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1. INTRODUCTION

The objective ot this work is to develop fast, accurate techniques
to determine the characteristics of wire antennas over plane imperfect
ground. Since Sommerfeld, who first analyzed the problem in 1908,
numerous papers and articles have been written by several different authors.
A good bibliography for this general area can be found in the book by
Banos [1]. Recently, Miller et al [2,3], lLytle and lager [4,5) developed
user oriented computer programs for analysis of the electromagnetic char-
acteristics of arbitrary wire configurations over imperfect ground. With
the aid of these general purpose programs one can easily solve for input
impedances, current distributions, and field patterns of wire antennas
operating in the presence of a plane imperfectly conducting earth. This

thesis deals with some useful revisions and improvements of their work.

[1] A. Bands, 'Dipole Radiation in the Presence of a Conducting Half-
Space,'" Pergamon Press, New York 1966,

[2] E. K. Miller, A. J. Pozzio, G. .J. Burke and E. S. Selden, "Analysis
of Wire Antennas in the Presence of a Conducting Half-Space: Part 1.
The Vertical Antenna in Free Space,' Canadian J. of Physics, vol. 50,
pp. 879-888, 1972,

(3] E. K. Miller, A. J. Pozzio, (. J. Burke and F. S. Selden, "Analysis
of Wire Antennas in the Presence of Conducting Half-Space: Part I1.
The Horizontal Antenna in Free Space," Canadian J. of Physics,
vol. 50, pp. 26146-2627, 1972.

(4] D. L. Lager and R. J. Lytle, "Numerical Evaluation of Sommerfeld
Integrals," Lawrence Livermore Laboratory,'" Rept. UCRL-51688,
October 23, 1974,

[5] D. L. Lager and R. J. Lytle, "Fortran Subroutines for the Numerical
Fvaluation of Sommerfeld Integrals Unter Aderemem," Lawrence Livermore
.aboratory," Rept. UCRL-51821, May 21, 1975,
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The major problem in developing a general purpose program to approach
the problem at hand is the required evaluation of certain semi-infinite
integrals encountered in the exact Sommerfeld formulation. In this work an
efficient method is applied to integrate the semi-infinite integrals in an
essentially exact way. The method applied involves the use of orthogonal
interpolatory polynomials of highest algebraic accuracy. Where applicable,
a modified method of steepest descent has been applied to evaluate these
semi-infinite integrals to reduce the time of computation without significant
loss of accuracy. In addition a method of steepest descent has been used to
obtain the reflection coefficient method as the leading term in the series
resulting from the integration of the semi-infinite integrals. Since the
reflection coefficient method is very easy to apply it is useful to examine
its relative accuracy.

Finally methods are presented here for optimizing certain performance
indices of arrays of arbitrarily oriented wire antennas operating over
imperfectly conducting ground. The indices considered include directivity,
maximum power gain, quality factor, and the efficlency index referred to
as main beam radiation efficiency. Optimization problems both with and
without constraints on the resulting antenna pattern are illustrated.
Nptimization of the performance indices with respect to leading and vari-
ation in the antenna structure are also examined.

The contributions of the work of this thesis include the following:

1) Application of interpolatory quadrature formulas to integrate the
semi-infinite integrals encountered in the exact Sommerfeld formulation

is 11lustrated.
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2) Use of a modified method of steepest descent to evaluate the semi-
infinite integrals to reduce the time of computation without significant
loss of accuracy is demonstrated,

3) The commonly used reflection-coefficient method is derived in detail
and 1ts relative accuracy is discussed.

4) New, user-oriented computer programs for treating the imperfect ground
problem have been developed and described.

5) Formulas and results convenient for application to optimization and

design problems have been presented,




2. VFRTICAL DIPOLES OVER 7 E HORIZONTAL PLANE SURFACE OF IMPERFECT GROUND

Analysis of radiatior from parallel elementary vertical dipoles of
the electric type, situate. over a horizontal imperfect ground plane, is
discuseed in this chapter. First, the exact analysis of radiation from
the dipoles is made using the Sommerfeld formulation. The semi-infinite
integrals encountered in this formulation are evaluated numerically
in an accurate way using orthogonal polynomials. For field points far
away from the source points the semi-infinite integrals are evaluated
using a modified saddle point method to reduce the computation time without
any significant loss of accuracy. The reflection coefficient method is also
derived by applying a saddle point technique to the semi-infinite integrals.
Finally, a compariron of accuracy is made between the reflection coefficient

method and the exact Sommerfeld formulatiom.

2.1. Sommerfeld Formulation

Tl R

An elementary dipole of moment Idz oriented in the z-direction is
located at (x', y', z') as shown in the Fig. 1. The dipole is situated
over an imperfect ground plane characterized by a complex relative dielec-
tric constant €y It is possible to formulate a solution to the problem
of radiation from the dipole operating in the presence of the imperfect
ground in terms of a single Hertzian vector T of the electric type.

A time variation of exp(jwt) is assumed throughout the analysis. The

Hertzian vector Oz“z in this case satisfies the wave equation [6]

[6] A. Sommerfeld, "Partial Differential Equations in Physics,"
Academic Press, New York: 1964.
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Fig. 1. Vertical dipole over a horizontal ground plane.




G Ot

2 2.V _ _ Idz o ot ot
(V" + k7) LIV T o §(x-x") 8§(y-y') 8(z-2z") (2.1)
01
2 2.V
(v- + kz) Dol 0 (2.2)
where
2 2 o
k1 =W MyEeEg (2.3)
and
2 2
kz =W HgE4Ey (2.4)

The electric and the magnetic field vectors are derived from the Hertzian
vector from

Y4+ k'n (2.5)
and

i = jweoer($ N ?) (2.6)

respectively. At the interface z = 0, the tangential electric and magnetic
field components must be continuous, conditions which in terms of the

Hertzian vector components can be written as

€1 3:}1,2 = 2 a:iz iy
1 a;;];z L) a:)zcz a2l
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Since these boundary conditions must hold at z = 0 for all x and y, the
x and y dependence of the fields on either side of the interface must be

the same. Therefcre,

€M1z = EpTy, Lfrom (2.7) and (2.8)] (2.11)
3"1z am .
52 = 3, Lfrom (2.9) and (2.10)] (2.12)

The complete solutions for the Hertzian vectors satisfying the wave
equations (2.1) and (2.2) and the boundary conditions (2.11) and (2.12)
have been given by Sommerfeld [6], Wait [7], Miller et. al. [2] and

others [8-9]. The solutions are

v"lz = P[exp(-jklRl)/Rl +

© 2 2 2 .2
J_(xp) e'\/)‘ - kT - s‘l)\ -k
0 2 1 1 2 exp{ -J Az-ki (z+2') 12Ad)] (2.13)
e T2 72
0 \[i —kl 62/; -kl + el AT - k2
and
w 52 ,l 2 2 ,
7 Jo(xp) exp {42 —k2 z =N A -k1 z'}
m,, = 2P [ — Ad) (2.14)
| 2 2 ,‘ 2 2
0 62 A - kl + el A - k2
for

2 2
Re[J AT - k1,2] >0 . Here

[6] A. Sommerfeld, "Partial Differential Equations in Physics," Academic
Press, New York, 1964.

[7] R. E. Collin and F. J. Zucker, "Antenna Theory: Part 2, pp. 386-437,
McGraw-Hill Book Co., New York 1969.

(8] G. Tyras, ""Radiation and Propagation of Electromagnetic Waves,"
Academic Press, New York, 1960.

[9] L. M. Brekhovskikh, 'Waves in Layered Media," Academic Press, New York.
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I dz

= jwéneoel (2.15)
p -‘\/ x - x)% + (y -y (2.16)

and
R, =ﬁ2 + (z - 2")? (2.17)

The primed and unprimed co-ordinates are for the source and field points,

respectively. For v"lz the first term inside the brackets can be inter-

preted as the particular solution or the direct contribution from the

dipole source and the second term can be interpreted as the complementary
solution or a reflection term (reflection from the imperfect ground plane).

Similarly the solution for Vn can be interpreted as a partial transmission

2z

of the wave from medium 1 into medium 2. With these thoughts in mind, Vﬂlz

can be split up into two terms

' _ V direct o vV refl

‘ﬂ’lz 'nlz 1[12 = P o (go + gs) (2.18)
where
V direct _ . ﬁ .
and
V_refl ) ‘2'\) 3 - e Va2l 3 00) expl-N - (z42)])
" TP [ Ad) (2.20)
0 €2 Az—kz + ¢ \‘ )\Z_kz A2 - k2
A 1 1 2 1
= P o gs

A physical explanation to the two components of the Hertz potential V"lz
can be given. The first one can be explained as a spherical wave originating
at the source dipole. This term is easy to deal with. The difficult problem

V refl V“refl

lies in the evaluation of L 1z can be interpreted as a superposition

8-
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of plane waves resulting from reflection of the plane waves into which the

original spherical wave was expanded. This arises from the identity

] ®
: Jo(kp) exp[—J T ki(z 2"l

. exp(-jklkz)/Rz = J — AdA (2.21)
0 AT - k]
) for Re[J Xz - ki] >0 and
: R, Vol + (z+292 . (2.22)

The term under the integral sign of (2.21) can be recognized as plane

wave decomposition of the original spherical wave source. Upon reflection

\Y refl

T, the

of the plane waves from the dipole source as expressed in

amplitude of each wave must be multiplied by the reflection coefficient

R(A). The complex reflection coefficient R()) takes into account the
phase change as the wave travels from the source (x', y', 2') to the
boundary and then to the point of observation (x,y,z). The reflection

coefficient R(}2) is then defined as

2 2 2

czd A 1 S q'A 2
‘, 2 2 1/ 2 2
€ kl A k2

integral over R()) takes into account all the possible plane waves. As

where the semi-infinite

€) > *y 8 of (2.20) reduces to (2.21) and represents a simple spherical
wave originating at the image point. This physical picture will later be
applied in the derivation of the reflection coefficient method where the

effect of the ground plane is approximated by modifying the components of

the plane wave decomposition of the spherical wave originating from the
image of the source dipole but multiplied by a specular reflection coef- i

ficient, R(S6).




There are two forms ofvnlz which have been used by different authors
since Sommerfeld and each form has certain distinct advantages. The ad-
vantages will be presented in a later section, but the two forms used are

presented here.

V refl ’
"y = P[exp(-jkle)/R2
“,’xz-kg 3o(0) expl- Az-ki(zﬂ')]
- 251 J AdAr]
22 77 ')
o K eZ\JA kT + el‘\/k -+
- P ] (2.23)
gl gSV O

The other form is

V refl
m

12 = PI- exv(-jklRZ)/R2

i Jo(kp) exp[-d Az - ki (z + z")]

+ 2¢ adx

2
2 .2 2 .2
0 EZ‘JA -kl + €y A -k2

Pl-g, + G ] (2.24)

ne>

Both forms (2.23) and (2.24) are valid and their equivalence can be

observed by applying (2.21).

2.2. Analysis of the Reflected Field

The field in the upper half space (z > 0) consists of the direct
field from the source dipole situated at z = z', its image situated at
z = - 2', and the correction term ggy used in (2.23). The correction

term takes into account the nature of the imperfect ground, because as

€27 % By 7 0a
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a) Exact Solution

The problem of determining the reflected field amounte to evaluating
the integral ggy since &g and g, are easy to calculate. To do this a
deformed contour similar to the one suggested by Miller et. al. [2] is
chosen and is indicated in Fig. 2. The deformation of the contour is
possible since all the branch points and the poles lie on the second and

the fourth quadrants. Hence on the deformed contour

5 >
_ 2j€1 f IO(Ap) exp[-j\/AZ + ki(z + z2')]1V A 5+k

0 e \/ A2l + el\/ 4l

2 1 2

3sv

AdX

(353 I E S )

b

+N
:j]
[u

N
NN

J(Bo) exP[\]—-k (z# 2')
dx (2.25) j
V -k + € \’ \/ 2 ‘i

where £ = X + j5. The judicious choice of 5 as the limit of the first

N

k. k
12 have

fZ, 2 :
k1+k2 1

negligible effect on the numerical evaluation of the integral. The

integral is made, because then the poles of gsv at +

modified Bessel function of the first kind in the first integral and the
Bessel function of a complex argument in the second integral are computed
by [10, 11]. Finally the two integrals are computed by using the Gaussian
interpolatory quadrature and the Gaussian Laguerre interpolatory quadrature

formulas, respectively. A description of the method is discussed in Appendix A.

[10] T. K. Sarkar and J. E. Lewis, "Accurate Generation of Real Order and
Argument Bessel and Modified Bessel Functions," Proc. IEE, p. 34,
January 1973.

r11) J. E. Lewis, T. K. Sarkar and P. D. 0'Kelley, "Generation of Bessel
Functions of Complex Order and Argument," Electron. Lett., vol. 7,
No. 20, pp. 615~616.
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It was because of these methods it was possible to evaluate these integrals
in reasonable time.

The major problem of this technique is that for large values of p, the
values of the integrals in (2.25) are quite large and they have to be subtracted
from each other to yield a relatively small value. This could be observed
from the behavior of Io(Ap), since it is a monotonically increasing func-

tion of p. However this formulation is quite useful for small values of p.

b) Reflictidn Coefficient Method:

For .arge values of p the method of steepest descent is applied to
analyze the fields of the reflected wave at distances far from the source.
Under this circumstance, it is convenient to use an infinite integral

representation of 8oy rather than the semi-infinite integral representation.

