ADAO19661

SEMANTIC MODELS FOR PARALLEL SYSTEMS

Ellis S. Cohen

January 1975

DEPARTMENT
of

COMPUTER SCIENCE

= GelTIOn wean
SOIESTIFIC RESEA GR J(aTes)
oY

T . 3
- - 2 . E 1
) 241 reviewed and i

m g <A AR lu0=18 (7'5_)
Al'v - -.‘. -
3 At s i rLise
techoical (nrermabisn vl r

Carnegie-Mellon University

R R R R R R R R,

Semantic Models for Parallel Systems
Ellis S..Cohen
Department of Computer Science

Carnegie Mzllon University
January 1975

\ﬁBSTRACT

This paper presents a semantic mode| for parallel systems with

a

schedul ing mechanism that is useful for expressing and proving & Hlder

range of properties than semantic models which do not consider
schedul ing.

We formally describe a number of properties related-to schedul ing and
deadlock, including "Fairness" and "Ful Iness", and shou that echedulers

With these properties behave in desireable ways.

Lastly, we prove and conjecture some proof rules for scheduled systems
ang outline briefly the relation of this work to modelling protection in

parallel systems.

]

This work wzs supported by the Advanced Research Projecte
Agency of the Cepartment of Defense under contract no.
F44628-73-C-8874 and monitored by the Air Force Office of
Scient! flc Research.

¥

D e S S

Semantic Models for Parallel Systems

INTRODUCTION

Based on Scott’'s Mathematical Theory of Computation [Scott 72], Cadiou
& Levy [Cadiou & Levy 73] and Milner [Milner 73] have introduced a mode|
of parallel process:s based on processes that communicate by sharing
memory, and have shown .noW to state and prove properties such as mutual
exclusion formally within the mechanizable LCF system. '

They treat nondeterminism by introducing an oracle from the domain TTw
(sequence of truth values, see [Kahn 731). The determination of which
process to execute next depends on an initial sequence of the oracle,
with the neuw oracle becoming the remainder.

In onice of the elegance of their system, they are unable to prove
certain properties of paraliel systems that one would expect to be true.
Primarily this trouble stems from the difficulty of characterizing the
well-behavedness of their oracle. By using a model derived from
Lipton's work [Lipton 73], we replace the oracle with a scheduler and
state a property of schedulers, fairness, which is shoun to be adequate
to prove a property of a particular parallel system that is difficult to
express in Cadiou & Levy's systenm.

We first present a variation of Cadiou & Levy's model and note some of
its problems. We then introduce a model with a scheduling formalism
that solves. these difficulties. The remainder of the paper contains
properties and proofs using the scheduling mode!, as well as additioral
comments.

MODELS FOR PARALLEL PROCESSES

The models for parallel processes we will invetigate in this paper
have 3 important features.

1) Processes - We will aluays consider a variable number of processes,
each of uhich may be in one of three sta‘es, runnable, blocked or
stopped.

2) Indivisibility - Processes are ¢ .ided into indivisible actions
(instructions) called elementary processes or EP’s. When a process is
selected to run, it executes exactly oie EP, after which a neu decision
is made about which process should be scheduled. Concurrent execution
of parallel processee is modelled by sequential interleaving of actions
from the various proucesses.

3) Abstract Machine - Two main approaches have emerged for proving
general properties about programs (i.e. - Termination and Equivalence as
well as Correctness), the Functional approach [Scott & Strachey 73]
(related is the Relational approach, sea [deBakker 74]) and the Abstract

1

Semantic Models for Parallel Systems

Machire approach [Wegner 72,

The Functional approach maps a program directly into a mathematical
function; the meaning of a program is then just the value of the
corresponding function. Not only is the technique elegant, but a formal
system, LCF (Logic for Computable Functions) [Milner 72] has been
developed and mechanized in which one can prove properties about
computable functions. Cadiou & Levy and Milner use such an approach in
their respective papers on semantics of parallel programs.

The Abstract Machine apptoach defines a programming system via a
formal definition of an abstract machine. The meaning of a program is
then thz result of its execution on their abstract machine. Much of
what might be considered .nelegant about this technique is due to its
aukuardness in modelling the execution of statements with complex
control structures.

However, in the parallel systems we will be describing, there is only
one language construct, the EP. We are thus in the unusual position of
being able to produce an abstract machine definition that is as simple
and somewhat less opague than the corresponding functional semantics.

Of course, one question remains - hou to define the Abstract Machine.
e choose to define the machine interpreter as a computable function,
thus making the tools of LCF available for our proofs.

(As we note in the conclusion, wWe expect work on semantics for
parallel systems to come full circle, that is, back to languages that
have the appropriate structures for parallel control. [t is likely that
an Abstract Machine approach would then be unsui table.)

