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t     ABSTRACT 

This work considers the analysis of antenna and arrays of thin wires of 
arbitrary orientation above imperfe ^ly conducting ground planes.  Emphasis is 
placed on the development of fast and accurate techniques for computation of the 
characteristics of antenna systems.  An Important problem is the evaluation of 
certain semi-infinite Integrals encountered in the exact Sommerfeld solution.  The 
time required for computation of these Integrals is reduced by the application of 
interpolatory quadrature formulas.  Where applicable, a modified method of steep- 
est descent is used to evaluate the integrals.  The approximate reflection coef- 
ficient method is derived from the Sommerfeld formulation via the method of 
steepest descent. The accuracy of the reflection coefficient method relative to 
the Soinmerfeld method is discussed.  Finally, formulas convenient for the optimi- 
zation of various performance Indices are discussed.  Typical indices that have 
been optimized, both with and without constraints, are directivity, power gain, 
quality factor, and main beam radiation efficiency. 
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I.  INTKODUCTHW 

The objertive ot this wi)rk is to dfvclop fast, accurate; techniques 

to determine tlie cliararterist ics of wire antennas over plane imperfuct 

ground.  Since Sommerfeld, who first analyzed the problem in 1908, 

numerous papers and articles have been written by several different authors. 

A good bibliography for this general area can be found in the book by 

Banos [1].  Recently, Miller et al [2,3], l.ytle and I.ager (4,5] developed 

user oriented computer programs for analysis of the electromagnetic char- 

acteristics of arbitrary wire configurations over imperfect ground.  With 

the- aid of these general purpose programs one can easily solve for input 

Impedances, current distributions, and field patterns of wire antennas 

operating in the presence of a plane imperfectly conducting earth.  This 

thesis deals with some useful revisions and improvements of their work. 

1]  A. Banos, "Dipole Radiation in the Presence of a Conducting Half- 
Space," Pergamon Press, \'ow York 1966. 

2]  E. K. Miller, A. J. Pozzio, G. .1. Burke and H, S. Seiden, "Analysis; 
of Wire Antennas in the Presence of a Conducting Half-Space: Part 1. 
The Vertical Antenna in Free Space," Canadian I. of Physics,  vol. 50, 
pp. 879-888, 1972. "  '    "^  

;3]  E. K. Miller, A. I. Pozzio, C. I. Burke and E. S. Seiden, "Analysis 
of Wire Antennas in the Presence of Conducting Half-Space: Part II. 
The Horizontal Antenna in Free Space," Canadian J. of Physics, 
vol. 50, pp. 2614-2627, 1972. 

4]  U. L. I.ager and R. .1. l.ytle, "Numerical Evaluation of Sommerfeld 
Integrals," Lawrence l.ivjrmore Laboratory," Kept. UCRL-51688, 
October 2'5, 19/4. 

5]  I). L. Lager and R. I. Lytle, "Fortran Subroutines for the Numerical 
Evaluation of Sommerfeld Integrals Unter Aderemem," Lawrence Livennore 
.aboratory," Rept. UCRL-51821, May 21, 1975. 
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The major problem in developing a general purpose program to approach 

the problem at  hand  is  the required evaluation of certain semi-infinite 

integrals encountered  in the exact Somnerfeld  formulation.     In this work an 

efficient method   is applied  to integrate the semi-infinite integrals  in an 

essentially exact way.     The method applied  involves the use of orthogonal 

interpolatory polynomials of highest algebraic accuracy.    Where applicable, 

a modified method  of steepest descent  has been applied to evaluate  these 

semi-infinite  integrals  to reduce the  time of  computation without significant 

loss of accuracy.     In addition a method of steepest descent has been used to 

obtain the reflection coefficient method as  the  leading term in the series 

resulting from the  integration of the semi-infinite integrals.     Since  the 

reflection coefficient method  is very easy to apply  it is useful to examine 

its relative accuracy. 

Finally methods are presented here for optimizing certain performance 

indices of arrays  of arbitrarily oriented wire antennas operating over 

imperfectly conducting ground.    The indices considered include directivity, 

maximum power gain,  quality factor,  and the efficiency index referred  to 

as main beam radiation efficiency.    Optimization problems both with and 

without  constraints on  the resulting antenna pattern are Illustrated. 

Optimization  of   the performance  indices with respect  to loading and vari- 

ation  in  the  antenna structure are  also examined. 

The  contributions  of the work of  this  thesis  IncluJe the  following: 

1)    Application of  interpolatory quadrature formulas  to integrate the 

semi-infinite  Integrals encountered in  the exact Sommerfeld formulation 

is  illustrated. 

-2- 
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2) Use of a modified method of steepest descent to evaluate the seml- 

Inflnlte Integrals to reduce the time of computation without significant 

loss of accuracy is demonstrated. 

3) The coomonly used reflection-coefficient method Is derived In detail 

and  Its relative accuracy Is discussed. 

4) New,  user-oriented  computer programs for treating the Imperfect ground 

problem have been developed and described. 

5) Formulas and  results convenient for application to optimization and 

design problems have been presented. 

-3- 
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VKRTICAL DIPOLKS OVER  I if. HORIZONTAL PLANE SURFACE OF IMPERFECT GROUND 

Analysis of radiatiot   from parallel elementary vertical dlpoles of 

the electric type,  situatei   over a horizontal imperfect ground plane,  is 

discussed in this chapter.     First,  the exact analysis of radiation from 

the dipoles  is made using the Sommerfeld formulation.     The semi-infinite 

integrals encountered  in this formulation are evaluated numerically 

in    an    accurate    way using orthogonal polynomials.     For field points far 

away from the source points  the semi-infinite integrals are evaluated 

using a modified saddle point method to reduce  the computation time without 

any significant   loss of  accuracy.     The reflection  coefficient method is also 

derived by applying a saddle point  technique  to the semi-infinite integrals. 

Finally,  a compariron of accuracy is made between the reflection coefficient 

method and the exact Sonnerfeld formulation. 

2.1.    Sommerfeld Formulation 

An elementary dipole of moment Idz oriented  in the z-direction is 

located at  (x*,  y',  z')  as shown in the Fig.   1.    The dipole is situated 

over an imperfect ground plane characterized by a complex relative dielec- 

tric constant  t;-.     It is possible to formulate a solution to the problem 

of radiation from the dipole operating in  the presence of  the imperfect 

ground in terms of a single Hertzian    vector    IT    of the electric type. 

A time variation of exp(jb)t)   is assumed throughout  the analysis.    The 

Hertzian vector Ü TT     in   this  case satisfies  the wave equation  [6] 
z z 

[6]    A.   Sommerfeld,   "Partial Differential Equations  In  Physics," 
Academic Press,  New York:   1964. 
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(x'.y'.z») t dipole moment Idz R. 

% 

(x.y.z) 

po'Eoerkl 

Y ' medium (1) Air 
i l l T I i l ,-1 i i I I i r i| i i t M l M l 

medium (2) Earth 
z i 

"o^oV1^ 

Fig. 1.  Vertical dipole over a horizontal ground pi ane. 
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2        2    V Tdz 
lz J^o'i 

öCx-x')  «(y-y')  «(z-z') (2.1) 

2        2    V (v   + kj) \z (2.2) 

where 

and 

k,   = 

kl = 

"    »0^1 

U    P0e0e2 

(2.3) 

(2.4) 

Tt-ie electric and the magnetic field vectors are derived from the Hertzian 

vector from 

E = 7(V  •  ^) + k2^ (2.5) 

and 

(2.6) ff = icüen£   (V x TT) J    0 r 

respectively.    At the Interface z = 0, the tangential electric and magnetic 

field components must be continuous, conditions which In terms of the 

Hertzian vector components can be written as 

STT- Sir,, Iz _ 2z 
El    9y    "  e2    8y (2.7) 

au 
lz 

STT 

= e. 2z 
1    Bx 2    3x 

(2.8) 

~ 3TT. 

9y   v   az  y — (—^) 3y  V   9z  ; (2.9) 

a       3Tr 
—   (-^) 3x  V  3z  ^ 

2      97ro 
— (—^) 3x v  3z  ^ 

(2.10) 
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Since these boundary conditions must hold at z = 0 for all x and y, the 

x and y dependence of the fields on either side of the  Interface must be 

the same.    Therefore, 

e-n.    = eoTr0    [from (2.7)  and  (2.8)] (2.11) 1  Iz 2  zz 

9TT Iz 
BTT 

2z 
9z az [from  (2.9)  and  (2.10)] (2.12) 

The complete solutions for the Hertzian vectors satisfying the wave 

equations (2.1)  and  (2.2)   and the boundary conditions   (2.11)  and   (2.12) 

have been given by Sommerfeld   [6], Wait [7], Miller et.   al.   [2]  and 

others   [8-9].    The solutions are 

7rlz - P[exp(-jk1R1)/R1 + 

expl  -N X - 
J   ./  2 .2     ^/.2 .2       .     JT2      72 0 yx -k    c-YX -k        + eJH X    - k 

k^  (z+z^lAdX]       (2.13) 

and 

*2z - 2P 
r J0(Xp)  exp {-{y-^ z "i A2-ki z,} 

0    tj\ I2 - k^ + t^X2 - k2
2 

\d\ (2.14) 

for 

hT Re[-\1 X2 - k^     ]  > 0 .      Here 

[6]    A.  Sommerfeld,  "Partial Differential Equations in Physics," Academic 
Press, New York,  1964. 

[7]    R.  E.  Collin and F.  J.   Zucker,  "Antenna Theory: Part 2, pp.   386-437, 
McGraw-Hill Book Co.,  New York 1969. 

[8]    G.  Tyras,  "Radiation and Propagation of Electromagnetic Waves," 
Academic Press, New York,   1960. 

[9]     L. M.  Brekhovskikh,  "Waves in Layered Media," Academic Press, New York. 

-7- 
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P - 
I  dz 

(2.15) 

and 

'■yj (x - x')2 +  (y - yM2 

\ -V^+ (z -z,)2 

(2.16) 

(2.17) 

The primed and unprlmed co-ordinates are for the source and  field points, 

V 
respectively.    For    TI..     the first  term inside the brackets can be inter- 

preted as the particular solution or  the direct contribution from the 

dipole source and the second term can be interpreted as the complementary 

solution or a reflection term  (reflection from the imperfect ground plane). 

V 
Similarly  the solution  for    TT       can be interpreted as a partial transmission 

of  the wave  from medium 1 into medium 2.    With these thoughts in mind,    ir 

can be split up into two terms 

Iz 

V V direct ^ V refl „      ,       .       , 
iT,._    =       TT, +       Tf, »   P    •     (go   +   g8) Iz Iz 'lz 

where 

and 

V direct 
lz P  •  expC-jk^)/^ = P  *   gc 

(2.18) 

(2.19) 

V refl      ^ 
TT. =«   P 
lz 

f e2^A2"kl "  elVx2-k2      Jo(Xp)  expt-Vx^k^z+z')] 

0    F2^X2-k2 + e1Vx2-k2 -\/x2 - ki 

XdX (2.20) 

p * 8, 

A physical explanation to the two components of the Hertz potential TT 

can be given. The first one can be explained as a spherical wave originating 

at the source dipole.  This term is easy to deal with.  The difficult problem 

V refl  V refl 
lies in the evaluation of it   .  IT    can be interpreted as a superposition 

-8- 
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of plane waves resulting from reflection of the plane waves into which the 

original spherical wave was expanded. This arises from the identity 

expC-jk^)/^ 
i-{ f J0(Ap) expI-^X

2 - k*(z + z')] 

^7 
\d\ 

for Re[>| \2 - kh  > 0      and 

(2.21) 

R2 =\)p
2 + (z + z')2 . (2.22) 

The term under the integral sign of (2.21) can be recognized as plane 

wave decomposition of the original spherical wave source.  Upon reflection 

V refl 
of the plane waves from the dipole source as expressed in TT..   , the 

amplitude of each wave must be multiplied by the reflection copfficlent 

R(X).  The complex reflection coefficient R(A) takes into account the 

phase change as the wave travels from the source (x', y', z') to the 

boundary and then to the point of observation (x,y,z).  The reflection 

coefficient R(X) is then defined as 

E2\| X2 - k2 - c^ X- - k 
2  . 2 

2 

V^2 " ki + e^2 - k 
where the semi-infinite 

integral over R(A) takes into account all the possible plane waves. As 

Go "*" "^g of (2.20) reduces to (2.21) and represents a simple spherical 

wave originating at the image point. This physical picture will later be 

applied in the derivation of the reflection coefficient method where the 

effect of the ground plane is approximated by modifying the components of 

the plane wave decomposition of the spherical wave originating from the 

image of the source dipole but multiplied by a specular reflection coef- 

ficient, R(e). 

-9- 
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There are two forms of v.    which have been used by different authors 
Iz 

since  Sommerfeld and each form has certain distinct advantages.     The ad- 

vantages will be presented In a later section, but the two forms used are 

presented here. 

V refl 
Iz PlexpHkjRj)/!^ 

- 2c 
^X2-!^    J0(Xp)  exp[->l X^k^z+z1)] 

0 U2-^        e2>|x2-k2 + e^-V* 
XdX] 

- pI«i " hv] 

The other form Is 

(2.23) 

Vefl = P[- expHk.Rj/R, Iz l'^" 2 

J (Xp) exp[-^ X2 - k2 (z + z1)] 
+ 2e2 i —   XdA 

0   e2 ^X
2-k2 + e1Vx2-k 

P[-«l + GsV] 
(2.2A) 

Both forms (2.23) and (2.24) are valid and their equivalence can be 

observed by applying (2.21). 

2.2.  Analysis of the Reflected Field 

The field In the upper half space (z > 0) consists of the direct 

field from the source dlpole situated at z - z', Its Image situated at 

z = - z', and the correction term g v used in (2.23).  The correction 

term takes into account the nature of the imperfect ground, because as 

8sV " 0- 
-10- 
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a)  Exact Solution 

The problem of determining the reflected field amounts to evaluating 

the integral   ggy since g- and g. are easy to calculate.  To do this a 

deformed contour similar to the one suggested by Miller et. al. [2] is 

chosen and Is indicated in Fig. 2.  The deformation of the contour is 

possible since all the branch points and the poles lie on the second and 

the fourth quadrants.  Hence on the deformed contour 

5 

8 sV 

2.,2 
2 0 E2^+ei^^~        v^4 

AdX 

+ 2E 
f J0(ßp)  expl 4 i2 - k2   (z + z')]  V6^ 

0    E^B2-^ + e1Vß2-k 

ßdA 

^2I ß -k! 

(2.25) 

where B = > + j5.  The judicious choice of 5 as the limit of the first 

integral is made, because then the poles of g „ at + 
sv   — 

klk2 

^ 

have 

+ k! 

negligible effect on the numerical evaluation of the integral.  The 

modified Bessel function of the first kind in the first integral and the 

Bessel function of a complex argument in the second integral are computed 

by [10, 11].  Finally the two integrals are computed by using the Gaussian 

Interpolatory quadrature and the Gaussian Laguerre interpolatory quadrature 

formulas, respectively.  A description of the method is discussed in Appendix A. 

[]0]  T. K. Sarkar and J. E. Lewis, "Accurate Generation of Real Order and 
Argument Bessel and Modified Bessel Functions," Proc. IEE, p. 34, 
January 1973. 

