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PREFACE

For over 8 years, the author has conducted a continuing
research project that has produced new computer progr.™s:, some
of which have wide applicability to allocation of resources
(such as weapons) to objectives (such as targets). Some of
the programs are general in nature and have been used by
other ANSER analysts as well as the author to solve a variety
of weapon systems analysis problems in our work for the
Deputy Lniei of Starf/Research anc Seveiopment, iicadquarters,
United States Air Force. Several programs have also been
given to various government agencies or defense contractors.
Documentation of these has been minimal.

This report describes companion programs, PATHB87 and
PATH87A, that are very general in nature and which are
milestones in a long evolutionary development. This report
was originally drafted under the same title in March 1971,
but the final version was not completed because of the
press of other business., However, it was circulated in
draft form to a number of defense contractors, some of whom
were kind enough to list the draft as a reference in their
own publications. The current edition represents a minor
revision and update of the 1971 draft.

It has been demonstrated that the PATH method offers
unique advantages of speed and flexibility in solving
problems facing defense analysts and it is hoped that
publication of this report through the National Technical
Information Service of the Defense Documentation Center
will make this method more widely available. Also, the
method has features which can be applieu tc many problems
of resource allocation facing nondefense planners.
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MULTIDIMENSIONAL PREFERENTIAL STRATEGIES

I. INTRODUCTION

This report psesents a method for solving a large class

of resource allocation problems that are multidimensional in
F ' the sense ot having many types of resources and many types of
objects to which resnurces are allocacted. The class of
problems is restricted to those in which discrete quantities
] of resources are allocated to any object, for example, inte-
gra) numbers of weapons to a target. The solution method
involves parametric linear programming.

Historicaliy, the method was develciped in order to
generalize earlier ANSER work (References 1 and 2). The
essential features ot Sections I1I and III were the subject
of an oral seminar at tho ORSA meeting, 1~3 May 1968, San

Francisco, California. (Paper TP 1.12, A Generalized Weapon »i
Allocation Game.)

A. The Problem

The general problem of the class with which we are deal-
ing is formulated as a two-sided mathematical game in Section
I1. The formulation includes one-sided optimizations as

special cases where one of the players of the game has zero
resources.

it

An important feature of the formulation is the definition
of an allocation, or strategy, in such a way that the solution
variables appear linearly with constant coefficients in the
objective function &nd the constraints. Any nonlinear features

of the problem arc¢ incorporated in the computation of those
coefficients.

- sl

sl M

Physical fearsibility of solutions is ignored, and the
solution strategies may contain fractional values that are

1

R
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apparently not feasible. However, these fractional strategies
=an be realized by one or more precisely equivalent, feasibhle,
mixed strategies in nearly every two-sided game of practical
interest. In most one-sided optimizations, the physical
infeasibility, if any, is a local one of no great significance.

Solution strategies are obtained by solving simultaneous
linear equations, with the matrix of coefficients for one
player being the transpose of tha« for the other player.
This common matrix constitutes a basis tor the solution,
called here a G-b.sis,

B. Path Method

The use of parametric linear programming to Jdetexmine the
Q-basis is discussed in Section III.

Beginning with some set of resources, usually zero, for
which the Q-basis is known, resources are then varied con-
tinuously in any arbitrarily prescribed manner; that is, aleng
any prescribed path in the space of resources. The path
method makes appropriate chariges in the Q-basis at critical
points of the path.

Solutions for the twc players are alternated along the
path, with a resource parameter being used for tha player
whose resources are changing and a marginal<value parameter
for the other player.

C. Computer Programs

Two computer programs are included in the report. The
PATH87 program, designed tn solve multidimensional two-sided

weapon-allocation games for point targets, is listed and
discussed in Section IV. This program is the 1971 version
in an evolutionary sequence pointed toward greater capacity,
speed, flexibility, and reliability. !
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The other program is an abbreviated version designed to
optimize one-sided weapon allocations for point targets.
Called PATHB7A, it is listed and discussed in Section V.

Readers who are not interested in“the details of cbmputer'l

programming should skip Sections IV and V.

D. Preferential Strategies

Iilust:ative examples of actual runs of both-pfograms
are given in Section VI. One purpose of the section is to
show someone who may have skipped the earlier sections how
to use the programs, how to input data, and how to read the
output. A second purpose is to point out and explain salient
characteristics of typical solutions.

E. Other Applicatiouns

The path method applies to a variety of resource alloca-
tion problams that can be solved by suitable modifications
of the two programs., Section VII lists some features of
problems that have been solved and discusses the modifica-
tions in general terms.

Al
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"We will then develop more detailed conditions in the form of

b
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IX.. THE PROBLEM

A multidimensional resource allocation problem of the
class with which we are concerned can be formulated as a
matrix game. 1In this section, we will give a general formu-
lation of the game, including general solution conditions.

a Q-basis, consisting of a certain coefficient matrix and
some associated vectors. Finally, we will show that a
solution can be computed directly from the Q-basis if cer-
tain conditions are satisfied.

A. Problem Formulation

1. Players, Resocurces, and Objects

In general terms, there are two opposing players, each
having resources of different types to be allocated to
specific objects (or activities) of which there are differ-
ent types. One player is called the minimizing player because
he seeks an allocation that Qill minimize some common measure
of value. His opponent is called the maximizing player.

Each player must make his own allocation in ignorance of his
opponent's specific allocation, but he does know all the
resources available to the other.

For illustration, an attacker would try to allocate a
variety of weapons to a variety of targets in such a way as
to minimize the expected value of the surviving targets,
whereas a Gefender would try to allocate defensive weapcns
s0 as to maximize expected surviving value.

Let us adopt the following notation:

M number of types of minimizing resources

i

N

it

number of types of maximizing resources

Preceding page blank
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consists of some number of units of each of that player's

G = number of types of objects.
Let us also represent the number of units of each type by:
Amformgl‘ o.o’M
Dn forn=1, «++, N
T forg=1, «--, G .

g
Most of our subsequent analysis is concerned with the

general case where both players have some resources. How-
ever, one should observe that the analysis is also valid if
one of the players has no resources, in which case the problem
becomes a one-sided optimization. As a convention, we will
suppose this case to be represented by N = 0, so that we

will always have M > 1 and G > 1.

2. Elementary Strategies

An elementary strategy is defined as any allocation by
one player to a single object of a particular type. It

resource types. We will denote an elementary strategy for
the minimizing player by the vector,

g: g ¢ v e g =0 0 g

af = lafys coce ofne tece G5y
and one for the maximizing player by the vector,

g : vee, 69,, .., 89
Gj £ (S §2., . GNj) .

15 ' “nj

The superscript g identifies the object type to which the
elementary strateqgy applies. The subscript i (or j) identi-
fies the particular elementary strategy among all those
applying to object type g, under the assumption that they
are arranged in some wumerical order, the actual arrangement

being immaterial. The subscript m (or n) distinguishes the

resource type., so that the component agm is the number of type m
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resources in the itb elemeﬁtary,minimizing stfategy for object

type g. We will call an elementary strategy with all zero
components a null strategy.

3. General Strategies

We will now define a general strategy (or simply a
strateqy) for either player as a specific allocation of all
his resources among all the objects. A strategy can be
described in terms of elementary strategies by specifying
the fraction of the number of objects of each type on which
each elementary strategy is used.

For the minimizing player, we will denote by x? the
fraction of the number of objects of type g on which the
elementary strategy ug is used. The components, x?, must
satisfy three conditions: every component must be non-
negative; every object must have some elementary strategy,
if only the null strategy; and all resources must be used.
These conditions can be represented by:

xg 2 0 for every g,i
I x? =1 for every g (1)
i 1
g g _
IIT O X3 Am for every m .

g i

If the components are arranged sequentially, they form a
strategy vector:

= G
X = (x:' x;' e, xg’ vee, X, ...)

i i’ '

which defines an allocation of minimizing resources to objects.

In similar fashion, a strategy vector for the maximizing
player is given by:

Y

m
~
o
<
"
[To]
-
L<




" with conditions,

y? 2 0 for every 4g,]
z yg = 1 for every g
p]
g L
s g 'rg dnj yj Dn for every n .

(2)

At this point, we may observe that, in a one-sided optimization
problem (characterized by N = 0), the only allowable elementary

maximizing strategy on each object is the null strategy,
5? = (0). With this restriction, y? = 1, and the only maxi-
mizing strategy vector becomes

G times
Y:(l' cee, l) .

4. Value Functions

The statement of a problem must provide some way for
evaluating the worth of a strategy and making a choice of
the "best" strategy. The basis of this evaluation is the
value function, one of which must be specified for each
object type. Each value function must define a value
associated with =2very allowable combination of an eiementary
minimizing strategy and an elementary maximizing strategy on
the same single object. Thus, if elementary strategies
ag and 69 occur on the same object of type g, the value may
be defined as vgj. The value function for object type g
then consists of the matrix,

g _ g
v? = (vij) .

There must be a different value function for each object
type; otherwise object types could be combined to reduce the
dimensions of the problem. The several value functions must
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be expressed in terms of a common unit, or measure of value,
but they need not have similar formulations. Indeed, an
explicit formulation is not requirnd at all, and a table

of arbitrary values will serve the purpose.

There is great latitude for specifying value functions.
For example, in a weapon allocation problem, an initial value
might be specified for a single target of each type and a
formula given for computing expected surviving value for any
pair of elementary strategies. The value function in a

transportation problem might be the cost matrix of mileages
between sources and destinations.

Figure 1 illustrates the relationship between elements of
a value function and associated strategies for a single object
type. Figure 2 illustrates a useful concept ¢f the combined
value functions and strategies, where the blocks for each
group symbolize sets of elements like those in Figure 1.

5. Objective Function

When the opposing players use specific general strategies, ]
X and Y, each in ignorance of the other's strategy, there is :
an aggregate expected value which is a function of the : 7
strategies and is called the objective function.

In developing the objective function, let us consider
first a single object of type g, and suppose ag is the
elementary minimizing strategy on this object. The probabil-
ity that the elementary maximizing strategqy, 69, is used on
this object is yg, i.e., the fraction of objects of this type
on which the strategy 6? is used. The expected value
associated with this single object is then given by

w3, v9 .
3 lij ‘
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The number of objects on which the strategy a? is used is

Tg x?. Hence, the sum of the expected values on all objects
of tyr=s g is given by

The sum of these values over all object types is the objective
function, which can be written

g )
vij) v: .

V(X,Y) = j

. g

i g x7 (T
This is the function that one player seeks to minimize by
choosing a strategy X subject to the constraints (l). The
other player seeks to maximize it by choosing a strategy Y
subject to the constraints (2). The problem of finding
best strategies for each player is a mathematical game.

In the foregoing formulation, the objective function is
linear in the components of either the X or Y strategy, which
permits linear programming methods to be used for the solution.
A similar formulation for one-sided optimizations has been

used by Dianich and Hennig (Reference 1),

6. Solution

For a solution, we adopt the standard criterion that a
best strategy for the minimizing player is one that minimizes
the maximum value his opponent can obtain against it. Con-
versely, a best strategy for the maximizing player is one that
maximizes the minimum value his opponent can obtain against
it. The theory of mathematical games guarantees that such
strategies exist, although they need not be unique, and that
the min-max valua is equal to the max-min value, which is
called the value of the game. If X* and Y* are used to denote

e i
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solution strategies and V* the value of the game, then

V* = min max V(X,¥)

X Y

= max min V(X,Y)
Y b4

= V(X*,Y*) .

Another way of expressing the minimax conditions is

V{(X*,Y) s V* for all Y

V(X,Y*) 2 v* for all X ,

which is to say that, if either player uses a solution
strategy, the other player cannot find a better strategy
than his own solution strategy.

B. Equivalent Dual Linear Programs

Charnes (Reference 4) has shown that a constrained game
is equivalent to dual linear programs in which the strategy
vectors are augmented by components that are Lagrangian
multipliers. In our case, the added components are denoted
by superscript zeros or subscript zeros. The primal program
can be written:

Maximize c xg Dn + I xg T
n g 9
subject to: L I xJ (1 o9 ) = A
i g im m
g i
z xg =1
i 1
r x° 69, 4+ x2 + 3 xg vi. <0
n nj o] 1 13 -
n i
X.g ZO '
i

12




where all indexes are to be read as greater than zero unless
L explicitly stated as zero. Similarly, the dual program is:

. - o) g
Minimize % Am Ym + L Tg Yo o
g9
subject to: 7 I (T 69, 9=p
) ; 3 ( g n3) yj n
cyd =1
YJ

. g o g P ¢ | g
; ain ym + yo + D vij Yj 20

950 .
Yj 2

Charnes shows that solntions of the dual programs exist and
that the value of the equivalent game is

e e

vt = - 0 x®p -z xI T
n non g ©°9
3 o o _ g
: X Am Y L Tg Yo oo
i m 9

From this result, it is natural to interpret - xs and - y;
as marginal values or values per unit of the respective
resource types, and to interpret - xg and - yg as intercept
values per object of the respective object types.

C. The Q=Basis

Balinski and Tucker (Refercnce 5) display a scheme for
a Charnes-type formulation., We suppose such a scheme to
exist for our problem. We then suppose that a solution is
known, X* and Y*, and we delete from the scheme all those
rows and columns for which solution components xg and yg

are zero. The remaining elements, arranged to fit the block-
diagonal structure of the problem, are illustraced in
Figures 3 and 4 as what we call a Q-basis. It is a

13
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FIGURE 3
MATRIX AND VECTORS IN Q-BASIS
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FIGURE 4
SCHEMATIC BLOCK PARTITIONING IN Q-BASIS
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representation cf the equations satisfied by the dual solutions,
considering the inequalities as side conditions.

In Figure 3, X and Y are the augmented solution strategy
vectors, Q is the matrix of coefficients of the basis
eyuations, and A and D are the right-hand vectors. In matrix
notation, the basis equations are QY = D and XQ = A,

Figure 4 illustrates the partitioning of the Q-basis into
blocks. Superscripts indicate the object type to which a
block pertains, with a superscript zero indicating blocks
associated with resources. There is a band of resource-
ascsociated blocks across the top of X, Q, and D and a band
down the left side of Y, Q, and A. Down the main diagonal
of Q is a line of nbject-type blocks. The rest of Q consists
of zero elements.

Figure 5 illustrates the elements within typical resource
blocks and object-type-q blocks., For convenience, the
included strategies are given new i and j indexes to match
their positions in @, regardless of what i and j indexes
they might have had originally. The elements shown as zero
are always zero because of their positions; other elements
will be zeroc only if one of their variable factors is zero.

At the bottom of Figure 5 is shown a scheme for relating
the conditions on the excluded strategies to the structure
of the Q-basis. If the vector shown is denoted by I, then
the matrix condition is IY 2 0. 1In similar fashion, an
excluded maximizing strategy can be represented by a vector
J and the exclusion condition by XJ < 0.

The various blocks of the Q-basis must be conformable
as illustrated, but there is no a priori restriction on
their size, with the exception that every Qg block must be
at least 2 x 2, since at least one elementary strategy for

15
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each player is required, even if it is only the null strategy.
Otherwise, Q9 may have any dimensions and may be square or
rectangular, and if rectangular its long dimension may be in
either direction. In general, differznt object types will
have QJ blocks of different sizc and shape.

Likewise, the totil Q matrix itself may be either square
or rectangular, but it is nearly always square, since if
Q were to be rectangqgular, one player would have mcre variables
in his augmented strategy than conditions for them to satisfy.
In that case he could reasonahly adjust to a bhetter strategy
restoring the balance between variables and conditions.

Detailed computations, involving the Q-basis elements,
show that the value of the game is

V* = - AY*

- X*D

Similarly, the minimax conditions can be verified by
using the side conditions on excluded strategies. Further-

more, if Q is square and non-singular, then

X* = AD ,
Y* = Q‘ln , and
v* = - a0" o

These formulas provide a method for computing the solution
if the Q-basis is known. Section III will describe a method

of finding the basis.

Before leaving the discussion of solution strategies,
their physical feasibility should be discussed. The com-
ponent:s, xg and y?, are fractions by definition. In general,

17
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the products, Tg xg and Tg y?, will still be fractions and
hence not physically feasible. Yet, if the solution strate-
gies are interpreted as mixed strategies in a game-theoretic
sense, it is usually possible to find not only one, but many,
equivalent sets of physically feasible integral strategies,
with an associated frequency for each strategy of the set.

In another view, the fractions, x? for example, may be _— L
considéred as a frequency distribution on cach object of
type g, with the important proviso that the distributions on
the several objects of tyvpe g are not independent of each
other or of the distributions on objects of other types.

PRI




I1r. PATH METHOD

The path method of solution is a form of parametric
linear programming involving variation of resources. In this
section we will describe how, as resources are varied, a Q-
basis can be changed so that it will always provide a solution
of the problem for the current numbers of resources.

A. Space of Resources

It is helpful to think of any set of resources

(AI' se., AM; Dl' c e, 1)N)

as defining a point in an (M + N)-dimensional space of
resources. Associated with each point of this space is a
distinct problem, or matrix game, which has at least one pair
of solution strategies, X* and Y*, and a unique value of the
game, V*,

The values, V¥*, may be thought of as plotted in (M +:N + 1)~
dimensions so as tc form a continuous solution surfaée over
the space of resources. At nearly every point of this surface
there is a unique tangent hyperplane, whose slopes in the
coordinate directions are the same as the marginal values
defined in Section II, i.e.,

(_y?, cee, _y;; —x?, “es, _xg)

For each point of the resource space there is at least
one valid Q-basis from which solution strategies and the
value of the game may be computed. There may be more than
one such valid Q-basis, each yielding different solution
strategies, but there is only one value of the game at any

point.
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;For.ngatly‘evéryrpoint of the resource space, a valid

'Q'matrix'ié square and non-singular. Such a basis is usually

valid for a continuous set of points that we will call a
region of the resource space. Throughout a region, the
strategies are uniquely defined by the basis.

rmhe'interipr‘of a regio: is generally characterized by

~ proper inequalities:

"o, . x?> 0 for included i

~y? » 0 for included j

Qe

IY > 0 for excluded i
XJ < 0 for excluded j .

The bbunaary of a region is characterized by one or more of
these guantities bk2coming equal to zero.