A VARIANT OF CADIOU & LEVY'S MODEL

In producing an Abstract Machine version of Cadiou & Levy’s model, we
divide the state of the model into 2 parts, S, the Data state and K, the
Control state.

The Control state, K, can be vieued as a binary process tree whose
leaf nodes represent processes. The interior nodes of the tree contain
either "//" uhich indicates parallel execution of its tuo subtrees or
"s" uhich indicates sequential execution, that is, no process in the
right subtree can run until all processes in the left subtree have
stopped. Fur example:

038 bos B ¢ i e A L 2T AN,

ci RGP

| AGCESSIOR tar

!
J Semantic Models for Parallel Systems : |
\

A, .B, D and E are runnable. C ie blocked until both A & B etop. F ie
i blocked until E stops.

The Abstract Machine selects a leaf node representing a runnable

process. [t executes a single EP which first modifies the state S, and’

then produces a process tree which replaces the node selected, thus

becoming a subtree of K. The subtree may be simply a single node, which
] can be used to represent the continuation of the same process, a "u"
construct, which can be used to represent the call of a subroutine, or a
"//" construct, which can be used to represent the spauning of a
subprocess. In addition, a node can be the element {STOP} which
indicates the process has stopped. '

All processes execute the same program. We can view programs as
labelled flowcharts, where it is the EPs that are labelled. For
y example, the flowchart

can be represente& by the following program with labels P & V.

P: sem > 8 --> (semesem -1 ==> V), ==
V: sem « sem + 1 ==> P

(Note: Read "==>" as "goto" and "a --> b, c" as "if a then b else ")
| : The leaf nodes of K either contain STOP or the label of the EP the

process was$ executing. So, the process tree for a eystem:in which two
I proceseee are executing the P/V loop program above might be

The data state S contains an element sem,

In the formal model, the abstract machine, given S and K determines
the "Next" etate of S and K by selecting a runnable node from K and

3

Semantic Models for Parallel Systems

executing the EP it represents thus changing both S and K.

To select the runnable EP, we use an oracle, an infinite sequence of
truth values. MWe start at the root of K and work our way towards a leaf
node. Each time we encounter a "//" with runnable nodes (not (STOP}) in
each subtree, we pick off the first element of the oracle and use it to
decide which subtree to continue down. In the formal model, the "Next"

8 function implements the abstract machine as as recursive tree-ualk.

FORMAL MODEL - Cadiou & Levy Adaptation

Primitive Domains

. S - memory state
TT - truth value (elements tt, ff and uu -

» we also use "uu" to represent the least defined element of
any domain and let the user rely on context to determine the
appropriate domain)

LABEL - label
Constructed Domains
f
\ ORACLE = TTx (sequence of truth values)

EP = S --> K x S
K = (STOP} + LABEL + K x {%,//} xK
" PROG = LABEL --> EP

The "Next" function uses the oracle to pick a runnable EP from K,
rewurning the resulting process tree as well as the updated state and
the remainder of the oracle.

B

Semantic Models for Parallel Systems

Next: K x S x ORACLE --> K x S x ORACLE
Next (k,s,ora) <==
Case k of
STOP --> <k,s,ora>,
‘<qy//,r> -=> | .
Stop(g) --> Next(r,s,ora),
Stop(r) --> Next(q,s,ora),

Hd(ora) --> Mk(At.<t,//,r>, Next(q,s,Tl(ora))),
Mk (At.<q,//,r>, Next(r,s,Tl(ora))))8

<q, v, r> =-=> |
Stop(q) --> Next(r,s,ora),
Mk (At.<t,%,r>, Next(g,s,ora) }],
Ibl --> <Exec(lIbl) (8).K, Exec(lbl) (8).S, ora>.
(note that if AB = A x B, and ab: AB (ab is of type AB), then

we use ab.A and ab.B to indicate the projections of ab onto it’s
A and B components respectively)

The "Exec" function for a particular program Prog gets the EP label led
by Ibl and executes it in state s to produce a ned k and s.
Exec: LABEL --> [S --> K x S}

Exec(Ibl) (8) <== Prog(ibl)(s).

Mk: [K --> K] x [K xS x ORACLE] --> [K x S x ORACLE)

Mk (fk,<k,8,0ra>) <== <fk(k),s,ora>.

Hd: TTwe —=>'TT and returns the first element of a sequence
Ti: TTye ==> TTw and returns the remainder of a seguence

Stop: K -=> TT and is defined so that .
Stop(uu) = uu, Stop(STOP) = tt, and for all other K,
Stop(k) = ff.

The result (final state) of running k8 with an initial
state sB and oracle oradB is Mem(k8,s8,0raB), where Mem is

B

Semantic Models for Parallel Systems

Mem(k,s,ora) <==
Stop (k) --> s,
Mem (Next (k,s,ora)).