[11]  J. E. Lewis, T. K. Sarkar and P. D. O'Kelley, "Generation of Bessel 
Functions of Complex Order and Argument," Electron. Lett., vol. 7, 
No. 20, pp. 615-616. ^^™^™ ^.— 

-11- 

II  fr -iif'üliMii^.üliliiliiiMiiiiriii il  .. .-^.-^..——^ aaiauMMiMHaaaM HUMMilMUttMlL I 



mm** Mm-* 

n 

a B g—^SET 
-,-*SW)(.,»«»*W-),K*'"W 5-1 

Tm(x) 

(0.0,   5.0) 

Re[ ;V?^T=o 

■Ä- 

>©k2 

Re[Vx2-^] - 0 

Re(x) 

®   - poles 

0 - branch points 

- contour of integration 

- modi fed countor 

[I 

Fig.   2.     Contour of  integration  In  the complex A  plane, 
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It was because of these methods It was possible to evaluate these Integrals 

In reasonable time. 

The major problem of this technique is that for large values of p, the 

values of the integrals In (2.25) are quite large and they have to be subtracted 

from each other to yield a relatively small value. This could be observed 

fioro the behavior of In(Ap), since it is a monotonically increasing func- 

tion of p.  However this formulation is quite useful for small values of p. 

b) Reflrctijn Coefficient Method: 

For large values of p the method of steepest descent is applied to 

analyze the fields of the reflected wave at distances far from the source. 

Under this circumstance, it is convenient to use an infinite integral 

representation of g  rather than the semi-infinite integral representation. 
8 V 

Use of 

and 

J   (x)  - 7[H(1)(x) + H(2)(x)] 
n 2    n n 

H(1)(xej7r)  =  -e-^H^Cx) 

(2.26) 

(2.27) 

in   (2.23)  expresses g v as 

8sV = " 3C1 

fv|l'2-A2    H^2)(Xp)  exp[-.j Jk^T^z + z')] 

Ve? c, -S/kj-*    + ^ V k2~ 

XdX (2.28) 

where C  is  a contour as shown by Fig.   3.     g  v is now a spectrum of plane 

waves  travelling away from the ground plane with  the vertical component 

of the propagation constan t as AJ k2 - A Phe integral in (2.28) contains 

double valued iunctions \k*' o-A".  The proper sheet of the double valued 

functions are  those on which the radiation condition [12] is satisfied. 

[12]     Ref.   [6],  p.   189. 
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s branch cut of    the 

X" 

(2) 
Hankel Function HQ    (Xp) 

7" -X« 

Fig.  3.    Path of integration for g8V. 
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I.e. g 
8V 

0 as p ^ o0 for a fixed z, and g  -> 0 as z -»■ » for a fixed p. 
t> V 

Since 

H^
2)
OP) Ap Tt v^^pf-J^p- T/VI (2.29) 

the convergence of (2.28) is assured when Iin(X) £ 0 as p -> «>.  Convergence 

is also assured for 

and for 

If 

then 

and 

T   ,,2      ,2.1/2 
ImCk. -X)   <0 as z->«>. 

(ki" x2)1,2irrt ki+ jki'k; > o. kj i o 

(kj - X2)1/2 = T'  + jt" 

k!  k'' - X'A" 
T"=^-^ 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

UJ2 _ k..2.  v2 + xl(2 
T' = {[(——i r + (kjk^ - x'x-rr 

+    1        1 }l/2 

where X = X'  + jX" - Re(X)  + j   Im(X) 

(2.34) 

(2.35) 

The positive sign is chosen for T'  since T'   > 0  (from (2.31)).     On the 

path of integration T" < 0 and if k" j 0,  then convergence would be 

assured even if  X" = 0.    If medium 1 is  lossless k" = 0 then from  (2.33) 

X'   > 0 whcjn  X"  >  0 and X'   < 0 when X"  <  0.     The first condition  X"  >  0 

(2) 
conflicts with  the convergence requirement  for the Hankel function H^     (Xp). 

This problem can be avoided  if medium 1  is assumed  to be lossy   (i.e., 

k" j 0)  and  the "lossless case" then assumed  to be the limiting form of the 

expression k" ■> 0.    Since    H^ \Xp)  can be Integrated through the origin 

-15- 
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(\  «= 0) even if X" - 0, the path C of Fig. 3 can be modified to the path 

C of Fig. 4, following the real axis from -00 to +00. 

The integral in (2.28) can be simplified by making the following 

substitutions: 

A « k sin ß 

p = R- sin 9 

z + z* - R cos 6 

The interpretation of the angle 6 Is shown in Fig. 1.  Hence by the 

application of (2.29), (2.36), (2.37) and (2.38) to (2.28) yields 

gsV« 

[2^ sin g" 

TTR    sin öj 
^z e - sin ß 

e cos g *r sin ß 

(2.36) 

(2.37) 

(2.38) 

exp[j{{-Tr/4 - kjRj  cos   (ß-6)}]dß (2.39) 

where t = ^j^i   an^ ri   is a Pat^ ^n t*ie complex ß plane as shown in 

Fig.   5. 

There  Is  one  obvious weakness   in  the arguments  presented  to derive 

(2.39),  namely,   that   there  are points  on  the path  for which the argument 

(2) 
of  the Hankel   function H^     (Xp)  used  in   (2.29),   is not  large and may even 

be zero,  so that  the asymptotic expansion for large arguments cannot be 

used.    However as argued by Brekhovskikh   [9],   the arguments will be rigorous 

if  the large argument approximation is used only after the path of  inte- 

gration has been changed to the path of steepest descent r  .    The result will 

then be  the same. 

Assuming medium 1 to be lossless,  so that k    is real,  the trans- 

formation A = kj^ sin  ß implies  (ß = ß'  + jß") 

-16- 
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A" 

'X' 

Fig. A.  Modified path of integration for g sv* 
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or 

X' + JA" - k^ain  ß' cosh ß" + j cos ß* slnh ß") 

X1 - k.sln ß' cosh ß" 

(2.40) 

(2.41) 

k cos ß' sinh ß" (2.42) 

Hence the mapping transforms the quadrants of the A-plane In parallel 

strips of width TI/2 radians, and the path of integration from A' « -<» 

to * is transformed to the path F   ,  where A" = Im(k sin ß) = 0, as shown 

I 2 2 
in Fig. 5.  The requirement Im^ k -A ) < 0 amount to Im(k1 cos ß) < 0 

on the path of integration, or for k.. real sin ß* slnh ß" > 0. The script 

'U' denotes the strips of the ß-plane on which the above Inequality Is 

satisfied (upper Rlemann sheet) and the others by 'L1 (lower Rlemann Sheet). 

The path r then totally lies on U.  The location of the branch points at 

> = + k- In the A-plane are now transformed into slnß = f k, in the B-plane 

2  ,2, and are situated  at  + 7T/2, + 3TT/2 and so on.     The branch   -uts Im(A/k -A  )  = 0 

are now  transformed   to  Ira(k cos  ß)  = 0,  and begin  at  the branch points 

P.     .     Since  Im(k1   cos  ß)  =  lm[k^sin(-n/2 + ß)],   these branch  cuts will run 

parallel  to the path  1^,   [Im^sln 0)  = A" = 0]  but shifted by + v/2 along 

the real axis.     So the  transformation A = k^inß has transformed the upper 

and lower sheets associated with the branch points + k    into one sheet 

where certain strips on the sheet belong to the previous upper  (U)  and 

lower (L) Rlemann sheet on the A-plane. 

The remaining branch points A = + k_ are transformed to sin ß      = + 
B2      - 

/ e„/c    = + /G which has solutions 

PR    = J   lnt± J^   ± ^1 " e]- (2.43) 
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FiR.   5. 

Im(V  cos ß)   < 0 inside the shaded reRlon. 

The complex  ß-plane showing possible branch points, branch    „ 
cuts,  poles  and  the path of steepest  descent  for  F. ■  e'Cl-j) 
and  | F. I   >>  1 . 
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2   ,2,1/2 1/2 The branch cuts Im[(k2-A  )       ]  = 0 are transformed  into Im[(e    - e sin 3)       ] 

1/2 
Im[(E - sin 6)       ] = 0.     In  the ß-plane there are then two Rlemann sheets 

1/2 
connected along the branch cuts Im[(e - sin ß)       ] = 0 of  the branch points 

ßg .    Finally the poles  in the A-plane are now given by 
2 

sln ßp = ±^fT:F7 (2-^) 
2 

The case for which €=£'(1-^)     is of interest since  this is a good approxi- 

mation of the complex refractive index of both earth and sea water over a 

wide range of frequencies.     The displacement current is negligible in com- 

parison to the conduction current if the  frequencies are  limited below 

about 1MHz.     For a special  case  t =  c'Q-j)     and   ||c||   »  1,   the locations 

of  the branch points  3       and  the poles  ß     can be approximated by 

B^*2 = + TT/4 + j   InC^S?") 

B9'4 = ± 37r/4 t i  ln(*/8i7') 

Pl,2 =   [1T/2 ^ in2^T)] + 2/r 

P2>3=-   W2 + -)+-i 
l/P'       l/P' 

and they are illustrated in Fig. 5. Out of the possible locations of the 

2  3 
branch points and poles only B., Bo, P- and P„ are situated on the upper 

Rlemann sheet of branch points ßD on which Im(k..lcos ß) < 0. It is also 
B2 1 

important to note  that none of the poles   (P„, P») are situated between the 

original path of Integration ri and the path of steepest descent rn.    For 
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this particular case  e =   E'U-J)    the poles P,  and P    are on a line having 

a slope n/A with respect   to the ß' axis.    The path of  steepest descent also 

makes an angle TT/A and it  increases as it goes up in U.  plane.    Hence the 

pole will never be  intercepted by the path of steepest descent.    However 

when the path of steepest descent f. lies in close proximity of the pole 

P„,  special precautions must be  taken in the evaluation of  the integral 

of   (2.39).    The pole P..   is of no concern since it  lies on the second 

Riemann sheet of the branch point 3      on which Im ̂ T sin ß)  > 0.    The 

presence of the branch point B    should ordinarily be  taken into account 

while deforming the path  F..   to  the path of  steepest  descent  TQ. The 

location of the branch point is such that its imaginary part is pro- 

portional to ln(/8e'), which for large e is very large.    Because of 

this reason,  as explained by Tyras  [8],  the contribution along the 

borders of the branch cut would be a fast decreasing exponential that 

can be neglected in comparison to the contribution from the saddle point 

integration. 

For 6 <     /'2,   application of  (B.2) and   (B.4)  to   (2.39)  yields 

8sV~ 

2 e*PHV2> ^ I _ sln2e 

R2 / 2 c cos  6 +VE  - sin f 

M 1      fe(e-l)[2c(e-lHecos2e(3-co826)+cos 6 Ve-sin2e (2cfsin2e) ] 1    ,, 
2JM, 12 (c - sin 6)   [e cos 6 + ^ e- sin2?]* 4sin2e 

(2.45) 

v  refl 
TT    is obtained from (2.23) as. 
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V refl 
lz 

exp(-Jk,R^) 
- p . 12     ,c  cos 0 -C 2 

sin B 

G   COS   e   + Y E  - sin e 

J  1  2 
{ 
E(e-l)[2e(c~l) +e co829(3-co82e) + cos 9 (2e + 8in2ejlc - sln2e] 

s a +y c - sin 6] (e  - sin 6) [e cos 6 

JVE  - sin2 e 
-)] 

2 sln2e[e cose+Vc - sin'e] 

For very low dielectric constant this method would be inaccurate as 

3 
tl en the contribution from the branch cut connecting B-  to   (ir+j») would 

have to be taken into account and the second terms of  (2.45)  and   (2.A6) 

would be different. 

The first term of  (2.46) which has a spherical wave representation 

of the original source but now emanating from its image can then be 

represented as 

(2.46) 

V refl v ■n-        es P 
Iz 

F^ exp(-jk1R2)/R2 (2.47) 

where I'  can be recognized as the specular plane wave TM reflection 
TM 

coefficient  [13],  given by 

G  cos  0 -\ e - sin2e 
TM 

(2.48) 

n( E  cos  6 + V e -  sin G 

The name "Reflection Coefficient Method" derives  from (2.47)  sinceV
IT 

is now obtained as  the reflection coefficient times the potential from 

the image of the source.    This method represents a good approximation, 

as  long as  the  fields are computed  far away  from the source and away 

from  the  imperfect  ground plane  to ensure 0  <  Tr/2.     The  far  fields due 

to the  reflected ray are  given by   [14] 

[13]   E.   C.  Jordan and K.  G.   Balmain,  "Electromagnetic Waves and Radiating 
Systems," pp.   628-654,  Prentice Hall, New Jersey,  1968. 

[14]     R.  F. Harrington,   "Time Harmonic Electromagnetic Fields," McGraw- 
Hill, New York 1961, p.   133. 
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and 

r^refl      . .    A „ r.      v refl 
E = J^Vn s*-n  e  c08  Ö  p   *     1T- 

P 

,refl 

Iz 

.   2.  ,.      V refl 
= - ja)y0 sin 0  P  •     TT^ 

or ,refl juvig sin 9 cos 9 P   •  r^ expC-jk^)/^ 

and 
,refl 

r«., x   (far field from the image) m 

= - jo)y0 sin 9 P  •   r^ expl-jk^]/^ 

(2.49) 

= ra-.'
l(far field from the image) 

in 
(2.50) 

The direction and the position of  the image in (2.49)  and  (2.50)  is 

given by considering the same dipole now situated over a perfect 

ground plane.    A physical explanation can now be given for  (2.49)  and 

(2.50).    A plane of incidence is now defined as a plane containing 

both the vertical dipole and the field point but perpendicular to the 

ground plane.    Then the contribution of the reflected ray in this plane 

is obtained by multiplying E    and E    (defined in this plane) by the 
P z 

specular TM reflection coefficient.     This is different from the exact 

solution of  (2.20)   in that now instead of infinitely many waves,  each 

multiplied by a reflection coefficient R(A),  all the plane waves are 

multiplied by the  specular reflection coefficient R(6). 

When the conductivity of the earth is large,   |e|   >> 1,   the Hertz 

potential in medium (1)   is then obtained from (2.18),   (2.19)  and  (2.45) 
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TT1Z - Plexp(-jk1R1)/R1 + exp(-jk1R2)/R2 x 

,/c" cos 6 -  1 +    2e 

/e cos e + 1      ^l^     /G 
-)    + .-.}] 

cos e + i 

Note  that when  | c | -+• » ,  tr      goes properly Into the form of a field due 

to a vertical electric dlpole above a perfectly conducting ground plane. 

However when Q ^ ■n/Z 

VTrlz » P[expHk1R1)/R1 - expC-jk^)/R2 +-^-j exp(-jk1R2)+  ...]       (2.51) 
JklR2 

The sum of the first two terms may be smaller than the third term.    As a 

matter of fact, when both the transmitter and the receiver are on the 

ground,  R..   « R_ = p, and z = 0 = z',  the fields will be solely determined 

by the  second and higher order terms.     The reason for poor convergence 

in the vicinity of 6 = TI/2 is  that  the effect of the pole at 7T/2 becomes 

important.     This has been taken into account in the formulation of the 

problem in the next section. 

c)    Fields Near the Interface 

In order to solve for the fields near the interface a modified 

saddle point method as explained in Appendix B is applied to take into 

account the pole near the saddle point.     The expression for e v   in 

3P (2.39)  has a pole ßp, which is obtained  from E COS 3    + i e - sin2ßn = 0. 

Hence 

and 

sin PT 

cos ßT 

(2.52) 

(2.53) 
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The positive sign In front of  the square root In   (2.53)  Is  Inadmissible 

because then 

cP ImQz - sin ß_) - Iin(-e cos ß_) - - Itn[ -^—J > 0  (since e - e1  - je"). 

