
p«nR«W«wn^v^iOTPiiijwiniuiiiiiM^qip||MMpiiP«iMHnP«*vWPI* —-^—»-W—^-ww^^w^^w^W^i^p^W^li^^

Stanford Artificial Intelligence Laboratory
Memo AIM-267

Computer Science Department
Report No. STAN-CS-75-MUS^o

CO
CO

©

On the Representation of Data Structures in LCF
with Applications to Program Generation

by

Frederich W. vo'' Senke

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2494

and
Deutsche Akademische Austauschdienst

V

23 1976

1^
COMPUTER SCIENCE DEPARTMENT

^ Stanford University

LL.

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

mim^nmm* i.—'-o.-.— '■ ■'-' ' -^— ■ ——--J-—-■'-

^^^^^m »wmimmifi^mmfii^mmmmmm

Stanford Artificial Intelligence Laboratory
Memo A1M-267

Computer Science Department
Report No. STAN-CS-75-518

Septemoer 1975

On the Representation of Data Structures in LCF
with Applications to Program Generation

by

Frederich W. von Henke

ABSTRACT

In this DtBtr we discuss techniques of exploiting the obvious relationship between program
rructureP and data structure foV program generation. We develop methods of program

fi/aMnn that are derived from a representation of recursive data structures in the
LC for Co-put e Functions (LCF). As'a step towards a formal problem specification
Suaee we dePfine definitional extensions of LCF. These include a "l^lus fo
coSable) homogeneous sets and restricted quantification. Concepts that are obtained by
merpretinl data types as algebras are used to derive function definition schemes from an LCF
e 7 eorpsennng a data structure; they also lead to techniques for the simplification of

expresTon? in the extended language The specification methods are illustrated with a
detailed example.

Authors^ present address: Gesellschaft fuer Mathematik und Datenverarbeitung Bonn. 5205
St.Augustin, Schloss Birlinghoven, West Germany

This research was supported by the Advanced Research Projects Agency of the Department of
This researcn •" «W* '7 ;..7i.c.0^5 anci the Deutsche Akademische Austauschdienst.
TtZTaZ ^ZnfZi^^cument are those of the author(s) and should not be
IterTrZas Lssarily representing the oßeial policies, either expressed or implied, of Stanford
UnlversUy. ARPA. deutsche Akademische Austauschdienst, or the V. S. Government.

Reproduced in the U.S.A. Available from the Natiorzl Technical Information Service. Springfield,
yirginia 22151.

h

 - -'-— mttm ~~M

PB^»ppwpiwp^!miinpi«w^^w!P«p^p^pwp»w» i .IWW>»|.IU«I. um in M.MI.I i ii Ill.««l (■■.nil IIIJUIIIIJII "^1

Contents

1. Introduction

4

j

2. The type-free Logic for Computable Functions
2.1 Type-free LCF
2.2 Retracts, Domains, Types

3. Abstract Data Types in the Type Free Logic
Data Type Definitions
Representing Data Structures in tfLCF
Algebraic Interp/etation of Data Types
Non-generic Data Types
An Example: Infix to Post-fix Translation

4 Elements of a Problem Specification Language
4. i Sets, Set Operations and Quantification

Schemes for Function Definition

I
y >

3,4
3.5

4.2
4.3

Schemes tor r uncuon ucnnunjn
Transformation of Function Definitions into Programs

5. An Example Substitution with «-Conversion
5.1 The Data Types
5.2 The Problem

6. Concluding Remarks

R. References

A. Appendices
A.l Logic for Computable Functions
A.2 Special functions in tfLCF
A3 Structural Induction

■

'

A

 —— -'■ ■ - nib ^

r-y vwrnrnm^mmmmm^my^i^m ■■■i i ■ ■■■■■■■

Introduction 1 - 1

1. Introduction

In this paper we are concerned with the use of data structures in generating correct programs from

formal problem statements.

Present experimental systems for automatic program synthesis (see [BuL], [MaW] for recent work)
are based on a rather large amount of knowledge in the form of individual axioms and problem
solving methods. At each step in the synthesis process the system has to search for an applicable
piece of knowledge in the data base. One of the main problems is the automatic construction of
iterative loops or recursive calls. However, it can be observed that the structure of the data is

reflected more or less in the structure of any program operating on them, both in the analysis of

subcases and (iterative or recursive) loops. In fact, if a recursion or iteration is possible (and
reasonable) at all it is because of a corresponding data structure. So it is safe to say that the

generation of a program is always guided by an underlying domain structure. 7 hus, by
"strengthening" the guide lines we can avoid the system having to "retrieve" anew the underlying-

structure each time it is synthesizing a program. Organizing the knowledge about the data domain
and representing it in such a way that it directly assists a system in constructing a program can
possibly eliminÄte some complicated problem solving processes.

In the case of recursive data types the relationship between program structure and data structure is
particularly obvious. For this kind of data types the Logic for Computable Functions (LCF) [Mil,
Mi2, WM] provides a natural basis for reasoning about program generation, since both the problem
and the prospective structure can be expressed in the same formal system. Obviously, the crucial
point is to find an appropriate t.presentation of the data structure, A large portion of this paper is

devoted to this problem; it attempts to develop a sufficient mathematical framework for dealing with
abstract data types within LCF. Based on this theory methods of function specification are
investigated that are directly derivable from the data structure representation and do not require

general problem solving methods They include extensions of the term language of LCF, in

particular a calculus for (a restricted kind of) sets and restricted quantification, and certain
"de'inition schemes"; both kinds are based on concepts obtained by interpreting data types as

algebras.

The definition techniques are meant to be a step towards a "problem specification language" that
allows easy and concise definition of furctions on a level of abstnKtion that is close to the intuitive
conception of the user. This approach/;o program specification bears a resemblance with what has
been called "very high level" or "nc v/procedural" programming languages. Indeed, programming
language fe. *jres similar to some of ijhe constructions to be discussed here have been proposed
elsewhere (e.g. [EaP and are availabli? in SETL. However, we are not dealing with a programming
language, but a formal system that permits formal reasoning. Emphasis is given to interpreting the
added constructions in terms of LCFin order to make feasible meaning preserving transformations

_ UHHMMMHüi "■-^-' - W J*u. ,_

II ■■WM «11 PI« nil ij4i nfrmmmmmmmmmm • " ■'■'■'■" ■> ■ i'mmwmMmu g ,

Introduction 1 -2

of expresssions. Only the fart that every LCF term also has an interpretation as a computation rule
for the function denoted by it. allows JS to regard it as a kind of program.

The following section provides the logical and mathematical framework as needed in the subsequen:
sections. It gives a short overview of the type free version of LCF and the mathematical theory of
subdomains. Section 3 discusses the axiomatization of abstract data types, their representation in
LCF, and the interpretation of types as heterogeneous algebras. Section 4 is devoted to introducing
elements of a specification language, which include (computable) sets, set operations and bounded
quantification. The algebraic concepts of section 3 lead to methods for defining and simplifying
functions over data types. In section 5, the definition methods are demonstrated in an example that
is based on the data types of LCF terms and is taken from a LCF implementation. Finally, possible
directions of future work are indicated in the concluding section.

The paper is intended to be essentially self-contained. The letters "T.P." that can often be found
instead of a proof are meant to ind cate that a prove has been generated by means of the interactive
theorem prover for LCF. The amount of user interaction required to generate k proof is not
indicated; in general, the proofs for simple lemmas can be generated fully automatically. The
automatic theorem prover component of the system employed for proof generation will be described

in detail in a forthcoming paper [He].

m*~* mmmm^ ti-—- ' ^■- ■"■■ am, -'-'" -- '-*

The type-free Logic for Computable Functions 2- 1

2. The type-free Logic for Computable Functions

The Logic for Computable Functions (LCF) was invented by D. Scott (unpublished) and, in a
modified form, mechanized by R. Milner [Mil, Mi2]. Using this interactive proving system the logic
has subsequently been applied to various problems in the Mathematical Theory of Computation:
schematology, formalization of syntax and semantics of programming languages, proving properties
of programs and the correctness of interpreters and compilers (cf. [AAW, N2] for more recent work
on PASCAL and LISP and comprehensive references). In these experiments LCF proved very
useful for formalizing and proving problems involving (possibly partial) recursive functions.

In the following the reader is assumed to be familiar at least with the basics of LCF. For the sake of
self-containment a syntax of the language is given in appendix A. 1,1.

2.1 Type-free LCF
In this subsection the type free venion of LCF (or tfLCF for short) is described briefly as needed
for the further development. This version of the logic was developed by D. Scott, R. Milner and
R. Weyhrauch [unpublished notes]. Mostof the material and the ideas presented here is essentially
due to them; part of it can also be found in [Sc2].

Essentially, tfLCF axiomatizes one of Scott's models for the X-calculus [Scl]: the domain I which is
constructed over the 4-element lattice T of truth values:

T
/ \

\ /
X

The main characteristic of the domain I is that it is isomorphic to its domain of continuous
functions; thus, each element of I can also be regarded as a function from I to I.

The language of the logic itself is essentially the same as for the typed version (see appendix A.i.l),

with two exceptions:
(a) the restrictions for building expressions that result from the types are abolished;
(b) besides the 4 truth values, the language includes constants I for the "universe", i.e. the domain

of the model, and T for the domain of truth values.

The main problem in extending the semantics of expressions to the type free case is -efining the
meaning of the conditional p » q.r for any term p. This is done by mapping the elenents of I onto
the truth values (this will be made cltarer in the following subsection). The meaning of T s x,y is
not further specified except that T a x,x ■ x. However, it turns out that it can be taken as the join

of x and y (see below).

 -■ - ---- -• " '- ' ._.,._ .

"•"■• - Ml" I HI" < I""»1 ■" I <*lf^^mm*^mm*r • ". • ■ mmm '•■■■■*

The type-free Logic for Computable Functions 2-2

For details about axioms and inference rules of the logic, see appendix A.1.2.

The element x is called undefined, and the element T is called overdefined; all other elements are

called defined. A predicate d can be defined in I such that

d(x) . tl iff "x is defined." dU) • x, i{r) • T

i.e.. d yields the distinction between defined and non-defined elements in 1. d is definable in the logic

by'a mapping onto the 3-element lattice {x, I, T). The definition depends on the fact that the truth
values are isolated elements in the lattice I. For details see appendix A.2.1.

A function I is called strict if it returns x or T whenever the argument is x or T resp.. that is if the

following wff is true of f. v , (a(x) 3 d(f(x))(tt) . WW,

, U called x-strict if f(x).x . and T-strict if l(T).T , f is called total if it never returns x or r

for a defined argument, i.e., if

d(x) •> d(f(x)) • tt

holds. Thus, if a function f is strict and total then d(x) • d(f(x)).

