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Introduction 1 - 1 

1. Introduction 

In this paper we are concerned with the use of data structures in generating correct programs from 

formal problem statements. 

Present experimental systems for automatic program synthesis (see [BuL], [MaW] for recent work) 
are based on a rather large amount of knowledge in the form of individual axioms and problem 
solving methods. At each step in the synthesis process the system has to search for an applicable 
piece of knowledge in the data base. One of the main problems is the automatic construction of 
iterative loops or recursive calls. However, it can be observed that the structure of the data is 

reflected more or less in the structure of any program operating on them, both in the analysis of 

subcases and (iterative or recursive) loops. In fact, if a recursion or iteration is possible (and 
reasonable) at all it is because of a corresponding data structure. So it is safe to say that the 

generation of a program is always guided by an underlying domain structure. 7 hus, by 
"strengthening" the guide lines we can avoid the system having to "retrieve" anew the underlying- 

structure each time it is synthesizing a program. Organizing the knowledge about the data domain 
and representing it in such a way that it directly assists a system in constructing a program can 
possibly eliminÄte some complicated problem solving processes. 

In the case of recursive data types the relationship between program structure and data structure is 
particularly obvious. For this kind of data types the Logic for Computable Functions (LCF) [Mil, 
Mi2, WM] provides a natural basis for reasoning about program generation, since both the problem 
and the prospective structure can be expressed in the same formal system. Obviously, the crucial 
point is to find an appropriate t.presentation of the data structure, A large portion of this paper is 

devoted to this problem; it attempts to develop a sufficient mathematical framework for dealing with 
abstract data types within LCF. Based on this theory methods of function specification are 
investigated that are directly derivable from the data structure representation and do not require 

general problem solving methods They include extensions of the term language of LCF, in 

particular a calculus for (a restricted kind of) sets and restricted quantification, and certain 
"de'inition schemes"; both kinds are based on concepts obtained by interpreting data types as 

algebras. 

The definition techniques are meant to be a step towards a "problem specification language" that 
allows easy and concise definition of furctions on a level of abstnKtion that is close to the intuitive 
conception of the user. This approach/;o program specification bears a resemblance with what has 
been called "very high level" or "nc v/procedural" programming languages. Indeed, programming 
language fe. *jres similar to some of ijhe constructions to be discussed here have been proposed 
elsewhere (e.g. [EaP and are availabli? in SETL. However, we are not dealing with a programming 
language, but a formal system that permits formal reasoning. Emphasis is given to interpreting the 
added constructions in terms of LCFin order to make feasible meaning preserving transformations 

_ UHHMMMHüi "■-^-'   - W J*u. ,_ 
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of expresssions. Only the fart that every LCF term also has an interpretation as a computation rule 
for the function denoted by it. allows JS to regard it as a kind of program. 

The following section provides the logical and mathematical framework as needed in the subsequen: 
sections. It gives a short overview of the type free version of LCF and the mathematical theory of 
subdomains. Section 3 discusses the axiomatization of abstract data types, their representation in 
LCF, and the interpretation of types as heterogeneous algebras. Section 4 is devoted to introducing 
elements of a specification language, which include (computable) sets, set operations and bounded 
quantification. The algebraic concepts of section 3 lead to methods for defining and simplifying 
functions over data types. In section 5, the definition methods are demonstrated in an example that 
is based on the data types of LCF terms and is taken from a LCF implementation. Finally, possible 
directions of future work are indicated in the concluding section. 

The paper is intended to be essentially self-contained. The letters "T.P." that can often be found 
instead of a proof are meant to ind cate that a prove has been generated by means of the interactive 
theorem prover for LCF. The amount of user interaction required to generate k proof is not 
indicated; in general, the proofs for simple lemmas can be generated fully automatically. The 
automatic theorem prover component of the system employed for proof generation will be described 

in detail in a forthcoming paper [He]. 

m*~* mmmm^ ti-—-  ' ^■- ■"■■         am, -'-'" -- '-* 



The type-free Logic for Computable Functions 2- 1 

2.        The type-free Logic for Computable Functions 

The Logic for Computable Functions (LCF) was invented by D. Scott (unpublished) and, in a 
modified form, mechanized by R. Milner [Mil, Mi2]. Using this interactive proving system the logic 
has subsequently been applied to various problems in the Mathematical Theory of Computation: 
schematology, formalization of syntax and semantics of programming languages, proving properties 
of programs and the correctness of interpreters and compilers (cf. [AAW, N2] for more recent work 
on PASCAL and LISP and comprehensive references). In these experiments LCF proved very 
useful for formalizing and proving problems involving (possibly partial) recursive functions. 

In the following the reader is assumed to be familiar at least with the basics of LCF. For the sake of 
self-containment a syntax of the language is given in appendix A. 1,1. 

2.1      Type-free LCF 
In this subsection the type free venion of LCF (or tfLCF for short) is described briefly as needed 
for the further development. This version of the logic was developed by D. Scott, R. Milner and 
R. Weyhrauch [unpublished notes]. Mostof the material and the ideas presented here is essentially 
due to them; part of it can also be found in [Sc2]. 

Essentially, tfLCF axiomatizes one of Scott's models for the X-calculus [Scl]: the domain I which is 
constructed over the 4-element lattice T of truth values: 

T 
/      \ 

\      / 
X 

The main characteristic of the domain I is that it is isomorphic to its domain of continuous 
functions; thus, each element of I can also be regarded as a function from I to I. 

The language of the logic itself is essentially the same as for the typed version (see appendix A.i.l), 

with two exceptions: 
(a) the restrictions for building expressions that result from the types are abolished; 
(b) besides the 4 truth values, the language includes constants I for the "universe", i.e. the domain 

of the model, and T for the domain of truth values. 

The main problem in extending the semantics of expressions to the type free case is -efining the 
meaning of the conditional p » q.r for any term p. This is done by mapping the elenents of I onto 
the truth values (this will be made cltarer in the following subsection). The meaning of T s x,y is 
not further specified except that T a x,x ■ x. However, it turns out that it can be taken as the join 

of x and y (see below). 

  -■ -  ---- -•  " '-      '  ._.,._ . 



"•"■•   - Ml"     I  HI" <   I""»1  ■"    I <*lf^^mm*^mm*r •   ". • ■ mmm '•■■■■* 

The type-free Logic for Computable Functions 2-2 

For details about axioms and inference rules of the logic, see appendix A.1.2. 

The element x is called undefined, and the element T is called overdefined; all other elements are 

called defined. A predicate d can be defined in I such that 

d(x) . tl    iff "x is defined."      dU) • x,      i{r) • T 

i.e.. d yields the distinction between defined and non-defined elements in 1. d is definable in the logic 

by'a mapping onto the 3-element lattice {x, I, T). The definition depends on the fact that the truth 
values are isolated elements in the lattice I. For details see appendix A.2.1. 

A function I is called strict if it returns x or T whenever the argument is x or T resp.. that is if the 

following wff is true of f. v , ( a(x) 3 d(f(x))( tt)    .    WW, 

, U called x-strict if f(x).x . and T-strict if  l(T).T , f is called total if it never returns x or r 

for a defined argument, i.e., if 

d(x) •> d(f(x)) • tt 

holds. Thus, if a function f is strict and total then d(x) • d(f(x)). 

Any function I can be made into a strict one by first applying d to the argument: For 

«• :■ [\x. d(x)=»((x), X] 

we obviously have 

T ifxiT 
f(x) ■ x ifxix 

f(x)        otherwise 

In the next section a functional itr will be defined that turns any function into a strict one. 

In the following we oefine some standard operators on 1 that will be used throughout the paper. 

o      :. [Xxy2.x(yU))] function composition 

pair :. [xxyz.i^x.y] ordered pair 

n,     :■ [X x. x(tl)] 
n-    :■ [\ x, x(ff)] 

H      :■ [X x y z. p«ir(x(i tt), y(2 ff))] 

projection onto first component 
projection onto second component 

cartesian product 

<__*   «um MHHMMlHill km   i    i '         :   - i | laiiMlililliijttaii .    n  m 
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:■ [X • b x. n|(x) a pairltt, a(n2 »)), pair(ff, b|n2 x))] disjoint union 

2- 3 

Id     :■ [Xx. x] 

u      :■ [\x y. T s x,y] 

A       «■ [Xx y. (d(x) u i(y)) a x a y, ff] 
v      :■ [Xx y, (d(x; u d|y)) s x » tt, yj 

:■ [Xx, x a ff.tt] 

identity function 

join 

logical and 
logical or 
negation 

For piir(x,y) we also use the notation <x,y>. 

The standard properties of these functions are easily derivable; for example. 

Vx y, ^«x.y» ■ x Vx y. njUx.y» ■ y 

Milner and Weyhrauch have shown that u has all the properties of the join operation in a lattice 

also with respect to the partial order defined by c In particular. ttuff.T and XUT.T  for all x<I. 

A  strict conditional := . i.e.   T i3x,y . T for all x and y . is definanle in terms of the normal 
conditional s : 

:=   :■ Xz x y. z a (z a x, T), (z a T, y) 

Since the normal conditional will not be used in this paper except in the join operation, we will 
henceforth use the character a to denote the strict conditional. 

