TR YT e o W

D) e el Sl i - e - - T TR ST s e T T TR

AD-AQ19 706
SEMANOL (73) INTERPRETER DOCUMENTATION
Paul T. Berning

TRW Systems Group

Prepared for:

Rome Air Development Center

30 June 1975

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

e T T ey -

TR T T T ST e R e

¢
!

4
R
4

e — —— (o — —— o I — Py 35 1

e —————— et e 2t 0 = et g5

R A S

1
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

A *ﬂ'ﬂ"wli?“

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
Y. REPORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
LRADC-TRr75—211, Vol IV (of four)
4. TITLE (and Subtitle) 5. TYWE OF REPORT & PERICD COVERED

Final Techaical Report

SEMANOL (73) INTERPRETER DOCUMENTATION March 1974 - March 1975

| Rl 4

&. PERFORMING ORG. REPORT NUNBER

7. AUTKOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Paul T. Berning F30602-74-C-0067

10. PROGRAM ELEMENT, PRQJECT, TASK

9. PERFORMING ORGANIZATION NAME AND ADDRESS
AREA & WORK UNIT NUMBERS

TRW Systems Group

One Space Park 63728F

Redondo Beach CA 90278 55500804

1t CONTROLLING OFFICE NAME AND ADDRESS 12. REPQRT DATE
30 June 1975

Rome Air Development Center (I818) 13. NUMBER OF PAGES

Griffiss AFB NY 13441 S

4. MONITORING AGENCY NAME & ADDRESS(I! different from Controlling Oltice) 15. SECURITY CL ASS. (oi thia report)

UNCLASSIFIED

Saume

154, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

NJA

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Saxe

0. SUPPLEMENTARY NOTES
RADC Project Engineer:
Captain John M. Ives/ISIS

19. KEY WGRDS (Continue on reverse side if necessary end identify by block numbaer)

Metalanguage, JOVIAL, JOVIAL (J73), SEMANOL, SEMANOL (73), compiler, language
standardization, interpreter, language definition, language control, syntax,

semantics, language grammar, SIL, CMS-2, Command and Control language, Parse

Tree, software reliability

20. ABSTRACT (Continue on reverse aide I ne~essary and identily by block number)
The formal definition of the programming language JOVIAL (J73) was produced by
the metalanguage, SEMANOL. The process of definition resulted in the
metalanguage, SEMANOL. The process of definition resulted in the successful
identification of many ambiguities and conflicts, in the JOVIAL language which
were reported to the language definition committee. SEMANOL (73) is under-
standable by laymen and processable by the SEMANOL interpreter computer program.
The interpreter program was completed and debugged during the contract period.
(Cont'd)

DD . 2i%: 1473 EoiTioN OF 1 NOV €515 OBSOLETE UNCLASSIFIED

I SECURITY CLASSIFICATION OF THIS PAGE (When Dsta Entered)
[]

PP,

R

[P

\R:CLASSIFIED ;
SECURTY CLASSIFICATION OF THIS PAGE(When Data Entored))

JOVIAL (J73), as processed by the SEMANOL interpreter, has been tested to the
extent that (1) the JOVIAL (J73) level one subset grammar is well debugged,
(2) the formal definition is syntacticaily correct and (3) the simplcr
semantics are tested to yield correct answers. The results of this effort
coupled with previous and concurrent efforts show SEMANOL as a highly valuable
standardization tool for failure use in DOD launguage controls.

) . . - e
s b il o Al ... eSO St bt T e, i kG, s e Sl JMM ik

S it s, SO R

Nindaaa o

Sl B

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Dets Entered)

RADC-TR-78-211, Yol IV (of four
Final Technical Repott
30 June 1978

SEMANOL (73) INTERPRETER DOCUMENTATION

TRN Systeas Grouwp

paeer{
- a
< Approved for public relesse;
distribution unlimited.
|
|
|
l
| Rome Air Development Center
Air Yorce Systems Command
Griffies Air Yorce Base, New York 13441

]

e aie

Il

|
|

R 4N
£

S i P

113

e]

o

t
¥
4
+

SIS o
T e

Tails report hes been reviewed by the RADC Informetiom Uifice (Ui) and
is reisasable to the Nationgl Technical Informetion Sarvice (NTIS). At WTIS
it will be releasable to the genersl public including foreign nations.

This report has been reviewed and is approved for publicationm.

APPROVED

- JOHN M. IVES, Capt, USAF
Project Lngineer

e Ol D, K

ROBERT D. KRUTZ, Col, USAF
Chief, Tnformation Sciences Division

FOR THE comnnxn;).z /44/3 CZ

JOHN P. HUSS
Acting Chief, Plans Office

Do not return this copy. Retain or da2stroy.

e et L AR R era e e

R WY e Te WY

S d Sl iy kG, ¥t

S laul . _

———

EVALUATION

F30602-74-(C-0067, SEMANOL {(73)

The formal definition of the programming language JOVIAL (J73)
was produced by the metalanguage, SEMANOL (73). The process

of definition resulted in the identification of many ambiguities
and conflicts in the J73 language under development. At the
same time SEMANOL (73) is understandable by laymen and likewise
processable by the SEMANOL interpreter computer program, making
it highly amenable to locating and debugging potential compiler
errors or uncertainties. This value is of enough significance
that SEMANOL (73) will be implemented as an integral key require-
ment tool for use in the forthcoming USAF Higher Order Language
: ' Contrcl Facility.