Hence  from (B.5),   (B.6)  and  (B.10) 

2k               /   "         2       I 2 
„    r   .   //1   /•    l\l/2 "Ve  - sin 6   -Ve - sin 9 - e  cos 6 g^expI-p/A]   (—) V-2—       2  ^^^ 

2 e    - 1 cos 9 - l.//e + 1 

9 + op     J 
2 sin  (    q    r)   r, 

expl- jk^ cos  (ß   -9)] 

6 - ßr 
dß 

sin   (- 

47rkljvl/2le  - sln2e   Vc  - sln2e- c  cos  0 
(-S-^-) 

e'' - 1       cos  6 - l.//e + 1 

exp[- jk^ - W ]   erfc(jW) 

(1 + co8 e    .   ^£ sin it1/2 

/G + 1 /e   + 1 

(2.54) 

where 

^ 2    ' jk^ x  2  x sin    ( 
6   - ß, 

jkR fl + cos^O    .  ^slne] 

/G + l" /G + 1 
(2.55) 

Tin can now be obtained after g .    Is obtained   from  (2.54).     This 
iz sv 

method  then can be applied to  calculate the Hertz  potential  for  large 

p  since  the exact solution described  In part   (a)  of this section be- 

comes  Inaccurate.     This method  is used to compute"^     for a      choice 

of p 2i 0.5X.    The primary source of error In using this formula for a source 

(x'  = 0, y' = 0,  z'  = 0.25X)  and a field point  (x = 0, y = 0.5X,  z = 0.25X) 

-25- 

■    BB^tBiiiimmmmBimamtmttmtlttmmtmmmmmmmtälllltttM MMIMMIMMHMMI 



iig-j«*"." S 

i 

(2) 
would be the error In representing Hn  (k1 p sin 6) by its large argu- 

ment approximation assuming the higher order terms in the saddle point 

method are negligible compared to the first term. For this case the 

error in representing H^ i^l/l)  by its large argument approximation 

is one percent In magnitude and -3° in phase.  But öfter we would be 

interested In antenna arrays closet, to the ground plane than 0.25X. 

Hence the error would always be less than the upper bound presented. 

The quantity W presented In (2.55) is known as the numerical 

distance in the literature.  When |r.| is large 

W2^ p- [1 + OT/2 - 6)  /T]2, (2.56) 

The modulus of the numerical distance W can be of the order of unity 

or less. In spite of the fact that ^R. is large. It Is thus evident 

that the condition jw | >> 1 can turn out to be considerably more 

rigid than the condition k.R« » 1.  Different approximations used for 

the Hertz potentials mentioned by various authors [4,5] In literature 

are generally valid for |w| >> 1 except for Banös [1].  Somerfeld [6] 

gives a very interesting physical interpretation of numerical distance. 

It is the difference in phase shifts k p and k p of a spatial wave and a 
X s 

,2     2 
2 1    2 surface wave respectively, where      k    = —r——,    Sommerfeld thus defines  the 
8  k +k Kl K2 

numerical distance W. to be W = - j (k. - k )p. The absolute value of W. is 
1 j. J.     s ■*• 

small compared to k-p.  In fact for large |G1 
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W,    Ä 
kj^p 

|k2
2l 

k^ 

217 (2.57) 

ri 

For small values of Iw.l the spatial wave type (due to g- and g ) pre- 

dominates in the expression of the reception intensity.  In this case, 

the ground  constants  have no marked influence. For larger JW.], 

the relations between the spatial and surface waves (due to g ) becomes 
S V 

important. In this case the complex ground dielectric constant e. has 

a marked influence. When both the transmitter and the receiver are on 

the ground, I.e. 0 W n/2 then |vr| = |w | from (2.55 and 2.57).  For 

n ^=-TT/2 and |w| ^=1, the disadvantage associated with the representa- 

V   refl 
tlon of it.   by (2.23) is that the second and higher order terms in 

the modified saddle point evaluation of g v cannot be neglected. Even 

though formulas exist for generating higher order terms, the procedure 

is very tedious since it involves taking higher-order derivatives of the 

integrand. 

The reason for using (2.24) now becomes clear. When the dipole 

and the observation point are both at the interface, the first two 

V 
terms g0 and g. of TT  in (2.24) tends to cancel each other and the 

field is solely determined by the integral of G , just by the leading 
S V 

term of the asymptotic expansion of G  .  Substitution of (2.29), (2.36), 
8V 

(2.37) and (2.38) in the expression G  in (2.24) and application of the 

modified method of steepest descent as of (B.5) and (B.10) yields. 

-27- 

. . ,.^-liMt^>MM UMUMMM ■MMMMMMI 



ill* II J. 

GgV'^. c  exp(-JTi/4) 
^R28ln e' 

cos  ß 

c   COS   ß   + ^e - 8in% 

exp[-jk1R2 co8(ß - e)]dß 

cos 6 
R2 cos 6 - I./^E + 1 

^Jc_- 

expl-Jk^ - W2] erfc(JW) 

fl   (   cos 9   [     /t sin 9-.1/2 

/e + 1        /e + 1 

sin 9 - e cos 6 

c2-! 

(2.58) 

2 
where W    is given by (2.55). 

ii ii V refl Hence  for   |W|   >  1 or Ic-IL > 7le|,   the second form of    IT. as given 

by  (2.24,,   is used  to compute the Hertz Potential. 

2.3.     Evaluation of Mutual Impedance between two Parallel Vertical 

Dipoles  Situated over a Plane Imperfect Ground 

In  this  section, an expression is obtained for the mutual 

impedance between two z-dlrected current elements of length»   I.  and Ä.,. 

carrying a current distribution I.   and I   ,  situated over a horizontal 

imperfect ground plane.    The corresponding configuration is presented 

in Fig.   6.     The electric field ^.   in medium 1  from the current element 
A 

I    is given by   (2.5) 

h ■ '* +' fe >\2 
(replacing IT,    by 2.18) 

iz 

"47 2 V^o + h)dzA 

Ja)4irt     8z V^o + ^K (2.59) 
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7. 

h = —^— x   Forbidden region for the reflection coefficient 
/|e j    method. 

i     Y .medium (1)      air        U   ,E   ,  k^ 

'iw/*! 111111111 ii nn 111 n Pin im nnn in m 
medium  (2)      earth    y   ,c  E,  k 

o o 

Fig. 6.  Two parallel z-directed vertical dipoles of lengths 

I.   and ?.„ having a current distribution of I. and l_ A      n      ^ AB 
situated over a horizontal earth. 
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Since 3z  * siT! and 
38D  9g 8     S        , 
ä7~ a TTi" » ancl 
dZ    dz. 

A 

assuming the current I goes to zero at the ends of the open wires, 
n 

3 3 
the derivative   (—)  operation on  (g    + g )  can be transferred to r—r 

3z OS oz. A 

now operating on I Instead.    Hence 

A AIT 
2 V^o + 8S

)  K 

jwAire 

dIA 

A 
(2.60) 

Fhe mutual impedance Z„. between two z-directed current elements I.   and 
BA A 

I    is expressed as 
B 

BA \ ■ \ K 
B 

~47 h dzB   ^^o+ «s)dz; 

iuAire J o } IB^{ 
A 

Ss)dz;}dzi (2.61) 

Transferring the derivative operation on I in the second term and 
o 

assuming I goes to zero at open ends of the wires 
B 

J<JJU( 

^BA =     Ait hK 

JUJATTG 

^^o + % )dz' 

dIB 
dzT 

dzB   1 
"    dIA 

dzT (2.62) 
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If a plecewlse sinusoidal current distribution Is assumed for 1. 

and ID the Integrals over I.  and )l0can be performed analytically.  But 
B A       D 

this introduces a third order pole at the origin of the seml-lnflnlte 

integrals defined for g . Hence a four pulse approximation to the 
s 

plecewlse linear (triangle) function [15] is used.  In this case also, 

the double integrals in (2.62) can be evaluated analytically, leaving 

only the semi-infinite integral to be evaluated numerically. 

For the computation of the self impedance Z  , p in (2.62) is 

replaced by the radius of the wire antenna. 

The numerical value of  the mutual Impedance Zg. or the self 

impedance Z.A lies in the evaluation of g and g .  g is exp(-jkR1)/R 
AA OSO J.   x 

and the computation is straightforward. The different techniques discussed 

in Section 2.2 are utilized to compute g either in the form (g1 - gsV) 

or (-g + G „).  In the reflection coefficient method g v is evaluated 

as outlined in Section 2.2b.  In the "exact" solution g v is integrated 

numerically as explained in 2.2a for p < 0.5A, and evaluated by a modi- 

fied saddle point method of 2.2c for p >_ 0.5X.  For p >^ (2|e|/k1)X, the 

(-g, + G ) representation of g is used in the computation.  User 

oriented computer programs [16-19] have been written along these lines 

JTsj H. H. Chao and B. J. Strait, "Computer Programs for Radiation and 
Scattering by Arbitrary Configurations of Bent Wires," Scientific 
Report No. 7 on Contract No. F19628-68-C-0180, AFCRL-70-0374; 
Syracuse University, Syracuse, New York, September 1970. 

[16] B. J. Strait, T. K. Sarkar and D. C. Kuo, "Programs for Analysis of 
Radiation by Linear Arrays of Vertical Wire Antennas Over Imperfect 
Ground," Technical Report TR-7A-1 on Contract No. F19628-73-C-00A7, 
AFCRL-TR-74-0042; Syracuse University, Syracuse, NY: January 1974. 

[17] T. K. Sarkar and B. J. Strait, "Analysis of Radiation by Wire Antennas 
Over Imperfect Ground," Scientific Rept. No. 6 on Contract F19628-73-C- 
0047, AFCRL-TR-75-0337; Syracuse University, Syracuse, NY: May 1975. 

[18] T. K. Sarkar, "Analysis of Radiation by Arrays of Vertical Wire 
Antennas Over Imperfect Ground (Reflection-Coefficient Method)," IEEE 

Trans. Ant, and Propagat. vol. AP-23, September 1975, p. 749. 

[19] T. K. Sarkar, "Analysis of Radiation by Arrays of Parallel Vertical 
Wire Antennas Over Plane Imperfect Ground (Sommerfeld Fcrmulation)," 
IEEE Trans. Ant, and Propagat., (to be published). 
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of thought. 

Since the Reflection Coefficient Method utilizes a large argu- 

ment approximation of the Henkel function, maximum error in this 

technique occurs in computing the near fields, or in other words the self 

impedance Z  .  There is also another problem associated with the reflec- 
AA 

tlon coefficient method.  When the specular angle 6 as shown in Fig. 1 

approaches 90°, the saddle point 6 approaches the pole P» of Fig. 5. 

Hence the reflection coefficient method yields a good solution when 

two subsections A and B of Fig. 6 are away from the ground plane and 

separated by an appreciable distance yet which is not large. It 

has been found that the reflection coefficient method yields a result 

in the computation of impedance elements within 10% of the "exact 

solution" both In the real and Imaginary parts as long as none of the 

elements are situated below a height of (0.7//|e|)X from the ground 

plane as shown in Fig. 6.  This also ensures that when two elements are 

as mud1 as 1000X apart the accuracy of both real and Imaginary parts of 

the Impedance elements computed by this technique are still within 10% 

of the "exact" solution.  It has also been observed that the restriction 

that no vertical elements can lie below a height of (0.7//|e|)X also 

ensures an accuracy of 10% In the impedance elements even for low values 

of dielectric constant (|c!s=2) of the ground plane.  This indicates 

that so long as this restriction on the heights of the dipoles is main- 

tained the contribution from the branch cut of B_ is not too important. 

2.4.  Conclusion 

Application of Interpolatory quadrature formulas and a modified 

method of steepest descent to the infinite integrals encountered In 
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the Sommerfeld formulation have significantly reduced the time of 

computation necessary for  treating the Imperfect ground problem 

without significant  loss of accuracy for evaluating these Integrals. 

When a method of steepest descent is applied to the Integrals of the 

exact Sommerfeld  formulation,  the reflection coefficient method falls 

out as the leading term in the series under certain conditions.    The 

reflection . oefficient method yields a result accurate to within 10% 

of the exact Sommerfeld formulation in both the real and imaginary 

parts of the impedance elements under all conditions oi  the ground 

so long as they are  (0.7//|G|)X away from the surface.    The reflection 

coefficient method does provide a good engineering result at about 15% 

of the computation time taken by the exact Sommerfeld formulation. 
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3.     HORIZONTAL DIPOLES OVER A PLANE IMPERFECT GROUND 

In this section, analysis of radiation Is performed for par llel 

horizontal dlpoles situated over a plane Imperfect ground. As before, 

for near fields the seml-inflnlte Integrals obtained In the Sommerfeld 

formulation are evaluated numerically using orthogonal Interpolatory 

polynomials. For fields, away from the source a modified saddle-point 

method Is applied to evaluate the same Integrals to reduce the time of 

computation without any significant loss of accuracy. The reflection- 

coefficient method is also derived as a special case in the Sommerfeld 

formulation. The accuracy of the reflection-coefficient method is 

compared with that of the exact Sommerfeld formulation. 

3.1.    Sommerfeld Formulation 

An elementary horizontal electrlr dipole of moment Idx and 

oriented in the x-dlrectlon is  located at a height z'  above the hori- 

zontal imperfect ground plane,  as shown in Fig.   7.     In this case two 

components of the Hertzian vector, TT    and TT    of the electric  type are 
X z 

necessary to specify the fields  completely.     Assuming a time variation 

exp(jüjt)  the Hertz potentials satisfy the following wave equations  [6] 

(V2 + k2)*. = - ft -r—— fiCx-x')  fiCy-y'Wz-z') 
1     1 Jmnei 0 1 

and 

(V2 + k2)^2 = 0 

(3.1) 

(3.2) 

The electric and the magnetic field vectors are given by (2.5) and 

(2.6) respectively. 
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(x'.y'.z') 

HI I I I || | | | | |T 

1J«»e-.eo» ^2*^2 

Fig. 7.  A horizontal dipole over an imperfect ground plane. 

% 
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From the continuity of E at the interface z » 0 it follows that 
y 

Ix    Iz 
3x    3z 

9TT 2x 
3TT 

2z 
3x 3z (3.3) 

Similarly from the continuity of E and (3.3) it follows that 

k? ^Ix ' k2 V2x 
(3.4) 

From the continuity of the magnetic field component H at the inter- 

face z = 0, 

3T, 3Tr. Iz 2z £ _____     —        c ——— 
1    3y 2    3y (3.5) 

and from the continuity of H    it follows that 
y 

^lx 
el (-3T 

SIT, 3Tr0 Iz.. (    2x 
3x ; = e2   ^ 3z 

Sir 
2z. 

3x (3.6) 

Since   (3.5) holds for all values of y, 

1    Iz        2    2z (3.7) 

and because of   (3.7),   (3.6)   reduces to 

STT Ix 
3TT 

2x 
1    3z '2     3z 

(3.8) 

After the components TT  have been solved for by using the wave equa- 

tions (3.1) and (3.2) and the boundary conditions (3.4) and (3.8), the 

components TT  can be obtained from (3.3) and (3.7).  The complete solu- 

tion for the Hertzian vectors has been given by Sommerfeld [6], Wait [20] 

Miller et. al. [3] and others, and can be written as follows: 

[20]  T. R. Wait, "The Electromagnetic Fields of a Horizontal Dipole in 
the Presence of a Conducting Half-Space," Canadian J. of Phys., 
vol. 39, pp. 1017-1028, 1961. 