The propositional connectives are strict in all arguments; they extend the standard functions (for 
two-valued   logic) to  four truth  values in  such  a way that the standard   relationships  like 
x v y ■ - (-x A ^y) still hold. 

2.2     Retracts. Domains. Types 

The typefree logic essentially axiomatizes &< "universal" domain I. However, one would like to talk 
also about domains other than I. like "lists" or "integers." It turns out that they can be "embedded" 
into the universal domain; there are subdomains of I that correspond to those particular domains in 
a sense to be made precise in the following section. As Scott [Sc2] has shown. I is so rich in 
subdomains that one can find a türresponding subdomain for all those domains' or "data types- 
computer scientists are normally interested in. 

The standard way of defining a subdomain is by using retract!,. A retract is an idempotent function 
i.e.. an f < I with ( • f ■ f. The idempotency property implies that all elements in the range of a 
retract f remain unchanged, i.e. the range of f is exactly its set of fixed points,  subdomain Df of I 

'  -         - .        .. . ^Mttt**^^ .    .-. .-  
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(tl e range of f). This domain D, can be shown to be a complete lattice. In the remainder of this 

paper, the term "domain" always means "subdomam of I as defined by a retract." Very often the 
domain and the function (the retract) defining it will be confused by using the same notation for 
both; however, from the context it will be clear what exactly is meant. For emphasis, we will sav 
retraction if we mean the/uncfion in particular. 

The category of retracts 

It may be helpful to look at retracts from a categorical point of view. The retracts of I form a 
category R in the following way: 

- The objects of R are the retractions in !. 

- A functions f < I is a morphism from the retraction r to the retraction i iff f o r ■ s. 
- Composition of morphisms in R is just composition of functions m I. 

Obviously. R is a category. Notd that two functions f and g in I will be identical morphisms in R If 
they agree on their source domain ("source retract"), i.e. if for . gor. An identity on a retract r is a 
function F with   For i r. We write Idp for the identity on r. 

Let r, s be retracts. Dr is called subdomain of D8 iff sor . r , i.e. iff the fixed points of r are also 
fixed points of s. 0P is called retract of Ds iff «or ■ r  and ro» • r . 

A particular retract is fhe «ruth value domain T. Trivially, the universal domain I is also a retract. 
However, the property of »jeing a retract cannot be proved; the corresponding retractions 

and 
I • [*J. T u (J -♦ J)] 

are rather part of the axiomatization of tfLCF. Obviously, "retract" and "retract of I" me?.n the 
same ching. 

It should be noted that R is not the category of those subdomains of I that are defined by retracts; 
different retractions can define the same domain but will be different objects m R. For example the 

retractions T and ittru« (see appendix) both define the domain U,l,f,Tj but are completely differenr 
functions. However. T and istrua are isomorphic in the category R. Incidentally, if two domains are 
isomorphic one of them need not be a retract of the other: for instance, it is 

T o ittru« • istru« and istru« o T ■ T 

i.e. T and istru« are subdomains of each other, but 

ittru« o ': t jgtru« and T © ittru«   * T 

mmm mm*  — ■-        
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Thus neither of T and iitru« is a retract of the other.  This discussion shows how retractions that 
define the same domain are related in the category R: 

Corollary 2.1:   For retractions r and t, if  Dr ■ D,   thtn r and ■ art isomorphic, that is, from a 

structural point of view, they cannot be distiguished. 

The category R has many useful closure properties we are going to exploit. 

Lemma 2.2: R is closed under ♦, « and -*, i.e. if ■ and b are retracts, then so are •♦b, ixb, and •-»b. 

Proof: by T.P. 

Lemma 2.3: R is cartesian-closed. 

Proof:  We have to prove that  [r -»[• -»t]] and  [r«« -»t]  are isomorphic in R for any retracts 
r, s and t. Lat F, G be defined by 

F ■ [Xf x. f(n, xHnz x)] 
G • [X g r s. g«r,8»] 

The T.P. proofs for 

and 

are almost straightforward. 

G o F ■ Id(R^(Swp]j. 

F o C  ■  Id[R.s 4 p] 

Lemma 2.3 is the basis for what is commonly called "currying". It allows to restrict attention to 
monadic functions. 

Let the function str be defined by 

str :■ [Xf x. d(x) a f(x), X] 

By T.P. we can show that «tr turns any function into one that is strict (with respect to the first 
argument) and that it is a retract. This shows that the set of strict functions is a proper subdomain 
of I. 

A domain is called flat if it contains, besides k and T, only pairwise incomparable elements. For flat 
domains there is a computable equality relation "■" with: 

d(x) ■ tt,    d(y) • tt,    x ■ y |-    x»y • tt 
x-y ■ tt |-   x ■ y,   d(x) ■ tt,   d(y) ■ tt 

I 
i 

LL *. .  
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In many cases it is very convenient to use the (computable) equality instead of the equivalence ■ 
since it may appear inside a term and thus gives greater expressive power. 

Lemma 2.4: If F ■ [ocf. [Xc. t(f(e))]] and G • [Xe. [*§, Mi)]] , where \ is any term, then F • G. 

Proof: T.P. 

Essentially, the lemma means that constant parameters can be bound "globally", i.e. they need not be 
passed on with every call. The lemma will be used quite often in the remainder of the paper 

without being referred to explicitly. 

)   .; 
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3.       Abstract Data Types in the Type Free Logic 

In this section we introduce data types and discuss the representation of data structures in tfLCF. 
We investigate properties of data types by looking at them fiom a more algebraic point of view, 
which allows us to derive various function definition schemes. The basic function definition method 
is illustrated in an example dealing with the translation of arithmetical expressions from infix to 
postfix form. 

What is intuitively meant by the notion abstract data type? There is a common understanaing that, 

in programming, a data type is not just a set, but also comprises information r.bout the structure of 
the elements and how to construct them and to operate on them. This can be done in an abstract 

way, i.e. the only information available is the set of primitive operations (constructors, selectors, 
recognizers) and relationships between them; it does not matter what the elements of the type look 

like and how the primitive operations are implemented. In the context of a formal calculus the 
relationships between the primitive operations are expressed by axioms. 

The presentation concentrates on generic recursive types; however, in subsection 3.4 extensions to 
non-free types are discussed. 

3.i      Data Type Definitions 

We start with discussing/r« data types. The type system will be extended later to comprise a wider 
class of types. A type definition is made by listing alternative subtypes. A subtype is either a constant 
or a composed type. Composed data types are defined best by their abstract syntax [Mc], using 
constructors, selectors and recognizers to describe the structure of the type. In a more formal BNF- 
like notation (using "constr" for constructor, "sei" for selector, and "dt" for data type): 

<typejdef> 
<subtype> 
<comptype> 
<constant> 

*- <type_name> :- <subtype> { | <subtype> }«! 
♦- <constant> | <comptype> 
«- <constr> ( <sel|>:<dt|>1 <seln>:<dtn> ) 
«- <identifier> 

with the restriction that the names of all constructors in a type definition and all selectors in one 

composed type have to be distinct. A data type definition may be recursive, that is, any of the dt, in 

a subtype may be the name of the type to be defined. Also mutually recursive data type definitions 
are permitted. 

For example, the data type "sequence (linear list) of atoms" can be defined using this formalism by 

Seq      :• emptyseq | mKseq(hd:atom, tUSeq) 

Strictly speaking, this data type definition is a type scheme, that is, 

_ i ■>••-'—"•-■ ■ •'" "■"  , ..^fl 
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t 

seq      :■ emplyssq | mKs«q(hd:dtyp«, tUtaq) 

defines a type "sequence of elements of type dtyp«" for any data type dtypr This will be made more 
precise in the following subsection. Beside i«q we will use other standard data types (type schemes) 

like binary trees, natural numbers, and pairs, defined by 

bintr«« :■ mkbt(sub:dtyp«) | compUirsbintro, 8«e:bintrM) 
nnutn    »■ 2«ro | iuc|nn:nnum) 
dpair     :■ mKptir(fir:dtyp«|, (•c:dtyp«2) 

3.2     Representing Data Structures in tfLCF 
In section 2 it was explained that retracts can be regarded as the "types" in the type-free logic.  The 

data types are now to be represented in LCF in such a way that the resulting terms are retractions. 

What exactly is implied by a r'.ata type definition? Intuitively, a data type should have the following 

properties. 
a) A data type is the disjoin; union of subtypes. A subtype is either a constant or a composed 

subtype. For each subtype there is a predicate (characteristic function) which will be named 
"is_const" or "is_<constr>" resp. These recognizers permit to decide membership in one of the 

subtypes relative to the whole data type. 
b) Each constructor is a one-to-one function; in particular, the corresponding selector functions allow 

to "retrieve" the respective arguments of a constructor. 
c) A subtype has to be embedded explicitly into the type by a constructor function. For example, 

"atoms" are not lists unless they are "converted" into lists. This helps us to keep all data types 

disjoint. 

These statements can be expressed more precisely in terms of LCF axioms. 