(An alternate model perhaps closer to current |anguages and systems
might use "8" instead of "//", where "&" spawns a totally independent
process. Thus in <<p,//,q>,%,r>, © can only execute after both p and q
STOP. In <<p,&,q>,%,r> r can execute aficr p STOPs, regardless of what
happens to q. And, <<STOP,&,q>,%,r> would act like <r,8,0> If a
semantic description were to be given. Houever, we will not pursue it
further in this paper.)

The key departure vrom Cadiou & Levy is that K is represented by a
“syntactic" data structure rather than by being embedded in a purely
functional structure and "//" and "%" are used here as purely syntactic
entities rather than as instances of more general process combinators.
A number of other changes havé been made to produce an Abstract Machine
mode! from their functional model, but none significantly affect the
problems of the model.

The main advantage of the adaptation has been that uwe have sepafated
the selection of a process to be executed from its execution. This
suggests the substitution of a scheduler for the oracle.

FACTORS IN‘CHOOSING A MODEL

There are three major concerns that have prompted the development of
the schedul ing mode! that will be the focus of the rest of the paper.

1) It is difficult (at best) to characterize anomalous oracles, since
anomaly depends so heavily on the changing nature of the state and
control. For example, in the 2 process P/V loop example, Cadiou & Levy
are only able to prove that one or the oth r will run forever, while
under a reasonably "fair" scheduler, we would expect both to run
forever. By providing a model with a scheduler, we can characterize the
scheduler in such a way that anomalous schedules can be avoided. Thus,
we Will replace the Oracle by a Scheduler which has access to the state
of the system and specifies a particuiar hrocess to be run as well as
producing a new scheduler to schedule the next process (presumably by
modifying internal variables or queues).

2) We wish to mode! situations where one process may arbitrarily
start, stop or otheruise control another process. Thus, instead of K,
the model contains a multiplexor M, uhich may viewed as a vector of
processes. The Scheduler specifies a process to be run by supplying ar
integer index into M. M is also more general than K in that for each
process we associate not only a label indicating the current control

i, A i T v v~ %

’ Semantic Models for Parallel Systems

point, but a separate program as well,

3) ke wish to characterize processes which are blocked, so that the
scteduler can choose not to attempt to run such a process. Thus, ;
folloning Lipton [Lipton 73], we provide each EP With a synchronization '
part which can be used to determine which processes are blocked.

] . An EP corsists of 3 parts, all executed indivisibly of course. The .

y- first part, (SYNCHFORM), represents a synchronization condition. 1f
the Scheduler schedules a process, and the synchronization condition of |
its current EP is not met, no action is taken, and the Scheduler 18 i
simply invoked to schedule again. If the synchronization condition is
met, the other 2 parts of the EP are executed. One part (STATEFORM)
changes the data state (S) of the system, and one pért (CONTROLFORM)

P changes the control state (M) of the system (specifying the label of the
next EP of the current process or starting, stopping or otheruise
controlling another process. There is one special label, STOP, which
Henotes the completion of & process).

Evaluation of "Next" proceeds in the following way: First the
Scheduler produces an index into the Multiplexor (as well as a new
Scheduler to schedule the next iteration). If the label indexed is

) "STOP", then no further action is :aken this iteration. Otherwise, the
\ labelled EP is executed. First its synchronization condition Is tested.
if false, no further action takes place with the EP. Lf true though, the

rest ri the EP is evaluated to update both the data state (S) and the
mul tiplexor (M.

THE FORMAL MODEL

{ Primitive Domains 1
‘ v
TT - truth values
N - natural numbers
LABEL - labels, including the element STOP]
i ARG - function argument
~ NAME - names of functions
| S - states

e i bty T SRR

i

Semantic Models for Parallel Systems

Constructed Domains

SYNCHFORM = NAME x ARGS

STATEFORM = NAME x ARGS

CONTROLFORM = NAME x ARGS

EP = SYNCHFORM x STATEFORM x CONTROLFORM

M = N --> PROG x LABEL

PROG = LABEL --> EP

ARGS = {<>} + ARG x ARGS (We will use standard tuple notation

and thus represent <a,<b,<c,<>>>> as <a,b,c>)
SM = S x M

The Scheduler

SCHED = S x M --> N x SCHED

Primitive Functions

Synchfn: NAME --> [ARGS --> [S -—> TT 1]
Statefn: NAME --> [ARGS --> [S --> S x ARGS])
Controlfn: NAME --> [ARGS --> [ARGS --> [M --> M]]]

For reasons discussed in the section on Schedulur Notes, we model the
various FORMs as a function name and an argument list. To evaluate the
functior, we must provide a way of mapping the name of the function to
the function itself. That is uhat the three primitive functions do.
Theg are also guaranteed to be total, It is left to the reader to
imagine how they can be extended reasonably to total functions in the
cases uhere the name is undefined or the arguments are inappropriate. It
is important to note that arguments to Synchfn’s and Statefn’s will not
necessarily be values but will more |ikely represent variable names used
to select a value from s. Thus we are not providing an abstract model
of storage, but rcther modelling at a higher level of abstraction.