Use of

3,00 = 2P 0 + 1P o) (2.26)
and

Hlsl) (xejn) = - nm H{Sz)(x) (2.27)

in (2.23) expresses By a8

\ikz—kz Héz)(lp) exp[-j ki— Az(z +2z2')]
-A

. 2
C Vki 2 €4 \‘ki—kz + cl J kg— Az

where C is a contour as shown by Fig. 3.

gy AdA (2.28)

8oy is now a spectrum of plane

waves travelling away from the ground plane with the vertical component

of the propagation constant as ki - Az. The integral in (2.28) contains
5
double vaiued {unctions 'J;I 2-A2 The proper sheet of the doubie valued
’

functions «re those on which the radiation condition [12] 1is satisfied,

[12] Ref. [6], p. 189.
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l.e. g

+ 0 as p + = for a fixed z, and gsV + 0 as z + » for a fixed p.

sV

Since

Héz)(lo) ‘T;;rf:j: 17%5 exp[-j (Ap- n/4)] (2.29)

the convergence of (2.28) is assured when Im()\) < 0 as p » =, Convergence
is also assured for

1/2

Im(ki HY2 L e 4w, (2.30)
and for
- xz)l/zm K} + 3Ky, k] > 0, kY <0 . (2.31)
1f
(ki G2 ey e (2.32)
then ki k'," - an"
R (2.33)
and
kiz - k'l'z- A2 4l 5 .
= {[( > )7+ (kik] = AT
kiz— k'l'z- At 42 e
+ 5 } (2.34)
A
where A= 2" + 42" =Re(d) + § Im(}) (2.35)

The positive sign is chosen for 7' since t' > 0 (from (2.31)). On the
path of integration t" < 0 and if k; # 0, then convergence would be

assured even if 2" = 0. If medium 1 is lossless kI = 0 then from (2.33)

»' > 0 when X' > 0 and A' < 0 when A" < 0. The first condition A" > 0O
(2)

conflicts with the convergence requirement for the Hankel function Ho (2p).
This problem can be avoided if medium 1 is assumed to be lossy (i.e.,

k? # 0) and the "lossless case" then assumed to be the limiting form of the

expression k! - 0. Since Héz)

1 \Ap) can be integrated through the origin

-15-
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(A = 0) even if A" = 0, the path C of Fig. 3 can be modified to the path

C. of Fig. 4, following the real axis from -= to +=.

L
E The integral in (2.28) can be simplified by making the following
substitutions:
: A o= kl sin B8 (2.36)
* p = R2 gin 6 (2.37)
z+2' = chos 6 (2.38)

The interpretation of the angle 6 is shown in Fig. 1. Hence by the

application of (2.29), (2.36), (2.37) and (2.38) to (2.28) yields

= 2k1 sin B|1/2 , A sin2§
sV "R, 8in 6 5
Fl € cOS g +VE - sin B

exp[j{{-n/4 - k1R2 cos (B-0)1}]dB (2.39)

where ¢ = ez/el and Fl is a path in the complex B plane as shown In

Fig. 5.

There is one obvious weakness in the arguments presented to derive
(2.39), namely, that there are points on the path for which the argument
4 of the Hankel function Héz)(kp) used in (2.29), is not large and may even
3

be zero, so that the asymptotic expansion for large arguments cannot be

used. However as argued by Brekhovskikh [9], the arguments will be rigorous
if the large argument approximation is used only after the path of inte-
gration has been changed to the path of steepest descent TO. The result will

then be the same.

. 5 Assuming medium 1 to be lossless, so that kl is real, the trans-

formation X = k), sin B implies (B = ' + jB™)

4

e . e ——————————— . - )
RN VPP LIECRT Y e iSO : " i —A—J
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Fig. 4. Modified path of integration for Bsy*
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LR PR kl(sin g' cosh B" + j cos B' sinh g") (2.40)
or

A= k, sin 8' cosh " (2.41)

PR k1 cos B' sinh 8" . (2.42)

Hence the mapping transforms the quadrants of the A-plane in parallel
strips of width n/2 radians, and the path of integration from ' = -«

to = is transformed to the path Fl, where )" = Im(klsin B) = 0, as shown

in Fig. 5. The requirement Im( ki—kz) < 0 amount to Im(k1 cos B) < 0

on the path of integration, or for k, real sin B' sinh B" > 0. The script

1
'U' denotes the strips of the f-plane on which the above inequality is

satisfied (upper Riemann sheet) and the others by 'L' (lower Riemann Sheet).

The path Fl then totally lies on U. The location of the branch points at

> =+ k1 in the A-plane are now transformed into sinBB = + k, in the f-plane

1 1

and are situated at + 7/2, + 31/2 and so on. The branch ruts Im(\/ki-lz) =0
are now transformed to Im(klcos B) = 0, and begin at the branch points

EB . Since Im(k1 cos B) = Im[klsin(n/z + 8)], these branch cuts will run

1
parallel to the path Pl’ [Im(klsin £) = A" = 0] but shifted by + /2 along

the real axis. So the transformation X = klsinB has transformed the upper

and lower sheets associated with the branch points t_kl into one sheet

where certain strips on the sheet belong to the previous upper (U) and

lower (L) Riemann sheet on the A-plane.

The remaining branch points A = i_kz are transformed to sin BB =4+
2
v 52/51 = + /¢ which has solutions
By, = In[+ §/¢ + /1 - €]. (2.43)
2
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The branch cuts Im[(kg—)\z)ll2

1/2

] = 0 are transformed into Im[(e:2 - elein 8)1/2]-

In[(e - sin B) ] = 0. In the B-plane there are then two Riemann sheets

connected along the branch cuts Im[(¢ - sin 8)1/2] = 0 of the branch points

BB . Finally the poles in the A-plane are now given by

2
- €
sin B, = + ’ T o (2.44)

The case for which €=€'(1—j)2 is of interest since this is a good approxi-

mation of the cnmplex refractive index of both earth and sea water over a
wide range of frequencies. The displacement current is negligible in com-
parison to the conduction current if the frequencies are limited below
about 1MHz. For a special case . = c'(l—j)2 and ”E“ >> 1, the locations

of the branch points BB and the poles BP can be approximated hy

2
1,2 - . ;
B, =+ n/4 % j In(/Be")
3,4 It 7
B, = + 31/4 + j In(Y8")

- S
Py = In/2% 1/@/ED] ¥ e
Pyy=- (123 Ly 31

2/e" 2/e"

and they are illustrated in Fig. 5. Out of the possible locations of the

2 3
branch points and poles only B2, B,, P2 and P3 are situated on the upper

Riemann sheet of branch points BB on which Im(klcos B) < 0. 1t is also
2

important to note that none of the poles (P2, P3) are situated between the

original path of integration T

and the path of steepest descent T For

1

0




AR
gt -,
.

this particular case ¢ = e'(l—j)2 the poles P1 and P2 are on a line having
a slope n/4 with respect to the g' axis. The path of steepest descent also
makes an angle 7/4 and it increases as it goes up in U4 plane. Hence the
pole will never be intercepted by the path of steepest descent. However
when the path of steepest descent Fo lies in close proximity of the pole
PZ’ special precautions must be taken in the evaluation of the integral

of (2.39). The pole P1 is of no concern since it lies on the second

Riemann sheet of the branch point BB on which Iméde - sinZB) > 0. The
2
presence of the branch point B3 should ordinarily be taken into account

while deforming the path T'. to the path of steepest descent Fo. The

1
location of the branch point is such that its imaginary part is pro-

portional to 1n(/§27-, which for large ¢ is very large. Because of
this reason, as explained by Tyras [8], the contribution along the
borders of the branch cut would be a fast decreasing exponential that
can be neglected in comparison to the contribution from the saddle point

integration,

For 6 < .,2, application of (B.2) and (B.4) to (2.39) yields

2 exp(-jklR? *J € - sin26
8sv ™~ R2 :
€ cos 0 +Vc - sinze

G 1 {gjg-l)[25(e—l)+ecos26(3-cosze)+cos(ﬁje—sin20(2c+sin26)] __2
23k R,

2 1]
(e - sinze)z[e cos 0+ 4f e- sin 3]2 4sin26

(2.45)

UV refl

T, is obtained from (2.23) as,
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vnrefl ~p. exp(-jkle) [c cos 6 -Vc - sinze
1z = R2 3
€ cos 6 +Ve -~ 8in 0

- 1 {e(e—l)[Ze(e-—l) +¢c c0826(3—c0926) + cos 8 (2e + sinzeﬂ € - sinzej

jk1R2

(¢ - sin26)3/2 [e coB 0 +Ye - sinze]3

1’ 2
- € - s8in 0 }] (2. 46)

2 sinze[s cos 8 +V\e - sinze]

For very low dielectric constant this method would be inaccurate as
tl en the contribution from the branch cut connecting B; to (m+je) would
have to be taken into account and the second terms of (2.45) and (2.46)

would be different.

The first term of (2.46) which has a spherical wave representation

of the original source but now emanating from its image can then be

represented as

V refl
T, = P . rTM exp(--jkle)/R2 (2.47)
where I can be recognized as the specular plane wave TM reflection

™
coefficient [13], given by

€ cos O —J £ - sinze
™ = (2.48)
€ cos 6 +v € - sin20
y refl

The name "Reflection Coefficient Method" derives from (2.47) since L

r

45 now obtained as the reflection coefficient times the potential from
the image of the source. This method reprezcnts a good approximation,
as long as the fields are computed far away from the source and away

from the imperfect ground plane to ensure 6 < n/2. The far fields due

to the reflected ray are given by [14]

[13) E. C. Jordan and K. G. Balmain, "Electromagnetic Waves and Radiating
Systems," pp. 628-654, Prentice Hall, New Jersey, 1968.

[14]) R. F. Harrington, "Time Harmonic Electromagnetic Fields," McGraw-
Hill, New York 1961, p. 133.
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Erefl V refl

£ = jmuo sin 6 cos 8 P - L
i grefl _ _ oo p . Vorefl
z - jqu 1z
or refl
| Ep = jwuo sin 6 cos 8 P - FTM exp(--jkle)/R2
¢
:
= FTM x (far field from the image) (2.49)
and
refl 2
Ez = - jwuo sin“6 P . PTM exp[-jklRZ]/R2

FTMﬂ(far field from the image) (2.50)

The direction and the position of the image in (2.49) aud (2.50) is
given by considering the same dipole now situated over a perfect
ground plane. A physical explanation can now be given for (2.49) and
(2.50). A plane of incidence 1is now defined as a plane containing
both the vertical dipole and the field point but perpendicular to the
ground plane. Then the contribution of the reflected ray in this plane
is obtained by multiplying Ep and Ez (defined in this plane) by the
specular ™ reflection coefficient. This is different from the exact
solution of (2.20) in that now instead of infinitely many waves, each
multiplied by a reflection coefficient R(}), all the plane waves are
multiplied by the specular reflection coefficient R(8).

When the conductivity of the earth is large, |c| >> 1, the Hertz

potential in medium (1) is then obtained from (2.18), (2.19) and (2.45) :

P




v , = Plexp(-Jk R )/R, + exp(-Jk R,)/R,

] 1
? el
(Ye_cos 6 -1, jieR ( 1 )3 +...1
/e cos 6 + 1 12 Vecoso+1
% Note that when |c| + » ’v"1z goes properly into the form of a field due

to a vertical electric dipole above a perfectly conducting ground plane.

However when 6 v /2

m), = Plexp(-JkR) /R, = exp(-3k R,) /R, + 2e 5 exp(~JkR)+ o..]  (2.51)

Ik Ry

v

The sum of the first two terms may be smaller than the third term. As a

B TN AP TS W )

matter of fact, when both the transmitter and the receiver are on the
ground, R1 = R2 =p, and z = 0 = z', the fields will be solely determined
by the second and higher order terms. The reason for poor convergence

in the vicinity of 6 = n/2 is that the effect of the pole at n/2 becomes ¢

important. This has been taken into account in the formulation of the A

problem in the next section. ;

c) Fields Mear the Interface

In order to solve for the fields near the interface a modified

saddle point method as explained in Appendix B is applied to take into

account the pole near the saddle point. The expression for &gy in

(2.39) has a pole BP’ which is obtained from ¢ cos BP +J € - sinZBP = 0,

_ ’ [
Sin RP S € + 1 (2-52)

T
cos BP = —\f:_'_ 1 (2.53)
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The positive sign in front of the square root in (2.53) 1s inadmissible
because then

Im(Je - sinzsp) = Im(~- ¢ cos BP) = - Im| Jéffj >0 (since € = ¢' = §e").

Hence from (B.5), (B.6) and (B.10)

2k1 1/2 1/; ~ sin26 wfe - sinze - € cos @

= exp[-yn/4] (=) x
v "RZ ez -1 cos 6§ - 1./ve + 1
1 exp[- jk,R, cos (B - 6)]
5+ 6, B- 6, dB
2 sin ( 3 ) Fl sin ( 5 )
z (A“klj)I/ZJc - sin29 W/c - sinze- £ cos 0
RZ e“ -1 cos B -1./Ve + 1

2
exp[- jkle - W] erfc(iwW)
x (2.54)
(1 + S8 ] 7 V€ sin 6}1/2

Ye + 1 Ye + 1

where
6 -8
2 v 2 P
W e jkyRy % 2 % sin” ( 5 )
'~
- - jklRZ[I + cos O _ Ye sin 6] (2.55)
Ye + 1 Ve + 1
V refl

L can now be obtained after Boy is obtained from (2.54). This
method then can be applied to calculate the Hertz potential for large
p since the exact solution described in part (a) of this section be-
comes inaccurate, This method is used to computevvrlz for a choice

of p > 0.5). The primary source of error in using this formula for a source

(x'* =0, y" =0, 2' =0.25)) and a field point (x = 0, y = 0.5), z = 0.25))

~25-
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would be the error in representing Héz)(k1 p 8in 6) by its large argu-

ment approximation assuming the higher order terms in the saddle point
method are negligible compared to the first term, For this case the
error in representing Héz)(n//5) by its large argument approximation
is one percent in magnitude and -3° in phase. But ofter we would be
interested in antenna arrays closer to the ground plane than 0.25).
Hence the error would always be less than the upper bound presented.
The quantity W presented in (2.55) is known as the numerical

distance in the literature. When |c| is large

jk, R

;ez (1 + (/2 - 08) ve1°, (2.56)

P -

The modulus of the numerical distance W can be of the order of unity

or less, in spite of the fact that kle is large. It is thus evident
that the condition 'WZI >> 1 can turn out to be considerably more

rigid than the condition k1R2 >> 1. Different approximations used for
the Hertz potentials mentioned by various authors [4,5] in literature
are generally valid for lwl >> 1 except for Bands [1). Somerfeld [6]
gives a very interesting physical interpretation of numerical distance.

