
Fftac. OrpiCk PmU4 CaP)

AFFDL-TR-75-51
ADR o z i m

FRACTURE MECHANICS ANALYSIS
OF AN ATTACHMENT LUG

AEROELASTIC AND STRUCTURES RESEARCH LABORATORY
DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS 02139

JANUARY 1976

TECHNICAL REPORT AFFDL-TR-75-51

Approved for public release; distribution unlimited

AIR FORCE FLIGHT DYNAMICS LABORATORY
Air Force Systems Command
Wright-Patterson Air Force Base, Ohio 45433



NOTICE

When Government drawings, specifications, or other data are

used for any purpose other than in connection with a definitiely

related Government procurement operation, the United States Govern-

ment thereby incurs no responsibility nor any obligation whatsoever;
and the fact that the Government may have formulated, furnished, or

in any way supplied the said drawings, specifications, or other data,

is not to be regarded by implication or otherwise as in any manner

licensing the holder or any other person or corporation, or convey-

ing any rights or permission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

This report has been reviewed by the Information Office (01)

and is releasable to the National Technical Information Service

(NTIS). At NTIS, it will be available to the general public,

including foreign nations.

"This technical report has been reviewed and is approved for
publication."

Jý 4EL. RUDD
P oject Engineer

FOR THE COMMANDER

ROBERT M. BADER, Chief Gerald G. Leigh, Lt Col, USAF
Structural Integrity Branch Chief, Structures Division
Structures Division

Copies of this report should not be returned unless return is
required by security considerations, contractual obligations, or

notice on a specific document.
AIR FORCE - 13-2-76 - 250



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

TDOCUMENTATION PAGE READ INSTRUCTIONS
REPORT DBEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFFDL-TR-75-51 N N/A
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

INTERIM
FRACTURE MECHANICS ANALYSIS OF AN May 1974-October 1974
ATTACHMENT LUG 6. PERFORMING ORG. REPORT NUMBER

ASRL TR 177-1
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Oscar Orringer F33615-74-C-3063
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS

Aeroelastic and Structures Research Lab.

Department of Aeronautics & Astronautics
MIT, Cambridge, Massachusetts 02139 13670315

I I. CONTROLLING OFF'ICE NAME ARD ADDRESS 12. REPORT DATE

Air Force Flight Dynamics Laboratory January 1976
Air Force Systems Command 13. NUMBER OF PAGES

Wright-Patterson AFB, Ohio 45433 83
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

Same Unclassified
15a. DECLASSI FICATION/DOWNGRADING

SCHEDULE
N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different from Report)

Same

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Fracture Mechanics Hybrid Elements
Stress Intensity Factors Aircraft Structural Integrity
Finite Element Analysis Stress Analysis

Computer Structural Analysis

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This report documents a finite-element analysis procedure for
computation of Mode I and Mode II stress intensity factors asso-
ciated with a sharp crack in an attachment lug detail. The proce-
dure is a complete FORTRAN-IV program which generates and para-
metrically analyzes the lug, based on designer-oriented input data.
The formulation of a special crack-containing element is reviewed
and its performance is summarized. A detailed description of the

FORM

DD JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

lug analysis procedure covers the physical problem, modeling, pro-
gram flow and options, input/output conventions, execution times
and limitations which must be observed. Results from example
analyses of some attachment lugs are presented.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)



FOREWORD

The developments documented in this report were carried out

at the Aeroelastic and Structures Research Laboratory (ASRL),

Department of Aeronautics and Astronautics, Massachusetts Institute

of Technology, Cambridge, Massachusetts 02139, under Contract No.

F33615-74-C-3063 (Project 1367, Task 136703) from the U.S. Air

Force Flight Dynamics Laboratory. Mr. James L. Rudd (AFFDL/FBE)

served as technical monitor. The contractor's report number is

ASRL TR 177-1.

iii



TABLE OF CONTENTS

Section Page

1. INTRODUCTION .................. ................... 1

2. BASIC ELEMENTS AND METHODS .......... ..... .... 3

2.1 Element QUAD4 ................ ................ 3

2.2 Element PCRK59 ........... ... ............... 5

3. ATTACHMENT LUG PROGRAM ........ .............. 13

3.1 Lug Structure Model ...... ............. 13

3.2 Input Conventions ........ .............. 14

3.3 Required Subprograms and Other Features . . 17

3.4 Model Generation and Program Flow ...... .. 18

3.5 Output Conventions and Error Messages . . .. 20

3.6 Visual Interpretation of Output ......... .. 21

3.7 Program Status ....... ................. . .. 22

4. RESULTS OF EXAMPLE ANALYSES ..................... 23

4.1 Analysis of Wing Root Attachment Lug . . .. 23

4.2 Analysis of Engine Pylon Truss Lug ..... 24

4.3 Example Application ...... ............. 28

5. CONCLUSIONS ... ...................... .... 30

REFERENCES .............. .................... 32

FIGURES ............. ............... .... 34

APPENDIX A . ............... ................... 67

iv



LIST OF FIGURES

Figure Page

1 Combination of Assumed-Displacement Elements
with Hybrid Crack-Containing Element .... ...... . .. 34

2 Conventions for ASRL QUAD4 Assumed-Displacement
Element ................... ....................... 34

3 ASRL PCRK59 Hybrid Crack-Containing Element . .... 35

4 Application of PCRK59 Element to Symmetric
Analyses .................. ....................... 36

5 Attachment Lug Detail ........... ................ 37

6 Crack Parameters ... ................ ......... 37

7 Program LUG Input Conventions... ... . . . ......... 38

8 Finite Element Mesh for NT=3 ........ ............. 39

9 Hypothetical Wing Root Attachment Lug ..... ........ 40

10 Input Data for Analysis of Lug shown in Figure 9 . . . 41

11 Program LUG Flow Chart ... .............. ...... 42

12 Printout of Input Data .......... ............... 45

13 Numbering Conventions Illustrated for Sample
Mesh shown in Figure 8 .. ................ 46

14 Overlay for Stress Intensity Analysis ... ........ 48

15 Force and Displacement Tables from Stress Analysis . . 49

16 Part of Stress Table .......... ................. 50

17 Stress Intensity Factor Table from Analysis with
NT=4 .................... ......................... 51

18 Stress Contours for Wing Root Lug ..... .......... 52

19 Butterfly Plot for Wing Root Lug Stress Intensities . 54

20 Interpretation of Butterfly Plots ..... .......... 55

21 Scale Mesh Plan for Engine Pylon Truss Lug ........ .. 56

v



LIST OF FIGURES (continued)

