
AD-A019 706

SEMANOL (73) INTERPRETER DOCUMENTATION

Paul T. Berning

TRW Systems Group

Prepared for:

Rome Air Development Center

30 June 1975

DISTRIBUTED BY:

National Technical Information ServiceU. S. DEPARTMENT OF COMMERCE

:L

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (W"an Daes Entered)

REPORT DOCUMIENTATION PAGE__R__r___STRU _____SPAGE READ INSTRUCTIONSBEFORE COMPLETING FORM
. REPORT NUMMER 2. GOVT ACCESSION NO. L RECIPIENT'S CATALOG NUMBER

C-TR-75-211, Vol IV (of four) _ _ _ _ _ _ _

4. T ITLE (&".d S"Ul JfS. TYPE OF REPORT & PERIOD COVERED

Final Technical Report
SEMANOL (73) INTERPRETER DOCUMENTATION h 1974 - March 1975

6. PERFORMING ORG. REPORT NUMBER

N/A
7. AUTiiOR(s) S. CONTRACT OR GRANT NUMBER(s)

Paul T. Briing F30602-74-C-0067

9. PERFORMING ORGANIZATION NAME AND ADDRESS tO. PROGRAM ELEMENT, PROJECT, TASK

TRW Systems Group AREA & WORK UNIT NUMBERS

One Space Park 63728F
Redondo Beach CA 90278 5500804
It CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

30 June 1975Rome Air Development Center (ISIS) N3. NUMBER OF PAGES

Grif flea AFB NY 13441 al.
14. MONITORING AGENCY NAME & ADDRESS(II different from Controling Of1c) 15. SECURITY CLASS. (o0 this report)

UNCLASSIFIED
Same_______________ _

4IS. DECLASSIFICATION,'OWNGRADING
SCM4EDULE

W,1A
IS. DISTRIBUTIOM STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ebstract entered In Block 20, it dilferent fros Report) •

same

III. SUPPLEMENTARY NOTES

RADC Project Engineer:
Captain John M. Ives/ISIS

19. KEY WORDS (Continue on reverse aide it neceosary and Identify by block number)

Metalanguage, JOVIAL, JOVIAL (J73), SEMANOL, SE14ANOL (73), compiler, language
standardization, interpreter, language definition, language control, syntax,

semantics, language grammar, SIL, CHS-2, Command and Control language, Parse

Tree, software reliability

20. ABSTRACT (Continue on reverse side Ii no•.•ssary and Identify by block nuwber)

The formal definition of the programming language JOVIAL (J73) was produced by

the metalanguage, SEMANOL. The process of definition resulted in the
metalanguage, SEMANOL. The process of definition resulted in the successful
identification of many ambiguities and conflicts, in the JOVIAL language which
were reported to the language definition committee. SEMANOL (73) is under-
standable by laymen and processable by the SEMANOL interpreter computer program.
The interpreter program was completed and debugged during the contract period.

(Cont'd)

DD I 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED

iS ECURITY CLASSIFICATION OF THIS PAGE (m.en Dota Entered)

* _

Mftý!

SICUPI4TY CLASSIFICATIOWI OF THIS PAGI(WhRIl mme MINEM amOO

JOVIAL (J73), as processed by the SD(AMOL interpreter, has been tested to the
"extent that (1) the JOVIAL (J73) level one subset gramor is well debugged,
(2) the formal definition is syntactically correct and (3) the simplcr
semantics are tested to yield correct answers. The results of this effort
coupled with previous and concurrent efforts show SEDWOL as a highly valuable
standardization tool for failure use in DOD lauguage controls.

A

4.4

UNCLASSIFIED

, ~~SECURIqTY CLASSIFICATION OF THIS PAGE(W'han Daeta Entered,)

II

029071

MOC-T-7"-i 1 Vol !V (Of four)
Flail Toubdeal RSOJ ime IT

SBaI . (73) INTEPRETER IXXLCU fATION

TRW Systý Group

t'. 4

1r¶

Approved for public release;;distribution unlimited.

Romr Air Development Center
Air Force Sytems Comad

Griffise Air Force Base, Now York 13441

TAle report h" been reviewed by the RLDC Iniorimao Ui~e (uli) and
Is releasable to the National Technical Information Sarvice (NTIS). At NTIS
it will be releasablo to the Senersl public includitS foreign nations.

This report hws been reviewed and is approved for publication.

I APP90VXD:

JOHN X. IVMS, Capt, USAF
Project Engineer

APPROVED: 4D
ROBERIT D. KRUTZ, Col, USAF
Chief, Information Science3 Division

FOR THE COHMNDER

10J'-01M P. RUSS

Acting Chief, Plans Office

Do not return this copy. Retain or destroy.