It is the difference in phase shifts klp and ksp of a spatial wave and a

2 12
k1 k2
surface wave respectively, where k_ = 75 Sommerfeld thus defines the
ko +k
172
numerical distance Wl to be Wl = - j(k1 - ks)p. The absolute value of Wl is

small compared to klo. In fact for large |e

-26~
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kip kT kyp
1 41N
W | =~ |k§_|=ﬂc[ (2.57)

For small values of |W1| the spatial wave type (due to 8o and gl) pre-
dominates in the expression of the reception intensity. In this case,
the ground constants have no marked influence. For larger lel,
the relations between the spatial and surface waves (due to gsv) becomes
important. In this case the complex ground dielectric constant £, has
a marked influence. When both the transmjitter and the receilver are on
the ground, i.e. 6 2 /2 then |w2l = |w1| from (2.55 and 2.57). For
N en/2 and le::], the disadvantage associated with the representa-

7 _refl

tion of nlz

the modified saddle point evaluation of 8oy cannot be neglected. Even

by (2.23) is that the second and higher order terms in

though formulas exist for generating higher order terms, the procedure
is very tedious since it involves taking higher-order derivatives of the
integrand.

The reason for using (2.24) now becomes clear. When the dipole
and the observation point are both at the interface, the first two

terms g, and 8, of Vn in (2.24) tends to cancel each other and the

1z
field is solely determined by the integral of GsV’ just by the leading

term of the asymptotic expansion of Gsv' Substitution of (2.29), (2.36),

PP

(2.37) and (2.38) in the expression Csv in (2.24) and application of the

modified method of steepest descent as of (B.5) and (B.10) yields,
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2k.sin 8 1

Gsvcz £ exp(-jn/4) I ( 1 ) /2 cos B x

mR.8in 6
l“1 2 € cos B + ve - sinzB

exp[-jkle cos(B - 0)]dB

)1/2 cos B ‘Ve - sin26 - € cos O
RZ cos 0 - I.A'e +1 €2 -1

exp[-jk1R2 - wz] erfc (W)
x (2.58)
{1 + o8 e, /e sin 9}1/2

Ve + 1 e + 1

Aﬂklj

= e

where w2 is given by (2.55).

V refl

R, > °'e[, the second form of Lo

172
by (2.24, is used to compute the Hertz Potential.

Hence for lwl >1lork as given

2.3. Evaluation of Mutual Impedance between two Parallel Vertical

Dipoles Situated over a Plane imperfect Ground

In this section, an expression is obtained for the wnutual

impedance between two z-directed current elements of length:. QA and EB

carrying a current distribution I, and IB’ situated over a horizontal

A
imperfect ground plane, The corresponding configuration is presented
in Fig. 6. The electric field iA in medium 1 from the current element

IA is given by (2.5)

2 + 3 v \'
E, {klz + v 5 ) LI (replacing LI by 2.18)

jwuo
. - ]
= i J 2 IA(g +g )dzA

A
+ v 0 I,(g + g )dz} (2.59)
jw4neo oz A %0 8’ A g
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Fig. 6. Two parallel z-directed vertical dipoles of lengths
QA and EB having a current distribution of IA and IB
situated over a horizontal earth.
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o 8
Since 5z all and 52 BZA , and

assuming the current IA goes to zero at the ends of the open wires,

the derivative (ﬁ%ﬁ operation on (go + gs) can be transferred tO';%T

A
now operating on IA instead. Hence
Juwu
Q ]
= - +
E, 4 I 21,8, * &) dz,
EA
d1
i A '
+ jwbme dzA (go - gs)dzA (2.60)
o lA

The mutual impedance ZBA between two z-directed current elements IA and

IB is expressed as
= - F '
Zpp = j zA jfB dzp
QB

jwuo ' '
= 4w J IB dzB J IA(go i gs)dzA
RB QA

S I 'jL—{ EEA (g - g )dz, }dz; (2.61)
jwéneo B 3zé dzA o s A" B

QB ZA

Transferring the derivative operation on IB in the second term and

assuming IB goes to zero at open ends of the wires

Jou ' ‘
%A T J Iy dzg [ I(g, + 85)dz,
“ Y
dI dI
1 B ] A - 1]
* juwbne f a2t 9% J dz' (go gs)dzA (2.62)
o9 B 2 A




1f a plecewise sinusoidal current distribution is assumed for IA

and IB the integrals over EA and % _can be performed analytically. But

B
this introduces a third order pole at the origin of the semi-infinite
integrals defined for 8y Hence a four pulse approximation to the
plecewise linear (triangle) function [15] is used. In this case also,
the double (ntegrals in (2.62) can be evaluated analytically, leaving
only the semi-infinite integral to be evaluated numerically.

For the computation of the self impedance ZAA’ p in (2.62) is
replaced by the radius of the wire antenna.

The numerical value of the mutual impedance ZBA or the self
imp~dance Z

AA
and the computation is straightforward. The different techniques discussed

lies in the evaluation of g, and B: 8, is exp(-ijl)/Rl,

in Section 2.2 are utilized to compute g_ either in the form (g1 - gsv)
or (-g1 + GsV)' In the reflection coefficient method By is evaluated

as outlined in Section 2.2b. In the "exact" solution By is integrated
numerically as explained in 2.2a for p < 0.5), and evaluated by a modi-
fied saddle point method of 2.2c for p > 0.5A. For p > (2|e|/k1)A, the
(—gl + GSV) representation of 8 is used in the computation. User

oriented computer programs [16-19] have been written along these lines

[15] H. H. Chao and B. J. Strait, ''Computer Programs for Radiation and
Scattering by Arbitrary Configurations of Bent Wires," Scientific
Report No. 7 on Contract No. F19628-68-C-0180, AFCRL-70-0374;
Syracuse University, Syracuse, New York, September 1970.

(16] B. J. Strait, T. K. Sarkar and D. C. Kuo, "Programs for Analysis of
Radiation by Linear Arrays of Vertical Wire Antennas Over Imperfect
Ground," Technical Report TR-74-1 on Contract No. F19628-73-C-0047,
AFCRL-TR-74-0042; Syracuse Univergity, Syracuse, NY: January 1974.

[17] T. K. Sarkar and B. J. Strait, "Analysis of Radiation by Wire Antennas
Over Imperfect Ground," Scientific Rept. No. 6 on Contract F19628-73-C-
0047, AFCRL-TR-75-0337; Syracuse University, Syracuse, NY: May 1975.

[18] T. K. Sarkar, "Analysis of Radiation by Arrays of Vertical Wire
Antennas Over Imperfect Ground (Reflection-Coefficient Method)," IEEE

Trans. Ant. and Propagat. vol. AP-23, September 1975, p. 749,

[19] T. K. Sarkar, "Analysis of Radiation by Arrays of Paralle. Vertical
Wire Antennas Over Plane Imperfect Ground (Sommerfeld Fcrmulation),"
IEEE Trans. Ant. and Propagat., (to be published).
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of thought.

Since the Reflection Coefficient Method utilizes a large argu-
ment approximation of the Hrealkel function, maximum error in this
technique occurs in computing the near fields, or in other words the self

impedance 2 There is also another problem associated with the reflec-

AA.
tion coefficient method. When the specular angle 6 as shown in Fig. 1

approaches 90°, the saddle point 6 approaches the pole P, of Fig. 5.

2
Hence the reflection coefficient method yields a good solution when

two subsections A and B of Fig., 6 are away from the ground plane and
separated by an appreciable distance yet which is not large. It

has been found that the reflection coefficient method yields a result

in the computation of impedance elements within 10% of the "exact
solution" both in the real and imaginary parts as long as none of the
elements are situated below a height of (0.7//Je[)) from the ground
plane as shown in Fig. 6. This also ensures that when two elemenis are
as mucir as 10002 apart the accuracy of both real and imaginary parts of
the impedance elements computed by this technique are still within 10%
of the "exact" solution. It has also been observed that the restriction
that no vertical elemerts can lie below a height of (0.7//TET)A also
ensures an accuracy of 107 in the impedance elements even for low values
of dielectric constant (Ic!c=2) of the ground plane. This indicates

that so long as this restriction on the heights of the dipoles is main-

tained the contribution from the branch cut of B3 is not too important.

2.4. Conclusion

Application of interpolatory quadrature formulas and a modified

method of steepest descent to the infinite integrals encountered in

82~
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the Somnerfeld formulation have significantly reduced the time of

; computation necessary for treating the imperfect ground problem
without significant loss of accuracy for evaluating these integrals,
When a method of steepest descent is applied to the integrals of the
exact Sommerfeld formulation, the reflection coefficient method falls
out as the leading term in the series under certain conditions. The
reflection :oefficient method yields a result accurate to within 10%
of the exact Sommerfeld formulation in both the real and imaginary
parts of the impedance elements under all conditions of the ground

so long as they are (0.7//TET)A away from the surface. The reflection
coefficient method does provide a good engineering result at about 15%

of the computation time taken by the exact Sommerfeld formulation.
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3. HORIZONTAL DIPOLES OVER A PLANE IMPERFECT GROULD

In this section, analysis of radiation is performed for par 1llel
horizontal dipoles situated over a plare imperfect ground. As before,
for near fields the semi-infinite integrals obtained in the Sommerfeld
formulation are evaluated numerically using orthogonal interpolatory
polynomials. For fields, away from the source a modified saddle-point
method is applied to evaluate the same integrals to reduce the time of
computation without any significant loss of accuracv. The reflection-
coefficient method is also derived as a special case in the Sommerfeld
formulation. The accuracy of the reflection-coefficient method is

compared with that of the exact Sommerfeld formulationm.

3.1. Sommerfeld Formulation

An elementary horizontal electric dipole of moment Idx and
oriented in the x-direction is located at a height z' above the hori-
zontal imperfect ground plane, as shown in Fig., 7. In this case two
components of the Hertzian vector, e and Ts of the electric type are
necessary to specify the fields completely. Assuming a time variation

exp(jwt) the Hertz potentials satisfy the following wave equations [6]

0 ¢ k2)r. = = 2 K s(xx") 8(y-y')E(z-2") (3.1)
1771 jmeoel
and
2 2.~
v+ k2)1r2 =0 (3.2)
The electric and the magnetic field vectors are given by (2.5) and

(2.6) respectively.
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A horizontal dipole over an imperfect ground plane.
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From the continuity of Ey at the interface z = 0 it follows that

am am am an
1x 1z 2x 2z
X + 9z 9x it 3z (3.3)

Similarly from the continuity of Ex and (3.3) it follows that

ki LT kg Tox (3.4)
from the continuity of the magnetic field component Hx at the inter-
face z = 0,

€ 3;%5 =€, 3;%2 (3.5)
and from the continuity of Hy it follows that

€1 (% B a:i“ ) (i:i_x_ B ?_;_}2(_2) £3-6).
Since (3.5) holds for all values of y,

€1 M1z = €2 T, (3.7)
and because of (3.7), (3.6) reduces to

3 "1x € EIZE (3.8)

1 3z %2 oz

After the components = . have been solved for by using the wave equa-

i
tions (3.1) and (3.2) and the boundary conditions (3.4) and (3.8), the

components T, can be obtained from (3.3) and (3.7). The complete solu-

iz
tion for the Hertzian vectors has been given by Sommerfeld [6], Wait [20]

Miller et. al. [3]) and others, and can be written as follows:

[20] 7. R. Wait, "The Electromagnetic Fields of a Horizontal Dipole in
the Presence of a Conducting Half-Space,'" Canadian J. of Phys.,
vol. 39, pp. 1017-1028, 1961.
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H

LT P'[exp(—jklRl)/R1

f "1,00) -\/A . sz-

exp[- -k (z+2') ] 2 3dA)

0yA? \fxz-ki +A2-

"3, 00) expl /22 -k z -\ 22412 2'] adx
H 1 1
ﬂzx = 2P I
25 sz-kz a2k
2 2 2 2
e e 2 {72\,
Tle= ZP' &- f Jo(Ap)ex.p[_ A _ki (Z+z')] kz
0 ,AZ 2 12 A2 2
ky + kg 2
. B
= =— (2%)
ax ‘B (3.11)
) 2 2
H Cf g \[\'kl'w"kz o 2
n, = 2P' — — J (Ap)exp[ ) -k A —k z' Jada

(3.12)
for Re[\f)\2 - ki 2] > 0. Here p and R1 are given by (2.16) and (2.17),
]

and
v o I8x
4 jw&weoel (3.13)
\Y H
Like Mg in (2.18), T, Can similarly be split into two parts
H" _H direct + H"refl
1x = "1x 1x
where
H direct - p' . s - D' .
™ P exp( jklRl)/R1 P g, (3.14)
@© 2 2 []
H_ref1 JO(Ap)exp[- A -k (z+z')] adx
' - -
Tix = P'[- exp( jkle)/R2 + 2 f ]
0 \/A -k -+\/A
' -
dplg; + 8y (3.15)