,,S;2£?<:)"'c=*“ﬂva'

JQﬂJ M. IVES, Capt, USAF
"" ~“Project Engineer
Software Sciences Section

T B YT T R U e —— W s o

Yoy
N 3 L NP, R TORMIATT ST TN TR QD R LR s AR S g

o %

é -

e bt b i

iii

rw‘wﬂw‘ PRETIPAROSI Tp e T T TT ey

e Y SUUIDVETR NN IMNCAE S AVURRIE U - [P P B . Seom raauceok j

e Ta R e

77 RA PRI AT T

|

PREFACE

This document has been prepared for Rome Air Development
Center in accord with CDRL Sequence Number AOOY4 and
paragraph 4.1.5 of the Statement of Work of contract number
F30602-74-C~-0067. It is the program documentation of the
SEMANOL(73) Interpreter. This program documentation
describes the internal organization of the SEMANOL(73)
Interpreter and provides instructions on the use of the
program. Note that the source program listings themselves
contain detailed documentation about internal program
operation in the form of comments. These comments
constitute an extension to the material in this report.

iv

Program Name. . . . « .
Abstract.
Machine Definition. . .
Program Description . .
4.1 The Translator. . .
4.2 The Interpreter . .
4,3 Tnames. . . + . . .
Logic Diagrams.
Inputs. ¢« ¢ ¢ ¢ ¢« « o &
6.1 Translator Input. .
6.2 Interpreter Input .
6.3 Tnames Input. . . .
Qutput. . ¢« + ¢ ¢ « .« &
7.1 Translator Qutputs.
7.2 Interpreter Outputs
7.3 Tnames Qutput . . .
Program Setup« .

Operator Instructions .

CONTENTS

. . - L]
. - - -
. . [.
. [] [[]
. . - -

18
18
18
18
18
19
20
20
20
20
21

22

The name of this total computer program is the “SEMANOL(73)
Interpreter®. The SEMANOL(73) Interpreter is then made up
of two major subprograms called the “Translator® and the
“Interpreter“. There 1s also a much smaller auxiliary
program called “Tnames%,

2. Abstract

The SEMANOL(73) Interpreter takes a SEMANOL(73)
meta-language program deacribing a computer programming

y language and uses that meta-language description to control
its interpretive execution of a program given to it in the
programming language described. It is thus a generalized
interpreter of higher order language (or machine language if
desired) which is driven by a SEMANOL(73) description.

3. Machine Definition

| The SEMANOL(73) Interpreter runs on a HIS-6180 computer

i under control of the Multics operating system. Its core

? memory requirement depends mainly upon the size of the

' SEMANCL(73) meta-language program being used. The program
is normally operated in a timesharing mode and thus requires
that ile space be available on the permanent file disk
unit., The program does not use magnetic tape, card devices,
nor the on-line printer.

4. Erogram pescription

- | The SEMANOL(73) Interpreter has been implemented through the
L } use of two major subprograms as observed earlier. The first
subprogram, the Translator, reads a SEMANCL(73) program
describing a programming language and converts it to a form
which is readily usable by fhe next subprogram, the

- . Interpreter. The Interpreter takes the Translator ocutput

¢ and uses it to control the execution of programs given to

3 the Interpreter. ¥hile the SEMANOL(73) Interpreter is

- itself programming language independent, to be more specific
in the discussion of this report JOVIAL(J73) is always used
as the language described by a SEMANOL(73) program.

The relationship of the twe subprograms as described is
shown in Logic Diagram 1. The SIL file used for 1
comnmunication between the subprograms is described with the
Interpreter. It is an alphameric representation of a list
of operands and cperators produced by processing the
SEMANOL{73) program. Note that these subprograms were
written in Fortran apart from some PL/1 routines which were

1
i

an o mantad 4wk

N
E

— s o 4 ¥ — e g e e EREE S TrrTmE s momem R r R L s, 0 Torm mE e moorrAeRem T R e o amemrRr ooy, w1 o 7 e oRememe o rAem R T oy

o

!

i

i

!

|
SEMANOL(73) JOVIAL(J73) Data
Program Program Input

I

SIL
Translator File Interpreter

JQVIAL(J73)
Program
Output

i
i
:
!

Logic Diagram 1. SEMANOL(73) Interpreter

b ot T et i Nt) il e

W T e

I

i

M e e L ' = g . L v e e - neuhiien et

4.1

DL T TSRy y e e— TR e S —

=== - -

needed for special functions (e.g.. doing half word load and
stores and double precision integer arithmetic). Each
subprogram is described separately in what follows, and
indeed they are rather independent due to the minimum
interface resulting from the use of the SIL file. Please
note that the program listings are richly annotated and
contain the full details of program implementation,

The auxiliary program Tnames is optionally run between the
Translator and the Interpreter. It is used to translate
numerically coded names generated by the Translator back to
the corresponding symbolic names firom the original source
SEMANOL(73) program. This is useful when using the
Interpreter trace feature; the trace output will then use
the same symbolic def names that the source code contains,

Ihe Translator

The SEMANOL(73) Translator translates a SEMANOL(73) language
source program into a Semanol Interpreter Language (SIL)
object program. The Translator uses the recursive-descent
method to analyze the syntax of the source progranm.
Recursive descent is a tcp-down, predictive recognition
process employing one recursive procedure or subroutine for
each of the rules of source language syntax. This method
was chosen because it allows the construction of a modular
translator progranm; changes or additions to the source
language syntax are easily accommodated since there is
little interdependence among the recognition subroutines.