Il

-: _

EVALUATION

F30602-74-C-0067, SEMANOL (73)

The formal definition of the programming language JOVIAL (J73)
was produced by the metalanguage, SEMANOL (73). The process
of definition resulted in the identification of many ambiguities
and conflicts in the J73 language under development. At the
same time SEMANOL (73) is understandable by laymen and likewiseS~processable by the SEMANOL interpreter computer program•, making

it highly amenable to locating and debugging potential compiler
errors or uncertainties. This value is of enough significanceI that SEMANOL (73) will be implemented as an integral key require-
ment tool for use in the forthcoming USAF Higher Order Language
Control Facility.

JOýM. IVES, Capt, USAFI
---Project Engineer

Software Sciences Section

iIli

PREFACE

This document has been prepared for Rome Air Development
Center in accord with CDRL Sequence Number A004 and
paragraph 4.1.5 of the Statement of Work of contract number
F30602-74-C-0067. It is the program documentation of the
SEMANOL(73) Interpreter. This program documentation
describes the internal organization of the SEMANOL(73)
Interpreter and provides instructions on the use of the
program. Note that the source program listings themselves
contain detailed documentation about internal programj
operation in the form of comments. These comments
constitute an extension to the material in this report.

iv

A

I CONTENTS

41. Program Name 1

2.* Abstract 1

3. Machine Definition 1

4. Program Description 1

4.1 The Translator 3

F 4.2 The Interpreter 7

4.3 Tnames 184

15. Logic Diagrams 18

6. Inputs 18j6.1 Translator Input 18

6.2 Interpreter Input18

6.3 Tnames Input 19

7.1 Translator Outputs 20I I7.2 Interpreter Outputs 20

7.3 Tnames Output 20

8. Program Setup21

9. Operator Instructions 22

1. Program Name

The name of this total computer program is the "SEMANOL(73)
Interpreter". The SEMANOL(73) Interpreter is then made up
of two major subprograms called the "Translator" and the
"Interpreterm. There is also a much smaller auxiliary
program called "Tnames".

2. A r

The SEMANOL(73) Interpreter takes a SEMANOL(73)
meta-language program describing a computer programming
language and uses that meta-language description to control
its interpretive execution of a program given to it in the
programming language described. It is thus a generalized
interpreter of higher order language (or machine language if
desired) which is driven by a SEMANOL(73) description.

3. Machine Definition

The SEMANOL(73) Interpreter runs on a HIS-6180 computer
under control of the Multics operating system. Its core
memory requirement depends mainly upon the size of the
SEMANOL(73) meta-language program being used. The program j
is normally operated in a timesharing mode and thus requires
that file space, be available on the permanent file disk I
unit. The program does not use magnetic tape, card devices,
nor the on-line printer.

4. Program Qescrintion I
The SEMANOL(73) Interpreter has been implemented through the
use of two major subprograms as observed earlier. The first

subprogram, the Translator, reads a SEMANOL(73) program
describing a programming language and converts it to a form

which is readily usable by the next subprogram, the
Interpreter. The Interpreter takes the Translator output
and uses it to control the execution of programs given to
the Interpreter. While the SEMANOL(73) Interpreter is
itself programming language independent, to be more specific
in the discussion of this report JOVIAL(J73) is always used
as the language described by a SEMANOL(73) program.

The relationship of the two subprograms as described is
shown in Logic Diagram 1. The SIL file used for
communication between the subprograms is described with the
Interpreter. It is an alphameric representation of a list a
of operands and operators produced by processing the
SEMANOL(73) program. Note that these subprograms were
written in Fortran apart from some PL/1 routines which were

,.,.

SEK.ANOL(73) JUVIAL(J73) Data
Program Program Input

Tr~naatorFileInterpreter

JOVIAL (J 73)
Program

Output

Logic Diagram 1. SEMANOL(73) Interpreter

needed for special functions (e.g., doing half word load and
stores and double precision integer arithmetic). Each
subprogram is described separately in what follows, and
indeed they are rather independent due to the minimum
interface resulting from the use of the SIL file. Please
note that the program listings are richly annotated and
contain the full details of program implementation.

The auxiliary program Tnames is optionally run between the
Translator and the Interpreter. It is used to translate
numerically coded names generated by the Translator back to
the corresponding symbolic names f-om the original source
SEMANOL(73) program. This is useful when using the
Interpreter trace feature; the trace output will then use
the same symbolic def names that the source code contains.

4.1 The Translator

The SEMANOL(73) Translator translates a SEMANOL(73) language
source program into a Semanol Interpreter Language (SIL)
object program. The Translator uses the recursive-descent
method to analyze the syntax of the source program.
Recursive descent is a top-down, predictive recognition
process employing one recursive procedure or subroutine for
each of the rules of source language syntax. This method
was chosen because it allows the construction of a modular
translator program; changes or additions to the source
language syntax are easily accommodated since there islittle interdependence among the recognition subroutines.

