BODY FLUID DISTRIBUTION IN ACUTE HYPERCAPNIA

by

R.D. Murray, LT MSC USNR, F.T. Abbott and K.E. Schaefer

NAVAL SUBMARINE MEDICAL RESEARCH LABORATORY REPORT NUMBER 814

Bureau of Medicine and Surgery, Navy Department Research Work Unit MR041.01.01-0125.8

Reviewed and Approved by:

Charles 7. Seec

Charles F. Gell, M. D., D. Sc. (Med) SCIENTIFIC DIRECTOR NavSubMedRschLab Approved and Released by:

R.L. Sphan

R. L. Sphar, CDR MC USN COMMANDING OFFICER NavSubMedRschLab

Approved for public release; distribution unlimited

THE PROBLEM

To determine the effects of short exposure to CO_2 on body fluid distribution in laboratory animals.

FINDINGS

Guinea pigs and rats exposed to 2, 7, and 11% CO₂ for one hour showed no change in total body water, intracellular space or extracellular space. The volume of extracellular space in guinea pigs is 5% greater than extracellular space in rats when expressed as % total body water.

APPLICATION

These results are of interest to researchers and physicians involved in closed environment studies.

ADMINISTRATIVE INFORMATION

This investigation was conducted as part of Bureau of Medicine and Surgery Research Work Unit Number MR041.01.01-0125. It is report number 8 on this research work unit. The manuscript was submitted for review on 3 June'1975, approved for publication on 16 June 1975 and designated as NavSubMedRschLab Report Number 814.

PUBLISHED BY THE NAVAL SUBMARINE MEDICAL RESEARCH LABORATORY

ii

ABSTRACT

Guinea pigs and rats were exposed to 1.9, 6.9 and 10.8% CO₂ for a period of one hour. Measurements of total body water (TBW), extracellular fluid (ECF) and intracellular fluid (ICF) were made using tritiated water and radioactive chloride (36 C1). Control values for TBW, ECF, and ICF were 64.6, 28.5 and 36.1 for rats and 61.7, 30.6 and 31.1 for guinea pigs. These values did not change significantly under hypercapnia. These results indicate that although no measurable changes occurred in body fluid distribution under hypercapnia, the differences in body water distribution between guinea pigs and rates may help explain species differences in response to hypercapnic stress.

Clip and Mail Form for Change of Address:

To: Commanding Officer, Naval Submarine Medical Research Laboratory, Attn: Code 03B Subj: Change of Address

1. I/We wish to continue to receive NavSubMedRschLab Reports, however, the following change of address should be noted:

New Address:		
New Address:		

Old Address:_____

BODY FLUID DISTRIBUTION IN ACUTE HYPERCAPNIA

INTRODUCTION

Recently, Steiner and Held¹ reported a rise of the apparent distribution volume of 35SO4 = in a dog during acute respiratory acidosis. Malorny² has reported watershifts in red cells, liver and muscle tissue during acute exposure of rabbits, dogs and cats to 2-7% CO₂ for periods from 2-6 hours. Schaefer³ has observed similar changes in the water content of some tissues of rats and guinea pigs after chronic exposure to 15% carbon dioxide. These observations indicate that body fluid distribution is altered in response to hypercapnia. In the present report, body fluid distribution in rats and guinea pigs under the influence of acute hypercapnia is studied.

MATERIALS AND METHODS

Male albino rats (Charles River Laboratories) and male albino guinea pigs (Charles River Laboratories) were used in all experiments. Weight ranges for animals were 260-410 grams and 250-400 grams for rats and guinea pigs, respectively. Animals are injected intraperitoneally with 0.5 ml of saline solution containing approximately $10\mu Ci {}^{3}H_{2}O$ (New England Nuclear) and 2µCi Na³⁶C1 (Amersham Searle Corporation) and placed in metabolic cages in a 237 liter plexiglass box. One hour after injection time, the plexiglass box was closed and test gas passed through it at a rate of 8 liters/min. Test gases were air; 2.98% CO₂/ 20.73% O₂/balance N₂; 10.07%

 $CO_2/20.72\% O_2$ /balance N₂, or 14.98% $CO_2/20.23\% O_2$ /balance N₂. Fifty-five minutes after the box was closed, it was opened and the animals injected intraperitoneally with Pentabarbital Sodium (Sedasol; Evsco Pharmaceutical Corp.) at a dose of 0.1 gm/100 gm body weight or sufficient to anesthetize. The box was then closed until the anesthetic took effect.

