
AD-A021 224

MULTIDIMENSIONAL PREFERENTIAL STRATEGIES

John D. Matheson

Analytic Services. Incorporated

Prepared for:

Deputy Chief of Staff, Research and
Developm.ent (Air Force)

November 1975

ii
DISTRIBUTED BY: I

Him

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

i'.

DISCLAIMER NOTICI

THIS DOCUMENT IS BEST
QUALITY AVAIABLE. TIM COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

REPRODUCED FROM
BEST AVAILABLE COPY

_.. .I..
ii - 4.

.I
.r

Ij
VOL

-7 WIzm
47

NATIONAL 1TECHNICAL
INFORMATION SERVICE

US W -O . 1 o .,,'
S,-.gN..Id. VA 72:31

UNCLASSIFIED _

SEC U111TV CL AS% Fg IAT ION Off "I"g "A',? f*
1
1-41 t)&#&~a..d

REPORT DOCUMENTATION PAGE RF.?D INSTRUp•MSfN
_-__EFG, r- COMPPIETINC. V¢)RM

I IREOMY N..El 2 GOVT ACCi$SSICN NO 3 PEcIq rb"I CATA;.OG NUMBER

SDN 75-3 " - OE#
4 TITLE (and Subtitle) 5- T%f r ao t P..upT & PERIO COVEOt D

MULTIDIMENSIONAL PPEFERENTIAL Strategic Division Note
STRATEGIES StaeicDvsinNt

b PERfFORMING ORG REAPORT N.MIEN

7 AuYT.OR &, CON1ACT 04 GPIANT NuMBER'Sa

John D. Matheson F44620-76-C-0010

'0 P!R ':IMuIN3O OaGANI2ATnON NAME AND AO04r %S 10 PPC(RPA rLEMENT.PR3/•F'T TASK

APE I A WORK UINIT NUMOEPS

Analytic Services Inc. (ANSER)
5613 Leesburg Pike, Falls Church, VA

22041
11 CONTaOLLCN(, "FIZI'E NAME A%D ADDRESS I,' REPORT UDArt

__LemhbI-r 197S
11 NJOBER 0o PAGES

162
II MO4ITORIq,.• ACE%-Y NAME & AODRNESSI doltetrnt Itof. Contrnlling O ,.)ej 15 SEC.URITY CL.ASS. tot this -P,.f,:

Directorate of Operational Requirements
Hq USAF UNCLASSIFIED
Wash., D.C. 20330 -Ii., DECLAASSIF:CATION DOWNGRADINO

SCmEDULE

I6 DIST410jT'O5N STATEMENT o.1l hI. .Repr')

-istribution of this document is unlimited. It may be released
to the National Technical Information Service for sale to the
general pubiic.

17 DISTRIBUTION ST ATEMLN" 'of the 10 *It.h a c .nt..t d Ins Rlok 20, I) dIltr.,'t f.on Neport}

16 SUPPLEMENTARY NOTES

19 K EY WORDS fC•7vfinue ont rtat',. aida itf nA.sary and IdI nti II I-h blota nunmhr)

Game Theory Antimissile Defense
Operations Research Optimization
Linear Programming Computer Programming
Parametric Linear Programming Mathematical Analysis
Strategic Warfare . __ Military Strategy

;.0 ANSTRACT (*Coni-nuo on ravtrjt aidl n.e fcs ry and Identhify by block numba,)

This report presents a method of solving weapon allocation games
involving many weapon types and many target types. Numerical
solutions are obtained by the PATH method, a form of paramet:ic
linear programming. Two computer programs are listed and
explained, PATH87 for two-sided games and the simpler PATH87A
for one-sided optimizations. Both are copiously illustrated by
sample runs. Other applications of the programs are discussed

L in general terms.

Dfl 0,A% 1473 EDITIoN OF I 110V CIS IS O2SOLETE UNCLASSIFIED
SECURITY CLASSIEFICAI ,.)N OF THIS PAGE (Itheen Data F•iteed,

SI
UNCLkgSIVIED--

IlCU "IT CLASSIICA ION Or TW IS PAGE (ftn Dolg Entere)

20. (Continued)

The PATH method offers unique advantages of speed and
flexibility in solving problems facing defense analysts, and
it is hoped that publication of this report through the
National Technical Information Service of the Defense
Documentation Center will make this method more wiiely
available. Also, the method has features which can be
applied to many problems of resource allocation facing
nondefense planners.

II

UNCLASSIFIED
SECUR4ITY CLASSIFICATION OF T1IS PAGE(WhnI Date Ewewc.)

STRATEGIC DiVi$ION NOTE

SON 75.3

MULTIDIMENSIONAL PREFERENTIAL STRATEGIES

November 1975

Prepared by
John D. Matheson

Approved by
J. A. Englund, Manager, Strateqic Division

IL LL

Appov.pd for SpUtilbc feele

[111ftt1 1] Ulmie
SK- n /;-an.iytic service. inc.

eiii
I!~

e .,f-,•ior

PREFACE

For over 8 years, the author has conducted a continuing

research project that has produced new computer progr..'t-, some

of which have wide applicability to allocation of resources

(such as weapons) to objectives (such as targets). Some of

the programs are general in nature and have been used by

other ANSER analysts as well as the author to solve a variety

of weapon systems analysis problems in our work for the

Deputy kaiie of Staff/Research aznU Dt•vtlupment, A;eadquarters,

United States Air Force. Several programs have also been

given to various government agencies or defense contractors.

Documentation of these has been minimal.

This report describes companion programs, PATH87 and

PATH87A, that are very general in nature and which arv

milestones in a long evolutionary development. This report

was originally drafted under the same title in March 1971,

but the final version was not completed because of the

press of other business. However, it was circulated in

draft form to a number of defense contractors, some of whom

were kind enough to list the draft as a reference in their

own publications, The current edition represents a minor

revision and update of the 1971 draft.

It has been demonstrated that the PATH method offers

unique advantages of speed and flexibility in solving

problems facing defense analysts and it is hoped that

publication of this report through the National Technical

Information Service of the Defense Documentation Center

will make this method more widely available. Also, the

method has features which can be applieu to many problems

of resource allocation facing nondefense planners.

iii

I

TABLE OF CONTENTS

I. INTRODUCTION I

A. The Problem 1
8. Path Method 2
C. Computer Programs 2
D. Preferential Strategies 3
E. Other Applications 3

II. THE PROBLEM ... 5

A. Problem Firmulation 5

1. Players, Resources, and Objects 5
2. Elementary Strategie......................... 6
3. General Strategies.........................
4. Value Functions 8...........................
5. Objective Function........................... 9
6. Solution 11

B. Equivalent Dual Linear Programs 12
C. The Q-Basis 13

III. PATH METHOD

A. Space of Resources 19
B. The Path 20

C. Location of a Regional Boundary 21
D. Finding the Q-Basis for the Next Region 23
E. Terminating a Path Segment 25
F. Beginning a Path Segment 26
G. Beginning a Problem 26

IV. PATH87 COMPUTER PROGRAM 29

A. Program Structure 30 I
B. Initialization Section 31
C. Control Section 47
D. Test Subroutine 52
E. Auxiliary Subr-.utines 57
F. Value Subroutine 59
G. Print Subroutine 64
H. Addition Subroutine.......................66
I. Deletion Subroutine 71
J. Auxiliary Subroutines 78

Preceding page blank

I

TABLE OF CONTENTS-Continued

Page

K. Strategy Subroutine 82

V. PATH87A COMPUTER PROGRAM 89

A. Simplifying Ideas 89
B. Program Listing 89

VI. EAMPLES... 101

A. One-Sided Optimizations; PATH87A 101

Case 1: (Gl,A1) = (1,1) 131
Case 2: (G1,A1) = (1,2) 105
Case 3: (G1,A1) = (1,5) 118
Case 4: (G1,A1) = (5,3) 121

B. Two-Sided Games; PATH87 125

Case 5: (G1,G4,AI,D1) = (1,1,1,1); Perfect
Weapons 125

Case 6: (G1,G4,Al,Dl) = (1,1,1,1); Imperfect
Weapons 131

Case 7: (G1,G4,A1,Dl) = (1,1,2,2) 144
Case 8: (GI,G4,Al,D1) = (10,4,1,1) 147

VII. OTHER APPLICATIONS 153

A. Choice of Program 154
B. Choice of Variables 154
C. Value Function 155
D. Test Controls 155
E. Economy in Modifications 156
F. Potential Improvements and Applications 156

AEFERENCES .. 159

vi

TABLE OF CONTENTS-Continued

LIST OF FIGURES

Figure Page

1 Value Function for a Single Object Type 10

2 Combined Value Functions 10

3 Matrix and Vectors in Q-Basis 14

4 Schematic Block Partitioning in 0-Basis 14

5 Typical Blocks 16

6 Q-Basis at the 01gin 27

7 Strategy Matrix (A) 34

8 Storage Map of Matrices (R) and (S) 37

9 Formation of Matrix (U) from Elements of
Matrix (S) 39

10 Central Index Matrix (I) 42

11 Test Sequence (Statement Lines 2110-2240)..... 54

1' A Pair of Elementary StrLategies 61

13 Solution of Case 1 104

14 Regional Map of Case 2...........................108

15 Regional Map of Case 6.......................... 143

vii

MULTIDIMENSIONAL PREFERENTIAL STRATEGIES

I. INTRODUCTION

This report pzesents a method for solving a large class
of resource allocation problems that are multidimensional in

the sense of having many types of resources and many types of

objects to which resources are allocated. The class of

problems is restricted to those in which discrete quantities

of resources are allocated to any object, for example, inte-

gral numbers of weapons to a target. The solution method

involves parametric linear programming. 4

Historically, the method vas develuped in order to

generalize earlier ANSER work (References 1 and 2). The

essential features ot Sections II and III were the subject
of an oral seminar at th,- ORSA meeting, 1-3 May 1968, San

Francisco, California. (Paper TP 1.12, A Generalized Weapon

Allocation Game.)

A. The Problem

The general problem of the class with which we are deal-

ing is formulated as a two-sided mathematical game in Section

II. The formulation includes one-sided optimizations as

special cases where one of the players of the game has zero

resources.

An important feature of the formulation is the definition

of an allocation, or strategy, in such a way that the solution

variables appear linearly with constant coefficients .n the

objective function F.nd the constraints. Any nonlinear features

of the problem arc incorporated in the computation of those

coefficients.

Physical feasibility of solutions is ignored, and the

solution strategies may contain fractional values that are

apparently not feasible. However, these fractional strategies
=an be realized by one or more precisely equivalent, feasible,

mixed strategies in nearly every two-sided game of practical

interest. In most one-sided optimizations, the physical

infeaRibility, if any, is a local one of no great significance.

Solution strategies are obtained by solving simultaneous

linear equations, with the matrix of coefficients for one

player being the transpose of that for the other player.

This common matrix constitutes a basis tor the solution,

called here a Q-b, sis.

B. Path Method

The use of parametric linear programming to detexmine the

Q-basis is discussed in Section III.

Beginning with some set of resources, usually zero, for

which the Q-basis is known, resources are then varied con-

tinuously in any arbitrarily prescribed manner; that is, along

any prescribed path in the space of resources. The path

method makes appropriate changes in the Q-basis at critical

points of the path.

Solutions for the two players are alternated alonq the

path, with a resource parameter being used for tha player

whose resources are changing and a marginal-value parameter

for the other player.

C. Computer Programs

Two computer programs are included in the report. The

PATH87 program, designed to solve multidimensional two-sided

weapon-allocation games for point targets, is listed and

discussed in Section IV. This program is the 1971 version

in an evolutionary sequence pointed toward greater capacity,

speed, flexibility, and reliability.

2

The other program is an abbreviated version designed to

optimize one-sided weapon allocations for point targets.

Called PATH87A, it is listed and discuased in Section V.

Readers who are not interested in' the details of computer'
programming should skip Sections IV and V.

D. Preferential Strategies

Illustrative examples of actual runs of both programs
are given in Section VI. One purpose of the section is to

show someone who may have skipped the earlier sections how

to use the programs, how to input data, and how to read the

output. A second purpose is to point out and explain salient

characteristics of typical solutions.

E. Other Applications

The path method applies to a variety of resource alloca-

tion problems that can be solved by suitable modifications

of the two programs. Section VII lists some features of

problems that have been solved and discusses the modifica-

tions in general terms.

I.

3

II.- THE PROBLEM

A multidimensional resource allocation problem of the

class with which we are concerned can be formulated as a

matrix game. In this section, we will give a general formu-

lation of the game, including general solution conditions.

We will then develop more detailed conditions in the form of
a Q-basis, consisting of a certain coefficient matrix and

some associated vectors. Finally, we will show that a

solution can be computed directly from the Q-basis if cer-

tain conditions are satisfied.

A. Problem Formulation

1. Players, Resources,and Objects

In general terms, there are two opposing players, each

having resources of different types to be allocated to

specific objects (or activities) of which there are differ-

ent types. One player is called the minimizing player because

he seeks an allocation that will minimize some common measure

of value. His opponent is called the maximizing player.

Each player must make his own allocation in ignorance of his

opponent's specific allocation, but he does know all the

resources available to the other.

For illustration, an attacker would try to allocate a

variety of weapons to a variety of targets in such a way as

to minimize the expected value of the surviving targets,

whereas a defender would try to allocate defensive weapons

so as to maximize expected surviving value.

Let us adopt the following notation:

M = number of types of minimizing resources

N = number of types of maximizing resources

Preceding page blank 5

G - number of types of objects.

Let us also represent the number of units of each type by:

Am for m 1 1, M..,M

InDn for n = 1, -.. , N

T for g = 1, , G

Most of our subsequent analysis is concerned with the

general case where both players have some resources. How-
ever, one should observe that the analysis is also valid if

one of the players has no resources, in which case the problem
becomes a one-sided optimization. As a convention, we will

suppose this case to be represented by N = 0, so that we
will always have M > 1 and G 2 1.

2. Elementary Strategies

An elementary strategy is defined as any allocation by

one player to a single object of a particular type. It

consists of some number of units of each of that player's
resource types. We will denote an elementary strategy for
the minimizing player by the vector,

ag (0 Xg . g -. a?
a il" i ' im' 'IM)

and one for the maximizing player by the vector,

6 (6 9 i , . .. , 6 j , .. ., .9)
1 j1 nj Nj

The superscript g identifies the object type to which the

elementary strategy applies. The subscript i (or j) identi-
fies the particular elementary strategy amung all those

applying to object type g, under the assumption that they
are arranged in some ,umerical order, the actual arrangement

being immaterial. The subscript m (or n) distinguishes the
resource type, so that the component 0g is the number of type m"im

resources in the ith elementary minimizing strategy for object

type g. We will call an elementary strategy with all zero
components a null strategy.

3. General Strategies

We will now define a general strategy (or simply a

strategy) for either player as a specific allocation of all

his resources among all the objects. A strategy can be

described in terms of elementary strategies by specifying

the fraction of the number of objects of each type on which

each elementary strategy is used.

For the minimizing player, we will denote by x? the

fraction of the number of objects of type g on which the

elementary strategy 4? is used. The components, x, must

satisfy three conditions: every component must be non-

negative; every object must have some elementary strategy,

if only the null strategy; and all resources must be used.

These conditions can be represented by:

x? 0 for every g,i

Z xg for every g
E Z T a? 0 A for every m

c. x. =gi g M m

If the components are arranged sequentially, they form a

strategy vector:

X = (xI xz g xG1 2

which defines an allocation of minimizing resources to objects.

In similar fashion, a strategy vector for the maximizing

player is given by:
,py - (y z 1g G

, Y ,# y1 0..# , -.. , y* , ..) ,

7

with conditions,

g 4 0 for every g,j

E = 1 for every g (2)
j 3

Z T ggD for every n
gj g nj I ln

At this point, we may observe that, in a one-sided optimization

problem (characterized by N = 0), the only allowable elementary

maximizing strategy on each object is the null strategy,

6g = (0). With this restriction, y9 = 1, and the only maxi-

mizing strategy vector becomes
G times

Y = (1, ... , 1)

4. Value Functions

The statement of a problem must provide some way for

evaluating the worth of a strategy and making a choice of

the "best" strategy. The basis of this evaluation is the

value function, one of which must be specified for each

object type. Each value function must define a value

associated with svery allowable combination of an elementary

minimizing strategy and an elementary maximizing strategy on

the same single object. Thus, if elementary strategies

Ug and 69 occur on the same object of type g, the value mayS1
be defined as vg.. The value function for object type g

then consists of the matrix,

V9
=(0s.

There must be a different value function for each object

type; otherwise object types could be combined to reduce the

dimensions of the problem. The several value functions must

S• - • •,... •......• .. =• ... ,•..., ... •, ... r ~ ~ i....., • ... 8•

be expressed in terms of a common unit, or measure of value,

but they need not have similar formulations. Indeed, an

explicit formulation is not required at all, and a table

of arbitrary values will serve the purpose.

There is great latitude for specifying value functions.

For example, in a weapon allocation problem, an initial value
might be specified for a single target of each type and a

formula given for computing expected surviving value for any

pair of elementary strategies. The value function in a

transportation problem might be the cost matrix of mileages

between sources and destinations. I
Figure 1 illustrates the relationship between elements of

a value function and associated strategies for a single object

type. Figure 2 illustrates a useful concept of the combined

value functions and strategies, where the blocks for each

group symbolize sets of elements like those in Figure 1.

5. Objective Function

When the opposing players use specific general strategies,

X and Y, each in ignorance of the other's strategy, there is
an aggregate expected value which is a function of the

strategies and is called the objective function.

In developing the objective function, let us consider
first a single object of type g, and suppose a? is the
elementary minimizing strategy on this object. The probabil-
ity that the elementary maximizing strategy, 6g? is used on
this object is y?, i.e., the fraction of objects of this type

on which the strategy 6g is used. The expected value

associated with this single object is then given by

-j j 9i9

y1_ Y2 &.. y1 &..

½ i ,l'..l,,, i."".
Kl al VII V12 ** @oS Vii *o&oe

x 2 a2 V2 1 V22 60006 v2j 000'

*0 0
* 0 00000

• 0 0 0 0

xi ai vi0 vi2 0 o , 00000

00000 0&00&
aS0 0 6

FIGURE 1
VALUE FUNCTION FOR A SINGLE OBJECT TYPE

(Omitting superscript g)

xI
If ygx* yG G

x a
0 & 00

0 0

FIGURE 2
COMBINED VALUE FUNCTIONS

10

The number of objects on which the strategy ag is used is

T xg. Hence, the sum of the expected values on all objectsg 2
of typr g is given by

r T X? V? Y?i g i i j Yj

The sum of these values over all object types is the objective

function, which can be written

V(X,Y) = Z Ej X? (T vg.) yg

This is the function that one player seeks to minimize by

choosing a strategy X subject to the constraints (1). The

other player seeks to maximize it by choosing a strategy Y

subject to th. constraints (2). The problem of finding

best strategies for each player is a mathematical game.

In the foregoing formulation, the objective function is

linear in the components of either the X or Y strategy, which

permits linear programming methods to be used for the solution.

A similar formulation for one-sided optimizations has been

used by Dianich and Hennig (Reference 3).

6. Solution

For a solution, we adopt the standard criterion that a

best strategy for the minimizing player is one that minimizes

the maximum value his opponent can obtain against it. Con-
versely, a best strategy for the maximizing player is one that

maximizes the minimum value his opponent can obtain against

it. The theory of mathematical games guarantees that such

strategies exist, although they need not be unique, and that

the min-max value is equal to the max-min value, which is

called the value of the game. If X* and Y* are used to denote

SI11

solution strategies and V* the value of the game, then

V* = min max V(X,i')
X Y

- max min V(X,Y)
Y X

= V(X*,Y*)

Another way of expressing the minimax conditions is

V(X*,Y) S V* for all Y

V(X,Y*) Z V* for all X ,

which is to say that, if either player uses a solution

strategy, the other player cannot find a better strategy

than his own solution strategy.