The Translator i3 divided into two functional parts: lexical
analysis and syntactic analysis. In addition to the two
main units, there is a driver group to control proaram
e•xecution, a blockdat3 group for convenient definition of
constants, a utility group to handle initialization and
cleanup and to provide minor functions such as
string-to-integer conversion, and an output group to handle
SIL code generation (see Logic Diagram 2).

The driver group consists of a main program and four
sub-drivers which correspond to the four divisions of a
SEMANOL(73) source program. The sub-drivers recognize their
particular heading statement, then instruct the syntax
analyzer to begin looking for the constructions expected in
that section. Control returns when the syntax analyzer has
processed all the statements in the section.

The syntax analyzer consists of recursive subroutines,
corresponding to each non-terminal syntax rule of the
SEMANOL(73) language. Since the source language of the
translator, Fortran, does not have facilities for recursive
programming, inter-subroutine communication is handled by a
special subroutine, EXEC. Each recursive subroutine has

3

SOURCE LANGUAGE FILE SIL OUTPUT FILE

filel5 -fileO8

SIL OUTPUT

LEXICAL ANALYZER GROUP

SYNTAX ANALYZER

EXEC

IA ~ ~ ~ ~ ~ ~ ~ DIE GROUP_______________

I. Logic Diagram 2. The Translator Program

three arguments in the calling list:

SUBHO':T:NE RECUR(FCAL,BCAL,ARG).

FCAL is a forward call code, indicating the next subroutine
to be called; BCAL is a return code, composed of the
subroutine number and an internal jump number; 4RG is a code
indicating su-zcess or failure of the calleu subroutine.

One subroutine calls another as shown in the follou;ing code
_ example:

NEW, *CALL STREXP...
FCAL=1 (CALL CODE FOR SUBROUTINE STREXP)
BCAL=342 (IDENTIFIER FOR THIS SUBROUTINE,34, AND AN INTERNALS~JUMP CODE,2)
RETURN

300 CONTINUE

The RETURN statement transfers control to EXEC; EXEC stacks

the BCAL code and executes a CALL TEXP(FCAL,BCAL,ARG). When
there are no more forward call requests, (FCAL:O), EXEC
unstacks the previous return code and executes a call to
that subroutine. The resulting action is illustrated by the
following code, which is the first executable code in each
recursive subroutine:g*
. Recursive Entry Routine...

IF (FCAL.EQ.3)GO TO0

If (FCAL.NE.O) TO TO 900 (ERROR CUNDITION)

* - J BCAL-10*(BCAL/10)

GO TO (200,300,400),J

If FCAL:34, this is a normal forward call, and a jump is
taken to the beginning of the code (statement 100); if
FCAL=O, this is a return, and the return point is indicated
by the units position of BCAL. BCAL was 342 in the previous
code example, so J=2 and an internal jump to statement 300

5

is taken--the desired return point in the previous example.

Recursive descent requires only one global variable--the
next symbol element from the source language statement being
parsed. As the syntax analyzer proceeds through a

statement, it muist request the lexical analyzer to place the
next symbol into the global variable NEXTSYM; this is
accomplished by executing a CALL NEXT statement. Subroutine;W_ NEXT is the link between the syntactic and the lexical
analyzers.

As the source language statements and statement elements are
recognized, the corresponding SIL translation is generated
by calls to the SIL output group. These calls are made by
the recursive subroutine that recognized a particular
element.

The lexical analyzer scans the source language statements
aijd breaks each statement into its smallest recognizable
elements. These elements are called tokens or symbols. The
lexical analyzer recognizes and types the tokens into the
five categories possible:

Integers
Names
Keywords
Delimiters (+, - etc.)
Strings.

One source language statement is scanned at a time; the
tokens are typed, name-and string-table entries made, then
the tokens are placed in a stack. These tokens are made
available to the syntax analyzer one at a time, as requested
by calls to the interface subroutine NEXT; when the token is
exhausted, another source statement is processed by the
lexical analyzer.

The output group generates SIL-language output from
calling-argument codes passed from the various syntactic
analysis subroutines. The SIL output is buffered into
72-character lines, then output on Fortran unit UNITSIL
(defined in the blockdata section). Since SIL grammatical
order is not the same as in SEMANOL(73), function codes are
available which allow the calling-subprogram to cause SIL
output to be stacked on different levels, then dumped to
UNITSIL.

