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POINT ESTIMATION AND CONFIDENCE INTERVAL ESTIMATION
FOR BINOMIAL AND MULTINOMIAL PARAMETERS

1. INTRODUCTION

After the completion of experimentation (for testing k
hypotheses concerning binomial parameter p (R. Chandra, 1%75-A),
selection of the most probable category of a multinomial popu-
lation (R. Chandra, 1975-B), and ranking of k binomial popula-
tions (R. Chandra, 1975-C)), the experimenter might wish to
obtain some estimates of the value(s) of the unknown parameter(s)
occurring in the probability distribution of the population(s).
In this paper our basic theme is the estimation of parameter(s)
of binomial and multinomial distributions from an "effectively
small" sample. We suppose that a sample is already available
to be used by itself for the estimation. By "effectively small"
we mean that a sample is small for the purposes of estimating
the probabilities, since the experiment was primarily designed
for the separation/selection/ranking rather than for the esti-
mation. The estimation, we assume, is the afterthought rather
than the main objective of the experimenter.

If the primary objective of the experimenter is to obtain,
with as few observations as possible, a confidence interval for

an unknown parameter, having preassigned confidence coefficient




and preassigned width, or to satisfy some other conditions,
he‘would need altogether a different stopping rule for the
sequential experimentation. DeGroot (1959) has shown that a
single sampling plan and inverse binomial plan are the only
ones that admit an estimator that is efficient at all values

of p of a binomial distribution. Bhat and Kulkarni (1966)

have generalized the above results for multinomial distribu-
tion with the similar conclusion. Thus ic is clear that if
estimation of parameter(s) is the primary aim of the experi-
menter, he would choose one of the above two procedures. For
further reference on sequential estimation one can refer to
Johnson (1961), Wetherill (1966), and Goss (1974), among others.
Our concern here is the development of an exact method of point
and interval estimation for the parameter(s) once we have ter-
minated our experiment for hypothesis testing/selection/ranking.
We base our estimation solely upon the sample available on the
completion of our experimentation.

Anscombe (1953, 1954) has made a number of studies of the
use of the data obtained with sequential sampling procedures in
the calculation of estimates of the parameter values. He has
concluded that provided the sample size is not too small fixed
sample size methods of estimation (which is generally maximum
likelihood procedure) can be used even though the samples were
obtained sequentially. Johnson (1961, p. 361) rightly notes
"...these estimates would be no more accurate than would estimates
based on genuine fixed size sample of the same size. In fact,

owing to the essentially approximative ("large size") nature of
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Anscombe's results, there would usually be rather more uncer-
tainty as to the true accuracy of estimates based on sequen-
tially obtained sample."” Armitage has said "...it appears to
be true that sequential estimation is no more efficient than
fixed size sample estimation" (see discussion of Anscombe
(1953)). Bearing the above facts in mind the experimenter must,
therefore, accept that the efficiency of the estimates obtained
from a sample collected for sequential experiments designed for
purposes other than estimation would be limited.

Maximum likelihood procedure is the most often used metnod
for obtaining estimates from one stage (or fixed size) sample.
It is well known that maximum likelihood estimates based on
a sequential sample are biased. Girshick et al. (1946) give an
unbiased estimator for the binomial parameter. Their procedure
has been extended for estimating the trinomial parameters by
Muhamedhanova et al. (1966). The procedure can be generalized
for k>3 (see Johnson et al. (1969)). Before introducing our
method of estimation, we note the following reasons why we do
not use either maximum likelihood procedure or methods based on
Girshick et al. 1In the discussion that follows we consider the
binomial distribution. The remarks that we make hold true for
multinomial distribution also.

We take the maximum likelihood estimator (m.l.e.) first.
Suppose we wish to estimate the probability p after we have

ended the sequential experiment with i success(es) out of n trials.

The m.l.e. is simply i/n. This is a perfectly good estimate

e g T




(ignoring the fact that it is biased) if i and j=n-i are both
large and in this case there is no objection tc m.l.e. Howcver,
since we are concerned with probability estimation from cffec-
tively small samples, let us consider the case where i=0. Then
m.l.e. of p is 0. It is not easy to see how this value can be
used for decision making. Unless n were fabulously large no one
should make use of m.l.e when i=0. Confidence interval estima-
tion suffers from a similar disadvantage when i=0 or it is
very small; it has to include the point p=0. To asser: that
0 is the lower bound for p is to assert nothing at all about the
lower bound ffor further discussion on this point, see Good
(1965)) .