Figure Page

22 Stress Contours for Engine Pylon Truss Lug
(Tension Bearing, Cosine Pressure) ...... ........ 57

23 Butterfly Plot for Engine Pylon Truss Lug
(Tension Bearing, Cosine Pressure) ...... ...... .... 58

24 Scale Mesh Plan for 7-Inch Engine Pylon Truss Lug 59

25 Effect of Shank Length on Stress Intensity
(Tension Bearing, Cosine Pressure) ........ .......... 60

26 Comparison of Cosine and Uniform Pressure
Distributions (Tension Bearing) ..... ........... 61

27 Stress Contours for 7-Inch Engine Pylon Truss Lug
(Tension Bearing, Uniform Pressure) ..... ......... 62

28 Stress Contours for 7-Inch Engine Pylon Truss Lug
(Positive Shear Bearing, Cosine Pressure) ... ...... 63

29 Comparison of Finite Element Results with Engineering
Beam Theory (Positive Shear Bearing, Cosine Pressure). 64

30 Butterfly Plots for 7-Inch Engine Pylon Truss Lug
(Positive Shear Bearing, Cosine Pressure) .. ...... 65

31 Butterfly Plots for 7-Inch Engine Pylon Truss Lug
(Positive Shear Bearing, Uniform Pressure) ........ .. 65

32 Butterfly Plots for 7-Inch Engine Pylon Truss Lug
(Compression Bearing, Cosine Pressure) ... ........ 66

33 Butterfly Plots for 7-Inch Engine Pylon Truss Lug
(Compression Bearing, Uniform Pressure) .. ....... 66

vi



Section 1

INTRODUCTION

The application of linear elastic fracture mechanics analysis

to structural details in new aircraft designs has received growing

emphasis from the Air Force and from aircraft manufacturers during

the past few years. Not only have fracture mechanics data become

more readily available in recent years [1,2], but also, there has

been a trend toward treatment of the problem of fracture in its

own right, distinct from fatigue. Within the past year, this

trend has culminated in the establishment of structural design

criteria by the Air Force which require an aircraft designer to

take specific design-analysis actions to protect structures against

fracture [3]. Required design calculations now include, generally,

comparison of load-induced stress intensity factors to material

fracture toughness and assessment of crack growth rates, based on

assumptions concerning the size and location of possible cracks in

the structure. Both types of calculation require prior estimation

of the load-induced stress intensity factor. Hence, there has also

been considerable emphasis on adding to the body of available fracture

mechanics solutions.

Because so few geometrical configurations are amenable to a

purely analytical solution of the equations of elastic fracture

mechanics, the finding of new solutions depends upon development

of numerical analysis techniques. Extensive contributions have

been made by Bowie and his colleagues [4,5,6] using the complex

variable formulation of elasticity in combination with conformal

mapping, analytic continuation and boundary collocation methods.

Tada, et al. [71 have recently collected and classified a compre-

hensive body of solutions based on the-semi-analytical methods

(complex variables, boundary collocation, Fourier transforms, etc.)

among which appear many new solutions by Tada. However, the semi-

analytical methods have not as yet proved capable of application

to the irregular geometrical configurations which are found so often
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in real airframe structural details. Stress analysis of irregular

structure has been the province of the finite-element methods for

the past decade. Within the last six years, numerous contributors

have extended the finite-element technique to fracture mechanics

analysis.

Work on finite-element fracture mechanics analysis at MIT has

followed the path of assumed-stress hybrid elements, first proposed

by Pian [8] for ordinary continuum elements. The hybrid method was

subsequently extended by Tong, Pian, Luk, and Lasry [9,10,11,12] to

formulation of rectangular elements which incorporate an elastic

crack-tip singularity, but which also have an assumed linear or

quadratic variation of displacements along the element edges and

are thus compatible with ordinary elements (Figure 1). Numerical

experiments have demonstrated that the hybrid crack-containing ele-

ments are capable of producing estimates of KI and KII with less

than 1 percent error, using 20 to 50 total degrees of freedom in

the analysis, for simple geometrical configurations. Hence, it

becomes possible to create economically practical analysis procedures

for structural details by refining the mesh or ordinary elements to

pick up the stress gradients caused by nonuniform loading and com-

plicated boundary geometry, leaving to the special hybrid element

the task of picking up the local gradients caused by the crack-tip

singularity.

This report summarizes recent developments at the MIT Aero-

elastic and Structures Research Laboratory (ASRL) in which the crack-

containing hybrid element has been applied for the first time to some

typical structural details, found in current production aircraft,

with geometries too complicated for economical solution by other

techniques. The "PCRK59" crack element used in these analyses is

a generalized version of the original Lasry element [12] which was

formulated and programmed by Tong and subsequently modified for

greater utility by the ASRL computing staff.
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Section 2

BASIC ELEMENTS AND METHODS

2.1 Element QUAD4

The ASRL QUAD4 four-node quadrilateral element (Figure 2) is

used as the basic building block in the analysis procedure. QUAD4

is the well-known bilinear isoparametric assumed-displacement ele-

ment which has been used for continuum stress analysis for many

years [13]. The ASRL version has been programmed as an independent

subroutine which includes the options of individual rotation trans-

formations at each node and calculation of a "B" matrix for stress

analysis.

The nodal coordinates XI, YI' X2 '' ''Y4' element thickness T

and the elastic constants matrix:

rCU C12i C13 ) [ 1
CI IEy

. C12, Cz2 C-23  6, Yy - I

c C23 c35j (r Xy , (1)

comprise the required basic input information. For isotropic

materials

L -o Vr (1+ )(_IV) 0-- p (2)
0 0 2 ;___L

(plane (plane
S+Vess) 

srIn

Subroutine QUAD4 allows for general plane orthotropic behavior, a

capability which is included in the attachment lug program. Plane

stress is assumed in the analysis. The lug program does not use

the rotation transformation option.

The element stiffness matrix k is calculated by numerical

area integration, using 3x3-point Gaussian quadrature [14] for
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k ff DTT -D (XJy (3)

AREA

where D contains the interior strain-nodal displacement relations:

f•, E yX EYYýE]= D (X) Y) i$ 'ý "'---; " (4)

The stiffnesses are returned in Lower Triangle Vector (LTV) form:

k = L [k kl k2 k31 k3z *** e] (5)

For the purpose of stress analysis, Eqs. 1 and 4 may be combined

to give:

QUAD4 also returns the matrix B(Xc ,Yc), formed at the fifth

Gaussian station, for later calculation of stresses at the element
"centroid", defined in terms of the nodal coordinates:

4+ S•= Yz (7)

The behavior of QUAD4 has been studied extensively on other

projects and is well understood. Uniform or nearly uniform stress

fields can be picked up to within the roundoff accuracy of the digi-

tal computer being used for the analysis. The inability of the

bilinear assumed displacement fields to follow the quadratic deflec-

tion of the neutral axis of a cantilever beam loaded by an end moment

has been well documented elsewhere [15] and constitutes a limitation

on the QUAD4. In practical terms, this requires that the element

aspect ratio (Figure 2) be held close to unity for models of struc-

tures which are expected to have quadratic or higher-order displace-

ment behavior. In some cases, even an aspect ratio of unity is not

sufficient to insure convergence of the solution. For example, the
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QUAD4 element was used recently to model a thick-walled cylinder

subjected to centrifugal loading from its own mass, due to rotation

[16]. The analytical solution of this axisymmetric problem includes
3an r term in the radial displacement field which the bilinear ele-

ment is unable to pick up; errors of 25% were found for a cylinder

with a 2:1 ratio of outside-to-inside radius, using four unit-aspect-

ratio QUAD4 elements through the wall thickness.

