sh e* X~ HANGL K~ M 5 ERROR fs125
* iOK,f NANGL MAXIMUM E1RUN Ili
0 2OX,' ANGLE MEAN SQUARED ERR~OR fq*zs
0 Z UK.9 ANCjLE R M 5 tHROR qs*25
* 20X,' ANGLL iAX161iUM ER~ROR ftI2

7 FO0RMATf5Xtq UELT 'sF12.5)
Rt,A) lIt)LLTjf Ii P~iT 70ULLT

RLAU I pR5TU,A.)TU
PIN~T 3 RbTi)sASTU
RELA L) I sI N IT
PRNT 'bINIT

~IiI CALL TRAJ(R ,A~.,NsELT)
DU 10 JNOISL81 3

SbQRm(U.

IL MAX Im .0
ERMAXAsOo

V CALL NOISEIM ,AZNsXMiRMARSTDASTD)
CALL GHKFIL(XM)hNNPtkVHADELTGdi,Kskh~i.SNIT)
CALL (3HKFIL(XMANAte,AV,AA,L3ELT.~iH,K,AES, INIT?

1)0 I I I U40 1
RL=A6S(R I )-RI~))
IF(R EsGT*ERMAXH) LRIlAXi~aRL

SbQR=SSQR+RE.**
At=*AB$(AZ(I )-AP( I))

IP(A.GTLRilAXA) LHMAXAnAE
11 55W~ASSWA+AL**2

XiS54HaSSQR/FLUA(Ni-1b)j. *-'jS AzSQA/FL04 TI [- Ib
RMSqR aSQRHTI XM5tQ N
NilS wA =SuH ~T C XMb )A)
PtIINT 9, IN0I5S. Xmr)bH ,ibt,Eiif1AXtN,XISWtA,RPIS1QA,1t(MAXA

I U CONT1INUE
s lop

*114
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APPENDIX B

PROGRAMS FOR EVALUATION OF ADAPTIVE FILTER

This appendix contains the FORTRAN listings of the programs which

are used for the evaluation of the adaptive g-h-k filter presented in

Chapter 5. These programs are subroutine GHKADA and main program TSTADA.

Other subroutines required for this study are TRAJ and NOISE which are

'LI listed in Appendix B.

tt
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SUBROwTINE GHKAOA IXMOXP ,XV XA ,THR)

COMMON/FLTPAR/N.DELTGNHNKNWEIGHTISTOREGMMMKMITRANS
DIMENSION XMI 1) XP( I) ,KVlI IXA( I)
DIMENSION XST(3sIO) ,XS13)
DATA XST/30*0o/
REAL KoKNKM

C INITALIATION9 MANEUVER DETECTED AT IS a #915/)
XS(13a(S**XM (3)+2**XM (2)-XM (lU/b.
X5121n(XM (3)-XM 1Ifl/(2**DELT)
X5(3)mO*

XUET=O.

f GNGN

t KwKN
D0 U10 I r1 3

10 Xb)T(1,1)oXSII)
C PREDICTION ALGORITHM

V.I aS
IF(IS.GT@N) RETURN
XP(.IS)*XS( l).DELTOXSI2).Xs(3)e(DCLge.2/2.)
XvI IS)wXSIZ'14DELT*XSf3)
XAI IS)*(13)
RES uxM (1S)-XPIIS)
IF(IMAN*EQ#IoOR.ISI.T*15 GO TO 12

C MANEUVER DETECTION
XDETuvE IGHTOXDE:T+DELTORES
IFIABS(XDET).GT*THRI GO TO U1

12 XS(Il)XPIIS)+Cs*RE.S
XS(Z)SXV(IS)+H*RES /DCLT
X513)wXAIIS)+K*RES 0*/DELT*02)

C STORE ISTORE SMOOTHED VALUES
DO 13 lal 93
IFIISTORE*EQ*I) GO TO 13
DO 1'4 JoISTOREo2taI

III XST(IIJ)=XST(IJ-1)

13 XsT(IqI)vXSII)
IFI.IMANoEL~.0) 6O TO IS

C CHECK IF TRANSIENT PERIOD 15 OVER
IFIIS-IOET*LE91TRANS) G0 TO 15

W KNKN
V IMANnO

XULTmUs
GO TO 15

C HEINITIALIZATION

PRINT 2,15
I M A NS
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KwKM

DU0 1.6 1.1,93
16XS(1J.XSr1IjSTORf)