The Translator i3 divided into two functional parts: lexical
analysis and syntactic analysis. 1In addition to the two
main units, there is a driver group to control proeranm
execution, a blockdata group for convenient definition of
constants, a utility group to handle initialization and
¢leanup and to provide minor functions such as
string-to-integer conversion, and an output group to handle
SIL code generation (see Logic Diagram 2).

The driver group consists of a main program and four
sub-drivers which correspond to the four divisions of a
SEMANOL(73) source program. The sub-drivers recognize their
particular heading statement, then instruct the syntax
analyzer to begin looking for the constructions expected in
that section. Control returns when the syntax analyzer has
processed all the statements in the section.

The syntax analyzer consists of recursive subroutines,
corresponding to each non-terminal syntax rule of the
SEMANOL(73) language. Since the source language of the
translator, Fortran, does not have facilities for recursive
programming, inter-subroutine communication is handled by a
special subroutine, EXEC. Each recursive subroutine has

M it Bl

e i s

SOURCE LANGUAGE FILE SIL OUTPUT FILE

filelS file08

SIL OUTPUT

LEXICAL ANALYZER GROUP

SYNTAX ANALYZER

EXEC

DRIVER GROUP

e e e b i i

Loglic Diagram 2. The Translator Program

A A~

three arguments in the calling list:
SUBRO"Z.NE RECUR(FCAL,BCAL,ARG).

FCAL is a forward call code, indicating the next subroutine
to be called; BCAL is a return code, composed of the
subroutine number and an internal jump number; ARG is a code
indicating success or failure of the callea subroutine,

One subroutine calls another as shown in the follouwing code
example:

*CALL STREXP...
FCAL=1 (CALL CODE FOR SUBROUTINE STREXP)
BCAL=342 (IDSNTIFIER FOR THIS SUBROUTINE,34, AND AN INTERNAL
JUMP CODE,?2)
RETURN

300 CONTINUE

The RETURN statement transfers coantrol to EXEC; EXEC stacks
the BCAL code and executes a CALL TEXP(FCAL,BCAL,ARG). When
there are no mrore forward call requests, (FCAL=0), EXEC
unstacks the previous return code and executes a call to
that subroutine. The resulting action is illustrated by the
following code, which is the first executable code in each
recursive subroutine:

]

* Recursive Entry Routine...

IF (FCAL.EQ.34) GO TO 100

If (FCAL.NE.O) TO TO 900 (ERROR CUNDITION)

J = BCAL-10%(BCAL/10)

GO TO (200,300,400),J
If FCAL=34, this is a normal forward call, and a jump is
taken to the beginning of the code (statement 100); if
FCAL=0, this is a return, and the return point is indicated

by the units position of BCAL. BCAL was 342 in the previous
code example, so J=2? and an internal jump to statement 300

St an ik i o et . .

ik,

S N ——— - r— = — TSI TR SR U T T A——— - T TF L T — = ——— L X

is taken-~the desired return point in the previous example.

Recursive descent requires only one global variable--the
next symbol element from the source language statement being
parsed. As the syntax analyzer proceeds through a
statement, it must request the lexical analyzer to place the
next symbol into the global variable NEXTSYM; this is
accomplished by executing a CALL NEXT statement. Subroutine
NEXT is the link between the syntactic and the lexical
analyzers,

As the source language statements and statement elements are
recognized, the corresponding SIL translation is generated
by calls to the SIL output group. These calls are made by
the recursive subroutine that recognized a particular
element.

The lexical analyzer scans the source language statements
aud breaks each statement into its smallest recognizable
elements. These elements are called tokens or symbols. The
lexical analyzer recognizes and types the tokens into the
five categories possible:

Integers

Names

Keywords

Delimiters (+, - ete.)
Strings.

One source language statement is scanned at a time; the
tokens are typed, name-and string-table entries made, then
the tokens are placed in a stack. These tokens are made
available to the syntax analyzer one at a time, as requested
by calls to the interface subroutine NEXT; when the token is
exhausted, another source statement is processed by the
lexical analyzer.

The output group generates SIL-language output from
calling-argument codes paassed from the various syntactic
analysis subroutines. The SIL output is buffered into
72-character lines, then output on Fortran unit UNITSIL
(defined in the blockdata section). Since SIL grammatical
order is not the same as in SEMANOL(73), function codes are
available which allow the calling-subprogram to cause SIL
output tc be stacked on different levels, then dumped to
UNITSIL.

The blockdata group consists of four blockdata subprograms.
BKDATA1 is a set of three tables used for keyword and
delimiter recognition. BKDATAZ relates individual ASCII
character codes to type codes, grouping the characters as
‘lowercase’, ‘digit’, “uppercase’, and so on. BKDATA3
defines constants, such as Fortran unit assignments:
UNITIN, UNITOUT, UNITERR, UNITSIL, UNITSCR, UNITSYM, and

-

T I SRy 1

e . L ieadcb

cls . aR b

T g3

b 2 AN Tl R R S
T T B P 5 Bt gy

L« < i AT

TN S Wi, = =2 e 2
o w

UNITNAM; these are, respectively, the SEMANOL(73) source
file, filei15; the output listing file, file16; the error
message file, filet6; the SIL output file, file08; a scratch
file, file39; the binary symbol table dump file, file37; and
the symbolic symbol table dump file, fileX0. BKDATAYU holds
SIL tables. BKDATA1 and BKDATAY are generated by the

programs KTABLD and SILBILD from lists of keywords and SIL
tokens.