Any function I can be made into a strict one by first applying d to the argument: For

«• :■ [\x. d(x)=»((x), X]

we obviously have

T ifxiT
f(x) ■ x ifxix

f(x) otherwise

In the next section a functional itr will be defined that turns any function into a strict one.

In the following we oefine some standard operators on 1 that will be used throughout the paper.

o :. [Xxy2.x(yU))] function composition

pair :. [xxyz.i^x.y] ordered pair

n, :■ [X x. x(tl)]
n- :■ [\ x, x(ff)]

H :■ [X x y z. p«ir(x(i tt), y(2 ff))]

projection onto first component
projection onto second component

cartesian product

<__* «um MHHMMlHill km i i ' : - i | laiiMlililliijttaii . n m

|r^ •'''»K''m^mrmmmmmmmmmmmmm9rmm^mmmmmmm If IIIIIMI HI li in i - ^m «mmBmmim

The type-free Logic for Computable Functions

:■ [X • b x. n|(x) a pairltt, a(n2 »)), pair(ff, b|n2 x))] disjoint union

2- 3

Id :■ [Xx. x]

u :■ [\x y. T s x,y]

A «■ [Xx y. (d(x) u i(y)) a x a y, ff]
v :■ [Xx y, (d(x; u d|y)) s x » tt, yj

:■ [Xx, x a ff.tt]

identity function

join

logical and
logical or
negation

For piir(x,y) we also use the notation <x,y>.

The standard properties of these functions are easily derivable; for example.

Vx y, ^«x.y» ■ x Vx y. njUx.y» ■ y

Milner and Weyhrauch have shown that u has all the properties of the join operation in a lattice

also with respect to the partial order defined by c In particular. ttuff.T and XUT.T for all x<I.

A strict conditional := . i.e. T i3x,y . T for all x and y . is definanle in terms of the normal
conditional s :

:= :■ Xz x y. z a (z a x, T), (z a T, y)

Since the normal conditional will not be used in this paper except in the join operation, we will
henceforth use the character a to denote the strict conditional.

The propositional connectives are strict in all arguments; they extend the standard functions (for
two-valued logic) to four truth values in such a way that the standard relationships like
x v y ■ - (-x A ^y) still hold.

2.2 Retracts. Domains. Types

The typefree logic essentially axiomatizes &< "universal" domain I. However, one would like to talk
also about domains other than I. like "lists" or "integers." It turns out that they can be "embedded"
into the universal domain; there are subdomains of I that correspond to those particular domains in
a sense to be made precise in the following section. As Scott [Sc2] has shown. I is so rich in
subdomains that one can find a türresponding subdomain for all those domains' or "data types-
computer scientists are normally interested in.

The standard way of defining a subdomain is by using retract!,. A retract is an idempotent function
i.e.. an f < I with (• f ■ f. The idempotency property implies that all elements in the range of a
retract f remain unchanged, i.e. the range of f is exactly its set of fixed points, subdomain Df of I

' - - ^Mttt**^^ . .-. .-

-*~n "WWWPPPI ~mm,mmm*m ■ LiiigiM ninumi

■ V

The type-free Logic for Lc.-nputable Functions 2 4

(tl e range of f). This domain D, can be shown to be a complete lattice. In the remainder of this

paper, the term "domain" always means "subdomam of I as defined by a retract." Very often the
domain and the function (the retract) defining it will be confused by using the same notation for
both; however, from the context it will be clear what exactly is meant. For emphasis, we will sav
retraction if we mean the/uncfion in particular.

The category of retracts

It may be helpful to look at retracts from a categorical point of view. The retracts of I form a
category R in the following way:

- The objects of R are the retractions in !.

- A functions f < I is a morphism from the retraction r to the retraction i iff f o r ■ s.
- Composition of morphisms in R is just composition of functions m I.

Obviously. R is a category. Notd that two functions f and g in I will be identical morphisms in R If
they agree on their source domain ("source retract"), i.e. if for . gor. An identity on a retract r is a
function F with For i r. We write Idp for the identity on r.

Let r, s be retracts. Dr is called subdomain of D8 iff sor . r , i.e. iff the fixed points of r are also
fixed points of s. 0P is called retract of Ds iff «or ■ r and ro» • r .

A particular retract is fhe «ruth value domain T. Trivially, the universal domain I is also a retract.
However, the property of »jeing a retract cannot be proved; the corresponding retractions

and
I • [*J. T u (J -♦ J)]

are rather part of the axiomatization of tfLCF. Obviously, "retract" and "retract of I" me?.n the
same ching.

It should be noted that R is not the category of those subdomains of I that are defined by retracts;
different retractions can define the same domain but will be different objects m R. For example the

retractions T and ittru« (see appendix) both define the domain U,l,f,Tj but are completely differenr
functions. However. T and istrua are isomorphic in the category R. Incidentally, if two domains are
isomorphic one of them need not be a retract of the other: for instance, it is

T o ittru« • istru« and istru« o T ■ T

i.e. T and istru« are subdomains of each other, but

ittru« o ': t jgtru« and T © ittru« * T

mmm mm* — ■-

imppp«« w*^*mn

The type-free Logic for Computable Functions 2- 5

Thus neither of T and iitru« is a retract of the other. This discussion shows how retractions that
define the same domain are related in the category R:

Corollary 2.1: For retractions r and t, if Dr ■ D, thtn r and ■ art isomorphic, that is, from a

structural point of view, they cannot be distiguished.

The category R has many useful closure properties we are going to exploit.

Lemma 2.2: R is closed under ♦, « and -*, i.e. if ■ and b are retracts, then so are •♦b, ixb, and •-»b.

Proof: by T.P.

Lemma 2.3: R is cartesian-closed.

Proof: We have to prove that [r -»[• -»t]] and [r«« -»t] are isomorphic in R for any retracts
r, s and t. Lat F, G be defined by

F ■ [Xf x. f(n, xHnz x)]
G • [X g r s. g«r,8»]

The T.P. proofs for

and

are almost straightforward.

G o F ■ Id(R^(Swp]j.

F o C ■ Id[R.s 4 p]

Lemma 2.3 is the basis for what is commonly called "currying". It allows to restrict attention to
monadic functions.

Let the function str be defined by

str :■ [Xf x. d(x) a f(x), X]

By T.P. we can show that «tr turns any function into one that is strict (with respect to the first
argument) and that it is a retract. This shows that the set of strict functions is a proper subdomain
of I.

A domain is called flat if it contains, besides k and T, only pairwise incomparable elements. For flat
domains there is a computable equality relation "■" with:

d(x) ■ tt, d(y) • tt, x ■ y |- x»y • tt
x-y ■ tt |- x ■ y, d(x) ■ tt, d(y) ■ tt

I
i

LL *. .
■ -,..— — . - .-I,^^..>J ^taHfauälmiai^^

I LI P •! JlMipiWWI^WP^P^^W -—^———^-^——^^-

The tvpe-free Logic for Computable Functions 2-6

In many cases it is very convenient to use the (computable) equality instead of the equivalence ■
since it may appear inside a term and thus gives greater expressive power.

Lemma 2.4: If F ■ [ocf. [Xc. t(f(e))]] and G • [Xe. [*§, Mi)]] , where \ is any term, then F • G.

Proof: T.P.

Essentially, the lemma means that constant parameters can be bound "globally", i.e. they need not be
passed on with every call. The lemma will be used quite often in the remainder of the paper

without being referred to explicitly.

) .;

'■ - II« Ml ^^ g^ut^äumätääimäMää^i^^m Jr^Mfc— ■■.,-,i..:.. »^ ,
:-""-' ■■'■ —

Ff ' '■'^MMvwnvPWiHPPMVwmpmimMa n —mmmmwßmmmmmm*^** m,mmm,m <m *

Abstract Data Types in the Type Free Logic 3- 1

3. Abstract Data Types in the Type Free Logic

In this section we introduce data types and discuss the representation of data structures in tfLCF.
We investigate properties of data types by looking at them fiom a more algebraic point of view,
which allows us to derive various function definition schemes. The basic function definition method
is illustrated in an example dealing with the translation of arithmetical expressions from infix to
postfix form.

What is intuitively meant by the notion abstract data type? There is a common understanaing that,

in programming, a data type is not just a set, but also comprises information r.bout the structure of
the elements and how to construct them and to operate on them. This can be done in an abstract

way, i.e. the only information available is the set of primitive operations (constructors, selectors,
recognizers) and relationships between them; it does not matter what the elements of the type look

like and how the primitive operations are implemented. In the context of a formal calculus the
relationships between the primitive operations are expressed by axioms.

The presentation concentrates on generic recursive types; however, in subsection 3.4 extensions to
non-free types are discussed.

3.i Data Type Definitions

We start with discussing/r« data types. The type system will be extended later to comprise a wider
class of types. A type definition is made by listing alternative subtypes. A subtype is either a constant
or a composed type. Composed data types are defined best by their abstract syntax [Mc], using
constructors, selectors and recognizers to describe the structure of the type. In a more formal BNF-
like notation (using "constr" for constructor, "sei" for selector, and "dt" for data type):

<typejdef>
<subtype>
<comptype>
<constant>

*- <type_name> :- <subtype> { | <subtype> }«!
♦- <constant> | <comptype>
«- <constr> (<sel|>:<dt|>1 <seln>:<dtn>)
«- <identifier>

with the restriction that the names of all constructors in a type definition and all selectors in one

composed type have to be distinct. A data type definition may be recursive, that is, any of the dt, in

a subtype may be the name of the type to be defined. Also mutually recursive data type definitions
are permitted.

For example, the data type "sequence (linear list) of atoms" can be defined using this formalism by

Seq :• emptyseq | mKseq(hd:atom, tUSeq)

Strictly speaking, this data type definition is a type scheme, that is,

_ i ■>••-'—"•-■ ■ •'" "■" , ..^fl

' "■ ^■PÜPiPPMWmilPHMPIHH 1 ' '■ ' ',l1 ",l1 ■■,l '■iPi""i mmmmmmmm

Abstract Data Types in the Type Free Logic 3-2

t

seq :■ emplyssq | mKs«q(hd:dtyp«, tUtaq)

defines a type "sequence of elements of type dtyp«" for any data type dtypr This will be made more
precise in the following subsection. Beside i«q we will use other standard data types (type schemes)

like binary trees, natural numbers, and pairs, defined by

bintr«« :■ mkbt(sub:dtyp«) | compUirsbintro, 8«e:bintrM)
nnutn »■ 2«ro | iuc|nn:nnum)
dpair :■ mKptir(fir:dtyp«|, (•c:dtyp«2)

3.2 Representing Data Structures in tfLCF
In section 2 it was explained that retracts can be regarded as the "types" in the type-free logic. The

data types are now to be represented in LCF in such a way that the resulting terms are retractions.