B. Equivalent Dual Linear Programs

Charnes (Reference 4) has shown that a constrained game

is equivalent to dual linear programs in which the strategy

vectors are augmented by components that are Lagrangian

multipliers. In our case, the added components are denoted

by superscript zeros or subscript zeros. The primal program

can be written:

Maximize 2 x0 D + Z xg T
n n n o g

n g

subject to: Z E x? (T a? A
gi I g im m

1i i

E x 0 6g + Xg + E X? v. 0
n n nj o 1 1J

¶ xg _ 0

12

II

where all indexes are to be read as greater than zero unless

explicitly stated as zero. Similarly, the dual program is:

Minimize m7 A y0 + E T y '
rn irr g go9

subject to: Z Z (T 6 g) y? = D
g n n I n

- g=1
Y7 =

j J

E Oci? 0 + g + L V? Y? Z o
I o

Charnes shows that solaitions of the dual programs exist and
that the value of the equivalent game is

V* - Z x0 D - xg T

n n n q 0 g
o g

Am ym Tg Y
m g

From this result, it is natural to interpret - xn and - y
n m

as marginal values or values per unit of the respective

resource types, and to interpret - xgo and - y as intercept

values per object of the respective object types.

C. The Q-Basis

Balinski and Tucker (Reference 5) display a scheme for

a Charnes-type formulation. We suppose such a scheme to

exist for our problem. We then suppose that a solution is

known, X* and Y*, and we aelete from the scheme all those

rows and columns for which solution components x? and y
are zero. The remaining elements, arranged to fit the block-

diagonal structure of the problem, are illustrated in

Figures 3 and 4 as what we call a Q-basis. It is a

13

pY

I Zi

FIGURE 3
MATRIX AND VECTORS IN 0-BASIS

Resource Object Type

x I o yG

Resource x0 Q0 0,Qg 00T(G 00

xi 010 O11 00 00 D

FIGURE 4
SHMATRIC BLOC PARTTIONIN IN -BASIS

Oborect cyTp

Reore*X 0O O00.e ~ ,e.I G D

XG 0G0 0I 0 0 D

SCEMATCQBLOC PATIIOINGI 0DBSI

14

representation of the equations satisfied by the dual solutions,

considering the inequalities as side conditions.

In Figure 3, X and Y are the augmented solution strategy

vectors, Q is the matrix of coefficients of the basis

equations, and A and D are the right-hand vectors. In matrix

notation, the basis equations are QY = D and XQ = A.

Figure 4 illustrates the partitioning of the Q-basis into

blocks. Superscripts indicate the object type to which a

block pertains, with a superscript zero indicating blocks
associated with resources. There is a band of resource-

associated blocks across the top of X, Q, and D and a band

down the left side of Y, Q, and A. Down the main diagonal

of Q is a line of object-type blocks. The rest of Q consists

of zero elements.

Figure 5 illustrates the elements within typical resource

blocks and object-type-g blocks. For convenience, the

included strategies are given new i and j indexes to match

their positions in Q, regardless of what i and j indexes

they might have had originally. The elements shown as zero

are always zero because of their positions; other elsments
will be zero only if one of their variable factors is zero.

At the bottom of Figure 5 is shown a scheme for relating

the conditions on the excluded strategies to the structure

of the Q-basis. If the vector shown is denoted by I, then

the matrix condition is IY • 0. In similar fashion, an

excluded maximizing strategy can be represented by a vector

J and the exclusion condition by XJ 5 0.

The various blocks of the Q-hasis must be conformable

as illustrated, but there is no a priori restriction on

their size, with the exception that every Qg block must be

at least 2 x 2, since at least one elementary strategy for

15

v~ 0 v0v9 o g vg
1 I

1 .i.~ 9 11 q2 g 1
T a 0 Tb 2 TA 3b9 T 69 T 49 ~I I

II I O

- Ie

X2 g 21 g_.3X90 0 0 0 T T Tg T

S e T aqg . T ag T Tg v T v9 Tv 3 I 0
I g 11 9 12 9 13 9 g ii g12 g1

X9 T U T a' T a I T W9 T v9 T vg 0
2 g 21 g22 q 23 g 9 21 g 22 g 23

"3 9 T 9 T 9 ~Ta T T V9 T A T vg 0
3 T9919ý 99 9 ~31 9 32 9 33

T a9 , Tgag Tag T. T v9 T v9 To g
42FgI3GURE___4 g543

TIJ LBOJ LK

Frrll i1Ai i• -' I A3'! -' r~iI 1 FIJ....

Excluded - -
Strategy I T a T ag T a T Tvg T vg T 9 vg 0
Vector I L g 0 g i2 - g i3 -g- il g i2 g i3L

FIGURE 5
TYPICAL BLOCKS

16

each player is required, even if it is only the null strategy.

Otherwise, Qg may have any dimensions and may be square or

rectangular, and if rectangular its long dimension may be in

either direction. In general, different object types will

have Q0 blocks of different sizu and shape.

Likewise, the tOtAl Q matrix itself may be either square

or rectangular, but it is nearly always square, since if

Q were to be rectangular, one player would have more variables

in his augmented strategy than conditions for them to satisfy.

In that case he could reasonably adjust to a better strategy

restoring the balance between variables and conditions.

Detailed computations, involving the Q-basis elements,

show that the value of the game is

V* =-AY*ITI
! = -X*D

Similarly, the minimax conditions can be verified by

using the side conditions on excluded strategies. Further-

more, if Q is square and non-singular, then

X* =AQ-I

Y* = Q- D , and

V* = - AQ-ID .

These formulas provide a method for computing the solution

if the Q-basis is known. Section III will describe a method

of finding the basis.

Before leaving the discussion of solution strategies,

their physical feasibility should be discussed. The com-

ponents, g and y?, are fractions by definition. In general,

17

!I

the products, T x! and T gig, will still be fractions and
hence not physically feasible. Yet, if the solution strate-

gies are interpreted as mixed strategies in a game-theoretic
sense, it is usually possible to find not only one, but many,

equivalent sets of physically feasible integral strategies,
with an associated frequency for each strategy of the set.

In another view, the fractions, x? for example, may be

considered as a frequency distribution on oach object of

type g, with the important proviso that the distributions on
the several objects of type g are not independent of each

other or of the distributions on objects of other types.

L
4

18

III. PATH METHOD

The path method of solution is a form of parametric

linear programming involving variation of resources. In this

section we will describe how, as resources are varied, a Q-
basis can be changed so that it will always provide a solution

of the problem for the current numbers of resources.

A. Space of Resources

It is helpful to think of any set of resources

(Al, .. *, AM; D,, ..., * * N)

as defining a point in an (M + N)-dimensional space of

resources. Associated with each point of this space is a

distinct problem, or matrix game, which has at least one pairL of solution strategies, X* and Y*, and a unique value of the

game, V*.

The values, V*, may he thought of as plotted in (M + N + l)-
dimensions so as to form a continuous solution surface over

the space of resources. At nearly every point of this surface

there is a unique tangent hyperplane, whose slopes in the

coordinate directions are the same as the marginal values

defined in Section II, i.e.,

0 0 0I(-Yo' - P' -Y I -X,, " - x&
M N

For each point of the resource space there is at least

one valid Q-basis from which solution strategies and the
value of the game may be computed. There may be more than

one such valid Q-basis, each yielding different solution

strategies, but there is only one value of the game at any

point.

19

"For nearly every point of the resource space, a valid

Q matrix is square and non-singular. Such a basis is usually
valid for a continuous set of points that we will call a
region of the resource 6pace. Throughout a region, the I

strategies are uniquely defined by the basis.

The interior of a regio... is generally characterized by
proper inequalities:

x' > 0 for included i

y? > 0 for included j

IY > 0 for excluded i

XJ < 0 for excluded j

The boundary of a region is characterized by one or more of
these quantities becoming equal to zero.

B. The Path

The continuous variation of resources from some initial set
of values in some' prescribed fashion to some terminal set of
values generates a path through the resource space. The path
method enables us to find solutions all along a fairly arbi-

trary path if we have a solution basis at the initial point.

There is one point in every type of problem where the
solution basis is always known. That point is the origin,
where all resources are zero and both players use null strate-
gies. Hence, a nath can always start at the origin, as it

does in the computer programs of Sections IV and V. A path
may, however, start at any other point where the Q-basis is

known.

The simplest kind of path is generated by varying only
one resource type at a time, all the others being held con-
stant. We will call this a rectangular path, since it con-
sists of a series of straight-line segments at right angles

20

to each other in the resource space. This kind of path is

used in the programs of Sections IV and V. In this method,

the dimensions of the problem start at (M,N) = (0,0) and

increase as resource types are introduced. Once a type has

been introduced, the number of rxsources of that type may be

increased or decreased at will.

A more general kind of path is one consisting of straight-

line segments generated by simultaneously varying any or all

of one player's resources linearly in terms of some parameter.

A segment of such a path can be represented by a set of

equations of the form

Am = Aom + Aim h, 0 s h ; h

exprcssing the condition that the number of type m resources

varies from an initial value of Am when the parameter h = 0

to a terminal value of Aom + A, In similar fashion, a

variation of maximizing resources can be expressed as

Dn + D h In Dno ni

The parameter h may be arbitrary or it may have some real

meaning, e.g., a vehicle that carries fixed numbers of each
resource type, or a budget allocated in fixed proportions to

the different resource types. Either minimizing or maximizing

resources may be varied on a path segment, but we have no

convenient method of varying both simultaneously.

C. Location of a Regional Boundary

If a path segment lies entirely in a single region, the

same Q-basis provides a solution at every point of the segment.

If not, the first probiem is to find the value of h for which

the path meets a regional boundary. This critical value of h
defines a critical point on the path where some changes must

b be made in the Q-basis before proceeding.

21

II
To do this for a minimizing path, for example, we first

add a row to the A vector of Figure 4 to reflect the variable

nature of the resources, i.e., A becomes the two-row matrix

JAG,# AQM ,,T j# O, * Tg ,Os ... 1 0
A-9

All, , A m,0 ,O, 0 .. , 0 ,0, *-*, 0

assumed to be multiplied by H = (1, h). The matrix equation

of condition then becomes

XQ = HA

The vector solution

X = HAQ-

is then equivalent to a set of scalar equations of the form

x = X0 + xlh

One way the basis can fail is by some x? for included i

becominq negative. If x, 2 0, x cannot become negative as

h increases and we pass on to the next x. If x, < 0, we

solve the equation
h = /x

to find the value of h for which x = 0. The least of these

values of h is a candidate for the critical value.

The second way the basis can fail is for XJ to become

greater than 0 for some excluded j. The scalar product XJ

is of the form

x 0 + xi h

Applying a two-part test for every excluded j, we pass on

to the next if x, S 0, since then x cannot become positive.

If xi > 0, we solve the equation

h = -x,/x,

22

to find the value of h for which XJ 0 0. The least of these
values is a second candidate for the critical value.

The lesser of the two candidates is the critical value
of h, which by substitution defines the critical point on

the path and the solution strategy for the minimizing player

at that point.

If the critical value comes from = 0, then the
corresponding row of the Q-basis must be deleted; if it

comes from XJ = n, then a corresponding column must be added

to the Q-basis. In either case the resulting Q-basis will
have one more column than it has rows.

In similar fashion, with appropriate formulations and

test criteria, we can find the critical value along a path
in the space of resources of the maximizing player; in that

case, the .esultant change in the Q-basis is deletion of
a column or addition of a row, and the Q-basis will have one

more row than it has columns.

D. Finding the Q-Basis for the Next Region

The rectangular Q-basis resulting from the location of a

boundary is a valid basis on the boundary. Taking the

example of a minimizing path, there is one more column than
row, and hence one more condition on the minimizing player

than he has variables. Although the extra condition is
redundant and is satisfied by the minimizing player's

solution strategy at t1he critical point, it does act as an

added constraint.

On the other hand, the maximizing player here has one

more variable than conditions to be satisfied. Because of
this, there is an infinite number of solutions for the

maximizing player. In fact, any linear combination of his

23

solutions on the two sides of the boundary is a solution
for him on the boundary.

It is the degree of freedom of the rectangular Q-basis

that lets the maximizing player shift his strategy on the

boundary to that strategy appropriate in the next region.

We determine the new strategy by means of a new parameter,

the marginal value per unit of the minimizing rescurce

parameter and denote the new paramater by e, defined as

e = -A 1l 1y . . AMYMo

We represent this condition by temporarily adding in

the last row of the Q matrix the vector

(Ali' ... , AIM,01, --- , 0)

adding to the D matrix a second column consisting of all Os

except for -1 in the last row, and assuming D to be multi-

plied by the vector E =11. The matrix equation of con-

dition becomes

QY = DE

The vector solution

Y = Q-' DE

is equivalent to the set of scalar equations of the form

y = Y0 + yle .

The maximizing player is interested in driving e to a

value as high as possible algebraically, that is in maxi-

mizing survival in the direction of the path. But he is

limited by the conditions, yý > 0 for every included j, and

IY 2 0 fcr e,,ery excluded i. The critical value of e is the

lowest value meeting one of these conditions.

24

Applying a two-part test to y, we pass on-if y, 0 ,6

since y cannot then become negative as e increases. If

i, < 0, we solve the equation

e = -y0/y,
to find the value of e for which x = 0. The least of these

values of e is a candidate for the critical value.

The second test is on the condition IY ?ý 0. This product

is of the form

yo + Yle •

We pass on to the next i if Y, 1 0, since y cannot then

become negative as e increases. If y, < 0, we solve

e = -0y

and select the least of these values as a second candidate

for a critical value.

The lesser of the two candidates is the critical value

of e, which by substitution defines the maximizing strategy
along the path into the next region.

The rectangular Q-basis is then changed by deleting the

column or adding the row associated with critical e. This

change restores Q to a square, non-singular matrix, the

solution basis for the next region.

In similar fashion, with appropriate formulations and

tests, we find the Q-basis for the next region along a

maximizing path.

E. Terminating a Path Segment

The two processes described in Sections III.C. and

III.D. repeat in alternation until the end of a path segment

is signaled by critical h z h. At this interior point of a

25

region, the 0-basis is not changed, the terminal strategy

can be determined by substitution of h, the terminal coordi-
nates are entered in the first row of A or first column of

D, as the case may be, and either a new path segment is

begun or the problem is ended.

F. Beginning a Path Segment

The previous exposition was given with M + N resource

types being allocated. If the new path segment specifies

a variation of no more than these resource types, then the

terminal point of the previous segment is an interior point

of the space and we begin the new path by finding a boundary

as in Section III.C. above.

If, however, a new type of resource is introduced, the

terminal point of the previous segment automatically becomes

a boundary point of the new (M + N + l)-dimensional space of

resources. The Q-basis must be expanded by opening a row

or column of zeros at the appropriate place. The new path

must then be begun by using the process described in Section

III.D.

G. Beginning a Problem

Since the method will not permit introducing more than
one type of resource at a time, it is usual to begin a

problem at the origin, where both minimizing and maximizing

players are constrained to a null strategy and where the

Q-basis has 2G rows and columns as shown in Figure 6.

The problem is then begun by introducing one resource

type in any desired numbers, followed by the introduction

of other resource types until all M + N have been intro-

duced.

26

m il ,ii i i i i i i l i i

@ 0 Yv 0 Yo

1 1 1 0~lJT2I 0 T T
0-

0 0 0

X00 T2

2T 2 T 2v 0

* 0

0 0

* 0 TG

a Og I
___, __ IoTG TovlI 1]

T1-707T'2 0 1..0. TG j0 J
FIGURE 6

0-BASIS AT THE ORIGIN

The order of introduction may make some difference in the

computational time but makes no difference in the terminal
value of the game. However, there are certain simple
restrictions that must be observed. For example, the marginal
value must not be equal to zero. This would be the case in

the weapon allocation problem if we tried to introduce defense
before attack, since in that case all targets would survive
regardless of whatever allocation the defense might make.

27

IV. PATH87 COMPUTER PROGRAM

The PAT1187 computer program is explained in this section.

It is specifically designed to solve the multi-dimensional

two-sided weapon allocation game for point targets. However,

it can be modified with little trouble to solve a variety

of resource allocation problems. In fact, ease of modifica-

tions has been one of the major criteria influencing program

design.

The program is written •a BASIC language for use on an
IBM 360/65 computer in a time-sharing mode with interaction

of computer and operator. The computer-system constraints

that have been binding at one time or another during the

evolutionary development of the program are:

-1 A limit of 800 statement lines

-2 A limit of 80 FOR loops

-3 A limit of 29 numeric arrays

-4 Limited storage space for the array elements of

the problem.

The first three of those constraints have been overcome

by such devices as using the same subroutines to serve both

the minindzing and the maxinizing player and using the same

arrays to store similar numbers associated with both, thus

taking advantage of the structural symmetry of the problem

and effectively transposing large matrices back and forth

by just changing a few indices.

The effect of the fourth constraint has been minimized

by using a subroutine to compute the value function as needed

instead of precomputing and storing it. Also, some matrices

have been reciced in size by packing the significant elements.

Preceding page blank
29

Computer processing time has been reduced by designing
a three-stage solution process with recursions. Further
improvements in processing time have resulted from the use
of single indices instead of double for nearly all arrays.

The price paid for the increase in capacity and decrease
in running time has been some rather complicated indexing.
However, even that is not completely without value, since
the indexing is an aid to flexibility.

A. Program Structure

The program is composed of an initialization section,
a control section, and a collection of subroutines. The
heart of the program is the control section, which calls
the main subroutines as needed.

Blocks of statement lines are allotted as follows:

(1-999) Initialization section

(1000-1999) Control section

(2000-2999) Test subroutine

(3000-3999) Auxiliary subroutines

(4000-4999) Value subroutine

(5000-5999) Print subroutine

(6000-6999) Addition subroutine

(7000-8159) Deletion subroutine

(8160-8999) Auxiliary subroutines

(9000-9999) Strategy subroutine.

The remainder of this section contains a complete listing of
the program statements in numerical order, with explanatory
comments following each small group of statements.

30

B. Initialization Section

This section sets the dimensions of the problem,

initializes various indices, inputs data, and makes pre-

liminary computations.

i AJ i
4C L :'. I, ,

These lines provide an example of the data that an operator

must type for any problem he proposes to run. Other examples

appear in Section VI, Cases 5 to 8.

The first four numbers define the dimensions of the

problem. In this example, there are 2 target groups (object

types), of which 1 is defended, 2 attack-weapon types, and

2 defense- veapon types. The program later reads these

numbers as Gi, G4, Al, and Dl, respectively. By convention,

the defended target groups are the first G4 groups.

The next 2*Gl numbers define target data, that is the

number of targets and value per target for each group.

The next Gl*Al numbers define attack-weapon data as a

matrix of single-shot kill probabilities, in order of all

weapon types against the first target group, then all weapon

types against the second target group, etc. The weapon types

must be listed in the same order for each target group, the

preferred order being from least effective weapon to most

effective weapon, as explained in Section IV.F.

The last Dl numbers define defenss'-weapon data as single-

shot probabilities of intercept, it being assumed that these

are the same against every type of attack weapon. The

31

preferred order of listing is from most effective defense

weapon to least effective, as explained in Section IV.F.

t"L. i. . I. I) I c v cI. 9 r) , *),o ,(r5)I',C I . '), (15a p5)

;-'~ VC I I• I.(,(),• g E , (C

D U(i M b(,4j C I), C))I.. '

These lines reserve storage space in core for 23 lists and

arrays, those with related dimensions appearing on the same
line. The reservations are adequate for most problems

involving no more than 100 target groups (Gl) and no more

than 15 weapon types in all (Al + DI).