*
The superscript H represents the Hertz potentials due to a horizontal
dipole, whereas V represents the potentials due to a vertical dipole.
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and R2 is given by (2.22). Here H"iirect represents the particular
solution of the wave equation (3.1) or the direct spherical wave con-
H refl

tribution from the dipole source and '« can be interpreted as the

1x
complementary solution or a reflection term (reflection from the medium).
It represents a superposition of plane waves, resulting from the reflec-
tion of the plane waves into which the original spherical wave from

the horizontal dipole source was expanded. Upon reflection, the
amplitude of each plane wave must be multiplied by a reflection
coefficient V()) quite different from R(}) as in the pre-

vious section because of a different orientation. The complex reflec-
tion coefficient V()) takes into account the phase change as the wave
travels from the source (x',y',z') to the boundary and then to the

point of observation (x,y,z). The reflection coefficient V(A) is then

2 2 2
\ﬁ-kl —\/A k3

defined as . As before, Hn can be interpreted as a
R Y 2
T i

partial transmission of the wave from medium 1 intc¢ medium 2. Unlike

the elementary vertical dipole, the horizontal dipole over an imperfect
ground plane needs two Hertz potentials to completely specify the fields.
The primary excitation Hnlx in this case gives rise to a secondary

excitation Hn 5 whose contribution is highly dependent on the complex dielec-

1
tric constant of the ground (e) This is because as € »> o, Hﬂlz + 0.
Also, as ¢ ~» 1, Hw + 0. To get a physical interpretation of the nature

1z

of the fields due to Hﬂ it 1s useful to consider the following form

1z’

o 2.2 |.2 .2
H Moo
2

. . . _ 2_ 2 '
ﬂlz 2P J JO(XD) cos ¢ exp[~} kl A (z+z') ] \]-—2——2 2\/_2_2 del
0 k2 A —kl + kl A -kz

(3.16)

where ¢ = ¥ (x,p)-
-38~




A principal distinction of the horizontal dipole as compared to the
vertical dipole 1s its characteristic radiation implied by the factor

E cos ¢. So

& P9 2 2 9

2H l) .r.\/)\ —k1 -\/X -k2
2

2

Wixn, = P' j[-(l-%)+(1+—

L}
Mz = — - ] JO(Ap) cos ¢ X
0 e'\/)\ —kl +\/)\ -k

exp(-j ki-lz(z+z')] . Azdx

1 82 exp(-jkle)

- P+
2

a2 f)e\lkz-ki -\/Az-kg Jo(lp) exp[-j ki—xz(z+z')]

Adx  (3.17)
9X32
2L 212 _\/‘2 2 2,2
0 e-Jﬂ -k + YAk A -k]

t where ¢ = ezlel

The first term in the above expression can be interpreted as fields
originating from a vertical octupole of strength (1 - %0 situated at
the image of the original horizontal dipole. The second term consists
of infinite plane waves reflected from the ground plane and each multi-
plied by a different reflection coefficient R(A). It represents a
superposition of plane waves resulting from the reflection of plane
waves into which a spherical wave from a vertical octupolar source of
strength (1 + %) was expanded. This representation is in no way unique.
Interestingly, for large values of ¢ and when the horizontal dipole
source is close to the ground the octupolar source which gives rise to

LI reduces to a quadrupolar source as illustrated.

< ~39-




MW“""’,MW:W o st

WAL At e s

ot
'
H" » -24 3 exp(—jklk)
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where
2 B 2 2 DQ
Refx-x0?+ g -yn?+e

(3.18)

(3.19)

(3.20)

Thus, for the source close to the ground plane and for large ¢, the

horizontal dipole appears as a quadrupole. Also, H"Zz can be in-

terpreted as representing the waves induced in medium 2 by the

secondary excitations generated in medium 1 and represented as

H
n

1z°

3.2. Evaluation of Mutual Impedance Between Two Parallel

Horizontal Dipoles

carrying current distributions IA

is given by
> 2 <> > >
EA = [k1 +v V-][nll
om an
2 +> 1x 1z
= kl ("lx + "lz) v K X i 9z )
an
For an elemental dipole of moment IAx, the express‘on ( ™

=40~
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In this section an expression is obtained for the mutual

impedance betwean two x-direct=d (urrent elements of lengths %

1x +

and 2

A B

and IB’ respectively, and situated over
a horizontal ground plane. The corrasponding configuration is presented in

Fig. 8. The electric field EA in medium 1 due to the current element I,

(3.21)

Bnlz
9z

) can

be written in a simpler form. By using (3.11), (3.14) and (3.15),

L e




medium (1) air uo,eo,kl

Y

LIRLI B 8 T B B B N A B 2 et e

Fig. 8.

medium (2) earth uo,coe,kz

Two parallel x-directed horizontal dipoles of lengths

EA and QB having a current distribution of I, and 1

A
situated over a plane earth.
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am am

1x 1z -t ) - 9
Ix + 9z P 3x [g0 ] t (gsH i oz {gz})]
7.2 X
Vs 2 JO(Ap) exp[-Y A -k1 (z +2")]
=P o ——-[go -8 + 2k1 jm AdA]

9X
0 kgw/xz-ki + k%\/kz-kg

2

- '. -
P 7% 18y = 81 + G /c] {from 2.24)}
AP D g -+,
ox ~0 1 3
Hence the x-directed field for a current distribution IA is given by
(3.21)
Juwu
x=—_—o. a 1
E 4n J Ip(By ~ &) * gy)dxy
P,A
+2 1 2 {(g, - g, + g,)}ax! (3.23)
ax j4nme° A 9x 0 1 3 A
EA
X Xy X X, x Xy

and assuming the current IA goes to zero at the ends of the open wires,

the derivative 2 can be transferred to —ET'Operating on I. so that
X axA A
X jleo '
PA T T Tam J Ip(By = 81 * ggp)dxy
P,A
9l
21 A :
E 9x jlnrweo I axA (80 81 . 83) dxAJ (3.24)
A

The mutual impedance Z A between the current element IA and another

B

current element IB oriented in the same direction (&) is

42~
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g 2
' ! " d1,
" Jemee J Iy d%p 5% [J It (8p ~ B) t+ By)dx, (3.25)
(o] A
lB QA

By transferring the derivative to IB and assuming IB goes to zero at

! the end of the wires,

Juu
= o ' - )

s ™ o J Iy 9% I Ip(gy = 8y * Eg)dx, 1

F L 2
B A
dI dI 1
- 1 B A .
L + Tomae f ;- ,dxé de. (go -8 * 83)dxA (3.26)
o/ 9% A
by N

f computation of mutual impedance between two parallel horizontal dipoles
; over an imperfect ground plane then amounts to evaluating the integrals

of g .. and g,. This is dealt with in the next section.
sH 3

3.3. Numerical Evaluation of the Integrals

In this section the integrals of BsH and 84 are evaluated in an

essentially exact manner. Where applicable the method of steepest

descent has been applied to reduce the computation time without any

significant reduction or loss in accuracy.

a) Exact Solution. The problem of determining the mutual impedance

ZBA amounts to evaluating the semi~infinite integrals Bsh and g3in
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an essentially exact manner. Since the integrals are very similar to

those of (2.23) and (2.24), the integration scheme as explained in

section 2.2a, [3, 17] is used.

One of the major problems associatew with this technique is that
for large values of p there are iarge numerical errors, as explained in
2.2a. The other problem is tnat when the current elements are below a
height of 0.03) from the ground plane the integrals BsH and 84 in (3.11)
and (3.15) become oscillatory and hence the quadrature formulas explained
in Appendix A fail. Therefore it is not possible to analyze antennas

situated at distances less than 0.03) from the ground plane using this

procedure.

b) Modified Method of Steepest Degcent: For large p a modified method

E of steepest descent can be applied to the integral g4 (because of a pole i

in the integrand) and a method of steepest descent can be applied to the

integral 8an to reduce the computation time without significant loss in
accuracy. Making the following substitutions, as suggested by (2.26),

(2.27), (2.36), (2.37) and (2.38), the integrals can be written as i

) (2klsin 8)1/2 cos B
gsH nstin 6

exp[j{-n/4 -

Iy cos B +\e - sinZB
! kle cos(B - 6)}] dB (3.27)
By = f (::;:i: /2 ——cen 8 = explylonld -
Pl e cos B +Ye - sin g
kR, cos(B - 6)1}] dB (3.28)
A where rl is a path 1in the complex B-plane as shown in Fig. 5. The large argu-

ment approximations for the Hankel functions have been justified [9]. The above

bl y
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integrals are then evaluated by using (B.4) for BaH (since the expres-

sion of .y does not have any pole near the saddle point B = 8) for

By respectively. Hence,

exp (-jk,R,)
- 2 cos O 172 (3.29)

gsH 3 R2
. cos 6 +J € - sin 0O

[taking only the spherical-wave part or the first term of the saddle-

point method] and

cos 6 \/g - 31n29 - € cos @ exP[‘Jkle-WZ]erfc (jW)

cos 6- [1 2 -1 (14028 Jeein® 11/2
e+l Ye+l Ye+l

(3.30)

4nk1j
8y = (——-—Rz )

1/2

where W is given by (2.55)

An user-oriented computer program has been written along these

E lines of analysis and is available [17,21].

3.4. Reflection - Coefficient Method

For field points far away from the source and away from the

ground plane the method of steepest descent is applied to evaluate the
integrals 8sH and g3 For both source and field points near the ground
plane, the effect of a pole which may exist near the vicinity of a
saddle point (in g3) is neglected. Making the following transformations

H refl

as suggested by (2.26), (Z.27), (2.36), (2.37) and (2.38), e and

H“lz can be expressed as

[21] T. K. Sarkar, "Analysis of Radiation by Arrays of Parallel Hori-
zontal Wire Antennas Over Plane Imperfect Ground (Sommerfeld
Formulation)," IEEE Trans. Ant. and Propagat.,(to be published).

45—

AL o o g L " SR

RSP VS S SRS S R




)

2k_sin B
H refl P' 1 1/2 .
x T J (Reme  explit-n/i -k

lecos(B - 0)}

. cos 8 -\/c - sin28 dg

cos B +\e - sinZB

H

- [ ]
"lz P'cos ¢

x cos BdB

since

H{z)(kp) (--g--)l/2 exp(-3(dp - 3n/4)]

Dol == ™

The contour of integration Pl

the saddle-point method as given by (B.4) to (3.31) and (3.32) yields

Hﬂrefl - P cos 6 -V e-sinze exp(-jkle)
1x = R
cos 6 + vs-sinze 2

; 2. exp(-jk.R))
n, = 2P' cosd>sinecosecose-\/s‘_Sine 12

H

is defined in Fig. 5. Application of

1z R
e cos © +\/e - sin26 2

The expressions for the far field due to the reflected rays only, are

given by [14],

refl H refl H
Ep = - jwuocose [ Tix €08 6 cos ¢ - nlzsin 0]
refl H refl H
Ez = juu sin @ [ T Co8 8 cos ¢ nlzsin 8]

refl H refl
E¢ = jmuosin ¢ ™ x

46—

(3.31)

2k.sinB 11 2
[exp[j{—n/h—klecos(B-e)}]( 1 )1/2 €Bg 8 =yu-éin g-sinB

ﬂkzsine 7
rl € =08 B +\}e-ain B

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)
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thi: defined plane) by the specular plane wave TM reflection coef-
ficient and E¢ (- field perpendicular to this defined plane) by the
negative of the specular plane-wave TE reflection coefficient. The
fields Eo’ E¢ and Ez used for this case are assumed not to or‘ginate
from the source dipole, but from the image of the source dipole.

The mutual impedance between two parallel horizontal electric
dipoles over an imperfect ground plane can be computed as indicated.
An user-oriented computer program is available using the reflection-

coefficient method for treating problems of this type [22,23].

3.5. Comparison of Accuracy Between the Reflection Coefficient

Method and the Exact Sommerfeld Formulation

In the case of the horizontal dipoles only H"lz has a singularity
and not H“lx' But H"lz in (3.16) has a cos ¢ variation which indicates
that the effect of the singularity would be maximum when the field due
to the dipole is computed in a plane containing the dipole and perpen-
dicular to the ground plane. VWhen the field is computed along a plane
perpendicular to the axis of the dipole, the effect of the singularity

is zero. Also, from (3.22), the contribution from the singularity is

less for the corresponding vertical dipole by a factor of 1/e. Hence

[22] T. K. Sarkar and B. J. Strait, "Analysis of Radiation by Arriys of
Parallel Horizontal Wire Antennas Over Imperfect Ground,'" Scientific
Report No. 5 on Contract F19628-73-C-0047, AFCRL-TR-74-0538, Syracuse
University, Syracuse, New York: September 1974.