What exactly is implied by a r'.ata type definition? Intuitively, a data type should have the following

properties.
a) A data type is the disjoin; union of subtypes. A subtype is either a constant or a composed

subtype. For each subtype there is a predicate (characteristic function) which will be named
"is_const" or "is_<constr>" resp. These recognizers permit to decide membership in one of the

subtypes relative to the whole data type.
b) Each constructor is a one-to-one function; in particular, the corresponding selector functions allow

to "retrieve" the respective arguments of a constructor.
c) A subtype has to be embedded explicitly into the type by a constructor function. For example,

"atoms" are not lists unless they are "converted" into lists. This helps us to keep all data types

disjoint.

These statements can be expressed more precisely in terms of LCF axioms.

Definition 3.1 (Axioms for | f -ric data types):

The data type definition

typa :> constant | constantm | comptyp«| comptyp«n

with
eomptyp«k :■ comp^s«^^^!,... .stl^dt^i,) for k»l,...,n

is considered to correspond to the fixed point equation

(1) typ« ■ [a p.[\ x. ia.conatmt^x) » x,.. ,it_eon8tintm(x) s x,
is.compjlx) a eompiWtnUdnM),.. .dti^wl^U))),
is.con>pn(x) a compn(dtn,{««!„ | (x)),. . ,dtnjn(8«lnjn(x)))l

where dt'^-F if dt^typ« and dt'^dl^ otherwise, and for ij-l^m; k,!»!,..^

——————— ————

Mtt^HMMfeM^Mi^MM i ,nii»'i— —

mmi***"*****^^***!!**** Hm m-mmrmrm

Abstract Data Types in the Type Free Logic 3- 3

(2)

(3)

d(constant,)
is.constant^constant,)

■ tt

■ tt

dicomp^dtn^x,), . . ,dtk)K(xjk))) • M4riM|)) * . .Ä ä(eltk)k(x/k))
d o comp, • is.compj o cotnp,

(4) Vx. is_compk(x) ■> i8_eomp|{x) ■ ff
Vx. is.const^x) •> is_constj(x) » ff
Vx. is.const^x) •> i8_compk(x) ■ ff

(5) do is_compk

d o ii.const,

d o is.const,

■ do is.compi

■ do is.constj
■ do i8_compk

(6) d(compl(x,,...lxm)) «> i«l,r(comp,(X|,..,xn,)) • x,

for Ml
for i/j

for r«l,..,ni

Axiom (1) is a mere transcription of the type definition. It contains the basic information about the
type structure; therefore, it will be called the characterizing function of the type. The goal is to prove

that it is a retract. However, this cannot be done without further specifying the primitives occurring
in (1) by adding axioms expressing the statements a)-c). They make sure that the recognizers for the
subtypes are complementary (axiom 4) and tliat they are defined exactly for the elements of the type
(axiom 5). Axioms no. 6 state the generic nature of the type (This is equivalent to saying that
constructor and selector functions are essentially tupling and projections). All constructors are
assumed to be strict in each argument and total for arguments of correct types (axioms 3).

Example: The data type definitic.i for (homogeneous) sequences

Stq •' tmptyuq | mki«q(hd:Atom, tl:S«q)

will generate the axioms

(51) 8«q ■ [e£S. [Xx. is.«mptyssq(x) > emptysaq,
ii_mk8tq(x) a mKs*q(itom(hd(x)), S(tl(x))),
All

where atom is the characterizing function for the data type Atom,

(52) dUmptysaq) ■ tt
(53) is_emptyseq(emptys«q) ■ tt
(54) Vx y. d(mks«q(a1om(x), 8«q(/))) ■ d(atom(x)) A d(s«q(y))
(55) d o mks«q ■ ia.mkaaq o mkseq
(56) is.smptysaq ■ •< o is_mkseq
(57) Vx y. d(mk8«q(x1y)) •> hd(mk8«q(x1y)) ■ x
(58) Vx y. d(mks«q(x,y)) »> tl(mk8«q|x(y)) ■ y

Any type t, that occurs in the definition of another type t| is considered a base type for t.. The notion

----- in^r^^-'"

^p vfimmmmmmimmmmm ' "■-■" — -" • •*u~' 1 ' ——-———■

Abstract Data Types in the Type Free Logic 3-4

"base type" does not imply "basic" or "simpler", on the contrary, since mutual dependence of data
type' is permitted, tj itself may be a base type for t, (hence the relation "is-base-type-of" is only a

quasi-order). If data types are mutually dependent the corresponding characterizing functions forn
a system of mutually recursive functions. Those base types that do not depend on the type to be
defined are called generating types (in fact, they generate the type in an algebraic sense; see the
following sub-section).

At this point it has to be clarified what it means for a characteristic function to be a retraction. The

logical type of typ« is (iyp«-Myp«) In order to make it a function in I the primitives (constants,
constructors and selectors etc^ !-^ve to be specified as elements of I, This amounts to defining a model

of (the axioms describing) the data type in I. However, the retraction property can be proved just

from the axioms; more precisely, what can be prove;- is that typ« is an "abstract retraction", meaning

that every model is a retraction. All the models will be isomorphic retractions (in the categorical
sense). Thus the abstract refraction represents an equivalence class of objects in R.

It should be noted that the standard representation of data types in a LCF-like language is by

"domain equations" (involving ♦ and x ; see [SC2J). For example, the data type S«q of sequences of
atoms is completely specified by the least fixed point of the equation

(i) S«q ■ «mptyscq I« (Atom in S«q)

(where :♦ and :* are strict versions of ♦ and x) given a representation of the type Atom and the
constant «mptystq. However, we do not follow this line. The syntax of data type definitions, as given
in the preceding section, involves constructors and selectors; they are the primitives for defining
functions operating on the data type. But they do not appear in (i); in fact, (i) is an implementation
of the data type S«q (by functions in I) rather than an abstract definition; the primitives are hidden
in the construction of sum and product. In order to keep the previous higher level of abstraction
the primitives have to be axiomatized, as has been done for special types in [Nel]. Although an
axiomatization as in definition 3.1 is by far less elegant than a definition like (i) it is more
appropriate for the purpose of program specification.

Incidentally, this discussion shows that every (generic) data type has the following standard model:
The data type definition

typ« :■ constant | | . . . | const8ntm j eomptyp«, |.., | comptyp«n

with
comptyp«k :■ eomp^««!,,, rdt,,,,««I^idt^) for k« 1 (...,n

is simply ttanslated into
typ« :■ tt :♦...:♦ ti :♦ compi :♦...:♦ compn

with
compk :■ (dtm :x . . sx dt^) for k»l,...,n

It is easy to figure out what the primitives look like, and the proof that the axioms of definition 3.1
hold is straightforward.

MMMM ttÜ ■— ■ ■ ■■■lawiliMdÜi ' ■ --

-^--^. «ipppp»"""" ' '! »I1««! MM I IIUWUI I III

'

Abstract Data Types in the Type Free Logic 3- 5

Ltmma 3.2: typ« ü strict.

Proof: Simple consequence of the fact that all functions involved are strict (by definition).

Theorem U; <yp« !s a retract if all base types of typ» are retracts.

Proof: See appendix A.3.

From the characterizing funct.on of a type we are going to derive a variety of function definition
schemes and functions. !n particular, a type predicate (characteristic function) isjyp« can be derived
which yields tl exactly for the defined elements of the type, i.e. which satisfies:

and

Vx. isjyp«(x) ■> typ«(x) • x
Vx. is_typ«(x) •> d(x) ■ tt

typ«(x) ■ x, dlx) • tt |- itjyp«(x) ■ tt

This predicate will be discussed in greater detail in the following subsection.

For a recursive data type we can derive the standard structural induction rule from the

characterizing function (the retraction).

Theorem S.4 (Structural Induction):

For a recursive data type typ« defined by

typ« :■ constant) |. . . | constant,,, | comptyp«| | comptyp«n

with
comptyp«K :■ comp^s«^,^,,... ,8«lki(l:dtkj(,) for k»!,...^

there is an induction rule that allows to conclude

Q !• Vx. is.typ«(x) ■> P(x)

(where the conclusion is meant to be a wff involving x each of whose awfs is prefixed by

Vx. is_typ«(x)..)from the following antecedents:

(a) For each constant constint, (i"l,..,m)

Q |- PUonstantj)

Itei mmm^^^
— '- " - **■"-——-- ■ -■'" '■

wm^mmmmmummmm mmmm*fm mmimm^m mmmmmmmfmmmmi'

Abstract Dat- Types in the Type Fre; Logic 3 - 6

(b) For each composed subtype comptypek (K»l n)

xuith an antecedent H(ykjp) fn each recursion arguments, i.e. for those arguments of compk xuith

dt«, ■ typ« .

Proof: see appendix A.3.

For example, the induction rule corresponding to the characterizing function s«q is

PUmptyi«,) P(y), d(mks«q(xry))i« |- P(mK««q(x,y))

Vx, i«.s«q(x) ■> P(x)

Note that the constructor arguments in thfl induction step need not be restricted by type predicates

(the restriction is implied bv the deflnedness predicate). A discussion of other forms of the induction

rule that involve the retraction can be found in appendix A.3.

As mentioned above, the tvpi definition for »q is a type scheme, defining a data type for any type

dtyp.. This means that in ihe corresponding retraction s«q the retract atom can be replaced by any

other retract. We therefore can dcfne the functional

iMof :• TV typ«. [o<S. [Xx. it_«mpty»«q(x) a •mpty««ql •«qot i» iyp«. toi j -jyjj i mk8,q(,yp.(hd(x))| S(t|(x)))|

By theorem 3.3 .«qoUtyp«) is a retract for any retract typ«. In other word. e«qof maps retracts on

retracts. Obviously, any generic type construction yields such a mapping on retracts. Properties of

these functional will be studied in the following subsection.

3 3 Algebraic Interpretation of Data Types
Interpreting data types in terms of universal algebra helps to clarify certain concepts and properties.

As a data type may involve several subtypes and functions of heterogeneous type the appropriate

notion is that of "heterogeneous algebra" (Birkhoff ano Lipsom [BI]; see also Higgins [Hi]).

Definition 5.5 (Heterogeneous algebra)

A heterogeneous algebra A consists of
- a family (A,)^ of (non-empty) sets; the Aj are called phyla.

a family (WK of operations; for each fk there is an associated tupel

ti . I \ nf alamenrc nf 1 ind«x(< - (im, • • JUi 1MM) of elements of J.

II JM|ii..|HP ' M . ■- 111 ' I !■ Ill 111 Ulli« Ml l..!

"

Ahicract Data Types in the Type Free Logic 3- 7

The index of the operation fk indicates the phyla from which the arguments of <„ are taken (i.e. the

argument types) and the target phylum. nK is the arity of l„ (possibly 0). In the present framework,

the index is simply the type of the operation.

The tuple (J,K, (indexk)k(l<) is called the signature of the algebra; it characterizes the basic structure.