Animals were removed, weighed and cut open with a midline abdominal incision. Blood was drawn from the abdominal aorta into a lightly heparinized syringe. Urine was collected from the bladder by by needle and syringe and combined with the urine collected in the metabolic cage and the volume recorded.

Counting of Samples

Blood in the case of rats, and blood and urine of guinea pigs was spun down at 7000 rpm for 10 minutes. Plasma and urine (0.1 ml) were placed in scintillation vials and 10.0 ml of scintillation fluid added. The scintillation fluid consisted of 0.25 grams/liter DMPOPOP, 7.00 grams/L PPO in toluene. Aqueous interfacing was accomplished by the addition of 10 vol BBS-3 (Beckman Instrument Co.) solubilizer to the scintillation fluid. Samples were counted for 100 minutes or 0.5% error in a Beckman LS 150 (Beckman Instrument Company) room temperature liquid scintillation system. Counting took place in three channels: external standard channel, tritium channel, and a channel which was calibrated to count approximately 80.0% of chloride disintegrations but 1% or less of tritium disintegrations. A background (bkgd) was prepared by adding 0.1 ml of saline to 10 ml of scintillation fluid.

Preparation of Standards

Quenching curves were prepared by counting tritium and chloride quenched standards (ICN Corporation) and plotting efficiency of counting against the external standard ratio. Activity of the 0.5 ml injected dose was determined by injecting an equivalent amount of labeled saline into a scintillation vial, diluting to 5 ml and counting duplicate 0.1 ml samples of this mixture.

Calculations

Counting efficiencies (eff.) for chloride³⁶ in the chloride³⁶ channel, chloride³⁶ in the tritium channel and tritium in the tritium channel were determined from the quenching curves. Chloride³⁶ dpm's were calculated by subtracting background cpm from chloride³⁶ cpm and dividing by the efficiency of counting of chloride³⁶ in the chloride³⁶ channel (equation 1). Chloride³⁶ overlap in the tritium channel

Equation 1.

$dpm^{36}C1 = \underline{cpm \ ^{36}C1 \ channel - bkdg}_{eff. \ ^{36}C1 \ in \ ^{36}C1 \ channel}$

was determined by multiplying dpm of chloride³⁶ by chloride³⁶ counting efficiency in the tritium channel. Tritium cpm in the tritium channel were the total cpm in the tritium channel minus background and chloride³⁶ overlap cpm. Tritium cpm were then divided by the counting efficiency of tritium in the tritium channel to give tritium dpms (equation 2).

Equation 2.

$\frac{dpm^{3}H = cpm^{3}H \text{ channel} - [(dpm^{36}C1 x) + cpm^{36}C1 x]}{eff. 36C1 in 3H \text{ channel} + bkgd]}$

By this method, the dpm of ${}^{36}C1$ and 3H were corrected by subtracting the dpm lost in the urine. The corrected injection dose (³H or ${}^{36}C1$) was then divided by the plasma concentration (³H or ${}^{36}C1$) to give the distribution volume.

The tritium distribution volume was corrected for plasma water content by multiplying by the decimal fraction of water in plasma. Values used were .954 for guinea pigs and .946 for the rats³. The chloride distribution volumes were corrected after the method of Swan, et al⁴ by multiplying by (0.954) (0.95) for the guinea pigs and (0.946) (0.95) for the rats were 0.95 in the Gibbs-Donnan distribution ratio for chloride.

The corrected tritium distribution volume was taken to be total body water (TBW), the corrected $^{36}C1$ distribution volume was extracellular fluid (ECF) and the difference was taken to be intracellular fluid (ICF).

RESULTS

Figure 1 shows that CO_2 equilibration profile over one hour for the flow of 8 liters/min thru the 237 liter box. It can be seen that equilibration did not occur in any exposure, but the profiles were distinctly different by 15 minutes--that is, 10 and 15% CO₂ mixtures, respectively. The mean CO₂ concentrations calculated in intervals of five minutes were: 1.94, 6.95 and 10.80% CO₂ for the 2.98, 10.07, and 14.98% CO₂ mixtures, respectively.