The misbehavior of the bilinear element in the presence of

higher-order gradients requires the use of many elements to model

complicated geometries. Also, "calibration" of the finite-element

model is a good idea, where possible, by comparing the numerical

results with independent solutions. Calibrations for this project

have included comparisons with the classical elasticity solution

for stresses and displacements near a circular hole in a semi-

infinite strip under tension [17] and with finite-element analyses

using higher-order assumed-displacement elements.

2.2 Element PCRK59

Formulation of the assumed-stress hybrid finite-element method

begins with the Principle of Minimum Complementary Energy:

7T f=- __c J (8)

where
E indicates summation over the element set.

n

S u = part of the element boundary over which displace-
ments are prescribed.

V = element volume.

u = vector of prescribed displacements on Su

a = stress vector.

S = compliance constants = C_1 (C = Sa).

T = vector of surface tractions = Na, where N is a
matrix of surface normal directlon cosines.
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If R is used directly, only the stress field is assumed, subjectc
to admissibility criteria requiring that the assumed stresses

satisfy:

(i) Interior equilibrium ýa i/ýx. + F. = 0, in V,
1J J 1

where F. are prescribed body forces.1

(ii) Mechanical boundary conditions Na = T on

that part of the element boundary over which

the surface tractions T are prescribed.

(iii) Equilibrium of surface tractions Na across the

interelement boundaries S, which are distinct

from S and Su a

Formal application of the variational calculus to Eq. 8 leads to

two sets of Euler equations:

(iv) Interior compatibility, So = c in V, where

6ij = 1/2 (Dui/axj + DUj/Dxi).

(v) Displacement boundary conditions, u = u on Su

If assumed stress functions are substituted and Eq. 8 is integrated

before H is varied, there results a linear equation system in whichc

the generalized coordinates to be solved for are forces. This

approach leads to a Matrix Force Method analysis which brings with

it the programming problem of systematic identification and elimina-

tion of redundant quantities.

The assumed-stress hybrid approach avoids the complications of

force redundancy by modifying H so that the primary unknowns in ac

finite-element application become displacements once again. The

Principle of Minimum Complementary Energy is modified by addition

of Lagrange multiplier terms [8,181 which change admissibility

criteria. Specifically, conditions (ii) and (iii) above are relaxed

and confition (v) is enforced. Under the new principle, stress func-

tions satisfying only the interior equilibrium conditions (i) may be

assumed, and displacement functions which satisfy interelement com-

patibility and conditions (v) must now be assumed as well. The

modified energy principle which replaces Eq. 8 is:

-6-



7T• i •j f .1 - T (9)

where "@V" represents the entire element boundary, S + Su + S "

To convert H1 into a finite-element formulation, the stress vector

a is assumed within each element and the displacement vector u is

assumed on the boundary, @V, of each element:

a = P(xyz) u = L(x,y,z)q (10)

where P and L are matrices of interpolation functions. Vector 8

contains generalized stress coordinates, while q is a vector of

nodal displacements. Matrices P and L are assumed independently,

with L defined only along the element boundary 3V. Substitution

of Eq. 10 into Eq. 9 then leads to:

_•T TH A

where r= (N (P•rL ofS H= f pTSp'jrV
VV

f TConsisten'd nodal -Force vec~or (2

and where Na = NPý has been substituted for the surface traction

vector T in the expression for G.

Direct assembly and solution of the equation system represented

by 111 is possible, but results in a mixed matrix method, with both

force and displacement unknowns. A more versatile formulation is

obtained by recognizing that, since the stresses are assumed inde-

pendently within each element, Pf for one element is not coupled

with any other elements. Therefore, the unknowns f may be formally

eliminated by applying the variational calculus to Il:

61(ý for only one element varied) - 6 T{ fli/ l } =

6j (Gq - Hý) = 0
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which leads to
-1.

H Cr (13)

Substitution of Eq. 13 back into Eq. 11 then yields*:

V Z T(14)

The alternate expression for H1 given by Eq. 14 represents a

pure Matrix Displacement Method. The quantity GT H G can be recog-

nized as an element stiffness matrix. The Z notation may now be
n

identified as a conventional Matrix Displacement Method structure

model assembly procedure. Hence, structure models can be created

by assembling conventional and hybrid elements, provided only that

compatibility across the interelement boundaries is maintained by

proper choices for the assemed displacement fields. The versatility

of the hybrid method lies in its ability to provide special-purpose

elements, for restricted regions, which may be coupled into a model

containing conventional elements in the remaining regions which are

free of singularities or other unusual behavior.

The original hybrid crack elements [9,10] were derived from

Hi by assuming a stress field containing r-I/2 terms, where r

measures radial distance from the crack tip and, by assuming dis-

placement fields which vary linearly from one node to the next,

along the element boundary. However, subsequent analysis of error

sources [19] has indicated that the area integration required for

computation of H (see Eqs. 12) gives poor results for the r

terms since some of the Gaussian stations are close to the crack

tip. This situation may be remedied by increasing the number of

Gaussian stations, but the computation of k then becomes too costly.

A better approach, used for the second-generation crack elements

[11,12] has been followed in the present work. The energy principle

F11 may be further modified by introducing two displacement fields:

u assumed on WV and u assumed in V. There now arises another com-

patibility condition, u = u on WV, which is relaxed by the Lagrange

Note that H and H- are symmetric matrices.
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multiplier method. At the same time, the condition that u must

satisfy the interior equilibrium equations, as well as the strain-

displacement relations, is enforced. As a result, the area inte-

gration is converted to a boundary integral and H1 is modified to

the form:

7/= f T77i S -. 5 (TTu, TU) J 5 - f s (15)

The same boundary displacement field u can be used for both H1 and

Hi However, the interior assumed fields in H2 must be a complete
elasticity solution: stresses a and displacements u which satisfy

all of the equations of elasticity, with T = Na a derived quantity.

The distributions for a and u are obtained from a complex variable

solution of the equations of elasticity near a crack tip or equiva-

lently, by solving the biharmonic equation for an Airy stress func-

tion. Computation of the element stiffness matrix is the same as

for HI1 except that H is now computed by a boundary integral:

H Y [Nj P)1A + ANP~d (16)

where A is a matrix of shape functions corresponding to the interior

assumed displacement field, u = Aq.