B. The Path

The continuous variation of resources from some initial set

.of values in some prescribed fashion to some terminal set of
'anlueS~geﬁe:ates a path through the resource space. The path
'fmethcd enables us to find solutions all along a fairly arbi-
‘7trary path if we have a solution basis at the initial point.

" There is one point in every type of problem where the
solution basis is always known. That point is the origin,
where all resources are zero and both players use null strate-
gies. Hence, a path can always star:i at the nrigin, as it
does in the computer programs of Sections IV and V. A path

may, however, start at any other point where the Q-basis is
known.

The simplest kind of path is generated by varying only
one resource type at a time, all the others being held con-
stant. We will call this a rectangular path, since it con-
sists of a series of straight-line segments at right angles

20

1, TN 2

——

ST




‘to each other in the tesource space. This kind of path is
used in the programs of Sections IV and V. 1In this method,
the dimensions of the problem start at (M,N) = (0,0) and
increase as resource types are introduced. Once a type has
been introduced, the number of rescurces of that type may be
increased or decreased at will.

A more general kind ¢of path is one consisting of straight-
line segments generated by simultaneously varying any or all
of one player's resources linearly in terms of some parameter,
A segment of such a path can be represented by a set of
equations of the form

Am = Aom + Alm h, 0shch ,

;

exprossing the condition that the number of type m resources
varies from an initial value of Aom when the parameter h = 0
to a terminal value of Ayt B h- In similar fashion, a

variation of maximizing resources can be expressed as

e e e T

: N -
Dn = Dn° + Dnl h . ;
The parameter h may be arbitrary or it mavy have some real
meaning, e.g., a vehicle that carries fixed numbers of each
resource type, or a budget allocated in fixed proportions to
the different resource types. Either minimizing or maximizing
resources may be varied on a path segment, but we have no

convenient method of varying both simultaneously.

C. Location of a Regional Boundary

If a path segment lies entirely in a single region, the
same Q-basis provides a solution at every point of the segment.
If not, the first problem is to find the value of h for which
the path meets a regional boundary. This critical value of h
defines a critical point on the path where some changes must
N be made in the Q-basis before proceeding.
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To do this for a minimizing path, for example, we first
add a row to the A vector of Figure 4 to reflect the variable
nature of the resources, i.e., 4 becomes the two~row matrix

A L I K J A T o . » 8 T o ¢ 0 0
A= °l' 'l oMl l' ’ ’ g' , 14

A ) A‘.m'o /0, o0, 0,0, »+-, 0

11!

i}

assumed to be multiplied by H
of condition then becomes

(1, h). The matrix equation

XQ HA .

f The vector solution

X = HAQ™?

is then equivalent to a set of scalar equations of the form

X X, + xlh

0
3 One way the basis can fail is by some xg for included i
becoming negative., If x, 2 0, x cannot become necative as
h increases and we pass on to the next x. If x, < 0, we
solve the equation

h = -xo/xl

to find the value of h for which x = 0. The least of these
values of h is a candidate for the critical value.

The second way the basis can fail is for XJ to become
greater than 0 for some excluded j. Tre scalar product ¥J
is of the form

x, + X, h .

Applying a two-part test for every excluded j, we pass on
to the next if x, £ 0, since then x cannot become positive.
If x, > 0, we solve the eguation

h = -x,/%x,
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to find the value of h for which XJ = 0. The least of these
values is a second candidate for the critical value.

The lesser of the two candidates is the critical value
of h, which by substitution defines the c¢ritical point on
the path and the solution strategy for the minimizing player
at that point.

If the critical value comes from x? = 0, then the
corresponding row of the Q-basis must be deleted; if it
comes from XJ = 0, then a corresponding column must be added
to the Q-basis. 1In either case the resulting Q-basis will

have one more column than it has rows.

In similar fashion, with appropriate formulations and
test criteria, we can find the critical value along a path
in the space of resources of the maximizing player: in that
case, the .esultant change in the Q-~basis is deletion of
a column or addition of a row, and the Q-basis will have one
more row than it has columns,

D. Finding the Q-Basis for the Next Region

The rectangular Q-bhasis resulting from the location of a
boundary is a valid basis on the boundary. Taking the
example of a minimizing path, there is one more column than
row, and hence one more condition on the minimizing player
than he has variables. Although the extra condition is
redundant and is satisfied by the minimizing player's
solution strategy at the critical point, it does act as an
added constraint.

On the other hand, the maximizing vlayer here has one
more variable than conditions to be satisfied. Because of
this, there is an infinite number of solutions for the

naximizing player. 1In fact, any linear combination of his
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solutions on the two sides of the boundary is a solution
for him on the boundary.

It is the degree of freedom of the rectangular Q-basis
that lets the maximizing player shift his strategy on the

boundary to that strategy appropriate in the next region.
We determine the new strategy by means of a new parameter,
the marginal value per unit of the minimizing rescurce
parameter and denote the new paramater by e, defined as

= = o- o o8 - o
e = Allyl A1MYM y

We represent this condition by temporarily adding in
the last row of the Q matrix the vector

(All' ...'AIM'O' ees, 0) ’

adding to the D matrix a second column consisting of all Os

except for -1 in the last row, and assuming D to be multi-
1

plied by the vector E =,e . The matrix equation of con-
dition becomes
QY = DE
The vector solution
Y = Q7! DE

is equivalent to the set of scalar equations of the form
Y =Y, + Vhe .

The maximizing player is interested in driving e to a
value as high as possible algebraically, that is in maxi-
mizing survival in the direction of the path. But he is
limited by the conditions, yg 2 0 for every included j, and
IY 2 0 fcr every excluded i. The critical value of e is the
lowest value meeting one of these conditions.
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Applying a two-part test to y, we pass on if y, 2 0,,
since y cannot then become negative as e increases. If
Y, < 0, we solve the equation

e = -y, /Y,
to find the value of e for which x = 0. The least of these

values of e is a candidate for the critical value.

The second test is on the condition 1Y 2 0. This product
is of the form

Y, + Y,e .

We pass on to the next i if y, 2 0, since y cannot then

become negative as e increases. If y, < 0, we solve

e = -y,/Y,

and select the least of these values as a second candidate
for a critical value.

The lesser of the two candidates is the critical value
of e, which by substitution defines the maximizing strategy
along the path into the next region.

The rectangular Q-basis is then changed by deleting the
column or adding the row associated with critical e. This
change restores Q to a square, non-singular matrix, the
solution basis for the next region.

In similar fashion, with appropriate formulations and

tests, we find the Q-basis for the next region along a
maximizing path.

E. Terminating a Path Segment

The two prccesses described in Sections I1I.C. and

III.D. repeat in alternation until the end of a path segment
is signaled by critical h 2 h.

At this interior point of a
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region, the Q-basis is not changed, the terminal strategy
can be determined by substitution of h, the terminal coordi-~
nates are entered in the first row of A or first column of

D, as the case may be, and either a new path segment is
begun or the problem is ended.

F. Beginning a Path Segment

The previous exposition was given with M + N resource
types being allocated. If the new path segment specifies
a variation of no more than these resource types, then the
terminal point of the previous segment is an interior point
of the space and we begin the new path by finding a boundary
as in Section III.C. above.

If, however, a new type of resource is introduced, the
terminal point of the previous segment automatically becomes
a boundary point of the new (M + N + 1l)-dimensional space of
resources. The Q-basis must be expanded by opening a row
or column of zeros at the appropriate place. The new path

must then be begun by using the process described in Section
III.D.

il

G. Beginning a Problem

Since the method will not permit introducing more than
one type of resource at a time, it is usual to begin a
problem at the origin, where both minimizing and maximizing
players are constrained to a null strategy and where the
Q-basis has 2G rows and columns as shown in Figure 6.

The problem is then begun by introducing one resource
type in any desired numbers, followed by the introduction

of other resource types until all M + N have been intro-
duced.
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FIGURE 6
Q-BASIS AT THE ORIGIN
The order of introduction may make some difference in the ;
computational time but makes no difference in the terminal
value of the game. However, there are certain simple i
restrictions that must be observed. For example, the marginal ;
value must not be equal to zero. This would be the case in ‘
the weapon allocation problem if we tried to introduce defense i
before attack, since in that case all targets would survive

E regardless of whatever allocation the defense might make.
K
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IV. PATHB7 COMPUTER PROGRAM

The PATH87 computer program is explained in this section.
It is specifically designed to solve the multi-dimensional
two-sided weapon allocation game for point targets. However,
it can be modified with little trouble to solve a variety
of resource allocation problems. In fact, ease of modifica-

tions has been one of the major criteria influencing program
design.

The program is written ‘. BASIC language for use on an
IBM 360/65 computer in a time-sharing mode with interaction
of computer and operator. The computer-system constraints
that have been binding at one time or another during the
evolutionary development of the program are:

-1 A limit of 800 statement lines
-2 A limit of 80 FOR loops
-3 A limit of 29 numeric arrays

-4 Limited storage space for the array elements of
the problem.

The first three of those constraints have been overcome
by such devices as using the same subroutines to serve both
the minimizing and the maximizing player and using the same
arrays to store similar numbers associated with both, thus
taking advantage of the struvctural symmetry of the problem
and effectively transposing large matrices back and forth
by just changing a few indices.

i

The effect of the fourth constraint has been minimized
by using a subroutine to compute the value function as needed

instead of precomputing and steoring it. Also, some matrices

have been reduced in size by packing the significant elements.

Preceding page blank
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Computer processing time has been reduced by designing
a three-stage solution process with recursions. Further
improvements in processing time have resulted from the use
of single indices instead of double for nearly all arrays.

The price paid for the increase in capacity and decrease
in running time has been some rather complicated indexing.
However, even that is not completely without value, since
the indexing is an aid to flexibility.

A. Program Structure

The program is composed of an initialization section,
a control section, and a collection of subroutines. The
heart of the program is the control section, which calls
the main subrovtines as needed.

Blocks of statement lines are allotted as follows:
(1-999) Initialization section
(1000-1999) Control section
(2000-2999) Test subroutine
(3000-3999) Auxiliary subroutines
(4000-4999) value subroutine
(5000-5999) Print subroutine
(6000-6999) Addition subroutine
(7000-8159) Deletion subroutine
(8160-8999) Auxiliary subroutines
(9000-9999) Strategy subroutine.

The remainder of this section contains a complete listing of
the program statements in numerical order, with explanatory
comments following each small group of statements.
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B. Initialization Section

This section sets the dimensions of the problem,
initializes various indices, inputs data, and makes pre-
liminary computations.

t AL AL

SO bkl e daiar

el BEjL Sl 109900 a)
18 BETE 295 050%01
A0 LETA Yse iy

These lines provide an example of the data that an operator

must type f{or any problem he proposes to run. Other examples
appear in Section VI, Cases 5 to 8.

The first four numbers define the dimensions of the
problem. In this example, there are 2 target groups (object
types), of which 1 is defended, 2 attack-~weapon types, and
2 defense-veapon types. The program later reads these
numbers as Gl, G4, Al, and D1, respectively. By convention,
the detended target groups are the first G4 groups.

The next 2*Gl numbers define target data, that is the
numper of targets and value per target for each group.

The next Gl*Al numbers define attack-weapon data as a
matrix of single-shot kill probabilities, in order of all
weapon types against the first target group, then all weapon
types against the second target group, etc. The weapon types
must be listed in the same order for each target group, the
preferred order being from least effective weapon to most
effective weapon, as explained in Section 1IV.F.

The last Dl numbers define defensz-weapon data as single-
shot probabilities of intercept, it being assumed that these
are the same against every type of attack weapon. The
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preferred order of listing is from most effective defense
weapon to least effective, as explained in Section 1V.F.
1C0 DIV LCaLEIa 1O sV aM(2rPI NC (7)) (30T
1CS LI LAY 001909201015 090V 15, 1500240159000
11C DIV T Cae), 193¥,1.¢19)
11% LI& KC“8C) Y Cen0)

17C 1LIY RCAICCIS L0000 CE0)
1ed LINM KMEal( )t NS00

These lines reserve storage space in core for 23 lists and
arrays, those with related dimensions appearing on the same
line. The reservations are adequate for most problems
involving no mere than 100 target groups (Gl) and no more
than 15 weapon types in all (Al + Dl).

All of the matrices will now be discussed, in a con-
venient order. The form (T) will denote a matrix itself,
and the forms T(2), T(G), S$(A’ + 1), etc., will denote
particular elements of a matrix.

(T) stores the number of targets in each group. It is
customarily addressed by the simple variable G, i.e., T(G).

(V) stores the value per target in each group and is
usually addressed as V(G).

(P) stores the probabilities of kill. Conceptually, (P)
is a two-dimensional array, but it is treated by the program
as a one-~dimensional list. The manner of address is discussed
in Section IV.F. in connection with the value function,

SUB 4000.

(D) stores the comrplements of the probabilities of inter-
cept. The manner of address is discussed in connection with
the value function.

($) stores the force levels attained at the end of any
path segment. Elements $(1) to $(Al) represent levels of

32




attack weapons, and $(Al + 1) to $(Al 4 Dl) levels of
defense weaons.

(A) is the largest matrix in the program. Primarily,
it stores those elementary strategies of both attack and
defense that are in the basis at any time. It also stores
some other numbers related to those elel'entary strategies.
Conceptually, it has an internal structure that is illustrated
by the storage map of Figure 7. The matrix is partitioned
into three main cell regions: test (1-60), attack (61-3000),
and defense (3001-4000). The test region will be discussed
in connection with the testing process, SUB 2000. The
attack region is subdivided into rows, each row having
Al + 1 elements. The example showing 6 elements 3is based
orin Al = 5, These rows are grouped. The first group,
consisting of a single row, stores the identifying numbers
of the attack weapons currently in play, e.g., 2, 3, ard 5.
. The second group of Gl rows stores test control data deriVed
from the ‘elementary strategies. The remaining tows store
the elementary strategies for each target group in vector
form. For example, the second elementary strategy on target
group 3 has 0 type-2 weapons, 2 type-3 weapons, and 1 type-5
weapon, for a total cof 3 weapons. The maxinum entries that
have occurred in any elementary strategy row of target group 3
during the course of the ran are stored in the third row of
the test control group, e.g., 2, 2, 2, and 4. The defense
region is structured and used like the attack region, but
the rows have D1 + 1 elements, three in the example. The
address of ar element of (A) is usually compounded from its
place in its row and the address of the terminal element cf
the precediny row, e.o., A(120 + 4) = 3.

e ALK e
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(X) and (Y) store computed solutions of the parametric
equations of the Q-basis. (X) stores the first column of a
solution and (Y) the second column, i.e., the column which
is multiplied by the parameter. They are used together,
sometimes for an attack solution, sometimes for a defense
solution. Whichever the case, the elements of (X) and (Y)
are arranged in the appropriate sequence established in
Section II and illustrated in Figure 5: marginal values for
opposition weapons, intercept value on group 1, elementary
strategies on group 1, +-+, intercept value on group Gl,
elementary strategies on group Gl.

Before discussing the other matrices of the program, it
is desirable to describe in general terms a three-stage
solution process that saves storage space and computer
running time. Instead of storing and inverting a Q-matrix
whose dimensions would exceed 200 x 200 if there were 100
target groups, we allow the Q-basis of Sectiomns II and III
to exist only as a mental concept of the 2quations of'the
problem. These e¢quations are then solved by two stages of
Gaussian elimination, a third stage in which a small matrix
is inverted, and a back solution process which computes (X)
and (Y) as full-size solutions of the conceptual Q-basis.
Intermediate results are stored in such form that they can
be modified recursively, without having to repeat the entire
three-stage process eve 'y time a line is deleted from or
added to the conceptual Q-basis. In the program, the
matrices (Q), (R), (8), (U), (W), (z), (C), and (F) are
primarily involved in the process. These will now be
discussed.

(R) stores the results of the first-stage Gaussian
elimination, which reduces the Q-basis by 2 rows and 2 colunmns
for each target group. The process is precisely defined. 1In
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.the example of Figure 5, the”uppe:vleft corner of the central
block has this configuration~—

°
e,

Pivots on the circled elements eliminate two rows and
columns. Because of the choice of pivot elements. thlie
computations involve only subtractions, and very little
information is lost by physically eliminating the pivot
rows and coluwnns. In fact, since the elementary strategies
are preserved in (A) and the number of targets in (T), we
need only provide for saving v,, elsewhere. (R} must be
large enough to hold the elements not physically eliminated.
Its size varies during a run. At the beginning, or at the
origin, (R) is zero since all rows and columns ave climinated
(see Figure 6). Then, as rows and columns are added to and
deleted from the conceptual Q-basis, (R) is modified to
reflect the changes. Suitable recureion algorithms are in
the program for that purpose.

(Q) stores the values v,, for each target group. These
“hase" values would otherwise be lost after the first-stage
elimination.

(S) stores the results of the second-stage Gaussian
elimination, but preserves the physical configuration of
(R). In concept, both (R) and (S) are rectangular, as
illustrated by the pattern of Figure 8. However, the
elements are stored according to the numbering scheme in the
figure. These matrices are augmented to include elements
from the right-hand sides of the equations of the problem.
So the first column and first row of Figure 8 contain elements
from vectors labeled D and A in Figure 3. The remaining
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columns and rows correspond to the noneliminated columns

and rows of the Q-basié. In this example, the columns repre-
sent ] attack weapon types and 5 excess elementary defense
strategies, and the rows represent 2 defense weapcn types

and 6 excess elementary attack strategies. The lower right
region of Figure 8, which we will call the pivot region,
contains elements left over after the first~stage elimination
of two rows and columns from each of the blocks on the
diagonal of the Q-basis. 1In this example, supposing there
are 3 target groups in the problem, the gap in the pivot
region implies that the original Q-basis block for group 2
has 3 rows but only 2 columns, and hence is not explicitly
represented in (R) ané (S). The blank elements in the pivot
region are understood to be zeros, which need not be stored.
The second-stage Gaussian elimination may be described as

a partial inversion in place, since some of the procedures
are adapted from the MATINV subroutine (Reference 6) for a
total inversion in place. In concept, (R) is the given
matrix and (8) is the result of the partial inversion. As
many as possible pivot elements, such as those identified in
Figure 8, are selected from the pivot region only, so that
each pivot affects only one of the target groups. There is
no shifting of rows or columns, but the location of pivots

is recorded. The pivot rows and columns are actually used

to store the results of the partial inversion, but it is
understood that a pivot row or column has an alternative
aspect, characteristic of a Gaussian elimination, in which
the pivot element is 1 and all the other elements of the row
or column are 0. The proper aspect is used at any point of
the program. Finally, as lines are ch.nged in the conceptual
Q-bagis, recursion algorithms make the induced changes in (S).