The Interpreter

Next: S x M x SCHED --> S x M x SCHED

Next (s, m, sched) <==
Let <n,sched’> be sched(s,m) in
m{n) .LABEL = STOP --> <s,m,sched’>,
Let <s',m"> be Exec(n) (s,m) in <s’,m’,sched’>.

(note that if AB = A x B, and ab: AB (ab is of type AB), then
we use ab.A and ab.B to indicate the projections of ab onto it 8
A and B components respectively)

PSR B =S e < v A

Semantic Models for Paralle! Systems

Given an index into the multiplexor and a multiplexof. Action produces
the designated EP.

Action: N x M --> EP

Action(n) (m) <=« (m(n).PROG) (m(n).LABEL).

Given an index into M, ab well as S & M, Exec executes the designated
EP to produce a nes S & M.

Exec: N --3 [S xM -->S xHM)

Exec(n} {s,m) <==
Let <syfrm,stfrm,cfrm> be Action(n) (m) in
Synchfn (syfrm.NAME) (syfrm.ARGS) () -->
Let <s’,result> be Statefn(stfrm.NAME) (stfrm.ARGS) (8) in
<8’ ,Control fn (cfrm.NAME) (cfrm, ARGS) (result) (m)>),
<s,m>,

The reader is encouraged to look ahead to the Applications section for
an example of how a particular system would be mode | | ed.

In this model (as in actual systeme), it is not so clear when
computation stops (for example, an idie process may run in an Operating
system when nothing can otnerwise bs scheduled). Houever, for
simplicity, we will assume a continuous predicate, Ms top.

Mstop: S x M x SCHED --> TT

For example, if the scheduler returns a zero index when there is
nothing to schedule, then we could define Mstop as:

+

Mstop(s,m, sched) <== { sched(s,m}.N = 8).

In any case, we can define the result (final state) of running m@ with
state s@ and scheduler sched® as Mmem(s8,mB,sched8) where Mmem is
defined as 2

Mmem (s, m, sched) <==
Mstop(s,m,sched) --> s,
Mmem (Next (s, m, sched)).

e e a—— e e ot

Semantic Models for Paralle! Systems

PROPERTIES OF SCHEDULERS

Treatment of schedulers in this paper will be independent of any
par ticular synchronization primitives (e.g. P/V, P/Vchunk, up/doun) and
any particular impleventation or internal structure of the echeduler
(e.g. FIFO queues. priority order), rather ue simply express a number of
3cheduler proper!ies using the model. The properties described are
ei ther ones that will be used later in the paper, or ones that have
appeared already in the |iterature. A comparison of these propertiee by
example can be found in the Applications section of this paper.

The properties as described are dependent heavily on S &M as uwell as
the scheduler, uheras commonly, we are simply interested in a property
of a echeduler independent of what it schedules. The section of this
paper on Scheduler Notes indicates hou this problem may be solved.

Notes: We will be using "process j" to indicate the continuing
behavior of the contents of M(j).

We use the notation € to mean less defined than - aleo
» - Strong equivalence (as b iff
aCb A bEa) ’
E - Strictly less defined than { a C b iff
aCb n ~(asb))

Note that sequénce domains (e.g. TTx) are ordered by
w EatCi(a#b) and aw=sa# w
where "#" is the concatenation operator.
1) Defined(sched) (s,m)
ttee <== tt # ttx. (The symbol "tt«" is to be the least fixed
point of this equation - which can be seen to be the
infinite string of "tt"s.)
Defl(e,m,sched) <== tt # Def(Next(s,m,sched)).
Defined(sched) (s,m) iff Def(s,m,sched) = tt
2) Full(sched) (s,m) - A scheduler is full if it doee not schedule an
unrunnable process when a runnable process can be run.
Canrun{k) (s,m) <==
m(k) .LABEL = STOP --> ff,

(Let eyn be Action(k) {m),SYNCHFORM in
Synchfn (sun.NAME) (syn.ARGS) (s)).

10

= e
¥ =

—':.;, - i

Semantic Models for Parallel Systems

Runnable(j,k) (s, m, sched) <==
(j == sched(s,m).N v Canrun(j) (s,m) v ~Canruni(k) (s,m))
Runnable(j,k) (Next(s,m,sched)).

Full (sched) (s,m) iff (Vj,k)(Runnable(j,k) (s,m,sched) € ttw)

3) Release(sched) (s,m) - A scheduler is a release scheduler [Lipton
73) if, when some action unblocks a set of processes, then some process
from that set will be the next to run.