All of the matrices will now be discussed, in a con-

venient oxier. The form (T) will denote a matrix itself,

and the forms T(2), T(G), $(A' + 1), etc., will denote

particular elements of a matrix.

(T) stores the number of targets in each group. It is

customarily addressed by the simple variable G, i.e., T(G).

(V) stores the value per target in each group and is

usually addressed as V(G).

(P) stores the probabilities of kill. Conceptually, (P)

is a two-dimensional array, but it is treated by the program

as a one-dimensional list. The manner of address is discussed

in Section IV.F. in connection with the value function,

SUB 4000.

(D) stores the complements of the probabilities of inter-

cept. The manner of address is discussed in connection with

the value function.

($) stores the force levels attained at the end of any

path segment. Elements $(l) to $(Al) represent levels of

32

Ii

attack weapon3, and $(Al + 1) to $(Al + Dl) levels of

defense weenons.

(A) is the largest matxzx in the program. Primarily,

it 3tores those elementary strategies of both attack and

defense that are in the basis at any time. It also stores

some other numbers related to those eiei.'entary strategies.
Conceptually, it has an internal structure that is illustrated
by the storage map of Figure 7. The matrix is partitioned
into three inain cell regions: test (1-60), attack (61-3000),

and defense (3001-4000). The test region will be discussed

in connection with the testing process, SUB 2000. The

attack region is subdivided into rows, each row having

Al + 1 elements. The example showing 6 elements .s based

on Al : 5. These rows are grouped. The first group,
consisting of a single row, stores the identifying numbers

of the attack weapons currently in play, e.g., 2, 3, ard 5.

The second group of Gl rows stores test control data derived
from the elementary strategies. The remaining rows store

the elementary strategi.es for each target group in vector

form. For example, the second elementary strategy on target
group 3 has 0 type-2 weapons, 2 type-3 weapons, and 1 type-5
weapon, for a total of 3 weapons. The maximum entries that

have occurred in any elementary strategy row of target group 3
during the course of the ran are stored in the third row of

the test control group, e.g., 2, 2, 2, and 4. The defense
region is structured and used like the attack region, but

the rows have Dl + 1 elements, three in the example. The I
address if an element of (A) is usually compounded from its

place in its row and the address of the terminal element of

the preceding row, e.g., A(120 + 4) 3.

33

1 2 4 s 8 7 3
Test

31 32 33 34 3s ~ J6 37 s

Best Tast

Attack Weapon 61 62 63 64 69 66

Number 2 3 5

67 66 69 10 7t 12

Test Controls -- -

13 74 1, 76 77 78

79 80 al 82 83 84

2 2 2 4

as 86 a/ BeI9 9

G I
Strategies 91 92 93 94 96 9

9? 98 99 100 101 102

103 104 j 101,.id 107 108

Srtcis 104 Ito 111 112 113 It4

117 11682Il 119 120

Def gnue Weapon 3001 3ýC2 3003

Number

FIGURE 7
STRATEGY MATRIX (A)

34

(X) and (Y) store computed solutions of the parametric

equations of the Q-basis. (X) stores the first column of a

solution and (Y) the second column, i.e., the column which

is multiplied by the parameter. They are used together,

sometimes for an attack solution, sometimes for a defense
solution. Whichever the case, the elements of (X) and (Y)
are arranged in the appropriate sequence established in

Section II and illustrated in Figure 5: marginal values for
opposition weapons, intercept value on group 1, elementary

strategies on group 1, -.. , intercept value on group Gl,

elementary strategies on group Gl.

Before discussing the other matrices of the program, it

is desirable to describe in general terms a three-stage

solution process that saves storage space and computer
running time. Instead of storing and inverting a Q-matrix
whose dimensions would exceed 200 x 200 if there were 100

target groups, we allow the Q-basis of Sections II and III
to exist only as a mental concept of the equations of the

problem. These cquations are then solved by two stages of

Gaussian elimination, a third stage in which a small matrix

is inverted, and a back solution process which computes (X)

and (Y) as full-size solutions of the conceptual Q-basis.

Intermediate results are stored in such form that they can
be modified recursively, without having to repeat the entire

three-stage process eve, :y time a line is deleted from or

added to the conceptual Q-basis. In the program, the
matrices (Q), (R), (S), (U), (W), (Z), (C), and (F) are

primarily involved in the process. These will now be

discussed.

(R) stores the results of the first-stage Gaussian

elimination, which reduces the Q-basis by 2 rows and 2 columns
for each target group. The process is precisely defined. In

35

the example of Figure 5, the upper left corner of the central

block has this-configuration--

0

Pivots on the circled elements eliminate two rows and

columns. Because of the choice of pivot elements, the

computations involve only subtractions,-and very little

information is lost by physically eliminating the pivot

rows and colwnns. In fact, since the elementary strategies

are preserved in (A) and the number of targets in (T), we

need only provide for saving v,, elsewhere. (R) must be

large enough to hold the elements not physically eliminated.

Its size varies during a run. At the beginning, or at the

origin, (R) is zero since all rows and columns are eliminated

(see Figure 6). Then, as rows and colurmis are added to and 1
deleted from the 3onceptual Q-basis, (R) is modified to

reflect the changes. Suitable recursion algorithms are in

the program for that purpose.

(Q) stores the values v, 1 for each target group. These

"base" values would otherwise be lost after the first-stage

elimination.

(S) stores the results of the second-stage Gaussian

elimination, but preserves the physical configuration of

(R). In concept, both (R) and (S) are rectangular, as

illustrated by the pattern of Figure 8. However, the

elements are stored according to the numbering scheme in the

figure. These matrices are augmented to include elements

from the right-hand sides of the equations of the problem.

So the first column and first row of Figure 8 contain elements

from vectors labeled D and A in F:gure 3. The remaining

36

831 832 833 834 151 754 717 760 763

835 836 1 838 /? 55 758 761 764

839 84 841 842 753 ?56 759 762 766

401 402 403 404 1 2 3P

405 406 407 408 4 5 6

409 410 411 412

413 414 415 416
P

9 10

411 418 419 470

11 12_•421 422 ,4123 42412

_ _ _ _-_ _-P-_
_

P = Pivot Element

FIGURE 8
STORAGE MAP OF MATRICES (R) AND (S)

37

columns and rows correspond to the noneliminated columns

a;1 rows of the Q-basis. In this example, the columns repre-

sent 3 attack weapon types and 5 excess elementary defense

strategies, and the rows represent 2 defense weapon types
and 6 excess elementary attack strategies. The lower right
region of Figure 8, which we will call the pivot region,

contains elements left over after the first-stage elimination
of two rows and columns from each of the blocks on the

diagonal of the Q-basis. In this example, supposing there
are 3 target groups in the problem, the gap in the pivot

region implies that the original Q-basis block for group 2

has 3 rows but only 2 columns, and hence is not explicitly
represented in (R) and (S). The blank elements in the pivot
region are understood to be zeros, which need not be stored.

The second-stage Gaussian elimination may be described as
a partial inversion in place, since some of the procedures

are adapted from the MATINV subroutine (Reference 6) for a

total inversion in place. In concept, (R) is the given
matrix and (S) is the result of the partial inversion. As

many as possible pivot elements, such as those identified in
Figure 3, are selected from the pivot regiou only, so that

each pivot affects only one of the target groups. There is
no shifting of rows or columns, but the location of pivots

is recorded. The pivot rows and columns are actually used
to store the results of the partial inversion, but it is

understood that a pivot row or column has an alternative
aspect, characteristic of a Gaussian elimination, in which

the pivot element is 1 and all the other elements of the row
or column are 0. The proper aspect is used at any point of

the program. Finally, as lines are ch'.nged in the conceptual
Q-basis, recursion algorithms make the induced changes in (S).

At the end of the second stage, the number of equations

38

remaining to be solved is somewhat unpredictable, but in

theory can be bounded: Max (Al,Dl) < number S Al + Dl.
In the example of Figure 8, four equations remain to be
solved out of an original fourteen in the conceptual 0-basis.

(U), (W), and (Z) are used in the third stage, which
solves the remaining equations by matrix inversion. On each
occasion, they are redimensioned by the program to precisely

the size needed, e.g., in the continuation of Figure 8 they
are redimensioned as 4 x 4 matrices. (U) is then filled
with the elements of (S) that are in neither a pivot row

nor a pivot column, as in Figure 9.

836 837 838 75

840 84l 8.42 759

410 411 412

0

418 419 420

0

FIGURE 9
FORMATION OF MATRIX (U) FROM ELEMENTS OF MATRIX (S)

(W) stores the inverse of (U). (Z) stores either a duplicate

or the transpose of (W), whichever is needed at the time.

These three matrices are the only ones with two subscripts.

(C) and (F) store the two-column solution of the third-

stage equations. Their elements become elements of (X) and

39

Ipi
(Y) respectively, and are used in the back solution to
complete these vectors.

(G) is the first of seven index matrices that are needed

to help locate numbers in the primary matrices already dis-

cussed. (G) stores the locations in (S) of the initial
elements of blocks of numbers pertaining to the different

target groups. (G) consists of three regions, each having

Gl + 1 elements. The first region contains the locations

of blocks in the pivot region of (S). For the example of

Figure 8, G(l) = 1, G(2) = 7 since this is where the block

for the second target group would appear if it existed,

G(3) = 7, and G(4) = 13, in effect defining an upper bound

on the pivot region. Similarly, the next four elements

locate blocks in the lower left-hand region of (S), i.e.,
G(5) = 401, G(6) = 409, G(7) = 413, G(8) = 425. The last

four elements locate blocks in the upper right region of

(S), i.e., G(9) = 751, G(10) = 760, G(11) = 760, G(12) = 766.

In a problem with only three target groups, the remaining

elements of (G) would never be used.

(N) stores the number.of rows and columns of each block

in the pivot region of (S). (N) consists of two regions of
Ul + 1 elements each, the first region for rows, the second

for colwunns. So, when jS) is as shown in Figure 8, this

index will be:

(N) = (2,1,3,0;3,0,2,0;0,...)

Actually, the G1 + first element of each region is super-

fluous, but is retained for convenience in indexing (N)

itself.

(M) stores the total number of rows and columns of the

pivot region preceding each block of the pivot region of (S).

(M) is arranged the same way as (N). For our standard

40

pi

example, we have:

(M) (U,2,3,6;0,3,3,5;0,...)

In this case, the first element of each region might be

considered superfluous.

(0) stores the locations of the actual pivot elements

in (S), identifying them by rows and columns rather than by

a linear storage number. (0) is divided into two regions of

equal size, in this case having 30 elements each. The first

region of 0 contains an entry for each row of the pivot region

of (S). If the row has no pivot element in it, the entry is

0. If the row has a pivot element in some column, the entry

is the number of that column within the block of columns for

the particular target group involved. For the example of

Figure 8, we have 0(l) to 0(6) given as 11,2,0,2,0,1). The
second region contains similar entries that identify a row

for any pivot in a column, so we have 0(31) to 0(35) given

as (1,2,0,3,1).

(I) is the central-inden matrix. It stores a variety

of constants and variables that will be individually dis-

cussed in connection with lines 140-215. Its conceptual

structure, shown in Figure 10, reflects the paired nature

of most of its elements. It has a central spine of elements

identified (except for 1) by numbers of the form 3n, and

two wings, of the forms 3n-1 and 3n+l. The elements of one

wing are associated with rows of the problem and those of

the other wing with columns. An interchange of wings has

the effect of transposing the 0-basis of the problem.

(K) and (L) provide the mechanism for the transposition,

one wing of (I) being read into (K) and the other into (L)

by SUB 8690. A flag S1, whose value is set at +1 or -1,

determines which wing is read into which matrix. Most of

41

(K) -- +1
''~ For Si()(K)tr -1

3 4

02 A2
5 6

al Al
8 9 ¶0'

A,
Ii ¶1 13

14 16 16

30
~16 19

G9 G8
20 21 22

0 G9
23 24 25

60 3000
26 27 28

AI+1(27) 1 01+1(27)

29 30 31

02+1(27) A2+1(27)

32 33 34

401 1151

35 36 37

A1+1 831 1

Ai o 01+1

41 42 43

46 46

FIGURE 10
CENTRAL INDEX MATRIX (I)

42

the computational algorithms of the program are written in

terms of (K) and (L) and are equally valid for row operations

or column operations, that is for attack strategies or

defense strategies.

These lines rcad and print the dimensions of the problem,

i.e., the data of line 50.

I4) 1),) 1 , I)'-,'|

St 1(31()=),

I X I C J ,I C f.)~) =3lb l C3)=

SC I)C 41) , (

I C I r)L'7)

This sequence computes and initializes various indices, all

others being automatically initialized at zero by the BASIC

system. The paired structure of (I) is illustrated in the

following discussion.

K(l), L(l): 1(2) is the number of types of defense weapons

already brought into play, sometimes denoted by D2. 1(4)

is the number of types of attack weapons already brought into

play, sometimes denoted by A2. Both 1(2) and 1(4) are

variables, automatically initialized at 0 and stepped as new

weapon types are added. K(l) and L(l) are used principally

as upper limits for loops and as locators in (X) and (Y).

43

i

II
X(2).L(2): 1(5) and 1(7) are constants, D1 and Al,

respectively. They are not used in this version of the

program.

K(3)-, LM: I(8) and 1(10) are constants, 0 and Al,

respectively. They are used as locators for the two
regions of the ($) matrix.

(4),i L(4): Not used in this version of the program.

I((5), L(5): 1(14) and 1(16) are constants, 0 and 30,

respectively. They are used as locators for the two
regions of the (0) matrix or pivot index. In case (0)

is redimensioned, for example to 80, then 1(16) should be

set at 1/2 Dim(0) = 40.

K(6), L(6): 1(17) and 1(19) are constants, set at computed
values G9 = GI + 1 and G8 = 2*G9, respectively. They are

used as locators for the two upper regions of the (G) matrix.

K(7), L(7): 1(20) and 1(22) are constants, 0 and G9,
respectively, serving as locators for the two regions of
the (M) and (N) matrices.

K(8), L(8). 1(23) and 1(25) are constants, used as locators
for ths attack and defense regions, respectively, of (A).

In this version of the program they are set arbitrarily at

6U and 3000. The apportionment of space between attack and

defense can be modified by changing 1(25).

1,(9), L(9): 1(26) and 1(28) are constants, used to specify

the number of elements of (A) needed to record the useful
features of an elementary strategy for the attack or defense,

respectively. In this version of the program the number of
elements is one plus the number of weapon types, so that

the number of weapons of each type plus the sum of the
weapons of all types can be stored. The effect is to

44

II
structure the attack region of (A) into rows of size 1(26)

and the defense region into rows of size 1(28).

K(10), L(10): 1(29) and 1(31) are variables, used to specify

the number of elements currently in use in each of the rows

just described. Both are iniý.ialized at the same value as

1(27). Thereafter, 1(29) is kept equal to D2 + 1(27) and

1(31) to A2 + 1(27).

K(ll),L(11): 1(32) and 1(34) are constants, locating the

initial values of the u and 6 regions of (S) respectively and

are set at 401 and 751 in this version of the program. They

may be changed if a different apportionment of storage space

is desired.

K(12), L(12): 1(351, and 1(37) are constants, Al + 1 and

1, respectively, used as stepping indices for the common
region of (S). 1(35) is the interval between elements in

successive rows of the same column, and 1(37) between

elements in successive columns of the same row. Note that

1(36), on the spine of (I), is the locator for the common

region, here set arbitrarily at 831.

K(13), L(13): I(34) and 1(40) are constants, Al + 1 and

Dl + 1, respectively. 1(38) is the interval between elcments
in successive rows of the same column of the a region of (S)

and 1(40) is the interval between elements of successive

columns of the same row of the 6 region. These two are

interchanged when (S) is transposed. They are used as

stepping indices.

K(14), L(14), K(15), L(15): 1(41), 1(43), 1(44), and 1(46)

are not used regularly in this version of the program. How-

ever, the spaces 1(41) and 1(43) are used to store strategy

locators reeded in SUB 4000. The spine of (I) is empty

except for 1(27) and 1(36), which have already been discussed,

45

and ;or T(l) and 1(3) which are used as working storage for

step indices in the pivot region of S. These vary from

target group to target group. In SUB 8760, one of the pair

is set at 1 and the other at N(G9 + G), these being the

coluim.-to-column and row-to-row steps for target group G,

as shown in Figure 8.

3 3C t.hINi "I I ,-"

ie (C (.' I)I WI)

3 6 u L.(C 9. t + I)" (-)
3-if (Ci.H + + I I (:14)

391 N C

This loop reads data on the number of targets T(G) and the

value of each target V(G). It initializes Q(G) at 'ne value
V(G). The loop computes Vl = ZV(G) as the simplest way of

making V1 > max {V(G)} for use in the testing processes.

Finally, it initializes the (G) locators to the (S) matrix,

whose current dimensions are zero because there are no excess

elementary sta itegies and no weapons to start with.

4C (' , INI "r 1

4I(1= (
4pr P' C-:3 j• (.i
4 '1C P•• 0 '=' ftf

, -44(+= ÷45 (. .

41C. NEIA A

49C N Ex (I

!.6

L . 1,

This double loop reads the matrix of kill probabilities into

(P) and prints it for reference.

bi', t .•,h'I I I ,)
53(" I•hl.t4 I-

b 4 , U (I1.0= I -i"

SC- Ný(1 1

I-KINI

This loop reads the intercept probabilities, prints them

for reference, and stores the complements in (D).

C. Control Section

This control routine directs the computations over a

path segment and is repeated for each segment of the path.

It consists of four parts:

Segment initialization (1000-1380)

Strategy on boundary (1500-1590)

Strategy in region (1700-1810)

Segment termination (1820-1880).

The two middle parts are repeated in alternation as many

tiiL.es as required along the segment.

[J
)CC(• ý'hINI ll Jr?'

IC' { L.)A' I- I 3

The path segment is defined by two numbers in this version

of the program: P1, the identifying number of the single

weapon type to be varied as parameter along the segment,

47

and P3, the terminal number of weapons of that type. Here,

the numbers are input by the operator, but the program can

be modified to read tie numbers as data or get them from a

data file. Meaningful values of P1 are integers from -DI to

+Al, with defense weapon types identified by a - sign Lnd

the end of the program run signaled by a zero. P3 may have

any non-negative value. Thus, the number of type P1 weapons

may be increased or decreased along a path segment. However,

a decrease to 0 should be avoided because- of the possibility

that round-off errors will throw the path into negative
regions of the resource space. Special protections against I
this accident were written into an carlier version of the

program, but have been eliminated in this version. If

P1 0, the run stops; otherwise it continues.

("I C

ICeC. CU Ci-1)

9I C .(45 - 6C -3,

I I IC ((.., U , 92?9r

This sequence sets Sl at +1 or -1, converts P1 to a positive

number, and goes to SUB 8690 to set the (K) and (L) indices

associated with Sl. It also sets P2 at +1, 0, or -1 depending

on whether the number of weapons is to be increased, unchanged,

or decreased from the number at the end of the preceding

path segment; sets V2 at 0, Vi, or 2V1 for later use in

testing; and sets P4 at the amount of change in the number

of weapons. If P4 = 0, the program goes to SUB 9290 to

compute a strategy, and then branches to the segment termina-
tion, an option used when the operator has just completed a

path segment, obtaining a printout of either the attack or

48

II

defense solution strategy, and wishes to obtain a printout

of the other solution strategy at the same point of the

path. Otherwise, the run continues.