At the end of the second stage, the number of equations




"

remainingzéé be solved is somewhat unpredictable, but in
theory can be bounded: Max {(Al,Dl} < number < Al + D1,

In the example of Figure 8, four equations remain to be
solved out of an original fourteen in the conceptual Q-basis.

(U), (W), and (2) are used in the third stage, which
solves the remaining equations by matrix inversion. On each
occasion, they are redimensioned by the program to precisely
the size needed, e.g., in the continuation of Figure 8 they
are redimensioned as 4 x 4 matrices. (U) is then filled
with the elements of (S) that are in neither a pivot row
nor a pivot column, as in Figure 9.

836 837 838 758
840 841 842 759
410 an 412
0
418 419 420
0
FIGURE 9

FORMATION OF MATRIX (U) FROM ELEMENTS OF MATRIX (S)

(W) stores the inverse of (U). (2) stnres either a duplicate
or the transpose of (W), whichever is needed at the time.
These three matrices are the only ones with two subscripts.

(C) and (F) store the two-column solution of the third-
stage equations. Their elements become elements of (X) and
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(Y), respectively, and are used in the back solution to
complete these vectors,

(G) is the first of seven index matrices that are needed
to help locate numbers in the primary matrices already dis-
cussed. (G) stores the locations in (S) of the initial
elements of blocks of numbers pertaining to the different
target groups. (G) consists of three regions, each having
Gl + 1 elements. The first region contains the locations
of blocks in the pivot region of (S). For the example of
Figure 8, G(1) = 1, G(2) = 7 since this is where the block
for the second target group would appear if it existed,

G(3) = 7, and G(4) = 13, in effect defining an upper bound
on the pivot region. Similarly, the next four elements
locate blocks in the lower left-hand region of (S), i.e.,
G(5) = 401, G(6) = 409, G(7) = 413, G(8) = 425. The last
four elements locate blocks in the upper right region of

(s), i.e., G(9) = 751, G(l0) = 760, G(1l1l) = 760, G(12) = 766.
In a problem with only three target groups, the remaining
elements of (G) would never be used.

(N) stores the number of rows and columns of each block
in the pivot region of (S). (N) consists of two regions of
Gl + 1 elements each, the first region for rows, the second
for columns. So, when (3) is as shown in Figure 8, this
index will be:

(N) = (2,1,3'073,0'2'0;0"") .

Actually, the Gl + first element of each region is super-
flucus, but is retained for convenience in indexing (N)
itself.

(M) stores the total number of rows and columns of the
pivot region preceding each block of the pivot region of (8).
(M) is arranged the same way as (N). For our standard
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examgle, we have:

(M) = (0,2,3,6;0,3,3,5;0,:++) .

In this case, the first element of each region might be
considered superfluous.

(@) stores the locations of the actual pivot elements
in (S), identifying them by rows and columns rather than by
a linear storage number. (@) is divided into two regions of
equal size, in this case having 30 elements each. The first
region of P contains an entry for each row of the pivot region
of (S). If the row has no pivot element in it, the entry is
0. If the row has a pivot element in some column, the entry
is the number of that column within the block of columns for

|
g

the particular target group involved. For the example of
Figure 8, we have @(l) to @#(6) given as (1,2,0,2,0,1). The
second region contains similar entries that identify a row
for any pivot in a column, so we have @(31) to @#(35) given
as (1,2,0,3,1).

T

(I) is the central-index matrix. It stores a variety
of constants and variables that will be individually dis-
cussed in connection with lines 140-215. 1Its conceptual
structure, shown in Figure 10, reflects the paired nature ;
of most of its elements. It has a central spine of glements
identified (except for 1) by numbers of the form 3n, and
two wings, of the forms 3n-l and 3n+l. The elements of one
wing are associated with rowe of the problem and those of
1 the other wing with columns. An interchange of wings has
the effect of transposing the Q-basis of the problem.

(K) and (L) provide the mechanism for the transposition,

one wing of (I)} being read into (K) and the other into (L)
by SUB 8690. A flag Si, whose value is set at +1 or -1,
determines which wing is read into which matrix. Most of
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0 G9
23 24 3
- 60 3000
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FIGURE 10

For$§1 =

CENTRAL INDEX MATRIX (1)
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the computational algorithms of the program are written in
terms of (K) and (L) and are equally valid for row operations
or column operations, that is for attack strategies or
defense strategies.

Tol mEABL Gl agidptd)
135 FRlIND "CYpCas Flplelzl J3i.c5 000

These lines rcad and print the dimensions of the problem,
i.e., the data of line 50.

146l (9,101 lCerd)=]+])
tabh Ol =i~)

165C 1¢%y=i]

15 1¢34)=)

16C 1C1ENY =00

TES 103D (=) =08
17C [CaC)=L01+]

1 UKy 1C19)=040 7

yR0 1) =60

1S 1Sy =n0(

190 1yl Cesd 1) C1)=)
199 1(&eY=sR)+100 1)

F(C 13 zlel D)

o0S 1C3MY 09+ 1) =40
S0 TC24), 00U 1)=00]
“15 1036)=+3)

This sequence computes and initializes various indices, all
others being automatically initialized at zero by the BASIC

system. The paired structure of (I) is illustrated in the
following discussion.

K(l1), L{(1): 1I(2) is the number of types of defs=nse weapons
already brought into play, sometimes denoted by D2. I(4)

is the number of types of attack weapons already brought into
play, sometimes denoted by A2. Both I(2) and I(4) are d
variables, automatically initialized at 0 and stepped as new
weapon types are added. K(l) and L(l1) are used principally :
as upper limits for loops and as locators in (X) and (Y). !
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K(2), L(2): I(5) and I(7) are constants, Dl and Al,
respectively. They are not used in this version of the
program.

K(3), L(3): I(8) and 1(10) are constants, 0 and Al,
regspectively. They are used as locators for the two
regions of the ($) matrix.

K(4), L(4): Not used in this version of the program.

K(5), L{(5): 1I(14) and 1(16) are constants, 0 and 30,
respectively. They are used as locators for the two
regions of the (@) matrix or pivot index. In case (@)

is redimensioned, for example to 80, then I{(16) should be
set at 1/2 Dim(¢) = 40.

K(6), L(6): 1I(17) and I(19) are constants, set at computed
values G9 = Gl + 1 and GB8 = 2*G9, respectively. They are
used as locators for the two upper regions of the (G) matrix.

K(7), L(7): 1I(20) and I(22) are constants, 0 and G9,
respectively, serving as locators for the two regions of
the (M) and (N) matrices.

K(B), L{8): 1I(23) and I(25) are constants, used as locators
for th2 attack and defense regions, respectively, of (A).

In this version of the program they are set arbitrarily at
60 and 3C00. The apportionment of space between attack and
dafense can be modified by changing I(25).

K{(9), L(9): 1I(26) and 1(28) are constants, used to specify
the number of elements of (A) needed to record the useful
features of an elementary strategy for the attack or defense,
respectively. In this version of the program the number of
elements is one plus the number of weapon types, so that

the number of weapons of each type plus the sum of the
weapons of all types can be stored. The effect is to
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K(10),

L(10):

structure the attack region of (A) into rows of size I(26)
and the defense region into rows of size I(28).

just described.

1{(27).

1(29) and I(31) are variables, used to specify
the number of elements currently in use in each of the rows
Both are initialized at the same value as
Thereafterxr, I(29) is kept equal to D2 + I(27) and
I(31) to A2 + 1(27).
K(11l), L(11): 1I(32), and I(34} are constants, locating the
initjial values of the « and § regions of (£) respectively and
are set at 401 and 751 in this version of the program. They
may be changed if a different apportionment of storage spac
is desired.
4 K(12), L(12): 1I(35) and I(37) are constants, Al + 1 and
1, respectively, used as stepping indices for the common
b region of (8). 1I(35) is the interval between elements in
successive rows of the same column, and I(37) between
3 elements in successive colunns of the same row.
I(36), on the spine of (I),
1 region, here set arbitrarily at 831.
K(13), L(13): I(3%)
Dl + 1, respectively.

interchanged when

Note that
and I(40) are constants,

is the locator for the common

stepping indices.
K(14),

columns of the same row of the § region.

Al + 1 and
{S) is transposed.
K(15),

L(15):

I1(38) is the interval between elecments

in successive rows of the same column of the a region of (8)

and I(40) is the interval hetween elements of successive
L(14),

These two are
locators peeded in SUB 4000.

They are used as
I1(41),
are not used regularly in this version of the program.

I(44),
except for I(27) and I(36), which have already been discussed,

and I(46)
The spine of (I) is empty
45

1(43),
How-
ever, the spaces I{4l) and I(43) are used to store strateqgy

i il
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and ‘or 1(l) and I(3) which are used as working storage for
step indices in the pivot region of S. These vary from
target group to target group. In SUB 8760, one of the pair
is set at 1 and the other at N(G9 + G), these being the
colum.~to-column and row-to-row steps for target group G,
as shown in Figure 8.

acC breINT “Tsv="
A6 kFobk (=) Ty G
Al pREw PCUINCLD
33C FRINT (L) NG
et uCi)=NEn)

ast vi=vi+\V oW

Al (el )=0C))

30 LCE9s sl
340 (Ci K+l +3)=1C14)
9L Nexl

This loop reads data on the number of targets T(G) and the
value of each target V(G). It initializes Q(G) at ’ne value
V(G). The loop computes V1 = LV(G) as the simplest way of
making V1 > max {V(G)} for use in the testing processes.
Finally, it initializes the (G) locators to the (S) matrix,
whose current dimensions are zero because there are no excess
elementary st: itegies and no weapons to start with.

4CC FrIN] MrrD=®

a1l =0
aPr RUk =3 T L)
43 kén A= 0 A1)

sa( 1=1+)

495 rEAL FOED
46C FRINT OIS
478 NEXT A

a%{ rrlNni

49¢ NEAT O

46
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This double loop reads the matrix of kill'prbbabilities into ‘
(P) and prints it for reference.

=
1
2
1
4
]

:
|

SCC PRINT “F.=* : :
P SIC OB D=1 TG DY |
i Se(t kel b
P S3C PhiND b3
; ' Sa(, LCYsY~i
; ‘ S50 NEX[ b

: Sel FRINT

This loop reads the intercept probabilities, prints them
for reference, sud stores the complements in (D).

C. Control Section

This control routine directs the computations over a
path segment and is repeated for each segment of the path.
It consists of four parts:

o et

Segment initialization (1000-1380)

Strategy on boundary (1500-1590)
Strategy in region (1700-1810)

X Segment termination (1820~1880).

The two middle parts are repeated in alternation as many
P tines as required along the segment.

E 1CCC FRINT b1, 1320
X 1C1G INFUT K, b3

1C2C Tk F3e>C THEN 1040
1930 S1uF

The path segment is defined by two numbers in this version
of the program: Pl, the identifying number of the single
weapon type to be varied as parameter along the segment,
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and P3, the terminal number of weapons of that type. Here,
the numbers are input by the operator, but the program can
be modified to read the numbers as deta or get them from a
data file. Meaningful values of Pl are integers from -Dl to
+Al, with defense weapon types identified by a -~ sign and

the end of the program run signaled by a zero. P3 may have
any non-negative value, Thus, the nimber of type Pl weapons
may be increased or decreased along a path segment. However,
a decrease to 0 should be avoided becaus= of the possibility
that round-off errors will throw the path into negative
regions of the resource space. Special protections against
this accident were written into an carlier version of the
program, but have been eliminated in this version. If

Pl = 0, the run stops; otherwise it continues.

V40 S1=SONCHD)

1C5C Fl=ARNH(F])

1Cel (USUR He9C

1070 Fe=SGNCHI-3CACEI+ 1))

1CT7S vPs\Vix(l-Fo)

JOHE FasBRSCF3-T(KE3) 41 1))

1E3C b Ko< € kN 110

1160 GLsUR 92yl

1110 GBTE t15éC
This seguence sets S1 at +1 or =1, converts Pl to a positive
number, and goes to SUB 8690 to set the (K) and (L) indices
associated with S81. It also sets P2 at +1, 0, or -1 depending
on whether the number of weapons is to be increased, unchanged,
or decreased from the number at the end of the preceding
path segment; sets V2 at 0, V1, or 2Vl for later use in
testing: and sets P4 at the amount of change in the number
of weapons. If P4 = 0, the program goes to SUB 9290 to
compute a strategy, and then branches to the segment termina-
tion, an option used when the operator has just completed a

path segment, obtaining a printout of either the attack or
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defense gclution strategy, and wishes to obtain a printout
of the other sonlution strategy at the same point of the
path., Otherwise, the run continues.

113C ben nrbH=1 TG (Y1)

B14C IF ACKESY+RS)=FY THEN 1736
: 115C 1F ACKCHRI*RSY»PY THEN 1180
: 116C NEXT RS

FY170 RS=LC1) e

: ' This sequence examines the proper weapon-number r-»w of (A)
: te find the proper column fcr weapon Pl, designating this
column by R5. If weapon Pl already has a column specified,
initialization is completed, and the program branches to
1710, If rot, ther the c¢olumn is picked that will put Pl

in the proper sequence with the weapons already listed in ;

Figure 6, RS will be 1, and the program will continue at

i
i
k- ;
E (A) . For zxample, if attack weapon 1 is to be added to
! .
E
i 1180.

Loy V13C Pk F=LCY)Y ¢ RS STk E-)
- N 1200 1=21(36)+E*LC)F) ;
' 121C Peh K=( du ®KC1) d
173C LI+l C323y=5CT1)

h 12aC 2C1)=C

17049 I=1+KC12)

165C NEAT w

1#ba I=KC11)+F

JPSE FUR rz=) e MK i)*LY)
1260 3(1+1)=5¢C1)

lrbe 0C1Y=0

1663 1=1+kC 132

Jeeda NEXT K

167C NEXT |

This sequence opens up and zeros the R5 column of (S),
shifting other columns 8s required. Statements 1200-1250

open a column (or row) in the common region, and statements

1254-1264 open a column (or row) in the a(or §) region,
depending on whether S1 = +1 or -1l.
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128C FUR J=KIR) 1y KEE) K (IR (MIKCTI+GII*I+GT) STEF K(9)
1290 Feh L=usli1C) T JehS STEF -1

13CC AtL+ld)=n(L)

1310 NEXT L

V320 ACJ+hS)Y =0

1330 NEXT U

1340 ACKR(HI+KhS)=t )

This sequence opens up and zeros the R5 column of (A), and
enters the nuinber Pl in the weapon ruw of this column.

135C Ri=h1+
136C LEDI1(34530=LC1)¢
1380 LCICYS 1C3G+51I=LC1C) +

This sequence steps twe indices in (I) to reflect the
addition of a weapon type, and also steps the variable Rl,
which measures the greater of the two quantities:

I(2) + Excess Attack Strategies
J(4)- + Excess Defense Strategies.

Rl is automatically initialized at zero and then is increased
or decreased as required. Rl is a measure of the size of
(S), and is used in setting the current size of the third-

stage matrix (U).

15CC 51=-5)

1510 S7=-}

1520 GOSUR 9C0CC

1930 HPsH3=\VE

1540 CosSuk Z2CCC

155C 1P Hee=H3 THEN }4HRC
1560 GCoSULER 6CCC

197C Gwiv 17CC

154C GOLUR 7CC0CC

199C ki=k}-}

This sequence controls the computation of 5 strategy crossing
a boundary (see Section I1XI.D.), where the Q-basis is
rectangular and the parameter is marginal value, as indicated
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by the flag S2 = -1, The flag S1 = 1 indicates an attack
strategy, S1 = -1 a defense strategy. SUB 9000 computes (X)
and (Y). SUB 2000 finds two candidates, H2 and H3, for a
critical value of the parameter. These are compared and

the program branches to SUB 6000 to add a row (or column) to
the basis, or to SUB 7000 to delete a column {or row) from
‘the basis. - In the latter case, Rl is reduced because (S)
has chanéedisize. ~In either caée, the new basis is square
and the program continues at line 1700.

17iCC 2)==-41

171C s2=1

172¢C (BsSubk 9CCe

173C H2,H3=}t a

1740 (0SuUk 20CC

179C I+ HP<=HA THEN 179¢

J76C. hl=hls]}

1774 owouk 600C

1750 @iy 150 - T T

179C 1F HE&=Fa tHeN 3=l

18CC GULul 70 : : ‘

141C WTe 156C "
This sequence controls the computation of a strategy in the
interior of a region or at a regional boundary (see Seccion
1II.C.), where the Q-basis is square and the parameter is
resource variation, as indicated by the flag S2 = 1. The
control sequence is the same as in the 1500 routine. However,
H2 and H3 are initialized at P4 instead of at V2, R} is
increased if a row (or column) is added to the basis, and
a test at line 1790 provides an exit to the sequence for
terminating the path segment. Otherwise, the program ccn-
tinues at line 1500, which alternates with 1700 until the
path segment is terminated.




- 132C $(K(3)e+k1)=+3
R4l 1=1C3€I+LC12)0hD
1850 SC1)=SCI)+bbnta
186C H=Fa

l 1378 Geuub S0LCC

1IPAC GAT¢ 1000

§ o The path segment is terminated by posting the current force

1 level in (§}, adjusting a right-side eleme.t of (S), and
printing the terminal strateqgy in SUB 5000. The program
then goes back to line 1000 for the next path input.

D. Test Subroutine

The test subroutine finds two candidates for the critical
value of a parameter, as discussed in Section III. Candidate
valuves, H2 and H3, are initialized in the control program

% and modified during testing. H2 is associated with the non-
¢ negativity condition and H3 with the scalar-product condition.
i- The final choice between candidates is made after return to

the control routine.