Ihe Interpreter

As soon as the Interpreter is loaded, all files are rewound
and the INIT subroutine is called. The purpose of INIT is
to initialize all of the variables and tables used by the
Interpreter. All of these variables and tables are fully
described in the internal documentation for the BLKDATA
subroutine. Following are described these structures in the
order in which they are initialized:

1. The descriptor table is zeroed except for the ITL
field of each entry. The free entry list is
constructed using this field as a pointer,

2. The string array, ICHAR, is zeroed.
3. The main stack is zeroed.
4, The symbol table bucket array, IBUCK, is zeroed.

5. The type table arrays ITTN, IFORM, JCVLT, JHD,
JHDA, JTL are initialized and sorted.

6. Simple global variables are set to their initial
values.

7. The variables SMNAM, SMATT, SILY¥G, PARSE, SYNTX,
IINT, FPNO, STR, STRNM, STNDA, STNDB, SEQ, FCALL,
PCALL, SAVE, PTR, PRS, SEQU, LOG, FIX, and UND are
initialized to contain their associated type
numbers,

8. The variables 0P, VAR, SYN, VAL, SIL, and PROC are
initialized to contain their associated attribute
type numbers.

9. The null sequence, #UNDEFINED, #TRUE, #FALSE, and
the null string are pushed onto the stack.

10. Other initial symbol table values are read in from
file09.

11, Finally, INIT returns.

!
g
i
?
3

e dhmate ae . s

SEENIRIS C/% NN A VI AT A . . PR D - . e j

LTAD TTRE T

R G A A T e

ey s

While initialization is going on, many of the general
utility routines are called. A list of some of these
utility routines and what they do follows:

1. The Pl/1 functicns ITYPE, IHDA, IHD, ITL, ICT, and
IPTR are callad with a descriptor table or stack
index and return the value of the named field at
that index.

2. The PL/1 subroutines STYPE, SHDA, SHD, STL., SCT, and
SPTR do the inverse; they store a value into the
associated field of the descriptor table or stack.

3. LITSTR is used to create a literal string and push
its descrintor onto the stack.

4, LKPTP looks up a type name in the type table.
5. LKPN looks up a name in the symbol table.
6. PUSH pushes a value onto the main stack.
7. JSILSM reads a symbol table entry from a file.

These are just a few of the utilities used by the
initialization, but they give an idea of the kinds of
operations required.

When initialization is complete, the SIL program is read
from file08. The JSILSM function is called once for each
SIL statement to read. JSILSM must parse each SIL statement
and convert i1t to internal 1list form,

INTERP is the main Interpreter routine. It calls the
operator subroutines as required by the SIL program. Since
the flow of control is directed by INTERP, which is in turn
directed by the SIL program, an understanding of SIL is
essential to an understanding of the Interpreter.

The external syntax of SIL is extremely simple (See Table
1). Internally, the SIL program is stored in a list form;
but this fact is independent of its meaning. It will be
assumed that the INTERP subroutine works directly on the
string format as this assumption elucidates the following
discussion.

A SIL program consists of two kinds of statements, syntax
statements and routines. An example of a syntax statement
is

PROGRAM/SYN=(SCAT/0P STMT/SYN (KSTAR/OP STMT/SYHN KEND/OP));

An example of a routine is

s i M

1
1

= T e

-, .

F PRINTA/SIL=(°A" QIODAT/OP);

The diffTerence between the two is that a syntax statement
always has statement-attribute °‘SYN" and corresponds to a
SEMANOL(73) syntactic #DF. The syntax statements are not

: execnted directly by INTERP, but instead are used by the

‘ parsing subroutine JPARSE. To contrast this, routines have
statement-attribute "SIL ° or "PROC’°. They correspond to
SEMANOL(72) memaniic #DF°s and SEMANOL(73) commands. They
ar2 read directly by INTERP which calls the operator
gubrcutines to execute them,

T TRATTTEeE e

The syntax statements will be discussed with the parser.
Routines can be divided into two types as identified by
their statement-attribute. Corresponding to SEMANOL(73)
semantic #DF s are routines with statement-attribute °“SIL”.
Correspondirg tc the SEMANOL(73) program in the
#CONTROL-COMMANDS section is the routine with
statemeut-attribute "PROC’. The subroutine INTERP treats
all of these routines the same once execution begins. The
difference is that they contain different varieties of SIL
code eorresponding to different types of SEMANOL(73)
statrements.,

TITVERETEE, T L, ey

AT R T e

1the oclements within a SIL statement list are normally
processed from left to right. In fact, witain a list, the
element string is like a reverse Polish string of operators
and operands. Operands and results of operations are kept
on a stack. The actions taken when each kind of element is
encountered are summarized below:

t. If a (sub) list is encountered, the Interpreter
saves (cn the stack) its current positicn and begins
processing the elements of the sub-list,

2. If a <name><’/ ><statement-attribute> or <name><’'/™>
{value-attribute> is encountered, a pointer to the
symbo) table entry for the given element is pushed
onto the stack. Note that each

1 <name><’/ ><attribute> has its own symbol table

$ enury.

: 3. If a constant is encountered, its value is pushed
‘ ; onto the stack.

]
]
H
i

4, If a <name><’/ ><operator-attribute> is encountered,
the operator with the given name 1is executed.