114,C It •R •) •) • 1ý4E,,4 171C.
1 I5C Uý f(C)h)i I J-vE' IIRC.
I 16C 'v Y7. k5

This sequence examines the proper weapon-number row of (A)

tc f:,nd the proper column for weapon PI, designating this

column by RS. If weapon P1 already has a column specified,

initialization is completed, and the program branches to

1710. If not, -hen the column is picked that will put P1

in the proper sequence with the weapons already listed in

(A). For example, if attack weapon 1 is to be added to

Figure 6, R5 will be 1, and the program will continue at

1180.

; |~~ I•(F*Ie; P-F;L() lv: hq H-1. - I
[. I~l~cr. I=Ic3L.÷•*Lc ?

123?1C P`b Ml C L K(I) 1)

1 3 C _1(I +L I

I K = M(I+) +U))

17'3 I=1+K(13)

C, 4d NIEXI K

1 77C N LX1 P

This sequence opens up and zeros the R5 column of (S),

shifting other colmnns as required. Statements 1200-1250

open a column (or row) in the common region, and statements

1254-1264 open a column (or: row) in the a(or 6) region,

depending on whether Sl = +1 or -1.

49

0: R hU • J = K • @) '1 R 14) + K 9 * K, K 'I) + (.69) +÷ L-I÷+ I) L TE I - K(9)

IP90 V,14 L=J+L(IC) Tý ,J+•b .IFP -1
I 30CC 1(L4I)=ACL)
131 C N.EX 7 L
I 3P C A(J+ k%) = C

1330 NEAl J
S" 134C A(K(I)÷hb)-'kI

This sequence opens up and zeros the RS column of (A), and

enters the nunbcr P1 in the weapon row of this column.

135C =5÷
I3UC L(I),I(3+LI)=L(1)+I
136C L(C) I(-)* :' I = (I,+

This sequence steps two indices in (I) to reflect the

addition of d %eapon type, and also steps the variable RI,

which measures the greater of the two quantities:

1(2) + Excess Attack Strategies

Y(4) + Excess Defense Strategies.

Ri is automatically initialized at zero and then is increased

or decreased as Lrequired. Ri is a measure of the size of

(S), and is used in setting the current size of the third-

stage matrix (U).

is 5 r s-=- I

1|3C HPOH3= Wý
Ib4-Cý C v) ' U CCC.
155C IF Hý'=-W3 THE\, |5RC'
1b3.u (_j!AP 6('C,(

1b'iC 0-10F, 7("-,

159C ' |=•1%I- I

This sequence controls the computation of i jtrategy ckrossing

a boundary (see Section III.D.), where the Q-basis is

rectangular and the parameter is marginal value, as indicated

50

by the flag S2 = -1. The flag Si 1 indicates an attack

strategy, Si = -1 a defense strategy. SUB 9000 computes (X)

and (W). SUB 2000 finds two candidates, H2 and H3, for a

critical value of the parameter. These are compared and

the program branches to SUB 6000 to add a row (or column) to

the basis, or to SUB 7000 to delete a column (or row) from

the basis. In the latter case, R1 is reduced because (S)

has changed size. In either case, the new basis is square

and the program continues at line 1700.

S71C .A'"I
17?2r U .. F9 9CCC'
173C HP*,A= d4=

174C. (,..LJP P(CCC
175(IP HP4=H,1JH• IH i•f

176C. , 1 i= kI+ I
77 ," tv, o)uF, 6(-.('(

vr•c (..i' �IC5(L
179{" IP HP=F.-4 "|Hi. I -I.;,

l(C ' 7u C(
I-tic L ;] 1 1 C. "C

This sequence controls the computation of a strategy in the

interior of a region or at a regional boundary (see Section

III.C.), where the Q-basis is square and the parameter is

resource variation, as indicated by the flag S2 = 1. The

control sequence is the same as in the 1500 routine. However,

112 and H3 are initialized at P4 instead of at V2, R! is

increased if a row (or column) is added to the basis, and

a test at line 1790 provides an exit to the sequence for

terminating the path segment. Otherwise, the program con-

tinues at line 1500, which alternates with 1700 until the

path segment is terminated.

51

I=
113PC T$(K(3)*J-I)-- ,1

18 6C; H -- 4

The path segment is terminated by posting the current force

level in ($), adjusting a right-side elemei-t of (S), and

printing the terminal strategy in SUB 5000. The program

then goes back to line 1000 for the next path input.

D. Test Subroutine

The test subroutine finds two candidates for the critical

value of a parameter, as discussed in Section III. Candidate

v'alues, H2 and H3, are initialized in the control program

and modified during testing. H2 is associated with the non-

negativity condition and H3 with the scalar-product condition.
The final choice between candidates is made after return to

the control routine.

The subroutine consists of Ln index section, a branch

contro'ling tests on a defense strategy, and a branch con-

trolling tests on an attack strategy. Seven auxiliary

subroutines serve both control branches.

s-C.C J I K(C 1)4 + IC ' 6
er.•C J I C'-O+<)*I 3

e.-C35 .J7 4 P-bl

2Cc C 1P b1=I i-IE'-a -SC.(.

This sequence initializes indices for the first target

group: Il locates the intercept elements in (X) and (Y);

J0 locates the control row of (A); Jl locates the base

elementary strategy in (A); and 14 locates the row of (P)

containing single shot probabilities of kill for targets

52

of this group. In addition, 1(42 + Sl) is set at 0, and J7
is identified with 42 - S1 so that I(J7) may be used as a

working strategy locator in connection with the value

function, SUB 4000. After initialization, the program

branches to one or the other of the tent-control sequences.

SI ISC t T I - (

IK GLýA" 3t((i

I" 1"." > _b..• jj-jý:," -4¢-* I

-cr'C I4- ¥4 '-' CId l~i'- (-

e2 . r Mi t r%,-v

This sequence controls the testing when (X) and (Y) repre-

sent a defense strategy. The test sequence for each target

group is illustrated by the flow diagram of Figure 11. SUB

3000 conducts the non-negativity tests for components of

the defense strategy. The rest of the diagram is concerned

with the scalar-product testsi for elementary attack strategies

not in the basis.

The general scheme is to generate an elementary attack

strategy, compute the value function for its combination

with each elementary defense strategy in the basis, compute

the scalar product with (X) and (Y), and test for criticality.

The generating scheme in this version of the program is what

we call a "floating lid." It generates all strategies over

a truncated rectangular region whose size is controlled by

a test control row of the (A) matrix. In the example of

53

Teat Nannegativity
SUB 3000

Generate Null Strategy]U 20"--I U 6'~ 8 3200

SCompute Scalar Product G_ enerale Now Straterg"y

Line 2200

No

Test Criticalit
SUB 3300

Step InSum Of IWe8(1)? Yes yp W~o No

TEST SEOU~LnE(Saee n L2e2210220

No

f Is
Stop Indices NIsW<OYe eWWap n o

SUB 3820 Line 2230 j. •At Lid? / ,-

, ~Yes e

S SUB 3500

FIGURE 11
TEST SEQUENCE (Statemnent Lines 2110-2240)

54

Figure 7, the test control row for C = 3 consists of the

nunbers 2, 2, 2, 4. All test strategies are generated that

would not increase any of those numbers by more than 1,

specifically all strategies satisfying:

0 a2 3,

O0 as •3,

o0 a ~
O Ea• 5

m

The first three conditions define a rectangular region of 64

strategies, and the fourth truncates it so that only 44 test

strategies are actually generated. The "floating lid" scheme

is a compromise that gives excellent results for the two-sided

game but may be slightly off optimum for one-sided attack

allocations, especially if some of the weapon types have very

low kill probabilities.

Test attack strategies are generated recursively in the

1-30 region of matrix (A), and the current critical candidate

is stored in the 31-60 region of (A). The order of storage

is a values, Eam' and computed v's, one v for each elemen-

tary def-nse strategy on the target group under test. The

method of generation is by a nest of implicit loops on the

weapon types currently in play.

The scalar product of the test-strategy vector with the

solution vectors is represented as X2 + H*Y2, where the

coefficients, X2 and Y2, correspond with (X) and (Y). For

efficiency, partial sums are computed by recursion as Xl

and YI.

55

We can now describe the flow diagram of Figure 11 in more

detail. SUB 3200 generates an initial test strategy with all
zero elements. SUB 3700 computes values. If Y2 Z 0, the

strategy cannot be critical; otherwise, SUB 3300 compares it

for criticality. The A(K(10)) test determines if the "lid"
on the sum has been reached. If not, the first weapon type

is set by W - 1. If the lid has been reached and W < K(1),
then SUB 3500 reduces A(W) to zero and sets W = W + 1. The
A(M) test determines if the "lid" on weapon W has been
reached. If not, SUB 3600 steps A(W) and the cycle repeats.

If so, and if W = K(l), then testing on the group is finished,
and SUB 3820 steps indexes for the next group.

P5CC F.,h r=1 Tý; (-i.
•51 L osi)•.,H 3CCE

r-ý5C IF I(P)=(, THNN Pt(| I
?'54" IU A(JC+IC31)).%L "HF.' sff.r
?SSC (;0- UP 3PCC
P56C LJlU0 P) I(

IP(GLbup 3!6Cf

-59bC -i=I

k(,•Ic. C u,-b[UP 31,CC

•:f'C IU Y2'.C.C-I 1H1 ýf't.-C
P63C LbUS 33C.0

fL4C I, AK(•1(r)))<,JCJC*1('3)) 1HLN 25'9C

~6!)c, I L% -c(c i) I 1 .NE -5 7r
6(, C, ()SjbuF 3;P("
Ctl(. ,• LN A

268C ? E'f Uh,•

This sequence controls the testing process when an attack

strategy is being determined. It is evident by comparison
with (2100-2260) that the general scheme and computational

subroutines are the same, but there are significant differ-

ences in the control processes. If no defense weapon has

been introduced, if G is an undefended group, or if G has

56

not been brought under attack, no tests of new defense
strategies are appropriate. So, an immediate branch to

2660 occurs.

The range of elementary defense strategies to be tested

is determined solely by the attack-summation test control

number A(JO + 1(31)), and the sole cut-off control is state-

ment 2640 which prevents defense use of more weapons than

A(JO + 1(31)). In the example of Figure 7, defense strate-

gies to be tested must satisfy the single condition:

0 ;g E6 <4
nn-

If there were two types of defense weapons, this inequality

would call for the generation of 15 elementary strategies.

E. Auxiliary Subroutines

3st (I P -e4=(('4 .i) Ct0)

i(•-C I,,-,- l~l 34÷]]: l 3l÷c'-

IF Y' I)>-.(., i ,-i I - "J ":(10(

3I(4C 1 -XCI)/,'(1)
-45 (!)C IF -A - :1 v
i r3("i((•.(-

o"• 'r NPAI 1

"1if E 7 1'.4

This subroutine tests the condition x? a 0 for elementaryJ
strategies in the basis. It solves for H, the value of the
parameter that makes xg = 0, and records H2, the candidate)
for critical value. It also records G2, the group in which

that candidate is found, and M2, a locator for the particular

elementary strategy among those of group G2.

57

3,'t. 0(' 0 ! V" 1 14, K(I.)
3;- 1 ,". A(V-)--C

•4 C r ,.< -- (IY

3eSC. YIVY;"-Y(JI)

This subroutine generates the null strategy as an initial
test strategy and initializes the scalar products.

Uý 43< s1f-FN 3411
3 3N*. H 3•Z- 4

3315C i'CK.3L)=A(Rt
3 39r- %, EXT 3 -

This subroutine computes the value of the parameter that

makes the scalar product zero, compares this value with H3

and replo-es H3 if H3 z H; in this care, the subroutine

records G3 = G and transfers all pertinent data from the
1-30 region of (A) to the 31-60 region, where the best test

strategy is recorded. This completes the tepting of one

elementary strategy.

i ~ ~ ~ cr x5 ,(i=x i -i-.('..) *,x(v.)

3hZC =V=+I
'155C tL I UkIN

This subroutine reduces A(W) to zero after making related

changes and steps W to W + 1.

58

II

365 ,r' C I* APgX I *A (..

3f :' Y I# YP=Y I +Y(C V)

3jt-d I'4 ' C I uN.l

This subroutine generates a new test strategy by stepping

A(W) and making related changes.

I I J I(,/) I I J + *)

":•. r- %;-,I -÷ ', (

- iC, 'd'.i•' ÷b y(

This subroutine controls access to SUB 4000, the value

function; it also sums for the coefficients, X2 and Y2,

of the scalar product. i

* :•.'•: ~ ~(= *l I+•,: ; I

4=5 1 44: o ."r I

This subioutine steps indices for the next target group.

"F. Value Subroutine

This subroutine is addressed from statement 3760 only.

It computes and returns one number, V, the expectei value

surviviiij of a single target of type G when it is attacked

using the elementary strategy located at 1(41) in (A) and

defended using the elementary strategy located at 1(43) in

(A), these two locations having been defined at statements

2030 and 3750, respectively.

59

In this version of the program, it is assumed that the

firing sequence of attack weapons is worst to best with the

idea of using poor weapons to exhaust interceptors, and the

sequence of defense weapons is best to worst with the idea

that any leftover interceptors will be the worst. This is
the order in which weapons have been numbered in the original
data input for the program. Interceptors and attacking

weapons ale thus matched in pairs, as is illustrated in

Figure 12 for the strategies:

a = (3,2,3)

%= '2,4) .

In the illustration, the expected value surviving is:

V V ([- PKTI (lP1 1)] 2

g
1 [i- PKT1 (1-PI)]

[(1 - PKT 2 (l-PI)]2 2!

* (1 - PKT 3 (l-PI 2)]

• [1 - PKT 3] 2

where PKTi is the probability of target kill by a single
1

attack weapon of type i and PI. is the prohability of inter-

cept by a single defense weapon of type j. Subroutine 4000

computes V according to this scheme.

4(',((, %O=V(U)
4CI IC I=(

4jC70 I ý A_/=(1-41,'J 4P7('C
4 .CA ,• G I =1 4 + f- 3I + A)

60

Attcck .0Detense

a = (3,2,3) 6 = (2, 4)

"Q3 I

'4a3

a, ? I

-1-I I-
I 6

S~ FIGURE 12
A PAIR OF ELEMENTARY STRATEGIES

63.

This sequence initializes value, defense weapon type, and
number of interceptors; begins a loop on A extending to line
4270; set3 A7 = the number of type A weapons in the a

strategy; if A7 = 0, goes to the next A; otherwise, sets
15 to locate PKT for weapon type A in matrix (P).

4 IC9C IF. I•OC6 l T.4& 4PC.I

411C I' L,"I ý'2) IHLNh 4P.C

41PC U=Lb
4130 =A1 . (4.5)+L,)

his uce 66 4CCc

This sequence decides whether an interceptor reading is in
order; if the target group is undefended, the sequence
branches to 4260 to compute; if I > 0, it branches to 4180
to test A7; if the defense is exhausted, it branches to• 4260 steps aDosets I = the
4260 to compute. The sequence al steps D,
number of type D inturceptors in the 6 strategy, and returns
to 4100 to see if I > 0.

4 IRC. II A•7: :1 .-4EN,' 4•IC4 19C. J=I

41'0G GkTO 4P'C.

4.?IC J=•7
dPPC, A7=A7-J

4,3 C I-el-J
4.P C •,=V*C I -'(I)*L.(,6(I(Pb) +L,))) J
4a25[". 4:,7. C7C

This sequence sets J = min{A7,1}; reduces both by J; computes
a new value of V at 4240; and goes back to 4070 to see if
A7 = 0.

426C V=V*(I -i-C I b) Of/

427C NEX)

62

-This sequence computes a new value of V when there is no

more defense. When all of the attack weapons, but not
necessarily all of the interceptors, have been exhausted,

the program returns the computed V to statement 3770.

Some general observations may he useful. SUB 4000

contains the only two statements in the entire program

that make direct use of the probability data stored in
matrices (P) and (D). This feature gives the operator

some latitude to simplify 4240 and 4260 by p..eccmputing

some of the factors and storing them in (P) and/or (D) at

the time of initialization. Thus, he might save computer

processing time by using more storage space and some extra

indexing. In fact, the current version of the program

contains at statement 540 a precomputation of the complement

of PI, but that doesn't require any extra storage. We felt

it more desirable at this time to minimize multidimensional

storage requirements in (P) at the expense of added pro-

ceasing time. However, if a great many runs were to be made
on small-scale problems, it might be judged worthwhile to

increase the amount of precomputation in the value function.

Of much greater importance, however, is the flexibility

that the operator has to use an entirely different value

function, even going sa far as to read in all the values as

arbitrary input data. In case a different value function is

to be used, the operator should provide the following general

modifications in the program;

-1 Change the initialization procedures to read in

the desired input data and to precompute and store

the desired quantities in (P), (D), and any other

unused matrix.

63

Ti

-2 Replace SUB 4000 with a osubroutine designed to get

V for any pair of strategies located by 1(41) and

1(43) at statement 3760. Be careful to avoid
accidently changing any of the variables used

elsewhere in the program. In general, the
undifferentiated letter variables are available
for use, with the exception of G, W, K, and M,
which have specified values at the time of access

to 4000. Obviously, A7 and I5 are also available.
Other variables should be used only after care-

fully examining the er.tiie program for conflicts.

-3 Make whatever indexing changes are consistent

with the new value function; specifically change

the setting of 14 at 2030 and its stepping at 3850,
if desired.

-4 No other changes need he made as long as the
operator is satisfied with the "floating lid"
method of generating test strategies. That can

be changed too, but this is not the place to
discuss how.

G. Print Subroutine

In this version of the program, the print subroutine is
addressed only from statement 1870 at the end of a segment.

It prints either an attack strategy or a defense strategy,
as determined by the current value of S.

SCCC LEF NA(1) A*¥(I)+X(I

This line defines FNA(I) as a function to be used in combining

the (X) and (Y) solution vectors into a single vector by
means of H, the value of the parameter.

64

! I

This line initializes the value of the game.

5L•3C rz•x (.
LI Cod, C. • -(I H . '

hC5C h--.-i•* I (L 3) 0,')

C J- G N kX•I VJ

This sequence computes the marginal value for each of the .

opposition weapon types currently in play; adds the product

of marginal value by number of weapons to V; and prints

weapon identifying number and marginal value.

5 9 J-- C 9 C) 1 +< C C I

This sequence begins a loop, ending at statement 5210, that

computes and prints the augmented strategy for each target

group.

14 C I N1 I1

5123C Y..--v-

This sequence computes the negative of the per target inter-

cept value, multiplies by T(G) to get the total intercept

value for the group, adds this to V, and prints the group

number and the group intercept valve.

65

5150 F'ak NuO TO N(K(7)÷G)

5170 JNJoK (9)
5175 "kIN' J)
510 1BH Lot To LCD)
5185 Ik1N1 A(J+L)j
5190 NEXT L
5195 PhINT T(W)*PNA(1)
500 NEXI N
5PI0 NEXT L

For each elementary strategy on a target group, this sequence

prints the number of each type of weapon per target, and the

number of targets on which that strategy is used.

!)2Pj PMINT
bP30 hETUhN

Line 5220 prints VS, the value of the game.

Section VI.B. contains many illustrative printouts.

H. Addition Subroutine

This subroutine is addressed from statement 1560 or
statement 1770 when the critical value of the pmrameter is

H3 (implying that a new elementary strategy must be added

to the 0-basis). It makes the necessary changei in (A), (R),

(S), and the associated indices.

The target group affected is G3, as recorded at 3330,

and the numerical elements of the new strategy are on hand

in the 31-60 region of (A).