The principle H 2 also possesses the advantage of convenience

for treatment of arbitrary shapes, since only boundary integration

is required. Figure 3 illustrates the PCRK59 element based on H2.

Input information required by this element is similar to the infor-

mation required by QUAD4:

(i) Geometry: global coordinates of the crack tip

Xt' Yt; global coordinates of each node XI,YI,X 2,... Y9 .

(ii) Material properties: the shear modulus G = E/2(I+v)

and a second constant n = (3-v)/(l+v) for plane stress

(3-4v for plane strain)

PCRK59 is programmed only for isotropic material and does not

incorporate the rotation transformations available in QUAD4. In

fact, rotation transformations cannot be applied Once the PCRK59

-9-



stiffness matrix has been formed. This limitation is caused by

the appearance of the crack tip coordinates in the numerical inte-

gration scheme, but the restriction does not affect many practical

fracture mechanics problems. The numerical integration is by

five-point Gaussian quadrature [14] between each pair of nodes,

except that the crack surfaces are skipped. Omission of the crack

surfaces is justified because they constitute SG, over which T = 0,

and because the derived tractions T satisfy this stress-free con-

dition at least in an average sense.

The PCRK59 element has two other important features. First,

unit thickness is assumed. Second, a symmetric "half-element"

option is available, under which nodes 1,5 and the crack tip are

assumed to lie on a line parallel to the global X-axis, while the

element and applied loading are assumed to be symmetric about this

line. Under these conditions, a half-model of a structure may be

analyzed to obtain Mode I stress intensity solutions only; e.g.,

for the coupon in uniform tension with edge cracks, shown in Figure

4. The "half-element" consists of nodes 1,2,.. .5, only, with node

1 requiring a roller restraint to maintain the assumed symmetry.

Another input parameter determines which option is executed:

KEY = 1 for "half-element"

2 for full element

The "half-element" option is used mainly for illustrative examples

and performance testing. The full element option has been used

exclusively in the present work.

Element PCRK59 computes and returns a stiffness matrix in LTV

form (see Eq. 5) for either the 10 degree-of-freedom "half-element"

or the 18 degree-of-freedom full element. In addition, a special

B matrix for calculation of stress intensities is returned. Eq. 13,

used in the derivation of the stiffness matrix, can also be used to

compute the generalized stress coordinates ý after the element nodal

displacements q have been obtained. For the PCRK59,

-(17)
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where kl,k 2 , are the Mode I, Mode II stress intensity factors,

defined by:

t&) + (fefl'Qs inX- 4 (e) + --f )(12r (18)
9-y= etc.

The functions fl,f 2 , are from the classical crack tip solution,

and the other generalized coordinates 82,83, .... 18 represent

far-field behavior. Thus, B is formed by extracting the first and

tenth rows of H- G, so that the stress intensities may be calculated

from:

(ais &1 3 ~r (19)

for the full element. Only the first row of H G is extracted if

the "half-element" option is in effect:

tkj X 10) tZ (20)

NASA/ASTM standard stress intensity factors may be computed after

Eq. 19 or Eq. 20 by:

KI 1(3r -• • (21)

If a structure model with thickness T # 1 is to be analyzed, this

may be done simply by scaling the PCRK59 stiffness to:

k' = Tk (22)

Performance of the PCRK59 element has been tested extensively

by comparison with classical and boundary collocation solutions

[19]. Solutions for KI accurate to better than 1 percent have been

obtained with a rectangular crack element' surrounded by only a few

QUAD4 elements. Other tests have shown that solution accuracy

within 3 percent is maintained when the crack element shape is dis-

torted by relocating some nodes as much as 0.3 x (length of crack

within element) away from the positions they occupy for a rectangle.

Also, the 3 percent accuracy limit can be maintained with the crack

tip located anywhere from 20 to 70 percent across a line between

-11-



nodes 5 and 1, with the element shape kept rectangular. The dis-

tortions of element shape and crack tip location required for the

structure models analyzed in the present work are well within these

limits.

The PCRK59 element possesses one unavoidable quirk which arises

from its linearity. If the element is placed in a region with com-

pressive stress normal to the crack, a negative value of KI is

obtained. In a real structure, the crack would close and cease to

be a problem in this situation. Therefore, negative KI values

should be interpreted as signaling the absence of Mode I stress

intensity. On the other hand, the solution for KII will be posi-

tive (negative) according to whether the crack is being subjected

to positive (negative) shear stress, as defined by the standard
conventions of elasticity. In this case, the correct interpreta-

tion is to take the absolute value of KII.

In summary, the PCRK59 element permits efficient computation

of stress intensity factors by well established procedures of the

Matrix Displacement Method. The unusual features of the element

are internal to its subroutine. The element subroutine requires

familiar input information and returns k and B matrices like a con-

ventional element. The structure model is assembled and a global

displacement solution is computed by standard techniques. Computa-

tion of either the centroid stresses in the conventional elements

or the stress intensity factors in the crack element is then merely

a matter of extracting the element displacements q from the global

solution and performing a straightforward matrix multiplication.

-12-



Section 3

ATTACHMENT LUG PROGRAM

Program LUG has been developed for analysis of stresses or

stress intensity factors in an attachment lug typical of many

structural details found in current aircraft. This section describes

the lug structure model and explains how the program is used. Results

obtained from some example analyses are presented in Section 4.

3.1 Lug Structure Model

Figure 5 illustrates the structure which Program LUG models.

The detail consists of a straight shank, built in at the foot and

a rounded ear whose outer edge is concentric with a bearing pinhole.

Provision is made to treat the lug as a two-material system composed

of an isotropic bushing ring surrounding the bearing pinhole, and

the lug proper, which may be treated as either isotropic or plane

orthotropic. A perfect mechanical bond between the bushing and

lug is assumed. A monolithic single-material lug is obtained if

identical isotropic material properties are specified for the

bushing and the lug proper.

Bearing loads are assumed to be applied to the structure at

the bearing pinhole surface. Tension, compression, positive shear

or negative shear may be applied. These loads are defined in

Figure 5. Each load component is represented as a radial bearing

pressure over one-half the circumference of the bearing pinhole,

with the pressure distribution centered on and symmetric about the

line of action of the load. Options for a cosine pressure distri-

bution or a uniform pressure distribution are available.

The attachment lug is assumed to be under plane stress, with

two analysis options allowed. Under option 1, a model of an

uncracked lug is assembled, using only QUAD4 elements, and a con-

ventional stress analysis is executed. Under option 2, a small

radial crack is assumed to emanate from the bearing pinhole surface,

-13-



with the crack tip located in the bushing. The length of the crack

is specified by the program user (Figure 6). Program LUG auto-

matically executes a sequence of solutions in which the crack'loca-

tion is varied step-wise around the entire bearing hole circumference.