Unblock (k) (s,m, sched) <==
Let <s',m’,sched’> be Next{s,m,sched) in
(Canrun(k) (s,m) --> tt,
Canrun(k)(s ,m) o —=>
Let n’ be sched (s',m').N in
n' = k --> tt, :
~Canrun(n’) (s,m) A Canrun(n’) (s’,m")),
tt)
Unblock (k) (s’ ,m’,sched’).

Release(sched) (s,m) iff (Yk){ Unblock(k)(s,m,sched) & ttw)

4) Ready\Run(sched) (s,m) - A scheduler has the Ready Run property when
no process has to wait forever to run from the time it becomes
continuously capable of running. MWe actually state this in the logic as
- any process which is unable to run at most a finite number of times
must run infinitely often. Some thought should convince the'reader that
these are the same. '

Run(j) (s,m,sched) <==
*(j = sched(s,m).N A Canrun(j)(s,m)
Run(j) (Next (s,m,sched)).

$(p) <== p --> tt, uu.

Cantrun(j) (s,m,sched) <==
t(-Canrun(j) fs,m)) # Cantrun(j) (Next(s,m,sched)).

Ready\Run (sched) (s,m) iff
(Vj) (Cantrun(j) (s,m,sched) E tt* > Run(j) (s,m, sched) s ttw)

S) Pointer\Bounded(sched) (s,m) - A scheduler is pointer bounded
[Lipton 73] when a process able to run infinitely often is scheduled
|nf|n|te|g often. (We will see in the Application section that both
Ready\Run and Pointer\Bounded are too weak and that Fairness is a more
appropriate property)

Semantic Models for Parallel Systems
Tried(k) (s, m, sched) <==
?(k = sehed(s,m).N)} # Tried(k) (Next{s,m,sched)).

Infcan(k) (s,m, sched) <==
T(Canrun(k)(s.m}) # Infcan(k) (Next(s,m,scted)).

Pointer\Bounded(sched) (s, m} iff
(Yk) (Infcan(k) (s, m, sched) = ttwx > Trled(k) (s,m,sched) = ttw)

6) Fair(sched)(s,m) - A scheduler is fair if any process able to run
infinitely often, runs infinitely often at times that it canrun (ls not
blocked or stop)

Fair (sched) (s,m) iff
(Vk) (Infcan(k) (s, m, sched) = ttw > Run(k) (s,m,sched) = ttx)

7) UWe say a scheduler sched’ is an idling extension of sched if

a) (sched(s,m) = uu A (VYk)(-Carrun(k) (s,m))) -->
sched’ (s, m).N = B,
sched’ (s,m).N & sched(s,m).N

b) sched’ (s,m).SCHED is an idling extension of sched(s,m).SCHED

This corresponds nicely With the example definition of Mstop in the
previous section. It is easily provable that every scheduler has an
idling extension, that Run(j)(s,m,sched) = Run(j) (s,m,sched’) and
Defined(sched’) (s,m}. Also Full(sched)(s,m) I Full (sched') (s,m) and
similarly for Fair.

Fairness is in general the weakest property (along with definedness)
that we would ever demand of a legitimate actual scheduler. Luckl ly,
fairness (with definedness) will be adequate for proving properties that
Wwe are interested in. However, proving certain properties (in
particular, the example proven in the next section) given fairness alone
turns out to be somewhat difficult. The key problem is knouing exactly
when a particular action will occur, even when it is known that it must
occur eventually. This problem often disappears if the scheduier is
full as well, So we Will shouw that to prove: :

A) Deflned(sched) (s,m), Fair (sched) (s,m), D(j.s.mi +
Run(j) (s, m, sched) = ttw

it is sufficient to shou that
B] Defined(sched) (s,m), Fair(sched) (s,m}, Full(sched) (s,m}, Q(j,s8,m) F

Infcan(j) (s,m,sched) = ttw

12

S — e T

1 Semantic Models for Paraliei Systems

Froof:

Suppose there were a function Fullsched: SCHED --> SCHED s. t.
for any scheduier sched,

1) Full (Fullsched(sched)) (s, m)
2) bun(j) (s,m,Fulisched(sched)) = Run(j) (s, m, sched)
3) Infcan(j) (s,m,Fullsched(cched)) G Infcan(j) (s,m, sched)

Now, suppose Defined(sched) (s,m), Fair (sched) (s,m}, Q(j,s,m),
but Run(j) (s,m,sched) C itx

Since Fair (sched) (s,m}, Infcan(j) (s,m,sched) £ tts

] Thus by (1), (2) and (3),

Full (Ful lsched(sched)) (s,m},
Run(j) (s,m,Fullsched(sched)) E ttx and
Infcan(j) (s,m,Fullsched(sched)) E ttx

Then trivially, Fair (Ful I'sched(sched)) (s,m), by defn of Fair

me——

Now, let fsched be an idling extenslion of Fuilsched(sched). Then
) Defined(fsched) (s,m), Fair{fsched)(s,m}, Fuii(feched) (s,m) and |
Run(j) (s,m, fsched) C ttx '

l1f we can prove [B]l, then Infcan(j) (s,m, fsched) = ttw, and
by defn of.Fair, Run(j) (s, m, foched) = ttx.