Definition  3.1 (Axioms for | f -ric data types): 

The data type definition 

typa :> constant | constantm | comptyp«| comptyp«n 

with 
eomptyp«k :■ comp^s«^^^!,... .stl^dt^i,)     for k»l,...,n 

is considered to correspond to the fixed point equation 

(1)       typ« ■ [a p.[\ x.   ia.conatmt^x) » x,.. ,it_eon8tintm(x) s x, 
is.compjlx) a eompiWtnUdnM),.. .dti^wl^U))), 
is.con>pn(x) a compn(dtn,{««!„ | (x)),. . ,dtnjn(8«lnjn(x)))l 

where dt'^-F if dt^typ« and dt'^dl^ otherwise, and for ij-l^m; k,!»!,..^ 

——————— ———— 
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(2) 

(3) 

d(constant,) 
is.constant^constant,) 

■ tt 

■ tt 

dicomp^dtn^x,), . . ,dtk)K(xjk)))      • M4riM|)) * . .Ä ä(eltk)k(x/k)) 
d o comp, • is.compj o cotnp, 

(4) Vx. is_compk(x) ■> i8_eomp|{x) ■ ff 
Vx. is.const^x) •> is_constj(x) » ff 
Vx. is.const^x)  •>   i8_compk(x)     ■ ff 

(5) do is_compk 

d o ii.const, 

d o is.const, 

■ do is.compi 

■ do is.constj 
■ do i8_compk 

(6)       d(compl(x,,...lxm)) «> i«l,r(comp,(X|,..,xn,)) • x, 

for Ml 
for i/j 

for r«l,..,ni 

Axiom (1) is a mere transcription of the type definition. It contains the basic information about the 
type structure; therefore, it will be called the characterizing function of the type. The goal is to prove 

that it is a retract. However, this cannot be done without further specifying the primitives occurring 
in (1) by adding axioms expressing the statements a)-c). They make sure that the recognizers for the 
subtypes are complementary (axiom 4) and tliat they are defined exactly for the elements of the type 
(axiom 5). Axioms no. 6 state the generic nature of the type (This is equivalent to saying that 
constructor and selector functions are essentially tupling and projections). All constructors are 
assumed to be strict in each argument and total for arguments of correct types (axioms 3). 

Example: The data type definitic.i for (homogeneous) sequences 

Stq •' tmptyuq | mki«q(hd:Atom, tl:S«q) 

will generate the axioms 

(51) 8«q ■ [e£S. [Xx. is.«mptyssq(x)  > emptysaq, 
ii_mk8tq(x) a mKs*q(itom(hd(x)), S(tl(x))), 
All 

where atom is the characterizing function for the data type Atom, 

(52) dUmptysaq) ■ tt 
(53) is_emptyseq(emptys«q) ■ tt 
(54) Vx y. d(mks«q(a1om(x), 8«q(/))) ■ d(atom(x)) A d(s«q(y)) 
(55) d o mks«q ■ ia.mkaaq o mkseq 
(56) is.smptysaq ■   •< o is_mkseq 
(57) Vx y. d(mk8«q(x1y)) •> hd(mk8«q(x1y)) ■ x 
(58) Vx y. d(mks«q(x,y)) »> tl(mk8«q|x(y)) ■ y 

Any type t, that occurs in the definition of another type t| is considered a base type for t.. The notion 

-----   in^r^^-'"  
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"base type" does not imply "basic" or "simpler", on the contrary, since mutual dependence of data 
type' is permitted, tj itself may be a base type for t, (hence the relation "is-base-type-of" is only a 

quasi-order). If data types are mutually dependent the corresponding characterizing functions forn 
a system of mutually recursive functions. Those base types that do not depend on the type to be 
defined are called generating types (in fact, they generate the type in an algebraic sense; see the 
following sub-section). 

At this point it has to be clarified what it means for a characteristic function to be a retraction. The 

logical type of typ« is (iyp«-Myp«) In order to make it a function in I the primitives (constants, 
constructors and selectors etc^ !-^ve to be specified as elements of I, This amounts to defining a model 

of (the axioms describing) the data type in I. However, the retraction property can be proved just 

from the axioms; more precisely, what can be prove;- is that typ« is an "abstract retraction", meaning 

that every model is a retraction. All the models will be isomorphic retractions (in the categorical 
sense). Thus the abstract refraction represents an equivalence class of objects in R. 

It should be noted that the standard representation of data types in a LCF-like language is by 

"domain equations" (involving ♦ and x ; see [SC2J). For example, the data type S«q of sequences of 
atoms is completely specified by the least fixed point of the equation 

(i) S«q ■ «mptyscq I« (Atom in S«q) 

(where :♦ and :* are strict versions of ♦ and x) given a representation of the type Atom and the 
constant «mptystq. However, we do not follow this line. The syntax of data type definitions, as given 
in the preceding section, involves constructors and selectors; they are the primitives for defining 
functions operating on the data type. But they do not appear in (i); in fact, (i) is an implementation 
of the data type S«q (by functions in I) rather than an abstract definition; the primitives are hidden 
in the construction of sum and product. In order to keep the previous higher level of abstraction 
the primitives have to be axiomatized, as has been done for special types in [Nel]. Although an 
axiomatization as in definition 3.1 is by far less elegant than a definition like (i) it is more 
appropriate for the purpose of program specification. 

Incidentally, this discussion shows that every (generic) data type has the following standard model: 
The data type definition 

typ« :■ constant | | . . . | const8ntm j eomptyp«, |.., | comptyp«n 

with 
comptyp«k :■ eomp^««!,,, rdt,,,, ... .««I^idt^)     for k« 1 (...,n 

is simply ttanslated into 
typ« :■ tt :♦...:♦ ti :♦ compi :♦...:♦ compn 

with 
compk :■ (dtm :x . . sx dt^)     for k»l,...,n 

It is easy to figure out what the primitives look like, and the proof that the axioms of definition 3.1 
hold is straightforward. 

MMMM ttÜ   ■—    ■    ■ ■■■lawiliMdÜi ' ■   -- 
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Ltmma 3.2: typ« ü strict. 

Proof: Simple consequence of the fact that all functions involved are strict (by definition). 

Theorem U; <yp« !s a retract if all base types of typ» are retracts. 

Proof: See appendix A.3. 

From the characterizing funct.on of a type we are going to derive a variety of function definition 
schemes and functions. !n particular, a type predicate (characteristic function) isjyp« can be derived 
which yields tl exactly for the defined elements of the type, i.e. which satisfies: 

and 

Vx. isjyp«(x) ■> typ«(x) • x 
Vx. is_typ«(x) •> d(x) ■ tt 

typ«(x) ■ x,    dlx) • tt    |-   itjyp«(x) ■ tt 

This predicate will be discussed in greater detail in the following subsection. 

For   a   recursive  data   type  we can  derive  the standard   structural  induction   rule   from   the 

characterizing function (the retraction). 

Theorem S.4 (Structural Induction): 

For a recursive data type typ« defined by 

typ« :■ constant) |. . . | constant,,, | comptyp«| | comptyp«n 

with 
comptyp«K :■ comp^s«^,^,,... ,8«lki(l:dtkj(,)    for k»!,...^ 

there is an induction rule that allows to conclude 

Q !• Vx. is.typ«(x) ■>  P(x) 

(where the conclusion is meant to be a wff involving x each of whose awfs is prefixed by 

Vx. is_typ«(x).. )from the following antecedents: 

(a) For each constant constint,   (i"l,..,m) 

Q  |-  PUonstantj) 

Itei mmm^^^ 
— '-       "  - **■"-——--      ■ -■'" '■          
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(b) For each composed subtype comptypek   (K»l n) 

xuith an antecedent H(ykjp) fn each recursion arguments, i.e. for those arguments of compk   xuith 

dt«, ■ typ« . 

Proof: see appendix A.3. 

For example, the induction rule corresponding to the characterizing function s«q is 

PUmptyi«,) P(y), d(mks«q(xry))i«    |-    P(mK««q(x,y)) 

Vx, i«.s«q(x) ■> P(x) 

Note that the constructor arguments in thfl induction step need not be restricted by type predicates 

(the restriction is implied bv the deflnedness predicate). A discussion of other forms of the induction 

rule that involve the retraction can be found in appendix A.3. 

As mentioned above, the tvpi definition for »q is a type scheme, defining a data type for any type 

dtyp.. This means that in ihe corresponding retraction s«q the retract atom can be replaced by any 

other retract. We therefore can dcfne the functional 

iMof :• TV typ«. [o<S. [Xx.  it_«mpty»«q(x) a •mpty««ql •«qot     i» iyp«. toi     j -jyjj i mk8,q(,yp.(hd(x))| S(t|(x)))| 

By theorem 3.3 .«qoUtyp«) is a retract for any retract typ«. In other word. e«qof maps retracts on 

retracts. Obviously, any generic type construction yields such a mapping on retracts. Properties of 

these functional will be studied in the following subsection. 

3 3     Algebraic Interpretation of Data Types 
Interpreting data types in terms of universal algebra helps to clarify certain concepts and properties. 

As a data type may involve several subtypes and functions of heterogeneous type the appropriate 

notion is that of "heterogeneous algebra" (Birkhoff ano Lipsom [BI]; see also Higgins [Hi]). 