Estimates based upon Girshick's method suffer the same
shortcomings which we have pointed out above for m.l.e.

Girshick's unbiased estimate p for p is
p = w*(i,n)/w(i,n)

where w(i,n) is the number of admissible paths from (0,0) to
(i,n) and w*(i,n) is the number of admissible paths from (1,1).
Clearly when i=0, w*(i,n)=0 and w(i,n)=1 and p=0. Thus the ob-
jection noted above for m.l.e. for i=0 is applicable here also.
Noting the above difficulties with classical estimates,
in what follows in this chapter we give a modern Bayesian pro-
cedure for estimation. We do not claim any optimality property
for our procedure; we have attempted to provide a general and

practical method of estimation after the termination of a
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sequential experiment. In Section 2 we give the estimation pro-
cedure for binomial parameter p and in Section 3 we generalize
our results of Section 2 for multinomial parameters. We derive
the formulas with very general prior distribution of parameter(s)
but we have restricted ourselves to the uniform prior distribu-

tion of the parameter(s) in our applications. Perk (1947),

Johnson (1932), Good (1965), and Good et al. (1974), among others

have discussed the pros and cons of using nther priors vis-a-vis
uniform prior. We, however, stick with uniform prior in our
uses because this clearly represents best our state of ignor-
ance about parameter (s) that we assume completely unknown at the
start of experimentation. Important references on Bayesian
estimation procedures include Wetherill (1966), DeGroot (1970),

and Box and Tiao (1973) among others.

2. ESTIMATION OF BINOMIAL PARAMETER p

In this section we consider the estimation of the binomial
parameter p. The Bayesian method that we describe and use for
estimating p from the sample obtained at the termination of a
sequential experiment is due to Goss (1974) and Schmee (1974).
The method they have used is based on the assumption of a uniform
prior distribution of parameter p between 0 and 1 (i.e. G(p)=p
and dG(p)=g(p)=1 for Ospsl). In what follows, we first derive
the formulas with a very general prior distribution of p and
then give the formulas with a uniform prior. 1In Section 2.1 we

derive a formula for point estimation. 1In Section 2.2 we derive




formulas for interval estimation. In Section 2.3 we give the

results for a uniform prior. 1In Section 2.4 we give a numer-

ical illustrative example.

2.1 Point Estimation

Let a sequential experiment terminate at the mth stage

with score i; i is the total number of successes associated

with probability p. It is well known that i is a sufficient 1

and transitive statistic. #
1 Let g(p) be the prior density of p that is believed to be

i true, and 2(i,m) the likelihood function for the outcome. Then, é

according to Bayes' rule, the posterior density function, f(p},

. >

of distributicn is given by:

= g(p)t(i,m)dp
£P) = 79(pIt(i,mdp )

where integration is over the whole range of p.

In Bayesian analysis the general form for g(p) is
E g(p) = p* 1(1-p)®7L; a,b20, 0sps1 (2) ;

(see Good (1965)). For experimental outcome (i,m) the likeli-

hood function is given by:

il e e g o o

L(i,m = w(i,mpt(1-p)™? (3)

where w(i,m) is the total number nf admissible paths from }

(0,0) to (i,m). (Note: w(i,m)#(?) , since for sequential

procedures all the outcomes are not permutable. Fortunately,




however, w(i,m) does not present any problem, since it drops
out as may be seen later.)
Substituting values of g(p) and 2(i,m) in (1) the pos-

terior density becomes:

PSRN il 1 = W(i.m)pi_(l-p)m-ld
fol " 1-p Pl (i,mpt (1-p)™la

1+a 1(1 )m 1+b-1dp
151 i+a- 1 )m -1+b- 1dp

ey e
p1+a l(l:p)m i+b-1

B(i+a, m-i+b)

dp

(4)

where B(x,y) is the complete beta function with paramters x
and y; B(x,y)=(x-1)!(y-1)!/(x+y=-1)1!.