The blockdata group consists of four blockdata subprograms.
BKDATA1 is a set of three tables used for keyword and
delimiter recognition. BKDATA2 relates individual ASCII I
character codes to type codes, grouping the characters as
.lowercase', 'digit , uppercase , and so on. BKDATA3
defines constants, such as Fortran unit assignments:
UNITIN, UNITOUT, UNITERR, UNITSIL, UNITSCR, UNITSYM, and

6

UNITNAM; these are, respectively, the SEMANOL(73) source I
file, file15; the output listing file, filet6; the error

message file, filet6; the SIL output file, fileO8; a scratch

file, file39; the binary symbol table dump file, file37; and
the symbolic symbol table dump file, file4O. BKDATA4 holds
SIL tables. BKDATA1 and BKDATA4 are generated by the '

programs KTABLD and SILBILD from lists of keywords and SIL
tokens.

4.2 The Interoreter

As soon as the Interpreter is loaded, all files are rewound I
and the INIT subroutine is called. The purpose of INIT is
to initialize all of the variables and tables used by the
Interpreter. All of these variables and tables are fully
described in the internal documentation for the BLKDATA I
subroutine. Following are described these structures in the
order in which they are initialized:

1. The descriptor table is zeroed except for the ITL
field of each entry. The free entry list is
constructed using this field as a pointer.

2. The string array, ICHAR, is zeroed.

3. The main stack is zeroed.
4. The symbol table bucket array, IBUCK, is zeroed.

5. The type table arrays ITTN, IFORM, JCVLT, JHD,
JHDA, JTL are initialized and sorted.

6. Simple global variables are set to their initial
values.

7. The variables SMNAM, SMATT, SILFG, PARSE, SYNTX,
IINT, FPNO, STR, STRNM, STNDA, STNDB, SEQ, FCALL,
PCALL, SAVE, PTR, PRS, SEQU, LOG, FIX, and UND are
initialized to contain their associated type
numbers.

8. The variables OP, VAR, SYN, VAL, SIL, and PROC are
initialized to contain their associated attribute
type numbers.

9. The null sequence, #UNDEFINED, #TRUE, #FALSE, and
the null string are pushed onto the stack.

10. Other initial symbol table values are read in from
fileO9.

/L 11. Finally, INIT returns.

I7

While initialization is going on, many of the general
utility routines are called. A list of some of these
utility routines and what they do follows:

1. The P1/i functions ITYPE, IHDA, IHD, ITL, ICT, and
IPTR are called with a descriptor table or stack
index and return the value of the named field at
that index.

2. The PL/1 subroutines STYPE, SHDA, SHD, STL, SCT, and
SPTR do the inverse; they store a value into the
associated field of the descriptor table or stack.

3. LITSTR is used to create a literal string and punh
its descriptor onto the stack.

4. LKPTP looks up a type name in the type table.

5. LKPN looks up a name in the symbol table.

6. PUSH pushes a value onto the main stack.

7. JSILSM reads a symbol table entry from a file.

These are just a few of the utilities used by the
initialization, but they give an idea of the kinds of
operations required.

When initialization is complete, the SIL program is read
from fileO8. The JSILSM function is called once for each
SIL statement to read. JSILSM must parse each SIL statement
and convert it to internal list form.

INTERP is the main Interpreter routine. It calls the
operator subroutines as required by the SIL program. Since
the flow of control is directed by INTER?, which is in turn
directed by the SIL program, an understanding of SIL is
essential to an understanding of the Interpreter.

The external syntax of SIL is extremely simple (See Table
1). Internally, the SIL program is stored in a list form;
but this fact is independent of its meaning. It will be
assumed that the INTERP subroutine works directly on the
string format as this assumption elucidates the following
discussion.

A SIL program consists of two kinds of statements, syntax
statements and routines. An example of a syntax statement
is

PROGRAM/SYN=(SCAT/OP STMT/SYN (KSTAR/OP STMT/SYN KEND/OP));

An example of a routine is

8

2'.L

PRINTA/SIL=('A OIODAT/OP);

The difference between the two is that a syntax statement
always has statement-attribute "SYN° and corresponds to a
SEMANOL(73) syntactic #DF. The syntax statements are not
exec'lted directly by INTERP, but instead are used by the
parsing subroutine JPARSE. To contrast this, routines have
statement-attribute "SIL" or "PROC'. They correspond to
SEMANOL(73) zemarrtic #DF s and SEMANOL(73) commands. They
arc read directly by INTERP which calls the operator
subrcutines to execute them.

The syntax statements will be discussed with the parser.
Routines can be divided into two types as identified by
theIr statement-attribute. Corresponding to SEMANOL(73) ,

semantic #DF's are routines with statement-attribute SIL'.
Correspondirg to the SEMANOL(73) program in the
4CON7ROL-COMMANDS section is the routine with
statement-attribute "PROC'. The subroutine INTERP treats
all of' these routines the same once execution begins. The
difference is that they contain different varieties of SIL

code corresponding to different types of SEMANOL(73)
statements.