- 5. If the end of a (sub) list is encountered, the ’
Interpreter continues execution at the element after
the last one saved as in step 1.

Sie etadd a0t

At this point, consider case 1 above, The INTERP subroutine
handles each operator by cither calling a subroutine whose

r?”"—“r?t‘m‘—"m"‘fr:\-w.,.-._, B
¥
]

i

1

E
i

ik,
Tt At et e e e o eneen T R . RECENEY WIS . j

the stack.

used are:

bits

5. SEQ
6. STR
: 7. FIX
f 8. LOG

recursion.

given that A/VAR had a value of 'ABC’.

name is the same as the operator subroutine name or by
Jumping to the appropriate code in its own body. The
operators which require operands take them from the top of

They often replace their operands with a result.

-

of another list.

symhol table entry,

1. UND ~ #UNDEFINED

3. IINT - An integer

4. PRS - A parse tree

A firite sequence
A string

A floating point

#TRUE or #FALSE.

The stack contains pointers to
also contains special entries
sublist calls, and for saving old values of parameters in

...PCALL,1,2, "ABC”

number,

The goperands for functionzl operators are descriptors for,
or pointers to, the various SIL data types. The data types

2. FPNO - A double floating point number, high order

low order bits

symbol table entries and it
marking function calls,

Consider the following (sub) list:

(1 2 A/VAR CVS/0P STLFT/OP STRIT/OP A/VAR ASVAR/OP)

Suppose the Interpreter encountered this list as an element
It would first mark its place in the other
list by pushing a PCALL node on the stack and then begin
this list by pushing the integers 1 and then 2 onto the
stack. When it encountered A/VAR it would push a pointer to
the symbol table entry for A/VAR onto the stack. But then
CVS/0P (convert to string operator) would go to the A/VAR
get the vaiue stored there, convert it
to a string, and push the string descriptor onto the stack
in place of the pointer to A/VAR.
right) would now contain

The top of the stack (at

The Interpreter

would then call the STLFT subroutine which would replace 2
and “ABC’ with ‘AB°, implementing the SEMANOL(73) #LEFT 2
#CHARACTERS~0OF A. Next, the STRIT subroutine would be
called to replace 1 and "AB° with 'B’, implementing the

10

Nuichitretom s L. oL

]
]
|

FUROT O PSP S PTRP TR YN ¥ ErY -

PRI

Rl it s

7 AR s
oo L4

—em e e alt . - .

SEMANOL(73) #RIGHT 1 #CHARACTERS-OF (#LEFT 2 #CHARACTERS-OF
A). The top of the stack would now contain

...PCALL, "B’

Next, another pointer to the A/VAR symbol table entry would
be pushed on the stack and the ASVAR subroutine would be
called to store ‘B’ at the A/VAR symbol table entry
location., ASVAR deletes its arguments without leaving
anything on the stack, so there would now be nothing above
the PCALL node on the stack. Finally, the right parenthesis
(end of sub-1ist) would be encountered and the PCALL node
would be removed from the stack. Control would return to
the previous list,

Not all operators pass control to the next sublist element
in the normal way. The operators which start with K (e.g.,
KTRUE/OP, KFALSE/OP) can either succeed or fail. If one of
these operators succeeds, control proceeds as usual. But if
one fails, a premature end to the sublist takes place. It
is as if the sublist end had been encountered and control
returns to the calling list. An example of how th.s feature
is used is as follows:

((B/VAR CVS/0P ‘A" PEQW/OP KTRUE/OP MERR/OP) MSTOP/OP)

Suppose control has come to the B/VAR element. A pointer to
the B/VAR symbol table entry 1is pushed onto the stack. The
CVS subroutine converts this pointer to the string value of
the variable B. °A° is then pushed onto the stack. Now the
PEQW subroutine compares the top two stack entries (assuming
they are strings). If they are identical it replaces them
with #TRUZ and if not it replaces them with #FALSE. (This
implements the SEMANOL(72) argt #EQW arg2.) Now, the KTRUE
function is called. If the top stack entry is #TRUE it
succeeds and control next goes to the MERR subroutine.
Otherwise, KTRUE fails and control goes to the MSTOP
subroutine,

A number of other operators can interrupt normal left to
right processsing within a sublist. They include the
following:

CALL/OP - CALL is used to implement a SEMANOL(73) #DF
call. When it is encountered in a routine
list, the top of the stack contains
(starting at top) a pointer to the symbol
table entry containing the routine for the
#DF to be called, an integer whose value is
the number of arguments being passed to the
#DF, and finally, the argument values
themselves.

RET/0P - RET implements a SEMANOL(73) non-procedural

1

1
k]
o)

;

e d AN L e b

D At e et e A A Ml ikl et el

A

#DF return. When it is encountered,
control returns to the point at which the
last CALL/OP was executed. The value
returned is the one stored at dname/VAR
where dname is the name of the #DF which is
returning.

LOOP /0P = LOOP normally occurs at the end of a
sublist., It causes control to resume at
the beginning of that sublist. As its name
implies, it is used to implement loops.

ENDIF/OP - ENDIF also normally occurs at the end of a
sublist. It is somewhat like a normal
right parenthesis at the end of a sublist
except that control returns up 2 sublist
levels instead of one. This is used to
implement #DF s with cases,

Now, an example of a SEMANOL(73) semantic #DF is given,
showing how it is represented as an SIL statement, and then
following INTERP through its interpretation. This will
illustrate the #DF calling mechanism of the Interpreter,
The SEMANOL(73) #DF follows:

palaln- B Jerat e

Gaaid e mils
e

#DF LONGER(STRINGA ,STRINGB)

=> STRINGA #IF #LENGTH(STRINGA) >= #LENGTH(STRINGB);
=> STRINGB #OTHERWISE #.