3.2 Input Conventions

The input data conventions for Program LUG are summarized in

Figure 7. Formats for all numerical data have been standardized

to 15 fields for integers and El0.0 fields for floating point num-

bers. Integer data and floating point data supplied in E format

should be right-justified in the field. However, floating point

data may also be given in F format, if desired, without changing

the program code. F format data need not be right-justified. Also,

the implied decimal point location for floating point data may be
overridden. A maximum of 3 decimal figures may be input under E

format and up to 7 decimal figures may be input under F format.

A series of independent cases may be analyzed in one run.
The first input data card specifies the total number of cases which

follow. The remainder of the input deck consists of six cards per

case which give the program a complete description of the case.

The conventions for these cards are as follows:

Card 2 - may contain any alphanumeric information which
identifies the case. This information is printed
as a heading title.

Card 3 - specifies the options selected by the user for
four control parameters:

IANL = 1 (Conventional stress analysis with-
out crack).

2 (Stress intensity analysis).

LOAD = 1 (Cosine pressure distribution).

2 (Uniform pressure distribution).

MODE = 1 (Lug treated as isotropic).

2 (Lug treated as orthotropic).

NT = Total number of QUAD4 elements wanted
per 450 arc around the bearing pinhole.
A minimum value of 3 is recommended.
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Card 4 - specifies the lug dimensions and crack size.

DI = Inside diameter of bearing pinhole.

DB = Outside diameter of bushing.

W = Lug width.

H = Total (root to tip) length of lug.

T = Lug thickness (lug and bushing assumed
to have equal thickness).

CSIZE = Length of crack.

Card 5 - specifies the material properties of the bushing,
which is always assumed to be isotropic:

E = Young's modulus.

V = Poisson's ratio.

Card 6 - specifies the lug material properties. If
MODE = 1 on card 3, the convention is:

E = Young's modulus.

V = Poisson's ratio.

If MODE = 2 on card 3, the convention is:

EL = Longitudinal modulus.

ELT = Cross-coupling modulus.

ET = Transverse modulus.
GLT = Shear modulus.

0 = Angle between lug XY axes and material
LT axes (degree measure, positive CCW
from X to L).

Card 7 - specifies the bearing force value:

TENSN = Tension or compression bearing force.

SHEAR = Positive or negative shear bearing force.

The lug dimensions and crack size were defined in Figures 5

and 6. Any value of thickness may be specified. Program LUG

rescales the model internally to unit thickness. Figure 8 illus-

trates a finite element mesh which might result when NT = 3 ele-

ments per 450 arc is specified on card 3. The positive convention
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for the relationship between the lug XY axes and material LT axes

is also shown. The quantities EL, ELT' ET, GLT are the conventional

plane-orthotropic moduli for; e.g., a fiber composite laminate. The

stress-strain relations take the form:

GL " E L E LT 0 C L

T j= ELT ET 0 G T (23)

O 0 0 GL CL

in the LT axis system. For 0 3 00 the stress-strain relations in

the XY axis system take a more complicated form:

aX Cll C12 C13 CXX

GM=y• C12 C22 C2 3  Cyy = Cs (24)

CC £

!XY) jC13 C23 C3 3J XY

where, in general, C1 3 , C2 3 3 0. The matrix C in Eq. 24 is com-

puted from EL, ELT,...,O by ASRL subroutine CTFORM.

The bearing load conventions were indicated in Figure 5. The

value of TENSN or SHEAR supplied on card 7 refers to total bearing

force; the corresponding pressure distributions are computed inter-

nally. A positive (negative) value TENSN has the effect of apply-

ing a tension (compression) bearing load to the structure. A posi-

tive (negative) value for SHEAR similarly applies a positive (nega-

tive) shear bearing load.

Figure 9 illustrates a portion of the actual finite element

mesh generated for a hypothetical large all-aluminum wing root

attachment lug. Since the "bushing" diameter does not have any

physical significance in this single-material case, it is used to

control the mesh so that the tip of a 0.5-inch long crack lies at

the middle of the PCRK59 element. The crack is shown with a finite

opening for clarity. However, nodes 5 and 6 of the crack element

(Figure 3) actually overlap to provide the correct model of a sharp

crack. The PCRK59 element has replaced a group of four adjacent
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QUAD4 elements in the mesh. When analysis option 2 is in effect,

a series of structure models are generated and analyzed one after

the other, with the PCRK59 shifted circumferentially by one pair

of QUAD4's after each analysis. Thus, for the case shown in Figure

9 (NT = 3), 24 stress intensity solutions are obtained with the

crack located successively at e = 00, 15', 30o,...,3450. Figure 10

summarizes the input data deck required to run a stress analysis

(case 1) and a stress intensity analysis (case 2) for the hypothetical

lug detail.

3.3 Required Subprograms and Other Features

Program LUG requires the following FORTRAN-IV subroutines to

form an executable load module:

(i) ASRL FEABL-2 subroutines ASMLTV, BCON, FACT, ORK,
SETUP, SIMULQ, and XTRACT [20,21].

(ii) ASRL element and utility library subroutines
QUAD4, PCRK59, and CTFORM.

(iii) IBM Scientific Subroutine Package routines MFSD
and SINV which are required by the PCRK59 element
subroutine.

The entire source deck is supplied in IBM 029-punch format.

The following features of Program LUG may cause machine-

dependence problems on non-IBM hardware:

(i) The 20A4 format for input of case title informa-
tion may be incompatible with some systems. This
may be remedied by changing FORMAT statement 502
to 80Al and redimensioning vector TITLE to 80.

(ii) FORTRAN unit numbers 5 and 6 are assumed for the
card reader and line printer respectively. Pro-
gram LUG may be converted to other hardware stan-
dards simply by reprogramming the two lines of
code:

KR = 5

KW = 6

which appear shortly after the FORMAT statements
near the beginning of the program.
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(iii) Program LUG requires a sequential-access scratch
dataset, designated as FORTRAN file 20, when anal-
ysis option 1 (uncracked structure stresses) is
in effect. The file must consist of (30 single-
precision words per record) x (records = maximum
number of QUAD4 elements expected). A total of
600 records should be adequate for most analyses.
A job control instruction, specific to the instal-
lation where the program is being executed, is
required to create this file on a system disk.
However, Program LUG may be executed without
creating this file if only stress intensity solu-
tions are sought.

(iv) IBM/SSP subroutines MFSD and SINV m'ay not be com-
patible with other systems. If this problem arises,
reprogramming or substitution will be required.

3.4 Model Generation and Program Flow

Program LUG automatically generates the geometrical information,

element interconnections, etc., which are required to compute and

assemble the element stiffnesses, restrain the structure properly,

apply the bearing load and execute a stress or stress intensity

analysis. The program flow is summarized in Figure 11. Parenthe-

sized numbers in the figure refer to FORTRAN statement numbers in

the program listing (Appendix A).