Thus, we have a contradiction to
Run(j) (s,m, fsched) € tt®, and therefore the originai
hypothesis that Run(j) (s,m,sched) E ttx must be faise, Since
it is easily shoun that Run(j) (s,m,sched) & tt¥,
‘ it must be the case that Run(j) (s,m,sched) = tt¥ and
{A) foilous.

Definition of Fuilsched and proofs of 1), 2) and 3) can be
found in the Appendix. :
APPLICATIONS
Some notion of the properties in the section above can be gained by

consideration of the example (adapted from [Lipton 72]1) of 3 processes,
each executi.ng the loop: : .

et e et e e

==

"

il o R < T~ B e

Semantic Models for Parallel Systems

where the initial value of sem is 1.

(We will describe execution sequence as a sequence of pi and vi,
i=1,2,3 to denote the execute of a P or V by the i'th process)

Under a scheduler trat is merely defined and full, the execution could
simply be

pl vl pl vl pl vl pl vl ...
that is, processes 2 and 3 might never execute.

1f the scheduler is additionally a Release scheduler, the
execution could be

pl vl p2 v2 pl vl p2 v2 pl vl p2 v2 ... ;

that is, vl releases P of processs 2 and v2 releases pl, but again
process 3 might never be executed.

1f the scheduler additionally has the Ready\Run property, it helps
matters not at all, since process 3 is never continuously capable of
running. It is blocked each time process 1 or 2 executes a P. Likeuise
the Pointer\Bounded property does not help, since process 3 might only
be tried when it is blocked. A ;

[f the scheduler though is merely defined and fair, each of pl, p2,
p3, vl, v2 and v3 must execute infinitely often. '

We'll prove that last statement for the more general case where there
are n processes. As already noted, this is a problem that Cadiou & Levy
would have difficulty proving. ;

Po simplify, we'll assume that the state s is identically gem, and
we'll define the fullowing functions:

true() () <== tt,
tst()(s) <== (‘s >8).
inc() (8) <== <s+l,uu>.
dec() (8) <== <s-1,uu>,
gol<n, Ibl>) (res) (m) <== Xk.{ k = n -=> <m(n).PROG, 1bl>, mik)).
Introducing some notation, wWe use
Ibl: When syflsya) do stflsta) ==> cflca)
to represent the EP

<<sgf.sga>,<stf.sta>,<éf.ca>>

14

s s AR, e, W+ W ST A

o

el

Semaﬁtic Models for Parallel Systems

Where the EP |s label led by "Ib!", UWnhers sya, sta or ca are <> (no

arguments), we eliminate parentheses as well. MWe further use the
notation

tn=> |ul (args) for ==> GO(n, Ibl, arqgse)

(note: Function definitions, like "go", have their names in lower

case. The formal name, like "GO" (from the domaln NAME) is the
Same name written in upper case.)

" So, wWe name the program descrlbed pictorlally above,
j is the process number (index into M).

ite formal description using the shortha

pvliooplj}, where
It has two labels, P & Y, and

nd notation developed above !s:

P: When TST do DEC : j=> V
V: When TRUS do INC tja> P

Now, the problem can be staled in the logic as, Prove:

De fined (schedB) (s8,m@) , Fair (sched®! (s8,m8), Range(j) }
Run(j) (s8,mB, schedB) = tts

where

m@ <== Aj, (Ran
80 <=e],

Range(j) <a= j 21 A isn

ge(j) --> <pviooplj],P>, <uu, STOP>),

By the results of the previous section, we can &81so assume that
Full (sched®) (s8,mB) and simply prve

Infcan(j) (s8,m8, schedd) = t tve.
PROOF ¢

Defined(scheda)(sa.ma), Fair (sched@) (s8,m@),
Full (schedB) (s8, mB) , Range(j) F
Infcan(j) (¢8,mB, schedB) = ttx

InfcanZk(j)(s.m.sched)(k) <an
?(Canrun(j)(Desc(a.m.ached)(Z*k).Sﬂ))

#(Canrun(j) (Desc(s,m, sched) (2xk+1).SM)) ‘
Infcan2k (j) (s, m, sched) (k+l).