{23] T. K. Sarkar, "Analys: : of Radiation by Arrays of Horizontal Wire
Antennas Over Imperfec:. Ground," (Reflection Coefficient Method),"
IEEE Trans. Ant. and Propagat., (to be published).
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Let the specular TE and TM reflection coefficients be denoted by

FTE and PTM’ respectively, and defined by
p = o8 8 - Ve - s1n26 (3.39)
TE =5 =
cos 8 + Ve - sinze
and FTM by (2.48).
Since,
H refl H _ '
Tix CO8 0 cos ¢ nlzsin 6 =~P' cos 8 cos ¢ FTMexp( jkle)/R2
the far field expressions in (3.36) - (3.38) reduce to
refl _ 2 2 '
Ep = jwuo cos 6 cos ¢PTMP exp ( jkle)/R2
= FTM e (far Ep field from the image due to a
perfectly conducting ground plane) (3.40) i
Erefl i _ jwp sin 8 cos 6 cos ¢ T P' exp(-jk,R,)/R
z o ™ 1727772
=Ty * (far E field from the image due to a
perfectly conducting ground plane) (3.41)
refl _ | ' oy,
E¢ = juu sin ¢ g P' exp( Jkle)/R2
= - FTE o (far E¢ field from the image due to a
perfectly conducting ground plane). (3.42)

A physical interpretation can be given for these formulas. A !
plane of incidence can be defined as a plane passning through the mid-
point of the horizontal dipole and the field point in question and that
is also perpendicular to the ground plane. Then the contributions from

the reflected ray can be obtained by multiplying Ep and Ez (- fields in

47~
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it is expected that the reflection-coefficient method would give a better
approximation to the exact Sommerfeld formulation than for the vertical
dipole case. Also, as before, for the reflection-coefficient method the
maximum error occurs in the computation of the near fields and hence., the
self impedances. It has been found that for the worst case of two coplanar
horizontal dipoles (for ¢ = Q) the reflection-coefficient method yields a
result within 10% of the exact Sommerfeld formulation both in the real and
imaginary parts of impedance elements, as long as the dipoles are away

by at least (0.25/YJe[)) from the ground plane. For the reflection coef-
ficient method, there is still another restriction on the distances between
two horizontal dipoles. This 1s because as the distance gets larger the
saddle point 6 approaches the pole at 7/2 [in 8, (3.22)]1 It has been
observed that the horizontal dipoles should lie within a cone whose semi-
vertical angle is 70° in order that the reflection-coefficient method

yield results within 10%Z of the exact Sommerfeld formulation both in the
real and imaginary parts of the impedance elements. The apex of the cone
is the image of the middle point of the source dipole. This is illustrated
in Fig. 9. This implies that the maximum lengths of the horizontal dipoles
for which 10% accuracy can be obtained in the evaluation of the impedance

elements by the reflection-coefficient method is

= 0 e
Lcritical 2h tan 70° = 5,5h (3.43)

as indicated in Fig. 9.

Also for large e and large distances away from the source H"lx

and Hﬂ

1z in (3.18) and (3.19) can be rewritten as
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exp(-jk,R)
e m P A (Baie)
k, Ve
1
r exp(-jk,R)
H  .prZ2l o2 1 (3.45)
1z X /ER oR R

Hence from (3.44) and (3.45)-Hrrlx and Hn . have the ratio z/p which is

1
very small at great distances from the transmitter. The field of trans-
mission of a horizontal antenna has the same character as the field of
transmission of a vertical antenna except for the ¢ dependence. It is
then expected that the restriction on the length of a horizontal an-
tenna can be removed if it is situated at least (0.7//TET)A away from
the ground plane (as from 2.3). For the worst case, ¢ = 0, it has been
found that the reflection-coefficient method yields a solution within
10% of the exact Sommerfeld formulation both in the real and imaginary

parts of impedance elements even when two horizontal currents are as

much as 10001 apart.

3.6. Conclusion

Application of interpolatory quadrature formulas and a modified
method of steepest descent to the infinite integrals encountered in the

Somerfeld formulation have significantly reduced the time of computation

without appreciable loss of accuracy for evaluating these integrals. When
a method of steepest descent 1s applied to the integrals of the exact
Sommerfeld formulation the reflection-coefficient method falls out as the lead-

ing term in the series under certain conditions. The reflection-coefficient
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method yields a result within 10X of the exact Sommerfeld formulation
in both the real and imaginary parts of the impedance elements pro-
vided the antennas are no longer than 5.5h where h, the height of the
antennas above the ground plane, can be no less than (O.ZS/M)A.
For large ¢, the restriction on the lengths of the antenna can be
relaxed so long as they are situated at least (O.7//TET)A away from

the ground plane.
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4. ARBITRARY ORIENTED WIRE ANTENNAS OVER IMPERFECT GROUND

In this section expressions for mutual impedance between two
arbitrary oriented wire antennas over plane imperfect ground are de-
rived both by the Sommerfeld formulation and by the reflection-
coefficient method. The problem configuration consists of two arbi-~
trarily oriented current elements having a current distribution IA
and IB. They are situated over a plane imperfect ground as shown

in Fig. 10. The ground is characterized by the complex dielectric

constant e, It is possible for IA and I_ to overlap one another,

B
thereby forming a wire junction. The method of analysis is the same

as presented in the last two sections.

4.1. Exact Sommerfeld Formulation

In order to compute the mutual impedance between two arbi-
trarily oriented current elements, the source current element TA is
split up into three components Ix, IZ and I:. The total electric

field E is then the summation of E %° E and E y = fields due to

y
O S
the component current elements IA’ IZ and IA as in Fig. 10.

Hence from (2.5), (3.11), (3.14) and (3.15) the electric field due to

X
I can be written as

A
o, 3§
A St o) Lot o RO X -
E X J [ 4n * Jwhme 1% IA(gO 51 * gsH)
IA s o
A
X 9
+ 2 IA B (gz)]dlA

Similarly for
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Fig. 10. Arbitrary oriented elements over an imperfect

ground plane.
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ﬁly - [ [ 4ﬂ jwdﬂe Jubme 1 19 I (80 g1 + SBH)

y 3
+2 T 3y (gz)]dEA (4.2)

and from (2.5), (2.19) and (2.24) the field is

, LV
EIz - J én jm4ﬂ€ Jubme ) [2 I (30 T8 + GsV)]dQ'A (4.3)
A R.A

Next some relations are presented which are very helpful in deriving a

formula for mutual impedance between TA and TB' First

G G
2 B0 oy ey o Sev
Ix (83H) * 5% 5% (82) ) axA ( e’ axA (83)
is obtained from (3.22). Also,
G
9 _ 9 sV, _ _

It is well-known that

— (go) = - — (go) , where p may be 'x', 'y' or 'z' ,

p Bp

g%'(gl) = an (gl , where q may be 'x' or 'y',
537{ @gp) = - 5%; (Bgy) 3 aq (»,) = 32,; (g)) 3

= (g) = % () and = (G_) = a—i—; ©,) -

Applying the above identities the total E-field can be obtained in the
following form after some algebraic manipulations on (4.1), (4.2) and

(4.3).
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Juwu - .
G 4"0 J [IA(SO i gl + 88H) + 2 {-I:Q - IA Q VA(SZ)}](”.A

Ia

>
v = & _ _ o
¥ Jubme, J [- T, « Vileg - &) + 8y - LeTldr,
2
A

where Q and T are given by the following:

3
%= [GsV + 5;1 (gZ) - gsH]
” T {Jx_z-ki- Az-k§}2
= 2J Jo () exp[- V) -kj (z + z")] ‘/___ldk
P A Y )
0 kz\lx k] + k7 VA%-k,
and
e . 0 - - = . 12
T“azA (28, - Goy — 83) = 8, * k)

Transferring the derivative (VA) operating on the Green's function
over to the current (TA) and assuming the current to be zero at the

ends of the open wires,

R Jwu dIA

(o] V4
BA "™ I Ty - &) + 8 + 2 - 1,0+ at, gy}1dt,

A

] dIA z
¥ Jubre, J Tr, (B = & * &) ~ T,TIdY

‘A

The mutual impedance between the two rurrent elements TA and TB

can then be expressed as

(4.6)

4.7)

(4.8)

ey T e i Ao e+ A A 80T 1B A 5 st e 1 o

L Dot WA 1 e Ko na SO T g i

e

Ve s WL sm s ate e M
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After some algebraic manipulations, the mutual impedance reduces to

jwuo > f z dIA zy
ZpB = m f diy [ Wplty " 158 = &y * 8 * 1p (g, 82 = 1p°H]

'y A

TR i et ) [CA (o g +gy -1 ] (4.9
jubre | at; B A ‘dL, Bp ~ & T B3 A 8251 .
QB 2A
For p < 0.5, the semi-~infinite integrals in Bon? 8ys g3 and Q are com-
puted in an essentially exact manner along a contour shown in Fig. 2.
For p > 0.5, a modified method of steepest descent is applied to take

into account the pole near the saddle point, and the integrals can be

expressed as follows:
2,..2
Q= - 8, (cos 6 - Ve - sin"9) (4.10)

8y = jg3 (cos 6 =\Ve - sin26)/k1 (4.11)

and Ben and g, are given by (3.29) and (3.30).
A user-oriented computer program has been written and is presented in a
later report. The underlying mathematics of the program is relatively {

straightforward once the general formula for Z,_in (4.9) is available.

AB

4.2. Reflection-Coefficient Method

In order to find the mutual impedance between two arbitrarily

oriented current elements over the plane surface of an imperfectly

conducting earth, the effects of the direct ray and reflected ray are
considered separately. The effect of the direct ray is straightforward %
and is the same as in [15]. In order to obtain the effects of the reflec-

ted ray a local co-ordinate system centered at the middle point of dipole A
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18 chosen. The x and z axes of the co-ordinate system are oriented
! in such a way that the x-z plane passes through the center-point of
é dipole B. Also the x-y plane is parallel to the imperfectly conduct-
ing earth. The currents of element A are now split up into three
components each being parallel to the local co-ordinate axes chosen.
As seen from (2.49), (2.50), (3.40)-(3.42), the effect of the reflected
ray is equivalent to taking the original current element and placing it
at the image point C as in Fig. 10. Then the contribution to the reflected

x _ X z y X y z
ray due to IA is FTM(E + E x) + PTE E - where E X’ E'_ and E x are the

[} x x
{ IA IA IA IA IA IA

three components of the electric field generated by I:. Sirdilarly for

g
[ Y the corres onding contribution is -T (Ex + EZ Y+ T E’  and for
A ¥ L S R
é A A A
3 z X z Yy =
t IA’ I‘TM(EIz + EIz) + FTE EIZ. Hence the total E-field due to the
A A A
reflected ray is given by
Bl = 1. (RE* + 8E® - RE* - 2E®_ - RE* - 2E%)
LS s ¥ ¥ o4 4
A A A A A A
{ y y y
+y TE (EIx + EIy + EIZ) _
E A A A F
f Jum - - Tz 2
; "Z}-I [- Tra + Trela ¥ T R, a
RA
-jk.R -jk '
S Imogr Tae 12 dg, + ™ 9 T2 E )de I
Jjuwbme ds R Juwhne de, dy R A
) A 2 ) A 2
A A
y -jk.R -jk,R
i I 172 172 |
TE A 3 e _a
9[[— ( y + @, - Ry 2 (— {E——N1laz,
Jwbme R2 3R2 R2 R2 3R2 2
L
A g
(4.12) !
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The mutual impedance between the two current elements IA and IB is

defined as

Juwu
o 1wy _ X X y.y .Z.Z
(= ToyTaTg + Tpglaly * Tiiialp
)

F -
3Ry

e A = DR + 17 2

3R, R, R, R, aB, + TR+ LR))) (4.13)

= and R = 2z_+ 2z} and R =\/R2 + R+ R2 .
z x y z

= - ' b =
where Rx xB x, ; R B A 2

L
A y B~ YA

The total mutual impedance between the two current elements becomes

Z = ZD + ZI, where Z_ 1is given by,

D

-jk R

!

D _ Juko e
= I dig J 2oy fA (8 R,

s A

-3kRy

1 J dl, dI .
+ de f de (4.14)
jw&neo B A dnA dlB R1
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where R1 is given by (2.17).

A user-oriented computer program has been written [17,24] to
solve for the current distribution and the field pattern of arbitrarily
oriented wire antennas (this may include wire-junctions) over plane

imperfect ground. Again the program follows directly from (4.13) and

(4.14).

4.3, Validity of the Reflection-Coefficient Method as Compared

with the Exact Solution

In general it is difficult to predict the accuracy of the so-
called exact solution below a height of 0.03)2 from the ground plane.

If sections of the antenna structure below this height are all vertical
then there are no difficulties but if there is any horizontal structure
below a height 0.03) then the method of integration used to integrate
the semi-infinite integrals fails. It is safe to say that as long as
there are no horizontal wire elements below a height of 0.03) and as
long as any structure below this height consists cof all parallel
vertical wires then the exact solution is valid.

For the reflection-coefficient method it is impossible to make
any comment regarding accuracy for arbitrary structure. However, as
long as the antenna structure is within the limits presented in the
previous sections, it is possible to draw conclusions regarding its

relative accuracy.

[24] T. K. Sarkar, "Analysis cf Radiation by Arrays of Arbitrarily
Oriented Wire Antennas Over Plane Imperfect Ground (Reflection
Coefficient Mettod)," IEEE Trans. Ant. and Propagat. (to be
published).
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4.4, Conclusion

Two user-oriented programs have been developed using both the
Sommerfeld formulation and the reflection-coefficient method based on
the analysis presented in the last section. The methods presented here
and their corresponding programs handle arbitrary wire geometry includ-
ing wire junctions and use piecewise linear functions to represent both

IA and IB.
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5. OPTIMIZATION METHODS FOR ARBITRARILY ORIENTED ARRAYS OF ANTENNAS
OVER IMPERFECT GROUND

In this chapter methods are presented for optimizing certain per-
formance indices of arbitrarily oriented arrays of wire antennas over
imperfectly conducting ground. The indices considered include direc-
tivity, maximum power gain, quality factor, and the efficiency index
sometimes referred as main-beam radiation efficiency. Optimization
problems both with and without constraints on the resulting antenna
pattern can be handled. 1In the first six sections attention is re-
stricted to determine array feed voltages that will optimize some per-
formance index. Strait and Kuo [25] presented the optimization methods
for arrays of parallel vertical wire antennas in air. An attempt has
been made to extend these methods for arbitrarily oriented structures
now situated over imperfect ground. The next section deals with the
optimization of certain performance indices as mentioned but this time
with respect to the geometry of the antenna structure. This includes
optimization with respect to spacing between elements, lengths of the
elements and both lengths and spacings. Finally optimization of the
indices with respect to loads applied at certain points on the antenna
structure is also considered.