COG0 G= 63

6CI0 51=-S3
6020 GO•.u• 69C
603C 60SUEP 876C
6C35 GCSUE& 8835
6C40 S3i-51

This sequence identifies the target group and gets the correct

indices from subroutines 8690, 8760, and 8835. For this

66

II

purpose, Sl is temporarily reversed to orient (K) and (L)
properly for adding either a rcw or a column. The reader

will find it helpful to visualize the subroutine as adding

"a row, and the text will follow this line of thought, with
"a few identified exceptions.

6C, (" JP=J I+. U9)*C'('(.+ I)
f C t V " Jk. t'J ,'Y1u .)'j + IES'E -

(C 0 A(JK(9))=A(.D)

t L•og 0 F-h 04•=1 It, LC 1C)

Lit I ,r i o 1HiI. t 13C
IPC, PC JX+N)=A(E 3C

fk

This sequence makes all necessary changes in (A) and locates

the base strategy row of the G3 + 1 target group in (A).

This is the row where the new elementary strategy being

added to the G3 group will be stored. The program makes

room for the new strategy by shifting upward all higher rows.

It stores the new elementary strategy and the weapon sum in

the J2 row and changes the test control elements in the JO

row as required by the "floating lid" method of controlling

tests. (A different method of controlling tests might call

for modifying these operations on the JO row, or even

removing them from the program.)

I15C kIN ff,=J (((,)+(-9)-I 1f (-(C (.C)*(', I) !A]FI - I
S15 5 kI M*, (13)=- M

17 r; NE-X I M

This sequence shifts elements of the a region of (R) and (S)

to open the proper row for storing the new strategy.

67

I:°

-I --i i i i i i i i i i i i i i i i i i i i•

ClulC DOh ImG((9)-)- 1i W((C*I) bTEP-1

619C S(I+L4a)-S(Z)
6195 NkX7 1
6200 Jý blI=-I 7,-i.,• b,9C

This sequence shifts elements in the pivot regions of (R)

and (S) to open a row for storing the new strategy, performing

the shift for those pivot regions pertaining to groups with

G > G3. If a true row is to be added, as indicated by

S1 -1, the program branches to 6290 since the required

space is now open. This case can be illustrated by Figure 8.

When elements 7-12 are shifted to 10-15, spaces 7, 8, and 9

become available for a new row of the first group.

tVC5 1(3)=1(3)+!
621C 1 =(UG+ I)

6115 J=L'4
6PC'''. ý",ii 1-=P 'I-- L4

. p22 J-J"I
t 225 h Pvý =I lvý K4

t23t! 1=1-1
f: 24C, JK(I+J)=i%(1)

f2bC C(I+J)=b(1)
e.26C NEXI K
btP;C. NEX7 L

If a true column is to be added, as indicated by Si 1, this

sequence performs variable shifts to open the proper spaces

within the G3 pivot region. As an example, consider the

addition of a column to the first group. The elements 7-12

are shifted to 9-14 by the 6180 sequence. Then the 6205

sequence shifts 4-6 to 5-7, so that spaces 4 and 8 become

available for the new column. The index 1(3) is stepped to

reflect the increased row-to-row interval.

i8

68

t 3CC. hkc S = ,3) -A.(31 ,L.(ICO

K 3o1 C.the mb)=1(633C ýOq L= I TO~ LC I)
6340 I~bL =(,') (I,3*L)-A(J I÷L))

63bC. NkX L

This sequence enters the first (or right-side) element of the
newly opened row of the a region of (R) in the form v,- v,

without multiplying by T. It then enters the same element
of (S). In this version of the program, all elements of (S)
contain the scaling factor T(G), but none of the (Q) or (R)
elements are scaled. This sequence enters the scaled a
differences in (S). These differences are not saved in (R).

3f V 5 'e,(X(7)+-)=tv,(K (°) +- ÷ I
6370 6C K (6) + ,0= 6(K Ct),.+K(13)

Ji-: 5 (A 0) =CC (6) +L,•

t-39C N(K (7) +(3) =.N (Y C7) +•(3)+ 1
(e 1:C I (3:1u4 IHF;v 6,73C

This sequence readjusts all indices affected by the addition
of a row to G3. If G3 > G4, the program branches to a PRETURN
statement, since no further computations are needed on an
undefended target group, which has no excess defense strategies
and, hence, no pivot region in (S).

64.C5 K4=K+1 I
tf4IC w." 's,% =S)eMCK(k()+(P) L, KC+Kd* -,]jF- -1

4• tb C. ,NFX TK

4 7 r. I =N C

648•C. I , 15 = IC. I C I) (K 4- I)
6A9L J=31+L(IC)

69

F=

65CC IOh Lai TO L4

6b4C (l)-,(J)-f,(31÷L(I(,))4K(NI)

6bbO IvJ+I(3)
t555 N1=NI+L(IJ)
656C NEAT L

This sequence sets K4 the new number of rows in the pivot

region and readjusts the pivot index (0). It enters new

values in the open row of the pivot regions of (R) and (S).

tblO L6=C
C!Y/' L7=1
f59C Lt=1(3)
6585 1=15

6f. IC 1ý Oa(LC+L1)=fl TH~EN Eie64C
1ý fPC A, 1=0 (I.C+.1_ I

S63C L=T((G3)*hN(IP)

t. t 45 ,l3 =M C+ K[13) 0(, 1*-l)

t4-C 1 3= 1 0+ 1(I) *(Ki-I

(6iC Li.LI

f 1-95 :NEY L)

This sequence operates on the new row of (S) to reflect thz

effect of pre-existing pivots in the other rows of (S). It

initializes L6, a variable used to record any column without

a pivot that may be found during the ensuing process; pre-

sets L7 and L8, interval step indicators needed in SUB 8532;

and initializes 12 as the first element of the new row in

the pivot region. It lootps on columns. If there is no

pivot in the Li column, the program branches to 6680,

records L6 = LI, steps 12, and goes to the next column. If

there is a pivot in the Li column, the program records its

row as Kl, presets Q, a multiplier used in SUB 8532, replaces

70

S(12) by S(12) - Q, locate' the first elements of the K1 row

in the a region and the pivot region, goes to SUB 8532, and
then goes to the next column.

e7CC I ý L6=C H,'N t /3C
0,7CS K=KA

I'C, I= 1I•3I.I (L I- I)

If L6 = 0, all columns have pre-existing pivots, and the

program branches to 6730. Otherwise, it identifies the

potential pivot row as K, the column being L6 > 0, and sets

I as locator of the potential pivot element. If S(I) I 0,,

the program branches to 8110 to initiate the pivot; otherwise,

it returns to the control section.

I. Deletion Subroutine

This subroutine is addressed from statement 1580 or 1800

when the critical value of the parameter is H2 (implying

that an elementary strategy must be deleted from the hypo-

thetical Q-basis). It makes the necessary changes in (A),

(Q), (R), (S), and the associated indices.

The target group affected is G2, and the elementary
strategy within this group is M2, as recorded at 3070 and

3080, respectively. The deletion algorithms depend on the

pivot status of this elementary strategy.

77

"71C.ý,C L= 6

7C3L t P II
"_1C 4 (. • IP ÷(V, C l)qý 'J IM

This sequence identifies the target group and gets the correct
• ~indices from subroutines 8760 and 8835. Since the WK and

71

(L) indices are already correctly oriented, there is no need

to go to SUB 8690. The sequence initializes L6, a locator

that will be used to record the pivot column if the row
being deleted is a pivot row and computes the location in
(A) of the row being deleted. If M2 > 0, the row being
deleted appears explicitly in (S), and the program branches
to 7580.

"7C5C 11)=1C
'1052 L7= I
7055 LR=I(3)
7 Of.C k. Ih K=1 Tv; 44

7 C.7 C JP=2J+K(9)
7C9 C, 6J5UF4 H57C
7092 IF •,'I< +K :(IH•, 71r, o

70-95 1j=
7 1 GO IP-/t3 ••. CC THFN "71P(

7' ,,I C \ .I K

If M2 = 0, the base row must be replaced, and the sequence
through line 7570 controls the replacement algorithms. The

7050 sequence selects one of the rows in (S) to be the new
base by looping on the rows of the pivot region, going to
SUB 8570 to compute Q, and exiting from the loop when Q pi 0.

7 12C ,
713 11#,13=1!)

S~~~~~~7135 l ,3 , =,¢ • 1) (-)

This sequence sets locators needed latp-r; identifies the new
base row, which will be deleted from (S), as Kl, M2; locates
its first element in the pivot region as Il, 13; and locates
its first element in the a region as Ml, M3, MS.

72

0 14C 3I* I(tzIC

S-, -- ; • • __i-1 -1L o --t-) m; . . .

" lt3b M=Mc ,_

71 (C F0, KAI' II) I K4
7155 10 I 1 M 1 4•= - 71C'3C

11M. 11-=13

11 I I/ P01 . I]4, 1L4

71-'(•()=I ,(-r lI

719C l=l*i(.1)

7 PtN I I a 1I3I (3)4~t NLA I

This sequence recomputes the (R) matrix to reflect the change

of base, and recomputes the base value stored in (0).

"7 7 L. t-,.• v•= 1 I.' I,{ l()

This sequence substitutes the new base row in (A).

I')C L: j- / K.

- 7 '. I -- . I• l (P) (I. i- I

This sequence begins recomputation of (S) to reflect the

change of base. It performs the computation on the row of

(S) identified as the new base row. If this is a pivot row,

the sequence records the column number of the pivot element

as Li, L6 for future use. Later this row will be deleted

from (S), but it must first be modified as part of the

73

algorithm for modifying the other rows.

"7375b =I4 (C3)

7371 L7=L(19')
"1379 L8=L(12)
"J 36 C F~k~h K=(",i k C)
'139 C Gu:)u1. 151(
7 39!) 1F K>lr "lHF.,lq i lC

7'4CC LU=U-I
/41L. II- ý,:(WC+IKJ)-- "r4F'q 7"0 C,

'1420 Uk;,iuii .1532-

"i 4 35 15-15+.I
'144C 1 e l'--IP I

This sequence performs the recomputation for the rows of

the common and 6 regions.

"i4z• Ib !(.

"j - ib+J C,?)',Li- 4)

'14 (-,- LJ- 1
"•1413 Lz1(2

1,f~ 64 J 'K=l 1-ý K,4

7 4 9 C L JL ' , "I7
"-1 492 IF --(K('÷k)>(" T-* %N "5(.

-t)lI L ')=,

"*153(;'-1 ' 1 1

76b3• I• K

This sequence performs the recomputation for the rows of the

i and pivot regions.

74

'1

_ I dj(, i . C ' I 4 (j) L' H i * .1

If the new base row is not a pivot row, the program branches

at once to 7820. Otherwise, it sets the pivot indices to 0

and reduces the pivot counter P8, since the row is going to

be deleted from (S).

,, L• I• £ C Ii .,': ('))> * " I J~-I . "* " "i :

This sequence is reached only from 7040. If the row to be

deleted is not a pivot row, the program branci:-!s to 7820.

Otherwise, it begins recomputing the (S) matrix prior to

dt-...ng a pivot row, using an algo-ithm best described as

an "unpivot." The sequence records the column number of

the pivot element as L6, locates the pre-existing pivot

element, sets the sensor S3 = -1 to indicate an unpivot, and

branches to 7780 if the pivot element S(19) ýi 0.

/ /I~f ' (•I d (W J , I) = l"; I.e.J 4 o

-% v i i

75

If s(Ig) - 0, this sequence invokes the unpivoting procedure
on one or more other pivots of the group in order to make

the desired pivot element 3(I9) 0 0, tests at 7740 each
time, and branches to 7780 whenever the condition is satisfied.
If the condition cannot be satisfied by removing all other
pivots in the group, there is an error printout and programed
STOP at 7770. The error printout has never occurred in any
run of the debugged program. Hlowever, the procedure is a
messy one, arid a better recursion algorithm is needed.

/ C I -LI:l_
I(X(+k I)

If S(19) 0 0, this sequence denotes the pivot row and

colunui by Ki and LI, goes to subroutine 8160 with S3 = -1
for the unpivot computations, and sets the pivot index at 0.

I,', - r_ I.: i.I;4 V

i-'d. I;IrA I j .1(v:-l
r • ,:r I I J C l '. I . C I C

-•. " I h ' I ~ H I;'*÷, 1)

"i 9 I , I + I

9 I - L 4)

76

This sequence deletes the M2 row from (A), (R), and (S), by

shifting down all the higher rows. If Sl = -1, the sequence
7890-7910 is needed to close the separated spaces within

the G2 pivot region of (R) and (S). It is the counterpart

of the sequence 6205-6280 for opening spaces.

IL***' I " ,.(CWC •)=(1-4... \ d'•%h
r C KC (+W) ' =.C K() C) C

"i•7 "tL L(+L wk k)

jo V' 4ý' C ++W

This sequence shifts the elements of the pivot index to

K~9 L~~C K)

dThing aerowe ,hsnoet other oeles (o) onftolp

4(/9 . +-,- J,)*4 't (1- I

C6(C I b ('s)I)=1 (t ÷.,-1 1"•

I•'1 U i. I i. ,

TIf L6equencte progange othraindexes to 810,snform nopvt

,have bee removed otherwise a(pio asbe emvdb

column are tested for potential pivots, and if one is found,

77

the program branches to 8110 to carry out the pivot operation.
Otherwise, the subroutine is finished.

I 10 K 1&0 (L CLt+)=

4 IPC LI ,(K(.*KI')=LC
SJ30b= I

",C ,[TUN,.

This sequence identifies the pivot row and column as Ki and

LI, respectively, records the pivot indices, sets the sensor

S2 at +1 to indicate a pivot (as opposed to an "unpivot,"

which would be indicated by -1), goes to SUB 0160 to make

the pivot, and returns to the control program.

J. Auxi liarx Subroutines

• 'i |(. I6,.'., , .(L)- 3)

~K I

"e. I C 1" 6 + I C I- I- - j,[

SL7=1"U.- ý' U ,bI- ,1"i; l'i LT=A(3

This subroutine (through 8390) controls the pivot operation,

addressing SUB 8525 for the actual computation of new values.

This sequence locates the first element of the pivot row in

the pivot region and in the * region, and locates the pivot

element. Then it prepares for computation of the pivot row,

sets the multiplier Q so that SUB 8532 will have the effect

of dividing each element of the pivot row by 93 times the

pivot element, resets the pivot element so that SUB 8532 will

have the effect of replacing the original pivot element by

its negative reciprocal, initializes 15 and M5 at the first

I
78

oelements f the row, sets the stepping indicators L7 andL8, and goes to SUB 8532 to compute.

9 P•,4C: I P= IS+L C13 I - I
; ' : x 5 I . . =L • |1 -)

d P46 L 'I=L(13)

R~gK 5= r, 'k+K(I 1)

•?('NL-VI K

This sequence prepares for computation of the rows in the
common and 6 regions, initializes I5, M5, L7, and L8,
initializes 12 at the pivot column element of the first row,and loops on the rows, going to SUB 8525 to compute.

:i3(• I.W I=

A ,'i r.1 1_-= I 3)

ýi 3.7 Ci, Ff L U; i

This sequence prepares for computation of the rows in the

a and pivot regions, except the pivot row, which has alreadybeen computed. It maintains the count of the current number
of explicit pivots in (S) by replacing P8 by P8 + S3.

79

ii 3C •,12)=0

Ph e .OPh L=C L': L(CI)
54C. ,,(I) (l)o5 • ÷ ',UI I=I+L7

4 •54i;" NE.XT L

q54f. 1=5

ý455C Pl2l, L= I W: L4
4bp b(I) = l)C I) - I)

-455d I 1=It A(3)

.5Sa ;'EAI L

This computational subroutine is addressed from a number

of places in the program. It loops simultaneously across

two parallel rows in (S), subtracting from the elements of

one row the product of a multiplier Q and the elements of

the other row. In some instances, the first two statements

of the subroutine are by-passed. When used, they initialize

the multiplier and the pivot-column element S(12) of the

row being modified, so that statement 8552 will have the

effect of dividing this element by S3 times the original

pivot element.

- 5iC. u=L

t-9C ;.I'r I.= I It 'j
•' IC I1" L(L(+*L.•=' "i-HI', •e :i

8•v€ "•.1 • I.

This subroutine is addressed for a specified row of either
the 6 region or the pivot region of (S). It sums thc: elements

in pivot columns of that row. It is used only when replacing

a base row.

80

3•&69C M"C

141 I0 •-"M=M 3

A,'I, C A L(N) I- I)

s 7'. C, .-kA1
! .C i,,E-I.N

This subroutine reads one wing of (I) into (K) and the other

into W. When the sign of S1 is reversed, the wings are A

interchanged and the problem is effectively transposed.

. K",•.('. • C=v KC,) I,(• 7) ÷+L-)

K 1/) C, L C=LC t +M (L(C7 + G)

,1'1.13)IF I U,*.) hN

This subroutine names as simple variables a number of fre-

quently used indexes associated with a target group G. K0,

LO are row, column locators for (0). M4, L4 are the number

of rows, columns in the pivot region of (S). 10 is the

location of the first element in the pivot region of (S).

MO is the location of the first element in the a region of

(S). NO is the location of the first element in the 6 region

of (S). I(1) is the interval between elements of successive

rows in the same column of the pivot region. 1(3) is the

interval between elements of successive columns in the same

row of the pivot region.

i l . =w-)C W C 9) ra I *-- ' 7 -+

C II I I

This subroutine computes several indexes to (A). JO locates

the test control row for group G. Jl locates the base
strategy row for group G. J9 locates the base strategy row

for the hypothetical group G9.

K. Strategy Subroutine

This subroutine is regularly entered from statements 1520

and 1720 in the control program. There is also a special
short-cut entry from statement 1100, used to cause a strategy

printout without changing resources.

The first portion of the subroutine sets up the third

stage matrix (U) and inverts it into (W). The remainder

carries the back solutions through the third, second, and

first stages. The end product is two vectors, (X) and (Y),

representing, respectively, the first and second columns of

the solution strategy expressed, in terms of the particular

parameter being used at the moment. (X) and (Y) are normally

not combined into a single solution strategy vector except

during printout in SUB 5000.

The subroutine serves eight cases, corresponding to the

combinations of values that Si, S2, and P2 may have in the

control program.

r'(19, 1's ,4

This sequence zeros (U), (W), and (Z) at the greater dimen-

sion of (S) less the number of pivots in (S).

82

T• I I I I I l I I l i i I I I i ii I f

CC M-= 2136)

VC3C Mz.*M (;!35)

9CG., U(aL M (r+L)

'0Ci (! M EAl L.
9C5N. ,EAl K

This sequence enters the common region of (S) into (U). The
use of (I) indices means that (U) is set up without trans-
position.

V(YC L3:I.(;
9C(.75 LJ.:= i(4)
9 CIf•I'. ',i F~ I". '1: t 3

I II C•

IL it , V.(()

9. ,: y. .,. . i v r I
Y ,C ,X It ,(-X+-,>C i-i+ inc

,' S, r.i- l.= 1- 3(.C)

9 1 (rýO ~ , 33

I' ' j .v'i jsI Ii' I0 -C t' I,=M.T J I | '

•' ld 31' ,;C(.If÷l))& j"4-'J I)'#t

I 4'" I'.i•I•=i . ("

9} j'--, I" L,(wr(+v)?r "1-.AL it
939,l t<I:X 3+3

9 j'tP UCK iI.I.3)..-,(J)

"F1*,)t , I j.'g's*v1

'9 3"'j1 ,JIX' I,

'•-"r \FXI (.
83

[. i i__ i l_ _________ •_____ _____ ____________ _____

I

This sequence enters into (U) the other elements of (S) at

the intersection of nonpivot rows and nonpivot columns. The

pivot index (0) controls the selection. Elements of the a

region are entered by statement 9150, of the 6 region by

9178, and of the pivot region by 9192.