Algebras are called simitar if they have the same signature. As the structure of similar algebras is
comparable, it is possible to define structure-preserving mappings between them.

Definition 3.6 (Homomorphism)
Let A = ((A^j, (fkW and B = ((B,)^. ^U be sim'lar algebras. A homomorphism h from.

A to B is a family of mappings (h,)^j such that hj maps A, into B, and for each MK

hjnk.lM«!' • • -«nt.)) " Bk^jll«!). ■ ■ -V^nk))

where indexk ■ U|i ■ ■ >ink5 ink.)) •

As mentioned in the previous section, a data type (or; its domain) forms a complete lattice. So, the
appropriate algebraic structure is that of a heterogeneous lattice-algebra. Although the lattice
structure of the domains consider'd here is not very interesting - apart from the elements x and T
the domains are fiat - we have to take it into account by requiring that all functions preserve the
lattice structure. However, because of the simple structure it is sufficient to require that all functions
involved in the algebraic structure, i.e. the operations, are strict and total. Similarly, all the
mappings hi constituting a homomorphism have to be strict (it is, however, not necessary to assume

totality). Hencefor.h these assumption will be made throughout the remainder of the p<tper.

Example. The data type S«q, regarded as a heterogeneous algebra, consists of the two phyla atom and

s«q and operations

emptyssq: 0 ■» $«q (nullary)
mkseqs atomxs«q ■» seq.

The axioms in the previous section indicate that a data type corresponds to an absolutely free (or
"generic") algebra which is generated by the constants, the base types and the constructor functions
as operations. As it is well-known in algebra, an absolutely free algebra has characterizing universal

properties:
(1) There is (upto isomorphisms) only one absolutely free algebra for given generating base types and

operations.
(2) Any homomorphism from an absolutely free algebra F into another algebra A of the same type (t*.

the algebraic sense) is determined uniquely by functions mapping the generating sets into A.
Properties (!) and (2) can be proved in LCF for each (free) data type without relying on an
algebraic interpretation, It is these properties we are going to exploit.

 -- -- mm*ämm
mmmmmm

Mteria — --■ -- -...^^..^

_<ui »mmm .miuiip in uwiivunii imm w^mmmrmr' ——■ >""* ' '■

Abstract Data Types in the Type Free Logic 3 - 8

In order to define a homomorphism it is sufficient to map the base types into target sets and the

constructors onto operations on the target structure. Then, by property (2) there is a unique function

that homomorphically extends the base function{s). Due to the fact that in LCF homomorphisms can

be "pushed through" conditionals, homomorphic extension is representable by a simple modification

of the function characterizing the data type; we have only to replace the base type retracts by the

base functions and the constructors by the operations on the target algebra.

To continue our example based on the data type saq, we notice that a homomorphism from s«q into

an appropriate algebra is determined completely by

a) a constant that is the image of «mptystq,

b) a function that maps the base type atom into the corresponding set, and

c) a binary operation on the target algebra.

In LCF, this is written as the functional

Sfun :■ [X f const op. [et S. [Xx. ii_«mptyt«q(x) a const,
is.mkstq(x) a op(f(hd(x}), S(tl(x))).

Assume R ir the target structure with phyla ^ and R2, c an element of R2, op : R|xR2 -» R2 a binary

operation Jid fun a function from atom to R^ Then property (2) above yields the following-

theorem:

Theorem S.7: F :■ Sfun(fun,c,op) is the unique homomorphic extension of fun with respect to c and op,
i.e., it is the only homomorphism from teq to R with F(«mptys«q} ■ c and

F o mkstq • [Xx y.op(fun(x),F(y))].

The proof is straightforward; it crucially depends on the "freeness" of the type definition (i.e. axioms

(S7), (S8)) which is necessary to estab!i?h the homomorphism property of F.

A simple example is the type predicate (characteristic function) for s«q: The function is_s«q: 8«q-»T

with
is.seqUM i/ s«q(x)ix and d(x)itt

is definable simply by extending the type predicate is.atom of the generating base type to a

homomorphism into T:
is_stq ■ Sfinds.atom.tt.A)

A further property of the homomorphic extension functional Sfun is that it carries over a structural

induction rule from the source domain. Eg for sequences:

P(c) P(y), dCoplx.y))!« |- PMx.y))

Vi. ia.s*q(t) •> P(F(i))

 ,

— -"■ ----*—

m*mimm*mmi~~~m•*« " *"•'**>"** tm^^^^m immm \m^^*^*m^mm^-^^^^mi^imr^m^^^^v**^mi

Abstract Data Types in the Type Free Logic 3- 9

ras

thus permitting induction on (target) domains originally not structured appropriately.

The mathematical content of the discussion on interpreting data types as absolutely fiee algeb _

and the homomorphic extension functional amounts to a well-established fact known from category
theory: the correspondence between free constructions (free objects) and representable functors. The

pair (Sdom.Sfun) defines a functor from R into a subcategory of R of "suitably structured" retracts

The point is that this correspondence can be established within the framework of LCF. Due to the

fact that everything is represented as LCF terms, objects and morphisms as well as functors, it allows
to carry out mechanically assisted proofs rather easily. For the time being, theorems like the one

mentioned above have to be proved in LCF for each data type separately, although the structure of
the proof is always the same. Hovcver, there is some hope that formal proofs of general statements
about, e.g., all generic data types v.ill be feasible using a metatheory of LCF being deveJoped'on the
basis of representing the LCF notions as data types (see section 6 for part of the data type
definition).

The usefulness of homomorphisms as a structuring principle has been observed elsewhere, in
particular in the context of program translation [Mo, MiW]. However, though homomorphic
extension is a rather powerful sehen for function definition it is by far not powerful enou-h. It
turns out that properties similar to those proved for homomorphic extension can be shown for a
more general class of definition schemes; this will be discussed in section 5.

3.4 Non-generic Data Types

Although the class of generic data types covers many of the structures needed in programming it is

not comprehensive enough. Pelaxing the restriction to generic structures is tantamount to, in
algebraic terms, allowing to add i. rther relations to a type definition. In a way, the generic data types

can be regarded as the "context free types," and adding relations as "introducing context." In the
context of this paper it is sensible to consider only relations that are expressible as recursive
predicates.

The general method will be discussed by means of an example. Let norepU) be a predicate on

sequences which is true iff i does not contain repetitions of elements (the explicite definition is
straightforward). Then the data type norepseq of "sequences without repetitions" is just the
restriction of ««q by nor.p. The new type can be represented in the following way: Whenever an

element is added to a sequence it is checked first if it already occurs in it, in which case nothing is
dono. That is, if the constructor mKseq is modified to

mknorgpssq :■ [Xx y. norep(mks«q(x(y)) a mks^qfo,/), y]

then all sequences constructed by mknorepseq have the "no-repetition" property, i.e. they satisfy the
predicate norep. This is just another application of the homomorphic extension functional: The
range of the function

MUMiU^. -—__.^,

mwm ^—w-—- 1 ■"—•■■—■- 1 - ■ ■' -

Abstract Data Types in the Type Free Logic 3- 10

norepseq H S<un(dlyp«. emptyseq. mknor.pseq)

■ s exactly the desired subset of l»qu«n«l without repetitions (it is obvious that only elements of seq
are constructed) In other words. norep5.q lepresents ordered sets of elements of type dtype.

Obviously norepseq is a retract of seq; Since norepseq defines a subdomain of s.q It U also a rttraet
of I which means that norepseq makes sense (in the present context) as a data type. This

cons'truction for new retracts works at least in the case where a new type is denned by a restrictive
predicate The full extend of the method, however, needs to be explored further. It is conjected that
L data type (given a reasonable definition in terms of computability) is representable as a retract ot
a generic type this would parallel the fact that, in formal language theory, any recursively

enumerable set is the image of context free :ets under suitable mappings.

3 5 An Example: Infix to Post-fix Translation
As an example we show how to generate a function that translates anthmetical expressions from

.nfix to postfix notation (th« sample was suggested by J.Allen). The abstract syntax of the

structures is defined by

exp :» mKlexp(1e:term) 1 mksexpUupexp, si^-.Urm)
term :■ mkfterm(tf:fact) 1 mkplerm(pr1:term, prefect)
fact !■ mkvtaetdvivar) 1 mkefacUfewp)

and post :■ mkvpost(pv:var) 1 mksum(s, :pot\, 82:post) | mkprod(p, :po«», p2:p08t)

which may be thought of as abstraction from the "concrete" infix grammar

<exp> •' <oxp> '♦ <term> | <term>
<term> :• <term> '« «act> | <fact>
<fact> :■ <var> | '(<«xp> ')

and th«3 nostfix grammar

<post> :« <var> | <post> <post> '• | (post) <post> '«

Now the problem is 'o find » funcnon that translates variables into variables and infix-sums and

mftx'products into postfix-sums and postfix-products resp, This is a simple example of a
homomorphism between heterogeneous algebras. The algebra Exp includes the 4 phyla exp, term, fact

and var the algebra Post the phyla post and var. The homomorphism maps exp, term and fact into

the phylum post and var onto var, that is, the homomorphism consists of 4 mappings

id: var -♦ var
Texp: exp •* post
Tterm: term -» post
Tfact: fact ■» post

_ -,_ —- - J^^-^»^^J. wy*

mmmmmmmmmmmmimmrwmm •"•"■" ,IM Ul11 ii i nun». ■ i ninMim

——

Abstract Data Types in the Type Free Logic 3- 11

These mappings have to respect the corresponding algebraic operations

mksexp: txpxUrm -» exp <-> mksum : po«txpo»t -» post
mKpUrm: Urmxfaet -♦ t«rm <•> mkprod: post«post -> post
mkvfict: vtr -♦ fiet <-> rnkvpost: vir -> post

i.e., they must satisfy equivalences

TtxplmksoxpU.y)) ■ mksum(T»xp(x), Tl«rm(y))

etc. Since the distinction between «xp, t«rm and fact disappears in Post, the "operations"

corresponding to mkt«xp, mkfterm and mksfact are just identities on post. Having established all the

algebraic corres|, ondences, homomorphic extension immediately yields the desired functions (slightly

simplified);

T«xp • [oiE. [Xx. isjexp(x) = Tterm^elx)),
is.sexp(x) s mksum(E(sU|(x)), Tterm(su-,(x))),

I]]

Ttarm i [o^F. [Xx. is.fterm(x) a Tfact{tf(x)),
is_pterm(x) a mkprodlFlprilx)), Tfact(pr2(x))),

Tfact t [Xx. is_vfact(x) = mkvpost(var(fv(x))),
is.etact(x) ■ Tflxp(fa(x)),
A]

^ .■^-^> ^MMMi ■WiiMifrtt tnj-ii in' iinf'' ■ - -^ ■ .-

"•W^^WWWWK mmmmmmmmmm^im ^

Elements of a Problem Specification Language 4 - 1

4. Elements of a Problem Specification Language

This section is devoted to discussing a rudimentary "problem specification language." The language
consists of the terms of typed LCF, augmented by certain constructions that are considered nr.tural
or helpful for concise specificauon of problems or, more precisely, functions over data types. The
main extension is a first-order like calculus that enables to talk about sets and quantification in a way
consistent with the computational logic, ^s an extension of the LCF terms in their typed form. Using
.he definition techniques developed in the preceding section, the added constructions are interpreted
as: LCF terms which gives them the intended meaning as computation rules or "programs."