Figures 2 and 3 and Table I give the body fluid distribution and standard deviations for rats and guinea pigs exposed to the three different CO₂ mixtures and air. For rats (figure 2), the control TBW was 64.6 ± 1.3 and ECF was 28.5 ± 0.8 . These values did not change significantly under the conditions of this experiment. For guinea pigs, control TBW and ECF were 61.7 ± 0.6 and 30.6 ± 0.5 body weight, respectively, and did not change significantly during the course of the exposures. There was a tendency for TBW to be elevated under the increased CO_2 levels.

Intracellular fluid (ICF) was taken to be the difference between TBW and ECF: Control ICF was 36.1 and 31.1 for rats and guinea pigs, respectively, and it did not change in any animal over the course of the experiment. In each condition when expressed as percent total body water, ECF and ICF for guinea pigs was statistically different from rats.

Fig. 1. Equilibration profiles for CO_2 in box used to expose rats and guinea pigs to hypercapnic medium

Fig. 2. Mean TBW, ECF and ICF (± 1 S.D.) expressed as % body weight for control and CO2 exposed rats.

Fig. 3. Mean TBW, ECF and ICF (± 1 S.D.) expressed as % body weight for control and CO2 exposed guinea pigs

DISCUSSION

The tritium method for total body water determination is assumed to overestimate the direct desiccation method by about 10%.⁶ In our hands, however, the presently reported duallabeling technique gives results similar to those found by desiccation in rats^{6,7} and lower than those found by Foy⁸ using tritium dilution. Values for TBW in guinea pigs are well below those of other investigators ^{7,8}. Before correcting for plasma water, our values are comparable to those found by Flexner⁹ using deuterium oxide and Pace¹⁰ using desiccation.

Our values for ECF are slightly lower than normally reported for chloride determinations in rats.¹⁰ As far as we are able to determine, chloride spaces are not usually reported for guinea pigs.

The dual-labeling technique reported in the present study failed to detect a significant change in body fluid content or distribution under the conditions used. The total body water of exposed guinea pigs and rats were slightly higher than control animals under all CO₂ concentrations; however, there was no observable urine retention in the exposed animals. Since no food or water was available to the animals during the course of the short exposure, the higher TBW's could reflect only a difference in hydration at the beginning of the experiment and not a CO₂ related effect. Because of the possibility of differences in the hydration state causing erroneous differences in ECF volumes, ECF and ICF were also expressed as percent TBW (Table I). Again there were no significant changes noted with exposure to CO_2 .

Acidosis could be expected to show an increase in the ECF as measured by $^{36}C1-$ due to the "chloride shift" into red blood cells in place of bicarbonate. An alteration in the distribution of $^{36}C1-$ extravascularly would also be expected

TABLE I

ECF AND ICF EXPRESSED AS %TBW FOR CONTROL AND CO₂ EXPOSED GUINEA PIGS AND RATS

			EXTRACELLULAR FLUID (ECF) (% TBW)±SEM	INTRACELLULAR FLUID (ICF) (% TBW)±SEM
Control	Rats	4	44.17±0.41	55.83±0.41
	Guinea Pigs	6	49.55±0.77	50.45±0.77
1.94% CO2	Rats	6	45.07±0.27	54.93±0.27
	Guinea Pigs	5	49.23±1.28	50.77±1.28
6.95% CO ₂	Rats	6	44.83±0.31	55.17±0.31
	Guinea Pigs	5	49.18±0.52	50.82±0.52
10.80% CO2	Rats	6	44.39±0.24	55.61±0.24
	Guinea Pigs	5	51.12±0.93	48.88±0.93

to change the apparent ECF. That no change was noted in either rats or guinea pigs suggests that either no change occurred or that the technique was not sensitive enough to detect one.

Guinea pigs and rats show large species differences in their tolerance to CO₂ which is probably related to their difference in buffer capacity 12 . Recent studies demonstrated that the slope of CO₂ tritiation curves obtained in acute hypercapnia in guinea pigs is significantly lower than those of rats¹³. The difference between the two species is similar to the difference between the in vivo and in vitro CO2 blood curves. The lower in vivo CO₂ buffer curve has been explained with a distribution of bicarbonate in blood and extracellular space 14. The larger extracellular space (5%) found in guinea pigs could explain at least partially the lower CO_2 buffer curves in guinea pigs.