The elements within a SIL statement list are normally
proueased from left to right. In fact, within a list, the
element string is like a reverse Polish string of operators
and operands. Operands and results of operations are kept
on a stack. The actions taken when each kind of element is,, ' encountered are summarized below:

1. If a (sub) list is encountered, the Interpreter
saves (on the stack) its current position and begins
processing the elements of the sub-list.

2. If a <name><'l/><statement-attribute> or <name><
<value-attribute> is encountered, a pointer to the
symbol. table entry for the given element is pushed
onto the stack. Note that each
<name></'><attribute> has its own symbol table
eniDry.

3. If a constant is encountered, its value is pushed
onto the stack.

4. If a <name></'><operator-attribute> is encountered,
the operator with the given name is executed.

5. If the end of a (sub) list is encountered, the
Interpreter continues execution at the element after
the last one saved as in step 1.

At this point, consider case 1 above. The INTERP subroutine
handles each operator by either calling a subroutine whose

9

MW.-. --P ip

name is the same as the operator subroutine name or by
jumping to the appropriate code in its own body. The
operators which require operands take them from the top of
the stack. They often replace their operands with a result.

The operands for functional operators are descriptors for,
or pointers to, the various SIL data types. The data types
used are:

1. UND - #UNDEFINED

2. FPNO - A double floating point number, high order
bits

3. IINT- An integer

4. PRS - A parse tree

5. SEQ - A firite sequence

6. STR - A string

7. FIX - A floating point number, low order bits

8. LOG - #TRUE or #FALSE.

The stack contains pointers to symbol table entries and it
also contains special entries marking function calls,
sublist calls, and for saving old values of parameters in
recursion.

Consider the following (sub) list:

(1 2 A/VAR CVS/OP STLFT/OP STRIT/OP A/VAR ASVAR/OP)

Suppose the Interpreter encountered this list as an element
of another list. It would first mark its place in the other
list by pushing a PCALL node on the stack and then begin
this list by pushing the integers l and then 2 onto the
stack. When it encountered A/VAR it would push a pointer to
the symbol table entry for A/VAR onto the stack. But then
CVS/OP (convert to string operator) would go to the A/VAR
symbol table entry, get the value stored there, convert it
to a string, and push the string descriptor onto the stack
in place of the pointer to A/VAR. The top of the stack (at

right) would now contain

... PCALL,1,2,'ABC"

given that A/VAR had a value of 'ABC*. The Interpreter
would then call the STLFT subroutine which would replace 2
and 'ABC' with "AB', implementing the SEMANOL(73) #LEFT 2
#CHARACTERS-OF A. Next, the STRIT subroutine would be
called to replace 1 and 'AB" with "B', implementing the

I

S--- inn-

SEMANOL(73) #RIGHT 1 #CHARACTERS-OF (#LEFT 2 #CHARACTERS-OF
A). The top of the stack would now contain

FPCAL., B .4
Next, another pointer to the A/VAR symbol table entry would
be pushed on the stack and the ASVAR subroutine would be
called to store "B' at the A/VAR symbol table entry
location. ASVAR deletes its arguments without leaving
anything on the stack, so there would now be nothing above
the PCALL node on the stack. Finally, the right parenthesis
(end of sub-list) would be encountered and the PCALL node
would be removed from the stack. Control would return tothe previous list.

in the normal way. The operators which start with K (e.g.,

KTRUE/OP, KFALSE/OP) can either succeed or fail. If one of
these operators succeeds, control proceeds as usual. But if
one fails, a premature end to the sublist takes place. It
is as if the sublist end had been encountered and control
returns to the calling list. An example of how th:.s feature
is used is as follows:

((B/VAR CVS/OP A PEQW/OP KTRUE/OP MERR/OP) MSTOP/OP)

Suppose control has come to the B/VAR element. A pointer to
the B/VAR symbol table entry is pushed onto the stack. The U
CVS subroutine converts this pointer to the string value of
the variable B. A' is then pushed onto the stack. Now the
PEQW subroutine compares the top two stack entries (assuming
they are strings). If they are identical it replaces them
with #TRUE and if not it replaces them with #FALSE. (This
implements the SEMANOL(73) argl #EQW arg2.) Now, the KTRUE
function is called. If the top stack entry is #TRUE it
succeeds and control next goes to the MERR subroutine.
Otherwise, KTRUE fails and control goes to the MSTOP
subroutine.

A number of other operators can interrupt normal left to
right processsing within a sublist. They include the
following:

CALL/OP CALL is used to implement a SEMANOL(73) #DF
call. When it is encountered in a routine
list, the top of tyie stack contains
(starting at top) a pointer to the symbol
table entry containing the routine for the
#DF to be called, an integer whose value is
the number of arguments being passed to the
#DF, and finally, the argument values
themselves.