4.1 Sets, Set Operations and Quantification

Syntax
Types. The language is tyoed, i.e. a type is associated with each term. There is a predefined type:
T, the domain of truth values. New types can be defined explicitly as data types (see below). For
each type t we have a type s«tof(t) denoting the powerset type "sets of elements of type t". More
formally:

Definition 4.1 (Types):
(1) T is a type.
(2) Data types are types.
(3) If t, and t, are types, then (!,-><,) is a type (the type of functions from X, to \).

(4) If t is a type then s»tof(t) is a type.
(5) These are all the types.

Types built by (4) are called set types. No data type is a set type. Although types are not sets, we use
the type name also to denote the set of individuals of that type. There are no equalities between
types; different type expressions, in particular different type names, denote different types.

Note the distinction between "types" and "data types". Types are the sorts in the logic, whereas the
notion data type is used more in the sense of data types in programming languages which involves
certain assumptions about the (internal) structure of the typed objects. By (2) in definition 4.1 data
types are assumed to coincide with certain logical types.

Terms. We use the notation s:t to aenote a term t of type t. If 1 is a set type then £:1 is called set
term. All LCF terms (I - 6) are terms of our language (cf. [Mil] and appendix A.1.1). Beside the
LCF terms the language includes terms for expressions involving sets and bounded quantification
(7-9).

Definition 4.2 (Terms):
(I) The constants J., tt, ff, T are terms of type T.

mmmm
 - MAM **, ■ liMiri'iiiriiiiilii

I"1"1 ' ^ mmmmmmmwimmfm """' ■ '"•"■" i i ii b HI» mi **•

Elements of a Problem Specification Language 4-2

(2) Any identifier is a term.

(3) If B-.^-MZ M»d x:<i »W terms then •u)!t2 's a te,m

(4) If Rrt| is an identifier and lit] is a term then [>.x.i(x)]: t|-»t| is a term.

(5) If psT, q.rst are terms then (psq/M is a term.
(6) If x:t is an identifier and «:» a term then [*x.8]:t is a term.
(7) II X:t is an identifier ano S:se1of(t) a set term then (x<S):T is a term.
(8) If x:t is an identifier, S:se«o((t) a set term and W-»T a predicate term then (Vx<S. P(x)): T

and (3x<S. P{x)): T are truth value terms.

(9) These are all the terms

As usual parentheses and brackets can be omitted as long as parsing is unambiguous. The notions

axuff and wff are used as in typed LCF (see appendix A.I.I).

Note that the use of the sign V for quantification in (8) cannot be confused with the use of V m
abbreviations for Xx.t.Xx.s. The former always requires a restricting set whereas the wff-V is never

restricted.

Semantics
The aim is to interpret the extended typed language in the .ype free calculus. This is done by
showing that every type corresponds to a retract in tfLCF. Since the representation of data types as
redacts has already been discussed, it remains to show how sets are to be represented. Based on the

set representation we then have to find interpretations for the set operations and quantifications.

The most common way of introducing sets into an environment of structures is by representing them

as sequences (linear lists) of non-repeating elements. As we are not interested in axiomatizing set

theory but rather look for convenient definition of function meanings we rely on such a
representation in LCF (cf. [Nel]). It will turn out later that sets are needed mainly as a conceptual
intermediate step which can be eliminated in actual "programs". Besides, representing sets by
sequences fits nicely into the algebraic framework. Actually, what is to be represented is a rather
restricted kind of sets: we are only dealing with homogeneous and computable (mainly even finite)

sets. However, the required homogeneity is not really restrictive as one can always define the "sum

type."

The first step is to define a membership predicate x«S for sequsnees, yield.iig I if x occurs in S and ff

otherwise (»f K I» defined) It is definable as a homomorphism from S«q into T by homomorphically

extending equality on atoms;

< :. [\x. Sfun([Xy.x«y], ff, v)]

Note that (is defined for appropriate types only; if x docs not have the same type as the elements of

S. » is undefined, thus also x(S.

m**. muttk uMum
—-—■■ .

■■»■••■«»«■"W«^ -w- mmm ■■",""'

Elements of a Problem Specification Language 4 - ?

Using the predicaf < a function U, on atom i scq is definable by

U, :■ [Xx S. x<S a S, mhseqU.S)]

u, guarantees that elements already occurring m a sequence will not be added; sequences built up

using U, are those directly representing sets, if S«q is the u.ta type of sequence» of elements of type

t, the type s««of(t) is the image of S«q under the homomorphism

56 t :i Sfun(id, «mptys^q, U,).

Moreover, set is a retract on soq; it defines the same subdomam of t«q as the function no apseq
discussed in subsection 3.4.; s«tof(t) corresponds to the subset of sequences without repetitions of

elements. (However, it is nor -. subalgebra of 8«q.) From this it UMows that functions defined on Seq

are equally defined on setol(t). Furthermore, the (generic) structure of Seq can be used for defining

functions on setoUt), More specifically, we have the embedding iiet: 8«tof(t) -♦ teq with

set o iset ■ idt(t '

Thus, any function h seq -♦ D can be restricted to set by composing with iset. In this way, the
predicate < defined above becomes the set-theoretic element relation. Similarly, we obtain an
interpretation of quantified terms by applying homomorphic extension to any predicate P. Let

operators all and exist be defined by

Then

and

all :« [XP.Sfun(P, tf, A)

exist :i [XP.SfunIP, ff, v)

Vx<S. P(x) !■ alKP.S)

3x<S. P(x) :« exist(P,S).

Note that this form of quantification is well-defined if S and P are defined; since x or T is never an

element of a set, it will not appear in quantification', (and cause a non-defined truth value).

Furthermore, a quantified term denotes a computable function if the predicate P and the term
denoting the restricting set S are computable, which is guaranteed by the way terms can be built up.

Using these constructs set inclusion is easily expressed by

S, e Sj ii Vx(S|. xtSj

and similarly set equality by the "extensionality" property

S, . S, :• (VxtSi. xtSj) A (Vx^Sj. x(S,)

Note again that these relations will be undefined for sets over different types. The empty set is the
image under set of the empty sequence; we will identify the former with the latter.

 ÄÄ, ■HMMMMft --^i, .■■-■■

mmmmmm • I Kia.BMiiiwn immtf^mmmm^n . ■. mm mmm^^m^jmmmmmqmi^**^^^*

Elements of a Problem Specification Language 4-4

^ i

The function u,, taken as a function from tx««to<(t) to ••tofl«), inserts a single element into a set;

extending this function homomorphically in the first argument yields ordinary set union u. As a

short hand notation we will use un for n-ary union (n-l-fold composition of u).

Similarly, set intersection and set differeme are defrxble by means of the function
ramov«: tl «setofitl) «• B«tof(U) that removes an element froi set. rtmov« is defined by

remove II [Xx s. x*s s r0m(x,t), s]

where rem is the endomorphic extension of

r«m, :■ [Xx y. x«y » {}, {y}].

If { x | x<S } is used as an equivalent notation for S, the term language can be extended to include
sets that are characterized by predicates. However, one has to be careful: a set { x | P(x>) need
not be constructive even for computable P , if no domain is indicated. Therefore, predicates for set
formation have to be restricted to those based on set expressions, i.e. elementary predicates ><S. All
other predicates have to be restrictive in the sense that they restrict a set to a subset ("filter

predicates").

Definition 4.? (admissibL sif predicates):
The set of admissible set predicates is defined by
(1) The elementary predicates x(S are admissible set predicates.
(2) If P is an admissible set predicate and Q any predicate, then PAQ is an admissible set

predicate.
(3) If P and Q are admissible set predicates, then PvQ and P\Q are admissible set predicates.

Lemma 4.4:
If P and Q are admissible set predicates, then

and
{ x | P(x) v Q(x)) ■ { x | P(x) } U { x | Q(x))

{ x | P(x) A Q(x)) ■ { x | P(x) } A {11 Q(x) }

It can be shown that the operations defined here have most of the standard properties. However, the
well-known problems caused by only partial recursive predicates still remain. For example,

- (Vx<S. P(x)) ■ 3x<S. ' P{x)

is true only if P is total on the domain under consideration.

It is obvious that the representation of sets and set operations provide a model for a theory of (finite)
sets. In particular, a first-order like calculus based on the restricted quantifiers is available for

^^^^^

 —

iirtiiiiigrifiMiiiii in- - -•- - - ilteu

' " MII»IIIIIIMMII»UII '■"'"•'""i '"V"~ mmm^*'lim*i^mm*~~*mim

Elements of a Problem Specification Language 4- 5

proving propert.es of funct.ons. Note that th.s calculus tl construct.ve In the sense that all

expressions denote computable functions (cf. [Co]).

As the type system does not include basic set types, sets have to be generated from objects that are

not sets There is a canonical way of denv.ng set-valued functions from types. Recall that a type t,

is a base type for a data type t, if it occurs in its definition. For each type t, that is a base type for t,

a funCtl0n ..LofJ,: t, -. NttHM

i, obtained by homomorphically extending the mapping base-type - singleton-set. More precisely. In
the homomorphic extension constructors are replaced by set union (with appropnate ar.ty); those

parts of a structure that do not involve elements of type t, are mapped onto the empty set. An

example can be found in section 5.

4 2 Schemes for Function "jefinition
In section 3 we introduced a method called "homomorphic extension" for defining new functions

over a data type A particularly simple special case of this method is the endomorphic extension of a
runction An endomorphism is a homomorphism from an algebra into itself. Since all the algebraic

operations remain unchanged, the only parameters of endomorphic extension are the functions on

the base types to be extended. A typical example is substitution of terms for variables. Recall the

data type definition for binary trees over atoms from section 3;

bintree :• mkbt(sub:atom) | ccmp(fir:bintrM, s«e:bintre«)

where atom is the generating base type. The corresponding endomorphic extension functional is

RTand :■ TXf [uE. [Xx. is.mkbUx) • <latom(sub(x))), BTend [M. [ut. L ^^J S comp(E(<ir(x)), EUacU))),

Now if we want to solve the problem
"Find a function varsubst: bintree -I bintree such that varsubst replaces all atoms in a binary

tree by their values under the function virsub: atom -♦ bintree,"

then a solution is simply
varsubst i :}Tend(varsub),

and this solution is even unique, as it was shown in section 3.