DO 17 laIST0REsti-j
PPX.XS(114DELT.XS(2).XS(3).(DELT..2/2.I

PVXuXS( 2!+DELTOXS 3)
PAXxXS13)

RLSXXwXM fIIET-I11)PPX
XSI j)oPPX4GORESXX
XS( Z~uPVX4H*RESXX/DELT

t7XS(3)xPAX.K#RESXX*2o/(OELt*02I
I GO TO 15

END

MAIN PROGRAM TSTADA

COMMON/FLTPAR/NoELT#GNHN#KNWEIGHTISTOREGMHMKMITRANS

DIMENSION AP(2OO) ,AVtZOU) AA120O)
L. DIMENSIUN XMR(2 0 0 ) ,XMA(200 )

DIMENSION R(ZO0j ,AZ2OO)
REAL KMKN

I FORMATtU
t a2 FORMATIZDOI TRACKING INTERVAL a *l~S
r!3 FORMIAT12OXol COEFFICIENTS : NONMANEUVERING 'o3(F2oS,3Xf

'I FORMAT1ZOX,' COEFFICIENTS :MANEUVERING *,3cFl2.Li3X))
5 FURriATCbXof MAXIMUM AND RMS ERRORS *I/

* ZOX, RANGE MEAN SQ)UARED ERROR a *125
17* 2OXs' RANGE R M S ERROR a F25

Z 4X,' RANGE MAXIMUM ERROR sFu5
* 2OX. AN(.LE MEAN SQUARED ERROR a *125
* 2OXo' AN(1LE R M S ERROR a *I25

ii 2 ZXo' ANGLE MAXIMUM ERROR a 'sF12.63
4 FORMAT(2OXol EXPONENTIAL FILTER WEIGHT P OsF12.5/

0 2OX,#' RANGE THRESHOLD x toFI2*5/
0 OX,' ANGLE THRESHOLD a 'F 12.05 1

7 FORMAT12OX,' SAMPLES FORl REINITIALIZATION lIS/
* 20X, SAMPLE$ IN TRANSIENT'15
BFURMAT(20X,4 RANC3E STD* DEVIATION 8 ',FI2@5/
0. 20ZX,' ANGLE STD, DEVIATION a foFI295)

9 FORMAT(/SX#* RESULTS FOR INOISE a '.15/l

21 FORMAT(/5X,' RANGE TRACKING COMPLETEV/)
j21 FORMAT(/5X,f ANG3LE TRACKING COMPLETEI/)

READ 1,DELT
PRINT Z#DE,.T
READ I #GN,HN,KN

1.PRINT 30,GN#HN#KN
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READ IGMhMKM
PRINT 4,GMoHMKIFfREAD IWEIGHT*RTtHRoATHR

PRINT 69WEIGHTeRTHR,ATHR
~ jjREAD 1,1STORE,1TRANS

PRINT 7olSTORE91TRANS
READ I#RSTD,ASTD

r PRINT 8,iRSTOASTD
CALL TRAJfRqAZoNDELT)
DO 10 INOISE*193
PRINT 9,INOISE
SSQR*Oo
SSQAuo*
ERMAXRwOo

ERMAXAU#~
CALL NOjSE.RAZNXMRXMARSTDsASTD)
CALL GtIKA02 (XMRRP ,RV ,RA RTHR)
PRINT 21
CALL GHKAD21XMAsAP,AVAAATHR)
PRINT 22
00 11 IuI6,N

~j1 RExABS(R( I)-RPlH)
IFIREoGT.ERMAXR) ERMAXf~uRE
SSQRsSSQ.R+RE*2

F AEsA55(AZ(I )-AP( I)
IF(AE*GT.ERMAXAi ERMAXAUAE

14 SSQAnSSQA*AE*02
p XMSQlRsSSQlR/FLOAT (N- 15

~; jjXMSQADSSQA/FLOAT (N-15)
RMS(QRNSQ~RTIXMScQR)
R MS (Am5wRT (X MSQ(A)

10OPRINT 5,XM5WRRMSQRERMAX~ XMSQARMSQA ,ERMAXA

[ END
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