J" ',f ,1 1" " 1t '

If S2 = 1, (U) is a nonsingular matrix and may be inverted.
If S2 = -1, the last row or column of (UJ consists of zeros,

and the deficiency is made up by entering P2 in the R5

element of the last row or column.

., . I 1 • 4

fI . i " I i"

The solutions are sensitive to the orientation of (S) and

(W), so subroutine 8690 is called to provide (K) and (L)

indices, and (Z) is set as either (W) or the transpose of

(W).

,, , . - I.) , . (,

i * .I(" .") =

'I - r. L. I• . i.),

'' [", r.', I4 C .

84

týjV L I -L I+

1 4 14 M (L | C.. !

C,,, l W','• L=1 V• •(. (# •t

L I, L 3 +- 1i'L ÷

, * k. I' I. I

-,L, ..'= 1:*-L(|'I

144"4 -It % I.

This sequence computes the third-stage solution from (Z) and

the right-side elements of (S), storing the solution in (C)

and (F).

This sequence enters the marginal returns from (C) and (F)

directly into (X) and (Y).

°• I" - .,r (. I

This sequence begins the back solution by a loop on G

extending to line 9900. For G = 1, it initializes Jl to

locate the base strategy in (A) and II to locate the inter-

cept elements in (X) and (V). It then initializes K2 to

locate the last elements of (C) and (F) already transferred

to (X) and (Y). For each group in turn, it goes to SVB 8760

to get specific indexes.

85

rj . r +

' ... r, r j j 1j 3. 4 l 4I•Ji

,lht~~~ ~~~ l" • , i itt' e

This sequence begins the back solution for elements of (X)

and (Y) corresponding to excess strategies. The loop on I

extends to line 9700. If there is a pivot in row Kl of (S),

the program branches to 9610; otherwise, it continues.

.'C " "(I *= i- .,

If the Kl row of (S) is not a pivot row, the corresponding

solution elements (X) and (Y) are entered directly from (C)

and (F)

If the Kl row of (S) is a pivot row, the corresponding

elements of W and (Y) must be computed from (C), (F),

and all those elements of (S) in the column of that pivot

which are not themselves in any pivot row. The computation

runs first over the marginal-value elements of (C) and (F).

86

d4 Ir (q .'~ l

',t #1 j•'.--I'.'• I

9 r f (C, -l Yl' I l

' N.J• ht , '.1

The computation is completed by running over other elements

of (C) and (F) pertaining to target group G.

'ii •| .(II):-.. ,

The back solution for intercept value, X(Il) and Y(Il), and

for base strategy, X(J) and Y(J), begins with their initialization.

F',.., •(} .T .I - (

-i , 1 -" ," -I

This sequence completes the back solution for intercept and

base stratey, using previously computed elements of (X) and

(Y) and stored elements of (R) and (A).

87

'ted * .\

This sequence steps indexes for the next target group. After
completing (X) and (Y), it returns to the control program.

The END statement is not a part of the operating program
but is required by the computer system.

38

IF
V. PATH87A COMPUTER PROGRAM

One-sided optimization problems can be run on the PATH87
program by specifying no defended target groups and no defense

weapon types, i.e., G4, Dl = 0. h1owever, much of the capa-

bility of the program is not needed for these simpler problems

and can be cut out to save running time.

The PATH87A program is designed for one-sided optimizations.

Being derived from PATH87, it has a similar general structure

but is less than half the length. Excess capabilities have

been cut out and many procedures simplified.

A. Simplifying Ideas

By definition, the defense solution strategy is a null

stLitegy, which need not be computee or stored. Since there

are no excess elementary defense strategies, the pivot

regions cf (R) and (S) are nonexistent, and the second-stage

solution procedures can be eliminated, along with the pivot

index (0). If the components of the attack solution strategy

are redefined as numbers of targets, rather than as fractions

of a group of targets, the scaling factor T(G) can be

eliminated from (S), which reduces round-off error as well

as computational time. The one-sided nature of the problem

results in most of the 3ubroutihes having to work only one

way rather than two. Consequently, the reversible indexing

system is not needeC, and we can eliminate (K) and (L).

B. Program Listinq

The following listing has explanatory comments added

where appropriate:

89

iU

(, 141, 1C*3
t•(. (415. 1. ICe Ib*,'i* IC=eCS %•

Ic(L IS' A * • '5 ,.. '5(* of#.* * a 9.* o •,3 * -A a.

Only two dimensions, Gi and Al, need to be specified. Line 80

is omitted.

iCC Y U L.- I r.) T(ICC.) (CC)am(
IC'b UI C 15) (C Ib) PC %), i V(I I (,I I*I
tI C(L, Ir 1 (E)
115 1 -I M 'K '5C ,Y($5

This sequence omits matrices (D), (K) , (L), (0), (R), and

(Z).

(G) is reduced in size since only the a region of (S)

needs indexes.

(Q) is enlarged to store the value associated with every
elementary attack si"rategy, not just the base strategies.

(M) is used to locate the base value for group G in (Q).

(N) is reduced to store only the number of rows for

each target group in (S).

(J) is added as a locator for the attack region of (A).

It is divided into two regions, J(l) to J(G9) locating base-

strategy rows and J(G9+l) to J(2*G9) locating control rows
for each group. The defense region of (A) is not used.

13C h E4-b (I I I
135 1-mINI a "(A I ="G I A1

114C (,9# I 1 =C +I)'
14,5 1 (7 1f 1()=A1

155 1(31)=l
IC (X 16)=3C

90

-- ~ I

IC
-(5I 9 (ic l), * ic !) * ''1)

; (t I (Ie I

lbC JC "-o,, I)±. I(•.)4.i (j '

This sequence reads dimensions of the problem and initializes

indices. In actuality, the program could be improved by

replacing the (1) elements by simple variables throughout.

((:- I\1 "1 .-' "

°.•(rF•. *i, l ,),\-

.j T C. 11 I N. i & (t)

.. {-{ , (: l)=I C I)

" -' , IC • be I) •()a (•

This sequence reads target data and initializes the (G),

(M), and (J) indices.

: 1 IC;

a,7 N1(4 1 1,

This sequence reads probabilities of kill and stores

probabilities of survival in (P).

91

i ICGC J-hINI "PI*1'3?"

ICIC IN•PUTI JPe3

IOPC IF k1-|'<C' 7HFN ICAC
!(,30 .i• IV

Meaningful inputs for P1 are positive integers to denote
attack weapon types, 0 to terminate the run, and -1 to g%.L
a printnut of marginal values. Their use is illustrated in

Section VI.A.

I Cd'C Z If bt I- I) ,
C S C, 11. -11"-1 IHEN IICG,

1c7c, i V'-•(, 3- C 1-1I)
IC7C . -•l, l J•'

I C IC f4 • l f'- 3

I¢.C ,\E~ (1?))-r NVJIC

U-'9 kFJ.; L--.J I(3" h J.b b, F I~b

33CC 4Cl~3)=4Cl)

I •, V (1 4-= -

1 1 (.,•ý-]"

131C .'JbV L

332C 4(.i,+ b b =C(1 31C 1 NAXT ,q
13d4. R(1 (C3)4bS)f-I

135C 12- f?=

3Hf(tC I 3 }I 3)I

I This sequence initializes a path segment in the same general

fashion as in PATHB7, but with many simnplifications. The
S~number of attack weapon types actually in play is denoted by

92-

A2 rather than by 1(4).

N (A. ,r- I

I "r "

The 1500 and 1700 sequences are much simplified.

This sequence terminates the path segment.

f Y(• I C . - '. . -

I . Ir r - -I

; • I r A r I I

k ' C , , . I f = . J It , ,)

j ,fl NJI • I-' - (: -

This sequence begins the test control section for a defense

strategy by initializing Xl and YI. The procedure permits

SUB 9000 to be greatly simplified.

93

Ii

• ' ('L: k I P t(•),9 (C + .) I . 3.

L;iC UfLJ i35CC,
1 - C fb U I• r

I C Uk: jL 3rj C

This sequence completes the test control section for a

detense strategy with essentially the same ilow illustrated

in Figure 11. Three exceptions should be noted. SUB 3000

is omitted since the defense strategy is unchangeably a null
strategy. SUB 4000 is addressed directly instead of through

SUB 3700. SUB 3820 is replaced by a single statement stepping

14.

-' IC ' ' - U C l-

The test control section for an attack strategy calls on

SUB 3000 only.

3CC(Fv,- IIL 1) IL '(CU)÷SJ(,)
aC 3(I - '(I)* -o (c [(! }-I'N sC9•
'(3(b(II"il 3c.9(Il,, 3

3 C/iC C ;,(-
3 1" CA. (" I U .,
3C".,C .•FI I

94

3ý C 1-(
3. -C Id l1 .

ANq(-4 -(*A-Ir

P3,(" 1 4 =",' d

32'4(t,.?. --

:~C Iur>
:,t 4 C Y1 r I U r..• *

AE IL (A C A I C ~
"it," LL '') •

'it I 'C i-U I I
"6" C. f. I I 3

The 3000-series subroutines are only five in number, and

these are simplified. c

4 C- ,--- L i, A,

I 9l-5= I ii .;41'ý(f -. =t- 1(4) •- ++

4; • C -' fe = .. j d.

SThe simplified value function computes X2 directly. The

+ variable Y2 is omitted since it would always be zero.

t95

booc ULP IONAd()--*Y(l)*#CI)

bCPC 1-%I. .- TL A.I

bC7C 1FXT

The print subroutine begins with one branch printing only

the part of a defense rtrategy that spec3 fies marginal values

for the attack weapons.

%ICC'• IV, - =) IL C
5 (175 1-Y"r ' (b i)

5175 rr'I.'i B;

5I" C PIb L=I 1B; 4ý
1- 0) 1-% ?1".. 1 N .J L I

519C N, A I L

'09 d. " P 1 1 •F 7F '

I -"i 4=L(I)*I

beCOC H-tIN]

be'C E RA T N
b2'lC ,XEl V1

'I C, M t I U1 ",.\i "

The other branch prints an attack strategy with no marginal

values or intercept values. VS is computed as the sum of

the products (numbers of targets times expected surviving

value per target). Illustrative printouts are in Section VI.A.

96

.1, (,It;J ,t * 1 1)

CI
rc: C *l;=,(i j. I)

I ' e J -* I ,'e) A . -

-(i r,• ,-i] (

%(r .f I C I

t (C %• (

t j'1. ,r,, i . ~(*a) " |~ Cl) *| l '

I - '.r) -. • I I

I -:. .. (", '.) -+

I *L

e .:', r" p I. ")= " ." " 1 :-)

vj /t C ;()=,.(i).41C:)

i- CC I I--J ' 1C+ L

SI-(,. ,(" jg) =,,.97
C'• I.,-, : C i+-)

,-rC l--I +I34L

97

"/Pie.~~ 1.01 1'= ('31)
"ý'9 C. CJ I ON) Z 1(JP*N)

"73CC NhX1 N
I 1;ýG Fk, h J2J I+M;-s I c)*I 7k: .1(t

143(6 ACJ)=4(J.I(C?))

7=4(C aC {i)='JC1*1C3•4))
7H7C 'VFl l I

/9 ? ? .J C t i) = .J (3) - IC (:-)

7CIC N EXT K.-'• t l ((I.) =i,(l, I I 3 ,li

7 H 7C N(,EXI •4) 1

The basis subroutines, 6000 and 7000, realize the greatest

saving of statement lines by the elimination of the second

solution stage and all the complicated algorithms associated

wi th it.

" (CI(")Zi (') - I

9C7,C IU~aF < -- T --
V3C. C Gý= =1v I

si os enes 9:e onlymneaion of the incstad

solutionr stae ad al the cprogram goes to 9411 to compute a

defense strategy. Otherwise, it continues at 9330.

98

Q~.4(' rI•4C• ~~ =.'I =I 1h; '•

~r~.I L

This sequence begins to compute an attack strategy by storirg

the third-stage solutions in (C) and (iF). The program

conti.nues at 9490.

,, A.I I b,.f t . -I -, :

•'I' LC I') (

A.. A" .C-- A. i) • t-

"A,' .. .4 • N t L. '

. I or~A \

This sequence computes a defense strategy, marginal values

only, storing the third-stage solutions directly in (X) ard

(Y); then it returns to the control program.

i :•%(r I-•k I=1 T'":]
'0~~ '1

ISFC A(J)=Jo)

9b•c Y(J)= C
•5.4l Ih =J+ II .J+rv(+

9')"-1 KP-" K + I

959C YTI)-F(V.i)
i,#C ACJ)=i(J)-X(J)
9'17iC Y'(J)=YCJ)-Y(I)
' c)e, NIkA I I
96~C6 %LXT 6

•9Y9 EN U

99

This sequence finishes computing an attack strategy, less
marginal and intercept values; then it returns to the control

program.

100

VI. EXAMPLES

In this section we will apply the PATH87 and PATH87A

programs to solve the problem of allocating weapons to point

targets in a variety of cases selected to illustrate features

of the solution method and typical properties of solutions.

A. One-Sided Optimizations; PATH87A

The first four cases are one-sided optimizations involving

the allo:ation of attack weipons to undefended targets.

Program PATH87A is preferred for this type of problem,

although PATH87 may be used.

The dimeiisions of each case are given by the number of

target types (Gl) and the number of attack-weapon types (Al).
The cases are arranged in order of increasing complexity.

Case 1: (GlAl) = (1,1)

The technique can be Ullustrated by running a simple

case with interaction between computer and operator. To begin,

we assume that the source program is stored on disk.

), EA AVY

The operator commands that the source program be loaded into

core, and the computer responds when it has done this and

is ready for further commands.

bC LUAW ,. I
(,0 DATA ICCI
7G 4l1A .0
i, UN

The operator modifies the source program and commands that

it be run. In this example, the data statements specify 1

101

target type, 1 attack-weapon type, 100 targets, unit value

per target, and 0.8 single shot kill probability.

-PATH8 7A

bGIAI= I I
TPV=
10C I

PKTr-

08

The computer prints a heading and begins the run by printing

the data specifications for the record.

1I- 1'3?
? 1.50

After initializing, the computer calls for input of P1 and

P3 to specify a path segment. By typing "1,50", the

operator directs that attack weapon type 1 be changed from

its present quantity (initially 0, to 50.

C 50 C- 5C
I 5C 10.

VS= 60.

At the end o. the path segment, the computer prints a

solution, four lines in this case. The first line identifies

the target type. The second line says that the elementary

strategy a = 0 (i.e., no weapons are assigned) is used on

each of 50 targets and that the expected surviving value of

these is 50. The third line says that the eleaientary

strategy a = 1 (i.e., one weapon is assigned to each target)

is used on each of 50 tirgets and that the expected sur-

viving value of these i5 10. The last line gives the total

expected surviving value.

102

?i

? -3,r~

The computer calls for a new path segment, and the operator

types "-1,0", a special input used to direct a printout of

marginal values in PATH87A. The computer says that the

marginal value for attack weapon tyre 1 is -. B.

?], I5(
1

\b5= I'.
r I * k-" :

I -fit

In the same way as before, the number of weapons is increased

to 150, with a new solution strategy and a new marginal value

of -. 16.

3 5(" .4

\4:= 2-.4

e C . r C&f '.-

The force size is increased to 250, and the marginal value

becomes -. 032.

I# , 1- 3?
? CC

A "0,0" input terminates the run, with the computer printing

the total central processing time used.

103

The results are illustrated graphically by the drawdown
curve of Figure 13. Here the resource space is the A-axis,
divided into regions of length 10 by regional boundaries at
the points 0, 100, 200, etc. Elementary solution strategies
throughout the first region are a = 0 and a = 1, throughout
the second a = 1 and a = 2, etc. The solution surface is
the drawdown curve itself, a straight line over each region.
The tangent line, with its intercept and slope (or marginal
value), is uniquely defined over the interior of each region
but is indeterminate at regional boundaries, where it may
have any slope between those of the two adjacent regions.

vS

100-

Solution Surlace. VS

60

36

Intercept Tagnt 2

4 2.4 0.8
0- 1 -•" ' A0 100 200 A

FIGURE 13
SOLUTION OF CASE 1

104

Case 2: (GlAl) -= (1,2)

A case with two attack weapon types illustrates some

additional features. For the following runs, we assume that

PATH87A has already been loaded into core.

bC DATA• 1,;
(C L) A7A 11.; C. I

t% UN'

The operator commands a run with 1 target type, 2 attack

weapon types, 100 targets, unit value per target, and 0.8

and 0.6 single shot kill probabilities.

1 -1 7 A

I C 'C I

The computer prints the heading and data record.

For the first path segment, the input "1,150" produces a
solution identical with one of the Case 1 solutions.

I- 1, [3?
1 .2C
I

C 3C 1.2

:.~= 3.! 2

105

The second path segment adds weapon type 2. In the solution,

there are now three elementary strategies, given by the

vectors (2,0), (1,2), and (2,1).

J- , f:•
? -1,C

| -4*CCCC(i(-(;-

The marginal values for both attack weapons are obtained by

the special input "-1,0".

1 , J-3?

C fu-..tCL: C.t

The run ends with a time printout.

Another run with the same data statements can be made

simply by commanding RUN.

ICC I

k a, r37

vb 3b.r•

In this example, the order of weapon input is reversed,

attack weapon type 2 being raised to 120 on the first path

segment.

106

F • l I I I : I II I I I I I I - n -n , ,

a- :,k 4 t
? I 15C

i

C I -k(:I Ip k3t

On the second path segment, attack weapon type 1 is added.

In the printout of elementary strategies, the weapon types
are arranged in their original numerical order regardless of

the path sequence. The solution strategy at the point (150,

120) is identical with that of the preceding run.

In this case, the resource space is the (A,,A 2)-plane.

It is divided into triangular regions as shown by the solid

lines on the regional map of Figure 14. The solution surface
must be imagined in a third dimension, but the values are

shown in parentheses at points of integral density, correspond-
ing to corners of the regions. The solution surface over
each region is a plane. The elementary solution strategy

at the corner of a region is a uniform strategy, the same on

all targets. On a boundary, the solution is a mix of two

corner strategies. In a regional interior, the solution is

a mix of three corner strategies.

The pattern of regions is associated with the kill

probabilities of the problem. In this case, the pattern was

determined by making a run along the dashed exploratory path

in the figure. The exploratory path is one that goes back

and forth, like ploughing a field. We want a printout at

every critical point of the path, that is at every regional

boundary and at the end of each path segment. For this

purpose, the program must be modified.

107

A
2

300- (6.41 1,

Regional Boundaty

I- Exploratory Path

200-(6 (3.2)(04

io o - ,(4 0) (8) 0 .3 2)

(100) (20) (4) __ _ _ __ _ _ (0.8) A

010200 300

FIGURE 14

REGIONAL MAP OF CASE 2

108

I•7[I
175C (;UbWH 5rcTC

The operator adds lines 1745 and 1750 to get a printout at

every critical point, and deletes 1870 to delete the usual

printout at the end of a path segment.

I{

f 1pi 3 ?
? IS(

'..+= (4'.

The solution at (50,0), the end of the first path segment,

is identical with that in Case 1.

(a.
(II ('.

1 17.

On the second path segment, running from (50,0) to (50,280),

the computer prints a solution strategy at the first regional

boundary encountered. The three elementary strategies locate

the corner points of a region. Since one of the strategies,

i.e., (0,0), applies to zero targets, the path is crossing

the opposite regional boundary, specifically at the point

(50,50), where VS = 30.