RET/OP - RET implements a SEMANOL(73) non-procedural

I.I

#DF return. When it is encountered,
control returns to the point at which the
last CALL/OP was executed. The value
returned is the one stored at dname/VAR
where dname is the name of the #DF which is
returning.

LOOP/OF - LOOP normally occurs at the end of a
sublist. It causes control to resume at
the beginning of that sublist. As its name
implies, it is used to implement loops.

ENDIF/OP ENDIF also normally occurs at the end of a
sublist. It is somewhat like a normal
right parenthesis at the end of a sublist

except that control returns up 2 sublist
levels instead of one. This is used to
implement #DF's with cases.

Now, an example of a SEMANOL(73) semantic #DF is given,
showing how it is represented as an SIL statement, and then
following INTERP through its interpretation. This will
illustrate the #DF calling mechanism of the Interpreter.
The SEMANOL(73) #DF follows:

#DF LONGER(STRINGA,STRINGB)

=> STRINGA #IF #LENGTH(STRINGA) >= #LENGTH(STRINGB);
=> STRINGB #OTHERWISE #.

This #DF returns the longer of its two string arguments. It
translates into the SIL statement

LONGER/SIL=(2 IPARAM/OP LONGER/VAR LOCAL/OP
STRINGA/VAR PARAM/OP STRINGB/VAR PARAM/OP FCALL1/OP
((STRINGA/VAR CVS/OP ISLEN/OP STRINGB/VAR CVS/OP ISLEN/OP
PLT/OP LNOT/OP KTRUE/OP STRINGA/VAR LONGER/VAR ASVAR/OP ENDIF/OP)
(STRINGB/VAR LONGER/VAR ASVAR/OP ENDIF/OP))
RET/OP);

Suppose for the illustration that the arguments are
STRINGA=*AB' and STRINGB='ABC' when the #DF is called. The
Interpreter finds itself at the 2 in the above code. The
first two lines are similar to those that head the SIL code
for any SIL #DF. They indicate to the Interpreter the
number and names of the parameters and tell it to save on
the stack the old values of these and the variable with the
same name as the #DF. They also mark the stack so the
Interpreter will return correctly. The next two lines of
code indicate that the Interpreter must calculate and
compare the lengths of the two strings. Since STRIUGA is
shorter, the KTRUE/OP on the second of the two lines will

12

fail. Control will skip over the rest of the sublist to the
line starting with "(STRINGB/VAR'. This line assigns
STRINGB (the correct result) to the variable with the same
name sz the #DF because that is the way #DF values are
returnRd. The ENDIF/OP then skips the Interpreter out to
the RET/OP which causes a return to the poirt which called
the whole #DF.

The following SIL code calls the parser to parse the string
at S/VAR using as root production the syntax #DF with
left-hand-side PRODUCTION:

S/VAR CVS/OP PRODUCTION/SYN 6TPRS/OP

The context-free grammar used by the parser is written using
SEMANOL(73) syntactic #DF's. It is translated into SIL
syntax statements as previously stated. One SIL syntax
statement corresponds to each SEMANOL(73) syntactic #DF.
Note that the set of legal SIL syntax-statements is a subset
of the set of all SIL statements (See Table 2). The parser
uses the Jay Earley parsing algorithm, modified for
SEMANOL(73), to compute a parse tree. The algorithm is
documented in the listing and in several papers by Earley,
so is not described here.I This concludes the discussion of INTERP which, indeed,
passes control directly or indirectly to almost every other
Interpreter subroutine at some time or other. The only
thing that has not yet been mentioned is how INTERP halts.
This can happen in one of two ways:

1. INTERP encounters MSTOP/OP in the SIL program
control stream. I

2. One of the operator subroutines detects an error of
some kind, either in the JOVIAL(J73) program, the
SIL program, or the data. In this case an
appropriate error message is printed on the output
file.

When either of these things happens, the Interpreter either
halts completely or it re-initializes itself to execute
another SENANOL(73) program (if one exists).

A simplified representation of the Interpreter is given in
Logic Diagram 3.

13

N0 0.

~~$4

4).

14 4'

v~4

co00

14.

Table 1. 51L S~ntax

#DF statement => <statement-name><CC><statement-attribute>(#GAP>
i(: ><#GAP>i<li-st>i(#GAPW<;*> #.

#DF statement-name => name #U ['#PROC1l #.I

#DF statement-attribute => ['SYNqSIL', 'PROC'J *

#DF list => <V(><#GAP><element><%«<#GAP><element»>>
<#GAP<) '> #.

#DF name => <'#ALPHABET'>
<%<<#ASCII> #S-V J #

#DF element => list
=> <name>< 7 ')(statement-attribute>
=> <name>(/"><operator-attribute>

=> constant. #.