The problem of interest consists of an arbitrarily oriented
antenna array of N-input ports plus a distant test antenna having one
input port all situated over an imperfect ground plane. This is

illustrated in Fig. 11. The array and the test antenna form an

[25) B. J. Strait and D. C. Kuo, "Optimization Methods for Arrays of
Parallel Wire Antennas,'" Scientific Report No. 18, Contract No.
F19628-68-C-0180, AFCRL-72-0725, Syracuse University, Syracuse,
New York: December 1972,
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(N+1)-port network whose terminal characteristics are determined by an
(N+1) by (N+1) matrix. In order to obtain the terminal characteristics
the antenna array is divided into subsections (as in the 'Moment Method")

l and the current of the test antenna is represented by one expansion func-
tion only. The generalized impedance matrix is computed which completely
characterizes the wire structure. Either the "exact” solution or the
reflection-coefficient method is used to calculate individual matrix ele-
ments but one method is adhered to compute the whole matrix. The formulas
4 presented in Chapters 2, 3 and 4 are utilized depending on the method used
and the nature of the antenna structure. The impedance matrix 1is inverted
to obtain the generalized admittance matrix [Y] of the entire structure.
The terminal admittance matrix [Y]T is obtained by retaining only those
elements Y,, for which both i,j represent the input ports of the antenna

ij

structure. So,

sy

1 Y [Y. ] v
t tt ta t (5.1)

1oy [y

where It’ Vt and Yt are the terminal current, voltage and the input admit-

t

tance of the test antenna, respectively. The corresponding terminal char-
acteristics for the antenna array are expressed by the matrices [Ia]le,

and [Y represent the mutual admittances

and {Y ]

[va]NXI aa NxN°* [y

taJIXN at]NXI

between the test antenna and the array ports incorporating the effects of
the imperfect ground plane. Also [Yaa] = [Yaa] and [Yta] = [Yat]° Once the
four admittance matrices of (5.1) are known array optimization problems can

be handled as illustrated in the next sections.

5.1. Gain Maximization

The power gain for an antenna array is defined by

6=




T YOI YIS AL 30 4 4 et ti e

4n x (Radiation intensity for the specified direction)

G Power input to the array G.2)
The power input to the array is given by
P, =3 (V¢ * ) 3
in =3 (V%1 LIy, ) + (Y% 1) [v,) (5.3)

where * denotes complex conjugate and ~ denotes the transpose of the
matrix. The test antenna is assumed to be appropriately polarized and
located in the specific direction for which G is desired. It 1is also
assumed that the test antenna 13 at a distance r from the array and
situated in the far field. Under polarization-matched conditions, the
square of the magnitude of the test antenna terminal current is propor-
tional to the radiation intensity (R) of the incident field. For Vt = 0,
the power received (Pr) is related to the gain (g) and the receiving

aperture (A) of the test antenna by
(5.4)

where Rtt is the input impedance of the test antenna. Since g, A and

* - the wavelength of propagation, are related by

- R
A = (5.5)
it follows that
2 .2
R A
2 Ste 2 K
R= |1 | ———= |1 | — (5.6)
t . A2 t' 8n
K is a constant which depends solely on the test antenna. Since
It = [Yta][va] for Vt = 0, (5.6) can be expressed as
R = o= [V*] [¥* ] [Y, ] (V] (5.7)
8n "'a ta ta a
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Application of (5.3) and (5.7) to (5.2) yields

(V) [¥.3 1v,,) IV,]

G =K (5.8)

(Ve (11 + (Y21} [V ]

The procedure for optimizing (5.8) for some specified direction is

well-known [26]. This is a ratio of Hermitian quadratic forms, and it

follows from the properties of these network matrices that {[Yaa] + f?ia]}
P d
is positive definite while [Y:a] [Yta] is positive semidefinite. Hence

all eigenvalues associated with the following equation

=

[Yga] [Yta] [Va] = {[Yaa] + [Y;a]} [va] (5.9)

are either zero or real and positive. Since fQ;ta] [Yta] is a one-term
dyad there is only one non-zero eigenvalue, and the corresponding eigen-

vector is found from

XA ER RN R NN BRI N (5.10)

Since [Yta] [Va] is a scalar the excitation voltages required to maximize

the gain in the specified direction are contained in the eigenvector

~ _1~
[Va] =C {[Yaa] + [Y;a]} [Y:a] (5.11)

where C is a constant. Substitution of (5.11) to (5.10) yields

Gmax = K[Yta] {[Yaa] + f§§a]]_1 [?%a] (5.12)

[26] R. F. Harrington, "Field Computation by Moment Methods," The
Macmillan Company, New York, 1968,
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Hence the voltages given by (5.11) (the constant C can be dropped with

S e L

no effects on the result) can be used to maximize the gain of the array

in the given direction. The result is Gmax given by (5.12).

5.2. Efficiency Indices

An efficiency index S (or inverse of sensitivity factor) sometimes
called the main-beam radiation efficiency {27]) has been defined for arrays
of isotropic point sources as

_ (radiation intensity corresponding to the direction of max. radiation)
(sum of the excitation current magnitudes squared)

S
(5.13)

to serve as a measure or indication of the supergain condition. It has been
pointed out [27] that superdirective arrays may require very large currents

of opposite signs in neighboring elements, resulting in excessive heat loss

and very low radiation intensity in the direction of the main beam. This
generally undesirable condition is indicated by a relatively low value of S.
The efficiency index has similar significance for arrays of electrically

short wires. Use of (5.7) and [Ia] = [Yaa] [Va] in (5.13) yields

ARCRILMEA 510

§ =
2 [T (Y1 1v,]

For longer wires it may be more useful to deal with either one of two

possible alternative quantities that will also be labeled efficiency

indices. One of these is obtained by using (5.13) with its denominator

replaced by the sum of the excitation voltages squared. By denoting the

resulting quantity by S1 and use of (5.7) in (5.13) yields

[27] D. K. Cheng, "Optimization Techniques for Antenna Arrays," Proc.
IEEE, No. 12, pp. 1664-1674, December 1971.
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5, » K 8 _ (5.15)
[V*] (v ]

@ TR 0T ) 1y, 1 (V)
2

For longer wires a suitable alternative is obtained by using (5.13) with
its denominator replaced by the sum of the current magnitudes squared

over the entire array. The new efficiency index S, is then obtained as,

2

(V) 1y ) [y ) [V,]

wn
!
o=

T (5.16)
(V4] [Y*] [¥] [V,]

where the admittance matrix [Y] is obtained by retaining only those
columns of [Y] which correspond to the input ports of the antenna

array.

The excitation voltages that will maximize the efficiency indices

S S1 and S2 can be obtained from the method of Section 5.1. Results are

0
"
£ %

~ -1 ~~
S =7 Y1 (V% 1 [y 17 (T ] (5.17)

corresponding to the feed voltages given by (within an arbitrary constant)

_ ~ ..J_ o~
RS {[Yga] [Yaa]} [yx.] (5.18)
Also,
- K s
(Sl)max = 2 [Yta] [Y:a] (5.19)
with feed voltages given by
[Va] = [yx ] (5.20)
Finally
K w1 ()3 (6
(), =5 (¥, ] ([Y*] [Y]} 7 (V% ] (5.21)

resilting from feed voltages given by
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(vl = ([v& ] [¥, DT ) (5.22)

Thus the three choices for efficiency index can be calculated for any
arbitrarily oriented antenna array over an imperfect ground plane by

using the formulas for impedances described in Chapters 2, 3 and 4.

5.3. Quality Factor

A quality factor can be defined for arbitrarily oriented arrays
over imperfect ground that relates gain and efficiency index. For arrays
of electrically short wires it is convenient to use the quality factor Q

defined for arrays of isotropic point sources as

_ 4 (sum of excitation currents squared)

Q power input to the array (5.23)
So that from (5.2), (5.13) and (5.23)
& =105 (5.24)

Application of (5.3) and [Ia] = [Yaa] [Va] in (5.23) yields

LIUATURRUMEN T
(V) 1y, 1 + (¥ )} (V]

Similarly, alternative quality factors Q1 and Q2 are defined correspond-
ing to the efficiency indices of (5.15) and (5.16). The result is that
(5.24) holds with the product QS replaced by lel or QZSZ’ which ever is

appropriate. By using the equivalent of (5.24), then it is obvious that

8n[V] [V_]

Q== - (5.26)
[V%] (Iy, ] + [Y% ] }Iv ]




and — -
8nfvx] [Y*] [Y] [V ]
0, = oo = (5.27)
T qvrp iy J+ [Yx] [V ]
d aa dad a

Hence the quality factors @, . and Q2 can be computed once the antenna

1
structure and the feed voltages are known. These quantities can be opti-

mized by a procedure as outlined in the previous section.

5.4. Optimization Subject to Constraints on Pattern Nulls in the

U'pper Half-Space

The problem of optimizing the directivity or any of the efficiency
indices subject to constraints on the resulting pattern nulls in the upper
half-space is discussed in this scetion. The field pattern in a cericia
direction abouve the ground plane tor an arbitrarily oriented antenna array

over imperfect ground will be proportional to I[tl’ where 't is the short-
circuit current flowing through the test dipole located in that particular
direction. Specifically the field (Ep) in direction p above ground is
related to the short-circult current I? in the test dipole which is located
in the p=direction by

ifc‘t’! = VIR i[‘;[ (5.28)

where » and Rtt are the wave impedance and input resistance of the test
dipole respectively. The problem is to determine thc feed voltages that
will provide pattern nulls in p specified directions in the upper half-
space and a maximum of one of the performance indices (say the gain) in
a given (p+1) direction subject to these constraints. An equation re-
lating the short circuit current in the test dipole for each of the (p+1)
directions to the admittance matrix and the feed voltages can be written

as follows:
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e [¥e )y an
2 2
It [YtllxN
. - = |l = v,] (5.29)
P p
Te [YeTiun
+
it S
R R L | e Jwa

where the matrix [YE] is the transfer admittance matrix between the test
dipole in the p-direction and the excited ports of the antenna array,
taking into account the effects of the imperfect ground plane. v‘2nRtt |Ii|

is then the field in the direction designated for the maximum performance

index. Equation (5.29) can be portioned in the following form

; 11 12 T [
3 [0] Vel O enepy| | Malpaa
h - (5.30)
] 21 22 2
L_It [Yt 1xp [Yt ]1X(N-pL EIva](N-p)xl
Hence
1 11.-1 12 2 2

V1 = - [¥, 17 [v,) V) A [BIIVY) (5.31)
:
! and
! _ 21 22 2 2

I, = {Ivg ] [B) + [¥.°]} [vi] & [C] (V) (5.32)

If the performance index chosen to be maximized is the gain then from

(5.2), (5.6) and (5.32)

ox. 2
(v 1 [c*] [c] [V]]
o a (5.33)

2 Pin

and Pin from (5.3) is given as
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1 &= —~
Pin - .2— [v;] {[Yaa] + [Y:a] }[VG]

and with [Val written in partitioned form

S (vi]
* * Gt
R XU IS IR IR R I D s (5.34) :
(vi]
Application of (5.31) leads to
- ' [8]
< * ~ —~
P 3 (VAL OB (ol (Y )+ YX] ) [-— | V2]
: [v]
or
1 o2k 2
P, 47 V] [a] (V)] (5.35)

where [U] is a unit matrix and [Q] is defined by (5. 34) and (5.35).

Hence, application of (5.35) to (5.33) yields

~

A= . 2
(v}"] [c*] [c] V]

G =K
(2% 2
(v (a1 (v2]

(5.36)

Once again (5.36) is a ratio of Hermitian forms with [Q] positive definite

~
and [C*] [C] positive semidefinite. Furthermore the latter is a one term

dyad so that the procedure for maximizing the gain is identical to that

used in Section 5.1. The results are

-1 ™
Goax = K * €] [Q)7F [CH] (5.37)

and
2 -1 7
vl = (a1 [c4) (5.38)
Once [Vi] is known [Vi] can be obtained from (5.31) which completes the solu-
tion. If no pattern constraints are used then (5.37) and (5.38) reduce to

the solution of Section 5.1.
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The procedure for optimizing any of the efficiency indices defined in
Section 5.2 subject to constraints on the resulting pattern nulls in the

upper half-space follows exactly the same procedure.

5.5. Optimization Subject to Constraints on the Resulting Sidelobes in

the Upper Half Space

Next, the problem of finding excitation voltages that will maximize
a performance index (of an arbitrarily oriented antenna structure over an
imperfect ground plane) in a given direction subject to constraints on the
resulting sidelube levels is considered. Suppose I: denotes the short
circuit current in a small test antenna located in a direction corresponding
to the direction designated for a maximum of a given performance index (say
gain), and Ii, Ii, . IE denote values of the short circuit current,
induced in small fast antennas located in direction, corresponding to the

peaks of the p sidelobes to be constrained in the pattern. The short-circuit

currents in the test antennas are proportional to the field intensities in

those directions and are related by (5.28). Using partitioned matrices

T ] [ | 3 -
o AA AB
e Ve lpeepy 1 De digp
1 |
ft = L e L = Evz}(q_pzx£ (5.39)
B
| lva]pXI
P BA l BB
IcJ [Ye ]px(N-p) | Y, ]pxp
L - 4 L ]
BB
Assuming [Yt ] to be nonsingular
Its 7
(1
t
U5 IR Vo Bl B R S S%en I A (5.40)
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An alternative to (5.40) 1is possible if it is not required to satisfy (5.39)
exactly. That is, if a least squares solution is acceptable it is possible
to use less than p voltages in [V:]. That 1is, [Vi] and [V:] are of dimen-
sions m and N-m respectively where m < p, then the dimensions of the other
matrices change accordingly with [YEB] no longer square. A least squares

solution is then obtained using

r _ —
rii
B BB*. . BB..-1 , BB*.||. BA, . A
USRI Ui Pl Ul || RO IR e vy (5.41)
I‘t’_‘ ]
in pl £ (5.40) L
n place o = _J %

Using a suggestion of Sanzgiri and Butler [28] the short-circuit
current in the test dipole corresponding to the peak of the ith sidelobe

can be denoted by Ii = e I: so that

.1 7] 3 o 7] |
I ellg |
.= . £ (k) 1 (5.42)
P o
It ep Itd
Then, from (5.38)
0.1
Ip = ¢ [F] (V) (5.43)
where
TS U Vot I € o el 1) (5.44)
and
[F] = 1v2%) - 2% 2B (5.45)
t t
[28] S. M. Sanzgiri and J. K. Butler, "Constrained Optimization of the
Performance Indices of Arbitrary Array Antennas,'" IFEE Transactions

on Antennas and Propagation, Vol. AP-19, No. 4, pp. 493-498,
July 1971.
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The input power is given by (5.34) and using (5.40) and (5.42) - (5.45)

in (5.34) results in

% - P, =10 () 1o (5.46)
where in this case
' » |
[Q'1 = {[u] 4 [6*1} {I¥_ ]+ [Y* 1} ;;; (5.47)
and
(6] = ¢ [Y2"1™ ([E] [F] - wIY,]) (5.48)

Of course (5.44), (5.45), (5.47) and (5.48) must be changed appropriately,
if (5.41) is used rather than (5.40).