Let p be the point estimate of p, then

1
) =5 =f p £(p

1 1 i+a-1 m-i+b-i
= B(i+a,m-i+D) JG P P (1-p)

dr

B{(i+a+l,m-i+b)
B(i+a,m-i+Db)

(i+a)! (m-i+b-1)! . (i+a+m-i+b-1)! .
(i+a+l+m-i+b-1)! (i+a-1)! (m-i+b-1)!

or

i+a 14
m+a+b L5 {1

o>

2.2 Interval estimation

Let p be the lower bound on p at confidence level 1l-a,

u<l (i.e., Pr(p<pl)sa). It follows that




dref(p)dp = a
or
B(i+a,;-i+b) 'gepi+a-l(l'p)m-i+b-ldp e
or . .
Bp (i+a,m-i+b) > e

B(i+a,m-i+b)

where BE(i+a,m-i+b) is incomplete peta function. Equation (6)

may be solved for p by using any standard computer program. ;

Also it is well known that Bp(x,y)=B(x,y)-E(x+y-l,x,p), where 1
n = ,

E(n,r,p) = T px(l-p)n X and 0<pgsl. Thus (6) reduces to: ’
X=r ;

i

E(m+a+b-1, i+a, p) = a (7) |

The above equation may be solved for p using any standard table %

for cumulative binomial function (e.g. Harvard Table (1955))
with interpolation (if necessary).
Similarly, an upper bound p on p at confidence level B8

(i.e., Pr(p2p)<B or Pr(psp)zl1-8) may be computed by solving

B — = 1-8, (8)
B(i+a,m-i+b)

or 4
E(m+a+b-1,i+a,p) = 1-8 (9) 4

The two-sided confidence interval at confidence level

l-a=B (a from the lower side, and 8 from the upper side) may be ob-

tained by solving (6) and (8) or (7) and (9) simultaneously.

2.3 Results with uniform prior

For uniform prior distribution of parameter p between




0 and 1 (inclusive) g(p)=1l, i.e., a=b=1 in (2). Substi-

tuting the above values for a and b in (5)
p = (i+1)/(m+2). (10)

For fixed sample size test, the above result was first obtained
by Laplace and is known as Laplace's law of succession (see

Good (1965, p. 16).

The lower bound p on p at confidence level l-a may be

obtained by solving one of the following two eguations.
BE(i+l,m-i+1)/B(i+1,m-i+1) = a (11)
E(m+l,i+l,p) =« (12)

Similarly, the upper bound p on p at confidence level B may

be obtained by solving one of the following two equations:
Ba(i+1,m-i+l)/H(i+1,m-i+1) = 1-8 (13)
E(m+l,i+l,p) = 1-8 (14)

The two-sided bound (p,p) on p at confidence level
l-a-B(a,B<1l) may be obtained by solving (11) and (13) or (12)

and (14) simultaneously.
2.4 Illustrative example

As an illustration of the explicit point and interval

estimation, suppose our sequential experiment for ranking three i
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independent binomial populations A, B and C terminates at
stage 3 with scores (successes) 3,2,0 for population A,B, and C
respectively. It is desired to obtain:

a) Point estimates of population parameters Pp+ Pg

and Pc respectively;

b) One-sided bound on Pps Ppe and Pe at confidence
level 0.9;

c) Two-sided bound on p,, py and p, at confidence level

0.9 (equal tail).

Solution

a) From (10)

n 3+1 _ A 241 ST
pAs Ery i 0.8, pB 3%2 0.6, pC =333 < 0.2

b) (i) Using (11) with a= 0.1 (lower bounds)

By = 0.562, By = 0.320, Bc = 0.025

(i) Using (13) with B=0.1 (upper bounds)

EA = 0.974, 55 = 0.857, Eé = 0.437

c) Using (11) and (13) with a=0.05 and B=0.05, a 90% bounds

on pi(isA,B,C) are as follows:

0.472 < p, < 0.987
0.248 < pp < 0.902
g 0.012 < p, < 0.527

p
; (Note: solutions for parts (b) and (c) were obtained
1

using a computer program for evaluating inverse-

incomplete beta function.)

s b s it o
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3. ESTIMATION OF MULTINOMIAL PARAMETER (P,.P,/..-sP))

In this section we consider the estimation of multinomial ?
parameter pj associated with event Ej; JEdyRren o ke X i

assumed that E_.'s are exhaustive and mutually exclusive events

el e el

such that 0<pj<1 and ijsl. The method that we describe below 3

is the generalization of the one that we developed in Section 2.

for the estimation of binomial parameter p. In what follows, E
we first derive the formulas with a very general prior for
multinomial distribution and then give the results with uniform
prior. In Section 3.1 we derive a formula for point estimation.
In Section 3.2 we derive formulas for interval estimation. In
Section 3.3 we give the results for uniform prior. In Section

3.4 we give a numerical illustrative example.