-36- 

.< ^,,.,,.-1. ..m   I i I   iriiriTMim-lliTMii-llllllMilMlMaillMMIIiriBri^^^ 



2252^22 SBBgEBggTC- ' w^pipwfpfiwywwwwww 

TT,     - P'IexpC-jk.Rj/R. 

f Jn(Xp) 
+ exp[ -VX -k^Cz+z')] V 1     y       1 

/x2-kj +/x^k 
XdX] 

H 
^x - 2P, 

ej   TJQCXP)  exp[VX2-k2 z -"/x2-^ z']  XdX ^1 

(3.9) 

(3.10) 

o   Vx2-kl +/x^ 
00 I "    " p—   ■■   ! , - — 

4^ - 4 JR 
XdX} 

ä p' h ^ 
H 
.2z - 2P 

"/"Z    2       /"l    2 

2    X i    k^^-. ^^ 

(3.11) 

]XdX 

(3.12) 

l~2        2 
for    Rel>/X    - k    _]  > 0.    Here    p and R. are given by  (2.16)  and  (2.17), 

and 

IAx 
JWATTGQGJ^ 

(3.13) 

V H 
Like    IT-     in  (2.18),     TT..     can similarly be split into two parts 

H H direct A H refl 
IT,       =       IT. +       TT, 

Ix Ix Ix 

where 

H direct      _, 
Ix P'   •   exp(-jk1R1)/R1 = P'   •   gc (3.14) 

H^i!fl » P'f- expHk^/R, + 2 | 
J0(Xp)exp[-^X2-k2(z+z,)]   AdX 

'Ix 12"   2 
o        ^x2-k2 +yx2-k2 

^p,I-8l + 8sH] (3.15) 

The superscript  H represents  the Hertz potentials due to a horizontal 
dipole,  whereas V represents   the potentials due  to a vertical dipole. 
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and R is given by (2.22).  Here HTT 
lrect represents the particular 

solution of the wave equation (3.1) or the direct spherical wave con- 

tribution from the dipole source and TT    can be interpreted as the 

complementary solution or a reflection term (reflection from the medium). 

It represents a superposition of plane waves, resulting from the reflec- 

tion of the plane waves into which the original spherical wave from 

the horizontal dipole source was expanded.  Upon reflection, the 

amplitude of each plane wave must be multiplied by a reflection 

coefficient  V(X)  quite different from  R(X)  as in the pre- 

vious section because of a different orientation.  The complex reflec- 

tion coefficient V(X) takes into account the phase change as the wave 

travels from the source (x'.y'.z') to the boundary and then to the 

point of observation (x,y,z) . The reflection coefficient V(X) is then 

defined as 
^X2-kJ -V^-k 

As before,  TT  can be interpreted as a 

partial transmission of the wave from medium 1 into medium 2.  Unlike 

the elementary vertical dipole, the horizontal dipole over an imperfect 

ground plane needs two Hertz potentials to completely specify the fields. 

The primary excitation ir..  in this case gives rise to a secondary 

excitation TT  whose contribution is highly dependent on the complex dielec- 

trie constant of the grounH (e)   This is because as e -> o»,  TT, ■*■  0. 
Iz 

u 
Also, as E -»■ 1, TT -*■  0.  To get a physical interpretation of the nature 

of the fields due to IT  , it is useful to consider the following form 

~ M \2-kZ
2 

        / 2 .2  { 

V = 2?'   J:(Ap) co8(|,exp[-jA,-X  (z+z')] Y  

0 k^X -kj^ + kj^X -k 

where 41=»^ (x,p) 
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A principal distinction of the horizontal dipole as compared to the 

vertical dipole is its characteristic radiation implied by the factor 

cos $.    So 

''l\, ■'' i-a -f) + (i + 7) 
^X2-k2 +VÄ^k 

]  Jj(Xp)   cos  4)    X 

exp[-J\| k^-A^z+z')]   •   A2dX 

2      exp(-jk R  ) 

rE^A2-k2 -^X2-],22    J0(Ap)  exp[-j)]k2-X2(z+z,)] 

8xaz 
0    £ ^X   -^ +^/X   -k ^ 

XdX    (3.17) 

where  e =  e./e 

The first  term in the above expression can be interpreted as fields 

originating from a vertical octupole of strength  (1 )    situated at 

the  image of the original horizontal dipole.     The second term consists 

of  infinite plane waves reflected from the ground plane and each multi- 

plied by a different reflection coefficient R(X).     It represents a 

superposition of plane waves resulting from the reflection of plane 

waves  into which a spherical wave from a vertical octupolar sourer of 

strength   (1 + —) was expanded.     This representation is in no way unique. 

Interestingly,  for large values of c and when the horizontal dipole 

source is close to the ground the octupolar source which gives rise to 
u 

IT      reduces to a quadrupolar source as illustrated. 
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,. -2J 
'lz 

exp(-Jk R) 
P" -^- — [ —1 

r   kl/r 3x       R    ] (3.18) 

where 

H 
'Ix 

r.    2.1     3    r
exP<-JkiR) 

z' -*• 0        k /e az [- ] 

R - [(x - x')2 + (y - y')2 + 2
2j 

Vl 

(3.19) 

(3.20) 

Thus,   for the source close to the ground plane and for large E,  the 
u 

horizontal dlpole appears as a quadrupole. Also, TT. can be in- 
2z 

terpreted as representing the waves Induced in medium 2 by the 

secondary excitations generated in medium 1 and represented as 

H 
lz 

3.2.     Evaluation of Mutual Impedance Between Two Parallel 

Horizontal Dipoles 

In  this section an expression is obtained for the mutual 

Impedance betwean two x-dlrectcd t urrent elements of  lengths I.  and £ 
A D 

carrying current distributions  I.   and I   ,  respectively, and situated over 

a horizontal ground plane.    The corresponding configuration is presented in 

Fig.   8.     The electric field "fi    in medium 1 due to the current element  I. 

is given by 

V^ + vv-HV 

0 3Tr, air. 

- k,   (TT.    + IT.   ) +    (-r— + ~— 1 lx       lz ax az ) (3.21) 

37Tlx      87Tlz 
For an elemental dlpole of moment IAx,   the expresp^on  (——+ ——)can 

dX o Z 

be written  in a simpler  form.     By using  (3.11),   (3.14)  and  (3.15), 
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medium (1)  air v   ,e   ,k, 
o    o    1 

I   I  I   ll/l   II   I   l>U   M   I    I   I I   I   I   I   M   I I   i   I   I   M 

medium (2)  earth y   ,e e.k« 

Fig.   8.     IVo parallel x-dlrected horizontal dipoles of lengths 

I.  and I    having a current c 
A D 

situated over a plane earth. 

I    and i    having a current distribution of I  and 1^ 
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,      , t  f J0(>P) e^pl-'V > -kt U + z')l 
P' ' ^ 'So " 8, + 2" 

[-^ 

1    ' i ^^[ - A4?ä 
XdX] 

= ^ * ^r ^o - gi+ G8v/cl       {from 2-24} 

^ ^ * ä^ l«0 - ^1 + 83] (3.22) 

Hence the x-directed field for a current distribution I is given by 
A 

(3.21) 

IUJU 
ux -     o 
"A  "  An ^^0 " 81 + gsH)dXA 

^ I: 1 
3x JATTOJE h-t^o-H + ^K (3.23) 

since ^0    ^0    Üi   Ül    ,  Ü3   Ü3 
" 3x!  '  3x " " 9x'   and  3x ~ " ax! A A A 3x 

and assuming the current I goes to zero at the ends of the open wires, 
A 

9 3 
the derivative —    can be transferred to T—r operating on I.   so that 

3 X o X.       " A A 

,x J     o 
'A "  -    4TT ^^O - 81 + 8sH)dx; 

3x    JATTOJE 

3IA 

^T- (g0 - g1 + g3) dx;j 
A 

(3.24) 

li 

The mutual impedance Z,,. between the current element I. and another BA A 

current element I    oriented in the same direction  (*)  is 
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z      - - BA 
EA h dXi 

^ S j ^^0 - «1 + 88H)dx; 

J        o ; hd*B-k[\ ik^o-h + tJK       (3-25> 

By transferring the derivative to I    and assuming I    goes to zero at 
Do 

the end of  the wires, 

1 ^SJ ^^0 gl + gsH)dxi 
B 

j Aircoe J o ' 

dl 
B „_., A 

dl. 

d^d^ Jd^^o" 8l + g3)dXi (3.26) 
lAB     o0

J UAA      " ^        J      " 
~B ÄA 

computation of mutual impedance between two parallel horizontal dlpoles 

over an Imperfect ground plane then amounts  to evaluating the Integrals 

of g „ and g0.     This Is dealt with In  the next  section. 
Sn J 

3.3.    Numerical Evaluation of the Integrals 

In  this  section the Integrals of g      and g_ are evaluated In an 

essentially exact manner.    Where applicable  the method of steepest 

descent has been applied to reduce the computation time without any 

significant reduction or loss In accuracy. 

a)  Exact Solution.    The problem of determining the mutual Impedance 

Z  .   amounts to evaluating the seml-inflnlte Integrals g „ and g-ln 
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an essentially exact manner.  Since the Integrals are very similar to 

those of (2.23) and (2.24), the Integration scheme as explained in 

section 2.2a, [3, 17] is used. 

One of the major problems assoclateo with this technique Is that 

for large values of p there are large numerical errors, as explained in 

2.2a.  The other problem is that when the current elements are below a 

height of 0.03X from the ground plane the integrals g  and g In (3.11) 

and (3.15) become oscillatory and hence the quadrature formulas explained 

in Appendix A fall.  Therefore it is not possible to analyze antennas 

situated at distances less than 0.03A from the ground plane using this 

procedure. 

b) Modified Method of Steepest Descent:  For large p a modified method 

of steepest descent can be applied to the integral g~ (because of a pole 

in the Integrand) and a method of steepest descent can be applied to the 

Integral g „ to reduce the computation time without significant loss in 

accuracy. Making the following substitutions, as suggested by (2.26), 

(2.27), (2.36), (2.37) and (2.38), the integrals can be written as 

'sH 

2k sin 6 1/2 
/ i V 
V
TIR sin r 

cos ß 

cos ß + Ve~-" 
exp[j{-Tr/4 - 

sin2ß 

k^ cos(ß - 9)}] dB (3.27) 

= f A 2k,sin ß 

sin 6 
1/2 cos g 

G COS ß + fT 2 
sin ß 

expIj(-Tr/4 - 

i1      ) 

k^ cos(ß - 9)}] dß (3.28) 

where I"  is a path in the complex ß-plane as shown in Fig. 5. The large argu- 

ment approximations for the Hankel functions have been justified [9]. The above 
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Integrals are then evaluated by using (B.4)   for g „ (since the expres- 

sion of g      does not have any pole near the saddle point ß ■ 6) for 

g-,  respectively.     Hence, 

2 cos e expC-jk^) 
S8H 

cos 9 +V c - sin 9 

(3.29) 

[taking only the spherical-wave part or the first term of the saddle- 

point method]   and 

cos 9 
83 ' ^   R2 

;       cos 9-    rr 

Ve - 8in
2e -   ecos9   expI-jk^JerfcüW) 

e2-l r i + 
co89 +  /E sin 6   ,1/2 

^e+1 

where w    is  given by   (2.55) 

An user-oriented computer program has been written along these 

lines of analysis and is available  [17,21]. 

(3.30) 

3.4. Reflection - Coefficient Method 

For field points far away from the source and away from the 

ground plane the method of steepest descent is applied to evaluate the 

integrals g „ and g-.  For both source and field points near the ground 

plane, the effect of a pole which may exist near the vicinity of a 

saddle point (in g„) is neglected. Making the following transformations 

as suggested by (2.26), (2.27), (2.36), (2.37) and (2.38), H^fl and 

IT,  can be expressed as 
Iz 

[21] T. K. Sarkar, "Analysis of Radiation by Arrays of Parallel Hori- 
zontal Wire Antennas Over Plane Imperfect Ground (Sommerfeld 
Formulation)," IEEE Trans. Ant, and Propagat. ,(to be published). 
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H refl      P' 
Ix 2 

r    2k sin ß  ... 
(

TTR sin ^ exp[j{-7r/A - k^cosCß - 9)} 

d$ 
cos ß -ye - sin ß 

cos ß + ye - sin ß 

2k,8inß 

(3.31) 

TT1Z - P'cos* ] exprjf-Tr/A-k^cosCß-e)}]^ ^^ ^ i    " f\l/2 cos ß -YE:-sln2ß 
) 

2""'" r~~" 2 
e ^os ß +Ve~8ln P 

- slnß 

X cos ßdß (3.32) 

since 

H^^Xp). 
API 

-v   (^)1/2 exP[-J<XP  "  37r/4>l (3.33) 

The contour of integration T    is defined in Fig. 5. Application of 

the saddle-point method as given by (B.4) to (3.31) and (3.32) yields 

H refl ,   cos 9 
Ix 

cos 9 +'VG-8ln29 2 

(3.34) 

H            OP«           A.«         Q 
C08 9 ZXI - S±TI

2
B   

e^PH^iV TT.    - 2?'   cos (J) sin 9 cos 9^ —  (3.35) 
iz                                                                 I 2~    2 

e cos 9 +VE - sin 9 

The expressions for the far field due to the reflected rays only, are 

given by [14], 

r.refl           .               « rH refl          „ H         .       .                          /0  _-» E^        = " jwu cos 9 I  ir,        cos 9 cos A - w,  sin 9]                         (3.36) P                J    o                 Ix                          ^ Iz 

E = iiAJU    sin 9   [  n,        cos 9 cos z J     o Ix - "TT,  sin 9] Iz 
(3.37) 

„refl      , .     * H refl 
E.        ■ jüivi sin 4>    ir. 

4 J    o r      Ix 
(3.38) 
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thl i defined plane) by the specular plane wave TM reflection coef- 

ficient and E (- field perpendicular to this defined plane) by the 

negative of the specular plane-wave TE reflection coefficient. The 

fields E , E^ and E used for this case are assumed not to originate 
p  $    z 6 

from the source dipole, but from the image of the source dipole. 

The mutual impedance between two parallel horizontal electric 

dipoles over an imperfect ground plane can be computed as indicated. 

An user-oriented computer program is available using the reflection- 

coefficient method for treating problems of this type [22,23]. 

3.5.  Comparison of Accuracy Between the Reflection Coefficient 

Method and the Exact Sommerfeld Formulation 

In the case of the horizontal dipoles only  TT1 has a singularity 

H H 
and not IT, . But  IT,  in (3.16) has a cos 4 variation which indicates 

Ix       Iz 

that the effect of the singularity would be maximum when the field due 

to the dipole is computed in a plane containing the dipole and perpen- 

dicular to the ground plane. When the field is computed along a plane 

perpendicular to the axis of the dipole, the effect of the singularity 

is zero. Also, from (3.22), the contribution from the singularity is 

less for the corresponding vertical dipole by a factor of 1/e. Hence 

[22] T. K. Sarkar and B. J. Strait, "Analysis of Radiation by Arriys of 
Parallel Horizontal Wire Antennas Over Imperfect Ground," Scientific 
Report No. 5 on Contract F19628-73-C-0047, AFCRL-TR-74-0538, Syracuse 
University, Syracuse, New York: September 1974. 

[23]  T. K. Sarkar, "Analyt 4 of Radiation by Arrays of Horizontal Wire 
Antennas Over Imperfec. Ground," (Reflection Coefficient Method)," 
IEEE Trans. Ant, and Propagat.,  (to be published). 
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Let the specular TE and TM reflection coefficients be denoted by 

r__ and r_., respectively, and defined by 
lb     TM 

-N/^    J 
rTE = ^ e - v £ ' ^"-S- (3.39) vrr-^. cos e + V £ - sin e 

and F^ by (2.48). 