LEMMA 1
Defined(eched)(e.m) A Full (sched) (s,m) >

(Yk) (Let <s8’,m’, sched’> be Oesc(s,m, sched) (k) in
Defined(sched’) (s’,m’) A Full (sched’) (s’,m’))
Proof: Math Ind on k

15

s B e TR R T YT

Semantic Models for Parallel Systems

LEMMA 2 .
Infcan2k (j) (s, m, sched) (k} = Infcan(j) (Desc(s,m, sched) (2u%k})
Proof: Parallel Comp Ind on InfcanZk & Infcan

LEMMA 3 : i
Defined(schedd) (s8,mB), Ful'l (schedd) (s@,md) K
Let <s',m’,sched’ > be Desc(s0@,mB, schedd) (2wk),
<8",m", sched"> be Desc(sB,mB, schedd) (2:k+1),
j be sched’(s’',m’) in
Range (i) > Canrun(1)(s’,m’') A
Canrun(j) (s",m") A
i » j o =Canrun(i)(s",m")
: Proof: Math Ind on k using Lemma 1
LEMMA 3a
Def ined (schedB) (s8,mB8), Full (sched®) (s8,mB8), Range(j)
Canrun(j) (Desc(s@, m@, schedd) (2«k) .SM) = tt

The proof of the theorem follows directly from Lemmas 2 & 3a

We can also state (though we Will not prove) the mutual
exclusion problem as

Range(j), Range(k), j+k F Mu.ex(s@,md, schedd) = uu
Mutex(j,k) (s, m, sched) <==

P m(j).LABEL = m(k).LABEL = V) # Mutex(j,k) (Next(s,m, sched)).
DEADLOCK

Briefly, we can state some deadlock properties in the logic
based on the model.

1) Starved(k) (sched) (s,m) - A process is starved [Dijkstra 72)
if it is not "STOP" and is continuously incapable of running.
Infsafe (k) (s,m, sched) <==

?(m(k).LABEL = STOP or Canrun(k) (s,m))

Infsafe(k) (Next(s,m,sched)).

Starved(k) (sched) (s,m) iff Infsafe(k) (s,m,sched) E ttw

2) Deadlock (sched) (s,m) - The system is deadlocked if some
process becomes starved.

Semantic Models for Parallel Systems
Dead!ock (sched) (s,m) iff (3k) (Blocked (k) (sched) (s,m))

3) Safels,m) - We are often interested, regardless of the kcheduler
whether or not a particular set of processes can ever lead to deadlock.
1f not, the system is safe. Yet, we cannot ignore the scheduler
completely, as degenerate schedulers can ead to anomalous behavior as
we noted in an earlier section. We take as a minimal requirement that
the scheduler be fair and defined.

Safeks.m) iff
(Ysched) (Def ined(sched) (s,m) A Fair (sched) (s,m) >
(Vk) (Infsafe(k) (sched) (s,m}) = tt« by "

Clearly, .the P/V system of the previous section is safe.

Of course, it is in general undecideable whether or not <s,m> Is safe
even in simple systems such as P/V (uith conditionals), and even knowing
that under a particular fair, full, defined scheduler, dead!ock cannot
occur., :

Consider ¢ composed of a semaphore, sem, initially 8, Integers
k and n, in tially B, and f, a description of a total function of
type N --> TT. And let m be running the tWo processes informally
descr ibed by: .

Process 1 Process 2
k s= B; k 1= 1
n := 0 | oop
V(sem); . if kK = B then V(sem);
loop : P(sem);
if Eval (f) (n) then V(sem); end | oop
n:=n+1l; .
end loop C

Now, under a scheduler that runs process 2 first, the eventual value
of k will be 8 and there will never be deadlock, but if process 1 runs
first, k will bel, and determining Safe(s,m) becomes equivalent to
deciding whether f is true infinitely often, which is reducible to the
halting problem.

MOGELLING PROTECTION SYSTEMS

In the model presented, each process operates on a common memory state
S. Yet in programming systems, different processes do have different
accessing rules for accessing the memory (e.g. Frames, Contours, Virtual
or Local Name Spaces and Execution Domalns). By passing the EP Its
mul tiplexor slot as an argument, differential accessing of S can easily

17

s . PR e 5

b — < ST T

i Semantic Mode!s for Parallel Systems

be achieved. For example, if S = N --> DOMAIN, then if p is executing in
. Multiplexor slot k, s(k) could represent its execution domain.

Now, consider the mndeling of a segmented operating system. Process
j’s data segments would be part of S, whereas its code segment would be
} modeled directly by the PROG component of M{j). We could then model ths
starting of process n by the EP:

Start: When TRUE do CONTENTS(<seg>) ==> LOADGO(<n>)

where contents(<seg>) {s) returns as its result the contents of segment
seg (in state s), and loadgo(<n>) loads up those contents in M(n) and
begins execgting the process.

loadgo (<n>) (segcontents) (m) <==
k. (k=n --> «link(segcontents,n),BEGIN>, mik))

where link(x,n) assembles x into PROG form with start address, BEGIN
in process n.