The subroutine consists of cn index sectioa, a branch
contro®ling tests on a defense strategy, and a branch con~
trolling tests on an attack strategy. Seven auxiliary
subroutines secrve both control branches.

vl T1=AC3)4+]

U0 JE=1CEY+1 ()

2LeC JIZK(KIeK (9 (n)

c03C Va,1taredtd=C

&C3%5 JT=42-1)

eCaC IF S1=1 iHbNn £50C
This sequence initializes indices for the first target
group: Il locates the intercept elements in (X) and (Y);
J0 locates the control row of (A); Jl locates the base

: elementary strategy in (A); end I4 locates the row of (P)

containing single shot probabilities of kill for targets
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of this group. In addition, I(42 + Sl) is set at 0, and J7
is identified with 42 - Sl so that 1(J7) may be used as a
working strategy locator in connection with the value
function, SUB 4000. After initialization, the program
branches to one or the other of the test-control sequences.

3CC Fur U=l b )

110 Lesus aear

cleC tioubk arcce

2313C (viv A19C

r14C Coook 3504

215C teTe +11e

P leC v=

cJTIC Tk ACud)ufC)lei) TH4FN PP2C
e 1=C GLou= 360 C

Y190 ULtk AT0C
CERC TR YEr»-o(C) IHEN DEFC
4 PE10 CUSuR Al
v e Tk BCKCOIOIIC=Le A0 +1C4))) Tk S)el
B 30 1F 2Ky dHEN S )l
' cewl LaLUuk 36 -

FESC ONELT L

vl mieluey
This sequence controls the testing when (¥) and (Y) repre-
sent a defense strategy. Tne test sequence for each target
group is illustrated by the flow diagram of Figure 11, SUB
3000 cenducts the non-negativity tests for components of

Y W,

B L R

the defense strategy. The rest of the diagram is concerned

with the scalar-product tests for elementary attack strategies
not in the basis.

The general scheme is to generate an elementary attack
strategy, compute the value function for its combination
with each elementary defense strateqgy in the basis, compute
the scalar product with (X) and (Y), and test for criticality.
. The generating scheme in this verscion of the program is what
3 we call a "floating l1id." It generates all strategies over
a truncated rectangular region whose size is controlled by
a test contraol row of the {A) matrix. 1In the example of
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Tost Nonnegativity
$UB 3000

'

Genarate Null Stfltsqy
s$UB 3200

1

Compute Scalar Product
SUB 3700

Yo Is Y2307

Line 2200

Test Criticality
SUB 3300

Is
Sum of Weapons
Below Lid?
Line 222

Step Indicss
SUB 3820

s W< K(1)?
Line 2230

Generate New Stratagy

BandaEE—— |
SuB 3600

W=1
Line 2160

A{W) =0; W=W+]
SuB 3500

Is
Type W Weapon
At Lig?
Line 2170

LZ

FIGURE 11

TEST SEQUENCE (Statement Lines 2110-2240)
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Figuré 7, the test control row for ¢ = 3 consists of the
numbers 2, 2, 2, 4. All test strategies are generated that
would not increase any of those numbers by more than 1,
specifically all strategies satisfying:

0. a; 53 ,

02 ay, £3 ,

0505530

0 <sla_ <5 .
mm

The first three conditions define a rectangular reqgion of 64
strategies, and the fourth truncates it so that only 44 test
strategies are actually generated. The "floating l1id" scheme
is a compromise that gives excellent results for the two-sided
game but may be slightly off optimum for one-sided attack
allocations, egpecially if some of the weapon types have very
low kill probabilities. ’

Test attack strategies are generated recursively in the
1-30 region of matrix (A), and the current critical candidate
i5 stored in the 31-60 region of (A). The order of storage

is on values, and computed v's, one v for each elemen-

a_,
mm
tary def-nse strategy on the target group under test. The
method of generation is by a nest of implicit loops on the

weapon types currently in play.

The scalar product of the test-strateqgy vector with the
solution vectors is represented as X2 + H*Y2, where the
coefficients, X2 and Y2, correspond with (X) and (Y). For
efficiency, partial sums are computed by recursion as Xl
and Y1,
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We can now describe the flow diagram of Figure 1l in more
detail. SUB 3200 generates an injtial test strategy with all
zero elements. SUB 3700 computes values., If Y2 2 0, the
strategy cannot be critical; otherwise, SUB 3300 compares it
for criticality. The A(K(10)) test determines if the "liad"
on the sum has been reached. 1If not, the first weapon type
is set by W = 1, If the lid has been reached and W < K(1),
then SUB 3500 reduces A(W) to zero and sets W =W + 1. The
A(W) test determines if the "1id" on weapon W has been
reached. If not, SUB 3600 steps A(W) and the cycle repeats.

If sn, and if W = K(1), then testing on the group is finished, ;
and SUB 3820 steps indexes for the next group. i

29CC FUR =21 T 61

FOIL L Suk 3C0L

29F5C IF 1¢2)=C THFN PEEC

2953C IF G>Ga THEN FEe&C

£54C 1F ACJC+1C31))0=C THEN PE6C
PYHYSC CCLUR 32CC

#56C LLVITU PENC

25106 LLSUE 3500

2980 LLlU 2e6C

F99C W=l

3 #7600 LBOUF 36CC

Ze10C GusUR 370C

“e2C IF YP€aCLY THENRN PesC

2630 GOSUB 33CC E
FCAC TF ACKCLIOII<ACIC+1C31Y) THEN 259C E
2650 1F WK 1) THEN #57C
FeE0 LuSUR 332C

“e¢7C NEAT G

Z68C¢ RETUKN

This sequence controls the testing process when an attack

Ao

strategy is being determined. It is evident by comparison
with (2100-2260) that the general scheme and computational
subroutines are the same, but there are significant differ-
ences in the control processes. If no defense weapon has

been introduced, if G is an undefended group, or if G has
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F o not been brought under attack, no tests of new defense

é strategies are appropriate. So, an immediate branch to
2660 occurs.,

The range of elementary defense strategies to be tested
is determined solely by the attack-summation test control
number A(JO + I(31)), and the sole cut-off control is state-
j ment 2640 which prevents defense use of more weapons than
A(JO + I(31)). 1In the example of Figure 7, defense strate-
gies to be tested must satisfy the single condition:

e ant o A e et

0 £L6 < 4 .
n n

If there were two types of defense weapons, this inequality
would call for the generation of 15 elementary strategies.

Somed o

E. Auxiliary Subroutines

U0 “azN(R YD)
3C1C Tk wazC jHFx AY0C
(e Pk I=10e) 10 [ 14was)

§ SO0 Tk YCI)>ea (01 1HEN H4C0(
B AC4C HA=-AC1)/70C 1)
i JOSC TF A< TAEN 290

4t el He=+

KEerEs [AFN

A= Mesl-1-10)

3090 NeLT

il FrRETURN

This subroutine tests the condition x2 2 0 for elementary
strategies in the basis. It solves for H, the value of the
parameter that makes x? = 0, and records H2, the candidate
for critical value. It also records G2, the group in which
that candidate is found, and M2, a locator for the particular
elementary strategy among those of group G2.
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32C0 PO vz To KCO16) !
318 Acvy=C |
352C VEAT v :
A4l XK1pXP=gC] 1) :

350 Yisve=zyCl D) ! 1
dral MEIURN i

This subroutine generates the null strategy as an initial
test stratesy and initializes the scalar products.

A3 H==Xe/Y?
Y0 LR H3<H THEN 340K
3320 H3=H
A0 LI=G
A37C FSr Ke2) Te K JCYeK s+
; 330 AI(K+30)=h(K)
* 339C NEXT K
] 3400 kEjURN

This subroutine ccmputes the value of the paruameter that
makes the scalar product zero, compares this value with H3
and repleces H3 if M3 2 H; in this case, the subroutine
records G3 = G and transfers all pertinent data from the
1-30 region of (A) to the 31-60 region, where the best test
strategy is recorded. This completes the testing of one
elementary strategy.

ASCC Xl=X)-hbCrr)e Cv)
- A51C Y=Y )-hL(b)*Y(Vv)
) ASZ0 ACKCIC)IIZA(KCITY)-ACY)
A53C AtvI=C
3%4C v=tv+)
3S55C kb TURN

This subroutine reduces A(W) to zero after making related
changes and steps W to W + 1.
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Je(( LCaIZACLIC]

JEIC AEHRCICHII=ACHCICIDI Y
GEC K1aAXP=K)*A( )

REAT Y YaYP=YRYLV)

Jeal, NE IURN

This subroutine generates a new test strategy by s+tepping
A(W) and making related changes.

KIS AR ]

KYY RO S IR D LD

A0 R Kz} Y. Aad)
dral ¥sNve)

3050 1)Y=l eme)
AT60 Lourm &

3100 FCROTI0Y o) =
Al A=k e e ()
UM Y2V eLeY (V)
IS SF R VA B

2440 reiun
This subroutine controls access to SUB 4000, the value

function; it also sums for the coefficients, X2 and Y2,
of the scalar product.

Har( flzlrsacs;

e s Jdl=dn el tee)

KENIGES D ENNELEADE SO PFL NN
S350 l4=lasi)

w0 b RTurN

This subroutine steps indices for the next target group.

F. Value Subroutine

This subroutine is addressed from statement 3760 only.
It computes and returns one number, V, the expected value
surviving of a single target of type G when it is attacked
using the elemmentary strategy located at I(41) in (Aa) and
defended using the elementary strateqgy located at I(43) in

(A}, these two locations having been defined at statements
2030 and 3750, respectively.

LA




In this version of the program, it is assumed that the
firing sequence of attack weapons is worst to best with the
idea of using poor weapons to exhaust interceptors, and the :
sequence of defense weapons is best to worst with the idea 1

that any leftover interceptors will be the worst. .This is .
the order in which weapons have been numbered in the original
data input for the program. Interceptors and attacking

P weapons aie thus matched in pairs, as is illustrated in
Figure 12 for the strategies:

-+

: a (30213)

= (2,4 .

In the illustration, the expected value surviving is:

v=v_ . [1

PKTl (l'PI))]z

R
Q

+ (1 - PKT, (1-PI,)]
- [l - PKT, (1-71,)]?
+ [1 - PKT, (1-PI,)]

‘[]_

!

2
PKT,]

where PKT, is the probability of target kill by a single
attack weapon of type i and PIj is the prohability of inter-
cept by a single defense weapon of type j. Subroutine 4000
computes V according to this scheme.

4000 v=v(L)

4CIC Lo l=(

G420 Pok A=Y TS 1C04)
aC3C BI=£CIC4al)Y+R)
4aC70 1k A7=C THEN 4Z10C
4UREC 15=1asb(lCZ3)+/)
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A PAIR OF ELEMENTARY STRATEGIES
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This sequence initializes value, defense ﬁeapéh”tfbé. and
number of interceptors; begins a loop on A extending to line
4270; set3 A7 = the number of type A weapons in the a
strategy; if A7 = 0, goes to the next A; otherwise, sets

IS5 to locate PKT for weapon type A in matrix (P).

£
¢
¢
LI
!
£
i
t

4C9C IF (>Ca THEN 42&C

“ICC 1F I>C THEN 435C

| 41IC Ik L=lCe) THEN 4feC
' a12C L=UL+]

v 4130 1=2ACIC45)+L)

: “lil OBETL 43CC6

This sequence decides whether an interceptor reading is in
% order; if the target group is undefended, the secuence
' branches to 4260 to compute; 1f I > 0, it branches to 4180
E to test A7; if the defense is exhausted, it branches to

i

h_ 4260 to compute. The sequence also steps D, sets I = the
-+

number of type D intnrceptors in the § strategy, and returns
to 4109 to see if I > 0.

418C TF Al<=1 THEN 4£1C

419C J=1

420G GuTo 420C

«Z1C J=k7

4220 Al=R7-)

4¢3C I=1-y

4240 \NEUeC1-FCIOI*LCACICS5)+D)))t Y
4250 GUTL 4C7C

This sequence sets J = min{A7,I}; reduces both by J; computes

a new value of V at 4240; and goes back to 4070 to see if
A7 = 0.

4260 V=¥ (1=FCIS)) AT
4270 NEXT A
470 KETURN
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"~ - This sequence computes a new value of V when there is no
more defense., When all of the attack weapons, but not
necessarily all of the interceptors, have been exhausted,
the program returns the computed V to statement 3770.

Some aeneral observations may be useful. SUB 4000
‘ contains the only two statements in the entire program
; - that make direct use of the probability data stored in
' ' matrices (P) and (D). This feature gives the operator

some latitude to simplifv 4240 and 4260 by preccmputing

é o some of the factors and storing them in (P) and/or (D) at
? the time of initialization. Thus, he might save computer
processing time by using more storage svace and some extra

i L

indexing. In fact, the current version of the program
contains at statement 540 a precomputation of the complement
of PI, but that doesn't require any extra storage. We felt
it more desirable at this time to minimize multidimensional )
1 storage requirements in (P) at the expense of added pro-
cessing time. However, if a great many runs were to be made
on small-scale problems, it might be judged worthwhile to
increase the amount of precomputation in the value function.

W

TR

Of much greater importance, however, is the flexibility
that the operator has to use an entirely different value
function, even going 3¢ far as to read in all the values as
arbitrary input data. In case & different value function is
to be used, the operator should provide the following general
modifications in the program;

=1 Change the initialization procedures to read in
the desired input data and to precompute and store f
the desired quantities in (P), (D), and any other
unused matrix.
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. © =2 Replace SUB 4000 with a subroutine designed to get
V for any pair of strategies located by I(4l) and
. I(43) at statement 3760. Be careful to avoid
accidently changing any of the variables used

3 ' elasewhere in the program. 1In general, the

‘ undifferentiated letter variables are available
for use, with the exception of G, W, K, and M,
which have specified values at the time of access
to 4000. Obviously, A7 and IS5 are also available.
Other variables should be used only aftevr care-~
fully examining the entiie program for conflicts.

-3 Make whatever indexing changes are consistent
with the new value function; specifically change
the setting of I4 at 2030 and its stepping at 3850,
if desired.

-4 No other changes need he made as long as the
operator is satisfied with tne "floating 1id"
. method of generating test strategies. That can
be changed too, but this is not the place to
discuss how.

G. Print Subroutine

ST IR TR B T T TSR T i A - KA b

In this versicn of the program, the print subroutine is
addressed only from statement 1870 at the end of a segment.
It prints either an attack strategy or a defense strategy,
as determined by the current value of Sl1.

bl it )

3 SCCL LEF FNACIY sHeY(I)+X (1)

: This line defines FNA(I) as a function to be used in combining
the (X) and (Y) solution vectors into a single vector by
means of H, the value of the parameter.
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Byl

5030 v=0
This line initializes the value of the game.

Cel ke k=) U K(C))
D036 rakNECE)
060 R2ACLIK)» 1)
SCHC Vvabohe$(LE3)eb)
SLEL FRINT bB3ep
SCT0 NEXT &
This sequence computes the marginal value for each of the
opposition weapon types currently in play; adds the product
of marginal value by number of weapons to V; and prints

weapon identifying number and marginal value,

SCHUL I=w())

9C9C JzWARI+K(TI* ()

100 Pur LzY To t1:})
This sequence begins a loop, ending at statement 5210, that
computes and prints the augmented strategy for each target
group.

S110 I=1+1}

S160 Z=2TC0YENACL)

H15C vav=l

514C FRINT 3003 =d
This sequence computes the negative of the per target inter-
cept value, multiplies by T(G) to get the total intercept
value for the group, adds this to V, and prints the group

number and the group intercept valve.
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T T T =

5150 FOK N2O TO NC(K(T)+0)
516C Is1+1

5170 J=JeK(9)

5175 FPKINT 3

S180 ok L=) TO LC))

5185 FKINT ACJ+L) 3

5190 NEXT L

5195 PKINT TCGIY*ENACT)
5200 NEXT N

5210 NEXT o

For each elementary strategy on a target group, this sequence
prints the number of each type of weapon per target, and the
number of targets on which that strategy is used.

S22l PRINT "vo='y
5230 KETUKN

Line 5220 prints VS, the value of the game.

Section V1.B. contains many illustrative printouts.

H. Addition Subroutine

This subroutine is addressed from statement 1560 or
statement 1770 when the critical value of the parameter is
H3 (implying that a new elementary strategy mus% ke added

to the Q-basis). It makes the necessary changes in (A), (R),
(8), and the associated indices.

The target group affected is G3, as recorded at 3330,
and the numerical elements of the new strategy are on hand
in the 31-60 region of (A).

€050 6=03

6010 S1=-5]
€020 GOSUE R69C
¢G3C GeSul RIT6C
6¢G35 OCSUE H¥BAS
604G 51=-51

This sequence identifies the target group and gets the correct
indices from subroutines 8690, 8760, and 8835. For this

66

T U

i il i < e Lt L



[l ]

purpose, Sl is temporarily reversed to orient (K) and (L)
properly for adding either a row or a column. The reader
will find it helpful to visualize the subroutine as adding
a row, and the text will follow this line of thought, with
a few identified exceptions.

6CHE JP=Jl1+K(IIS(KA+ L)
€CEO Fen Jdz=d9y Tu Je+t STEF=)
€CTI0 ACJ+K(9II=60D) .
(M0 NEXT J >
ewyl Fuh N=1 T¢ 1LC1O)
100 ACJF+NIZALCACHN)
E1IC 1k BCIGHNI>ACI0+N) THEN €13C
E12C ACICHNI=ACICHN)
£13C NEXKT N
This sequence makes all necessary changes in (A) and locates
the base strategy row of the G3 + 1 target group in (A).
This is the row where the new elementary strategy being
added to the G3 group will be stored. The program makes
room for the new strategy by shifting upward all higher rows.
It stores the new elementary strategy and the weapon sum in
the J2 row and changes the test control elements in the J0O
row as required by the "floating lid" method of controlling
tests. (A different method of controlling tests might call
for modifying these operations on the J0 row, or even

removing them from the program.)

€15C FCh M2 (KCE)+(9)-1 16 G(KCEI+G+1) STEF -1
€159 R{MeK(13))=ir(M)

CLEC SEM+K(13))=35CM)

€17C NEXT ~

This sequence shifts elements of the a region of (R) and (S)

to open the proper row for storing tle new strategy.