If the performance index to be maximized is chosen again to be gain

——C

then,
AR~ A
[vi"1 [F*] [F] [V]]
t ST TR e o 42
a a
~
The matrix [F*] [F] is a one term dyad and the procedure for optimizing
(5.49) is again that of Section 5.1. The results are
l ¢ = L= Fipe' 17t FR) (5.50)
max 2 '
A = r~s
VA1 = 10"t (7% (5.51)
1
5 !
Vo) = [6) (v (5.52)
a a
The iterative optimization procedure is then simply to guess the
initial sidelobe directions and compute the matrices necessary to determine

Gmax and the required voltages (5.50) to (5.54). The resulting sidelobe

directions and peaks are then computed and compared witt desired results.

L ;




The new s.«¢2lobe directions are used, of course, a: "initial guesses"
for the next iteration. The iterative procedure is continued until the
levels of all sidelobes to be constrained are within some prescribed

tolerance.

Obviously, constrained optimization of the various e“ficiency indices

defined earlier can be carried out in the same way.

5.6. Optimization of One Performance Index Subject to a Constraint

on Another

A procedure for optimizing a given performance index (of an arbi-
trarily oriented antenna array over an imperfect ground plane) subject to
a constraint on another performance index is outlined here. In this dis-
cussion an index denoted by

~

[VE] [R)] [V,)

*
[VA] [R) [V,]
will be optimized subject to the constraint given by

~N

[VE] [R)) LV_]

=~ = y (a given constant), (5.53)
(VX1 (R,] V)

Once the performance indices are specified [RI]’ [RZ]' [R3] and [Rd] have
precise meanings. A solution is obtained by setting
(V%1 (R (V] Vel [R,D (V]
a 1 a a 3 a

1 Bl + 2 —=< - Iy,
V) (R,) (v,1 | V3] [R,) [V,

(5.54)

stationary with respect to the column vector [Va] and the Lagrangian
multiplier ). Setting the first variation of L with respect to [Va]

equal to zero yields

5=




" " - T e
_ﬂ'ﬁ , L

(v,]=a [H7" (54 (5.55)

where a is a constant given by

a = {05,) [V} (V4] [R)] [V 1) (V3] IR} [V, D72 (5.56)
and —~
(ry) = (53] [s,]
The matrix'aii: g ea by

[H] = [Rzl + YblR4] - bIR31 (5.57)

where the constant b is

b= (VA IR [V 7H (8 [R,) v 1P (ival r) v T (s

The results are essentially those obtained by Lo, Lee and Lee [29] for the
special case when [R3] is a unit matrix; although of course, not only mutual
coupling is incorporated in the matrices dealt with here, but also the effects
of the imperfect ground.

When (5.55) is substituted in the constraint equation (5.53) it follows

that

~

-1 =S
[Sll {[H] (Y[R4] - [R3]) [H] [s;]}- 0 (5.59)

where it is assumed that [R1], [R2], [R3], [RA] and [H] are Hermitian. The
only unknown in (5.59) is b which is contained in matrix [H].
The procedure for finding b is spelled out by Winkler and Schwartz

[30]. It is evident from (5.59) that the column vector shown in brackets

[29] Y. T. Lo, S. W. Lee and D. H. Lee, "Optimization of Directivity and
Signal to Noise Ratio of an Arbitrary Antenna Array,' Proc. IEEE, 1
Vol. 54, No. 8, pp. 1033-1045, August 1966,

[30] L. P. Winkler and M. Schwartz, "A Fast Numerical Method for i
Determining the Optimum SNR of an Array Subject to a Q-Factor
Constraint,” IEEE Transaction on Antennas and Propagation, Vol.
AP-20, No. &4, pp. 503-505, July 1972,
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is orthogonal to [SI]' It follows that a complete set {[fn]} can be con-

structed with [SI] as one of its elements. If [Sl] is written as

l [SI] = [sl, Sgy Sgs eee sN] (5.60)

where N {s the number of independent applied excitations then

[fl] = [Sl’ Sys Sq5 Bprecnn, sy

[f ] = I_— s oo 0' seny 0]

2 ) 82

T S § ‘

[f‘}] = [" s. ’ O, s ? O’ ’ 0]

. i 3

1 1

[f“] = [_ S_, 0’ 0, 0, s 0y —] (Sc61)

B 1 SN

forms a complete independent set with [fl] orthogonal to all others. The
bracketed column vector in (5.59) can then be expressed as a linear combi-

nation of [fi] written as

1

N
= _IN ~~
177 GlRg) - (RyD HITASY) = ) qylf, ) (5.62)

i=2

This i{s easily arranged as
(W] [n] =0 (5.63)

where
[Q] = l' 1, qz: q}. 0"9qN] (5-64)

and [W] is a matrix with columns [wi] given by

(w1 = [F4] = [S%] (5.65) |
W1 = b2 GyIR, 1 = (RG] [€,) + bR )IF,]

+ [Ry) (vIR,) - [RD7N Ry IF]]
for i =2, 3, 4,...N (5.66)
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Rewriting (5.63) in terms of its real and imaginary parts in the form

r”nr “Yiar 0 Yiae "Wy v e 9%, Y
Yo "Y1 Y21 Woop e o 994 0
- (5.67)
Yo1r ~ Yo 9, 0
Wo1: ~ Yo g4
or (W'l [Q'] =0 - (5.68)

where [W'] is a square matrix of dimension twice that of [W], and [Q) is
a column vector of dimension twice that of [Q]. By using (5.66), (5.68)

can be rewritten
2 ~' 3
(6" (a1 +b [A] + [A1) [Q') = 0 (5.69)

where [All and [A2] are 2N x 2N singular matrices (their first two columns
are zero) and [A3] is a 2N x 2N invertible matrix. Then from (5.69)
Winkler and Schwartz [30] show that values of b can be found by determining

the real eigenvalues of

[6) [x] = £ [x] (5.70)
where [G] 1s an unsymr .ric matrix given by
[0] [u)
[G) =
- a7t 1A - a7t 1)
3 1 3 2_J 4Nx4N (5.71)

where [U] is a unit matrix.




.
l

For each real value of b one set of excitation voltages is computed
using (5.55). FEach of these sets is then used to compute corresponding
values of both the constrained index and the index to be optimized. The
set finally chosen is the one which yields the optimum result subject to

the correct constraint.

5.7. Optimization with Respect to Antenna Geometry

With an appropriate optimization procedure, the performance indices
presented in the previous sections may be maximized through adjustments
of the antenna structure. In this case either lengths, spacings or both
lengths and spacings are to be determined so as to maximize a performance
index given by either (5.8), (5.14), (5.15), (5.16), (5.25), (5.26) or
(5.27). The starting point in the optimization procedure can be an initial
state corresponding to some classical or other improved design procedure.
At each refinement, the admittance matrices [Yta] and [Yaa] are recomputed
and the performance index is calculated by the optimization procedure till
the design parameters meet certain error specificationms.

The next problem is to reduce the sidelobe levels below a certain
level of an antenna array over an imperfect ground plane by adjusting
the antenna geometry. Since the electric field in the upper half space
in a certain direction is related to the short circuit current It in the test

dipole hy (5.28), an error criterion can be defined as

n
i(2 2 i
= z |I:| - |Itl for IItl > |It|
i=1
=0 for 13| < |1,]




where It is the value of the short circuit current in the test dipole
oriented in the i-th direction and n is the number of the observations
calculated over the sidelobe region of the pattern. Of course, the error
criterion ¢ is the quantity to be minimized as the optimization procedure
progresses. Since at each optimization step the admittance matrices
[Yta] and [Yaa] are recomputed this is indeed a very time-consuming
process. These types of optimizations have been done for parallel verti-
cal wires in echelon [31], and could easily be extended to arrays of
arbitrarily oriented wires over imperfect ground provided, of course, that

sufficient computer time is available.

5.8. Optimizations of Loaded Antennas

In this problem (as in the previous) one has to recompute the
admittance matrices [Yta] and [Yaa] at each optimization step. The
problem in this case involves optimization of the loads that are applied
either at some specific points or distributed along a section of the
arbitrarily oriented antenna structure. Once the total impedance matrix
[Z]S for the entire structure has been computed excluding the loads (but
including the effects of the imperfect ground plane) the effect of the
loads can be taken into account by adding a load impedance matrix [ZIE to
[Z]S. This load impedance matrix is a square matrix having the same
number of columns as [Z]s, where the number equals the nimber of segments
into which the N-port antenna array has been divided. For passive point-

by-point loading [Z]l is a diagonal matrix having a zero on the diagonal

[31] B. J. Strait, T. K. Sarkar and D. C. Kuo, "Special Programs for
Analygis of Radiation by Wire Antennas," on Contract F19628-73-C-
0047, AFCRL-73-0399, Syracuse University, Syracuse, NY 13210.
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corresponding to each unloaded triangle function. Thus if there is a
lumped load of Zln ohms at a wire position corresponding to the peak of
the nth triangle function, then the element corresponding to the nth
row and column of the diagonal matrix [Z]E is Zln' Thus the total im-
pedance matrix [Z]T comprising of the lo.ded antenna structure over the

plane imperfect ground is then

21, = [2]_ + [2],

In this case the terminal admittance matrix [Y]:l is obtained by retain-

ing only those elements {[Z]T_l} which correspond to the excitation

13

ports of the antenna structure. Hence once [Yta]si and [Yaa]sl are ob-
tained the performance indices given by either (5.8), (5.14), (5.15),
(5.16), (5.25), (5.26) or (5.27) can be easily computed. An optimization
procedure now can be used with an initial guess to optimize the perfor-
mance index with respect to the loads zln' The starting point for the
iterative procedure is the unloaded structure. The final result is a
structure loaded at n~-points by lzln] which optimize the required per-
formance index.

The same procedure can again be applied to reduce sidelobes of
the fields in the upper half space by application of loading to antenna
structure. As described in the previous section, the same error cri-
terion is defined but the parameters to be optimized are not the struc-
ture over the plane imperfect ground. The starting point for the iterative
procedure is the pattern in the upper half space of an unloaded antenna
geometry. The final result is the same array over the plane imperfect

ground but loaded and having sidelcbe' near the desired level in the upper

half space.
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6. CONCLUS ION

The mathematical foundations for newly developed user-oriented
computer programs have been presented and described for handling arbi-
trarily oriented thin-wire antennas radiating in the presence of a
plane imperfect ground. Properties of the imperfect ground are taken
into account either exactly by using the Sommerfeld formulation or
approximately by using the reflection-coefficient method. Application
of interpolatory quadrature formulas to integrate the semi-infinite
integrals encountered in the exact Sommerfeld formulation has reduced
the time of computation as compared with other available procedures.

A modified method of steepest descent has been used to evaluate the
semi-infinite integrals to reduce required computing time without
significant loss of accuracy. The commonly used reflection-coefficient
method is derived in detail and its relative accuracy is discussed.

Methods have been presented for contimizing various performance
indices of arbitrarily oriented thin-wire antennas over plane earth
ground. Performance indices considered include directivity, maximum
power gain, quality factor and efficiency index. It has bt2en shown
how a performance Index can be optimized subject either to constraints
on the directions of nulls in the resulting pattern or to constraints
on the levels of the resulting sidelobes, It has also been shocwn how
one performance index can be op:imized subject to a constraint on
another, The methods presented are quite general in that the wires
can be excited or loaded at arbitrary points along their lengths.

In summary the contributions presented in this thesis include

the following:




E'
|
%

- ——

1) Application of interpolatory quadrature formulas to integrate the
semi-infinite integrals encountered in the exact Sommerfeld formulation
was illustrated.

2) VUse of a modified method of steepest descent to evaluate the semi-
infinite integrals to reduce the time of computation without significant
loss of accuracy has been demonstrated,

3) The commonly used reflection-coefficient method was derived in de-
tail and its relative accuracy was discussed,

4) New, user-oriented computer programs for treating the imperfect
ground problem have been developed and described,

5) Formulas and results convenient for application to optimization

and design problems have been presented.
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Appendix A. QUADRATURES OF THE HIGHEST ALGEBRAIC ACCURACY

h i
Certain integrals of the type J f (x)dx and J F(x)dx have been
a 0

encountered in the course of this work. A method for evaluating these
types of integrals very efficlently is discussed here. The following
subject matter has been summarized from Krylov [33) to illustrate the
salient features of this technique.

Because of its geometrical interpretation the problem of finding
the numerical value of an integral of a function of one variable is often
for simplicity called quadrature. One method of quadrature used is to

evaluate integrals approximately by mcans of a finite number of values of

the integrand. In many cases this method requires less work than other
quadrature methods.