Since, 

IT. cos 6 cos ((i -    IT,  sin e = - P'  cos 6  cos <|) rfT_.exp(-jk1R-)/R- 
Xx iz in l z       Z 

the far field expressions  in (3.36)  -  (3.38) reduce to 

E^efl = jwwo cos2e cos2*?^'  exp(-jk1R2)/R2 

= r       •  (far E    field from the image due to a 

perfectly conducting ground plane) (3.40) 

rpf 1 
\        = " J"Uo sin 6  cos 6 cos * F^   P'  exp(-Jk1R2)/R2 

= r__. • (far E  field from the image due to a 
TM Z 

perfectly conducting ground plane) (3.41) 

E"fl = jm0 sin * rTE P' expO-jkjR^^ 

= - T-r,   •   (far E.   field from the image due to a 
lb (p 

perfectly conducting ground plane). (3.42) 

A physical  interpretation can be given for these formulas.     A 

plane of incidence can be defined as a plane passing through the mid- 

point of  the horizontal dlpole and the field point in question and that 

is also perpendicular to the ground plane.    Then the contributions from 

the reflected ray can be obtained by multiplying E    and E    (- fields in 
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it is expected that the reflection-coefficient method would give a better 

approximation to the exact Somme-feld formulation  than for the vertical 

dipole case.    Also,  as before,  for the reflection-coefficient method the 

maximum error occurs  in the  computation of the near fields and hence,  the 

self impedances.     It has been found that for the worst case of two coplanar 

horizontal dipoles  (for (J) - 0)  the reflection-coefficient method yields a 

result within 10% of the exact Sommerfeld formulation both in the real and 

imaginary parts of Impedance elements,  as long as  the dipoles are away 

by at least   (0.25//| e| )X  from the ground plane.    For the reflection coef- 

ficient method,   there  is still another restriction on the distances between 

two horizontal dipoles.     This is because as the distance gets larger the 

saddle point 6 approaches the pole at TT/2  [in g„   (3.22)].     It has been 

observed that the horizontal dipoles should lie within a cone whose semi- 

vertical angle is 70°  in order that the reflection-coefficient method 

yield results within 10% of the exact Sommerfeld formulation both in the 

real and imaginary parts of  the impedance elements.    The apex of the cone 

is the image of the middle point of the source dipole.     This is Illustrated 

in Fig.  9.     This implies that the maximum lengths of the horizontal dipoles 

for which 10% accuracy can be obtained in the evaluation of the impedance 

elements by the reflection-coefficient method is 

L    J^J     ,  =  2h tan 70° 5=5 5.5h critical 

as indicated in Fig.   9. 
u 

Also for large  e and large distances away from the source    TT 

H and    IT,    in   (3.18)  and   (3.19)  can be rewritten as Iz 

(3.A3) 

Ix 
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"ix ,     r- R 3R R k./e 

H 
Iz ,     y- R 9R R 

k./E 

(3.4A) 

(3.45) 

H H 
Hence from (3.44) and  (3.45)- ir.    and    TT.    have the ratio z/p which is Ix Iz 

very small at great distances  from the transmitter.     The field of trans- 

mission of a horizontal antenna has the same character as  the field of 

transmission of a vertical antenna except for the 41 dependence.    It is 

then expected that the restriction on the length of a horizontal an- 

tenna can be removed if it  is situated at least   (0.7//| e| )X away from 

the ground plane  (as  from 2.3).     For the worst case,  4> " 0,   it has been 

found that the reflection-coefficient method yields a solution within 

10% of the exact Sommerfeld formulation both in the real and Imaginary 

parts of impedance elements even when two horizontal currents are as 

much as 1000A  apart. 

3.6.    Conclusion 

Application of interpolatory quadrature  formulas and a modified 

method of steepest descent to the infinite Integrals encountered in the 

Somerfeld formulation have significantly reduced  the time of  computation 

without appreciable  loss  of accuracy for evaluating these Integrals. When 

a method of steepest descent  is applied to the Integrals of  the exact 

Sommerfeld  formulation the reflection-coefficient method falls out as the lead- 

ing term in the series under certain conditions.   The reflection-coefficient 
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method yields a result within 10Z of the exact Sommerfeld formulation 

In both the real and Imaginary parts of the Impedance elements pro- 

vided the antennas are no longer than 5.5h where h,  the height of the 

antennas above the ground plane,  can be no less than  (0.25//|e| )A. 

For large e, the restriction on the lengths of the antenna can be 

relaxed so long as they are situated at least  (0.7//[e|)X away from 

the ground plane. 
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4.     ARBITRARY ORIENTED WIRE ANTENNAS OVER IMPERFECT GROUND 

In this section expressions for mutual Impedance between two 

arbitrary oriented wire antennas over plane imperfect ground   are de- 

rived both by the Sommerfeld formulation and by the reflection- 

coefficient method.    The problem configuration consists of two arbi- 

trarily oriented current elements having a current distribution I. 

and I   .     They are situated over a plane imperfect ground as shown 

in Fig.   10.    The ground is characterized by the complex dielectric 

constant  e.    It is possible for  I    and I    to overlap one another, 

thereby forming a wire junction.     The method of analysis is  the same 

as  presented in the last  two sections. 

4.1.     Exact Sommerfeld Formulation 

In order to compute the mutual Impedance between two arbi- 

trarily oriented current elements,  the source current element I    is 

X       v z 
split up into three components  I.,  K   and I .    The total electric 

field E is then the summation of E    ,  E      and E      - fields due to 
IX  Iy    IZ 
A   A     A 

X    V      z 
the component current elements I , lj[ and I. as in Fig. 10. 

Hence from (2.5), (3.11), (3.14) and (3.15) the electric field due to 

I. can be written as 
A 

im.       v v. x 
1    4Tr JU^TTC     

JlX  Vg0 J o 
h + 8sH) 

+2IA^(«2)ldÄA (4.1) 

Similarly for 
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Fig.   10.    Arbitrary oriented elements over an Imperfect 

ground plane. 
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r       O  .       V   ?.    ,    r -   TV    / 

81 + ^H) 
A      £. 

+iIli(82>]dÄA 

and from (2.5), (2.19) and (2.24) the field is 

IZ      i A       £ 

(4.2) 

(4.3) 

Next some relations are presented which are very helpful in deriving a 

formula for mutual impedance between  I    and I  .    First 

G G 

3^ (88H) + il^T (82) = 17 (—) = " K   ^ " " K   (83) 
A A 

is obtained from (3.22).    Also, 

Q 
3/       ,..38,,. 3    / sVN 
37  (8sH>  + 3l37(82)  =i7 ^  = 

It  is well-known that 

3     , sVv 3     ,     . 

^A   ^       ayi   3 ; 

3? (80) = TT ^8n)   »    where P n>ay be   V,   'y'   or  'z'   . 3PA      0 

3 3 
3q ^8i^ = ~ 3^ ^i^ • where q maybe ,x, or 'y'» 

3q   (8sH)       "  3q; CRsH) 5  ^  (*2)   =  " ä^T (R2)   ; 

h ^  '  3il ^l)     ^    ^ (GsV)  = all (GsV>   • A A 

Applying the above Identities  the  total E-fleld can be obtained in the 

following form after some algebraic manipulations on  (4.1),   (4.2)  and 

(4.3). 
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EA - E   + E  + E 
A   IX   Ty   I z lA   lA   V 

i   H»...IIIP.I.I» w 

^0 " ^1 + ^ + 2 K^ " ^A * ^2»^ 

J   o ■' 
[- ^A * ^0 ' h +  83) " ^t (4.4) 

where Q and T are given by the following: 

Q = - [G8V + Til   ^   -   88H] A 

= 2 J0(Xp) exp[-\A -kf (z + z')]  ~~:  
i,2 ^J^2~T2 ^ , 2 iHT 
2 *   1  kl 

XdX   (4.5) 

and 

T = ^ f2«l " G8V " h
]  = «2 * k2i A 

(4.6) 

Transferring the derivative (v') operating on the Green's function 

over to the current (I ) and assuming the current to be zero at the 

ends of the open wires, 

I 

47r 

dl. 

^«O^l^sH^^-^dT^i A 

j^r j 'dir % - h + «3) - ^^^A o i A 
(4.7) 

! 

The mutual  Impedance between  the  two current elements I    and I 

can then be expressed as 

AB 
.-| lA.t 

B       B 
(4.8) 

B 
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After some algebraic manipulations,  the mutual Impedance reduces to 

Ju,M0   t 

'AB        4ir dÄ, 
A 

,       r    dl r dl 
+ jÄr   dirdÄB    d£A idr % - «i+ ^ - ^ 82V    (4-9) 

^B  B    h 

For p < 0.5A, the seml-lnflnlte Integrals In g „, g», g- and Q are com- 

puted In an essentially exact manner along a contour shown In Fig. 2. 

For p 21 0.5A, a modified method of steepest descent Is applied to take 

Into account the pole near the saddle point, and the integrals can be 

expressed as follows: 

Q = - g3 (cos 6 

gj = J83 (cos e 

- Ve - sln2e)2 

-Ve - sln2e)/k. 

(A.10) 

(4.11) 

and g  and g- are given by (3.29) and (3.30). 

A user-oriented computer program has been written and Is presented in a 

later report. The underlying mathematics of the program is relatively 

straightforward once the general formula for Z.,. In (4.9) is available. 
AB 

4.2.  Reflection-Coefficient Method 

In order to find the mutual Impedance between two arbitrarily 

oriented current elements over the plane surface of an imperfectly 

conducting earth, the effects of the direct ray and reflected ray are 

considered separately. The effect of the direct ray is straightforward 

and is the same as in [15].  In order to obtain the effects of the reflec- 

ted ray a local co-ordinate system centered at the middle point of dipole A 
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ISax":"' ■ 

I 

Is chosen. The x and z axes of the co-ordinate system are oriented 

In such a way that the x-z plane passes through the center-point of 

dlpole B. Also the x-y plane Is parallel to the Imperfectly conduct- 

ing earth. The currents of element A are now split up into three 

components each being parallel to the local co-ordinate axes chosen. 

As seen from (2.49), (2.50), (3.40)-(3.42), the effect of the reflected 

ray is equivalent to taking the original current element and placing it 

at the image point C as in Fig. 10. Then the contribution to the reflected 

ray due to 1^ is -^(E* + EZ ) + r__ Ey where EX , Ey and EZ are the 
A     in Tx   jX. it. _x       _x  _x     -X 

lk A iA A        A A 
x 

three components of the electric field generated by I..    Sirllarly for 

Iy the corresponding contribution is    -F     (Ex   + EZ ) + F _Ey    and for TMV  Ty TE    y 
A 

l!.  rrm,(Ex    + Ez ) + r^,, Ey .    Hence the total E-fleld due to the 
A       TM     jZ -Z TE     -Z 

A A A 

reflected ray is given by 

t    - T^W   + 2E'    - 5tEA    - 2E'    - SE*    - 2E' ) TMV      z z x x y y 
A 1A A A A A 

+ yT^  (Ey    + Ey    + Ey  ) y TE v    x y z' 
A A A 

"   4ir 

-JklR2 
[- r   tx + r   ty + r   tzl ^ dt. 1     'TM A      'TE A      'TM AJ R„ X/ 

TM 
jü)4Tre 

di      JkiR2 r^ 

d£.        R. ^A      jü)4ire    y 

A 2 o 

dIA  3     e'^1"2 

,'t 

jaj4Tie    y J     l R. 

y -iKK 
A _3_ (e 

'2 3R2 R2 
)  + (t  ' 1) i (f -h i~ 

-JklR2 

A        2'  3y  XR2   3R2 

(4.12) 
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The mutual Impedance between the two current elements I.  and I_ Is 

defined as 

^I • 1 d^ B      B 

Air 
rX,X VTV -ZTZI  e 

-*& 

'- ^T«1:';+w*+ ww T— v* 
B    A 

TM 
ja,4Treo J 

dl B :  iR2 

^B^A 
-B -A       ^~ dl^ 

rTM     ' 
JUJATTE     J ^^B 

dl.    R -JklR2 

di.k    R2    9R2   (    R2       ^^A 

TE 
jtüAire^ ^^B 

?   ,      -ikih      R 

-jkR 
_3_ (J^ J_ {e  
3R«    R«  oR« "2 H      »(I^R   + IJR   + I^R )] R~ A x        Ay        A z (4.13) 

where    \ ' ** - *'k '>    *y ° V* ' ^    ™d R
z = ZB + ZA and R2 ^x + Ry + Rz 

The  total mutual Impedance between the two current elements becomes 

Z = Z    + Z   , where Z    Is given by. 

D      1W0 
Z    = ATT 

da. d^.  t.   •  t 
-ik1R1 

A 'A       *B      R, 

1 f     •       f A 
Jj^T J     di'B J     d£A d£A 

dl.  dIB ^^1 

Ad£B 
(4.14) 
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where R    Is given by  (2.17). 

A user-oriented  computer program has been written  [17,24]   to 

solve  for the current distribution and the  field pattern of arbitrarily 

oriented wire antennas   (this may include wire-Junctions) over plane 

imperfect ground.     Again the program follows directly from (4.13)  and 

(4.1A). 

4.3.    Validity of  the Reflection-Coefficient Method as Compared 

with  the Exact Solution 

In general  it is difficult to predict  the accuracy of the so- 

called exact solution below a height of 0.03X  from the ground plane. 

If sections of the antenna structure below this height are all vertical 

then  there are no difficulties but if there  is any horizontal structure 

below a height 0.03A  then the method of integration used to integrate 

the semi-infinite  Integrals fails.     It is safe to say that as long as 

there are no horizontal wire elements below a height of 0.03X and as 

long as any structure below this height consists of all parallel 

vertical wires  then the exact solution is valid. 

For the reflection-coefficient method it  is impossible to make 

any comment regarding accuracy for arbitrary structure.    However,  as 

long as the antenna structure is within the  limits presented in the 

previous sections,   it  is possible to draw conclusions regarding its 

relative accuracy. 

[24]    T.  K.  Sarkar,  "Analysis cf Radiation by Arrays of Arbitrarily 
Oriented Wire Antennas Over Plane Imperfect Ground  (Reflection 
Coefficient Method)," IEEE Trans. Ant,   and Propagat.   (to be 
published). 
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4.4.    Conclusion 

Two user-oriented programs have been developed using both the 

Sommerfeld formulation and  the reflection-coefficient method based on 

the analysis presented in  the last section.     The methods presented here 

and their corresponding programs handle arbitrary wire geometry includ- 

ing wire junctions and use piecewise linear functions to represent both 

IA and IB. 
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5.     OPTIMIZATION METHODS  FOR ARBITRARILY ORIENTED ARRAYS OF ANTENNAS 

OVER IMPERFECT GROUND 

In this chapter methods are presented for optimizing certain per- 

formance indices of arbitrarily oriented arrays of wire antennas over 

imperfectly conducting ground.     The indices considered include direc- 

tivity, maximum power gain, quality factor,  and the efficiency index 

sometimes referred as main-beam radiation efficiency.     Optimization 

problems both with and without constraints on the resulting antenna 

pattern can be handled.     In the first six sections attention is re- 

stricted to determine array feed voltages that will optimize some per- 

formance index.     Strait and Kuo  [25] presented the optimization methods 

for arrays of parallel vertical wire antennas in air.     An attempt has 

been made to extend these methods for arbitrarily oriented structures 

now situated over imperfect ground.    The next section deals with the 

optimization of certain performance indices as mentioned but this time 

with respect to the geometry of the antenna structure.    This Includes 

optimization with respect  to spacing between elements,   lengths of the 

elements and both lengths and spacings.     Finally optimization of the 

indices with respect to loads applied at certain points on the antenna 

structure is also considered. 