EIHC POK 120GC0GII=) TV OGCGo)) STEF=1]
6185 K(leLd)=ske])

619C SClebLa)eSC])

6195 NEXT 1

6200 1+ 51=-1 THEN 6290

This sequence shifts elements in the pivot regions of (R)

and (S) to open a row for storing the new strateqy, performing
the shift for those pivot regions pertaining to groups with

G > G3. If a true row is to be added, as indicated by

Sl = =1, the program branches to 6290 since the réquired

space is now open. This case can be illustrated by Figure 8,
When elements 7-12 are shifted to 10-15, spaces 7, 8, and 9
become available for a new row of the first group.

&ECYH 1¢a)=1(3)+1
€21C 1=6CL+Y)

615 J=z=La

c2eC ron L=2 1w L4
(222 JzJd-1

€225 Foh K=1 Tu K4
¢23C 1=1-1

€240 kCIedI=h(])
e25C S(+J)=5C1)
e26C NEXT 4
e300 NMEXT L E

If a true column ig to be added, as indicated by Sl = 1, this
sequence performs variable shifts to open the proper spaces
within the G3 pivot region. As an example, consider the
addition of a column to the first group. The elements 7-12
are shifted to 9-14 by the 6180 sequence. Then the 6205
sequence shifts 4-6 to 5-7, so that spaces 4 and 8 become
available for the new column. The index I(3) is stepped to
reflect the increased row-to-row interwval.
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6230 MH=2LIKCEI+(e))

€3CC REMOI=CELIY-LCIYeLLCICD)

€310 S(MOI=TCLIIRh(MY)

6€33C Pk L=) T€ LCY)

6340 S(MHeL)I2TCLAIE(ACACILI-ACITI+L))
635C NEXT L

This sequence enters the first (or right-side) element of the
newly opened row of the a region of (R) in the form Viy T V5
without multiplying by T. It then enters the same element

of (S). In this version of the program, all elements of (S)
contain the scaling factor T(G), but none of the (Q) or (R)
elements are scaled. This sequence enters the scaled a
differences in (S). These differences are not saved in (R).

e3eC Pen (263+1 e (9

E3ES MCKCTIO(I =M (KTT)M(-)+ 1]

6370 GCKCEI*CI=0G(KCe IS LI+RC D)

€375 GCLI=CGCHLI+L 4

GaARC NEXT G

390 NEKCTI+03)=N(KET)+(GY e -
t4lC 1F (3>Ga THFY 673C ) -

This sequence readjusts all indices affected by the addition
of a row to G3. If G3 > G4, the program branches to a BETURN
statement, since no further computations are needed on an

undefended target group, which has no excess defense strategies
and, hence, no pivot region in (8).

645 Kas=Kas |

410 Fum K2R (5)+eMIKCTII+06I)Y T Ki+Ka STEF =)
C4PC UK+ 1)=(K)

G450 NFAT K

CHEC ZS(KCeKyd)=C

£LA4TC YNNG

E4RC To195=1C+1C1Y*(K4=-1)

6490 J=31+LC10O)
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65CC FOK L=y TV L4

€536 =)+ )

654C KCIDzACUI=FACII+LCICIISRIND)
€945 SCIX=TCLIIRRCT)

6550 1=]1+1¢)

€555 NI=NJ+LC1S)

656C NEAT L

This sequence sets K4 = the new number of rows in the pivot
region and readjusts the pivot index (g). It enters new
values in the open row of the pivot regions of (R) and (S).

eSS0 L6=C

eL7Y L=

€58C L%=1(3)

6589 12=195

€590 Fub LIz=1 T L&
CEIC TF oCLC+L1)=0 THEN €64
cePC KIz=v(LCHL 1)

¢&63C L=T(G3YeRCT )
CE40 S(1E8)=0(léd)-u
L6445 MI=MU+K(13)I%(K])=1)
¢EeSC 13=10+41C1)=(KY=1)
el GudUk RLH32

L0 LUIY E6Y0

¢68C LE=L)

CE9C 1P=]lzel (D)

b - EE69S NEXT L]

g

This sequence operates on the new row of (S) to reflect the

effect of pre-existing pivots in the other rows of {(S). It

initializes L6, a variable used to record any column without
a pivot that may be found during the ensuing process; pre-

sets L7 and L8, interval step indicators needed in SUB 8532;
and initializes I2 as the first element of the new row in

the pivot region. It loows on columns. If there is no
pivot in the L1 column, the program branches to 6680,
records L6 = L1, steps I2,and goes to the next column, If
there is a pivot in the L1 column, the program records its

row as Kl, presets Q, a multiplier used in SUB 8§532, replaces
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" IR TP

Ty

|

L

© S(I2) by S(I2) - Q, locater the first elements of the K1 row

in the a region and the pivot region, goes to SUB 8532, and
then goes to the next column.

¢7CC J#k L6=C iHEN €1/3C

67C5 K=2Ka

0 I=15+1C¢RIe(LE~Y)

t1eC 1h AFESCOLCIII»e ) IHEN HK)IC
¢ 130 Kk TukN

If L6 = 0, all columns have pre-existing pivots, and the
program branches to 6730. Otherwise, it identifies the
potential pivot row as K, the column being L6 > 0, and sets
I as locator of the potential pivot element. If S(I) # 0,

the program branches to 8110 to initiate the pivot; otherwise,
it returns to the control section.

1. Deletion Subroutine

This subroutine is addressed from statement 1580 or 1800
when the critical value of the parameter is H2 (implying
that an elementary strategy must be deleted from the hypo-

thetical Q-basis). t makes the necessary changes in (A),

(Qy, (R), (S), and the associated indices.

The target group affected is G2, and the elementary
strategy within this group is M2, as recorded at 3070 and
3080, respectively. The deletion algorithms depend on the
pivot status of this elementary strategy.

TCLC L=0GE
TCIC teau~ w7el
(Cle Luou~ "435
T7CeC Le=(

TCIC Je=dl+m () epir
T4 Tk ~Mex> (0 THEN 15%0C

This sequence identifies the target group and gets the correct
indices from subroutines 8760 and 8835. Since the (K) and
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(L) indices are already correctly oriented, there is no need
to go to SUB 8690, The sequence initializes L&, a locator
that will be used to record the pivot column if the row
being deleted is a pivot row and computes the location in
(A) of the row being deleted. If M2 > 0, the row being
deleted appears explicitly in (S), and the program branches
to 7580.

7C5C 15=1C

1052 L=t

7055 LB=1¢3)

T7CEC Poh K= Ty W4

TCIC J2=JeeK(9)

7C9C GuosbUH BHTC

7092 F GCIKC+KY>C THEN 7100
T095 tzw-1

TICC IF AESCLI>»e CCCY THEN 7T15¢
TILS 1S5=15+]1¢C 1)

TINIG NFALD K

If M2 = 0, the base row must be replaced, and the segquence
through line 7570 controls the replacement algorithms. The
7050 sequence selects one of the rows in (S) to be the new
base by looping on the rows of the pivot region, going to
SUB 8570 to compute Q, and exiting from the loop when Q # 0.

V10 Klp¥is
7130 l1ls13=IY
7339 M1aM3pMOzMTeK( 1)K i~ 1)

This sequence sets locators needed later; identifies the new
base row, which will be deleted from (S), as K1, M2; locates
its first element in the pivot region as Il, I3; and locates
its first element in the a region as M1, M3, M&,

72




114C Jalo=1C
T4y M=mE
T15C FOOh K2 10 K4
1159 TP K=K iqbNn 769C
1IN REMIZP(MYep(M))
i16C 11=13
IVIC FCH L=) TV La
IRLISNNEBEINGPETISRS
719C f=1¢1C0)
T 11zliel )
(38 NE2T L
1920 Ialo=lsel )
Tee™ MM+K(13)
1ed0 NEATL »
TN LY EL(l YY)
f T4l 1Yzl
; N TEah Nzl
Yest roh L) 1o La
! ' e rENI=ECNY-HCT ) : 3
' el 1h=11e1¢8) B
TeeS Nan+L(13)
Te€1 NeEAL L
This sequence recomputes the (R) matrix to reflect the change

—

}
3
1
F of batge, and recomputes the base value stored in (Q).

Tt For w2l 4o LO10O)
VST GV R AT AN % MR RN |

! UACT B GRS A TR
b This sequence substitutes the new base row in (A).
: LY SRR VAR

TS L=
Taed 1P s (ai{enjr=’ gy G238
THl LYsh. €= ({2

e e e ()M 1=3)
TN I 1edyz
[CY S L B & 2 Ve

This sequence begins recomputation of (S) to reflect the
change of base. It performs the computation on the row of
(S) identified as the new base row. If this is a pivot row,
the sequence records the column number of the pivot element

as L1, L6 for future use. Later this row will be deleted
from (8), but it must first be modified as part of the

73




algorithm for modifying the other rows.

TA7C 15=NC

13712 12=15«LC13)e(L)=-1)

Y315 Mb=1¢3e)

1377 L7=LC12)

1378 LAa=L¢12)

: 1380 FPCR K=( T+ K(1)

i 139C Gosurr 454¢(

: i 1395 1F K>C IHEN T41C

T4CC L=u-])
1410 1F Cc(x(ek)I=( THEY 743C
T4 sCley=L

i 1420 LELSuUb 353%¢

] T43% [5=159+1

Ta4( 1&=17+]

‘ Ta45 MH=MS+K15)

4 T4s(¢ NEXT K

L This sequence performs the recomputation for the rcws of
the common and § regions.

1455 1u=1(

T4¢C 1e=15+]10Z2)y=x(L1-1)

Tacy L1s)

T463 Le=z1¢3)

TLES MSz=N(

1¢¢e1 Fob K=1 TC K4

Ta<( [+ WK=Kl THEN THIY
T49C Gosub “a7(

Y40 LF Z(KC+%I>C THEN G501
149y (==}

THCC 1k o (wi+w Y= JdEy I82C
TH1L Sl =t

TErl 0Ll A0

19 1S=lo5+1C 1)

I953C Te=12+0C 1)

1939 MY=MSeK(C D)

7537 ~NE&T K

i

This sequence performs the recomputation for the rows of the
% and pivot regions.




S [ N

(S4aC Tr GCmy eIl JHEN gl b

JUSl clRCeR I CL T 1T

T A=~

LN K O ISR S &
If the new base row is not a pivot row, the program branches
at once to 7820, Gtherwise, it sets the pivot indices to 0
and reduces the pivot countur P8, since the row is going to
be deleted from (S).

A E R R R AR I I P S A

A DY S A O S

AT P AR RS D ENE VEBDED NGNS AL

T P G S

PRSI Y AR G i Y 2 10 - SPOR G T RS . R A N
This seqguerce is reached only from 7040. If the row to be
deleted is not a4 pivot row, the program brancii»s to 7820.
Otherwise, it begins recomputing the (S) matrix prior to
et - .ng a pivot row, using an algorithm best described as
an "unpivot." The sequence records the column number of
the pivot element as L6, locates the pre-existing pivot
element, sets the sensor 83 = -1 to indicate an unpivot, and
branches to 7780 if the pivot element S(I9) # O.

TS B IS

[T SN B I R A

[ AT I S & N B I - SR N T A AN
[ R B A - A T R AR B

et ) Ea (Ml ea )

A N O N D N X G|

criw TE Ao CLOLedde s LT Wb e
[N KRN RN YR I
DI W levw 1)t G+ 1) =7
PialC JTF 00 ChCIY)Y Yt 20} Qe N 1427
Peat bzl ee )

AR B B

e PRING MUNEIAG G bras e L CT9YENOL)
[N G S ]
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If S(I9) = 0, this sequence invokes the unpivoting procedure
on one or more other pivots of the group in order to muake

the desired pivot element 3(I9) ¥ 0, tests at 7740 each

time, and branches to 7780 whenever the conditicn is satisfied.
If the condition cannoi be satisfied by removing all other
pivots in the group, there is an error printout and programed
STOP at 7770. The error printout has never occurred in any
run of the debugged program, Howevex, the procedure is a
messy one, and a better recursion algorithm is needed.

el A yE e
Ferl LAFe

Fed o Gy ok 41

LT & FEY B DTS AN IS B X

If $(I9) # 0, this sequence denotes the pivot row and
column by K1 and L1, goes to subroutine 8160 with S3 = -1
for the unpivot computations, and sets the pivot index at 0.

TR =o)Ly

(4 BCYEH I+ (F))

tma&l Np A

P lepluslCel (l1)alye=-1)

Pl b MEALAK IS0 23) T U FCEYSLY -}
Tmeh FONMY=p (VOO

(40 S EM)Yshiver (13))

TH=C NEAG

C AR - I N -3 R N PR AY IS S
(=90 eyl ery-

R NN |

M4 kPO bz T L4
(4%¢ ruLe KRz 110 o ma
TR RCLEYsr L4
1200 SCled=LCl i+ )
P9lE 12=1x4)

P90 4 NEX] W

TICH Js.)e

TUYCoNEXT L,

TS Ptk =l 10 06y ) =)

T rCl)snrCl el o)
T3¢9 LCIY=LCl+L &)
7940 ~NEXT |
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This sequence deletes the M2 row from (A), (R), and (S), by
shifting down all the higher rows. 1If S1 = -1, the sequence
7890~7910 is needed to close the separated spaces within

the G2 pivot region of (R) and (S). It is the counterpart
of the sequence 6205-6280 for opening spaces.

939 Fut ASMF Tu Ka=}

THul (U eK )= (KT e+ )

ivan TP SIRCeRYE( THEN 18N

1950 L+l (Kiek) )W

i9Y99 NEAT %

T2 C PR ML+ T MKISYEMEHCTTIO (D)
(965 (WY =ui(ke])

P97l NFXT

This sequence shifts the elements of the pivot index to
conform to the new structure of (8).

YIS Kasva=1)

1996 For G=02¢) 40 ()

TUSH MIKCTI+ ()=t n(T)el Yoy
RGO GORCEI+ Y= (KREEIeL)=K( YD)
400 (XY= Ci)-Le

“C1C NEXT o,

XSRS VD AT R S G WA TN |

This sequence changes other indexes to conform.

O30 [r Leée=( piby = )0S

S0 J=210+1C3)e (¢~ 1)

AL bPur K=} T A4

SCTC LE R eR) > GHEN ®*(9C0
S0 IF ARSESCIII>e 1 HEN 21 )0
“(9C I=1«1C1)

$0(9Y NP K

100 PETLPN

If L6 = 0, the program branches to 8100, since no pivots
have been removed. Otherwise, a pivot has been removed by
deleting a row, so the other elements of the old pivot
column are tested for potential pivots, and if one is found,
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the program”branchesfto'BIIO to carry out the pivot operation.

Otherwise, the subroutine is finished.

5100 KIoOCLCele )=k

412C LYsu(KCen}I=LE

K130 >3=1)

4140 Lwdubk 160

3350 nETURN
This sequence identifies the pivot row and column as K1 and
Ll, respectively, records the pivot indices, sets the sensor
S2 at +1 to indicate a pivot (as opposed to an "unpivot,"
which would be indicated by -1), goes to SUB 8160 tc make

the pivot, and returns to the control program.

J. Auxiliary Subroutines

“iel laz]CelCY)e(«<1~-12
TIEH MAzvileu( JA)2 (K }=))
AYiC 1ozl DL~ ))
A1AL F2ochn L)

<120 oCled)=-00

Aril w= Y=/}

SV L TR

Al mbz=in]

X710 L=

4e s LH=1l(Y)

el ue LUK ¥HOP

This subroutine {(through 8390) controls the pivot operation,
addressing SUB 8525 for the actual computation of new values,
This sequence locates the first element of the pivot row in
the pivot region and in the « region, and locates the pivot
element. Then it prepares for computation of the pivot row,
sets the multiplier Q so that SUB 8532 will have the effect
of dividing each element of the pivot row by S3 times the
pivot element, resets the pivot element so that SUB 8532 will
have the effect of replacing the original pivot element by
its negative reciprocal, initializes I5 and M5 at the first
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elements of the row, sets the stepping indicators L7 and
L8, and goes to SUB 8532 to compute,

423C I5=NC

4235 M5=](3¢)

Beal 12=15%+LC13)8C)~1)
449 LisLi)5)

3746 L4=L.C13)

febC PR K2 i K(Yy
"e9Y beSUb KYEY
RebC 19215+

TEIC 1e=]lged

RPHC MO=MSIKC )Y
590 NEXT K

This sequence prepares for computation of the rows in the
common and § regions, initializes I5, M5, L7, and L8,
initializes I2 at the Pivot column element of the first row,
and loops on the rows, going to SUB 8525 to compute.

33CC le=t¢ -

HACGT 1220591 ¢2)w(L)~-1)
ANMLY L=

AL Le=]¢3)

$30T7 mS=wE

L3206 FUh o mz ) Ty, s
1307 TR kel THEN xn(
33685 (Lo ye oy

A0 Ih=19%+1C

NN MRSV SR )

UL I 2=10e00))

<A4C NEAY o«

AU40 bAzl He ]

“as o RETURY

This sequence prepares for computation of the rows in the

a and pivot regions, except the pivot row, which has already
been computed. It maintains the count of the current number
of explicit pivots in (§) by replacing P8 by P8 + 83,




9529 wEsS3e5(C[P)

H93C $¢12)=0

#5532 l=zmMd

®¥43¢ FSh L=C T L)
4940 SCII=8C1)=5(MBelL)e U
994} [=]+L7

“S547 NEXT L

254¢ 1=15

Ab4as 1)=13

$55C FSh L=) 04 L4
K592 5CI)=0CI)=5C1 )¢
884 [=]elA

455¢ 11=11+1C2)

4554 NEAT L

%S¢0 nETURN

This computational subroutine is addressed from a number
of places in the program. It loops simultaneously across
two parallel rows in (S), subtracting from the elements of
one row the product of a multiplier Q and the elements of
the other row. In some instances, the first two statements

g

of the subroutine are by-passed. When used, they initialize
the multiplier and the pivot-column element S(I2) of the

row being modified, so that statement 8552 will have the
effect of dividing this element by 53 times the original
pivot element.

$57L G=0L

s use 1315

“«S59C P =1 0 e

at )0 TF LCLO+LYs0 kN s 0
Ker( w=iLe ]

el IT=f+bn

mE Lt NE2 )L,

we( reliry

This subroutine is addressed for a specified row of either
the § region or the pivot region of (S). It sums thz elements

in pivot columns of that row. It is used only when replacing

a base row,




T

W e e e

3690 M=(C

B7(CC Furn N=) Tv 13
44110 MzMe ]

R1eC MINY=I(M-L1)
H13C LInNY=sl(MelL))
B874C VEAT v

4950 rETURN

This subroutine reads one wing of (I) into (K) and the other
into (L). When the sign of Sl is reversed, the wings are
interchanged and the problem is effectively transposed.