Definition  5.5 (Heterogeneous algebra) 

A heterogeneous algebra A consists of 
- a family (A,)^ of (non-empty) sets; the Aj are called phyla. 

a    family     (WK     of   operations;    for    each    fk    there    is    an    associated    tupel 

ti . I \    nf alamenrc nf   1 ind«x(< - (im, • • JUi 1MM) of elements of J. 
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The index of the operation fk indicates the phyla from which the arguments of <„ are taken (i.e. the 

argument types) and the target phylum. nK is the arity of l„ (possibly 0). In the present framework, 

the index is simply the type of the operation. 

The tuple (J,K, (indexk)k(l<) is called the signature of the algebra; it characterizes the basic structure. 

Algebras are called simitar if they have the same signature. As the structure of similar algebras is 
comparable, it is possible to define structure-preserving mappings between them. 

Definition   3.6 (Homomorphism) 
Let   A = ((A^j, (fkW   and   B = ((B,)^. ^U    be sim'lar algebras.   A homomorphism h from. 

A to B is a family of mappings  (h,)^j such that hj maps A, into B, and for each MK 

hjnk.lM«!' • • -«nt.)) " Bk^jll«!). ■ ■ -V^nk)) 

where indexk ■ U|i ■ ■ >ink5 ink.)) • 

As mentioned in the previous section, a data type (or; its domain) forms a complete lattice. So, the 
appropriate algebraic structure is that of a heterogeneous lattice-algebra. Although the lattice 
structure of the domains consider'd here is not very interesting - apart from the elements x and T 
the domains are fiat - we have to take it into account by requiring that all functions preserve the 
lattice structure. However, because of the simple structure it is sufficient to require that all functions 
involved in the algebraic structure, i.e. the operations, are strict and total. Similarly, all the 
mappings hi constituting a homomorphism have to be strict (it is, however, not necessary to assume 

totality).  Hencefor.h these assumption will be made throughout the remainder of the p<tper. 

Example. The data type S«q, regarded as a heterogeneous algebra, consists of the two phyla atom and 

s«q and operations 

emptyssq:    0 ■» $«q (nullary) 
mkseqs atomxs«q ■» seq. 

The axioms in the previous section indicate that a data type corresponds to an absolutely free (or 
"generic") algebra which is generated by the constants, the base types and the constructor functions 
as operations.  As it is well-known in algebra, an absolutely free algebra has characterizing universal 

properties: 
(1) There is (upto isomorphisms) only one absolutely free algebra for given generating base types and 

operations. 
(2) Any homomorphism from an absolutely free algebra F into another algebra A of the same type (t*. 

the algebraic sense) is determined uniquely by functions mapping the generating sets into A. 
Properties (!) and (2) can be proved in LCF for each (free) data type without relying on an 
algebraic interpretation, It is these properties we are going to exploit. 

 --   -- mm*ämm 
mmmmmm 

Mteria —   --■ --    -...^^..^ 
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In order to define a homomorphism it is sufficient to map the base types into target sets and the 

constructors onto operations on the target structure. Then, by property (2) there is a unique function 

that homomorphically extends the base function{s). Due to the fact that in LCF homomorphisms can 

be "pushed through" conditionals, homomorphic extension is representable by a simple modification 

of the function characterizing the data type; we have only to replace the base type retracts by the 

base functions and the constructors by the operations on the target algebra. 

To continue our example based on the data type saq, we notice that a homomorphism from s«q into 

an appropriate algebra is determined completely by 

a) a constant that is the image of «mptystq, 

b) a function that maps the base type atom into the corresponding set, and 

c) a binary operation on the target algebra. 

In LCF, this is written as the functional 

Sfun :■ [X f const op. [et S. [Xx. ii_«mptyt«q(x) a const, 
is.mkstq(x) a op(f(hd(x}), S(tl(x))). 

Assume R ir the target structure with phyla ^ and R2, c an element of R2, op : R|xR2 -» R2 a binary 

operation Jid fun a function from atom to R^ Then property (2) above yields the following- 

theorem: 

Theorem S.7: F :■ Sfun(fun,c,op) is the unique homomorphic extension of fun with respect to c and op, 
i.e., it is the only homomorphism from teq to R with F(«mptys«q} ■ c and 

F o mkstq • [Xx y.op(fun(x),F(y))]. 

The proof is straightforward; it crucially depends on the "freeness" of the type definition (i.e. axioms 

(S7), (S8)) which is necessary to estab!i?h the homomorphism property of F. 

A simple example is the type predicate (characteristic function) for s«q: The function is_s«q: 8«q-»T 

with 
is.seqUM  i/ s«q(x)ix and d(x)itt 

is definable simply by extending the type predicate is.atom of the generating base type  to  a 

homomorphism into T: 
is_stq ■ Sfinds.atom.tt.A) 

A further property of the homomorphic extension functional Sfun is that it carries over a structural 

induction rule from the source domain. Eg for sequences: 

P(c) P(y), dCoplx.y))!«   |-  PMx.y)) 

Vi. ia.s*q(t) •>  P(F(i)) 

 ,  

—  -"■ ----*— 
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ras 

thus permitting induction on (target) domains originally not structured appropriately. 

The mathematical content of the discussion on interpreting data types as absolutely fiee algeb _ 

and the homomorphic extension functional amounts to a well-established fact known from category 
theory: the correspondence between free constructions (free objects) and representable functors. The 

pair (Sdom.Sfun) defines a functor from R into a subcategory of R of "suitably structured" retracts 

The point is that this correspondence can be established within the framework of LCF. Due to the 

fact that everything is represented as LCF terms, objects and morphisms as well as functors, it allows 
to carry out mechanically assisted proofs rather easily. For the time being, theorems like the one 

mentioned above have to be proved in LCF for each data type separately, although the structure of 
the proof is always the same. Hovcver, there is some hope that formal proofs of general statements 
about, e.g., all generic data types v.ill be feasible using a metatheory of LCF being deveJoped'on the 
basis of representing the LCF notions as data types (see section 6 for part of the data type 
definition). 

The usefulness of homomorphisms as a structuring principle has been observed elsewhere, in 
particular in the context of program translation [Mo, MiW]. However, though homomorphic 
extension is a rather powerful sehen for function definition it is by far not powerful enou-h. It 
turns out that properties similar to those proved for homomorphic extension can be shown for a 
more general class of definition schemes; this will be discussed in section 5. 

3.4      Non-generic Data Types 

Although the class of generic data types covers many of the structures needed in programming it is 

not comprehensive enough.   Pelaxing the restriction to generic structures is tantamount  to, in 
algebraic terms, allowing to add i. rther relations to a type definition. In a way, the generic data types 

can be regarded as the "context free types," and adding relations as "introducing context." In the 
context of this paper it is sensible to consider only relations that are expressible as recursive 
predicates. 

The general method will be discussed by means of an example. Let norepU) be a predicate on 

sequences which is true iff i does not contain repetitions of elements (the explicite definition is 
straightforward). Then the data type norepseq of "sequences without repetitions" is just the 
restriction of ««q by nor.p. The new type can be represented in the following way: Whenever an 

element is added to a sequence it is checked first if it already occurs in it, in which case nothing is 
dono. That is, if the constructor mKseq is modified to 

mknorgpssq  :■ [Xx y. norep(mks«q(x(y)) a mks^qfo,/), y] 

then all sequences constructed by mknorepseq have the "no-repetition" property, i.e. they satisfy the 
predicate norep. This is just another application of the homomorphic extension functional: The 
range of the function 

MUMiU^. -—__.^, 
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norepseq   H S<un(dlyp«. emptyseq. mknor.pseq) 

■ s exactly the desired subset of l»qu«n«l without repetitions (it is obvious that only elements of seq 
are constructed) In other words. norep5.q lepresents ordered sets of elements of type dtype. 

Obviously norepseq is a retract of seq; Since norepseq defines a subdomain of s.q It U also a rttraet 
of I which means that norepseq makes sense (in the present context) as a data type. This 

cons'truction for new retracts works at least in the case where a new type is denned by a restrictive 
predicate The full extend of the method, however, needs to be explored further. It is conjected that 
L data type (given a reasonable definition in terms of computability) is representable as a retract ot 
a generic type this would parallel the fact that, in formal language theory, any recursively 

enumerable set is the image of context free :ets under suitable mappings. 