This #DF returns the longer of its two string argumentis. It
transliates Into the SIL statement

LONGER/SIL=(2 IPARAM/OP LONGER/VAR LOCAL/OP

STRINGA/VAR PARAM/0OP STRINGB/VAR PARAM/OP FCALL1/0P

((STRINGA/VAR CVS/0P ISLEN/OP? STRINCB/VAR CVS/OP ISLEN/OQP

PLT/OP LNOT/OP KTRUE/OP STRINGA/VAR LONGER/VAR ASVAR/OP ENDIF/OP)
(STRINGB/VAR LONGER/VAR ASVAR/QP ENDIF/OP))

RET/0P);

Suppose for the illustration that the arguments are
STRINGA=‘AB° and STRINGB= ‘ABC’ when the #DF is called. The
Interpreter finds itself at the 2 in the above code. The
first two lines are similar to those that head the 35IL code
for any SIL #DF. They indicate to the Interpreter the
number and names of the parameters and tell it to save on
the stack the o0ld values of these and the variable with the
same name as the #DF. They also mark the stack sou the
Interpreter will return correctly. The next twce lines of
code indicate that the Interpreter must calculate and
compare the lengths of the two strings. Since STRINGA is
shorter, the KTRUE/QOP on the second of the two lines will

:

R s it St

1 12

. PRRNTRUS ISP ST SRS WRPUSINCIY RPN .

3
i

P
E
,
:
3

o .-

Lt B G

-

3

]

PIw—TT Y
p A

fail., Control will skip over the rest of the sublist to the
line starting with “(STRINGB/VAR’. This line assigns
STRINGB (the correct result) to the variable with the same
name 25 the #DF because that is the way #DF values are
returrned. The ENDIF/0OP then skips the Interpreter out to
the RET/0P which causes a return to the poirt which called
the whole #DF,

The following SIL code calls the parser to parse the string
at S/VAR using as root production the syntax #DF with
left-hand-side PRODUCTION:

S/VAR CVS/0P PRODUCTION/SYN STPRS/OP

The context-free grammar used by the parser is written using
SEMANOL(73) syntactic #DF’'s. It is translated into SIL
syntax statements as previously stated. One SIL syntax
statement corresponds to each SEMANOL(73) syntactic #DF.
Note that the set of legal SIL syntax-statements is a subset
of the set of all SIL statements (See Table 2). The parser
uses the Jay Earley parsing algorithm, modified for
SEMANOL(73), to compute a parse tree. The algorithm is
documented in the listing and in several papers by Earley,
so is not described here.

This concludes the discussion ¢f INTERP which, indeed,
passes control directly or indirectly to almost every other
Interpreter subroutine at some time or other. The only
thing that has not yet been mentioned is how INTERP halts.
This can happen in one of two ways:

1. INTERP encounters MSTOP/0P in the SIL program
control stream.

2. One of the operator subroutines detects an error of
some kind, either in the JOVIAL(J73) program, the
SIL program, or the data. In this case an
appropriate error message is printed on the output
file.

When either of these things happens, the Interpreter either
halts completely or it re-~initializes itself to execute
another SEMANOL(73) program (if one exists).

A simplified representation of the Interpreter is given in
Logic Diagram 3.

13

R Rle L D ORI v

Vet K

- eemrnm

FRPTEPOITTI Ty e 5 T e s e JM

B
= SRS BRSNS TT R i T A O, I Sy e ¢ e at b = s e Ao pes 4 mew o . . . 5 A - o

19791d123u7 93yy ¢ wealdeyg o¥do1

f - 3
Foooo

¥

)

. !
,, 1 @aa] 9simg —luzog gwvasyng
gLr 118

e

14

Y

wexdoxg wealoxg @Wiog Teul’aJUY
€Ll e———1 ¢/ 98a9g 03 118)

Jadrajuy pue peay ajBTBUBIL

anduy wexBoxg
w3 eLr !

R

e bt ik g ek da s et TRETw W U

L WUTE S P S P SO -~ P SRR ol 3

Table 1. SIL _Syntax

oo bt A
)

#DF statement => gstatement-name><'/'><statement-attr1bute><#GAP>
<= ><#GAP>C1ist><#GAP>< ; > #.

#DF statement-name => name #U ["#PRCGC’] #.

.

#DF statement-attribute => [SYN", “SIL°, °‘PROC’] #.

#DF list => < ('><#GAP><element><3<<#GAP><elementd>>>
<#GAP>C) "> #.

#DF name => < #ALPHABET > .
<H<<H#ASCII> #S- [

A P> 2N N

#DF element => list
=> <name>< '/ ><statement-attribute>
=> <name><’/’><operator-attribute>
=> <name><’/ ><value-attribute>
=> constant #.

#DF operator-attribute => [“0P"] #.

#DF value-attribute => [“VAL®, °“VAR"] #.

#DF constant => <any legal SEMANOL(73) string constant>
=> <"#B°><any legal SEMANOL(73) bit-string constant>
=> <'#R°><any legal SEMANOL(73) floating-constant>
=> < #1°><any legal SEMANOL(73) integer-constant>
=> < #TRUE ">
=> <'#FALSE">
=> < #UNDEFINED ">
=> < #NULLSQ™>
=> <#DIGIT><E<#DIGIT>> #.