1.09

I U " I .

C I

The (0,0) elementary strategy has been deleted and (0,2)
is added. The path has reached the point (50,100), where

it is again on a regional boundary, and the (0,1) elementary

strategy is about to be deleted.

I (

The athcontinues, encountering regional boundaries at

(5015),(50,200), and (50,225). Here a small roundoff

ethe printout of VS, which should be read

as 5.8

Z4 f4J9

At the boundary (50,250), a number of small roundoff errors

appear. The correct reading is obviously:

110

0 3 50 3.2

2 0 0 0

1 2 50 1.6

VS= 4.8.

The program continues along the dashed line.

Li
S6 .

The path segment ends at an interior point of a region. No

roundoff errors appear in the printout.

f I, l.%t

11 4

no hesrteyi phyial fesile alhog thear

C .

) 4..+l, .,. s,-, **) t,.+ 4

:+ t~~~~~~., , o . , " ;,

The third path segment traverses four regions before

reaching a boundary at (i13•-,280). Neither the force level

nor the strategy is physically feasible, although they are

Nl

133

mathematically correct in the path method of solution.V "a *".d,j i i -I t :t. |''F'J-~

,4 4"4.I., - * 4' 14 I

!4

I

4 7
V. 3 f -

C

I14
,., .. ' * o 3'.),1

The path segment continues to its end at the interior point

(150,280). Here the strategy i~s physically feasible when

roundoff errors in the printout are overlooked.

Ii .'

I (*,, -

I

3 UJ•. ,

V:.= 2. If

Si br*.c:((:- .• '.(•

i. 112

II

0~ 'e

I4

I

C I 4 * i9999St

S " ,4909999 IE

21, ."30 It

On the fourth path segment, the force level is decreasing,
so the value surviving is increasing. At (150,120), the
end of the segment, the solution is identical, except for
arrangement, with those (,f the earlier runs of this case.

2 1,1 C3

I .6
I

I ;- p,

2 C, 7b 3.
C 3 25 .

!r2 C ,SC. c(c I .

G 3 1 5:-C5 7 C7
S49 3.99999V'J 6.

1 ! PC" I.E-
! C 3C 6.

,L= 9.6

113

The riLth path segment continues in the direction of the

fourth, with VS still increasing.

? l,?b-C

S 1

(. | (.~ E

I3

C; 9(199. '99 - , '• :

' L

11

3 C '-k- • .

The force increases again on the sixth path segment.

[Ii
? -,,

S C . •.1,

I " C '. ".;

114

!

3 6 f.33 7I I3b?, 5•WR- 5 |,953I2 [.- f°/
(" 5 I6.6E66 • 17OA6e

= 137333

3 U -4909999 .399999
i C. I.07

5L UC-CCj I 3PCCCI
Vb= *719999

I

3 C 3C.

The force continues to increase on the seventh path segment,
and VS reaches its lowest level of thn entire run at the and
point (250,120).

F? I , J- 51 -,

3

ell (- I; C 3"
2 6, . 3;;- - (-/5 ! %• (*%,'-5 i'7

C 5 *53-b 4 -t>] 95 tlO -.

9 (* b, .4
A ;= I.,1115

115

I

The las pat semn reaches poin (1010 fro the ight-

1

•, I •Co 4.f ; I ~ ~ I * -•

3 2) 9. ••'J ',i . Ai. J'I ii

The last path segment. reaches point (150,120) from the "ight

in the map of Figure 14, with the same solution as from each

of the other directions.i'*
? Ca,

The exploratory run is terminated with sufficient data to

construct the map of Figure 14. By inspecting the figure,

we can see that the path has traversed each region at least

once and some regions as many as four times.

Although the path method theoretically finds the same

solution regardless of the direction of approach to a point,

the program PATH87A does not always do so, because of

arbitrary limitations of the "floating lid" test-control

process discussed in Section TV. The discrepancy is illustrated

by the two runs that follow.

116

C.. Is -= I P
iT kf=

ICC I

*8 6
I."I 1, 3?

r I.

? ,15 C
I

2 (.4 6C * -4

r- 1- 3?
? C, C

!C

In the first run, the correct VS =5.44 at (150,60) is

obtained by inputting (2,60) and then (1,150).

1- 7 14.1 7 f.

o f- I= I

r1 1-3?

I C

I' I -3?

?C 5C P

I••~-o• : (. IC .

Vt -= t* 51

• £. 11,

In the second run, with the input order reversed, the answer

VS = 5.52 is not optimal, because the elementary strategy (0,3)

was barred from testing when the boundary at (150,50) was

crossed, since the "floating lid" would not permit testing

either weapon at a level higher than 1 above its previous

actual maximum.

k"I, D-'.Z.?

? "

0 5C
iI I 25 1.6

~r

C (,t. . 2 .4

9 * 99) 9'1 * e. mi

When the same run is continued by withdrawing, input (2,20),

and then readvancing, input (2,60), the correct solution is

obtained, because the lid has floated high enough to permit

the elementary strategy (0,3) to be tested the second time

the boundary is crossed. The "floating lid" process needs

improvement in order to achieve absolute precision, as well

as to save time.

Case 3- (Gl,Al) - (1,5)

Some additional features can be illustrated by a case

with five attack-weapon types.

118

-,C VATA 1.5
.C. UATA IG C I'/ U(bAT*A 13 ,6*o5#o3# 1

k-ATH97'A

t'K I

.8 6 3b .1
k I* i-3?
? 1*79

1
C
1 79 1-O1

,S= 36.4

P I, V-3?

| I (" 5; 4* 64

I C 'l •

S. 1 2' 4. 9999" . 49999 71 1 3 116* - ,C.r.c (A

('= . 39-99

The resource space is now three dimensional and is divided

into tetrahedral regions with four corners and triangular

faces. The solution contains four elementary strategies.

V-ID 1-3?
? .P 79

I (*. 5- i~.

(1 3 C. C 5. OGCC2 3POCC II64 3 S R 4
C C. 4 9 166 999997

C 0 3 2 6. !.' 5 59;3-C5 9.3..' P.!-C

IvS= b, 9.54

S-119

I

Each new weapon type adds a dimension to the resource space
and an elementary strategy to the solution. The general rule
for one-sided optimizations is that the number of elementary

strategies is equal to the number of object types plus the

number of resource types.

FI P 1 3?
? 5, '19

1 3 r I C 57.9999 3 '9
C 0P C I IP.crCC3 ,(75015
C'5 (" C P E"099992ri• / 1
I C 1 1 .4 17 6 509
I C 3 1 *,999 1 I .4,
1 (1 S. C. r 3.99997 1 49q41

The final resource space has five dimensions and is divided

into six-cornered regions called simplexes. Roundoff errors

in the printout of the target column can be corrected to 58,

12, 7, 17, 2, and 4, giving an integral solution strategy.

s- i, 1-3?

? -liC

S -4* 7iH 5 13E -. ;
3 -3o f 9 bE- ll 5h-

5 -b. -36 -71 - r.:P

I, P3

C IU- cr3

The marginal values, or slopes of the tangent hyperplane,

are all very small at this attack level.

We cannot guarantee that the final solution strategy is

absolutely the best integral strategy, since the "floating

lid" test process may have arbitrarily excluded a better

elementary strategy than one of those selected. However, we

120

can find a lower bound for-VS by supposing that the aggregate
kill potential of the force could be spread uniformly over

all the targets. This lower bound is VS = 5.4589, computed

by hand. Clearly the integral strategy of the computer run

couldn't be improved very much, if at all.

Case 4: (Gl,A1) (5,3)

Multidimensionality may extend to both target and weapon

types, as in the following run.

ho ULA 14 I I', I I -- -i .,I (.,p I , b, bCi 5
"10 12. '[• A *R . *o a 7s L ao. 4# 7 6 s 4P it P 5 o3 s 4,9 P 5

J-A1 Hpi 7A

6 1f)
•*1,'=

I Li

5.1 P~

.9 .0 1

The five target groups consist of 1 target of value 10, 15

targets of value 8, etc., a total of 96 targets of aggregate
value 390. The 3 weapon types have different kill probabilities

against targets of the different groups. The first weapon

type is generally the best, but the third weapon type is best

against group 5 targets.

121

P I*, -3?
3*Sa~('

1

3
I IC ZI(0

C I; V

C".C.

On the first path segment, 50 type 3 weapons are used. There

are two elementary strategies on target group 4, but only one

elementary strategy on each of the other groups. In the sense

of Figure 13, that means there is an interior strategy on
group 4 and corner strategies on the other groups.

3 - 1 .5-

The marginal value is determined by the interior strate:gy

on group 4.

} 1, 1-3?

f (I ...i
1

122

r!

On the second path segment, 50 type 2 weapons are added to
the force, and some reallocation of type 3 weapons takes

place. In the sense of Figure 14, there are coirner strategies
on groups 1, 3, and 4, edge strategies on groups 2 and 5, and

no interior strategies.

I-) * I- •?

?

The marginal value for weapon type 2 is determined by the

strategy on target group 2, and that for weapon type 3 by

the strategy on target group 5.

A* 1J -2?

C 2 (. . ft 7
.4

realocaed. e nte tat ll he tpe weaonsareused

sue .. i ;The stratyegie waons group aded and 4the notphersweaponlay

feasible, since they call for the use of an elementary

123

strategy on a fractional number of targets. If desired, the

solution can be adjusted by hand to a feasible one, for

instance:

3

2 0 0 3 1.62

0 3 0 6 2.304

1 2 0 1 .288
4

1 0 0 14 7.
2 0 0 6 .3

VS= 67.672,

which is close to the printed value. Ordinarily, the

discrepancy can be ignored, since it is a local one, as is

shown by the following path segment.

7I

CC

3 C 1
I ;" t 2. (,,5

(., ," *,

If one type 2 weapon is added to the force, the strategy

becomes physically feasible. The changes taking place show

that physically feasible strategies will result from 48, 51,

54, etc., type 2 weapons and infeasible ones from 49, 50, 52,

53, etc. The user will have to decide whether extra precision

is worth the trouble.

124

I5

, I, t-3;7

I' -I.(

h

The marginal values show +-%at, at the final force level

(50,51,So), one extra type 3 weapon would add more to force

effectiveness than one of either of the other types.

B. Two-Sided Games; PATH87

The next four cases are two-sided games involving the

allocation of defense weapons as well as of attack weapons.

Program PATH87 must be used for these.

In addition to the dimensions Gl and Al, we must also

specify the number of defended-target types (G4) and the

"number of defense-weapon types (Dl).

Case 5: (Gl,G4,AI,D1) = (1,1,1,1); Perfect Weapons

This perfect-weapon case is analyzed in Reference 1,

where explicit solution formulas are given. It is included
here to illustrate the numerical solution by the PATH87

program.

."L Isl.+l + Ai, I. Ai

1.V ,IdI(+ 2.+,

"ýic ","li I
." L-.':

"The first line of data input specifies the four dimensions.

The added fourth line specifies the probability of intercept

by the defense weapon type. The other lines are the same for

both PATH87 and PATH87A.

125

I-I IHM 7

,I L,4*,I D I= I I I
1 J%':

Icoc I

I

I

? I-.C?

After printing a heading and recording data, the computer

calls for the operator to input a path segment. Some attack

must be specified before any defense, so the operator inputs

50 type 1 attack weapons.

1 5'= 5(

The form of the strategy printout differs in two respects

from that of PATH87A. Here the first line shows an intercept

value of 50, and the elementary strategy lines omit the

expected-survival column of PATH87A.

k ,,3?

? -j I,15

The operator inputs 175 type 1 defense weapons (the - sign

indicates defense).

I 1ck

3 22.5

126

The computer prints the defense solution strategy at the

end of the second palth segment; that is, at the point
(50:175). The first line says attack weapon type I has a
marginal value of -. 225-that is, the slope of the tangent
plane in the direction of the attack coordinate. The second

line says that on target group 1 the intercept value is

100-that is, the ordinate [i.e., value at the point
(0;175)1 of the plAne tangent to the solution surface at
(50;175). The next five lines give elementary defense
strategies and the number of targets for each. The last

line gives the expected value surviving at the point (50;175)
as 88.75, which is computed as the intercept value plus the

marginal value multiplied by the number of attack weapons.

The weapon allocation itself exhibits the equal steps,

i.e., 22.5 targets, characteristic of perfect weapon cases.

When these fractional allocations are viewed as mixed

strategies, they are physically feasible, since numerous

convex combinations of integral allocations can be found

that are precisely equivalent. Perhaps the simplest combi-

nation consists of the strategy

0 22
1 23
2 23
3 22
4 10

with a frequency of .5 and the strategy

0 23
1 22
2 22
3 23
4 lC

with a frequency of .5.

127

PIS 113?

? tobl c

The operator calls for an attacv strategy printout by

inputting an attack weapon at no change from its current

force level.

ti C- ('(]UC*L- C.2

HC (.

4 5.

3 5.

Although the attack force level is unchanged, the attack

solution strategy has changed. Before, there were 50 targets

attacked. Now th,.t a defense has been introduced, the attack

is concentrated in an equal step s..ategy on only 20 targets.

Notice that the marginal value per defense weapon is .05,

the intercept value at (50;0) is 80, and VS = 80 + 175 x .05

88.75, as it should.

A complete solution at the point (50;175) is provided by

this attack strategy and the preceding defense strategy. The

point happens to lie in a region that we call defense dominant,

where some targets are not attacked.

i-lpf-37

? 1,275

i C

;.2. 4
9 9 9

3 ýe. 4999
5 9099964

%:3= 9. 3749

128

Ii

i- •,~ v" 3
"? "0)9) b

I -.

S I17. bC(

3 17. bCb

..- 39. 37483

A complete solution at the point (275;175) is obtained by

first increasing the attack force to 275 and then calling

for a defense printout. This point lies in a region of

attack dominance, since every target is attacked by at

least one weapon. The roundoff arrors are annoying, but

they can be easily adjusted in this case, for instance by

reading both 22.5006 and 22.4999 as 22.5.

i- I,)-3?
?

The run is terminated in the usual fashion.

The same problem can be run with slightly more generality

as a density problem by normalizing inputs as in the follow-

.Lng run.

The data change specifies 1 target instead of 100.

129

I I I I I I I I I

PATH87

rToI•V
i- T =

I

- i, P3?
? l,.b

rhe first path input is a density of attack of .5 instead

of 50 weapons. Subsequent inputs will be scaled the oame

way.

1 .5
C .5k1 .5

? - 1, 1o75

I -. IP

*7 PP5

3 .PP5

[-1, [3?

? i,.b
i •3. L. OL C.L. .I- C2P

1 .
C o
1 b. CC.(:1C6E-CP 4
2 5. (:ICCCLE-C2

b b. C IvC C'L, E- C,

4 5. OCOf -C CP
v5= .8871

130

F 1,, HI•?

? I.Ps75

1 .2C
] .PP

.225

3 .225
? .V

1 1 7S~? -1,1.75
I -. 175

r .3
I .175
2 • 175
3 .175

I-I, F-3?

? ,
Cru-.EC 1.6

The results of the density run should be compared item by j
item with those of the preceding run. The solution strategies]
and values can be scaled to apply to any number of targets

of any unit value. An extra benefit of the density technique

is the reduction of roundoff errors.

Case 6: (G1,G4,Al,Dl) = (Iiii); Imperfect Weapons

Thiis is the imperfect weapon case which is analyzed in

Reference 2. That report presents solutions in closed form,

but the formulas involve tedious summations that are best

handled by computers.

The use of PATH87 to find a point solution ecan be

illustrated by a density run with (PKT,PI) (0.8,0.75).

131

50 UATA IeE.)s,)
6C. DATA 1*l
70 UATA .8
8C DAlA .75
fUN

IIAIH97~l=I

I I

.8

fr 1,13?

"? .o 566666

I 1949334E-C-e
b • 333334•

* *66666f

v .. ?-Z3?+ 6 /• 6

1 469857
V' *d!C667
6 • 738C~5
5 9. •6959 E.- ('

"7 •*PRF9675
4 3 o 3 15 6; - C,;ý

1 3*99S47E-C'eý

5 . 1r)9,3
f. 0 1 5ý4 14

7 .pP5 QI
4 3 5 9 i9 "

1-i, r-37

1

•. 132

Iq

The solution strategies at the point (17/3;11/3) are identical

with the canonical strategies pictured in Reference 2
(Figure 23, p. 172) except for notational differences.

PATH87 can be used for exploratory runs, as in the follow-
ing example, which also illustrates certain noteworthy
features of the solution process.

I b4b 'ýO:Ou 53CC
2 7'.5 n•;•.ui: %3(('.

t3C, C Ik H -j+ -43 'JHN;'J b33C
',31(H=H:?

V5
S34% O" SU (,: t)F (.G

The program must b, modified to print a complete spectrum

of strategies along the path.

C, U..AT 1A 9 I, I

I 4, 1 H',L 7

'I=

r75

l- I, [I-'"

? tool

The first path segment runs from the origin to the point
(.i10).

133

S-,n
I]

I

The first strategy is a defense strategy at the origin, in

the usual form except for the third line, which is an
intentionally incomplete representation of the null alloca-

tion at the origin. The only important line is the one that

specifies the initial marginal value for the attack as -. 8.

1 .1
1 ,

Next is an attack strategy, the rule being an alternation of

attack and defense strategies in the spectrum along a path
segment. As no defense weapon has yet been introduced, the

printout of marginal value is suppressed and the first print

line shows an intercept value of .92, the same as VS. Since

the strategy allocates all prescribed weapons, the path

segment is terminated.

? - ,

i,, he 9 991 F-

The input for the next path segment calls for raising the

defense force to a density of 1 weapon per target. Whenever

a weapon type is introduced, the first strategy is an

opposition strategy, so here an attack strategy is printed.

It is the same as the strategy terminating the preceding

134

segment except that it now contains a marginal value of .06

for the weapon type just introduced.

3 - • 4d,d4,LdJ

I 3
1' . ,~'b9"'1 3 ("

Next is a defense strategy in standard form. Since it occurs

at a force level of .592593, which is before the end of the

path segment, we know that a regional boundary has been

encountered at this force level. As both elementary strate-

gies, 6 = 0 and 6 = 1, are shown to apply to more than zero

targets, neither can be deleted; so we infer that a new

elementary attack strategy must be added to the Q-basis at

the boundary. The value of the game at the point (.l;.592593)

is .955556.

S1 , 'L44(t It'

The printout of the attack strategy on the boundary shows

that the elementary strategy, a = 2, has been added, and

the attack is now concentrated on a smaller fraction of the

target system. The VS printout here should be disregarded,

because the program computes VS using the defense force level

recorded in the ($) matrix, and this matrix is not updated

until the end of the path segment. Actually, this attack

strategy is a solution strategy for a range of defense force

levels, beginning at .592593, where VS = .944615 + (.592593).

(.0184614) = .955555, the same as printed for the preceding

defense strategy. The range includes the following defense

135

F

force level, which we can anticipate by computing VS .944615

+ (1.0)(.0184614) .963076.

1 -.369"-31

r
I P

The path segment ends with a defense strategy that includes

the elementary strategy 6 2. A complete solution at the

end point (.1;1) consists of this defense strategy, the

preceding attack strategy, and the value of the game, which

is computed here as VS = 1 + (.1)(-.369231) = .963077.

The course of events along the path segment can be

rationalized in the following terms:

First-at the beginning, all of the attack weapons

are on separate targets, since there is no defense.

Second-As defense weapons are added, they are

allocated to separate targets with an expected saving of

.06 targets per weapon.

Third-When the defended fraction of targets

reaches .592593, it becomes just as good for the attack to

put 2 weapons as 1 on a target.