After the input data has been read for a case and some auxiliary

values have been calculated, the case title and input data are printed

for checking. A sample output from this section of the program is

shown in Figure 12. The number of QUAD4 elements required radially

in the bushing and lug and the number required axially in the lug

shank are then computed by rounding off to the nearest whole number

which gives an average element aspect ratio closest to unity for

each region. The total number of elements, total degrees of freedom

and some additional parameters are then calculated, and the vectors

which will contain the K-solutions are erased.

The major section of the code, a loop over the crack locations,

then follows. The location loop is executed 8*NT times for a stress

intensity analysis, but only once for a conventional uncracked struc-

ture stress analysis. Previous results are erased and the inter-

connections for an uncracked structure are generated. Figure 13
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illustrates the node and element numbering conventions, using the

example mesh from Figure 8. The numbering patterns are as follows:

(i) Nodes are numbered, globally, radially outward
from the bearing pinhole on each ray. The rays
are taken in counterclockwise order, beginning
at e = 0'. Vertical lines of nodes in the lug
shank are numbered afterward, from the top down
and from right to left. The last line of nodes
is restrained.

(ii) Degrees of freedom are numbered 2n-1 (displace-
ment parallel to X) and 2n (displacement parallel
to Y) at each node n.

(iii) Elements in the bushing are numbered radially out-
ward and counterclockwise, partially following the
node numbering pattern.

(iv) Elements in the lug ear are numbered radially out-
ward and counterclockwise after the bushing elements.

(v) Elements in the lug shank are numbered last, from
the top down and from right to left.

If a stress intensity analysis is being executed, the location

of the PCRK59 element is now computed from the crack location loop

index and connections for this element are generated. As shown in

Figure 14, the PCRK59 element overlays four QUAD4 elements. The

central node of this group of elements is transferred to the bear-

ing pinhole to accommodate the PCRK59. The element numbers of the

four overlaid QUAD4 elements are also flagged.

The global XY coordinates for each node in the model are now

computed, assuming an uncracked structure. If a stress intensity

analysis is being executed, the transferred node coordinates are

adjusted and global coordinates are computed for the crack tip.
A

The area corresponding to the global force vector QG in the FEABL-2

storage system is used as temporary storage for the-node coordinate

data.

After auxiliary storage for element-level data has been pre-

pared, a loop over all QUAD4 elements is executed. The node coor-

dinates for each element are extracted from the global data, other

required input is provided from auxiliary storage and k and B are
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computed for the element. Also, centroid coordinates Xc, Yc are

computed for the element; B, Xc, Yc are stored in FORTRAN file 20

(stress analysis option only) and k is assembled into the global

stiffness matrix. If a stress intensity analysis is being executed,

these procedures are skipped for the four flagged elements, while

k and B are computed and k is assembled for the PCRK59.

After assembly, Q G is erased and replaced by prescribed nodal

forces which are statically equivalent to the specified bearing

load and the assumed (cosine or uniform) pressure distribution.

For stress intensity analysis, the two nodes at the crack opening

each receive one-half the nodal force which would have been applied

to a single node at that location in an uncracked structure.

The final section of the code executes a solution of the global

equation system and either a stress or a stress intensity analysis.

In the latter case, the stress intensity factors are saved and a

complete table is printed after the crack location loop has been

completed.

3.5 Output Conventions and Error Messages

If a stress analysis has been executed, nodal forces, nodal

displacements and element stresses are printed. The table of

forces and displacements appears immediately below the problem

input data and merely lists the force or displacement value for

each degree of freedom ("ROW" in the table heading). The stress

table contains one line of information for each element:

Element No., Xc, Yc' axx' ayy, axy, arr, a0 0 , arO

The stress values are computed for the element's centroid location

Xc? Yc" Figures 15 and 16 present samples of these output tables.

If a stress intensity analysis has been executed, only a table

of K-solutions is printed. Each line of the table corresponds to

one crack location, containing:

Angle to crack opening, Ki, KII

A sample is shown in Figure 17.
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If abnormal conditions occur during execution, certain error

messages may be printed by Program LUG. The messages and actions

required are as follows:

(i) Insufficient core memory available for storage
of the problem data causes the message:

THE LENGTH OF THE "DATA" VECTOR FOR THIS CASE
IS xxxxx WHICH EXCEEDS yyyyy = THE MAXIMUM
ALLOWED IN THE DIMENSION STATEMENT.

The entire run will be terminated if this con-
dition occurs. The dimensions of vectors RE
and IN (line 2 of the program code) are yyyyy.
Redimension these vectors to 1.15 (xxxxx).

(ii) Ill-conditioning of the structure model causes

the message:

INDEFINITE MATRIX; THIS CASE CANCELLED.

Execution continues with the next case. The
most likely cause is misplacement of the crack
tip, relative to the bushing O.D. Recheck the
input data to make sure that the crack tip does
not extend beyond the bushing, even if a single-
material lug is being analyzed. Material pro-
perty errors are another probable source. Ill-
conditioning may result if the bushing is too
stiff, compared to the lug, or vice versa.
Errors may also results from incorrect specifi-
cation of orthotropic material properties.

3.6 Visual Interpretation of Output

Level contour plots are recommended as the best means of

visually interpreting the output from a stress analysis case. For

this purpose, a scale plan of the lug outline should be prepared

and the element centroid positions marked on the plan. The stress

values may then be transferred and a contour plot prepared. Plots

of arr, aee, are in the region around the bearing pinhole and of

a xx, ayy, axy in the shank region are recommended. The nodal dis-

placement solution table may be used to provide a plot of the

deformed structure, if desired. The output from a stress intensity

analysis is best treated by means of polar plots for KI and KII.

These plots are discussed in detail with examples in Section 4.
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3.7 Program Status

At the date of this report, the following program options have

been exercised successfully:

(i) Stress and stress intensity analysis.

(ii) Bearing load: tension, compression, positive
shear, and negative shear.

(iii) Cosine and uniform pressure distribution.

(iv) Isotropic, single-material lug.

(v) NT = 3, 4, and 6.

The following options have not been exercised to date:

(vi) Isotropic, two-material lug.

(vii) Isotropic bushing with orthotropic lug.

(viii) NT > 6.
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Section 4

RESULTS OF EXAMPLE ANALYSES

Two example analyses were run to demonstrate the program.

The first was limited to stress and stress intensity analysis of

the hypothetical wing root attachment lug shown in Figure 9. Second,

a detail similar to the aft engine support pylon truss -lug in the

C-5A was subjected to a more extensive analysis. Experience with

the program to date, on IBM S-370/165 and S-370/168 computers, indi-

cates that approximately 1.8 to 3.6 CPU seconds per Kit K II solution

pair are required, depending upon the amount of detail in the model.