REFERENCES

- Steiner, C. A. and D. R. Held. Change of apparent distribution volume of ³⁵SO⁼ in acute respiratory acidosis. <u>Experientia</u> 26: 683 (1970).
- Malorny, G. Das Verhalten der Elektrolye in Blut und Gewebe bei erhohten CO₂ - Spannunger der Atmungsluft. <u>Arch t Exp Path and</u> Pharmacol 205: 648-729 (1948).
- 3. Schaefer, K. E. (unpublished data)
- 4. Dittmer, Dorothy S. (Ed). RESPIRATION AND CIRCULATION.

Federation of American Societies for Experimental Biology, Bethesda, Maryland (1971).

- 5. Swan, H., A. W. Neldon, G. H. Hankes, Radio-Chloride (C1) as a continuous monitor of ECW in the dog. Ann Surg 174: 287-295 (1971).
- Tisavipat, A., S. Vibulsreth, Hwai-Ping Sheng, and R. A. Huggins. Total body water measured by desiccation and by tritiated water in adult rats. <u>J Appl Physiol</u> 37(5): 699-701 (1974).
- Cizek, L. J. Total water content of laboratory animals with special reference to volume of fluid within the lumen of the gastrointestinal tract. <u>Am J Physiol</u> 179: 104-110 (1954).
- Foy, J. M. and H. Schnieden. Estimation of total body water (virtual tritium space) in the rat, cat, rabbit, guinea pigs and man of the biological half-live of tritium in man. <u>J Physiol</u> 154: 169-176 (1960).
- Flexner, L. B., A. Gellhorn, and M. Mettell. Studies of rats of exchange of substances between blood and extravascular fluid I. The exhange of water in the guinea pig. J Biol Chem 144: 35-50 (1942).
- Pace, N., L. Kline, H. K. Schachman, and M. Harfenest. Studies on body composition IV. Use of radioactive hydrogen for measurement in vivo of total body water. J Biol Chem 168: 459-469 (1947).

 $\mathbf{7}$

- 11. Walker, W. D., F. J. Goodwin, and R. D. Cohen. Mean intracellular hydrogen ion activity in the whole body, liver, heart and skeletal muscle of the rat. <u>Clin</u> <u>Sci</u> 36: 409-417 (1969).
- 12. Schaefer, K. E., H. Niemoller, A. Messier, E. Heyder, and J. Spencer. Chronic CO₂ toxicity: species differences in physiological and histopathological effects. <u>NavSubMedRschLab Rpt 656 (1971)</u>.
- 13. Messier, A. A. and K. E. Schaefer. Species differences in CO₂ tritiation curves in acute and chronic hypercapnia. <u>NavSub</u> <u>MedRschLab Report</u> (1975).
- 14. Brown, E. B. and R. L. Clancy. In vivo and in vitro buffer curves. J Appl Physiol 29: 885-889 (1965).