Fourth-At this point, the attack shifts to a
strategy that kills just as many targets but offers the

defense the smallest possible saving for any additional

weapons, i.e., .0184614. The new strategy is so balanced

between the targets attacked with I weapon and those

attacked with 2 weapons that the defense can do equally

well by defending 1 target with 2 weapons as by defending

2 targets with 1 weapon each.

136

Fifth-The defense strategy does not change at this

point, but as new defense weapons are added to the force,

the balance between the elementary strategies 6 = 1 and

6 = 2 is maintained so that the attack is unable to profit

by changing allocation.

It should be recognized that each strategy printed out

along the path segment is a solution strategy when paired

with the preceding strategy of the opposition, the following

strategy of the opposition, or any convex combination of the
preceding and following strategies. Each printed attack

strategy is valid for some range of this path segment, and

convex combinations of them represent transitions at a

boundary point. Each printed defense strategy is valid

only at a point of the path segment, and convex combinations

of them represent solutions at intermediate points. In

this sense, the printed strategies constitute a complete

spectrum of solutions along the path segment.

I D s3

1 .1

The path input calls for the attack density to be increased

from .1 to 2.6. Since no new weapon type is introduced, the

first strategy printed is an attack strategy at the critical

point (1.625;1), the first boundary encountered on the path

segment. Here all targets come under attack, and the

elementary strategy a = 0 leaves the Q-basis. The path is

leaving a region of defense dominance anI entering a region

of attack dominance.

137

Ii

I *"19 4ý

At the boundary, the defense makes a transition to a strategy
for the next region. The new strategy concentrates on
defending fewer targets and offers a numerically-reduced
marginal value to the attack. Since no elementary strategy

is zeroed out, we infer that the next attack strategy will
contain a new elementary strategy.

* 1".;461 •

ý ..-i 4

?4C I tp 4

The next attack strategy includes a = 3, as inferred. The
attack force is now at a critical value of 2.25. No elementary

strategy is zeroed out, so we infer that the next defense will
have an added elementary strategy.

1 -I. 19 "--f.9l ,,

The defense does have four elementary strategies, but 6 = 1
is immediately zeroed out during the transition at the
boiundary. The defense is now more concentrated, and the
marginal value is reduced in magnitude.

138

4 t.

9 3

The path reaches another boundary at the critical attack

size of 2.480768, where a = 1 is zeroed out and every target

is attacked by at least two weapons.

p. • *

A . 1, r t.,,

The defense transitions to a more concentrated strategy,

again reducing the magnitude of the marginal value.

3 .d•:4I4 i*4

At (2.6;1), the end point of the path segment, a complete

solution is given by this attack strategy and the preceding

defense strategy. The VS can be computed from either one,

VS .502606 + (2.6) (-.11826)

.0229565 + (1) (.172173)

= .19513

This is the same value given in Reference 2 (page 159). The

spectrum of strategies on the preceding path segment is

identical, except for notation, with part of the spectrum

139

pictured in Reference 2 (Figure 18, page 157). For the
next path segment, we will now run a portion of the other

spectrum appearing in Reference 2 (Figure 19, page 158).

k- jI J -3?
1 - 1,,3,,b

I -.

G , V4t666f i

•.',= * {,'6

The path input calls for increasing the defense to a density

of 3.5 weapons per target. The first defense strategy is

at the critical density of 1.4.

150 (A. .j ,.E_-, .

1- • 19C3;

I L

19 - ,'3 4,. -

4 19 19 1-

I t IC"4if1L3

A new attack and a new defense have four elementary strategies

each.

I • I a ,• .

I .I4Cb)14
" . I" +I'o 69d

3 ~ 71".j3G-4.

140

Here the attack transitions to a more concentrated strategy,

leaving some targets unattacked. The path is entering a

defensa dominant region.

This critical defense strategy displays a new phenomenon.

When the defense force has increased to a size of 3.0365, j
it becomes worthwhile to defend every target with at least

one weapon, so the 6 0 line leaves the Q-basis.

I , * - ,;'

I 3 16 4 1i i

1 . 61

C - to '. 1'3 E -' 7

The attack responds to the new situation Lby attacking every

target at least once, and reducing the marginal value for

new defense weapons, which can only be added above the 1

levei.

I *96233

i 9 :1S:1. 41

141

The defense increases to a point where it pays the attack

to use 5 weapons on some targets.

I h. 5041" -CP
I

S2 * 6CA-.3E-C'P

3 .1iisrP
""4 a 13 A3S
1 .44"349

5 P;;,3964

The attack transitions to a strategy where more targets are
attacked by I weapon only, the balance of the force being

concentrated on fewer targets.

I -. "0 '

I~' iI-45

I 3*1, 4499 E"-(1,1

?].CC 3 :

3 oP57 1'ý
4 4 ' .,t,

Vab= ,,b)44-/

Cki-L- :,ECLJ : . I

The path segment ends at (2.6;3.5), an interior point of a
re,4ion. The run is terminated after 2.1 seconds of central
processing time, including 1.3 seconds of time to compile

the program before running.

Figure 15 shows a regional map for these weapon types.

The general pattern of interlocking rectangular regions is
characteristic for one imperfect attack-weapon type and one
imperfect defense-weapon type although the precise locations

of the boundaries vary with the probabilities of kill and
intercept. The pattern is the same as that shown in Figure 17
of Reference 2. The solution surface over each rectangular

142

The defense increases to a point where it pays the attack

to use 5 weapons on some targets.

1 S, 504 7iE-C2

3 . I(_7.5•P

4 * 134313

5 .Pr-3964

The attack transitions to a strategy where more targets are

attacked by 1 weapon only, the balance of the force being
concentrated on fewer targets.

=-•,I .9784b,

I 3.984,499k -CP

-. 1I,4'1 39,0 '
" * P57 l393 .437'i~,n

? CDC
C(.L,--EC : Pe 1

The path segment ends at (2.6;3.5), an interior pu-rnc of a

region. The run is terminated after 2.1 seconds)f central

processing time, ircluding 1.3 seconds of time to compile

the program before running.

Figure 15 shows a regional map for these weapon types.

The general pattern of interlocking rectangular regions is
characteristic for one imperfect attack-weapon type and one

imperfect defense-weapon type although the precise locations

of the boundaries vary with the probabilities of kill and

intercept. The pattern is the same as that shown in Figure 17

of Reference 2. The solution surface over each rectangular

142

DI/T1

4--

3-

Exploratory Path

2IF
2- -

'I -

FIGUR~E 15
REGIONAL MAP Or- CASE 6

143

i. -

region is a hyperbolic paraboloid with rulings in the

coordinate directions, as discussed in Reference 2. These
features contrast with the triangular regions and pla,iar

solution surfaces already shown for cases with two attack-

weapon typcn.

Case 7: L.G.!tG4,A'IIDI) = (1,1,2,2)

The following density run illustrates the multiweapon

case.

5 C DA1 i ., I "
6(. LUATA hIPI
I C L) 4\ i *(. . ,.
SC, IJAI'A .9jp.7!

The attack weapone are conventionally arranged in order of

increasing PKT, 0.6 and 0.8; the defense weapons in order

of decreasing PI, 0.9 and 0.75.

[V.1-Hý4 7

I P

?

6 .9.9

:, f:. .9

.9 .11

S ..9p

144

F I. 1-3?
? -2* 1

P -. 369P31
t I

0 D
S. 9 .963C77

The first two path segments input attack weapon type 2 and

defense weapon type 2. As these are the same types used in
Case 6, the solution at the point (0,.1;0,1) is also the

same as in the exploratory run of that case.

I- a1-3?
? -1.1

S -. 7244t i

UI P C)*

I 9

' tI 4

.-.977 53

At the point (0,.1;l,1) the defense solution strategy is

stepped in form, with some targets being undefended and

some defended by from 1 to 4 weapons. The better inter-

ceptor is concentrated on about half the targets and the

poorer interceptor spread out over about 86 percent of

the targets.

10 1.3"?

3 d4. V1(1 I.-i'J

2 5. C93(.Iu'-'%
3 t •- • d L"

14 14

145

VI&I J-3?
? 1,0e

A* t. l 9 (-P.1 C

•- I *5 4.,7 1 73

V,= • 73591"4

At the point (.6,.6;1,1), the attack strategy shows the

poorer weapon concentrated on about one fourth of the targets
and the better one spread out over about 44 percent of the

targets. The levels of attack range from 0 to 4 weapons per

target.

I- If kJ-3
"7 -1.1I

I j t

C. L. • I •4:44 1

4. "WS C~ 4V C7 '
C, •- 4. ,•'.1!)- "/ 4 1.-

I I .I15<14

A printout of the defense strategy shows only minor changes

resulting from the increased attack.

11, V3?

0 u-KA.(•: 3

The run is terminated.

146

The resource space is four dimensional, so we can't show
a regional map of it. Actually, we don't know enough to
discuss the regions in much detail. The space is bounded
by six coordinate planes: a map of the (A,,A,)-plane has
triangular regions like Figure 14 with the axes reversed; a
map of the (A2,D 2)-plane is the same as Figure 15; maps of
the (A ,D.)- (A1 ,D 2)-, and (A ,Dj)-planes have rectangular

regions similar to those of Figure 15; and a map of the

(D,,D,)-plane cannot be defined since VS = 1, regardless of
the defense strategy, when there is no attack. Intuitively,
we expect the interior regions to have both rectangular and

triangular faces, and this is confirmed by a few exploratory

paths, which have also shown that some of the multidimensional
regions overlap.

Case 8: (Gl,G4,Al,Dl) = (10,4,1,-1)

The multiple-target-type case is illustrated by the

following run.

5C DATA I Cs 4 is I
LC DPTA I , IC- I ,o 9. 1, ' 8,• 1 r, 7, 1t, CA b, I6 '.C#b. -I 1C , o, I OP , I

iC ThtTt .75

1 C 14'I ;'" "- "

*

IC 5

I1; I

147

P'K T -

6 b

*i

k-I-
* "d b

There are 10 target groups, only four of which are defended

(by convention, the first four). Each group has 10 targets,

the total number of targets is 100, and the aggregate value

is 550. The single attack weapon type has a different

probability of kill for each group of targets.

?|P3
? 3, 3.S

1 9.1 1
3 [I

I C

I

148

Fi
F3

On the first path segment, the attack lays down 165 weapons
as if all the targets were undefended. The marginal value

to the attack has not been printed, but it can easily be

computed from the strategy on target group 2 as (9) (1-.6)2

(-.6) = - .864.

I -3,bb
1 -1. ? II

I '1.'. IVJ•.L

:1

•,~~~1 9~ ;0- b L.•

ýi 3 4 ,•"

1' . "I" "•3

If. * •,. d (.z 1

3 9. . I

144 4; • 7 •; 7

S149
C . -,

1, 3. bli •
r.I

IC

'VS= |)40.s '7

On the second path segment, the defense allocates 55 weapons.

VS increases from 59.0426 to 144.487. The marginal value to

the attack increases to -1.25112, as determined by the defense

strategy on the first four groups.

149

?

P~aP3?

? 6I 1I

I I'7356

3 1. 945-3
4 4. hi1PS-7

b 61 65 7
2 7,P5 13 ••

3 ve7ý I/ 1C.7

4 36 926 59
3 5. "4-4 9;ý9

P' 3* ' C-4
3 3* •6PC3

A ote a6157

3 5, C'7ii f3

une eue atac. The.(; shf f2ieposfo hs

4 •. T&3i E-4 34 .

I kC

i-~~ c (
9 I

::C I C ,

A printout of the attack strategy at the point (165;55)

shows target group 10 no longer attacked and target group 5

under reduced attack. The shift of 20 weapons fromn these

two groups to the defended groups takes advantage of the

higher marginal values provided by the defense. Some shift

of the attack from undefended to defended targets is usual

as the defense begins to build up. If the defense gets very

strong, however, the marginal values may decrease, and some

or all of the attack weapons may shift back to the undefended

150

targets. The operator of the program should be alert for

a shift of all the attack weapons to undefended targets,

since the resulting indeterminate defense could lead to a

failure of the program. The program ought to have a

procedure for terminating the path segment in such an event,
but the current version does not.

PIl aP3?
? Cor

The run terminates.

1a

151

VII. OTHER APPLICATIONS

f
The illustrative cases in Section VI involved no

substantial changes to the PATH87 and PATH87A programs,
since only data input and, in a few examples, printout were
affected.

Other types of resource allocation problems can be run
if the programs are modified to fit the problem. Some that
have actually been run include such features as:

-1 Terminal defenses

-2 Mix of area and terminal defenses

-3 Overlapping area defenses

-4 Sensitivity to errors in force estimation

-5 Decoy weapons

-6 Decoy targets

-7 Weapon allocations in sets of 2 or more

-8 Area targets

-9 Area-mobile targets

-10 Targets of variable value

-11 Time-phased attacks

-12 Defense-suppression attacks

-13 Transportation cost matrices

-14 Simultaneous variation of several resource types
-15 A "floating box" to control testing.

In this section, we will discuss general methods of adapting
the programs to various types of problems.

Preceding pap blank
153

A. Choice of Program

Generally, if the problem is a one-sided optimization it

can best be handled by modifying PATH87A. Examples are

terminal-defense problevis and transportation problems. Two-

sided games require PATH87.

B. Choice of Variables

Resource types, object types, and measures of value must

be chosen in an appropriate fashion, keeping the dimensions

of the problem as small as possible. In many cases, the

choice is obvious; in others, some judgment must be exercised.

In the overlapping area-defense case, each set of inter-

ceptors with the same coverage may be considered a resource

type, so that there will be as many resource types as there

are interceptor sets. Each group of targets covered by theJ same interceptor sets may then be considered as an object-

type (but only if these targets-are otherwise identical).

An incidence matrix may be used to specify the match-up of

interceptor types and object types.

In another type of game, the object types were groups

of bomber bases, the defense resoirces were bombers to be

allocated to bases and the attack resource types were succes-

sive waves of a time-phased attack on the bases, with the

potential value per base decreasing as surviving bombers

were launched during the attack.

In transportation problems, the destinations are con-

sidered as object types and the requirement at each destina-

tion as the number of objects of that type. The sources are

considered as resource types and the availability at each

source as a quantity of resources. If preferred, sources

and destinations can be reverred in meaning, with the idea

of reducing the number of resource types.

154

F.
C. Value Function

A value function for point targets is built into PATH87
and PATH87A. It must be replaced when it is inappropriate.

For area targets, the square root law has been used as
a value function.

For mobile targets, the region of mobility may be con-
sidered as a single target with initial value equal to the

number of mobile targets in the region. Depending on
whether the region is linear, areal, or spatial, a value

function can then be developed to compute expected-value

surviving for all allowable elementary attack strategies.

In the bomber-basing case, the initial value of a base

is zero, and the maximum value surviving is the number of
bombers in the elementary defense strategy for that base.

The value function takes into account the time-phasing of
the elementary attack strategy and the bomber launches.

In the defense-suppression case, the value function

incorporates a suboptimization of the split between attack
weapons allocated to radars and those allocated to targets.

In the transportation problem, the value function is a
precomputed matrix of costs, one element for each source-

ciestination pair. Costs may be in miles, dollars, or what-

ever measure is to be minimized.

D. Test Controls

"Floating lid" test controls are used in PATH87 and
PATH87A. They should be changed whenever better ones can

be devised for a problem.

In the transportation problem, there is never more than
one resource unit (weapon) allocated to a destination require-
ment unit (target). Since tests of two or more would be

155

completely meaningless, the test controls can be greatly

simplified.

In the mobile target cases actually run, there were only

five allowable elementary strategies on targets of each

group. Again, a simple test control procedure was used.

In the bomber-basing case, the results of early runs
showed certain systexiatic patterns in the solution strategies;

that knowledge was used to change the test controls to save

time on subsequent runs.

E. Economy in Modifications

If a special type of problem is going to be run only a

few times, it is usually economical to make minimal modifica-

tions to one of the basic programs.

On the other hand, if many runs are planned, it may be

economical to make more extensive modifications that take

advantage of simplifying features of the problem. For

example, if each elementary attack strategy is limited to a

single weapon type, each one can be described by identifying

the weapon type and the quantity, i.e., by using two numbers

instead of a complete vector. In this case, the (A) matrix

illustrated in Figure 7, Section IV, can have its blocks

reduced to two elements instead of Al + 1(27). Going even

further, if the quantity is always one, as in the transpor-

tation problem, then only the resource identifying number

need be stored in (A). Of course, modifications of this

type require that references to (A) be modified throughout

the program.

F. Potential Improvemrnts and Applications

Many applications of the PATH programs have been demon-

strated. As time goes (n, we expect more to be found. We

also expect that substantial programing improvements will add

156

'"to.the efficiency, .flexibility, reliability, and usefulness

of the method.

I"15

157

REFERENCES

1. J. D. Matheson, Preferential Strategies (AD 483 249,
AR 66-2, Analytic Services Inc., 1969).

2. J. D. Matheson, S. Endriss, D. Christie, and D. Lake.
Preferential Strategies with Imperfect Weapons
TA 913 915, AR 67-1, Analytic Services Inc.,
196)).

3. D. F. Dianich and K. E. Hennig. The Weapon Allocation
Problem: A Computational Compaison of the Marginal
Return Algorithm and a Linear Programming Algorithm
(Staff Memorandum, Headquarters Air Force Systems

Command, 1970).

4. A. Charnes. "Constrained Games and Linear Programming,"
Proceedings of the National Academy of Scienccs
U.S.A., Vol. 39 (1953, pp. 639-641).

5. M. L. Balinski and A. W. Tucker. "Duality Theory of
Linear Programs: A Constructive Approach with
Applications," SIAM Review, Vol. 11 (1969, pp. 347-
377).

6. CALL/360: PL/I Subroutine Library (The Service Bureau
Corporation, New York, 1969).

Preceding page blank

159

SUPPLEMENTARtY

IN OR~IATIO

REPOR 9WOU*EHiAYTO PAGE UxT Er

SO 5 1-----.-~---- _____

Johr~j Statgi Matheson N .4?Gs-COO

Joh D.(FS thew-

Analytic Ser-vices Inc. (AYSEP)
5613 Leesburg Pike, Falls Church, VA

~J.t5-4r. W ast%

1162

Dire-t-crate of Operaticral Pe~uirei~en-ts

Distribution o' this drocn nrt is unlirnited. It may be reletsed
tothe Ntoa TcnclIfrtinService for sale tc the

gen~eral putlic.

rI ... r f-I f af

Game Theory Atmisl eez
Gp*f&Uionh Rnesearch Optimization
Linear P' qraminq Comqputer Progra~.ing
Parametric Linear Progra~iry, Kathiematical Analysis
Strategic Warfare Military trategy

This report presents a rmethod of solving weapo" allocation games
involving many weapon types and many target types. Humrical
solutions are obtained by the PATH method, a form of paramtetric
linear programping. Two compuiter programs are listed and
explained, PATH87 for two-sided games and th'e simpler PATH87A
for one-sided optimizations. Both are copiously illustrate~d by
sample runs. Other applications of the programs are discussed

"ingneral terms.

DD *, 14]UY3~ e'o a ~? UNCLASSIFIED
SGCýWVYy Ci A%&W A. 0% ON~ *'- Vas ' 0~ .a.w

20. (Continued)

The PAM method offers unique advantages of spe" and
I flexibility in solvinq problems facing defense analysts, and

it is hoped that publication of this report through the
National fechnical Information Servic, of the Defense
Documentation Center will make tis method more widely
available. Aleoo, t method has features which can be .
applied to many problems of resource allocation facing -A
nondefense planners.

-T

U