So far we have been looking at homomorphisms only. Unfortunately, many interesting functions

can not be represented as homomorphisms. But wo can apply a similar definition technique to a

larger class of functions simply by explicitly stating the non-homomorphic part of the function and

^Ä^ mtm mm iilii nr Mlia'iri i ii liiriinn" "

1 npmppp"«* mmmm*m**mmmmmmm^m» <■' '" ■■l

Elements of a Problem Specification Language 4- 6

I

using the extension functional for the homomorphic rest. This situation occurs often with data types
which include several composed subtypes; an example can be found in the next section.

The functionals derived from a data type definition (for homomorphic, endomorphic extension etc.)
not only permit definition of new functions in a concise way, they also facilitate proving properties
In fact, certain properties of those functions derive from properties of the functionals, like the

induction proof rule already mentioned above.

Lemma 4.5:
If the argument functions of an extension functional are strictltotal then the resulting function is
strict'total.

Note that totality entails that any program derived from a function by "meaning-preserving"

transformations terminates on defined inputs.

There are other definition schemes that hitherto have defied a natural algebraic interpretation.

Consider, for example, the following form of function iteration. Let the expression

[VJKS I <(x,z)]

be interpreted as "For each x in S apply [\y. f(x,y)] to i." This can be made more precise by a

recursion on the sequence representing S;

[XS z. IVx<S : i{*,z)]] « [«F. [\S r i«.«mptyseq(S) a z, F(tl(S), f(hd(S), l))J]

However, this interpretation causes some problems. In order to be a conservative extension of ti,e

specification language as defined so far the given interpretation has to be consistent with the notions

introduced previously. In particular, if two sets S and S' are equal one would expect

Vx i S: flx.z) • Vx < S': flx.z)

This implies that the applications of the f(x,J must be independent of the particular representation
of S, i.e. the "hidden order" on S ; or, at least, it must be guaranteed that the sequence of

applications of f can be executed in any order. This virtually restricts applicability of the
construction; in many cases it may net be easy or even possible to verify this kind of commutativity.
Although operators like function iteration are necessary to make the specification language powerful

enough, they will not be discussed further in this paper.

4.3 Transformation of Function Definitions into Programs
So far we have been discussing methods for defining functions over structured data and their

interpretation in LCF. Now, every LCF term also has an interpretation as a computation rule for

 ---—• — HMMMMIHilU *.^

pw»™»ra«» >» wmmwimmv^mimmmm II IvJIMM 'mm

Elements of a Problem Specification Language 4- 7

j

the function denoted by it. Given such an interpreter for LCF this allows to compute all the
functions definable in the language. However, the resulting computations would be quite inefficient,

in particular because of nestings of unnecessary recursions resulting from direct interpretation of the
constructs. Consider, fo*- example, the expression

F(y) » Vx(S(y). P(x)

where the type of y is the data type list as defined above and S the standard set-valued function
8«t_of_atom. Since list is a recursive type, one recursion is required to compute S(y) and another ore
to compute the quantified expression; but wc can do much better by utilizing the underlying-
algebraic structure. Note that the value of F is determined by the values of P(x>; moreover, we have

P « F o mkbt

which means that F is a homomorphic extension of P. Because of the uniqueness property it follows
that

F • BThom(Pp A)

where BThom is the homomorphic extension functional for bintr«». This means that F tan be

replaced by an equivalent function that involves only one recursion. Apart from that, the explicit
representation of the set S(y) is eliminated.

This is an example of how the algebraic concepts can be used to simplify function definitions

considerably. It shows that the interpretation of the specification language is not a case of simple
macro expansion, but a possibly non-determinutic process of simplifying expressions in a suitable
way, which is similar to, e.g., theorem proving. More heuristic methods for recursion removal have
been studied by R. Burstall and J. Darlington [BDI

The reguiar expression structure that results from defining functions by means of definition schemes

is of advantage at all levels of program development. Apart from the techniques for proving
properties about them (see above) it permits uniform application of optimizing transformations, like
replacing recursion by iteration. Even at the implementation level it can be advantageous: For
example, functions defined by endomorphic extension can be implemented in such a way that no
additional storage (fcr data) is required (cf. selmive updating in [Ho]). If it has been proved that

the transformation and implementation techniques preserve meanings, then the "correctness" of
resulting programs can be guaranteed. Meaning preserving transformations will be studied in
greater detail in a subsequent paper.

meatmm - ■ -

ii tit-Mwnmmmmmmmmmm i iinww mim.i\mm*mmm^m****m*mm^i ■"l"1" m*i»m«iw-mm

•l

An Example; Substitution with a-Conversion 5 . 1

5. An Example: Substitution with ^-Conversion

5.1 The Data Types
In the example now to be discussed we have four data types, defined by

t«rm :■ mketerm{constof:const) |
mKvt«rm(varof:var) |
mKaprly(funeof:term, argeof:term) |
mklambda(bvarof:bvar, Urmof:torm) |
mkmulbvarof^var, tarniof:t«rm) |
mKcond(condof:term, trua«Of:t«rm, talseeof:;erm)

bvar :■ mkbvar(v8rof:var)
const :■ uu I tt I ff I 00
var is taken as basic and not further specified.

The reader will notice that these data types represent the abstract syntax of LCF terms. In algeb-aic
terms the types form a heterogeneous algebra with the four phyla term, bvar, var, and const and
operations

(opl) mkctarm: const -> term
(op2) mkvtarm: var -» tarm
(op3) mkapply: tarmxterm -* term
(op4) mklatnbda: bvarxterm -♦ term
(op5) mkmu: bvarxterm -♦ term
(op6) mkcond: termxtermxterm -♦ term
(op7) mkbvar: var -♦ bvar

The generating phyla (data types) are const and var. Obviously the phyla var and bvar are
isomorphic; the reason for i;uroducing the data type bvar is that it is more convenient to separate the
binding occurrences of variables from the other ones.

From the data type definitions the following characterizing functions are generated:

term .a [ocF. [Xx. is_const(x) = mkcterm(const(constof(x!,,
is_mkvterm(x) = mkvterm(var(varof(x)),
is_mkapply(x) o mkapply(F{funeof(x), F(argeof(x))),
is_mklambda(x) a mklambda(bvar(bvarof(x)), F(termof(x))),
is_mkmu(x) o mkmu{bvar(bvarof(x)), F(termof(x))),
is_mkcond(x) a mkcond(F(condof(x)),F(trueof(x)), F(falseof(x))),

bvar :ä [Xx. mkbvar(var(varof(x)))]

In order to define a homomorphism we have to supply 7 operations of appropriate types. 6 of them
correspond to the constructors occurring in the characteristic function term; the last one is to replace
mkbvar. By substituting the characteristic function for bvar in term we obtain an expression that

■

m tmm. ttt^m^a

mmmmmmmmmm w*mmmmmmmimm*i'm''i^^^t m IIWUI ■.jnnn IM im «."«_■!

An Example Substitution with a-Conversion 5-2

includes all operations and completely defines homomorphic extension. For endomorphic extension
only the operations on the generating subtypes (i.e. opl, op2 and op7) are required. Let

termhom :s [\ opl op2 op7 [«^F. .. J]
and

tarmend :« [V opl op2 op7 [«tF. ..]]

be the functional for homomorphic and endomnrphic extension.

5.2 The Problem
We want to formalize the following (cf.iAW]):

Replace any free occurence of the variable v in the expression (term) • by the term t after
renaming bound variables in e tmtably (i.e. S3 that no fret variable in t will become bound in •)
(a common notation is «[t/v]/

What is described above is the basic conversion rule of the X-calculus as it is incorporated in the

LCF system. It may be desirable to have a system that is smart enough to understand this
description of substitution and to translate it frnm English into r programming language. At
present, such a system is not available. It would »-equire knowledge about what exactly is meant by
"free occurrence", "replace", "renaming" etc. For the time being we have to be satisfied with specifying

those notions in some kind of formal language and having a less ambituous system Transform the

specification statements into executable code. In any case, we need a formal definition in order to be

able to prove anythmf; about the funct.on.

We construct a function subst: varxtermxttrm -♦ t«rm by stepwise specifying the informal notion m

our language. Let subtt be defined by

where
subst :■ [Xv 1 a, subttfr«a(v, I, ranamabvar(a,t))]

substfraa(v,»,a) :« "replace all free occurences of v in a by t"
ranamabvar(a,t) :■ "rename bound variables in a that occur free in t appropriately"

a) bound variables in term. The function boundvarsin: tarm -> seto<(var) returns a set of variables for

which there is a binding occurrence in the term. This is just the standard set function sot-of-bvar
composed wirh the isomorphism variso from bvar to var, extended to sets. Here we can see how the
separation of the type bvar from var facilitates definition of set-valued functions, sat-of-bvar is the

homomorphism defined by the operations

(empt] set)

(singleton map)

b. :5b2 s [Xx {}]

b3 :B b4 1 b5 ■ u

be li U3

[\X. {X}]

 --■ MMM^UliMMÜitfMi -''-■-■'■l"Jlal"***i*^Jia-"^-""— .-.....■*

r~~ *— •mm*mmmmm 1 ' ™ '

.

An Example; Substitution with a-Conversion 5- 3

i.e., set-of-bvar ■ l«rmhom(bi, . . by).

Then
boundvanin :■ virito •-■ s«t-of-bvar

b) free variables in term. The standard function Mt-of-vin returns all occuring variables regardless

of whether they are free or not. So we have to update that function appropriately to get a function

that returns only free variables. If we had separated the A- and a-terms from the type Urm we could

use a standard set-of-dtype function for defining frMvar«in. Instead, we define it directly as as a

homomorphism

fresvarsin: ttrm -» s*U>f(var).

Using the set-valued functions

I, :> [Xx. {}]
f2 :« f7 :- [Xx. {x}]
1,11 U

fq :■ f5 :■ [Xx y. y\x] (set difference)

the function is definable by

freevarsm :■ tarmhom(f|, . . ,(7)

c) Renaming bound variables. We need a function nawvar that "invents" new variables (which do not

occur in either e or t). Strictly speaking the existence of nawvar depends on a function that

enumerates all variables and returns the first element with a certain property. In any practical

implementation we "know" all the variable names available to the user, so a function that generates

new names is available. In the abstract context it is sufficient to assume the existence of a strict and

total function n«wvar that returns a variable with the property

- nawvar(v,«,t) < varsinl«) U varjin(t) U {v}.

Using this function we can specify renaming of bound variables:

r«nam*var(a,t) :■ "rename in • each variable that occurs free in t and bound in •"

formally:

renamevar :■ [\e t. [Vx i freevarsin(t) n bvarsin(a) : ranam«(t,x,«)]]
ranam* :■ [Xt. [Xx a. tarmand(mKc1arm, raplacavar, tnKbvaroraplacavar)]]

where raplacavar denotes the term [Xz. z»x s nawvar(x,a(t), 2]. Note that the use of the iteration

construction is justified by the fact that renaming of bound variables can be done in any order; all

resulting terms are equivalent.