3 5      An Example: Infix to Post-fix Translation 
As an example we show how to generate a function that translates anthmetical expressions from 

.nfix to postfix notation (th« sample was suggested by J.Allen). The abstract syntax of the 

structures is defined by 

exp       :» mKlexp(1e:term) 1 mksexpUupexp, si^-.Urm) 
term     :■ mkfterm(tf:fact) 1 mkplerm(pr1:term, prefect) 
fact       !■ mkvtaetdvivar) 1 mkefacUfewp) 

and        post      :■ mkvpost(pv:var) 1 mksum(s, :pot\, 82:post) | mkprod(p, :po«», p2:p08t) 

which may be thought of as abstraction from the "concrete" infix grammar 

<exp> •' <oxp> '♦ <term> | <term> 
<term> :• <term> '« «act> | <fact> 
<fact>    :■ <var> | '( <«xp> ') 

and th«3 nostfix grammar 

<post>   :« <var> | <post> <post> '• | (post) <post> '« 

Now the problem is 'o find » funcnon that translates variables into variables and infix-sums and 

mftx'products into postfix-sums and postfix-products resp, This is a simple example of a 
homomorphism between heterogeneous algebras. The algebra Exp includes the 4 phyla exp, term, fact 

and var the algebra Post the phyla post and var. The homomorphism maps exp, term and fact into 

the phylum post and var onto var, that is, the homomorphism consists of 4 mappings 

id: var   -♦ var 
Texp: exp   •* post 
Tterm: term -» post 
Tfact: fact ■» post 

_ -,_ —- -  J^^-^»^^J. wy* 
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These mappings have to respect the corresponding algebraic operations 

mksexp: txpxUrm -» exp <-> mksum : po«txpo»t -» post 
mKpUrm: Urmxfaet -♦ t«rm <•> mkprod: post«post -> post 
mkvfict:      vtr -♦ fiet <->   rnkvpost: vir -> post 

i.e., they must satisfy equivalences 

TtxplmksoxpU.y)) ■ mksum(T»xp(x), Tl«rm(y)) 

etc. Since the distinction between «xp, t«rm and fact disappears in Post, the "operations" 

corresponding to mkt«xp, mkfterm and mksfact are just identities on post. Having established all the 

algebraic corres|, ondences, homomorphic extension immediately yields the desired functions (slightly 

simplified); 

T«xp     • [oiE. [Xx.  isjexp(x) = Tterm^elx)), 
is.sexp(x) s mksum(E(sU|(x)), Tterm(su-,(x))), 

I]] 

Ttarm   i [o^F. [Xx.  is.fterm(x) a Tfact{tf(x)), 
is_pterm(x) a mkprodlFlprilx)), Tfact(pr2(x))), 

Tfact     t [Xx.   is_vfact(x) = mkvpost(var(fv(x))), 
is.etact(x) ■ Tflxp(fa(x)), 
A] 

 .      .       . .^  .■^-^> ^MMMi ■WiiMifrtt tnj-ii in' iinf'' ■ - -^ ■    .- 
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4.       Elements of a Problem Specification Language 

This section is devoted to discussing a rudimentary "problem specification language." The language 
consists of the terms of typed LCF, augmented by certain constructions that are considered nr.tural 
or helpful for concise specificauon of problems or, more precisely, functions over data types. The 
main extension is a first-order like calculus that enables to talk about sets and quantification in a way 
consistent with the computational logic, ^s an extension of the LCF terms in their typed form. Using 
.he definition techniques developed in the preceding section, the added constructions are interpreted 
as: LCF terms which gives them the intended meaning as computation rules or "programs." 

4.1      Sets, Set Operations and Quantification 

Syntax 
Types.   The language is tyoed, i.e.  a type is associated with each term.  There is a predefined type: 
T, the domain of truth values. New types can be defined explicitly as data types (see below).   For 
each type t we have a type s«tof(t) denoting the powerset type "sets of elements of type t".   More 
formally: 

Definition  4.1 (Types): 
(1) T is a type. 
(2) Data types are types. 
(3) If t, and t, are types, then (!,-><,) is a type (the type of functions from X, to \). 

(4) If t is a type then s»tof(t) is a type. 
(5) These are all the types. 

Types built by (4) are called set types. No data type is a set type. Although types are not sets, we use 
the type name also to denote the set of individuals of that type. There are no equalities between 
types; different type expressions, in particular different type names, denote different types. 

Note the distinction between "types" and "data types". Types are the sorts in the logic, whereas the 
notion data type is used more in the sense of data types in programming languages which involves 
certain assumptions about the (internal) structure of the typed objects. By (2) in definition 4.1 data 
types are assumed to coincide with certain logical types. 

Terms. We use the notation s:t to aenote a term t of type t. If 1 is a set type then £:1 is called set 
term. All LCF terms (I - 6) are terms of our language (cf. [Mil] and appendix A.1.1). Beside the 
LCF terms the language includes terms for expressions involving sets and bounded quantification 
(7-9). 

Definition  4.2 (Terms): 
(I)   The constants J., tt, ff, T are terms of type T. 

mmmm 
 - MAM **, ■    liMiri'iiiriiiiilii 
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(2) Any identifier is a term. 

(3) If B-.^-MZ M»d x:<i »W terms then •u)!t2 's a te,m 

(4) If Rrt| is an identifier and lit] is a term then [>.x.i(x)]: t|-»t| is a term. 

(5) If psT, q.rst are terms then (psq/M is a term. 
(6) If x:t is an identifier and «:» a term then [*x.8]:t is a term. 
(7) II X:t is an identifier ano S:se1of(t) a set term then (x<S):T is a term. 
(8) If x:t is an identifier, S:se«o((t) a set term and W-»T a predicate term then   (Vx<S. P(x)): T 

and   (3x<S. P{x)): T are truth value terms. 

(9) These are all the terms 

As usual parentheses and brackets can be omitted as long as parsing is unambiguous. The notions 

axuff and wff are used as in typed LCF (see appendix A.I.I). 

Note that the use of the sign V for quantification in (8) cannot be confused with the use of V m 
abbreviations for Xx.t.Xx.s.  The former always requires a restricting set whereas the wff-V is never 

restricted. 

Semantics 
The aim is to interpret the extended typed language in the .ype free calculus. This is done by 
showing that every type corresponds to a retract in tfLCF. Since the representation of data types as 
redacts has already been discussed, it remains to show how sets are to be represented. Based on the 

set representation we then have to find interpretations for the set operations and quantifications. 

The most common way of introducing sets into an environment of structures is by representing them 

as sequences (linear lists) of non-repeating elements. As we are not interested in axiomatizing set 

theory but rather look for convenient definition of function meanings we rely on such a 
representation in LCF (cf. [Nel]). It will turn out later that sets are needed mainly as a conceptual 
intermediate step which can be eliminated in actual "programs". Besides, representing sets by 
sequences fits nicely into the algebraic framework. Actually, what is to be represented is a rather 
restricted kind of sets: we are only dealing with homogeneous and computable (mainly even finite) 

sets. However, the required homogeneity is not really restrictive as one can always define the "sum 

type." 

The first step is to define a membership predicate x«S for sequsnees, yield.iig I if x occurs in S and ff 

otherwise (»f K I» defined) It is definable as a homomorphism from S«q into T by homomorphically 

extending equality on atoms; 

< :. [\x. Sfun([Xy.x«y], ff, v)] 

Note that ( is defined for appropriate types only; if x docs not have the same type as the elements of 

S. » is undefined, thus also x(S. 

m**. muttk uMum 
—-—■■ . 
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Using the predicaf < a function U, on atom i scq is definable by 

U,   :■ [Xx S. x<S a S, mhseqU.S)] 

u, guarantees that elements already occurring m a sequence will not be added; sequences built up 

using U, are those directly representing sets, if S«q is the u.ta type of sequence» of elements of type 

t, the type s««of(t) is the image of S«q under the homomorphism 

56 t :i Sfun(id, «mptys^q, U,). 

Moreover, set is a retract on soq; it defines the same subdomam of t«q as the function no apseq 
discussed in subsection 3.4.; s«tof(t) corresponds to the subset of sequences without repetitions of 

elements. (However, it is nor -. subalgebra of 8«q.) From this it UMows that functions defined on Seq 

are equally defined on setol(t). Furthermore, the (generic) structure of Seq can be used for defining 

functions on setoUt),  More specifically, we have the embedding iiet: 8«tof(t) -♦ teq with 

set o iset ■ idt(t ' 

Thus, any function   h seq -♦ D   can be restricted to set by composing with iset. In this way, the 
predicate  <  defined   above  becomes  the set-theoretic element  relation.  Similarly,  we  obtain an 
interpretation of quantified terms by applying homomorphic extension to any predicate P. Let 

operators all and exist be defined by 

Then 

and 

all        :« [XP.Sfun(P, tf, A) 

exist   :i [XP.SfunIP, ff, v) 

Vx<S. P(x)  !■   alKP.S) 

3x<S. P(x)   :«   exist(P,S). 

Note that this form of quantification is well-defined if S and P are defined; since x or T is never an 

element of a set, it will not appear in quantification', (and cause a non-defined truth value). 

Furthermore, a quantified term denotes a computable function if the predicate P and the term 
denoting the restricting set S are computable, which is guaranteed by the way terms can be built up. 

Using these constructs set inclusion is easily expressed by 

S, e Sj ii   Vx(S|. xtSj 

and similarly set equality by the "extensionality" property 

S, . S,   :•   (VxtSi. xtSj) A (Vx^Sj. x(S,) 

Note again that these relations will be undefined for sets over different types.  The empty set is the 
image under set of the empty sequence; we will identify the former with the latter. 

  ÄÄ, ■HMMMMft --^i, .■■-■■ 
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The function u,, taken as a function from tx««to<(t) to ••tofl«), inserts a single element into a set; 

extending this function homomorphically in the first argument yields ordinary set union u. As a 

short hand notation we will use un for n-ary union (n-l-fold composition of u). 

Similarly,    set   intersection   and    set   differeme   are   defrxble   by   means   of   the   function 
ramov«: tl «setofitl) «• B«tof(U) that removes an element froi      set. rtmov« is defined by 

remove II [Xx s. x*s s r0m(x,t), s] 

where rem is the endomorphic extension of 

r«m, :■ [Xx y. x«y » {}, {y}]. 