(Quadrature formulas are often constructed from interpolating
polynomials. 1In this vvay we can, in many cases, obtain quadrature
formulas which are convenient to use and which will give sufficiently
accurate results. For n arbitrary points x],xz,...,xn in the segment
[a,b], we can construct the interpolating polynomial for f(x) by the

following formulas

f(x) = P(x) + r(x) (A1)
? W(x)

P(x) = 7 -1 f(x ) (A.2)
iy G W)

W(x) = (x-xl) (X-XZ) Sk (x—xn) (A.3)

r(x) = remainder of interpolation (A.G)

[33] V. I. Krylov, "Approximate Calculations of Integrals,”
Macrmillan Company, New York, 1962,
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b
The exact value of the integral f p(x) f(x)dx is

a
b b b

[ p(x)f(x)dx = I p(x)P(x)dx + [ p(x)r(x)dx (A.5)
a

a a
where p(x) is the weight function. It is assumed that p(x) 1is a certain
fixed function, which is measurable on [a,b] and is not identically the
zero function, and that the product p(x)f {x) is integrable on [a,b]. If
the interpolation (A.1) is sufficiently accurate so that the remainder
r(x) is small throughout the interval [a,b] then the second term in (A.5)
can be neglected and the approximate equation obtained is

b

n
I p()f(x)dx = ] A fO) (A.6)
k=1

a

where b

W(x)

A'k = [ p(X) (x_ ) w'( ) dx (A'7)
) ") Wy

(lJuadrature formulas for which the coefficients have the form (A.7) are
called interpolatory quadrature formulas. Interpolatory quadrature

formulas can be characterized by the following theorem.

Theorem l: 1In order that the quadrature formula be interpolatory it is

necessary and sufficient that it be exact for all possible polynomials of

degree < n-1,
b

n
The quadrature formula [ p(x)f(x)dx = Z Akf(xk) for a fixed n,
k=1
a

contains 2n parameters Ak and X, (k=1,2,...,n). The problem is to select
these parameters so that (A.6) will be exact for all polynomials of the

highest degree (i.e. for all polynomials >f degree < k, wherc . is as




e

i large as possible). The choice of the coefficients Ak for any arrange-

ment of X, can lead to an equation (A.6) which is exact for all poly~

nomials of degree < n-1. This requirement completely defines the coef-

ficients Ak: (A.6) must be interpolatory and its coefficients must be

: given by (A.7)

| In order to increase the precision of (A.6) the choice of the
points X is still at our disposal. We might hope that for some choice
of these points the degree of precision can be increased by n and that
the formula can be made exact for all polynomials of degree < 2n-1.

i This can be achieved as shown below. The conditions which must be satis-

fied by Ak and X in order that (A.6) will be exact will now be estab-

lished.

i We prefer to consider the polynomial W(x) = (x-xl)(x-xz)...(x-xn)
instead of the nodes X themselves. If we know the X then we can easily
construct the polynomial W(x). Conversely, if we know the polynomial

Wix) = x' + alxn-1 + ..., then determining the roots of W(x) will give us
the X - If we determine W(x) instead of X, directly then we must be care-
ful that the roots of W(x) will be real, distinct and located in the seg-

ment [a,b].

Theorem 2: If (A.6) is to be exact for all polynomials of degree < (2n-1),
then it is necessary and sufficient that (A.6) must be interpolatory and
that the polynomial W(x) be orthogonal with respect to p(x) to all poly-

nomials Q(x) of degree < n:
b
J p(x) W(x) Q(x)dx = 0 (A.8)

|
: |
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The possibility of constructing formulas which are exact for all
polynomials of degree 2n~1 is related to the existence of polynomials W(x)
! of degree n which possess the above orthogonality property. If the weight
function p(x) changes sign on [a,b] then such a polynomial W(x) may not
exist. If such a polynomial does exist its roots might not satisfy the
above requirements. Hence it will be assumed that the weight function

p(x) is nonnegative on [a,b].

Theorem 3: It the polynomial Pn(x) is orthogonal on the segment [a,b]
to all polynomials of degree less than n, with respect to @ ‘gative
weight function p(x), then all the roots of Pn(x) are rea’ cinct

and lies inside [a,b]}.

Theorem 4: If p(x) > O for x + [a,b], then a quadrature formula (A.6)
which is exact for all polynomials of degree < 2n-1, exists for all n,

“n.

and cannot be exact for all polynomials of degree
The construction of quadrature formulas which have the highest

accuracy is now discussed. Consider the system of polynomials Pn{x);

(n=1,2,...) which are orthogonal on [a,b] with respect to the weight

function p(x). 1In order to be cvefinite, it is assumed that the system

is normalized,

b 0 form+¥n
[ p(x) Pn(x) Pm(x)dx = (A.9)
a 1 form=n

and the nth degree polynomial of an orthonormal system can be assumed to
be of the form

) P (x) = a X" +b xn-l + e
n n n
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The nth degree polynomial of this system then differs from W(x) by only

a constant multiple. The roots of Pn(x) will thus be the nodes X

(k = 1,2,...n) which are to be used in the quadrature formula. The coef-
ficients Ak are determined by (A.7) or equivalently by,

; Pn(x) )
Ak = I p(x) (x-xk) P;(x) dx (A.10)

a

In order to calculate Ak by (A.10) the Christoffel Darboux identity is
ugsed. Three consecutive polynomials of an orthonormal set satisfy a

recursion relation

an bn bn+1
xP (x) = —— P x) + (—-—) P (x) +
n an+1 n+1l an an+1 n

an—l

P__ () (A.11)

from whi-h the Christoffel-Darboux identity can be deduced

n a
(x-t) ] P (x) P (t) = — [P

Lo a1 (x) P () =P (x) P, (¢t)] (A.12)

n+l

From (A.12) it can be written that

an+1 1 an

1
T T Ta PO PG T A PG P (x)

Thus from the second equality of (A.13) it is clear that a quadrature

(A.13)

formula of the highest accuracy has all positive coefficlents.

Next the magnitude of the remainder is examined.

Theorem 5: If f(x) has a continuous derivative of order 2n on [a,b] then
there exists a point ¢ in [a,b] for which the remainder of the quadrature

formula of the Highest accuracy 1is

b
I p(x) Wz(x)dx (A.14)

a

£(2)

r(f) = o)1
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These quadrature formulas of highest algebraic accuracy are used to
evaluate two integrals which often occur in the specified problem of
interest. It was because of these formulas that it was possible to
write user-oriented computer programs using the Sommerfeld formulation

that do not require unreasonable amounts of time.
a) Constant Weight Function:

The formulas of Gauss are historically the first formulas of
the hi, :2st algebraic accuracy. These formulas are used to approximate

the integral b

f f(x)dx (A.15)
a

1.

where [a,b] i8 4 finite segment and p(x)

By a linear transformation we can transform an arbitrary segment
{a,b] into any standard segment we choose. In order to make use of the
symmetry of the nodes x and coefficients Ak the segment would be made
to be [-1, +1]. Thus it will be assumed that (A.15) can be transformed

into the form
+1

f £, (x)dx (A.16)
-1

The system of polynomials which are orthogonal on [-1, +1] with respect

to the constant weight function are the Legendre polynomials,

n, 2 ..n
P (x) = —— D) (A.17)
2 n! dx
The quadrature formula of the highest accuracy
+1
f(x)dx = £( ) A.
J 2 A By
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has for its n nodes the roots of the Lefjendre polynomial of degree n:

(n)y
Pn(xk ) 0 (A.19)
The coefficients Ak are then obtained as

(n) 2
= (A.20)
(1 - ™% ™

2" (n1)?
(2n)!

remainder of the Gaust formula is obtained from (A.1l4) as

and since W(x) = Pn(x) to make the leading term of W(x) unity, the

i 2n+l

2
.2 (n!)“,2 _(2n)
r(f) (2n+1) (2n)! [(Zn)!] £ (¢) (A.21) ?

where ¢ is a point in the segment [-1, +1]. Values of X and Ak for

1 different n are given in the IBM-SSP [34].

w0

b) Integrals of the Form f x exp(-x) f(x)ds
0

The system of polynomials which are orthogonal on the semi~-infinite 3

axis 0 < x < = with respect to the function x* exp(~-x) is the system of

Chebyshev-Laguerre polynomials ]

n

Lia)(x) = -1 x ¢ exp(x) g—; (xa+n exp(-x)) (A.22)
dx
A quadrature formula of the highest accuracy
[+ )
x exp(-x) f(x)dx = ) f(x ) + r(f) (A.23)
Lo At

0

[34] 1IBM Scientific Subroutine Package (360A-CM-03X) Version II,
Programmer's Manual, pp. 299-303.
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must have as its nodes the roots of the Laguerre polynomial L:a)(x), and

the coefficient Ak can be found to be

Values of X and Ak for a = 0 and for different n are given in the

| IBM-SSP [35]. The remainder of the quadrature formula a = Q is

wnere ¢ is a point between [0, =].

(a + n)!
x 1497 )y

(A.24)

Ak=

(n1)?

(2n)
r(f) = TEETT f (¢) (A.25)

[35]

IBM-SSP, pp. 303-307.
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Appendix B: ASYMPTOTIC EVALUATION OF INTEGRALS BY THE METHOD OF
STEEPEST DESCENT

The method of steepest descent (or the saddle point method) deals

with the approximate evaluation of integrals of the form

1o, (0) = f F(E) exp[-pf(£)1de (B.1)
c

for large values of p, where the contour C is such that the integrand
goeg to zero at the ends of the contour. The functions f(£{) and F(E)
are arbitrary anaiytic functions of the complex variable £,

The basic philosophy of the method of steepest descent is as
follows: A path is selected in the complex & plane in such a way that

the entire value of the integral is determined from a comparatively

i short portion of the path. Within certain 1limits, the contour of inte-
gration C may be altered to such a path without affecting the value of the
integral. Then, the integrand is replaced by another, simpler function,
which closely approximates the integrand over the essential portions of
the path. The behavior of the new integrand outside the important

portion of the path 1s of no concern. For real and positive valuee of p

and for a general contour C the quantity pf(£) is positive on some parts
of the path and there are other regions where it is negative. The latter
regions are more important since the integrand is larger, and in these
regions, where the negative of the Re[pf(£)] is largest, it is important
to reduce oscillations. A contour is chosen along which the imaginary
part of [pf(£)] is constant in the region where the negative of its real
' part is largest. The path in the region where Re[pf({)] 1s greatest may

be chosen so that Im[pf(£)] varies if this turns out to be necessary to
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complete the contour. In this way, the oscillations of the integral
cause the least trouble.

This general philosophy can then be applied to evaluate the
integral of (B.1). The type of integral encountered in this problem

is of the form

Iep = f F(g) exp[- jkR cos (B-6)]dB (B.2)
r ry ]
where rl is e path of integration as shown in Fig. 5. The saddle i
point occurs at f'(£) = 0, or at 8 = 8 in this case. The path of

integration is now determined from

cos(B-8) = 1 - jsz/k

where s 1s real and ~=» < g < + ., The saddle point corresponds to

s = 0. (B.2) can now be expressed in the following form

[+ ]

Igp = exp(-jkR) J ¢(s) exp(-Rsz)ds (B.3)

-l

where now ¢(s8) = F(B) gg . The details of evaluating (B.3) can be found

in [36] and only the result is quoted.

Len = (%%)1/2 explj(n/4 - kR)]F(6)
11, F'(e)
i+ 7KR {4 + T0) } + ...] (B.4)

Equation (B.4) is inapplicable if there 18 a pole near the saddle point 6.

However, the method of steepest descent can be modified in such a way that {

[36] L. B. Felsen and N. Marcuvitz, "Radiation and Scatterirn- of Waves,"
Prentice Hall, New Jersey, 1973.
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the presence of poles is taken into account from the very beginning.

Of special interest in the analysis will be an integral of the form

I(kR) = f FI(B) exp[-jkR cos (B-6)1dR (B.5)

f r‘1

where Pl is a path of integration in the complex B plane as shown in

Fig. 5 and Fl(B) now has a pole at BP which is near 6, For large kR,

the following method is applied: The pole is factored out from Fl(B)

by writing Fl(B) = —__ES%%E_ . It is then argued by Clemmow [3/, that
sin ( ZP)

since F(B) has no singularities in the vicinity of the saddle point it

may be removed from under the integral sign with B equated to 8. 7Thne,

the integral I(kR) can be written as

- exp[-jkR cos(B-0)]
} I, (kR) = F(6) j xp LI} cos d8 (B.6)
I sin ( P)
1 2
_ exp[-jkr cos a]
= F(8) a+0—BP da (B.7)
Fo sin ( 5 )

By reversing the sign of a as

I, (kR) = F(6) exP['jkg_gfz 2l gq (B.8)
P
T'o sin (—2——)

and by adding (B.8) and (B.7) and then dividing by two, puts (B.6)

in the form

[37] P. C. Clemmow, 'The Plane Wave Spectrum Representation of Electro-
magnetic Fields," Pergamon Press, New York 1966, pp. 46-58.
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. Y exp(~1kR cos a) o
ISD(kR) 2 sin 5 F(0) [ TR cos(z)da

o

where vy = 0 ~ Bp. Changing the variable of integration from a to t such
that 1 = V2 exp(~jn/4) sin(%) the path Fl is transformed to an integral

from = to +=. Hence

o» 2
I (kR) = 2b exp{§(3n/4 - kR)] F, (8) Jﬂg&ﬁil (B.9)
' e I )b

where b = v2 sin %. Application of

[s4]

f exg(-XTZ; dr =
™ + jb

exp[j(xb2 - n/4)) erfe (ijbz)

£
b

from Gradshteyn and Ryzhik (p. 388, 3.466 No. 1) to (B.9), yields

2r explj(1/2 - KR) - W’] erfc (jW) (B.10)

0-8
-j2kR sin2 (—irls. Finally, application of (B.4) {

ISD(kR)

2

where w2 = - jkRb

to the infinite integrals encountered in the Sommerfeld formulation yields
the reflection coefficient method and that of (B.10) gives very good

approximations for near fields.
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