SN R R TIRIIRN A TR PRI S I R TR M R

-

Jer ety S Th WL
SRR
i

15

R e i e S li

T E AN

#DF

#DF
#DF
#DF

#DF

#DF

#DF

#DF

#DF

#DF

#DF

#DF

#DF

#DF

#DF

Table 2. SIL Svntax for Syntactic Statements

syntax-statement => <statement-name> <°/’><syntax-
statement-attribute><#GAP> < = "><#GAP><syntax-list>

<#GAP>< ;"> #.
statement-name => name #.
syntax-statement-attribute => ["SYN"] #.

syntax-list => case
=> Scat #c

name =><#ALPHABET>_ ...
<% <<#ASCII> #5- [s LTI .

case => < (°> <#GAP> < 'CASE/OP > <#GAP>
<31< <cat> <#GAP>>> ') > #.

scat => <"("> <#GAP><'SCAT/OP "><#GAP>
<%1< <prim> <#GAP>>> <°)"> ¢,

cat => < (>CK#GAP><EIKLKprim><#GAP>>><) > #.

prim => set

=> union

=> setmin

=> kstar

=> kstarl

s> scanop

=> nterm

=> strlit #a

set => < ("><#GAP>< SET/OP "><#GAP> .
<$1<<strlit><#GAP><"SETEND/OP "><#GAP>>><) "> #,

union => < (“><#GAP>< UNION/OP ‘> <#GAP>
<Ei<<alt><#GAP>O>< "> ¢,

alt => < (><H#GAP><EI1<Lprim> <#GAP>>>
< UNEND/OP “><#GAP><") > &,

setmin => <"(><#GAP>< SETMIN/CUP "><#GAP>)
<%1<<prim><#GAP>>>< SMEND/QP '><#GAP>< SMENDA/OP ">
<#GAP><E1<<SErlit><#GAP>>> <7) "> #.

kstar => <"(“><#GAP><KSTAR/OP *><#GAP>
<%1<<prim><#GAP>>><KEND/OP "><#GAP>< ") "> #,

kstar1 => #<°(“><#GAP>< "KSTAR1/OP “><#GAP>
<%1<<prim>#GAP>>>< "KEND/OP ‘><#GAP>< ") >#.

16

TN R NI SO T T W L e teand Rt L A

!
i

e Do i o i kM, et Bt TN et e . Y

e

R S T P N AT T T YT TR ST T RN £ R s TR TR RhanET = R e

3
f #DF scanop => [‘DIGIT/QP’, SPACE/QP", ALPHA/OP",
: "ASCII/OP’, ‘GAP/OP”, “NIL/OP”, CAP/OP", 'DNUM/OP’,
; LCASE/UP ", 'NATNO/OP"] #.
: #DF nterm => <name>< /SYN'> #.
F
: #DF strlit => any SEMANOL(73) string literal
F
E
1 i
{
3 i
1 a
{

4.3 Inames

After initializing itself, Tnames reads file20, a symbolic
dump of the Translator symbol table, into its own internal
: table. It then reads lines one at a time from file21, the
3 Translator SIL file. A line is skipped if it is blank and
1 Tnames goes to the next line., If the line is not blank,
Tnames searches it for Translator names of the form NDDDD
(where D is a digit). Each name found is looked up in the
Tnames internal table and the associated Semanol source name
is substituted for the Translator name. As each line is
completed, it is written to file22, and then Tnames goes to
the n2xt line. Tnames STOPs when all of file2! has been
read.

b bt sl W"‘m\‘

AT

E 5. Logic Diagrams

The Logic Diagrams were given earlier. There is an overall
logic diagram and then one for each of the two main programs
which constitute the Semanol Interpreter,

6. lpputs

Program inputs are discussed separately for the programs.

6.1 Iranslator Input

There is only one input file to the translator and that is
Fortran filel15. This is an ASCII file which contains the
SEMANOL(73) source language program.

6.2 Interpreter Input

Three input files, fileQ07, file08, and file09 are required
to run the Interpreter. They are ASCII files like all other
Multics text files.

file09 contair.s data used to initialize the symbol table
entries with attribute OP. For each operator used by the
Interpreter, a line on this file must contain

|

opname/0OP = number;
where <opname>
is the operator name and

<number>

18

- —— e - w—— e e — - i e

is its computed goto index in the INTERP subroutine. The
file ends with a line with four sharps.

file08 contains the SIL version of the SEMANOL(73) programs
to be run. There are several possible cases:

1. If only one SEMANOL(73) program is on the file and
it is to be run once for each JOVIAL(J73) program on
file07 with complete system initialization only at
run initiation, then the SEMANOL(73) program is
followed by ¢ single line with three sharps at the
beginning.

2. If only one SEMANOL(73) program is on the rile and
it is to be run once for each JOVIAL(J73) program on
fil1e07 with the complete system initialization and
re-reading of the SEMANOL(73) program between each
run, then the SEMANOL(73) program is followed by two
lines with four sharps and a blank card.

3. If many SEMANOL(73) programs are on the file, they
are each followed by a line with four sharps.
Another line with four sharps follows all other
cards. In this case, complete system initialization
occurs after each run.

AT

file07 contains the JOVIAL(J73) programs to be run along
with their input data. As many programs can be run as
desired. The JOVIAL(J73) program for each run is followed
by a four sharr card (sharps in columns 1 through 4). The
data for that run then comes followed by a line with ###+
and then a three sharp card.