<A eC ROsKCYIeM{KLTI+1)

R11S Ka=N(L(C 7))

$I9C LEZL (S +MLCTI+ )

409 Lae=NCLCT7)*()

50 162006

BArYy MO=0IKCE)+L)

430 NOC=((LCoI+ ()

“X3) 1(Peld=

4437 [Cr=n1)=Nv(l-ve(s)

44334 hFTURN
This subroutine names as simple variables a number of fre-
quently used indexes associated with a target group G. KO,
LO are row, column locators for (@). K4, L4 are the number
of rows, columns in the pivot region of (S). 1I0 is the
location of the first element in the pivot region of (S).
M0 is the location of the first element in the a region of
(S). NO is the location of the first element in the § region
of (S). 1I({l1) is the interval between elements of successive
rows in the same column of the pivot region. I(3) is the
interval between elements of successive columns in the same

row of the pivot region.

3L = (K)YeU (D) &,y

Araaie J3ISHCAIOKCGINCL Q4N IKCTIS )+ ()
PRI Y ART T A-DE XA ERNG far B R AL DEATE S}
5440 e bul

il s s
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This subroutine computes several indexes to (A). J0 locates
the test control row for group G. Jl locates the base
strategy row for group G. J9 locates the base strategy row
for the hypothetical group G9.

K. Strateqy Subroutine

This subroutine is regularly entered from statements 1520
and 1720 in the control program. There is also a special
short-cut entry from statement 1100, used to cause a strategy
printout without changing resources.

The first portion of the subroutine sets up the third
stage matrix (U) and inverts it into (W). The remainder
carries the back solutions through the third, second, and
first stages. The end product is two vectors, (X) and (Y),
representing, respectively, the first and second columns of
the solution strategy expressed in terms of the particuler
parameter being used at the mément. (X) and..(Y) are normally
not combined into a single solution strateqgy vector except
during printout in SUB 5000.

The subroutine serves eight cases, corresponding to the
combinations of values that S1, S2, and P2 may have in the
control program.

sl JTyzinlel A
FCCYH VAT wuz/dFrClY,19)
YOI MAT YW=/ /FnClYsl9)

FEAY MET ZzlEhCl 1)

This sequence zeros {(U), (W), and (2) at the greater dimen-
sion of (S) less the number of pivots in (S).
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A

YOG M=1036

V02Y rok M=) o 1(2)
Y(3C Mzme 1 ¢ 3Y)

FL35 Fun L=) Tu e
PLal, UKL Y=oCMeL)
vw(Ca» NEAT L

905 NEL] K

This sequence enters the common region of (S) into (U). The
use of (I) indices means that (U) is set up without trans-
position.

PUIC KIz1023

TS Ldsita)

72T AU BA TR O3 T PR |
YWian lald=0(0)

A AT G IR TR I
FE9S Ve NG a L)
IO KlgKe =y

LR X AR R T TP A B

YL oA =Vl

CLAEAY (= e en( i 9ei )
TN Las i ven) i

A0 REERNNY SRNTEEE- -2 N FRENRNY ' I
~ 1Y Ir cCAadewd)> ] bHENY o sY e
PV 1Ll Kz a e

PlehS roF =i 10 1)
C IS SN T T IO AL VY B
ED T I I

Fle D wiAzwiye] (=)

Mie ] NREYP oS

YiEr KU b= o0 oG
2l bk OO )>8 ey Y6
E2 B AR R Y B R 0

U O I A A T I P
R I Y 4 U WS W QR PR,
Gl NMreed W

S S

ER TN XU T i B RG]
Wisem [P LK+ I>0 JHby 9 ia
PIYE K )z=K ]+

PIYe UK, LL3)=5(1)
VY%L [ =]et.a

YIvYS NRAT W

Q176 lala=104)

Y7 NaNENAL [ ()
Y1794 WNEXT O,

PeCT NEXT

o]
[T

sl

e sl

e ML sl 1 = AL



e e g T AT

ST

This sequence enters into (U) the other elements of (S) at
the intersection of nonpivcot rows and nonpivot columne. The
pivot index (@) controls the selection. Llements of the a
region are entered by statement 9150, of the § region by
9178, and of the pivot region by 9192.

S TS I I S
KT B B RGN BRI SR L F RN

W, e, 1L alrd)zt,
AR o o - f
et 1 llssrLia-ai
vy 0l B ta o)
If S2 = 1, (U) is a nonsingular matrix and may be inverted.

If s2

1]

-1, the last row or column of (U! consists of zeros,
and the deficiency is made up by entering P2 in the RS
element of the last row or column.

[T | { . AN S

2. . [ T TR N
R I G |

LR T va g A

o e L4 Ve .

The solutions are sensitive to the orientation of (S) and
(W), so subroutine 8690 is called to provide (K) and (L)

indices, and (Z) is set as either (W) or the transpose of

(W) .
4 v LA B |
Y Ir =y o Ve
¢y FO*)Y " ] ey
- f P
[ () 2y ( s ")
¥4 [ A TP
‘. she 0
' r | IR S Y S 3
4l FREE N I A |
DR B A G T2 S TR A A GRS N B O PR |
s ol ar [
44} B S T
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w41 LisLC(D)

Yalir Li=L(5)

Jyaly w=L(LOers])

whipl" kit k =) v 1Y+ )
2430 TE LI >0 Db v Yaae
valihy LIzt )]

RN T S S T

Faml ((A)FtEAm)e (VM)n/ (L Ja™)
dada NELT W

VoLt zpelL () )

X7V Y S

This sequence computes the third-stage solution from (2) and

the right-side elements of (S), storing the solution in (C)
and (F).

A I I D]
Jael (Aad)zi, (~)
S0l 1 {")ar(a)

L L B S

Thi< sequence enters the marginal returns from (C) and (F)
directly into (X) and (¥).

e ] FlonCudel (e)e
L A R R
et e Te ()

LR Y T

et . R

This Sequence begins the back solutien by a loop on G
extending to line 9900, For G = 1, it initializes Jl to
locate the base strategy in (A) and Il to locate the inter-
cept elements in (¥) and (¥). It then initializes K2 to
locate the last elements of (C) and (F) already transferred
to (X) and (Y). For each group in turn, it goes tc SUB 8760
to get specific indexes.




Il K TAL
LTS e BN E RS
Pheny ror dzlher b 1 )ende)
LI Rt B - N 3]
Y B B W O U L N L Y A Y AR N §

This sequence begins the back solution for elements of (X)
and (Y) corresponding to excess strategies. The loop on I
extends to line 9700. 1If there is a pivot in row Kl of (8),
the program branches to 9€10:; otherwise, it continues. |

¢ g "o, “, sy
e Y= ()
T (S R ET N S

L S P

If the Kl row of (S} is not a pivct row, the corresponding
solution elements (X) and (Y) are entered directly from ({(C)
and (F).

FislCayee, (o3}
ST B P IO AN AR I

ot .. (¢
L N ST O

LT Je-fae,

YO & I L O B I Y G T B A
Y S O B R O I I G IR |

Fies b,

If the Kl row of (S) is a pivnt row, the corresponding
elements of (X) and (Y) must be computed from (C), (F),

and all those elements of (S) in the column of that pivot
which are not themselves in any vivot row, The computation
runs first over the marginal-value elements of (C) and (F).




e, Aabedy
YEtd PO, Az} b. A
wige gp (M Camw)>( jHr s e
e eH mozTe e}
YOI GRS B RV RN D LN B
i W YCLI=Y () Y=F (NI (), )
- reel Qosled]l D)
| JeYS NeAal

NE ST WA |

The computation is completed by running over other elements
of (C) and (F) pertaining to target group G.

et L YY==-0 00
W =l e

EREETEREETE G B2 ?
crel. TCL32a0C) =X

il

3 The back solution for intercept value, X(I1) and Y(l1l), and
for base strategy, X(J) and Y(J), begins with their initializa‘tion,

v iat, e

\
LA LI I

Tase- T, 1T)edewa

rael ()= Cade ]
s rCdysr = (1)
vt L= Chadysa(ClderCit)
A ISR PERAG R R EEAE BENEG TS

DN KON IR

I I B O I

wel CCPYYS A Y- Y e ]
AR SRR ERAGE RIS AN SR RN
s NP2 i

Y

3 poi o Tl ea ()0
]

= anl r.or l':

This seguence completes the back solution for intercept and
base strateqgy, using previously computed elements of (X) and
{(Y) and stored elements of (R) and (A).
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e R el () e() e }))
vl V=] Jeras;

P (. e |

R N Y SN

At d kN

This sequence steps indexes for the next target group. After
completing (X) and (¥), it returns to the control program,

The END statement is not a part of the operating program
but is required by the computer system.
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V. PATH87A COMPUTER PROGRAM

One-sided optimization problems can bhe run on the PATH87
program by specifying no defended target groups and no defense
weapon types, i.e., G4, Dl = 0. lowever, much of the capa-
bility of the program is not needed for these simpler problems
and can be cut out to save running time.

The PATHB7A program is designed for one-sided optimizations.
Being derived from PATH87, it has a similar general structure
but is less than half the length. Excess capabilities have
been cut out and many procedures simplified.

A. Simplifying Ideas

By definition, the defense solution strategy is a null
stiategy, which need not be computed or stored. Since there
are no excess elementary defense strategies, the pivot
regions cf (R) and (S) are nonexistent, and the second-stage
solution procedures can be eliminated, along with the pivot
index (¥). If the components of the attack solution strategy
are redefined as numbers of targets, rather than as fractions
of a group of targets, the scaling factor T(G) can be
eliminated from (S), which reduces round-off error as well
as computational time. The one-sided nature of the problem
results in most of the subroutines having to work only one
way rather than two. Consequently, the reversible indexing

system is not needed, and we can eliminate (K) and (L).

B. Program Listing

The following listing has explanatory comments added
where appropriate:
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P AIMR T4

50 LATAL 5,3
6C UDATA 12100159080 1Cots2C09:5C0 2
TG UBLE eRp eSS0 0Tl sepaloetsediseDaeSNsslsedbysafseh

Only two dimensions, Gl and Al, need to be specified. Line 80

is omitted.

1CC LIY LOICEILTCICCIANCICOI o MEECFIan(ZCEIL CCIC IR NCECE)
1CS UI™ COISYnbC1Y20 010t 15, 39,00 5%, 19

110 LIv JC4ae)

115 bIm ACESCI»Y LN

170 wiv S5C9COY

129 LIV RalCC)a (150 ()

This sequence omits matrices (D), (K), (L), (#), (R), and
(2).

(G) is reduced in size since onlv the o region of (S)

needs indexes.

(Q) is enlarged to store the value associated with every
elementary attack strategy, not just the base strategies.

(M) is used to locate the base value for group G in (Q).

(N) is reduced to store only the number of rows for
each target group in (S).

(J) is added as a locator for the attack region of (A).
It is divided into two regions, J(l) to J(G9) locating base-
strategy rows and J(G9+1l) to J(2%*G9) locating control rows
for each group. The defense region of (A} is not used.

13C REEL GlE)

135 PrRINT “CY1ak1=G11 61
14C GO, IC 1Y, 1CFEY=014 )
145 T¢I 10)=h)

155 1¢39)=1

16C 1C16)=3C

S0




165 1€A%, 10 =6y

140 ¢ sed

19C 1C@1Ya1Ced)s i (0D =)
199 1C2¢d=F1elCr 1)

SCS 1CHaPd)ei ¢ 1Yol ()
(e 1CHed=)

(1 mC1)=2)

1 JCive )=l DNl
LN IR ENIGE TS BEYINE N NS

This sequence reads dimensions of the problem and initializes
indices. In actuality, the program could be improved by
replacing the (I) elements by simple variables throughout.

A0 PEINT i et

910 For vy 4ot}

el FR T a0 ;
A4C bEINGT 0N

Tal (v )= 00)

i A50 V1SV (L)
el (e )=t O
WH UL IS Gey
Al (el 4= JC1 ) v [ (re)
A AR RN I R NN 3]
90 Ne<g ot
This sequence reads target data and initializes the (G),
(M), and (J) indices,.
aCC reiNg vzt
, w1t 1=(
i 4l Fvk otz 0. 0
! &30 run k=) 1. €1
4aaC 131e+)
Ll rb L}
; LeC FPEINT b3

YA IN RO BEREY
«7C N"K] 4

] a4C FrRINT
490 NEX] G

, This sequence reads probabilities of kill and stores
é‘ probabilities of survival in (P).




1CCGC FRINT “Fl,FI3?"
ICIC INFUT Filst 2 3
102C 1k F1<>C THEN 1C40 3
1C30 S8k

il

Meaningful inputs for Pl are posi‘ive integers to denote
attack weapon types, 0 to terminate the run, and -1 to g.i 3
a printnut of marginal values. Their use is illustrated in '
Section VI.A.

1C4C s)=506NCHD)
105G 1k S1=<-3 THEN 1300
1C7C o= (NCHF3=9CF1)Y))
1C7S ve=Vie ()~} 2)
1(AC basbnLthb3=-2CH1))
1(9C 1F Fa>»C d+4bN 133¢
1106 Gusuk 978
1110 GuTu 1%ec
113C Uk ko=1 Tv 6e
114C [F ACICZEY+ESY=FE THEN H7CC
119C Tk ACLCERY+RYSY> ) THEN JIKC
1160 NEXT FS
1170 Rb=Lee])
118C F¢h FR=Ffe T RS SdEE-)
1654 [=1+k
125€ Fer K=C Ti &P
126C S0+ 1=
1262 S(1HY)=0
1763 I=1+1¢34)
VF€d NEXT K
127¢C NEXT B
e Uk Jd=1¢eld) Tu JCGI9Y=1C-€6) SThE 08D
1e9 0 FUk L=d+1C3)3) T JeRS STEE =1
V3CC ACL+ 1IY=ACL)
13)1C NPAG L
138C ACJ+kYr¥=0
. 133C NEXT O
134C AC1C23)415)=}])
135C L2=424+1
134C 1¢31)Y=1¢31)+1

This sequence initializes a path segment in the same general
fashion as in PATHB87, but with many simplifications. The
number of attack weapon types actually in play is denoted by
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A2 rather than

by 1(4).

)‘)“’: R R}
Sel Loenus wed
JOJSL HMia=ve
1h0C (o Tro e
Peef o hue 000
19¢CC o 1=1
14:C (Woub vl (!
Vil Hezt a
[T Y S N CE SR a4
1747 1r Aezha iden ¥75 |
Y TS NI G §
1400 o T 1o(
The 1500 and 1700 sequences are much simplified.
It SCr)X=0
JAS{ SC0IChe e M) ( I CHEYarNY e b ol o
146, 4=, 4
IR I KU FTVRLS F oL A S

I<«0 Goiv 10 f

This sequence terminates the path segment.

PO VR O O [ B R T L
0 [ hz(

clal pvr L= ) . 1
N S A RO N L U |

e CEL 3=z 1C1)

RN AR RN G TR
co4t vyy=(

PR RO ST I B R

100 L= jes()wb( 1)+ ])
1Y 7YY leYCl)edCiye])
1ML NEAG |

This seyuence begins the test control section for a defense
strategy by initializing X1 and Yl. The procedure permits
SUB 9000 to be greatly simplified.
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rlel Cedu= A2

213C wele 719¢

“1al LeduE 350C

B B-1 N TS PO~ I X

7160 w=z)

eVIC Tk LCvI>ECJC+V.) THEN £23C
10 (o subk el

PI9C 1r YI>=0 () THEN P00

reCl veonur 4CGC

cedl weLns 3aCcC

fef0 TF LCLCH1d)c=0C 00+l C31)) THEN F1E0
et Ik sewl TH4EN Plac

crabh Jaz]ari}

el vEr] G

et rETuUPN

This sequence completes the test control section for a

defense strategy with essentially the same flow illustrated

in Figure 11. Three exceptions should be noted. SUB 3000

is omitted since the defense strategy is unchangeably a null
strategy. SUB 4000 is addressed directly instead of through
SUB 3700. SUB 3820 is replaced by a single statement stepping
14.

FOlT FUFR G T (-}
#5510 sy ACCC
ce¢70 NEXG U

e nikTurN

The test control section for an attack strategy calls on
SUB 3000 only.

A3CCC Fubk 1=%C) T MCEIeNCG)
3C3C 1r YCl)>ea (CLCY dHeN 3C9C
JCa(C H=z=AC1YZ7YOD)

IO 1k Heed IHEN 309 (

e H2=+4

acic L=t

B3C4C mez=]-r ()

309C NEXT ]

310G rRETURN
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_. o ALCC Pot oz 10 21
361C b6Cwr=C
30¢C NEY)
Ai¢C SrTats,
B Hz=(r2)ea,)/1)
3810 1y HM3<d IHEN 14)C
A3¢C HA3=4
330 =i
3340 r0pr omz=) 0 104
Han( AU ICI=CH)
1370 vradl o»m
Va0l ACH el (III=r
B34)C nrlury
An( KXp=zr)=n(rde-(\)
2O1C0 YISt l=rCeder()
Ised A1)l Y =0 )
A8l Lcwed=C
29540 wzee]
LS S S Y RN
3ELL ACwdz6C1)e)
Fe 10 FACLCHIII=z bl 1 CALd Y+
d€el KY=AYeA(VD)
363C Yi=vi+Y ()
HELL b aunN

The 3000~series subroutines are only five in number, and
these are simplified.

LG AranVNTLD)

“Hirl FPor b2 1 4
“lEC AT=0C L)Y

w(-1C b L=zt 1H4rN «f i
aCAC TS=lasnC ]3I+ L)
a6l Kezfiab 1Y) ig

G4 i Nr AT A

4240 pEkjlues

The simplified value function computes X2 directly. The
variable Y2 is ocmitted since it would always be zero.




500C
“C1¢
SC1S
SC2C
5GeC
5€C7C
“C1S

LEF PNLCLI=HeYC([dex(])

veG

I S¥=t THEnNn SCR0

FOR v=) To kP
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The print subroutine begins with one branch printing only

the part of a defense r trategy that specifies marginal values

for the attack weapons.
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The other branch prints an attack strategy with no marginal
values or intercept values.
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VS is computed as the sum of

the products (numbers of targets times expected surviving

value per target).