 ^ tmtä^mUMtmm^ä

mr1 * **m^mmmimmmmmmimmjmm *.—.-^ mm wmmm -^^www

An Example: Substitution with a-Conversion 5 - 4

d) substfree. "Free occurrence" means "not bound", i.e. "not in the range of a X or oi binding that

variable." So, in order to find occurrences of a variable v we have to search (recur in) the tree

representing the term •. Whenever we come across a \ or «. (that is, a mKlambda or mkmu) that binds

v, we stop and return. Then any remaining occurrence of v is a free one and is to be replaced by t.

In the formal language this is expressed by a construction using a modified functional for

endomorphic extension:

substfr«« :■ [ocS. [\v t. [\%. is_mKvttrnn(«) » virof(«)>v a t,t,
(is. Iambda(«)vis_mu(*)) A bvarof(a}<v a e,

Here tarmO :« the operator on F that defines ttrm, i.e. twrn • [o<F. [\x, t«rmO(Flx)]] .

This finishes the formal speenication of the substitution function. The collection of all the function

definitions

subst
substlree

renamevar
rename
replacevar
bvarsln
set-of-bvar
freevarsm

li [Xv t e. substfrse(v,t,renamevar(e,t))]
!■ [«iS. [Xv t. [X«. is_mKvterm(e) » varof(«)»v a t.e,

(isjambda(e)vis_mu(e)) A bvarof(a)>v o «,
termO(S(vIt)ie)]]]

:« [Xo t. [Vx (freevarsin{t) n bv?rsin(e) : ronamed.x.e)]]
:a [Xt. [Xx e. termend(mKcterm, replacevar, mKbvaroreplacevar)]]
li [/\. 2=x a newvar(x,e,t),z]
:• va'iso o set-of-bvar
:■ termhomUXx.O], [Xx.f}], U, U, U, U«, [Xx.{x}])
:■ termhomCXx.l}], [Xx.lxJ], U, \, \, U3, [Xx.{x}])

is somewhat longer than the informal description in English, yet it is complete in the sense that a

sufficiently smart system can transform it into a reasonably efficient program, using transformations

of the sort indicated in the preceding section.

 - ■•—-■-" «MMMÜHKÜi '■ ■ ■ uiMAaaH^^B

mmmmrmi^mmmmmmi'^w mi^^mmmm m*mm

Concluding Remarks 6 - 1

6. Concluding Remarks

In this paper, the representation of abstract data types in LCF and the algebraic interpretation of
structures were discussed. This led to constructions that permit to specify functions operating on data
structures in a concise way and close to what may be considered "natural." The methods were
demonstrated in an example taken from the actual LCF system.

The construction methods considered here constitute only a first step towards an elaborated language
that will allow easy and concise definition of complex functions as they are needed in, e.g., structure
manipulating systems. There are many directions in which the work presented here has to bf
extended. Some have already been mentioned in the preceding sections: systematic extension of the
system of data type; more general function definition schemes; general methods for transforming and
optimizing function definitions, in particular for removal of redundant recursions; the translation of
logical expressions into a "real-life" programming language. In the paper, only methods Tor explicit
function definition have been discussed. However, it appears that techniques for solving equations
that define functions implicitly can similarly be derived from the explicit representation of the data

structure by a retract. The retract could serve for guiding the search for solutions and for
structuring the resulting program. The development of such problem solving methods in the

framework of LCF has to be left to future studies.

How much of the methods discussed here can be automated? It is obvious that the generation of the
appropriate set of axioms, of function definition schemes and rules for structural induction from the

data type definitions is straightforwaro and can be completely automated. Furthermore, many checks

for simplifications and transformations can be done on a purely syntactic level accessible to
automation. So it should be easy to incorporated all these features and special knowledge about the
restricted set calculus into an interactive system foi developing programs and proving theorems

about them.

^ • -u^»^.. .i^.,^.-^,- -~ :■-. .
"ii-'--L—-"-■-■ - - - '" ~

^ "III"- "r~' ■"•' ' wmmmmmmm "■^"■"^ mt^^^^mr^m^mmmm^^^mrr^mmmm

mm

Relerences R - 1

R. Reference.'

[Al] Allen, J.; Anatomy of a LangMfi: LISP Forthcoming book.
[AAW] Aiello. U Aiello, M, and Weyhiauch, R.W. The Semantics of PASCAL in LCF. Memo

A1M-22I.Stanford University, 1974.
[AWj Aiello, L. and Weyhrauch, R.W : LCF smalt: an implementation of LCF. Memo AIM-241.

Stanford University, 1S74
[BiL] Bnkhoff, C and J.D. Lipsom ; Heterogeneous algebras. Journ.Comb.Theory 8 (1970). 1 IS-

IS?.
[BuD] Burstall. R.M., and J. Darlington ; Smt transformations for developing recursive programs.

Proc. Uit, Conf. on Reliable Software, Los Angeles, April 1975.
[BuL] Buchan-.n. J.R. and D.C. Luckham ; On automating the construction of programs. Memo

AIM-'.'36, Stanford University, 1974.
[Co] Cons able, R.L.; A constructive theory of recursive functions. Technical Report 73-185,

Cornell University. October 1973.
[Ea] Earley, J.: High level operations in autmatic programming. Proc. Symp. on Very High

Level Languages. SICPLAN Notices 9.4 (,974).
[He] von Henke, F. W.: Notes on automating theorem proving in LCF. forthcoming.

[Hi] Higgins, P.J.: Algebras with a scheme of operators. Math. Nachr. 27 (1963). 115-132.

[Ho] Hoate, C.A.R.. Recursive Data Structures. Memo AIM-223, Stanford University. 1973.

[Mc] McCarthy, J.: A basis for a -Mhematical t,\eory of computation, in: Computer Programming

and Formal Systems, (* .. Braffort and Hirschberg), North Holland (1963).

[MaW] Manna, Z. and R. Waldinger: Knoiuledge and reasoning in program synthesis. Techn.Note

98, Stanford Research Institute, Nov. 1974.
[Mil] Milner, R.: Logic for computable functions ■ description of an implementation. Memo AIM-

169, Stanford University, 1972.
[Mi2] Milner, R.: Implementation and applications of Scotfs logic for computable functions. Proc.

ACM Conference on Proving Assertions about Programs, New Mexico State University.

Las Cruces, New Mexico, 1972.
[MiW] Milner, R. and Weyhrauch, R.W.: Proving compiler correctness in a mechanized logic

Machine Intelligence 7, jd. D. Michie, Edinburgh University Press, 1972.
[Mo] Morns, F.L.: Correctness of Translations of Programming Languages ■ an algebraic approach.

Memo AIM-174, Stanford University, 1972.
[Nel] Newey, M.; Axioms and Theorems for Integers. Lists and finite Sets in LCF. Memo AIM-

184, Stanford University, 1973.
[Ne2] Newey, M.: Formal semantics of LISP with applications to program correctness. Memo

AIM-257, Stanford University, 1975.
[Scl] Scott, D.-. Conrinuow Lattices. Proc. of the 1971 Dalhousie Conference, Springer Lecture

Notes.
[Sc2] Scott, D.: Dafa types as lattices. Forthcoming Springer Lecture Notes.

 ——^- "- ' Hhtft. ■ ^,.-.

1

im i ., uiüwwimmw^mmmmmmmmmmmmmmmimmmmmmmmmmmm'*'***''*'* i^^mm^mw. i iiimiii n J.I JI

References R -2

[WM] Weyrauch, R. and M.lnet. R.i Program semanncs and correctness in a mechanized logic, Proc.

USA-Japan Computer Conference, Tokyo, Oct 1972.

£i iiiiafc—fcHMBÜrtli I —iM i --—■ -" -■ ^—-^

m^mmmmismmmmmmmmmmf^mmmmmmmmmmm ■'»""■""" nn-.iiiiiiii,! jj • < ••■Ill

.

Appendices A - .

A. Appendices

A.I Logic for Computable Functions

A.11 Syntax of Typed LCF
The foilowmg is an extract taken from [Mil].

Types At bottom tr and ind are types. Farther H /ll ano flZ are types then (/n^2) I« a type.

W.th each term of the log.c there i. an unambiguously associated type. For a term t we write U/i to

mean that the type associated with t is ß.

Terms (metavariables s.t.sl.tl,...) The following are terms:

Identmers (metavariables *,y) - sequences of upper or lower letters and digits. We assume that

the type of each identifier is uniquely determined in some manner.

Applications - s(t) l 02 . where Hfi*Ai ^ W-

Conditionals - (8-»U,t2) l ß , where s:tr and \\,\2:ß.

X-expressions - [Xx.s] I fil-fil , where »ß\ and s^Z.

ed-expressions - [ocx.s] I ß , where x^/S.

The intended interpretation of the ^-expression [ocf.s] is I* minimal fixed-point of the function or

functional denoted by [Vf.s]. For example;

[oif.[Xx.(p(x)-*f(a{x)),b(x))]]

denotes the function defined recursively as follows:

<(x) <- if p(x) then fU(x)) else b(x).

Constants The identifiers I, I denote truthvalues true and false. X denotes the totally undefinec

ob;ect of any type: m particular, the undefined truthvalue.

Atomic weli-formed formulae (awfFs) The following is an awff:

set

where s and t are of the same type. The intended interpretation of set is, roughly, that t is at least as

well defined as, and consistent w.th, s.

Well-formed formulae (wffs) (metavariables PAPl.Ql .) Wffs are sets of zero or more awffs,

written as lists with separating commas. They are interpreted as conjunctions. We use

- - ■**^^*^*****-L*^**-'--' ■ ■ - --. ^■.^.^..■:. - .- -. ■■.-.^,...,. i t i iiml

1 WUBHPWW""!'"-!
I " " I«1 "«I«1 "'■ '

^~^m^m~m^mm ^i i i i

•

Appendices * - 2

to abbreviate set, tes.

Sentences Sentences are implications between wffs, written

P 1- Q

or, if P is empty, just |- Q.

Proofs A proof is a sequence of sentences, each being denved from zero or more preceding

sentences by a rule of inference.

The stnet syntax for terms and awff s is relaxed in the machine implementation to allow a saving of

parentheses and brackets. In addition, we u^e the abbroviation
f(x,y) for f(xKy)
V x. t ■ 8 fOr ^■•' * ^X-'
p :: q ■ r for p a qpX • p => r.i

Functions are used in infix notation where it is obvious what is meant.

A 1 2 Type free LCF
The type free version of LCF differs from the typed one essentially In the handling of truth values and

conditional expressions. Apart from that it also specifies the structure of the domain. Besides the truth
values there are constants T for the truth values retract and I for the universal domain. In the

following the additional axioms and rules of inference are listed.