The problem of Interest consists of an arbitrarily oriented 

antenna array of N-input ports plus a distant  test antenna having one 

input port all situated over an  Imperfect ground plane.    This  is 

illustrated in Fig.   11.     The array and the test antenna form an 

[25] B. J. Strait and D. C. Kuo, "Optimization Methods for Arrays of 
Parallel Wire Antennas," Scientific Report No. 18, Contract No. 
F19628-68-C-0180, AFCRL-72-0725, Syracuse University, Syracuse, 
New York:  December 1972. 
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Fig. 11.  Antenna array and distant test 

antenna. 
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(N+l)-port network whose terminal ch.-jracteri8tlc8 are determined by an 

(N+l) by (N+l) matrix.  In order to obtain the terminal characteristics 

the antenna array is divided into subsections (as in the "Moment Method") 

and the current of the test antenna is represented by one expansion func- 

tion only. The generalized impedance matrix is computed which completely 

characterizes the wire structure.  Either the "exact" solution or the 

reflection-coefficient method is used to calculate individual matrix ele- 

ments but one method is adhered to compute the whole matrix.  The formulas 

presented In Chapters 2, 3 and 4 are utilized depending on the method used 

and the nature of the antenna structure. The impedance matrix is inverted 

to obtain the generalized admittance matrix [Y] of the entire structure. 

T 
The terminal admittance matrix [Y]  is obtained by retaining only those 

elements Y  for which both i,j represent the input ports of the antenna 

structure. So, 

K " 'Ytt "ta'" ^t] 
[lI'l .IY"1 IY-1- 

jvj 
(5.1) 

where I , V and Y  are the terminal current, voltage and the input admit- 

tance of the test antenna, respectively. The corresponding terminal char- 

acteristics for the antenna array are expressed by the matrices [I ]Nx,» 

[V ]„ , and [Y  ]„ ...  [Y  ], ., and [Y ].. , represent the mutual admittances 
a N*l    l aa NxN  l ta IxN      at Nxl  K 

between the test antenna and the array ports incorporating the effects of 

the imperfect ground plane.  Also [Y  ] = [Y  ] and [Y  ] = [Y  1.  Once the 
aa     aa      ta     at 

four admittance matrices of (5.1) are known array optimization problems can 

be handled as illustrated in the next sections. 

5.1.  Gain Maximization 

The power gain for an antenna array is defined by 
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r « *** *  (Radiation Intensity for the specified direction) 
Power input to the array 

The power input to the array is given by 

(5.2) 

Pin4[V]   {lYaa] +  frL]}   [VJ (5.3) 

where * denotes complex conjugate and'x-denotes the transpose of the 

matrix.  The test antenna is assumed to be appropriately polarized and 

located in the specific direction for which G is desired.  It Is also 

assumed that the test antenna is  at a distance r from the array and 

situated in the far field.  Under polarization-matched conditions, the 

square of the magnitude of the test antenna terminal current is propor- 

tional to the radiation intensity (R) of the incident field.  For V = 0, 

the power received (P ) is related to the gain (g) and the receiving 

aperture (A) of the test antenna by 

2    IV  tt (5.4) 

where R  is the input Impedance of the test antenna.  Since g, A and 

' - the wavelength of propagation, are related by 

A  4TT 
(5.5) 

it follows that 
2     2 

4TT  A 
(5.6) 

K is a constant which depends solely on the test antenna.     Since 

I    =   [Y    ][V  ]  for V^ = 0,   (5.6)  can be expressed as 
t ta      a t ' r 

OTT      a        ta        ta       a 
(5.7) 
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Application of  (5.3)  and  (5.7)   to  (5.2)  yields 

■■;-, ^vvm 

r**f r^t 

G. K i!liJ^aL!!taL!!aL_ 
[^]  {[Yaa1+[na1}   tV 

(5.8) 

The procedure for optimizing  (5.8)  for some specified direction is 

well-known  [26].    This  is a ratio of Hermitian quadratic  forms,  and it 
•—^ 

follows from the properties of these network matrices that {[Y  ] + [Y* ]} 
aa aa 

**» 
is positive definite while  [Y*  ]   [Y^   ]  is positive semidefinlte.     Hence 

ta   ta 

all eigenvalues associated with the following equation 

ta   ta   a   K   aa     aa    a 
(5.9) 

are either zero or real and positive.  Since [Y* ] [Y ] is a one-term v taJ  ta 

dyad there is only one non-zero eigenvalue, and the corresponding eigen- 

vector is found from 

I {IV +  ^Jrl  ^a]   [YtJfV =  tV (5.10) 

Since [Y  ] [V ] is a scalar the excitation voltages required to maximize 
La      ä 

the gain in the specified direction are contained in the eigenvector 

a       aa     aa     ta 
(5.11) 

where  C  is a constant.     Substitution of   (5.11)   to  (5.10)  yields 

G        = K[Y     ]   {[Y     ]  +  [T*  I)"1   [Y*   ] max taJ aaJ aaJ ta (5.12) 

[26]  R. F. Harrington, "Field Computation by Moment Methods,"  The 
Macmillan Company, New York, 1968. 
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Hence the voltages given by (5.11) (the constant C can be dropped with 

no effects on the result) can be used to maximize the gain of the array 

in the given direction.  The result is G   given by (5.12). 0 max 0    J   \        * 

5.2.  Efficiency Indices 

An efficiency index S (or inverse of sensitivity factor) sometimes 

called the main-beam radiation efficiency [27] has been defined for arrays 

of Isotropie point sources as 

(radiation intensity corresponding to the direction of max. radiation) 
S = 

(sum of the excitation current magnitudes squared) 
(5.13) 

to serve as a measure or indication of the supergain condition.     It has been 

pointed out  [27]   that superdlrectlve arrays may require very large currents 

of opposite signs in neighboring elements, resulting in excessive heat loss 

and very low radiation intensity in the direction of the main beam.    This 

generally undesirable condition  is indicated by a relatively low value of S. 

The efficiency index has similar significance for arrays of electrically 

short wires.    Use of   (5.7)  and   [I   ]  =   [Y    ]   [V  ]   in   (5.13)  yields 
3 Hri S. 

[V*]   [Y*   1   [Y     ] [V   ] 
„ _ K^     a ta ta a 

2  IV*]   VI*  ]   [Y     1 [VI a        aa        aa a 

(5.1A) 

For  longer wires It may be more useful to deal with either one of two 

possible alternative quantities  that will also be labeled efficiency 

indices.     One of these is obtained by using (5.13) with its denominator 

replaced by  the  sum of  the excitation voltages squared.     By denoting the 

resulting quantity by  S..  and  use  of  (5.7)  in  (5.13)  yields 

[27]     D.  K.   Cheng, "Optimization Techniques for Antenna Arrays," Proc. 
IEEE.  No.   12,  pp.   1664-1674,  December 1971. 
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c    - —      a        ta        ta        a 
1  ~  2 ^ 

^ [V*]   [V   ] 
a        a 

(5.15) 

For  longer wires  a suitable alternative  is  obtained by using  (5.13)  with 

its  denominator replaced by  the sum of  the  current magnitudes  squared 

over  the entire array.     The new efficiency  index S.  is  then obtained  as, 

s K   K^   ^J   lYta]   IVJ 
2       2   [V*]   [Y*]   [Y]   [V   ] (5.16) 

where the admittance matrix [Y] is obtained by retaining only those 

columns of [Y] which correspond to the input ports of the antenna 

array. 

The excitation voltages that will maximize the efficiency indices 

S, S and S_ can be obtained from the method of Section 5.1.  Results are 

S a  * 7 [Y  1 {[Y* ] [Y  J}'1 [Y* ] 
max  2  ta    aa   aa      ta 

(5.17) 

corresponding to the feed voltages given by (within an arbitrary constant) 

[V ] = {[Y* ] [Y J}"1 [Y* ] 
a      aa   aa      ta 

(5.18) 

Also, 

(SJ   = ^ [Y  ] [Y* ] 
1 max  2  ta   ta 

(5.19) 

with feed voltages given by 

'V KJ (5.20) 

Finally 

(Vmax = f tYtal {^ ^''^ 
(5.21) 

resulting from feed voltages given by 
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Thus  the  three choices for efficiency  index can be calculated  for any 

arbitrarily oriented antenna array over an imperfect ground plane by 

using the  formulas for impedances described in Chapters 2,  3 and A. 

5.3.     Quality Factor 

A quality factor can be defined  for arbitrarily oriented arrays 

over Imperfect ground that relates gain and efficiency index.     For arrays 

of electrically short wires  it is  convenient to use the quality  factor Q 

defined  for arrays of Isotropie point sources as 

n _ ATT  (sum of excitation currents squared) ,_  „„. 
power  input  to the array 

So that  from (5.2),   (5.13)  and   (5.23) 

G - QS (5.24) 

Application of (5.3) and [T ] = [Y  ] [V ] In (5.23) yields 
a    aa   a 

STTIV* 1 [Y* 1 [Y  ] [V ] 
Q = "^ ^—~* §— (5.25) 

[V^ {[Yaa1 + tYL>}  [Va] 

Similarly, alternative quality factors Q1 and Q„ are defined correspond- 

ing to the efficiency indices of (5.15) and (5.16).  The result is that 

(5.24) holds with the product QS replaced by Q-S. or Q~S-, which ever is 

appropriate.  By using the equivalent of (5.24), then it Is obvious that 

8Tr[V*] [V ] 
Q,  = — " ^  (5.26) 

[V*] {[Y  ] + [Y* ] HV 1 
a    aa     aa    a 
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%  = 

MV*] 1Y*1 [Y] [V 1 
a a 

(5.27) 
[V*l flY  1 + (Y* 1 )IV ! 

a    aa     a a    a 

llt'iuf the quality factors (,), (| ami Q     can be computed once the antenna 

structure and the feed voltages are known.  These quantities can be opti- 

mized bv a procedure as outlined in the previous section. 

5.4.  Opt imi^at ion Subject to ('onstraints on Pattern Nulls in the 

1'pper Half-Space 

The problem of optimizing the directivity or any of the efficiency 

indices subject to constraints on the resulting pattern nulls in the upper 

rialf-space is discussed in this section.  The field pattern in a cerLcla 

direction abuve the ground plane for an arbitrarily oriented antenna array 

over imperfect ground will be proportional to |l ], where I  is the short- 

i ircuit current flowing through the test dipole located in that particular 

direction.  Specifically the field (I. ) in direction p above ground is 

related to the short-circuit current I  in the test dipole which is located 
t ' 

in   the   p-directlon  by 

.-I'l 
tt       t (5.28) 

where ' and k   are the wave impedance and Input resistance of the test 

dipole respectively.  The problem is to determine the feed voltages that 

will provide pattern nulls in p specified directions in the upper half- 

space and a maximum of one of the perfonnance indices (say the gain) in 

a given (p+1) direction subject to these constraints.  An equation re- 

lating the short circuit current in the test dipole for each of the (p+1) 

directions to the admittance matrix and the feed voltages can be written 

as follows: 
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t 

p+1 

0 

I 
(p+D xi     L t J 

o 

o 

fY1] 1   tJlxN 

lItJlxN 

[YP1 

lIt     h^N (p+l)xN 

[\] (5.29) 

L 
Nxl 

where the matrix [YJJ  IS the transfer admittance matrix between the test 

dlpole  In the p-dlrectlon and the excited ports of the antenna array, 

taking into account the effects of the Imperfect ground plane.     r2r\R~ |l   I 

is then the field in the direction designated for the maximum performance 

index.     Equation  (5.29) can be portioned  in  the following form 

[0]1 

L^J 

[Y11] t   Vp 

[Y21] 1   t   Jlxp 

[Y12] 1   t   Jpx(N-p) 

[Y22] lYt   Jlx(N-p) 

^^pxl 

[Va](N-p)xl 

(5.30) 

Hence 
[v^] = - [YJ

1
]"

1
 [YJ

2
]  iv2] 4 [B][V

2
] (5.31) 

and 

I  = (lY21] [B] + [Y22]} [V2] A IC] IV2] 
t     t t     a —      a 

(5.32) 

If the performance index chosen to be maximized is tne gain then from 

(5.2), (5.6) and (5.32) 

K  iv
2*) [c*]  ic] iv2] 

G = f—ä p — (5.33) 
in 

and P.     from (5.3)  is given as 
in 
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Pin - f ^  ^V +  [YaV   }[V 

and with   [V   ]  vrrltten in partitioned  form 

Pin4{tVr]![Vr]}{[Y
aa1 +  ^a]   } (5.34) 

Application of (5.31) leads to 

Pin4tVa^{^!^}{IYaa] + IYaV } 

[B] 

-[UL 
a 

or 

P.n 4T [vf] [Q] [V^] in  ii  a       a 

where [U] is a unit matrix and [Q] is defined by (5.34) and (5.35). 

Hence, application of (5.35) to (5.33) yields 

(5.35) 

G = K 
[V2*]   [C*]   [C]   [V2] 
a a_ 
^2*      2 [VJ ] [Q] ivf] 

(5.36) 

Once again (5.36) is a ratio of Hermitian forms with [Q] positive definite 

and [C*] [C] positive semidefinite.  Furthermore the latter is a one term 

dyad so that the procedure for maximizing the gain is identical to that 

used in Section 5.1.  The results are 

max 
(5.37) 

and 

[V2i -  [Q]"1 [(*] (5.38) 

2 1 
Once [V ] is known [V ] can be obtained from (5.31) which completes the solu- 

a a 

tion.  If no pattern constraints are used then (5.37) and (5.38) reduce to 

the solution of Section 5.1. 
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The  procedure   for optimizing any of  the efficiency indices defined  In 

Section  5.2 subject  to constraints on  the resulting pattern nulls in the 

upper half-space follows exactly the same procedure. 

5.5.    Optimization Subject to Constraints on the Resulting Sidelobes in 

the Upper Half Space 

Next,   the problem of finding excitation voltages that will maximize 

a performance index  (of an arbitrarily oriented antenna structure over an 

imperfect ground plane)  in a given direction subject to constraints on the 

resulting sidelube levels is considered.     Suppose I    denotes the short 

circuit current in a small test antenna located in a direction corresponding 

to the direction designated for a maximum of a given performance index  (say 

gain),   and I   ,  I   ,   ....  lj_ denote values of the short circuit current, 

induced in small fast antennas located in direction, corresponding to the 

peaks of the p sidelobes to be constrained in  the pattern.    The short-circuit 

currents in the test antennas are proportional to the field intensities In 

those directions and are related by  (5.28).     Using partitioned matrices 

r       -i 

1° 
_t_ 

Tl 

J 

lTt   Jlx(N-p) 

rYBA 
lYt   V(N-p) 

1   t     l*p 

t Vp 

|aJ(N-pm 
IVB]    , a pxl 

(5.39) 

J 
RB 

Assuming  [Y     ]  to be nonsingular 

[V*]  =   [Y*8]-1 ^BA, 
1 

- ivp iri 

J 
(5.40) 
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An alternative to (5.40) Is possible If It is not required to satisfy (5.39) 

exactly.  That Is, If a least squares solution Is acceptable it is possible 

D R A 
co use less than p voltages In [V ].  That is, [V ] and [V ] are of dlmen- 

a a      a 

slons m and N-m respectively where m < p, then the dimensions of the other 

DD 

matrices change accordingly with [Y ] no longer square. A least squares 

solution is then obtained using 

in place of (5.40) 

.t 

-  [Y*A] [/] (5.41) 

Using a suggestion of Sanzgiri and Butler [28]  the short-circuit 

current in the rest dipole corresponding to the peak of the ith sidelobe 

can be denoted by I = e  I so that 

• 
h ^ 1 • 

• 
• • 

p  t 

^ [E] 1° (5.42) 

Then, from (5.38) 

where 

l0t - \ W   [<] 

*= 1 - [Y^] [Y88]"1 [E] 

(5.43) 

(5.44) 

and 

[F] = [Y^] - [YAB] [Yf]"1^] (5.45) 

[28] S. M. Sanzgiri and J. K. Butler, "Constrained Optimization of the 
Performance Indices of Arbitrary Array Antennas," IFEE Transactions 
on Antennas and Propagation, Vol. AP-19, No. 4, pp. 493-498, 
July 1971. 
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The input power is given by  (5.34)  and using (5.40)  and (5.42) - (5.45) 

in  (5.34)  results  in 

P.    = ~ ivf]   [Q'l   [/] in      Z      a a (5.46) 

where in this case 

[QM  =  {[U] I [G*]}  {[YaJ +  [Y*   ]} i aa aa 
L 

[U] " 

[G] 

and 

[G]  = i [Y^]"1  {[E]   [F]  - ^Y^A]} 

(5.47) 

(5.48) 

Of course (5.44),   (5.45),   (5.47)  and (5.48) must be changed appropriately, 

if  (5.41)  is used rather than  (5.40). 