6.3 Inames Input

The Tnames program has two input files, file20 and file21.
They are ASCII Multics text files.

VTN TR TN

file20 contains the symbol table information that the
Translator left on filel0. (Note that file20 can be a link
to fileld0 after running the Translator.) Each line of the
file is of the form

3

DDDD NAME

. NORTPP N

where DDDD is a four digit code indicating that the
Translator name NDDDD corresponds to the Semanol source name :
NAME. ‘

file 21 contains the SIL code as output by the Translator
onto file08. This SIL code does not, obviously, use the
Semanol source names. |

19

TR e e

o A S

MG o

7.

TS OET wmTER T AT TR A TTENEEEIA T T T T T OWTS NT ST/ 0 7 - - - rms /o T B

Qutput
The program output files are discussed individually for each

progran.

All output files are in ASCII format except file37. The
following Fortran unit files are used:

1. file08 contains the generated SIL output.
2. file16 contains the error message listing.
3. file39 is a scratch file.

4, file37 is a binary dump of the translator symbol
table.

5. filed0 is a symbolic dump of the symbol table names,
See Section 6.3 for a description of this file which
is used only by Tnames.,

7.2 Interpreter Qutputs

The output file is file06. This file is the terminal. All
JOVIAL(J73) output goes to this file. Other things which go
to this file are:

1. Any error messages output by Fcrtran.,

2. Any error messages output by the Interpreter.

3. Messages indicating when the Interpreter garbage

collector (GGC) and string compactor (SCOMP) are
called and when they return.

4, #DF tracing messages when they are enabled.

5. A message “MSTOP CALLED" after each SEMANOL(73)
program on input file08 is run.

7.3 Inames Qutpuy

The Tnames program has one ASCII Multics text output file,
file22, file22 contains the SIL code that was on the input
file2t except that all blank lines are dGeleted and Semanol
source code names have been substituted for Translator names
of the form NDDD.

20

i
%
1
|
!
%
|

| The Translator and Interpreter are run in MULTICS
! timesharing mode. 1In addition to the program segments, file
‘ segnments must be provided for the Translator as follows:
filel5 Semanol program source code
file16 Translator listing and error message file
file08 SIL code output file
file39 scratch file

file37 binary symbol table dump file

T YT T} T T O T I T e T YT A S I e e T e ey

filedo symbolic symbol table dump file,

The Fortran unit assignments are made in the blockdata
subprogran BKDATA3. They are:

UNITIN -~ filei5

UNITOUT file16

UNITSIL - file08

T W T

UNITERR - filel6
UNITSCR - file39
UNITSYM - file37
UNITNAM - filelO,

Should it be necessary to use different unit assignments,
only BKDATA3 need be changed.

! The six file segments must be present in directory Blum (or
» proper links set up to other directories) prior to running
the Translator. The SIL output file, file08, will be used
by the Interpreter portion or Tnames for further processing.

3

; For the Interpreter, files file0O7 (JOVIAL(J73) program and
! data in form described under Interpreter Input) and file09
i (initialization) must be set up in directory ERAnderson.

i Interpreter binaries must be in directory ERAnderson. The
e system is then ready to run.

Ll I g - W,

i iiead il e
R v

21

TR P P PSP SR NPT S St cope S PP}

2
.

'
B
L

e e S

Al S 2 = A TR R TEyTER s AT R oMo P A R e

We assume that the programs are set up in the directories as
stated above.

login Blum

ekb

sem

logout <hd

login ERAnderson
era

link <Blum>file08
main

The above procedure will first cause the Translator to be
executed and then the Interpreter. (Tnames will not be
run.) The Interpreter output will appear on the terminal.

login Blum

ekb

sem

logout -=-hd

login ERAnderson
era

link <Blum>file08 file21
link <Blum>filed0 file20
tnames

new_proc

link file22 fileQ8

main

The above procedure will first cause the Translator to be
executed, then Tnames, and finally, the Interpreter. The
Interpreter output will appear on the terminal. This
procedure is used if tracing is to be done during
interpretation so that Semanol source symbolic names will be
used,

An exec-com procedure <Belz>buildj73, is available to build
the SEMANOL(73) description of JOVIAL(J73) on filei15. The
input to <Belz>buildj73 is the set of files <Belz>j73.a,
<Belz>j73.b,...,<Belz>j73.1; these files are in runoff
source form. The output is on file15. in proper form for
input to the translator.

To build filel5 prior to translating the JOVIAL(JT73)
description, use the following commands:

login Blunm
ekb
ec <Belz>buildjT73

Another exec-com procedure <Belz>buildj73.list builds a
publication listing of the SEMANOL{73) descripticn of

22

AR i A+ - M P A e - R Sl T AT MR T TR e LT Eatie SERTRENES S " - T
o= - A, .
— o i’

JOVIAL(J73) on file jovial.j73.sem; it uses the same input
files as <Belz>buildj73 uses.

To build a listing of the JOVIAL(J73) description, login
under any account, and use the command

ec <Belz>buildj73.list

These programs run under the standard Multics system and
thus require no special instructions to the computer
operator. These programs use no magnetic tape or other
removable storage media.

D "R

23

bt D LA o OV e e o - .. W emilaie i, e Y

PO
TP -7} PRI N RS PP

NP FONPU

L amillin -

| kT e s e e«