4.1 Analysis of Wing Root Attachment Lug

Figure 18 summarizes the stress distribution in the hypotheti-

cal wing lug. Stress contours for a rr' 0 ee, and a rO are shown. A

survey of the numerical data confirmed that a rr, a ee were symmet 'ric

about the lug centerline. Hence, only half-plots are shown for

those contours. The survey also indicated that a r8 behaved anti-

symmetrically, as shown in the second part of Figure 18.

Figure 19 presents polar "butterfly" plots for K I and K II as

functions of angle to the crack opening. The crack was 0.5 inches

long and oriented radially. Again, the data behave symmetrically

about the lug centerline (crack at 0' and 1801 locations). The

interpretation of these polar plots is explained in Figure 20.

If the origin of the plot is identified with the center of the

bearing pinhole, a radius vector through the assumed crack location

may be constructed. The length of the vector between the origin

and the K-plot then gives the corresponding stress intensity value.

If the crack size is small compared with the lug dimensions,

there follows an intuitive hypothesis that the stress intensities

ought to behave in the same manner as the uncracked structure
stresses. This hypothesis can be confirmed, for the present case,

by comparison of Figures 18 and 19. For a radi~lly-oriented crack,
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KI should be influenced primarily by a 0 0 , while KII should be
influenced primarily by arO* Maxima of a and KI are observed

to occur near 0 = 900, 2700. Maxima of ar0 occur approximately

at 0 = 450, 1350, 2250, and 315', while KII maxima occur approxi-

mately at 600, 1200, 2400, and 3000. The apparent discrepancy

between KII and Yrr can be explained by recognizing that the crack

tip actually lies near the 1.5 and 2.0 ksi stress contours. Local

maxima for ar0 in those regions are less sharply defined.

4.2 Analysis of Engine Pylon Truss Lug

Figure 21 is a scale plot of the structure model used to

analyze a detail similar to the C-5A engine pylon aft truss lug.

The actual lug has two tongues to place the bearing pin in double

shear. It can be reasonably assumed that the load transferred into

the engine pylon at this point is borne equally by both tongues.

Hence, the lug program has been used to analyze one tongue. The

model is 0.19 inch thick, with:

DI = 1.75 inches DB = 2.35 inches

H = 10.5 inches W = 3.5 inches

A 0.15-inch long crack was assumed, with radial orientation.

Material properties for high-strength steel alloys were used:

E = 30 x 106 psi v = 0.295

The "bushing" O.D. was chosen merely to locate the crack tip at

the middle of the bushing region. Models were run with 24 elements

(NT = 3, "coarse mesh") and 32 elements (NT = 4, "fine mesh") around

the bearing pinhole. The fine mesh model is shown in Figure 21.

All runs were made with a 1,000-pound bearing load, as a standard

for plotting the results.

Figure 22 summarizes the stress distribution near the hole,

as obtained from a fine mesh model of the uncracked structure, with

a cosine bearing pressure distribution. The symmetries discussed

in Subsection 4.1 were observed again. Three additional checks

were made to assure that the model accurately reflects the stress
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gradients caused by the lug geometry. First, in a typical section

through the shank, the tension stress a was found to be uniformxx

and statically equivalent to the bearing load, to better than one

percent accuracy, for both models. Second, a section was taken

through the bearing pinhole center (6 = 900, 2700) and a66 was

plotted. The radial variation of a66 was found to agree generally

with Timoshenko's classical solution for an eye bolt under tension

bearing [17]. Also, numerical evaluation of Tfa 6 dr gave the bear-

ing load, with 1.7 percent error for the coarse mesh and 1.4 percent

error for the fine mesh. Finally, the solution for a was comparedrr
with the bearing pressure distribution. The peak value of the bearing

pressure is given by p, = P/TDIT, where P is the bearing load. For

the present case, p. = 3.83 ksi and acts at 6 = 0' The two elements

with centroid locations nearest to r = D1 /2, 6 = 00 were found to

have arr = 3.5 ksi, and the radial stress could be extrapolated to

a value close to p, at the peak point. Based on these results and

the measured performance of the PCRK59 element (Subsection 2.2),

the fine mesh model was accepted as giving a converged solution for

KI, having a cumulative error of 5 percent.

Butterfly plots for KI and K are shown in Figure 23. Again,

the stress intensities behave symmetrically to better than 1 percent

accuracy for both models, and KI follows a 6 , while K follows arO"

The data for KI, shown in the upper half of the figure, demonstrate

that convergence has been obtained. The data for KII, in the lower

half of the figure, indicate that additional refinement of the mesh

might be required to demonstrate Mode II stress intensity conver-

gence. However, since the K values are generally smaller than

Ki, and since they tend to decrease as the solution converges, no

further refinements were made. The coarse model contained 408

degrees of freedom and took 48 CPU seconds to compute a complete

set of 24 pairs of KI and KII solutions. The fine model contained

608 degrees of freedom and took 102 CPU seconds to compute 32

solutions.

The length of the lug detail was reduced from 10.5 inches to

7.0 inches for the remaining analyses, to eliminate superfluous

elements in the shank and thus reduce computation costs. Fine
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mesh models (and a few "very fine" models) were analyzed in the

remaining series. The shortened lug fine mesh model is illustrated

by Figure 24.

The stress intensity analysis for cosine tension bearing was

repeated to assess the influence of the change in shank length.

Figure 25 compares the KI and KII butterfly plots from Figure 23

with corresponding plots for the shortened lug. A slight increase

in stress intensities with decrease in shank length can be observed.

Figure 26 compares butterfly plots for the 7-inch lug under cosine

and uniform bearing. Three significant differences can be observed:

(i) The increased ability of a uniform bearing
pressure to spread the part outward changes
the hoop stress from compression to tension
at e = 00. Compare the uncracked structure
stress contours for cosine bearing (Figure
22) with the contours for uniform bearing,
shown in Figure 27.

(ii) The maximum KI value changes from 5 ksi /ih.
at 8 = 850 (cosine bearing) to about 4.7 ksi /ih.at 6 = 1070 (uniform bearing).

(iii) Mode TI stress intensities are lower for

uniform bearing.

The third series of runs analyzed the case of positive shear

bearing. Figure 28 illustrates the stress contours obtained for

shear bearing with a cosine distribution. The behavior of arr
near the bearing pressure peak (now at e = 900) is similar to the

tension bearing case (compare with Figure 22). The Cartesian stress

components in the shank region were surveyed to provide additional

equilibrium checks. Figure 29 compares the finite element stress

distributions for aXX' 0Xy through a typical shank section and for

0XX axially, with engineering beam theory calculations:

G M(X)Y a 3V(X) [1 _2Y)2 (25)XX I -XY 2A
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where

M(X) = Section bending moment at X

V(X) = Section shear at X

I = Section moment of inertia = TW 3/12

A = Section area = TW

It is evident from the figure that the finite element results are

within 1 or 2 percent of engineering beam theory. The only excep-

tion is the axial behavior of aXX which exhibits some stress

concentration effects:

(i) Due to the cantilever restraints, as the left
end of the shank is approached.