If the performance index to be maximized  is chosen again to be gain 

then. 

[Vf ]   [£]   [F]   [VA] 
G= K    -4=7 

a a 

The matrix [F*]   [F]   is a one term dyad and the procedure for optimizing 

(5.49)   is again that of Section 5.1.    The results are 

(5.49) 

max 
K2- [FHQ'f1^] 
* 

[/] = [QT
1
 [F*] a 

[V1*]  =  [G]   [/] 

(5.50) 

(5.51) 

(5.52) 

The iterative optimization procedure is  then simply to guess the 

initial sldelobe directions and compute the matrices necessary to determine 

G        and the required voltages   (5.50)  to (5.54).     The resulting sldelobe max 

directions and peaks are then computed and compared with desired results. 
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The new s-uilobe directions are used,    of   course,   at. "initial guesses" 

for the next iteration.    The  Iterative procedure la continued until the 

levels of all sldelobes to be constrained are within some prescribed 

tolerance. 

Obviously,  constrained optimization of  the various  e^iciency indices 

defined earlier can be carried out in the same way. 

5.6.     Optimization of  One Performance  Index Subject  to a  Constraint 

on Another 

A procedure for optimizing a given performance  index  (of an arbi- 

trarily oriented antenna array over an  imperfect  ground  plane)  subject  to 

a constraint on  another performance  index is outlined here.     In this dis- 

cussion an  index denoted by 

[V*]   [RJ   IV  ] 
3X3 

I~*]  [R21 iva] 

will be optimized subject  to  the constraint given by 

[v*]  [R3] IM 
—^  =  Y  (a given constant). (5.53) 
[V*]   (R4]   [VJ 

Once the performance   indices  are specified  [R, ],   [R„],   [R^]  and  [R  ]  have 

precise meanings.     A  solution  is obtained by  setting 

[7*]   [R   ]   [V   ] ' [V*]   [R   ]   [V   1 
t* ~ -+M-^   Y> (5.54) 

IV*]   [R2]   [VJ j^IV*]   [R4]   IVJ 

stationary with  respect  to   tnc column vector   [V  ]   and  the  Lagrangian 
3 

multiplier  >.     Setting the  first variation of  L with respect to  [V  ] 
3 

equal to zero yields 
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[VJ  =  a   IH]  "   [S*] a i (5.55) 

where a Is a constant given by 

a =   {[S.]   [V   ]}   (IV*]   [RJ   [V   ]]   {[Vi]   [RJ   [V   J}"1 

la a 2        a ala 

and 
[R^ =  [S*]  [SJ 

The matrixIhiM   goeti by 

[H]   =  IR2]  + YMRJ  - blR3] 

where the  constant b  is 

(5.56) 

(5.57) 

b =  >   (IV*]   IR  ]   IV  ]}   1  {[V^]   IR  ]   IV  ]}2  {[7*]   IR,]   [V  ]}_1       (5.58) a        H a ala ala 

The results are essentially those obtained  by Lo,  Lee  and Lee   [29]  for the 

special case when  [R-J   is  a unit matrix;  although of   course,  not only mutual 

coupling is  incorporated   in the matrices dealt with here,  but also the effects 

of   the  imperfect ground. 

When (5.55)  is substituted  in the constraint equation   (5.53)  it  follows 

that 

[Sj   UH]"1   (YIR4]   -  [R3])  [H]"1   IS*]}-  0 (5.59) 

where  it  is assumed   that   IR  ],   [RJ,   [RJ,   [R,]   and   [H]  are  Hermitian.     The 

only unknown  in   (5.59)   is  b which  is contained  in matrix  [H]. 

The  procedure   for   finding  b  is spelled  out   by Wlnkler  and Schwartz 

[30].     It   is evident   from (5.59)  that  the column vector shown  in brackets 

[29]    Y.  T.   Lo,  S.   W.   Lee  and  D.   H.  Lee,  "Optimization  of Directivity and 
Signal  to Noise Ratio of  an Arbitrary Antenna Array,"  Proc.  IEEE, 
Vol.   54,   No.   8,  pp.   1033-1045, August   1966. 

130]    L.  P.  Winkler and M.   Schwartz,  "A Fast Numerical Method for 
Determining the Optimum SNR of an Array Subject   to a Q-Factor 
Constraint,"   IEEE Transaction on Antennas  and Propagation, Vol. 
AP-20,  No.  4,   pp.   503-505,  July 1972. 
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is orthogonal to [S ].  It follows that a complete set {ff ]} can be con- 

structed with [S ] as one of its elements.  If [S.. ] is written as 

[S^ = [s^,   s2, s^, ... sN] (5.60) 

where N is  the number  of  independent applied excitations  then 

[f ^   =   [Sj ,   s2,  s3,  s^,,, 

If9]  =  ^ ' 7"' 0' 0 0 

l sl       fl2 

IfJ = f- r- • 0' T-« 0 ^ 
. Si S3 

IfN]   = —,   0,  0,  0,   . 
sl •"r] 

N 
(5.61) 

forms a complete   independent  set  with  [f   ]  orthogonal  to all others.     The 

bracketed column vector  in   (5.59)   can then be  expressed  as a linear combi- 

nation    of   [f.]  written as 

,-1 ,-1: IHI Clk^]   -   [R3))   IHI'MS*]   =      l     q^fjj 

This   Is easily  arranged  as 

(5.62) 

[W]   [0]   = 0 

where 
[Q] i. qo» q-,.  •••.qMl N" 

(5.63) 

(5.64) 

and   [W]   is a matrix with  columns   [W ]  given by 

IW^   =   [f*]  =   IS*] (5.65) 

IWJ   = h2(YlR4]   -  [R31)   f^l +''b[R2][f1] 

-1 
+  [R21   (YIR4]  -   IR3])      [R2]   [fjl 

for   i  = 2,   3,  4,.. .N (5.66) 
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Rewriting (5.63)   in terms of  its real and imaginary parts  in the form 

r« - w u       - w 
llr        lli w12r      W12i 

Wlli ' Wllr        W12i      W12r 

W21r " W21i 

Wwli " W21r 

*      •      • 
•ir 

lli 

^r 

l2i 

or [W]   IQ'] = 0 
L 

(5.67) 

(5.68) 

where [W] is a square matrix of dimension twice that of [W], and [(ft is 

a column vector of dimension twice that of [Q]. By using (5.66), (5.68) 

can be rewritten 

(b^   [A^   + b   [A2] +  [A3]}   [Q']   =  0 (5.69) 

where  [A^ and   [A  ]  are 2N * 2N singular matrices  (their first two columns 

are  zero)  and   [A  ]   Is a 2N « 2N  invertible matrix.     Then from  (5.69) 

Winkler and Schwartz   [30]  show  that values  of b  can be  found by determining 

the real eigenvalues of 

[G]   [X]   = i [X] 

where  [c;]   Is an unsymr   . ric matrix given by 

[0] 
[G] 

-   lA^"1   [A^ 

where  [U]   is a  unit matrix. 
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For each real value  of b  one  set of excitation voltages  is computed 

using  (5.55).     Each of  these sets  is then used  to compute  corresponding 

values of both  the  constrained  index and the  index  to be  optimized.    The 

set   finally chosen  is   the one which yields  the  optimum result  subject  to 

the correct constraint. 

5.7.     Optimization with Respect  to Antenna Geometry 

With an appropriate optimization procedure,  the performance indices 

presented in the previous sections may be maximized  through adjustments 

of  the antenna structure.     In this case either  lengths,   spacings or both 

lengths and spacings are to be determined so as to maximize a performance 

index given by either  (5.8),   (5.1A),   (5.15),   (5.16),   (5.25),   (5.26)  or 

(5.27).    The starting point   In  the  optimization procedure  can be an initial 

state  corresponding to some  classical or other  improved  design procedure. 

At  each refinement,   the admittance matrices   [Y     ]  and  [Y     ]  are  recomputed 
ta aa 

and  the performance index is calculated by the optimization procedure till 

the  design parameters meet  certain error specifications. 

The next problem is to reduce the sidelobe levels below a certain 

level of an antenna array over an  imperfect ground plane by adjusting 

the  antenna geometry.     Since  the  electric field  in  the upper half space 

in  a  certain direction  is  related  to the short   circuit  current  I     in the  test 

dipole hy  (5.28),   an error  criterion can be defined as 

i-l 
for    |lj!    >    llj 

for   |r|   <   |it| 
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where I,,  is the value of  the short circuit current  in the test dipole 

oriented in the i-th direction and n  is the number of  the observations 

calculated over the sidelobe region of  the pattern.    Of  course,  the error 

criterion e is the quantity to be minimized as the optimization procedure 

progresses.    Since at each optimization step the admittance matrices 

[Y     ]  and  [Y    ]  are recomputed  this  is Indeed a very time-consuming ta 3a 

process.     These types of optimizations have been done  for parallel verti- 

cal wires in echelon  [31],  and  could easily be extended  to arrays of 

arbitrarily oriented wires over  imperfect ground provided,  of course,  that 

sufficient computer  time  is available. 

5.8.    Optimizations of Loaded Antennas 

In this problem (as  in  the previous) one has to recompute  the 

admittance matrices   [Y    ]  and   [Y     ]  at each optimization step.    The 

problem in this case involves optimization of the loads that are applied 

either at some specific points or distributed along a section of  the 

arbitrarily oriented antenna structure.    Once the  total impedance matrix 

[Z]     for the entire structure has been computed excluding the loads  (but 

including the effects of  the  imperfect ground plane)  the effect of   the 

loads  can be taken into account by adding a load  impedance matrix  [Z]    to 

[Z]   .     This load impedance matrix is a square matrix having  the same 

number of columns as   [Z]   , where the number equals the nrmber of segments 

into which the N-port antenna  array has been divided.     For passive point- 

by-point  loading  [Z]     is  a diagonal matrix having a zero on  the diagonal 

(31]    B.  J.  Strait,  T.  K.   Sarkar and D. C. Kuo,  "Special Programs  for 
Analysis of Radiation by Wire Antennas," on Contract F19628-73-C- 
0047, AFCRL-73-0399,  Syracuse University,  Syracuse, NY 13210. 
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corresponding to each unloaded  triangle function.     Thus If there is a 

lumped  load of Z      ohms at a wire position corresponding to  the peak of 

the nth  triangle function,  then the element corresponding to the nth 

row and column of the diagonal matrix  [Z]    is Z    .     Thus the  total im- 

pedance matrix [Z]    comprising of the  lo.<ded antenna structure over the 

plane  imperfect ground  is  then 

[z]T = [z]s + iz]l 

T 
In   this  case the  terminal  admittance matrix [Y]       is obtained by retain- 

ing  only   those elements  ([Z]       }       which correspond  to  the excitation 

ports of  the antenna structure.     Hence once [Y    1   „  and   [Y     1   .  are ob- 
ta sJl aa sH 

tained the performance Indices given by either  (5.8),   (5.14),   (5.15), 

(5.16),   (5.25),   (5.26)  or  (5.27)   can be easily computed.    An optimization 

procedure now can be used with an  Initial guess  to  optimize  the perfor- 

mance  index with respect  to  the  loads  Z    .    The starting point  for  the 

iterative  procedure  is  the unloaded structure.     The  final result  is a 

structure   loaded at  n-polnts by   [Z     ]  which optimize  the required  per- 

formance   index. 

The  same procedure  can again be  applied  to reduce  sidelobes  of 

the   fields  in the upper half space by application of  loading  to antenna 

structure.     As described in the  previous section,   the same error cri- 

terion  is  defined but   the parameters  to be optimized are not  the struc- 

ture over   the plane  imperfect  ground.     The starting point  for   the  iterative 

procedure   is the pattern  in  the upper half space of an unloaded antenna 

geometry.     The final result  is  the  same  array over  the plane  Imperfect 

ground but   loaded and having sldelcbe'   near the desired  level  in  the  upper 

half   spare. 
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b. CONCLUSION 

The mathematical foundations   for newly developed user-oriented 

computer programs have been presented and described for handling arbi- 

trarily oriented thin-wire antennas radiating in  the presence of a 

plane imperfect ground.     Properties of the imperfect ground are  taken 

Into account either exactly by using the Sommerfeld formulation or 

approximately by using the reflection-coefficient method.    Application 

of interpolatory quadrature formulas   to integrate  the semi-infinite 

integrals encountered  in  the exact  Sommerfeld  formulation has reduced 

the  time of computation as compared with other available procedures. 

A modified method  of  steepest  descent has been used  to evaluate  the 

semi-infinite integrals to reduce required computing time without 

significant loss of accuracy.     The commonly used reflection-coefficient 

method  is derived in detail  and  its  relative accuracy is discussed. 

Methods have been presented for optimizing various performance 

Indices of arbitrarily oriented  thin-wire antennas over plane earth 

ground.     Performance  indices considered Include directivity, maximum 

power gain, quality factor and efficiency Index.     It has b^en shown 

how a performance  index can be  optimized subject either  to constraints 

on  the directions of nulls  in the resulting pattern or to constraints 

on   the  levels of  the  resulting sidelobes.    It has  also been shown how 

one  performance  index  can be optimized  subject  to a constraint  on 

another.     The methods  presented  are quite general  in that  the wires 

ran  he excited or  loaded  at  arbitrary  points along  their  lengths. 

In  summary  the  contributions presented in  this  thesis  Include 

the   following: 
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1) Application of Interpolatory quadrature formulas to Integrate  the 

semi-infinite  integrals encountered  in  the exact Sommerfeld  formulation 

was  illustrated. 

2) Use  of  a modified method of steepest  descent  to evaluate the  seml- 

infinlte  integrals  to reduce  the  time  of  computation without significant 

loss  of  accuracy has been  demonstrated. 

3) The  commonly used  reflection-coefficient method was derived  In de- 

tail  and  its  relative    accuracy was  discussed. 

4) New,   user-oriented  computer programs   for treating the Imperfect 

ground  problem have been developed  and described, 

5) Formulas and results convenient   for application to optimization 

and design  problems have been presented. 
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Appendix A.     QUADRATURES OF THE HIGHEST ALGEBRAIC ACCURACY 

F(x)dx have been Certain integrals of the type j  f(x)dx and 

a 0 

encountered in the course of this work.  A method for evaluating these 

types of integrals very efficiently is discussed here.  The following 

subject matter has been summarized from Krylov [33] to illustrate the 

salient features of this technique. 