Security Classification	CONTROL DATA	RED				
(Security classification of title, body of abstract and i	indexing annotation must	be enlered when the	e overall report is classified)			
ORIGINATING ACTIVITY (Corporate author)	ORIGINATING ACTIVITY (Corporate author)					
NAVAL SUBMARINE MEDICAL RESEARCH LABORATORY		25. GROUP	SIFIED			
REPORT TITLE						
BODY FLUID DISTRIBUTION IN ACULE H	YPERCAPNIA					
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)	<u></u>					
Interim report S. AUTHOR(S) (First name, middle initial, last name)						
R. D. MURRAY, LT MSC UNSR, F. T. A	BBOTT AND K. E.	SCHAEFER				
- REPORT DATE	78. TOTAL NO	D. OF PAGES	75. NO. OF REFS			
16 June 1975	8	3	14			
88. CONTRACT OR GRANT NO.	98. O RIGINA 7	OR'S REPORT NUM	18ER(S)			
b. PROJECT NO.		nort No 914				
MR041.01.01-0125.08	NSMRL REPORT NO. 814					
с.	9b. OTHER R this report	9b. OTHER REPORT NO(S) (Any other numbers that may be essigned this report)				
d.						
10. DISTRIBUTION STATEMENT			·····			
Approved for public release; distr	ibution unlimit	ed 🔍				
11. SUPPLEMENTARY NOTES	12. SPONSOR	NG MILITARY ACT				
11. SUPPLEMENTARY NOTES	12. SPONSOR Naval Su Box 900	bmarine Med	ical Research Laborat			
11. SUPPLEMENTARY NOTES	12. SPONSOR Naval Su Box 900, Groton,	bmarine Med Naval Subma Connecticut	ical Research Laborat arine Base New London 06340			
11. SUPPLEMENTARY NOTES 13. ABSTRACT	Naval Su Box 900, Groton,	bmarine Med Naval Subma Connecticut	ical Research Laborat arine Base New London 06340			
11. SUPPLEMENTARY NOTES 13. ABSTRACT Guinea Digs and rats were exp	12. SPONSOR Naval Su Box 900, Groton,	MG MILITARY ACT bmarine Med Naval Subma Connecticut 9 and 10.8%	ical Research Laborat arine Base New London 06340			
11. SUPPLEMENTARY NOTES 13. ABSTRACT Guinea pigs and rats were exp one hour. Measurements of total bu	Naval Su Box 900, Groton, osed to 1.9, 6. ody water (TBW)	Marine Med Naval Subma Connecticut 9 and 10.8% , extracella	ical Research Laborat arine Base New London 06340 CO2 for a period of alar fluid (ECF) and			
11. SUPPLEMENTARY NOTES 13. ABSTRACT Guinea pigs and rats were expo one hour. Measurements of total bo intracellular fluid (ICF) were made (36C1)	osed to 1.9, 6. ody water (TBW)	bmarine Med Naval Subma Connecticut 9 and 10.8% , extracella water and	CO2 for a period of radioactive chloride radioactive chloride			
11. SUPPLEMENTARY NOTES 13. ABSTRACT Guinea pigs and rats were exponents of total bo intracellular fluid (ICF) were made (³⁶ C1). Control values for TBW, E 61.7. 30.6 and 31.1 for guinea pige	osed to 1.9, 6. ody water (TBW) e using tritiated CF and ICF were s. These value	9 and 10.8% , extracellu water and 64.6, 28.5	CO2 for a period of alar fluid (ECF) and radioactive chloride and 36.1 for rats an			
11. SUPPLEMENTARY NOTES Guinea pigs and rats were exponent one hour. Measurements of total by intracellular fluid (ICF) were made (³⁶ Cl). Control values for TBW, E 61.7, 30.6 and 31.1 for guinea pigs under hypercapnia. These results	osed to 1.9, 6. ody water (TBW) e using tritiated CF and ICF were s. These value indicate that a	9 and 10.8% , extracella water and 64.6, 28.5 s did not cl 1though no r	CO2 for a period of alar fluid (ECF) and radioactive chloride and 36.1 for rats an ange significantly neasurable changes			
11. SUPPLEMENTARY NOTES Guinea pigs and rats were exp one hour. Measurements of total be intracellular fluid (ICF) were made (³⁶ Cl). Control values for TBW, E 61.7, 30.6 and 31.1 for guinea pigs under hypercapnia. These results occurred in body fluid distribtuio	osed to 1.9, 6. ody water (TBW) e using tritiated CF and ICF were s. These value indicate that a n under hyperca	9 and 10.8% , extracella water and 64.6, 28.5 s did not cl 1though no r pnia, the d	CO2 for a period of alar fluid (ECF) and radioactive chloride and 36.1 for rats an nange significantly neasurable changes ifferences in body			
13. ABSTRACT Guinea pigs and rats were exponent one hour. Measurements of total be intracellular fluid (ICF) were made (³⁶ Cl). Control values for TBW, E 61.7, 30.6 and 31.1 for guinea pigs under hypercapnia. These results occurred in body fluid distribution water distribution between guinea ences in response to hypercapnic s	osed to 1.9, 6. ody water (TBW) e using tritiated CF and ICF were s. These value indicate that a n under hyperca pigs and rats n	9 and 10.8% , extracella water and 64.6, 28.5 s did not cl lthough no r pnia, the di ay help exp	CO2 for a period of alar fluid (ECF) and radioactive chloride and 36.1 for rats an nange significantly neasurable changes ifferences in body lain species differ-			