#DF operator-attribute => COP'] #.I

#DF value-attribute => ['VAL', 'VAR') #. cosat

#DF constant => <anlea SEMANOL(73) string cntn)
Fu => C'#B ><any legal SEMANOL(73) bit-string constant>

=> <'#R >i(any legal SEMANOL(73) floating-constant>
=> <'#I1><any legal SEMANOL(73) integer-constant>
=> <`#TRUF> I
=> <*#UJNDEFINED'>

=> <#DIGIT>i(%<#DIGIT» #

hl". 15

Table 2. SIL Syntax Cor Syntactic Statements

#DF syntax-statement => <statement-name> <'/'><syntax-
statement-attribute>(#GAP> (% '><#GAP><syntax-list>
<#GAP&;*> #.

#DF statement-name => name #.

#DF syntax-statement-attribute => ['SYN'% f.

#DF syntax-list => case
=> scat #.

#DF name =><#ALPHABET>I
<% <<#ASCII> #S-V /»#

#DF case => <('U> <#GAP> <'CASE/a?'> <#GAP>
<%1< <cat> <#GAP>>> <')'> #.

#DF scat => <'(U> <#GAP>CSCAT/OP'><#GAP>I
<W1<(prim> <#GAP>>> <*'Y> #.

#DF cat => <('U><#GAP><%1<<primn><#GAP»>><')'> #

#DF prim => set
=> union
=> setmin

=>scanop
= > nterm
z > struit #.

#DF set => <'C>(#GAP><CSET/OP'>(#GAP>
<%l<«strlit>(#GAP>< SETEND/OP'><#GAP»>(>')'> #

#DF union => <C(><#GAP><UNION/OP*>(#GAP>

('><#GAP><'SEMI#/Ap'><#G#.

(%1(alt im>(#C0GP<1<pi>0G»> MN/P>#AP>>S> DAo
<#GAP><%1 «sr>it><IGAP> <#. #

#DF ksetr => <'C><#GAP><'SETAFN/U'><#GAP>
(%1(<prim>'#LIAP»>(K*END/0P*><#GAP>C)'> It./?'

#DF kstarl => #'('><#GAP> KSTARI/OP'><ItGAP>

(%l<«prim>#GAP»>>< KEND/OP ><#GAP>C) '>#.

16

#DFscaop > [DIGIT/OP, SPACE/O& VALPHA/0P, -

LCASE/U&',*NATNO/OP1 #

#DF sri=>any SEMANOL(73) string literalI

17

I

4.3 Tnames

After initializing itself, Tnames reads file2O, a symbolic
dump of the Translator symbol table, into its own internal
table. It then reads lines one at a time from file2l, the
Translator SIL file. A line is skipped if it is blank and
Thames goes to the next line. If the line is not blank,
Tnames searches it for Translator names of the form NDDDD
(where D is a digit). Each name found is looked up in the
Tnames internal table and the associated Semanol source name
is substituted for the Translator name. As each line is
completed, it is written to file22, and then Tnames goes to
the nixt line. Tnames STOPs when all of file2l has been
read.

5. Logic Diagrams

The Logic Diagrams were given earlier. There is an overall
logic diagram and then one for each of the two main programs
which constitute the Semanol Interpreter.

6. .u

Program inputs are discussed separately for the programs.

6.1 Translator Input

There is only one input file to the translator and that is
Fortran filet5. This; is an ASCII file which contains the
SEMANOL(73) source language program.

6.2 Interpreter Input

Three input files, fileO7, fileO8, and file09 are required
to run the Interpreter. They are ASCII files like all other
Multics text files.

file09 containr data used to initialize the symbol table
entries with attribute OP. For each operator used by the
Interpreter, a line on this file must contain

opname/OP = number;

where <opname>

i the operator name and I
<number>

18

A

is its computed goto index in the INTERP subroutine. The
file ends with a line with four sharps.

fileO8 contains the SIL vcrsion of the SEMANOL(73) programs
to be run. There are several possible cases:

1. If only one SEMANOL(73) program is on the file and
it is to be run once for each JOVIAL(J73) program on
fileO7 with complete system initialization only at
run initiation, then the SEMANOL(73) program is
followed by r single line with three sharps at the
beginning.

2. If only one SEMANOL(73) program is on the file and
V it is to be run once for each JOVIAL(J73) program on

fileO7 with the complete system initialization and
re-reading of the SEMANOL(73) program between each
run, then the SEMANOL(73) program is followed by two
lines with four sharps and a blank card.

3. If many SEMANOL(73) programs are on the file, they
are each followed by a line with four sharps.
Another line with four sharps follows all other
cards. In this case, complete system initialization
occurs after each run.

fileO7 contains the JOVIAL(J73) programs to be run along I
with their input data. As many programs can be run as
desired. The JOVIAL(J73) program for each run is followed

by a four sharp card (sharps in columns I through 4). The
data for that run then comes followed by a line with ###"
and then a three sharp card.