If { x | x<S } is used as an equivalent notation for S, the term language can be extended to include 
sets that are characterized by predicates. However, one has to be careful: a set { x | P(x> ) need 
not be constructive even for computable P , if no domain is indicated. Therefore, predicates for set 
formation have to be restricted to those based on set expressions, i.e. elementary predicates ><S. All 
other predicates have to be restrictive in the sense that they restrict a set to a subset ("filter 

predicates"). 

Definition  4.? (admissibL sif predicates): 
The set of admissible set predicates is defined by 
(1) The elementary predicates x(S are admissible set predicates. 
(2) If P is an admissible set predicate and Q any predicate, then PAQ is an  admissible set 

predicate. 
(3) If P and Q are admissible set predicates, then PvQ and  P\Q are admissible set predicates. 

Lemma 4.4: 
If P and Q are admissible set predicates, then 

and 
{ x | P(x) v Q(x) )   ■   { x | P(x) } U { x | Q(x) ) 

{ x | P(x) A Q(x) )   ■   { x | P(x) } A {11 Q(x) } 

It can be shown that the operations defined here have most of the standard properties. However, the 
well-known problems caused by only partial recursive predicates still remain. For example, 

- ( Vx<S. P(x) )  ■  3x<S. ' P{x) 

is true only if P is total on the domain under consideration. 

It is obvious that the representation of sets and set operations provide a model for a theory of (finite) 
sets.   In particular, a first-order like calculus based on the restricted quantifiers is available for 

^^^^^ 

 — 
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proving propert.es of funct.ons. Note that th.s calculus tl construct.ve In the sense that all 

expressions denote computable functions (cf. [Co]). 

As the type system does not include basic set types, sets have to be generated from objects that are 

not sets There is a canonical way of denv.ng set-valued functions from types. Recall that a type t, 

is a base type for a data type t, if it occurs in its definition. For each type t, that is a base type for t, 

a funCtl0n ..LofJ,: t, -. NttHM 

i, obtained by homomorphically extending the mapping base-type - singleton-set. More precisely. In 
the homomorphic extension constructors are replaced by set union (with appropnate ar.ty); those 

parts of a structure that do not involve elements of type t, are mapped onto the empty set. An 

example can be found in section 5. 

4 2      Schemes for Function "jefinition 
In section 3 we introduced a method called "homomorphic extension" for defining new functions 

over a data type A particularly simple special case of this method is the endomorphic extension of a 
runction An endomorphism is a homomorphism from an algebra into itself. Since all the algebraic 

operations remain unchanged, the only parameters of endomorphic extension are the functions on 

the base types to be extended. A typical example is substitution of terms for variables. Recall the 

data type definition for binary trees over atoms from section 3; 

bintree :• mkbt(sub:atom) | ccmp(fir:bintrM, s«e:bintre«) 

where atom is the generating base type.  The corresponding endomorphic extension functional is 

RTand :■ TXf [uE. [Xx.    is.mkbUx) • <latom(sub(x))), BTend      [M. [ut. L ^^J S comp(E(<ir(x)), EUacU))), 

Now  if we want to solve the problem 
"Find a function   varsubst: bintree -I bintree  such that varsubst replaces all atoms in a binary 

tree by their values under the function virsub: atom -♦ bintree," 

then a solution is simply 
varsubst i :}Tend(varsub), 

and this solution is even unique, as it was shown in section 3. 

So far we have been looking at homomorphisms only. Unfortunately, many interesting functions 

can not be represented as homomorphisms. But wo can apply a similar definition technique to a 

larger class of functions simply by explicitly stating the non-homomorphic part of the function and 

_^Ä_^ mtm mm iilii nr Mlia'iri i ii      liiriinn" "  
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using the extension functional for the homomorphic rest. This situation occurs often with data types 
which include several composed subtypes; an example can be found in the next section. 

The functionals derived from a data type definition (for homomorphic, endomorphic extension etc.) 
not only permit definition of new functions in a concise way, they also facilitate proving properties 
In fact, certain properties of those functions derive from properties of the functionals, like the 

induction proof rule already mentioned above. 

Lemma 4.5: 
If the argument functions of an extension functional are strictltotal then the resulting function is 
strict'total. 

Note that totality entails that any program derived from a function by "meaning-preserving" 

transformations terminates on defined inputs. 

There are other definition schemes that hitherto have defied a natural algebraic interpretation. 

Consider, for example, the following form of function iteration.  Let the expression 

[VJKS I <(x,z)] 

be interpreted as "For each x in S apply [\y. f(x,y)] to i." This can be made more precise by a 

recursion on the sequence representing S; 

[XS z. IVx<S : i{*,z)]]   «   [«F. [\S r i«.«mptyseq(S) a z, F(tl(S), f(hd(S), l))J] 

However, this interpretation causes some problems. In order to be a conservative extension of ti,e 

specification language as defined so far the given interpretation has to be consistent with the notions 

introduced previously.  In particular, if two sets S and S' are equal one would expect 

Vx i S: flx.z)   •   Vx < S': flx.z) 

This implies that the applications of the f(x,J must be independent of the particular representation 
of S, i.e. the "hidden order" on S ; or, at least, it must be guaranteed that the sequence of 

applications of f can be executed in any order. This virtually restricts applicability of the 
construction; in many cases it may net be easy or even possible to verify this kind of commutativity. 
Although operators like function iteration are necessary to make the specification language powerful 

enough, they will not be discussed further in this paper. 

4.3     Transformation of Function Definitions into Programs 
So far we have been discussing methods for defining functions over structured data and their 

interpretation in LCF.   Now, every LCF term also has an interpretation as a computation rule for 

  ---—• —   HMMMMIHilU *.^ 
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j 

the function denoted by it. Given such an interpreter for LCF this allows to compute all the 
functions definable in the language. However, the resulting computations would be quite inefficient, 

in particular because of nestings of unnecessary recursions resulting from direct interpretation of the 
constructs.  Consider, fo*- example, the expression 

F(y) » Vx(S(y). P(x) 

where the type of y is the data type list as defined above and S the standard set-valued function 
8«t_of_atom. Since list is a recursive type, one recursion is required to compute S(y) and another ore 
to compute the quantified expression; but wc can do much better by utilizing the underlying- 
algebraic structure. Note that the value of F is determined by the values of P(x>; moreover, we have 

P « F o mkbt 

which means that F is a homomorphic extension of P. Because of the uniqueness property it follows 
that 

F • BThom(Pp A) 

where BThom is the homomorphic extension functional for bintr«». This means that F tan be 

replaced by an equivalent function that involves only one recursion. Apart from that, the explicit 
representation of the set S(y) is eliminated. 

This is an example of how the algebraic concepts can be used to simplify function definitions 

considerably. It shows that the interpretation of the specification language is not a case of simple 
macro expansion, but a possibly non-determinutic process of simplifying expressions in a suitable 
way, which is similar to, e.g., theorem proving. More heuristic methods for recursion removal have 
been studied by R. Burstall and J. Darlington [BDI 

The reguiar expression structure that results from defining functions by means of definition schemes 

is of advantage at all levels of program development. Apart from the techniques for proving 
properties about them (see above) it permits uniform application of optimizing transformations, like 
replacing recursion by iteration. Even at the implementation level it can be advantageous: For 
example, functions defined by endomorphic extension can be implemented in such a way that no 
additional storage (fcr data) is required (cf. selmive updating in [Ho]). If it has been proved that 

the transformation and implementation techniques preserve meanings, then the "correctness" of 
resulting programs can be guaranteed. Meaning preserving transformations will be studied in 
greater detail in a subsequent paper. 

meatmm  - ■ -    
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5.       An Example: Substitution with ^-Conversion 

5.1      The Data Types 
In the example now to be discussed we have four data types, defined by 

t«rm   :■    mketerm{constof:const) | 
mKvt«rm(varof:var) | 
mKaprly(funeof:term, argeof:term) | 
mklambda(bvarof:bvar, Urmof:torm) | 
mkmulbvarof^var, tarniof:t«rm) | 
mKcond(condof:term, trua«Of:t«rm, talseeof:;erm) 

bvar    :■    mkbvar(v8rof:var) 
const   :■    uu I tt I ff I 00 
var is taken as basic and not further specified. 

The reader will notice that these data types represent the abstract syntax of LCF terms. In algeb-aic 
terms the types form a heterogeneous algebra with the four phyla term, bvar, var, and const and 
operations 

(opl) mkctarm: const -> term 
(op2) mkvtarm: var -» tarm 
(op3) mkapply: tarmxterm -* term 
(op4) mklatnbda: bvarxterm -♦ term 
(op5) mkmu: bvarxterm -♦ term 
(op6) mkcond: termxtermxterm -♦ term 
(op7) mkbvar: var -♦ bvar 

The generating phyla (data types) are const and var. Obviously the phyla var and bvar are 
isomorphic; the reason for i;uroducing the data type bvar is that it is more convenient to separate the 
binding occurrences of variables from the other ones. 