Guinea pigs and rats were exponent one hour. Measurements of total brintracellular fluid (ICF) were made (³⁶ C1). Control values for TBW, E 61.7, 30.6 and 31.1 for guinea pigs under hypercapnia. These results occurred in body fluid distribution water distribution between guinea ences in response to hypercapnic s	I2. SPONSOR Naval Su Box 900, Groton, ody water (TBW) e using tritiated CF and ICF were s. These value indicate that a n under hyperca pigs and rats m tress.	9 and 10.8% , extracella water and 64.6, 28.5 s did not cl lthough no r pnia, the d ay help exp	CO2 for a period of Jar fluid (ECF) and radioactive chloride and 36.1 for rats an nange significantly neasurable changes ifferences in body lain species differ-			
11. SUPPLEMENTARY NOTES 13. ABSTRACT Guinea pigs and rats were exp one hour. Measurements of total be intracellular fluid (ICF) were made (³⁶ Cl). Control values for TBW, E 61.7, 30.6 and 31.1 for guinea pigs under hypercapnia. These results occurred in body fluid distribtuion water distribution between guinea ences in response to hypercapnic s	osed to 1.9, 6. ody water (TBW) e using tritiated CF and ICF were s. These value indicate that a n under hyperca pigs and rats m tress.	9 and 10.8% , extracellu water and 64.6, 28.5 s did not cl lthough no r pnia, the d ay help exp	CO2 for a period of alar fluid (ECF) and radioactive chloride and 36.1 for rats an ange significantly measurable changes ifferences in body lain species differ-			
Guinea pigs and rats were exponent one hour. Measurements of total bintracellular fluid (ICF) were made (³⁶ C1). Control values for TBW, E 61.7, 30.6 and 31.1 for guinea pigs under hypercapnia. These results occurred in body fluid distribution water distribution between guinea ences in response to hypercapnic s	I2. SPONSOR Naval Su Box 900, Groton, ody water (TBW) e using tritiated CF and ICF were s. These value indicate that a n under hyperca pigs and rats m tress.	9 and 10.8% , extracella water and 64.6, 28.5 s did not cl lthough no r pnia, the d ay help exp	CO2 for a period of alar fluid (ECF) and radioactive chloride and 36.1 for rats an nange significantly neasurable changes ifferences in body lain species differ-			
Guinea pigs and rats were exponent one hour. Measurements of total brintracellular fluid (ICF) were made (³⁶ C1). Control values for TBW, E 61.7, 30.6 and 31.1 for guinea pigs under hypercapnia. These results occurred in body fluid distribtuion water distribution between guinea ences in response to hypercapnic s	osed to 1.9, 6. ody water (TBW) e using tritiated CF and ICF were s. These value indicate that a n under hyperca pigs and rats m tress.	9 and 10.8% , extracella water and 64.6, 28.5 is did not cl 1though no r apnia, the d ay help exp	CO2 for a period of alar fluid (ECF) and radioactive chloride ange significantly neasurable changes ifferences in body lain species differ-			
Guinea pigs and rats were exponent of total brintracellular fluid (ICF) were made (³⁶ Cl). Control values for TBW, E 61.7, 30.6 and 31.1 for guinea pigs under hypercapnia. These results occurred in body fluid distribution water distribution between guinea ences in response to hypercapnic s	osed to 1.9, 6. ody water (TBW) e using tritiated CF and ICF were s. These value indicate that a n under hyperca pigs and rats m tress.	9 and 10.8% , extracella water and 64.6, 28.5 s did not cl lthough no r pnia, the di ay help exp	CO2 for a period of alar fluid (ECF) and radioactive chloride and 36.1 for rats an nange significantly neasurable changes ifferences in body lain species differ-			
11. SUPPLEMENTARY NOTES Guinea pigs and rats were exp one hour. Measurements of total b intracellular fluid (ICF) were mad (³⁶ C1). Control values for TBW, E 61.7, 30.6 and 31.1 for guinea pigs under hypercapnia. These results occurred in body fluid distribtuion water distribution between guinea ences in response to hypercapnic s	Iz. SPONSOR Naval Su Box 900, Groton, ody water (TBW) e using tritiated CF and ICF were s. These value indicate that a n under hyperca pigs and rats m tress.	9 and 10.8% , extracella water and 64.6, 28.5 is did not cl lthough no r apnia, the d ay help exp	CO2 for a period of alar fluid (ECF) and radioactive chloride and 36.1 for rats an nange significantly neasurable changes ifferences in body lain species differ-			