Because of its geometrical interpretation the problem of finding 

the numerical value of an integral of a function of one variable is often 

for simplicity called quadrature.  One method of quadrature used is to 

evaluate integrals approximately by maans of a finite number of values of 

the integrand.  In many cases this method requires less work tnan other 

quadrature methods. 

Quadrature formulas are often constructed from Interpolating 

polynomials.  In this vay we can, in many cases, obtain quadrature 

formulas which are convenient to use and which will give sufficiently 

accurate results.  For n arbitrary points x ,x0,...,x  in the segment 

[a,b], we can construct the interpolating polynomial for f(x) by the 

following formulas 

f(x)  =  P(x)  + r(x) 

P(x) 

W(x) 

r(x) 

n 

I 
k=l 

V W(x) . 
'      (x-x^)   W,(xk)   MV 

(x-x.)   (x-xn)   ...    (x-x   ) 
12 n 

remainder  of   interpolation 

[33]   V.   I.   Krylov,  "Approximate   Calculations  of   Integrals," 
Macmlllan  Company,   New York,   1962. 

(A.l) 

(A.2) 

(A.3) 

(A.4) 
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The exact value of  the Integral 

r 

p(x) f(x)dx 18 

b 

p(x)f(x)dx 
J 

r 
p(x)r(x)dx (A. 5) p(x)P(x)dx + 

a a a 

where p(x) is the weight function.  It Is assumed that p(x) Is a certain 

fixed function, which is measurable on [a,b) and is not Identically the 

zero function, and that the product p(x)f (x) is integrable on [a,b].  If 

the Interpolation (A.1) is sufficiently accurate so that the remainder 

r(x) is small throughout the interval la,b] then the second term in (A. 5) 

can be neglected and the approximate equation obtained is 

b 
f n 

v 
p(x)f(x)dx S- I      \f(30 

k-1 K  K 
(A.6) 

where 

\ P(x) 
W(x) 

(x^) W,(xk) 
dx (A.7) 

Ouadrature formulas for which the coefficients have the form (A.7) are 

called interpolatory quadrature formulas.  Interpolatory quadrature 

formulas can be characterized by the following theorem. 

Theorem 1:  In order that the quadrature formula be interpolatory it is 

necessary and sufficient that it be exact for all possible polynomials of 

degree ^ n-1. 
b 

The quadrature formula   p(x)f (x)dx ^ £ A. f (x. ) for a fixed n, 
■' k"l 
a 

contains 2n parameters A, and x, (k-1,2,... ,n). The problem is to select 

these parameters so that (A.6) will be exact for all polynomials of the 

highest degree (i.e. for all polynomials if degree < k, where /. is as 
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large ah poswlble).  The choice of the coefficients A. for any arrange- 

ment of x. can lead to an equation (A.6) which Is exact for all poly- 

nomials of degree <_ n-1. This requirement completely defines the coef- 

ficients A. : (A.6) must be interpolatory and its coefficients must be 

given by (A.7) 

In order to Increase the precision of (A.6) the choice of the 

points x. is still at our disposal.  We might hope that for some choice 

of these points the degree of precision can be increased by n and that 

the formula can be made exact for all polynomials of degree <_ 2n-l. 

This can be achieved as shown below.  The conditions which must be satis- 

fied by A, and x, in order that (A.6) will be exact will now be estab- 

lished. 

We prefer to consider the polynomial W(x) ■ (x-x.)(x-x0)...(x-x ) 
1    i       n 

instead of the nodes x, themselves.  If we know the x. , then we can easily 

construct the polynomial W(x).  Conversely, if we know the polynomial 

W(x) « x + a.x   + .... then determining the roots of W(x) will give us 

the x^.  If we determine W(x) instead of x, directly then we must be care- 

ful that the roots of W(x) will be real, distinct and located in the seg- 

ment [a,b]. 

Theorem 2:  If (A.6) is to be exact for all polynomials of degree £ (2n-l), 

then It is necessary and sufficient that (A.6) must be interpolatory and 

that the polynomial W(x) be orthogonal with respect to p(x) to all poly- 

nomials Q(x) of degree < n: 

b 
r 

p(x) W(x) Q(x)dx » 0 (A. 8) 
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The possibility of constructing formulas which are exact for all 

polynomials of degree  2n-l   is related to the existence of polynomials W(x) 

of degree n which possess the above orthogonality property.     If the weight 

function p(x)   changes  sign on  |a,b)  then such a polynomial W(x)  may not 

exist.     If such  a polynomial does exist  its roots might not satisfy  the 

above requirements.     Hence it will be assumed  that the weight function 

p(x)   Is nonnegative on   [a,b]. 

Theorem 3:     It   the polynomial P (x)  is orthogonal on the segment  Ia,b] 
  n 

to all polynomials of  degree  less  than n, with respect to  >' qatWe 

weight  function  p(x),   then all the roots of P  (x)  are res »inct 

and  lies  inside   (a,b]. 

Theorem 4:     If  p(x)   >  0  for x >   fa,b],   then a quadrature formula  (A.6) 

which is exact   for all  polynomials of degree  <_ 2n-l,  exists for all n, 

and cannot be exact   for all polynomials of degree In. 

The construction of quadrature  formulas which have the highest 

accuracy  is now discussed.    Consider the system of polynomials P  (x); 
n 

(n»l,2,...) which are orthogonal on [a.b] with respect to the weight 

function p(x).  In order to be definite, it is assumed that the system 

is normalized, 

h i 0 for m y n 

p(x) P (x) P (x)dx -< (A.9) 
n    m       \ 

a V 1 for m ■ n 

and Che nth degree polynomial of  an orthonormal system can be assumed  to 

be of  the  form 

P   (x)  = a x" + b  x""1 +  ... n n n 
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The nth degree polynomial of this system then differs from W(x) by only 

a constant multiple.  The roots of P (x) will thus be the nodes x, 

(k ■ l,2,...n) which are to be used in the quadrature formula. The coef- 

ficients A. are determined by (A.7) or equivalently by, 

b 

\ 

Pn(x) 

PW TZ    "\  i>*f„\  dx (A. 10) (x^) P;(x) 
a 

In order to calculate A, by (A.10) the Christoffel Darboux identity is 

used.  Three consecutive polynomials of an orthonormal set satisfy a 

recursion relation 

n     a ., n+1     a   a ,,  n      a   n-1 
n+1 n   n+1 n 

from whijh the Christoffel-Darboux identity  can be deduced 

n a 
(x-t)    I    P. (x)  P. (t)  = —2- [P  .^(x)   P  (t)  - P  (x)  ?.At)1 (A. 12) 

k-0   k        k Vl    n+1        n n       n+1 

From (A.12)  it  can be written that 

Thus  from the second equality of  (A.13)   it  is clear that a quadrature 

formula of  the highest accuracy has all positive  coefficients. 

Next  the magnitude of the remainder is examined. 

Theorem 5: If f(x) has a continuous derivative of order 2n on Ia,b] then 

there exists a point 41 in [a,b] for which the remainder of the quadrature 

formula of  the highest accuracy is 

b 
f(2n)a^ 

Tit} (2n)! .(x)  W2(x)dx (A.14) 
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These quadrature  formulas of highest  algebraic accuracy are used  to 

evaluate   two  Integrals which often  occur in  the specified problem of 

Interest.     Tt was because of  those  formulas  that it was possible  to 

write user-oriented computer programs using the Sommerfeld formulation 

that  do not require unreasonable amounts of  time. 

a)     Constant Weight Function: 

The formulas of Gauss are historically the first formulas of 

the hi; ;.;st algebraic accuracy.     These formulas are used  to approximate 

the  integral . 

f(x)dx (A.15) 

where   [a,b]  Is  a  finite segment and  p(x)  H  1. 

By a linear transformation we  can transform an arbitrary segment 

[a,b]  into any standard segment we  choose.     In order to make use of  the 

symmetry of the nodes x,   and coefficients A.   the segment would be made 

to be   [-1, +1].     Thus it will be assumed that   (A.15)   can be transformed 

into the  form 
+i 

f1(x)dx (A.16) 

The  system of polynomials which are  orthogonal on  [-1, +1] with respect 

to  the  constant weight  function are  the Legendre polynomials, 

n,  2     .n 
p  (x)  = ^_ d  (* -1) 

2nn!       dx11 

The quadrature  formula of the highest  accuracy 

+1 

j      f(x)dx =    I      A^n)   f(xi(n)) 

_1 k"1 

(A.17) 

(A.18) 
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has for Its n nodes  the roots of the Ler,endre polynomial  of degree n: 

Pn(K^)   -   0 (A. 19) 

The coefficients A.   are then obtained as 
\ 

K 
(n) 

[i - (^n))2] ip;(^n))i2 
(A. 20) 

2n( n^ 
and since W(x) » ,)l 1,    P (x) to make the leading term of W(x) unity, the 

(^n;!  n 

remainder of the Gauss formula is obtained from (A. 14) as 

r(f) = 
22n+1     An])2.2  f(2n)... 

(2n+l) (2n)! l(2n)!J  r   ^; (A.21) 

where $ is a point  in the segment   [-1, +1].    Values of x.   and A,   for 

different n are given in the IBM-SSP  [34]. 

b)    Integrals of the Form        x    exp(-x)   f(x)d8 

0 

The system of polynomials which are orthogonal on the semi-infinite 

axis 0 £ x < o» with respect  to the function x   exp(-x)  is the system of 

Chebyshev-Laguerre polynomials 

,n 
T (a)/ \       / i\n    ~a /  \  d"    / ot+n v. L'' '(x)  -  (-1)     x      exp(x) —- (x        exp(-x)) 

n dx 

A quadrature  formula of the highest accuracy 

00 

r n 
xa exp(-x)  f (x)dx =    I    \t(\) + r(f) 

(A.22) 

(A.23) 

[34]     IBM Scientific Subroutine Package   (360A-CM-03X) Version II, 
Programmer's Manual,  pp.  299-303. 
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must have as its nodes the roots of the Laguerre polynomial L  (x), and 

the coefficient A. can be found to be 

^c 
(a + n)! 

W 
Values of x. and A. for a »= 0 and for different n are given in the 

IBM-SSP [35].  The remainder of the quadrature formula a - 0 is 

(A. 24) 

I(l).^.f^w (A. 25) 

wi.dre $ is a point between  [0, »]. 

[35]     IBM-SSP,  pp.   303-307. 
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Appendix B;     ASYMPTOTIC EVALUATION OF  INTEGRALS BY THE METHOD OF 

STEEPEST DESCENT 

The method of steepest descent  (or the saddle point method) deals 

with the approximate evaluation of Integrals of the form 

ISD(^  = F(0  exp[-pf(0]d^ (B.l> 

for large values of p, where the contour C i.» such that the Integrand 

goes to zero at the ends of the contour. The functions f(C) and F(0 

are arbitrary analytic functions of the complex variable ?. 

The basic philosophy of the method of steepest descent is as 

follows:    A path Is selected In the complex ^ plane In such a way that 

the entire value of the Integral Is determined from a comparatively 

short portion of the path.    Within certain  limits,  the contour of inte- 

gration C may be altered to such a path without affecting the value of the 

integral.     Then,  the integrand Is replaced by another,  simpler function, 

which closely approximates  the Integrand over the essential portions of 

the  path.     The behavior of  the new Integrand  outside the Important 

portion of  the path  Is of no concern.     For real and positive value« of p 

and for a general contour C the quantity pf(0  is positive on some parts 

of  the path and there are other regions where it is negative.     The latter 

regions are more important since the integrand is larger, and in these 

regions, where  the negative of the Re[pf(£;)]   Is largest.  It is Important 

to reduce oscillations.    A contour is chosen along which the imaginary 

part of   [pfCO]   Is constant in the region where the negative of its real 

part Is  largest.    The path in the region where Re[pf(0]  is greatest may 

be chosen so that lm[pf(0] varies if this turns out to be necessary to 
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complete the contour.  In this way, the oscillations of the Integral 

cause the least trouble. 

This general philosophy can then be applied to evaluate the 

integral of (B.l).  The type of integral encountered In this problem 

is of the form 

SD F(ß) exp[- jkR cos (ß-e)]dß (B.2) 

where r. is r>e path of integration as shown in Fig. 5. The saddle 

point occurs at f'CO = 0, or at ß = 0 in this case. The path of 

Integration is now determined from 

cos(ß-e) = 1 - js2/k 

where s  is real and -<*'<_ s  <_ + co.    The saddle point corresponds to 

s  = 0.     (B.2)   can now be expressed  in  the following form 

ISD = expHkR) *(s)  exp(-RS  )ds (B.3) 

where now *(s) = F(ß) — .  The details of evaluating (B.3) can be found 
ds 

in [36] and only the result is quoted. 

ISD = (j^)1/2 expIjOrM - kR)]F(e) 

1  2kR U + F(e) ^ + •••J (B.4) 

Equation (B.4) is Inapplicable If there is a pole near the saddle point 6. 

However, the method of steepest descent can be modified in such a way that 

[36] L. B. Felsen and N. Marcuvitz, "Radiation and Scatterir- of Waves," 
Prentice Hall, New Jersey, 1973. 
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the presence of poles is taken Into account from the very beginning. 

Of special Interest In the analysis will be an Integral of the form 

I(kR) - |  F^ß) expHkR cos(3-e)]dß (B.5) 

where r, is a path of integration in the complex ß plane as shown in 

Fig. 5 and F (ß) now has a pole at ßp which is near 9. For large kR, 

the following method is applied: The pole is factored out from F (ß) 

by writing F. (ß) =   Jö    •    It ls then argued by Clenmow [3^ that 

sin (——) 

since F(ß) has no singularities in the vicinity of the saddle point it 

may be removed from under the integral sign with ß equated to 6.  Vh"«», 

the integral I(kR) can be written as 

ISD(kR) = F(ö) 
exp[-jkR cos(ß-e)] 

ß-ßp 
r    sin (-^-) 

(B.6) 

= F(e) 

By reversing the sign of a as 

exp[~j^r cos a] 

-) 

da 

r0  sin (—y 

(B.7) 

ISD(kR) = F(e) 
exp[-jkR cos a] 

B-a-ß^ da 

r0  sin (-y -) 

(B.8) 

and by adding (B.8) and (B.7) and then dividing by two, puts (B.6) 

in the form 

[37] P. C. Clemmow, "The Plane Wave Spectrum Representation of Electro- 
magnetic Fields," Pergamon Press, New York 1966, pp. 46-58. 
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^D^ 
2  sin | F(ö) 

exp(~JltR cos  a) .as, 
cos a - cos Y 2 

where y = 0  -  ß   .     Changing the variable of  integration  from a to T  such 

that T  «=  /2  exp(-j7T/4)   sln(y)   the path  P.   Is  transformed  to an Integral 

from -00  to +*".     Hence 

2 
r 

jb 

ra' 2 
I     (kR)  =  2h  expfjOWA - kR)]  F  (6)       exP(-kRT  ) 

J     T    + ib 

where b =  Vz  sin dj-.     Application of 

(B.9) 

exp(-XT  ) 
2 2  dT 

T
Z
 + jbZ 

77 r • /  1.2 = r exp[j(xb TT/A)]erfc    (/jxb^) 

from Gradshteyn and  Ryzhik     (p.   388,   3.466 No.   1)   to   (B.9),  yields 

ISD(kR)  =  2v exp[j(Ti/2 - kR)  - W2]  erfc   (jW) (B.10) 

2 2 2      0~ßP 
where W    = - jkRb    = -j2kR sin    ( -y1) •    Finally,  application of   (B.4) 

to the Infinite integrals  encountered in the Sommerfeld formulation yields 

the reflection coefficient method and that of   (B.10)   gives very good 

approximations  for near  fields. 
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