From the data type definitions the following characterizing functions are generated: 

term .a [ocF. [Xx. is_const(x) = mkcterm(const(constof(x!,, 
is_mkvterm(x) = mkvterm(var(varof(x)), 
is_mkapply(x) o mkapply(F{funeof(x), F(argeof(x))), 
is_mklambda(x) a mklambda(bvar(bvarof(x)), F(termof(x))), 
is_mkmu(x) o mkmu{bvar(bvarof(x)), F(termof(x))), 
is_mkcond(x) a mkcond(F(condof(x)),F(trueof(x)), F(falseof(x))), 

bvar :ä [Xx. mkbvar(var(varof(x)))] 

In order to define a homomorphism we have to supply 7 operations of appropriate types. 6 of them 
correspond to the constructors occurring in the characteristic function term; the last one is to replace 
mkbvar.   By substituting the characteristic function for bvar in term we obtain an expression that 

■ 
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includes all operations and completely defines homomorphic extension. For endomorphic extension 
only the operations on the generating subtypes (i.e. opl, op2 and op7) are required. Let 

termhom :s [\ opl op2     op7  [«^F. .. J] 
and 

tarmend :« [V opl op2 op7  [«tF. .. ]] 

be the functional for homomorphic and endomnrphic extension. 

5.2      The Problem 
We want to formalize the following (cf.iAW]): 

Replace any free occurence of the variable v in the expression (term) • by the term t after 
renaming bound variables in e tmtably (i.e. S3 that no fret variable in t will become bound in •) 
(a common notation is «[t/v]/ 

What is described above is the basic conversion rule of the X-calculus as it is incorporated in the 

LCF system. It may be desirable to have a system that is smart enough to understand this 
description of substitution and to translate it frnm English into r programming language. At 
present, such a system is not available. It would »-equire knowledge about what exactly is meant by 
"free occurrence", "replace", "renaming" etc. For the time being we have to be satisfied with specifying 

those notions in some kind of formal language and having a less ambituous system Transform the 

specification statements into executable code. In any case, we need a formal definition in order to be 

able to prove anythmf; about the funct.on. 

We construct a function subst: varxtermxttrm -♦ t«rm by stepwise specifying the informal notion m 

our language. Let subtt be defined by 

where 
subst :■ [Xv 1 a, subttfr«a(v, I, ranamabvar(a,t))] 

substfraa(v,»,a) :« "replace all free occurences of v in a by t" 
ranamabvar(a,t) :■ "rename bound variables in a that occur free in t appropriately" 

a) bound variables in term. The function boundvarsin: tarm -> seto<(var) returns a set of variables for 

which there is a binding occurrence in the term. This is just the standard set function sot-of-bvar 
composed wirh the isomorphism variso from bvar to var, extended to sets. Here we can see how the 
separation of the type bvar from var facilitates definition of set-valued functions, sat-of-bvar is the 

homomorphism defined by the operations 

(empt] set) 

(singleton map) 

b. :5b2 s [Xx {}] 

b3 :B b4 1 b5 ■ u 

be li U3 

[\X. {X}] 
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i.e., set-of-bvar ■ l«rmhom(bi, . . by). 

Then 
boundvanin :■ virito •-■ s«t-of-bvar 

b) free variables in term. The standard function Mt-of-vin returns all occuring variables regardless 

of whether they are free or not. So we have to update that function appropriately to get a function 

that returns only free variables. If we had separated the A- and a-terms from the type Urm we could 

use a standard set-of-dtype function for defining frMvar«in. Instead, we define it directly as as a 

homomorphism 

fresvarsin: ttrm -» s*U>f(var). 

Using the set-valued functions 

I, :> [Xx. {}] 
f2 :« f7 :- [Xx. {x}] 
1,11 U 

fq :■ f5 :■ [Xx y. y\x] (set difference) 

the function is definable by 

freevarsm :■ tarmhom(f|, . . ,(7) 

c) Renaming bound variables. We need a function nawvar that "invents" new variables (which do not 

occur in either e or t). Strictly speaking the existence of nawvar depends on a function that 

enumerates all variables and returns the first element with a certain property. In any practical 

implementation we "know" all the variable names available to the user, so a function that generates 

new names is available. In the abstract context it is sufficient to assume the existence of a strict and 

total function n«wvar that returns a variable with the property 

- nawvar(v,«,t) < varsinl«) U varjin(t) U {v}. 

Using this function we can specify renaming of bound variables: 

r«nam*var(a,t) :■ "rename in • each variable that occurs free in t and bound in •" 

formally: 

renamevar    :■ [\e t. [Vx i freevarsin(t) n bvarsin(a) : ranam«(t,x,«)]] 
ranam* :■ [Xt. [Xx a. tarmand(mKc1arm, raplacavar, tnKbvaroraplacavar)]] 

where raplacavar denotes the term [Xz. z»x s nawvar(x,a(t), 2]. Note that the use of the iteration 

construction is justified by the fact that renaming of bound variables can be done in any order; all 

resulting terms are equivalent. 

 ^ tmtä^mUMtmm^ä 
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d) substfree. "Free occurrence" means "not bound", i.e. "not in the range of a X or oi binding that 

variable." So, in order to find occurrences of a variable v we have to search (recur in) the tree 

representing the term •. Whenever we come across a \ or «. (that is, a mKlambda or mkmu) that binds 

v, we stop and return. Then any remaining occurrence of v is a free one and is to be replaced by t. 

In the formal language this is expressed by a construction using a modified functional for 

endomorphic extension: 

substfr««    :■ [ocS. [\v t. [\%. is_mKvttrnn(«) » virof(«)>v a t,t, 
(is. Iambda(«)vis_mu(*)) A bvarof(a}<v a e, 

Here tarmO :« the operator on F that defines ttrm, i.e.  twrn • [o<F. [\x, t«rmO(Flx)]] . 

This finishes the formal speenication of the substitution function. The collection of all the function 

definitions 

subst 
substlree 

renamevar 
rename 
replacevar 
bvarsln 
set-of-bvar 
freevarsm 

li [Xv t e. substfrse(v,t,renamevar(e,t))] 
!■ [«iS. [Xv t. [X«. is_mKvterm(e) » varof(«)»v a t.e, 

(isjambda(e)vis_mu(e)) A bvarof(a)>v o «, 
termO(S(vIt)ie)]]] 

:« [Xo t. [Vx ( freevarsin{t) n bv?rsin(e) : ronamed.x.e)]] 
:a [Xt. [Xx e. termend(mKcterm, replacevar, mKbvaroreplacevar)]] 
li [/\.   2=x a newvar(x,e,t),z] 
:• va'iso o set-of-bvar 
:■ termhomUXx.O], [Xx.f}], U, U, U, U«, [Xx.{x}]) 
:■ termhomCXx.l}], [Xx.lxJ], U, \, \, U3, [Xx.{x}]) 

is somewhat longer than the informal description in English, yet it is complete in the sense that a 

sufficiently smart system can transform it into a reasonably efficient program, using transformations 

of the sort indicated in the preceding section. 
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6.        Concluding Remarks 

In this paper, the representation of abstract data types in LCF and the algebraic interpretation of 
structures were discussed. This led to constructions that permit to specify functions operating on data 
structures in a concise way and close to what may be considered "natural." The methods were 
demonstrated in an example taken from the actual LCF system. 

The construction methods considered here constitute only a first step towards an elaborated language 
that will allow easy and concise definition of complex functions as they are needed in, e.g., structure 
manipulating systems. There are many directions in which the work presented here has to bf 
extended. Some have already been mentioned in the preceding sections: systematic extension of the 
system of data type; more general function definition schemes; general methods for transforming and 
optimizing function definitions, in particular for removal of redundant recursions; the translation of 
logical expressions into a "real-life" programming language. In the paper, only methods Tor explicit 
function definition have been discussed. However, it appears that techniques for solving equations 
that define functions implicitly can similarly be derived from the explicit representation of the data 

structure by a retract. The retract could serve for guiding the search for solutions and for 
structuring the resulting program. The development of such problem solving methods in the 

framework of LCF has to be left to future studies. 

How much of the methods discussed here can be automated? It is obvious that the generation of the 
appropriate set of axioms, of function definition schemes and rules for structural induction from the 

data type definitions is straightforwaro and can be completely automated. Furthermore, many checks 

for simplifications and transformations can be done on a purely syntactic level accessible to 
automation. So it should be easy to incorporated all these features and special knowledge about the 
restricted set calculus into an interactive system foi developing programs and proving theorems 

about them. 
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A.       Appendices 

A.I     Logic for Computable Functions 

A.11   Syntax of Typed LCF 
The foilowmg is an extract taken from [Mil]. 

Types At bottom tr and ind are types. Farther H /ll ano flZ are types then (/n^2) I« a type. 

W.th each term of the log.c there i. an unambiguously associated type. For a term t we write U/i to 

mean that the type associated with t is ß. 

Terms (metavariables s.t.sl.tl,...)    The following are terms: 

Identmers (metavariables *,y) - sequences of upper or lower letters and digits. We assume that 

the type of each identifier is uniquely determined in some manner. 

Applications - s(t) l 02 . where Hfi\*Ai ^  W- 

Conditionals - (8-»U,t2) l ß , where s:tr and \\,\2:ß. 