Illustrative printouts are in Section VI.A.
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The basis subroutines, 6000 and 7000, realize the greatest
saving of statement lines by the elimination of the second

L oenke

solution stage and all the complicated algorithms associated
with it.
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The matrix (U) is set up from only one region of (S) instead
of four. If S1 = -1, the program goes to 9411 to compute a

defense strategy. Otcherwise, it continues at 9330.




KT o FLE I 3 T TP 4

WAYC PCuIZFZov(lYen)

Yaull LLwrY=(

bl 2s1C3e)

véaCae +F L=2) Tv &e

Vai i (YUY (Yo Ior (L ,v)
Qa(~ NpX| L

val9 NE2L &

1 wall o1 952C

This sequence begins to compute an attack strategy by storirg
E the third-stage solutions in (C) and (). The program
continues at 9490.
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This sequence computes a defense strategy, marginal values
only, storing the third-stage solutions directly in (X) ard
(Y):; then it returns to the control program.
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" This sequence finishes computing an attack strategy, less
marginal and intercept values; then it returns to the control
program,

TS TR

100




VI. EXAMPLES

In this section we will apply the PATH87 and PATH87A
programs to solve the problem of allocating weapons to point
targets in a variety of cases selected to illustrate features
of the solution method and typical properties of solutions.

A. One-Sided Optimizations; PATHB7A

. The first four cases .are one-sided optimizations involving
the allocation of attack weapons to undefended targets.
Program PATH87A is preferred for this type of problem,
although PATH87 may be used.

The dimensions of each case are given by the number of
target types (Gl) and the number of attack-weapon types (Al).
The cases are arranged in order of increasing complexity.

Case 1: (Gl,Al) = (1,1)

The technique can be i1llustrated by running a simple
case with interaction between computer and operator. To begin,
we assume that the source program is stored on disk.

LiAb FEIHRTA

hEADY
The operator commands that the source program be loaded into
core, and the computer respor.ds when it has done this and
is ready for further commands.

SCG LATE 1.1

CG DATA 1€y}

76 LATA o8

i UN
The operator modifies the source program and commands that
it be run. In this example, the data statements specify 1
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target type, 1 attack-weapon type, 100 targets, unit value
per target, and 0.8 single shot kill probability.

FATHB7A

Gi»Al= 1 |
Tov=

1CC 1
FKT=

Y-

The computer prints a heading and begins the run by printing
the data specifications for the record.

F1sF37?

?2 125G
After initializing, the computer calls for input of Pl and
PF3 to specify a path segment. By typing "1,50%", the
operator directs that attack weapon tvpe 1l be changed from
its present quantity (initially 0} to 50.

c 5¢C S5C
t SC 10.
V5= 60

At the end oi the path segment; the computer prints a
solution, four lines in this case. The first line identifies
the target type. The second line says that the elementary
strategy a = 0 {(i.e., no weapons arc assigned) is used on
each of 50 targets and that the expected surviving value of
these is 50. The third line says that the eleuaentarv
strategy a = 1 (i.e., one weapon is assigned to each target)
is used on each of 50 tergets and that the expected sur-
viving value of these is 10. The last line gives the total
expected surviving value.

e w1 A
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The computer calls for a new path segment, and the operator
types "-1,0", a special input used to direct a printout of
marginal values in PATH87A. The computer says that the
marginal value for attack weapon tyne 1 is -.8.

FYs k3?2
? 1515C

) 4G 1C.
M I Pe
Vo 1P
Flas b8
LS P&

1 -e 16
In the same way as before, the number of weapons is increased
to 150, with a new solution strategy and a new marginal value

of ~.16.
sl
S PR
1
-~ “.( -
3 5¢C ¢ 4
LT e d
iet 37
[ VXY
1 “3erCOGCE-( 7

The force size is increased to 250, and the marginal value
becomes -.032.

Fl1s, k37

? CsC

Cru-stCos Ceb
A "0,0" input terminates the run, with the computer printing
the total central prrcessing time used.
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The results are illustrated graphically by the drawdown
curve of Figure 13, Here the resource space is the A-axis,
divided into regions of length 100 by regional boundaries at
the points 0, 100, 200, etc. Elementary solution strategies
throughout the first region are ¢ = 0 and & = 1, throughout
the second a = 1 and a = 2, etc. The solution surface is
the drawdown curve itself, a straight line over each region.
The tangent line, with its intercept and slope (or marginal
value), is uniquely defined over the interior of each region
but is indeterminate at regional boundaries, where it may
have any slope between those of the two adjacent regions.

Vs
100 ~
Solution Surface, VS
/7 36
Intercept
i 24 0.8
0 e 4~ A

T~ 300
—

FIGURE 13
SOLUTION OF CASE 1
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Case 2: (Gl,Al) = (1,2)

A case with two attack weapon types illustrates some
additional features. For the following runs, we assume that
PATHB87A has already been loaded into core.

SC DAETA 1,0
€EC LATA 1LC,)
1C LATA ey b
hUN

The operator commands a run with 1 target type, 2 attack
weapon types, 100 targets, unit value per target, and 0.8
and 0.6 single shot kill probabilities.

rbiAsTA

Lishlz -
TaNz=

icc }
rKi=z

.5 . é

The computer prints the heading and data record.

risrse
L VI R
]
1 50 Y
¢ S( e
Ves 1l

For the first path segment, the input "1,150" produces a
solution identical with one of the Case 1 solutions.

Fl,4t37
? fal2C
1
’ G ac le?
1 v 5 Tef
¢ 3 “C « 37
Vo= 3-’?

A.lr‘ﬂ"“'r‘ oy
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UL,

‘The second path segment adds weapon type 2. In the solution,

there are now three elementary strategies, given by the
vectors (2,0), (1,2), and (2,1).

Fls b2

?7 =1.C
) -4 LCCCCE=-CH
b “20 4CLLLE-(7

The marginal values for both attack weapons are obtained by

the special input "-1,0".

} 1, B2
72 CaC
Chu=oeCEe Ce b

The run ends with a time printout.

Another run with the same data statements can be made

simply by commanding RUN.

FRIARTEA

Gls bl ) ¢
Talm

1CC |
FXT=

«3 e €
Fiaraz:

? s 12C

vh=E 35
In this example, the order of weapon input is reversed,
attack weapon type 2 being raised to 120 on the first path
segment.
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b 1,32

P CaC
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On the second path segment, attack weapon type 1 is added.
In the printout of elementary strategies, the weapon types
are arranged in their original numerical order regardless of
the path sequence. The solution strategy at the point (150,
120) is identical with that of the preceding run.

In this case, the resource space is the (A,,A;)-plane.
It is divided into triangular regions as shown by the solid
lines on the regional map of Figure 14. The solution surface
nust be imagined in a third dimension, but the values are
shown in parentheses at points of integral density, correspond-
ing to corners of the regions. The solution surface over
each region is a plane. The elementary solution strategy
at the corner of a region is a uniform strateqy, the same on
all targets. On a boundary, the solution is a mix of two
corner strategies. In a regional interior, the solution is
a mix of three corner strategies.

The pattern of regions is associated with the kill
probabilities of the problem. In this case, the pattern was
determined by making a run along the dashed exploratory path
in the figure. The exploratory path is one that goes back
and forth, like ploughing a field. We want a printout at
every critical point of the path, that is at every regional
boundary and at the end of each path segment. For this
purpose, the program must be modified.
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FIGURE 14
REGIONAL MAP OF CASE 2
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The operator adds lines 1745 and 1750 to get a printout at
every critical point, and deletes 1870 to delete the usual
printout at the end of a path segment.

AT

ls b= ) g
WAL

1(( )
K=

Py . ¥
Flsi 37
[ W1
1}

t Ky He
1 Si 10
Viz (0,

The solution at (50,0), the end of the first path segment,
is identical with that in Case 1.

(
i r L4 1 e
N “i Lo

vae 20
On the second path segment, running from (50,0) to (50,280),
the computer prints a solution strategy at the first regional
boundary encountered. The three elementary strategies locate
the corner points of a region. Since one of the strategies,
i.e., (0,0), applies to zero targets, the path is crossing
the opposite regional boundary, specifically at the point
(50,50), where VS = 30,
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Vos 1<
The (0,0) elementary strategy has been deleted and (0,2)
is added. The path has reached the point (50,100), where -
it is again on a regional boundary, and the (0,1) elementary
strategy is about to be deleted.

VviE )ie
1
{ : :
i 1 Y fie
{ o ‘e
Ves Ter -
i
] »
( R -
- b .
VS te 49

The path continues, encountering regional boundaries at
(50,150), (50,200), and (50,225). Here a small roundoff
error appears in the printout of VS, which should be read
as 5.8

S K] YR I e AU
s < e Ll LMk =0 Codi 391k =( 1
1 ol dse 137 I A A

Vos e 19977
At the boundary (50,250), a number of small roundoff errors
appear. The correct reading is obviously:




S = N O

3 50 3.2
0 0
2 %0 1.6

The program continues along the dashed line.

[ | I 2]
Y | X
“r o 40

The path segment ends at an interior point of a region. NO

roundoff errors appear in the printout.
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The third path segment traverses four regions before
reaching a boundary at (113%,280). Neither the force level

3

nor the strateqy is physically feasible, although they are
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- mathematically correct in the path method of solution.
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The path segment continues to its end at the interior point
(150,280). Here the strategy is physically feasible when
roundoff errors in the printout are overlooked.
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On the fourth path segment, the force level is decreasing,

s0 the value surviving is increasing. At (150,120), the
end of the segment, the solution is identical, except for
arrangement, with those ¢f the earlier runs of this case,
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The titih path segment continues in the

fourth, with VS still increasing.
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The force increases again
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the sixth path segment.
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The force continues to increase on the seventh path segment,
and VS reaches its lowest level of the entire run at the end

point (250,120).
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The last path segment reaches point (150,120) from the -ight
) in the map of Figure 14, with the same solution as from each
- 38 of the other directions.

Flably
P ,U
iTFu=seCot 1e €

The exploratvory run is terminated with sufficient data to
construct the map of Figure 14. By inspecting the figure,
we can see that the path has traversed each region at least
once and some regions as many as four times.

Although the path method theoretically finds the same
solution regardless of the direction of approach to a point,
the program PATH87A does not always do so, because of
arbitrary limitations of the "floating 1lid" test-control
process discussed in Section JTV. The discrepancy is illustrated
by the two runs that follow.
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In the first run, the correct VS = 5.44 at (150,60) is
obtained by inputting (2,60) and then (1,150).
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In the second run, with the input order reversed, the answer
VS = 5,52 is not optimal, because the elementary strategy (0,3)
was barred from testing when the boundary at (150,50) was
crossed, since the “floating 1id" would not permit testing
either weapon at a level higher than 1 above its previous
actual maximum.
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When the same run is continued by withdrawing, input (2,20),
3 and then readvancing, input (2,60), the correct solution is

obtained, because the 1id has floated high enough to permit 3
the elementary strateqgy (0,3) to be tested the second time
the boundary is crossed. The "floating 1id" process needs
improvement in order to achieve absolute precision, as well
as to save time,

Case 3+ (Gl,Al) = (1,5) !

Some additional features can be illustrated by a case
with five attack-weapon types.
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The resource space is now three dimensional and is divided j
into tetrahedral regions with four corners and triangular
faces. The solution contains four elementary strategies.
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Each new weapon type adds a dimension to the resource space
and an elementary strategy to the solution. The general rule ;
for one-sided optimizations is that the number of elementary
strategies is equal to the number of object types plus the
number of resource types.
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Vo= Se46363

The final resource space has five dimensions and is divided
into six-cornered regions called simplexes. Roundoff errors
in the printout of the target column can be corrected to 58, :
12, 7, 17, 2, and 4, giving an integral solution strategy. ' -

Fislr3?

P =1sC

“-HeHTEYIF-(ir
~4a AHDH1I3E~-CF
~3e €94ESE-LIE
R PR UCKY § XSS S
“5e 626?7L“L'3

i I A

Fl, 3¢

? CaC

CrU=-3eCy: Te 4
The marginal values, or slopes of the tangent hyperplane,
are all very small at this attack level.

We cannot guarantee that the final solution strategy is
absolutely the best integral strateqgy, since the "floating
1lid" test process may have arbitrarily excluded a better
elementary strategy than one of those selected. However, we
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can find a lower bound for VS by supposing that the aggrégéte
kill potential of the force could be spread uniformly over
all the targets. This lower bound is VS = 5.4589, computed
by hand. Clearly the integral strategy of the computer run
couldn't be improved very much, if at all.

Case 4: (Gl,Al) = (5,3)

L

Multidimensionality may extend to both target and weapon
types, as in the following run.
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The five target groups consist of 1 target of value 10, 15
targets of value 8, etc., a total of 96 targets of aggregate
value 390. The 3 weapon types have different kill probabilities
against targets of the different groups. The first weapon

type is generally the best, but the third weapon type is best
against group 5 targets,
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On the first path segment, 50 type 3 weapons are used. There
are two elementary strategies on target group 4, but only one
elementary strategy on each of the other groups. In the sense
of Figure 13, that means there is an interior strategy on
group 4 and corner strategies on the other groups.
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The marginal value is determined by the interior stratcgy
on group 4.
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On the second path segment, 50 type 2 weapons are added to

the force, and some reallocation of type 3 weapons takes
Place. In the sense of Figure 14, there are curner strategies
on groups 1, 3, and 4, edge strategies on groups 2 and 5, and
no interior strategies,
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The marginal value for weapon type 2 is determined by the
strategy on target group 2, and that for weapon type 3 by

the strategy on target group 5.

i34 k27
N WA-T)
i
- e { i . L
.
1 g (. 15 Se 1€
!
- v W Je 48343 |
C 3 (. Ea b€t eS¢
4
] ¢ C 13a €€ Cotn 3L
( I Coe A330 4 el 66T
.
v L i H¢ 5¢C
¢ : o -
Vs 6776 €71

Now 50 type 1 weapons are added, and the other weapons are
reallocated. We note that all the type 3 weapons are used
against target group 5, where they are more effective than
types 1 and 2. There are corner strategies on two groups
and edge strategies on three. Boundary strategies of some
sort are typical in multigroup cases.

The strategies on groups 3 and 4§ are not physically
feasible, since they call for the use of an elementary
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strateqgy on a fractional number of téfget;.v if desiféd, the
solution can be adjusted by hand to a feasible one, for

instance:
3
2 0 0 3 1.62
0 6 2.304
1 2 0 1 .288
4
1 0 0 14 7.
2 0 0 6 .3
vs= 67.672,

which is close to the printed value. Ordinarily, the
discrepancy can be ignored, since it is a local one, as is
shown by the following path segment.
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If one type 2 weapon is added to the force, the strategy
becomes physically feasible. The changes taking place show
that physically feasible strategies will result from 48, 51,
54, etc., type 2 weapons and infeasible ones from 49, 50, 52,
53, etc. The user will have to decide whether extra precision
is worth the trouble.
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The marginal values show t4hat, at the final force level
(50,51,50), one extra type 3 weapon would add more to force
effectiveness than one of either of the other types.

B. Two~-Sided Games; PATHS7

The next four cases are two-sided games invoiving the
allocation of defense weapons as well as of attack weapons.
Program PATH87 must be used for these.

In addition to the dimensions Gl and Al, we must also
specify the number of defended-target types (G4) and the
number of defense-weapon types (Dl).

Case 5: (Gl1,G4,Al1,bl) = (1,1,1,1); Perfect Weapons

This perfect-weapon case is analyzed in Reference 1,
where explicit solution formulas are given. It is included
here to illustrate the numerical solution by the PATHS87
program.
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The first line of data input specifies the four dimensions.
The added fourth line specifies the probability of intercept
by the defense weapon type. The other lines are the same for
both PATH87 and PATHS87A.
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After printing a heading and recording data, the computer
calls for the operator to input a path segment. Some attack

must be specified before any defense, so the operator inputs
50 type 1 attack weapons.
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The form of the strategy printout differs in two respects
from that of PATH87A. Here the first line shows an intercept

value of 50, and the elementary strategy lines omit the
expected-survival column of PATHB87A.
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The operator inputs 175 type 1 defense weapons (the - sign
indicates defense).
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' The computer prints the defense'solution_stfétegy-at the
end of the second path segment:; that is, at the point
(50;175). The first line says attack weapon type 1 has a
marginal value of =.225-—that is, the slope of the tangent
g : plane in the direction of the attack coordinate. The second
g line says that on target group 1 the intercept value is
100~—that is, the ordinate [i.e., value at the point
(0;175)] of the plane tangent to the solution surface at

(50:;175). The next five lines give elementary defense
strategies and the number of targets for each. The last

line gives the expected value surviving at the point (50;175)
as 88.75, which is computed as the intercept value plus the
marginal value multiplied by the number of attack weapons.

hif

The weapon allocation itself exhibits the equal steps,
i.e., 22.5 targets, characteristic of perfect weapon cases,

g . o

When these fractional allocations are viewed as mixed
strategies, they are physically feasible, since numerous
convex combinations of integral allocations can be found
that are precisely eguivalent. Perhaps the simplest combi-
nation consists of the strategy

0 22
] 1 23
2 23
3 22
4 10

with a frequency of .5 and the strategy

0 23
1l 22
2 22
3 23
4 1c

with a frequency of .5.
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The operator calls for an attacVv strategy printout by
inputting an attack weapon at no change from its current
force level.
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Although the attack force level is unchanged, the attack

- solution strategy has changed. Before, there were 50 targets
attacked. Now th.% a defense has been introduced, the attack

E is concentrated in an equal step s..ategy on only 20 targets.

Notice that the marginal value per defense weapon is .05,

the intercept value at (50;0) is 80, and VS = 80 + 175 x .95 =

88.75, as it should.