(ii) Due to the influence of the hole, as the shank/
ear interface is approached.

Based on these results, the fine mesh model was judged to be capable

of giving stress intensities for shear bearing which are comparable

to the tension bearing results (5 percent error).

Figures 30 and 31 present KI and KII butterfly plots for cosine

and uniform pressure distributions, respectively. Data for a "very

fine" model (NT = 6, 48 elements around the hole) as well as for

the fine mesh model, are shown in Figure 31. The refined model

was run to improve the fairing of the curves, after plots of the

fine mesh model were seen to have large gaps between KI data points.

The refined model data indicate that the fine mesh has not quite

converged the KI solutions. Two interesting features are illustrated

by these plots. First, the stress intensity maxima and minima no

longer coincide with the stress distribution. Apparently, even a

small crack is sufficient to change the stress distribution signifi-

cantly when the bearing load is shear. Second, the significant

difference between cosine and uniform pressure now occurs at the KI

maxima, which are about 10 percent larger for uniform pressure. This

arises from the fact that the KI maxima are located near and nearly

opposite to the bearing load line of action.
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A fourth series of analyses treated the case of compression

bearing, using only the fine mesh model. Both the stresses and

stress intensities were found to behave symmetrically, similar to

the case of tension bearing. Equilibrium checks and stress con-

tour plots have been omitted, in view of the results already pre-

sented. Figures 32 and 33 show KI and KII butterfly plots for com-

pression bearing with cosine and uniform distribution, respectively.

The most interesting feature is the extreme sensitivity to load

distribution when the crack is at or opposite to the load center.

The Mode I stress intensity for uniform bearing increases by factors

of 2 at the first location and 4 at the second. This extreme sensi-

tivity results from the high hoop stresses which are present in

these regions.

4.3 Example Application

To provide an example of how the butterfly plots may be applied

to structural integrity verification analysis, the following data

have been abstracted from load calculations for the original C-5A

engine pylon truss design [22]:

Load Condition Tension (Compression) Shear
3

"Maximum Compression" (MC) -221 x 10 lb. -340 lb.
3

"Maximum Tension" (MT) 148 x 10 lb. 220 lb.

The values in the above table represent total load transferred

through the attachment lug, and must be divided by 2 to obtain

the loads per tongue. Since shear bearing can obviously be ignored

for the above conditions, there results:
3

Condition MC: 110.5 x 10 lb. Compression Bearing

Condition MT: 74 x 103 lb. Tension Bearing

Assuming that a cosine pressure distribution is representative,

the following calculations can be made for 0.15-inch cracks assumed

to be located at 00, 450, 90°, and 1800:
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Crack Condition MC Condition MT
Location (K values in ksii/Thn.) (K values in ksi/i-n.)

K0 K 0.4 x 110.5 = 44.2 KI K II

K 0
II6 x 74 = 192.4

K4 0.3 x 110.5 = 33.2 K 2.6 x 74 = 192.4
450

K =0 KII= 1.25 x 74 = 92.5

9 0  KI II = 0 KI 5 x 74 = 370

K II 0.2 x 74 = 14.8

= •0
1800 KI K 1.63 x 110.5 = 180.1 KI K II

KII =0

"Unit" K values are read from Figure 26 for Condition MT and from

Figure 32 for Condition MC. The actual values are then computed

by using the actual load to scale the unit values.

Potential fracture sites may be assessed by comparing KI with

KIC for a proposed lug material. Since high strength steel alloys

have fracture toughness generally below 100 ksi u/n., the above

data indicate that a 0.15-inch crack is longer than critical size

if the crack is located at 450, 900, or 1800. If a criterion that

0.15-inch cracks be less than critical is to be met, the designer

might do this by increasing the lug thickness. Since the numerical

data result from a linear analysis, the design can be scaled. For

example, a revised thickness

Tv = 370 x T = 370 x 0.19 = 1.41 in. (26)
KIC 50

can be calcuiated, assuming that protection against a 0.15-inch

crack at 90, in a material with KIC = 50 ksi .uT, is required.

At other points; e.g., 0 = 450 (Condition MT), KI and KII are

comparable, and interaction formulas such as:
KI2 (II) 2

(K- ) 2 + ( 1 2 < 1 (27)
IC KIIC

may be used to assess structural integrity.
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Section 5

CONCLUSIONS

A finite-element analysis program for computation of Mode I

and Mode II stress intensity factors in attachment lug details has

been presented. Since the program is based on an assumed-stress

hybrid crack element, relatively crude structure models can be used.

Performance tests of the crack element and the lug program have

indicated that KI and KII solutions can be obtained to + 5 percent

accuracy, for 1.8 to 3.6 CPU seconds Der solution pair on current-

generation large computers.

A series of demonstration examples, involving a lug detail

similar to the C-5A engine pylon aft truss attachment lug, served

to illustrate a number of important features of the K solutions.

With the crack size held at 0.15 inch and the crack orientation

kept radial, parametric analyses were conducted for KI and KII with

the lug subjected to tension, shear and compression bearing forces.

In each case, data were obtained for both a cosine and a uniform

pressure distribution, to represent possible extremes of load trans-

fer across the bearing surface. The parametric capability of the

program was used to compute for each case a number of KI and KII

values corresponding to location of the crack at various positions

around the bearing pinhole. Polar plots of KI and KII versus angle

to the crack location were presented to provide a concise picture

of the parametric behavior.

The following specific conclusions can be drawn from the

results of the analysis. First, uniform bearing pressure has more

tendency than cosine pressure to spread the lug apart, and this is

reflected by increased KI values. This effect interacts with the

relation between the crack location and the line of action of the

bearing load. The most significant sensitivity to pressure dis-

tribution occurs when a KI maxima coincides with or is close to the

line of action of the load, or when a maximum lies opposite to the
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load line. Second, the most critical locations for a given crack

often lie in unexpected places or correspond to unexpected load

conditions. For example, cracks at +901 to the lug axis appear to

be most critical in tension bearing. However, cracks at +450 may

actually be the most critical if the lug material happens to have a

low Mode II fracture toughness. A significant Mode I stress intensity

value for a crack at 1800, under compression bearing, is another

unexpected result. Finally, the maxima and minima of KI and K

sometimes tend to follow local maxima and minima of the stress

distribution in an equivalent uncracked structure, if the crack is

small compared to the structure detail dimensions. However, the

coincidence of maxima and minima occurs only for some load conditions,

while significant discrepancies occur under other load conditions.

One is, therefore, led to conclude that a stress analysis of an

uncracked structure does not always provide a good map of where to

expect the most critical stress intensities, even for small cracks.
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