 II. SUPPLEMENTARY NOTES Guinea pigs and rats were exponents of total bintracellular fluid (ICF) were made (³⁶Cl). Control values for TBW, E 61.7, 30.6 and 31.1 for guinea pig: under hypercapnia. These results occurred in body fluid distribtuion water distribution between guinea ences in response to hypercapnic si 	osed to 1.9, 6. ody water (TBW) e using tritiated CF and ICF were s. These value indicate that a n under hyperca pigs and rats m tress.	9 and 10.8% , extracella water and 64.6, 28.5 s did not cl lthough no r pnia, the d ay help exp	CO2 for a period of alar fluid (ECF) and radioactive chloride and 36.1 for rats an nange significantly neasurable changes ifferences in body lain species differ-			
11. SUPPLEMENTARY NOTES Guinea pigs and rats were exponents of total bount measurements of total bountracellular fluid (ICF) were made (³⁶ C1). Control values for TBW, E 61.7, 30.6 and 31.1 for guinea pigs under hypercapnia. These results occurred in body fluid distribtuion water distribution between guinea ences in response to hypercapnic s	I2. SPONSOR Naval Su Box 900, Groton, ody water (TBW) e using tritiated CF and ICF were s. These value indicate that a n under hyperca pigs and rats m tress.	9 and 10.8% , extracella water and 64.6, 28.5 s did not cl 1though no r pnia, the d ay help exp	CO2 for a period of alar fluid (ECF) and radioactive chloride and 36.1 for rats an nange significantly neasurable changes ifferences in body lain species differ-			
11. SUPPLEMENTARY NOTES 13. ABSTRACT Guinea pigs and rats were exp one hour. Measurements of total b intracellular fluid (ICF) were mad (³⁶ Cl). Control values for TBW, E 61.7, 30.6 and 31.1 for guinea pig under hypercapnia. These results occurred in body fluid distribtuio water distribution between guinea ences in response to hypercapnic s	I2. SPONSOR Naval Su Box 900, Groton, e using tritiated CF and ICF were s. These value indicate that a n under hyperca pigs and rats m tress.	9 and 10.8% , extracellu water and 64.6, 28.5 s did not cl lthough no r pnia, the d ay help exp	CO2 for a period of alar fluid (ECF) and radioactive chloride and 36.1 for rats an ange significantly measurable changes ifferences in body lain species differ-			
11. SUPPLEMENTARY NOTES 13. ABSTRACT Guinea pigs and rats were exponents of total bour. Measurements of total bountracellular fluid (ICF) were made (³⁶ C1). Control values for TBW, E 61.7, 30.6 and 31.1 for guinea pigs under hypercapnia. These results occurred in body fluid distribtuio water distribution between guinea ences in response to hypercapnic s	osed to 1.9, 6. ody water (TBW) e using tritiated CF and ICF were s. These value indicate that a n under hyperca pigs and rats n tress.	9 and 10.8% , extracella water and 64.6, 28.5 s did not cl lthough no r pnia, the d ay help exp	CO2 for a period of alar fluid (ECF) and radioactive chloride and 36.1 for rats an ange significantly measurable changes ifferences in body lain species differ-			
11. SUPPLEMENTARY NOTES 13. ABSTRACT Guinea pigs and rats were exponents of total bointracellular fluid (ICF) were made (³⁶ C1). Control values for TBW, E 61.7, 30.6 and 31.1 for guinea pigs under hypercapnia. These results occurred in body fluid distribtuio water distribution between guinea ences in response to hypercapnic s DD FORM 1473 (PAGE 1)	I2. SPONSOR Naval Su Box 900, Groton, ody water (TBW) e using tritiated CF and ICF were s. These value indicate that a n under hyperca pigs and rats m tress.	9 and 10.8% , extracella water and 64.6, 28.5 s did not cl lthough no r apnia, the d ay help exp	CO2 for a period of alar fluid (ECF) and radioactive chloride and 36.1 for rats an ange significantly neasurable changes ifferences in body lain species differ-			

UNCLASSIFIED

14. KEY WORDS	LIN	LINK A				LINK C	
	ROLE	WΤ	ROLE	WT	ROLE	WΤ	
TOTAL BODY WATER					•		
EXTRACELLULAR SPACE							
INTRACELLULAR SPACE							
HYPERCAPNIA							
		2					
	~ 1						
	55			-	1		
				·			
				~			
5. ·							
DD FORM 1473 (BACK)	<u></u> 11	NCI ASS	IFIED				
PAGE 2)		Security	Classifie	ation			

. . .

. .