X-expressions - [Xx.s] I fil-fil , where »ß\ and s^Z. 

ed-expressions - [ocx.s] I ß , where x^/S. 

The intended interpretation of the ^-expression [ocf.s] is I*   minimal fixed-point of the function or 

functional denoted by [Vf.s].   For example; 

[oif.[Xx.(p(x)-*f(a{x)),b(x))]] 

denotes the function defined recursively as follows: 

<(x) <- if p(x) then fU(x)) else b(x). 

Constants    The identifiers I, I denote truthvalues true and false. X denotes the totally undefinec 

ob;ect of any type: m particular, the undefined truthvalue. 

Atomic weli-formed formulae (awfFs)   The following is an awff: 

set 

where s and t are of the same type.  The intended interpretation of set is, roughly, that t is at least as 

well defined as, and consistent w.th, s. 

Well-formed formulae (wffs)   (metavariables PAPl.Ql   .)    Wffs are sets of zero or more awffs, 

written as lists with separating commas. They are interpreted as conjunctions. We use 

-  - ■**^^*^*****-L*^**-'--'    ■ ■ -     --. ^■.^.^..■:.   - .- -. ■■.-.^,...,. i    t   i iiml 
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to abbreviate set, tes. 

Sentences    Sentences are implications between wffs, written 

P  1- Q 

or, if P is empty, just   |- Q. 

Proofs     A   proof   is   a  sequence  of  sentences, each  being denved  from  zero  or   more  preceding 

sentences by a rule of inference. 

The stnet syntax for terms and awff s is relaxed in the machine implementation to allow a saving of 

parentheses and brackets.  In addition, we u^e the abbroviation 
f(x,y) for    f(xKy) 
V x. t  ■  8 fOr      ^■•'  *  ^X-' 
p :: q ■ r for    p a qpX • p => r.i 

Functions are used in infix notation where it is obvious what is meant. 

A 1 2 Type free LCF 
The type free version of LCF differs from the typed one essentially In the handling of truth values and 

conditional expressions. Apart from that it also specifies the structure of the domain. Besides the truth 
values there are constants T for the truth values retract and I for the universal domain. In the 

following the additional axioms and rules of inference are listed. 

MAX s c T 

COND      I- T -» s,« • s 

|- r -» 8,t ■ T(r) -♦ s,[ 

i- Ks)») ■ rw 

1- T c  T -» T 

|. I E [^J. T u (J -♦ J)] 

The CASES-rule is changed to 

P |. Q{x/x)     P I- 0{tt/x}    P I- WM   f m-r/«} 

P  I-  Q{T/x} 
CASES 

■-  — iiiiiiMMniliiliiii   ii ^tm^täämau^mätiam — ■  ■-•'-■- ^^^-...~..^-.^-^v:i.^»J 
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• Other defined standard terms; 

-»     :■ [Xx y. X 2. y * « x x ] 

- - -■■-■'^-- -^-^ "■ ^   ■' ■ _ 
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A.2     Special Functions in tfLCF 

A.2.1  Defineiness predicate 
We want a predicate d such that 

Define d by 
d ■ upt U down 

where 
down » [X x. >::=> X,i] 

|.  dMitt.xtX, XiT 

and 
upt   -. [* P. [X x. (x = tt.tt) Ü P(x|T))]] (i [Xx. uptf(x) o tt.tt]) 

down maps everything to ± except T which goes to T ; 

down(x)iT l-T(x)iT 1-xiT 

upt maps everything to i 

obvious. 

I except X which is mapped to i. The desired properties of d arc then 

•,, • 

A.2.4 istrue 
Our aim is to give a function that 

- maps everything on a truth value and 
. gives the values I and I exactly for the arguments I and I resp. 

This function will enable us to test effectively variables for "well defined" truth values.  In the type- 
free lo.ic the simple conditional does not provide this function as it is defined "relative to the truth 
values retract T ". However, we can define MrM using a limit construction. That such a definition is 

possible at all is due to the fact that the truth values are isolated points in the lattice 1. 

Definition: istru. • [tf S. [X x. x::» I Ü Six T), If ü S(x T)]] 

It is easy to show by cases that 

(1) T c istru« 

Since V x. T(x) c x  we also have 

(2) T«- istru« c istru« 

From the definition follows immediately 

(3a)        istrue(x)-=tt   \-  istru«(x(T)) c istrue{x) 
(3b)        i8tru«(x)iff   |-   istru«(x(T)) c i8tru«(x) 

M«MJMHM«HHMl ':'—■ •-   ■ -■    - .i—-^ . 
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also 

(4) T(x)iTV  |-  i8true(x)iTV    for TV»l,T 

Next we show by induction on istrue 

(K) Vx. istru«(x) c T{i8tru«(x)) 

I, x(x) c ...   ok. 

II  Assum«  Vx. S(x) c KistrutU)). We hav« to «how 
x :-♦ ttUS(x T), tf U S(x T)   c T(i$tru«(x)). 

By cases T(x): 

T(x)»l. : trivial 
T(x)äT : implies istrue(x)iT, trivial. 

Ihs'i ti U S(x T) c tt U T(istrue(x T)) by Ind.Hyp. 
i T(tt U istrue(x T))      by L54 MrWe 
i TdslrueU)) 

T',x)«ff : analog 

With (2) we have shown 

(6) istrue ■ T o istrue. 

which means that the range of istrue is a set of truth-values. 

On the other hand we already mentioned that 

(6a)        istrue(tv) i tv 

holds for each truth value tv. Thus, in a short notation 

(7) istrue o T • T 

i.e. istrue is an identity on T. From (6) and (7) we deduce the retract property for istrue: 

istrue o istrue 

(8) 

■ istrue o (T o istrue) 
■ (istrue o T) o istrue 
■ To istrue 
■ istrue 

J-JL. 
- -■ — •"-'   ■     

 i  
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The ultimate goal is to show 

(x) istrueU) s tt    |-  x • tt 
istru«(x) • ff    |-  x • tf 

l.t. istru« is a truth-valued function that gives the values tt or ff exactly for tt and ff resp.   In order 

to do so we introouce another truth-valued function: 

Definition: uptf s [* P. [X x. T(x) U P(x(T))}] 

By definition we have 

(Ul)        T c uptf 

We prove the following facts about uptf: 

(U2)       x c uptf 

(9) istru« ■ uptf 

(10) i8tru*(x) i tt   |-   uptf(x) c i8tru«(x) 

(9) and (10) together show 

(11) i8tru«(x)itt   |-  uptf(xM 

With (U2) it follows that 

(12) x c tt 

on the other hand, since  tt • T(x) c x we have 

(13) istru«(x) « tt   |-  x • tt. 

The proof for the corresponding statement for ff follows the same line. 

A.3     Structural induction 
The basic idea of how to do structural induction in LCF is thai it can actually be simulated if a 

recursive function "describing" the structure is available. For the Und of structures we are interested 
in in this paper the retraction constructed from the type definition serves this purpose. So. structural 
induction becomes a mere application of computational induction. The derivation of the induction 

rule as in theorem 3.x is done in two steps: 1) first derive a rule involving the retraction; 2) modify 
the rule in 1) by using the type-predicate. Since proving the rule in full generality would be rather 

tedious, it is demonstrate by means of the example («q. 

mmm -- ^•—  - -  ■    " -      ■■■■-"    -- mvn" nufi''■■-''• -- '-■ .i--^.—.i. ■ 
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Recall that seq is defined by the retraction 

seq « WS. [Xx. i8_«mptyseq(x) = emptys^q, 
is mkseq(x) D mK8«q(itom(hd(x)), S(tl(x))), 

Xj] 

First, we prove the rule 

(a,)   PU)       (a2)   P(T)       (83)  PUmptyseq)       (i4)  Vx.P{y)   |-   Vx.P(mk8«q(x1y)) 

P(8eq(x)) (Rl) 

where x and y do not occur in P. By computational induction, we can deduce 

Vx. P(8«q(x)) 
from 

Since 

Vx. PU x) and Vx. P(S x) |- Vx. P(tau(S)(x)). 

PU x)  <•>  PU) 

the base case is proved by premise (b|). 

Now assume 

In order to prove 

we expand tau(S) to 

Vx. P(S x) 

Vx. PUau(S)ix)) 

tau(S)(x) 1 is.emptyseq{x) o emptysaq, 
i8,mk8*q(x) = mkssqlatomlhdlx)), S(tl(x))), 

and split into cases which then can be deduced from appropriate premises: 
is.exptyseqU)     ■ i. I     tau(S)(x)   ü by premise (a,) 

■ t 1 1 «mptyseq by (83) 

IT:                     • T by (a2) 

■ ff : case split for i8.mk8«q(x); only tt is interesting: 
• mkseq(atom(y),S(x))   by (a4) 

Now, the rule 

(b|)  P(«mptys«q) (b2)  P(y) |-P(mk8«q(x,y)) 

Vx.i8.8«q(x) ■> P(x) 

follows from (Rl) by virtue of the facts that the relativizing type predicate eliminates the cases 

and T. 

^ 
ÜHÜHlM ■tt^^fcl   ^IM  '■""-"■—*—  "■ 
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