3.1 Point estimation

th

Let 2 sequential experiment terminate at the m~ stage
k
with cumulative score nj for event Ej: Osnjsm, L nj=m,
i=1

j=1,2,...,k. It is well known that any k-1 of the above nj's :
constitute minimal sufficient statistics. It is also well .;}
known that a multinorial distribution of order k can ke com-

pletely specified by any k-1 of the k pj's. For convenience, [}
we will consider the first k-1 of the k pj's unless the

contrary is mentioned.

Let g(pl"'pk~l) be the prior density function of the

distribution, and z(nl...nk) be the likelihood function for

the outcome. Then, according to Bayes' rule, the posterior
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density, f(pl...pk_l), is given by

g(pl...pk_l)-l(nl...nk) 2 dpj

£(py..-Pp_y) = 1= (15)
fg(pl...pk_l)-Z(nl...nk)jgldpj
where integration is (k-1l) fold over the whole range of pj
such that ? p. = 1.
j=1"3

)

In Bayesian analysis the general form for g(pl...pk_1

for multinomial distribution is given as:

k-1 s.-? k-1 sk-l
pj ] ) 1=

glpy---P,_4,) = 1 I p. (16)
(sece Good (1965). For experimental outcome (nl,nz...,nk) the
likelihood function is given by:
k-1 nj k-1 ny
z(nl...nk) = w(nl,nz...nk) jzlpj l-jilpj (17)

where w(nl,nz,...,nk) is the total number of admissible paths

from (0,0,...,0) to (nl,nz,...,nk). (Note: w(nl,nz,...,nk)
m!

# n , since for sequential procedures the outcomes are
n.!i

not permutable. Fortunately, however, w(nl,nz,...,nk) does
not present any problem since it drops out, as may be seen later.)
Substituting values of g(pl"’pk-l) and z(nl...nk) in (15)

the posterior density becomes:

- R — :
_— e el il o .

PR A p———




np. 1- 2 p. I dp.
j=1 J j=1 ] j=1 ] 5
E e 1) _(as)
1 L N ) k 1 k-l
1 pl- 1- ¢
! se173 [x-1 Y[ k-1 Ykfe-1
2 np. JJl1- & p. It dp.
0o JO 0 j=1 J j=1 ] i=1 ]

k-1 r. k-1 Tk fk-1
n pJ IN1-¢ pJ n dpj
=5 221 = (19)

B(r +1, r2+1,.. oo, +1)

k
‘her r.=n. +s. -1; ;
wnere j nJ 3 LA
k
and | r,!
Blry+1, ry¢l,...,r ) = b L
(Z(r +1)-1)

(see Appendix 1)

~

Let ﬁi be the point estimate of P;i P = E(p). It follows that

_/ /l # /l- Z h (k-l rjx 5 )rk(k-l
. np, 1- 72 p l dp.
- =1 3 j=1 %/ \i=1 3/

i - B(r,+1, r+l,...r +17

B(r1+l,...,r1 l+l, ri+2, ri+l+l,...,rk+1)

B(rl+l, o P rk+17

2
r.+1
i

= TYfr;T?ki

o M;hSy (20)
K

m+ I s,
j=1 -
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3.2 Interval estimation
Let p, be the lower bound on p; at confidence level l-a
(i.e., Pr(pisgi)Sa). Without loss of generality we may inter-

change P; with P, and relabel these two. It follows that

k=1
[P Py p1= B [ x k-1 \Tk [k-1
s o0 / J " pj J 1- z pj n dp'
= Q
B(rl+1, r2+1,..., rk+l)
(i)
B fr +1 E r., ] #k~-1
or pt\ 1l "’ j=2 3 ~
—_— X = q (21)
B r+1,(8 r.) +k-l
(1 e )
k
or’ E('Xlrj+k-1, r;+l, py) = a (22)
J: B

Thus, in general,gi may be obtained by solving one of the follow-

ing two equations.

k
Bg.(“i+si' m-ni+ X s.)
i

3=1
1t = a (23)
B n,+s,, m-n,+ % s.)
( 1574 i j=1 J
isi
k
or E (m+jilsj-l, n.+s.,p, ) = q (24)