MAX s c T

COND I- T -» s,« • s

|- r -» 8,t ■ T(r) -♦ s,[

i- Ks)») ■ rw

1- T c T -» T

|. I E [^J. T u (J -♦ J)]

The CASES-rule is changed to

P |. Q{x/x) P I- 0{tt/x} P I- WM f m-r/«}

P I- Q{T/x}
CASES

■- — iiiiiiMMniliiliiii ii ^tm^täämau^mätiam — ■ ■-•'-■- ^^^-...~..^-.^-^v:i.^»J

UUllllllJIIIMHIIim^PiWKI Mil mi^^^mmum i m i^ ^mmm^^m^^^

Appendices A - 3

• Other defined standard terms;

-» :■ [Xx y. X 2. y * « x x]

- - -■■-■'^-- -^-^ "■ ^ ■' ■ _

fjmmmmmmm -WPP rmm^*m*^m^m~fmmmm*—mmmmi .1 ■ wuiiiiinu .i<^tmmmmm*mm* 1

Appendices A -4

A.2 Special Functions in tfLCF

A.2.1 Defineiness predicate
We want a predicate d such that

Define d by
d ■ upt U down

where
down » [X x. >::=> X,i]

|. dMitt.xtX, XiT

and
upt -. [* P. [X x. (x = tt.tt) Ü P(x|T))]] (i [Xx. uptf(x) o tt.tt])

down maps everything to ± except T which goes to T ;

down(x)iT l-T(x)iT 1-xiT

upt maps everything to i

obvious.

I except X which is mapped to i. The desired properties of d arc then

•,, •

A.2.4 istrue
Our aim is to give a function that

- maps everything on a truth value and
. gives the values I and I exactly for the arguments I and I resp.

This function will enable us to test effectively variables for "well defined" truth values. In the type-
free lo.ic the simple conditional does not provide this function as it is defined "relative to the truth
values retract T ". However, we can define MrM using a limit construction. That such a definition is

possible at all is due to the fact that the truth values are isolated points in the lattice 1.

Definition: istru. • [tf S. [X x. x::» I Ü Six T), If ü S(x T)]]

It is easy to show by cases that

(1) T c istru«

Since V x. T(x) c x we also have

(2) T«- istru« c istru«

From the definition follows immediately

(3a) istrue(x)-=tt \- istru«(x(T)) c istrue{x)
(3b) i8tru«(x)iff |- istru«(x(T)) c i8tru«(x)

M«MJMHM«HHMl ':'—■ •- ■ -■ - .i—-^ .

"",,,•,l, ""»■"•^^^"^i >i i "^WWWIWIIIW i«MHnMBHHPB«pmiP»1-<"

^

Appendices A - 5

also

(4) T(x)iTV |- i8true(x)iTV for TV»l,T

Next we show by induction on istrue

(K) Vx. istru«(x) c T{i8tru«(x))

I, x(x) c ... ok.

II Assum« Vx. S(x) c KistrutU)). We hav« to «how
x :-♦ ttUS(x T), tf U S(x T) c T(i$tru«(x)).

By cases T(x):

T(x)»l. : trivial
T(x)äT : implies istrue(x)iT, trivial.

Ihs'i ti U S(x T) c tt U T(istrue(x T)) by Ind.Hyp.
i T(tt U istrue(x T)) by L54 MrWe
i TdslrueU))

T',x)«ff : analog

With (2) we have shown

(6) istrue ■ T o istrue.

which means that the range of istrue is a set of truth-values.

On the other hand we already mentioned that

(6a) istrue(tv) i tv

holds for each truth value tv. Thus, in a short notation

(7) istrue o T • T

i.e. istrue is an identity on T. From (6) and (7) we deduce the retract property for istrue:

istrue o istrue

(8)

■ istrue o (T o istrue)
■ (istrue o T) o istrue
■ To istrue
■ istrue

J-JL.
- -■ — •"-' ■

 i
-^■^ - ■ ■ - .._.-..

— i.umtwm^mmmmimnm —^-^T~—™j ■« ■ ■ iim

i-

•
Appendices A - 6

The ultimate goal is to show

(x) istrueU) s tt |- x • tt
istru«(x) • ff |- x • tf

l.t. istru« is a truth-valued function that gives the values tt or ff exactly for tt and ff resp. In order

to do so we introouce another truth-valued function:

Definition: uptf s [* P. [X x. T(x) U P(x(T))}]

By definition we have

(Ul) T c uptf

We prove the following facts about uptf:

(U2) x c uptf

(9) istru« ■ uptf

(10) i8tru*(x) i tt |- uptf(x) c i8tru«(x)

(9) and (10) together show

(11) i8tru«(x)itt |- uptf(xM

With (U2) it follows that

(12) x c tt

on the other hand, since tt • T(x) c x we have

(13) istru«(x) « tt |- x • tt.

The proof for the corresponding statement for ff follows the same line.

A.3 Structural induction
The basic idea of how to do structural induction in LCF is thai it can actually be simulated if a

recursive function "describing" the structure is available. For the Und of structures we are interested
in in this paper the retraction constructed from the type definition serves this purpose. So. structural
induction becomes a mere application of computational induction. The derivation of the induction

rule as in theorem 3.x is done in two steps: 1) first derive a rule involving the retraction; 2) modify
the rule in 1) by using the type-predicate. Since proving the rule in full generality would be rather

tedious, it is demonstrate by means of the example («q.

mmm -- ^•— - - ■ " - ■■■■-" -- mvn" nufi''■■-''• -- '-■ .i--^.—.i. ■

mnvmmvmm •^^mmimmmmmmmmmmm. 1 ' "i" ■' HIH

Appendices

Recall that seq is defined by the retraction

seq « WS. [Xx. i8_«mptyseq(x) = emptys^q,
is mkseq(x) D mK8«q(itom(hd(x)), S(tl(x))),

Xj]

First, we prove the rule

(a,) PU) (a2) P(T) (83) PUmptyseq) (i4) Vx.P{y) |- Vx.P(mk8«q(x1y))

P(8eq(x)) (Rl)

where x and y do not occur in P. By computational induction, we can deduce

Vx. P(8«q(x))
from

Since

Vx. PU x) and Vx. P(S x) |- Vx. P(tau(S)(x)).

PU x) <•> PU)

the base case is proved by premise (b|).

Now assume

In order to prove

we expand tau(S) to

Vx. P(S x)

Vx. PUau(S)ix))

tau(S)(x) 1 is.emptyseq{x) o emptysaq,
i8,mk8*q(x) = mkssqlatomlhdlx)), S(tl(x))),

and split into cases which then can be deduced from appropriate premises:
is.exptyseqU) ■ i. I tau(S)(x) ü by premise (a,)

■ t 1 1 «mptyseq by (83)

IT: • T by (a2)

■ ff : case split for i8.mk8«q(x); only tt is interesting:
• mkseq(atom(y),S(x)) by (a4)

Now, the rule

(b|) P(«mptys«q) (b2) P(y) |-P(mk8«q(x,y))

Vx.i8.8«q(x) ■> P(x)

follows from (Rl) by virtue of the facts that the relativizing type predicate eliminates the cases

and T.

^
ÜHÜHlM ■tt^^fcl ^IM '■""-"■—*— "■

, i in. ■«IIIIHIIIP.WIPW mmm^mpm*^mm^m^*mmmm mi« m •«nnui ■iwin mil ■' "■, "'■ "■■

UNCL/VSSIFIED
SKCuniTY CLASSIFICATION OP THIS PACE r»*Ji.n Dmlm Entmrmd)

T-' T| n.e I'aiiiJ fl|j»w^—-—-r—V^ -—

REPORT DOCUMENTATION PAGE '
I REPORT NUMaER 2 OOVT ACCESSION NO

he Representation of Data Structures in
with Applications to Program Generation^ / &

7- AUTHORf«;

Fj.W. Yftn1to»*t _ , ^ /rs DAHC15-75-C-A55<,/

9 P^'Wf WHMIMfi riHftAHi^^TION >T)OXg ANO AOPWggS ~ - ' 10. Pnn^. B *M F, Fu F w T P»o i Fr T :

Artificial Intelligence Laboratory
Stanford University
Stanford, California 914-505

II, CONTROLLING OFFICE NAME AND ADDRESS

Col.Dave Russell, Dep. Dir., ARPA, IPT,
ARPA Headqua: ters, l&OO Wilson Blvd.
Arlington, Virginia 22209

U MONITORING AGENCY NAME « ADDRESSf// t»f/.r»n(Inm Controlling Ollle»)
Philip Surra, ONR Representative
Durand Aeronautics Building Room I65 /^
Stanford University
Stanford, California 9I4.505

t
16. DISTRiauTION STATEMENT fo/(hi» R«porO

Releasable without limitations on dissemination.

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1 RECIPIENT'S CATALOG NUMBER

». TYPE OF REPORT & PERIOD COVfiREO

hnical T > /, „ /
«• ^«WFO««>HNO«RO; REPORT NOMBE^

AIM267
». CONTRACT OR GRANT NUMBSRC»;

10. PROGRAM ELEMENT, PROJECT,'TASK
AREA a WORK UNIT NUMBERS

•JARPA Order-21+91).

l/jSepnatoxzms

hi pages
IS. SECURITY CLASS, (ol ihl, nport)

V^ 15

EDULE
ICATION/DOWMGRAOING'

Approved for public release;
 Dibu-Jbutiou Unlimited

17. DISTRIBUTION STATEMENT (al lh» mbitrmct tnfrtd In Black 20, II dllltrml Inm Rmporl)

LJ V^.

19. SUPPLEMENTARY NOTES
ij_M

n r

mz) I

IEISTEüü
A

bj

19. KEY WORDS (Contlnum on frmti» mid» It n«c»»««rr and Idmnilly by block rtumbt)

20. ABSTRACT ^Conffnu« on rov-r»« «Id* Jf n»c»«»*/T and Idmntitv by block number)

lu this pap«r we discuss techniques of exploiting the obvious relationship between
program structure and data structure tor prograjn generation. We develop methods of
prograa specification that are deri/ed from a representation of recursive data

structures in the Logic for Cooputable Functions (LCF). As a step towards a formal
problem specification language we define definitional exten jions of LCF. These include
a calculus for (computable) homogeneous sets and restricted quantification. Concepts
that are obtained by interpreting daa types as algebras are used to derive function
definition schemes from an LCF term representing a data structure; they also lead to
technique« for the simplification of expressions in the extended language. The
specification methods are illustrated with a detailed exnmple.

DD FORM
I JAN 73 1473 EDITION OF) NOV SS IS OBSOLETE

S/N 0102-014-6601 1
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE fBTien Dele entered.)

oWJ^c

•

- ■— — —■• - ■-■