A complete solution at the point (50:175) is provided by
this attack strategy and the preceding defense strategy. The

point happens to lie in a region that we call defense dominant,
where some targets are not attacked.
F1ab372 j
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1 e 224999 ;
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3 e 4999
5 9.959 64
V= 39.3749
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Va= 3943748
A complete solution at the point (275;175) is obtained by
first increasing the attack force to 275 and then calling
for a defense printout. This point lies in a region of
attack dominance, since every target is attacked by at
least one weapon. The roundoff arrors are annoying, but
they can be easily adjusted in this case, for instance by
reading both 22.5006 and 22.4999 as 22.5.
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The run is terminated in the usual fashion.

The same problem can be run with slightly more generality
as a density problem by normalizing inputs as in the follow-
ing run.
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The data change specifies 1 target instead of 100.
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first path input is a density of attack of .5 instead

of 50 weapons. Subseqguent inputs will be scaled the same

way .
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The results of the density run should be compared item by
item with those of the preceding run., The solution strategies
and values can be scaled to apply to any number of targets

of any unit value. An extra benefit of the density technique
is the reduction of roundoff errors.

Case 6: (Gl1,G4,Al1,Dl) = (1,1,1,1); Imperfect Weapons

"his is the imperfect weapon case which is analyzed in
Reference 2. That report presents solutions in closed form,

but the formulas involve tedious summations that are best
handled by computers.

The use of PATH87 to find a point solution can be
illustrated by 2 density run with (PKT,PI) = (0.8,0.75).
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- The solution strategies at the point (17/3;11/3) are identical
with the canonical strategies pictured in Reference 2
(Figure 23, p. 172) except for notational differences.

PATH87 can be used for exploratory runs, as in the follow-
ing examnple, which also illustrates certain noteworthy
features of the solution process.
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) The program must b2 modified to print a complete spectrum
F of strategies along the path.
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The first path segment runs from the origin to the point
(.1:;0).
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The first strategy is a defense stratecy at the origin, in
the usual form except for the third line, which is an
intentionally incomplete representation of the null alloca-
tion at the origin. The only important line is the one that
specifies the initial marginal value for the attack as -.8.
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Next is an attack strategy, the rule being an alternation of
attack and defense strategies in the spectrum along a path
segment. As no defense weapon has yet been introduced, the
printout of marginal value is suppressed and the first print
line shows an intercept value of .92, the same as VS, Since
the strategy allocates all prescribed weapons, the path
segment is terminated.
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The input for the next path segment calls for raising the
defense force to a density of 1 weapon per target. Whenever
a weapon type is introduced, the first strategy is an
opposition strategy, so here an attack strategy is printed.
It is the same as the strategy terminating the preceding
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segment except that it now contains a marginal value of .06
for the weapon type just introduced.
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Next is a defense strategy in standard form. Since it occurs
at a force level of .592593, which is before the end of the
path segment, we know that a regional boundary has been
encountered at this force level. As both elementary strate-
gies, § = 0 and § = 1, are shown to apply to more than zero
targets, neither can be deleted; so we infer that a new
elementary attack strategy must be added to the Q-basis at
the boundary. The value of the game at the point (.1;.592593)
is .955556.
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The printout of the attack strategy on the boundary shows
that the elementary strategy, &« = 2, has been added, and

the attack is now concentrated on a smaller fraction of the
target system. The VS printout here should be disregarded,
because the program computes VS using the defense force level
recorded in the (§) matrix, and this matrix is not updated
until the end of the path segment. Actually, this attack
strategy is a solution strategy for a range of defense force
levels, beginning at .592593, where VS = .944615 + (.592593)-
(.0184614) = ,955555, the same as printed for the preceding
defense strategy. The range includes the following defense
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force level, which we can anticipate by computing VS = ,944615
+ (1.0)(.0184614) = .963076.
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The path segment ends with a defense strategy that includes
the elementary strategy 6 = 2. A complete solution at the
end point (.1;1) consists of this defense strategy, the
preceding attack strategy, and the value of the game, which
is computed here as VS = 1 + (.1)(~.369231) = ,963077,

The course of events along the path segment can be
rationalized in the following terms:

First—-at the beginning, all of the attack weapons
are on separate targets, since there is no defense.

Second—As defense weapons are added, they are
allocated to separate targets with an expected saving of
.06 targets per weapon.

Third—When the defended fraction of targets
reaches .592593, it becomes just as good for the attack to
put 2 weapons as 1 on a target.

Fourth—At this point, the attack shifts to a
strateqgy that kills just as many targets but offers the
defense the smallest possible saving for any additional

weapons, i.e., .0184614. The new strategy is so balanced
between the targets attacked with 1 weapon and those
attacked with 2 weapons that the defense can do equally

B i, W

well by defending 1 target with 2 weapons as by defending
2 targets with 1 weapon each.
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Fifth~The defense strategy does not change at this
point, but as new defense weapons are added to the force,
the balance between the elementary strategies 6 = 1 and
§ = 2 is maintained so that the attack is unable to profit
; by changing allocation.

It should be recognized that each strategy printed out
alonqg the path segment is a solution strategy when paired
with the preceding strategy of the opposition, the following

L strategy of the opposition, or any convex combination of the
E preceding and following strategies. Each printed attack

f strateqgy is valid for some range of this path segment, and

? convex combinations of them represent transitions at a
boundary point. Each printed defense strateyy is valid

only at a point of the path segment, and convex combinations
of them represent solutions at intermediate points. In

this sense, the printed strategies constitute a complete
spectrum of solutions along the path segment.
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The path input calls for the attack density to be increased

from .1 to 2.6. Since no new weapon type is introduced, the
first strategy printed is an attack strategy at the critical
point (1.625:;1), the first boundary encountered on the path
segment. Here all targets come under attack, and the
elementary strategy a = 0 lsaves the Q-basis. The path is
leaving a region of Gefense dominance an'! entering a region
of attack dominance.
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At the boundary, the defense makes a transition to a strategy
for the next region. The new strategy concentrates on
defending fewer targets and offers a numerically-reduced
marginal value to the attack. Since no elementary strategy

. is zeroed out, we infer that the next attack strategy will
contain a new elementary strategy.
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The next attack strategy includes a = 3, as inferred. The
attack force is now at a critical value of 2.25. No elementary
strateqy is zeroed out, so we infer that the next defense will
have an added elementary strategy.
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The defenses does have four eliementary strategies, but § = 1
is immediately zeroed out during the transition at the
boundary. The defense is now more concentrated, and the
marginal value is reduced in magnitude.
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The path reaches another boundary at the critical attack
size of 2.480768, where a = 1 is zeroed out and every target
is attacked by at least two weapons,
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The defense transitions to a more concentrated strategy,
again reducing the magnitude of the marginal value.
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At (2.6:;1), the end point of the path segment, a complete
solution is given by this attack strategy and the preceding
defense strategy. The VS can be computed from either one,

Vs .502606 + (2.6)(-.11826)

[}

.0229565 + (1) (.172173)

il

.19513 .

This is the same value given in Reference 2 (page 159). The
spectrum of strategies on the preceding path segment is
identical, except for notation, with part of the spectrum 1
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ﬁiééuréd in Reference 2 (Fiéure 18, page 157). For the
next path segment, we will now run a portion of the other
gpectrum appearing in Reference 2 (Figure 19, page 158).

blak32
? ~1s3eH
1 - )&
i L] (0
C shllL6e
b o2
a

¢ 2453134
Vaos erba
The path input calls for increasing the defense to a density
of 3.5 weapons per target, The first defense strategy is
at the critical density of 1.4.
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A new attack and a new defense have four elementary strategies
each.
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Here the attack transitions to a more concentrated strategy,
leaving some targets unattacked. The path is entering a
defensa dominant region,

) oo
1 XXX AR

« De9ECLEE (K
] - o}l Tayn
g 3 ¢ 30A %3V 3
E ) e TUAYEE~ 1
f 4 e 90 £}
! Voez e 4RL0C)

This critical defense strategy displays a new phenomenon.
When the defense force has increased to a size of 3,0365,
; it becomes wnrthwhile to defend every target with at least
one weapon, so the § = 0 line leaves the Q-basis.
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The attack responds to the new situation by attacking every
target at least once, and reducing the marginal value for
new defense weapons, which can only be added above the 1
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The defense increases to a point where it pays the attack
to use 5 weapons on some targets.
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The attack transitions to a strategy where more targets are
attacked by 1 weapon only, the balance of the force being
concentrated on fewer targets.
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The path segment ends at (2.6;3.5), an interior point of a
region. The run is terminated after 2.1 seconds of central
processing time, including 1.3 seconds of time to compile
the program before running.

Figure 15 shows a regional map for these weapon types.
The general pattern of interlocking rectangular regions is
characteristic for one imperfect attack-weapon type and one
imperfect defense-weapon type although the precise locations
of the boundaries vary with the probabilities of kill and
intercept., The pattern is the same as that shown in Figure 17
of Reference 2. The solution surface over each rectangular

142




}
H
i
'
3
i
T
i

The defense increases to a point where it pays the attack
to use 5 weapons on some targecs.
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The attack transitions to a strateqy where more targets are
attacked by 1 weapon only, the balance of the force being
concentrated on fewer targets,
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The path segment ends at (2.6;3.5), an interior puinc of a
region. The run is terminated after 2.1 seconds o»f central
processing time, ircluding 1.3 seconds of time to compile
the program before running.

Fiqure 15 shows a regional map for these weapon types.
‘The general pattern of interlocking rectangular regions is
characteristic for one imperfect attack-weapon type and one
imperfect defense-weapon type although the precise locations
of the boundaries vary with the probabilities of kill and
intercept. The pattern is the same as that shown in Fiqure 17
of Reference 2. The solution surface over zach rectangular
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FIGURE 15
REGIONAL MAP OF CASE 6
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region is a hyperbolic paraboloid with rulings in the
; : coordinate directions, as discussed in Reference 2. These
} features contrast with the triangular regions and pla.ar
\ solution surfaces already shown for cases with two attack-
. weapon types.

Case 7: (Gl1,G4,A1,Dl) = (1,1,2,2)

The following density run illustrates the multiweapon
case.

SC DATA Vs 1aé,s7
ot LATA 1,1

TC DATA o€aeR
BC DALE ¢9907%
ARUN

The attack weapons are conventionally arranged in order of
increasing PKT, 0.6 and 0.8; the defense weapons in order
of decreasing PI, 0.9 and 0.75.
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The first two path segments input attack weapon type 2 and
defense weapon type 2. As these are the same types used in
Case 6, the solution at the point (0,.1;0,1) is also the
same as in the exploratory run of that case.
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At the point (0,.1;1,1) the defense sclution strategy is
stepped in form, with some targets being undnfended and
some defended by from 1 to 4 weapons. The better inter-
ceptor is concentrated on about half the targets and the

poorer interceptor spread out over about 86 percent of
the targets.
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At the point (.6,.6:;1,1), the attack strategy shows the
poorer weapon concentrated on about one fourth of the targets
and the better one spread out over about 44 percent of the
targets. The levels of attack range from 0 to 4 weapons per
¥ target.
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1 A printout of the defense strateqgy shows only minor changes

resulting from the increased attack.
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The run is terminated.
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The resource space is four dimensional, so we can't show
a regional map of it. Actually, we don't know enough to
discuss the regions in much detail. The space is bounded
by six coordinate planes: a map of the (A,,A,)-plane has

_triangular regions like Figure 14 with the axes reversed; a
‘map of the (Az,D,)-plane is thz same as Figure 15; maps of

the (A,,D,;)~, (A;,D2)~, ana (A;,D,;)-planes have rectangular

‘'regions similar to those of Figure 15; and a map of the

(D,,D,)-plane cannot be defined since VS = 1, regardless of
the defense strategy, when there is no attack. Intuitively,
we expect the interior regions to have both rectangular and
triangular faces, and this is confirmed by a few exploratory

paths, which have also shown that some of the multidimensional
regions overlap.

Case 8: (G1,G4,Al,Dl) = (10,4,1,1)

The multiple-target-type case is illustrated by the
following run.
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There are 10 target groups, only four of which are defended
. (by convention, the first four). Each group has 10 targets,
; the total number of targets is 100, and the aggregate value
- is 550. The single attack weapon type has a different
probability of kill for each group of targets.
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On the first path segment, the attack lays down 165 weapons
as if all the targets were undefended. The marginal value

; . to the attack has not been printed, but it can easily be

' computed from the strategy on target group 2 as (9) (1-.6)?2

(-.6) = - ,864.
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On the second path segment, the defense allocates 55 weapons.
VS increases from 59.0426 to 144.487. The marginal value to
] the attack increases to -1.25112, as determined by the defense

strategy on the first four groups.
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A printout of the attack strategy at the point (165;55)
shows target yroup 10 no longer attacked and target group 5

under reduced attack. The shift of 20 weapons from these

two groups to the defended groups takes advantage of the
higher marginal values provided by the defense. Some shift
of the attack from undefended to defended targets is usual

as the defense begins to build up. If the defense gets very
strong, however, the marginal values may decrease, and some
or all of the attack weapons may shift back to the undefended
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targets. The operator of the program should be alert for
a shift of all the attack weapons to undefended targets,
since the resulting indeterminate defense could lead to a
failure of the program. The program ought to have a

procedure for terminating the path segment in such an event,
but the current version does not.
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The run terminates.
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VII. OTHER APPLICATIONS

The illustrative cases in Section VI involved no
substantial changes to the PATH87 and PATHBJA programs,
since only data input and, in a few examples, printout were
affected.

Other types of resource allocation problems can be run
if the programs are modified to fit the problem. Some that
have actually been run include such features as:

-1 Terminal defenses

~2 Mix of area and terminal defenses

-3 Overlapping area defenses

-4 Sensitivity to errors in force estimation
-5 Decoy weapons

-6 Decoy targets

-7 Weapon aliocations in sets of 2 or more
-8 Area targets

-9 Area-mobile targets

=10 Targets of variable value

~11 Time-phased attacks

~12 Defense-suppression attacks

~13 Transportation cost matrices

~14 Simultaneous variation of several resource types
=15 A "floating box" to control testing.

In this section, we will discuss general methods of adapting
the programs to various types of problems.

Preceding page blank
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A. Choice of Program

Generally, if the proklem is a one-sided optimization it
can best be handled by modifying PATHB7A. Examples are
terminal-defense problems and transportation problems. Two-
sided games require PATH87.

B. Choice of Variables

Hesource types, object types, and measures of value must
be chosen in an appropriate fashion, keeping the dimensions
of the problem as small as possible, In many cases, the
choice is obvious; in others, some judgment must be exercised.

In the overlapping area-defense case, each set of inter-
ceptors with the same coverage may be considered a resource
type, sc that there will be as many resource types as there
are interceptor sets. Each group of targets covered by the
same interceptor sets may *hen be considered as an object:
type (but only if these targets-are otherwise identicail).

An incidence matrix may be used to specify the match-up of
interceptor types and object types.

In another type of game, the object types were groups
of bomber bases, the defense resources were bombers tc be
allocated to bases aind the attack resource types were succes-
sive waves of a time-phiased attack on the bases, with the
potential value per base decreasing as surviving bombers
were launched during the attack.

In transportaticn problems, the destinations are c¢on-
sidered as object types and the requirement at each destina-
tion as the number of objects of that type. The sources are
considered as resource types and the availability at each
source as a quantity of resources. If preferred, sources
and destinations can be reverced in meaning, with the idea
of reducing the number of resource types.
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C. Value Function

A value function for point targets is built into PATH87
and PATHB7A. It must be replaced when it is inappropriate.

For area targets, the sguare root law has been used as
a value function.

For mobile targets, the region of mobility may be con-
sidered as a single target with initial value equal to the
number of mobile targets in the region. Depending on
whether the region is linear, areal, or spatial, a value
function can then be developed to compute expected-value
surviving for all allowable elementary attack strategies.

In the bomber-basing case, the initial value of a base
is zero, and the maximum value surviving is the number of
bombers in the elementary defense strategy for that base.
Theivalueifunction takes into account the time-phasing of-
the elementary attack strategy and the bomber launches.

In the defense-suppression case, the value function
incorporates a suboptimization of the split between attack
weapons allocated to radars and those allocated to targets.

In the transportation problem, the value function is a
precomputed matrix of costs, one element for each source-
destination pair. Costs may be in miles, dollars, or what-
ever measure is to be minimized.

D. Test Controls

"Floating 1lid" test controls are used in PATH87 and
PATHB87A. They should be changed whenever better ones can
be devised for a problem.

In the transportation problem, there is never more than
one rescurce unit (weapon) allocated to a destination require-
ment unit (target). Since tests of two or more would be
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completely meaningless, the test controls can be greatly
simplified.

In the mobile target cases actually run, there were only
five allowable elementary strategies on targets of each
i group. Again, a simple test control procedure was used.

In the bomber-basing case, the results of early runs
showed certain systematic patterns in the solution strategies;
that knowledge was used to change the test controls to save

P time on subsequent runs.

E. Economy in Modifications

If a special type of problem is going %o be run only a
few times, it is usually economical to make minimal modifica-
tions to one of the basic programs.

E On the other hand, if many runs are planned, it may be
economical to make more extensive modifications that take
advantage of simplifying features of the problem. For
example, if each elementary attack strategy is limited to a
single weapon type, each one can be described by identifying
the weapon type and the quantity, i.e., by using two numbers
instead of a complete vector. In this case, +the (A) matrix
illustrated in Figure 7, Section IV, can have its blocks
reduced to two elements instead of Al + I(27). Going even
further, if the quantity is always one, as in the transpor-
tation problem, then only the resource identifying number
need be stored in (A). Of course, modifications of this
type require that references to (A) be modified throughout
the program.

F. Potential Improvements and Applications

Many applications of the PATH programs have been demon-
strated. As time goes «n, we expect more to be found. We
also expect that substantial orograming improvemerts will add
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of the method.
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, This report presents a rmethod of sclving weapon allocation ga=es

; involving many weapon types and many target types. Kumerical
' . solutions are cbtained by the PATH method, a form of parasetric
linear programming. Two computer prograEs sre listed and
explained, PATH87 for two-sided games and the simpler PATHBTA
for one-sided optimizations. Both are copiously illuetrated by
sample runs. Other applications of the progracs are discussed
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10. (Continued)

The PATH mathod offers unique advantages of speed and
flexibility in solving problems facing defense analysts, and
it is hoped that publication of this report through the
National Technical Information Service of the Defense
I Documentation Center will make this method more widely
available. Also, thd method has features vhich can be
applied to many problems of resource allocation facing
nondefense plarners.
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