Similarly, an upper bound Ei on p, at confidence level

(Rsl); (i.e. Pr(pizﬁi)se or Pr(pisﬁi)zl-e) may be computed by

24 T =‘1m:.‘ e - P .
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solving either (23) or (24) by changing their r.h.s. to 1-f.
The two-sided confidence interval at ccnfidence level
l-a-B(a,B<l; a from the lower side and B from the upper side)
may be obtained by solving (21) or (22) twice--first with a and
next with 1-8 in r.h.s.
3.3 Results with uniform prior.
For uniform prior distribution of (pl...pk),pj between
0 and 1 (inclusive) g(pl...pk_1)=1; i.e. sj=l (for all j) in
(16). Sur<tituting above values of sj in (20)

~ +
py = il (24)
m+k

The lower bound R; on p; at confidence level a may be

obtained by solving
Bp, (ni+1, m-ni+k-l)/B(ni+1, m-ni+k-l) = q (25)
or E(m+k-1, n;+l, p;) = a (26)

Similarly, the upper bound Si on p, at confidence level B

3 may be obtained by solving one of the following two equations:

BE (ni+l, m-ni+k-1)/B(ni+l, m-ni+k-l) = 1-8 (27)

E(m+k-1, n +1, Ei) = 1-8 (28)

The two-sided bound (p;p;) on p; at confidence level
atf(a+B<l) may be obtained by solving (25) and (27) or (26)

and (28) simultaneously.
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3.4 Illustrative example

As an illustration cf the explicit point and interval
estimation, suppose our sequential experiment for selecting
the most probable event of a multinomial experiment (of order
3; k=3) terminates at stage 7 with score [4,2,1). It is

desired to obtain

(a) Point estimates of Py P, and Py :
(b) One-sided bound on Pyr Py and Py at confidence 5

level 0.9 ' ' FJ
(c) Two-sided bound on Pys Pyr and P3 at confidence

level 0.9. .

Solution

(a) From (24)

A~ 441 & 2+1 _ T i+l _
pl =353 = 0.5, p2 I3 = 0.3, p3 353 = 0.2

(b) (i) Using (25) with a=0.1, the lower bound (at 90%)

p, = 0.300, p, = 0.129, p, = 0.060

(ii) Using the same equation with 8=0.9 (in place of

a, the upper buund at 90%

51 = 0.699, 52 = 0.49, 53 = (.368

(c) Using (25) first with 0.05 and then 0.95 in r.h.s. the

90% two-sided bounds on pi's are:

0.2515 p, < 0.748
0.097% p, < 0.549
0.041< p, < 0.429 1
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APPENDIX 1

SOME DERIVATIONS RELATED WITH
MULTINOMIAL ESTIMATION

Derivation of (19).

In what follows we prove that

J=1 z k-1 r, k=1  r, k-1
I p. J 1- 1 pj N dp,
j=1J j=1 3=1

= B(r1+1, r.+r.+...+r +k-1) B(r2+1, r3+...+rk+k-2)

2 73 k
s B(r1+1, r2+1, S Iy rk+1)

= B(ri+1, r.+1, ..., r . +1)

2 k

(i) For k=2

. Jlr1 rz
I, = : (l-p1 dp1

= B(rl+1, r2+l)

Py r, I,
/ / Py 'p, *(iP)-P,) 3dp2""1

Let P = x, substituting in r.h.s.
l-p1

(A-1)

(ii) For k=3

P, = (l-pl)x, dp, = (l-pl)dx and changing the limits of

integration from Ow(l-pl) to 0-1 we have

]




1l r r r r
/ / L' 200p)) 2(1mpy) (1w 3(1_x,dxdp1

r +r3+1 L r2 r3
0 0

= B (k1+1 r2+r3+2) B(r2+1, r3+1)
r
i! (rz+r3+l)! 22! r3!
(T Hl4r,4r,42-1) (I +l4r,+1-1)
(A-2)
= rlg rzz r,!
‘Tr1+r +r3+3+1)

= B(rl+1, r2+r3+1)

| Thus following through we may generalize from (A-1) and (A-2) that

I = B(rl+1, Tat...4+r

K +k-1) B(r2+1, R3+...+r +k-2)

k

2 k

B(r +1, rk+l),

k-1

From (A-1) and (A-2) it follows that

Ik= B(r1+1, r

2+1,...,rk+l)