=+••+6.3 Tnames Input

3The Tnames program has two input files, file2O and file2l.

They are ASCII Multics text files.

file20 contains the symbol table information that the
Translator left on file4O. (Note that file2O can be a link
to file4O after running the Translator.) Each line of the

t file is of the form

T tDDDD NAME

where DDDD is a four digit code indicating that the
Translator name NDDDD corresponds to the Semanol source name

++•,• ~NAME. I.

file 21 contains the SIL code as output by the Translator
onto fileO8. This SIL code does not, obviously, use the
Semanol source names.

19

7. Outut

The program output files are discussed individually for each
program.

7.1 '1'anslator outouts

All output files are in ASCII format except file37. The
following Fortran unit files are used:

1. fileO8 contains the generated SIL output.

2. file16 contains the error message listing.

3. file39 is a scratch file.

4. file37 is a binary dump of the translator symbol
table.

5. file4O is a symbolic dump of the symbol table names.
See Section 6.3 for a description of this file which
is used only by Tnames.

7.2 Interpreter Outouts I
The output file is file06. This file is the terminal. All
JOVIAL(J73) output goes to this file. Other things which go
to this file are:

1. Any error messages output by Fcrtran.

2. Any error messages output by the Interpreter.

3. Messages indicating when the Interpreter garbage
collector (GGC) and string compactor (SCOMP) are
called and when they return.

4. #DF tracing messages when they are enabled.

5. A message "MSTOP CALLED" after each SEMANOL(73)
program on input fileO8 is ran.

7.3 Tnames OutDpu

The Tnames program has one ASCII Multics text output file,
file22. file22 contains the SIL code that was on the input
file2l except that all blank lines are deleted and Semanol
source code names have been substituted for Translator names
of the form NDDD.

20

- - - '..

The Translator and Interpreter are run in MULTICS
timesharing mode. In addition to the program segments, file
segments must be provided for the Translator as follows:

file15 Semanol program source code

file16 Translator listing and error message file

fileO8 SIL code output file

file39 scratch file

file37 binary symbol table dump file

file 4 0 symbolic symbol table dump file.

The Fortran unit assignments are made in the blockdata
subprogram BKDATA3. They are:

UNITIN - filet5

UNITOUT - filel6

UNITSIL fileO8

UNITERR - filet6

UNITSCR - file39

UNITSYM - file37

UNITNAM - file4O.

Should it be necessary to use different unit assignments,
only BKDATA3 need be changed.

The six file segments must be present in directory Blum (or
proper links set up to other directories) prior to running
the Translator. The SIL output file, file08, will be used
by the Interpreter portion or Tnames for further processing.

For the Interpreter, files file07 (JOVIAL(J73) program and
data in form described under Interpreter Input) and fileO9
(initialization) must be set up in directory ERAnderson.
Interpreter binaries must be in directory ERAnderson. The
system is then ready to run.

I
ITI

21

9. Operator Instructions i•

We assume that the programs are set up in the directories as i
stated above.

login Blum
ekb
sem
logout -hd i
login ERAnderson
era
link <Blum>fileO8
main

The above procedure will first cause the Translator to be
executed and then the Interpreter. (Thames will not be
run.) The Interpreter output will appear on the terminal.

login Blum
ekb
sem
logout -hd
login ERAnderson
era
link <Blum>file08 file2Olink <Blum>file40 file20

tnames
new_.proc
link file22 file08

main

The above procedure will first cause the Translator to be
executed, then Thames, and finally, the Interpreter. The
Interpreter output will appear on the terminal. This
procedure is used if tracing is to be done during
interpretation so that Semano! source symbolic names will be
used.

An exec-com procedure <Belz>buildj73, is available to build
the SEMANOL(73) description of JOVIAL(J73) on filet5. The
input to <Belz>buildj73 is the set of files <Belz>j73.a,
<Belz>j73.b,...,<Belz>j73.1; these files are in runoff
source form. The output is on filel5. in proper form for
input to the translator.

To build file15 prior to translating the JOVIAL(J73)
description, use the following commands:

login Blum
ekb
ec <Belz>buildj73

Another exec-com procedure <Belz>buildj73.list builds a
publication listing of the SEMANOL(73) description of

22

............

JOVIAL(J73) on file Jovial.J73.sem; it uses the same input
files as <Belz>buildJ73 uses.

To build a listing of the JOVIAL(J73) description, login
under any account, and use the command

ec <Belz>buildJ73.1ist

These programs run under the standard Multics system and
thus require no special instructions to the computer
operator. These programs use no magnetic tape or other
removable storage media.

23