] c An interesting byproduct is that one can mode! a process changing a

data segment of another process (possible in systems with shared data)

{ by using a STATEFORM, whereas a change in an executing process’s code

\ segment (most likely a bug) can caly be modeled by using a CONTROLFORM
(like LOADGO). In fact, in pursuing this modified model, just such a
bug was discovered in CMU’'s HYDRA system.

{ The bug in HYDRA can be circumvented by the use of "frozen" pages
(see [Rotenberg 74)). A finzen ccde page is permanently protected
against modification.)

Other smal!l changes in the model make it mcre useful for describing
| and proving properties about protection systems. (Cohen 75) will report
{ further results.

A CONJECTURED INDUCTION RULE

We will often want to prove (for some predicate Q)
l A) Defined(schedd) (s8,m8), Fair{(sched) (s8,m8), a(j,s8,md) F
Run(j) (sB,mB, schedB) = tt#

under more difficult conditions than in the simple example of the
applications section. We note that in the P/V example, process j

3 becomes blocked when some other process, say k, has successful ly
executed a "P". Process k's subsequent execution of a "W owill
then make process j runnable once more.

This is an instance of a more general obssrvation. Suppose that

18

-

- e R SIS SORTIL) N

i SR

Semantic Models for Parallel Systems

Wwhenever process j is blocked, we are able to find a runnable process
whose execution brings process j "closer" to becoming runnable and

fur thermore execution of any other process does not take process j

far ther away from becoming able to run. 1f we can shou that after doing
this a finite (though not necessarily bounded) number of times, process
J actually becomes runnable, then under a fair scheduler ue should be
able to show that process j runs forever. Formally, we have the

fol lowing induction principle:

Suppose that (W, <) is a well-founded set With a set of least
elements WB in uhich all intervals are of finite length, We
write lul for the maximum distance from uw to an element of WO,
Fur thermore, let Assoc: W -=> [S x M --»> TT) and
Closer: W --> N be total functions. Then to prove [A), it is
sufficient to prove:

al Q(j,s,m) F (3u)(Assoc(u) (s,m))
b) u@ ¢ WB, Assoc(ud) (s,m) F Canruntj) (s,m)

c) wl ¢ WB, Assoc(ud) (s,m) F {Yk) (Ju) (Assoc(u)(Exec(k)(s.m)f)

d) w -¢ WB, Assoclw) (s,m) F
() C 1wl < lul A Assoc(u’) (Exec(Closer (1)) (s,m)))

e) w -¢ WP, Assoc(ui (s,m) F (Vk) (3u’)(
Assoc{u') (s, m) A

CI’l < lul v 1wl = lul A Closer(y') = Closerfw))))

Intuitively, we use an abstraction of a token machine to determine
whether or not process j can run forever. A token is aluays assoclated
With some element w of W depending on s & m. A3 EP’'s are executed, s &
m change, thus the token becomes associated with different elements of
W. By proving properties about the movement of the token in W, we can
prove that process j runs forever,

The basic idea is to associate the bottom elements of W, that is WO,
With the states in which process j canrun, Then when the token is not
associated with an element of W8, we must show that the token is
eventually forced down towards an element of WB. We do this by
demanding that when W -¢ WB, there is some process Closer (u), such that
the execution of that process will force the token to an element W' such
that Iu'l < lul. Furthermore executing any other process must have the
effect that either the token is forced to a w' |ower than w anyway or
the token moves to a W' .at the same distance from the bottom (|u*l =
Iwl)} but such that Closer (u’) = Closer (u). Thus in the case that we

have a fai: scheduler, process k will eventual ly run and the token will

eventual ly be pushed down closer toward WB. Since al | intervals are of

finite length, the token will eventually end up in WB. This will go on
13

ey T

Semantic Models for Parallel Systems

forever, thus, process j will be runnable forever, and again, given a
fair scheduler, process j uwill actually run forever.

Using this conjectured induction principle, we car easily prove the
PYloop example. Define
W e %) + tul,...,unt and KB = i), under the ordering,
% < Wi, i =1,..4,N. .

Let Associ(w)(s,m} = s =1 na
m(k).LABEL = (Range(k) --> P, STOP)

and Assocl(uil(s,m) = s =08 ~a
m(k) .LABEL = (k=i --> V, Range(k) --> P, STOP)

and Closer {(ui) = i,
Then, it is relatively trivial to prove that:
a) Assoc(x) (s8,mB)

b) Assoc(x) (s,m) F Canrun(j)(s,m)

c) Assoc(x) (s,m) F
(Vk) (Range(k) --> Assoc(uk) (Exec(k) (s,m)),
Assoc (#) (Exec (k) (s,m)))

)" Aawoctnl) (e, 5) F
(Vk) (k=i --> Assoc(w) (Exec(k) (s,m)),
Assoc(ui) (Exec(k) (s,m)))

which is easily seen to satisfy the induction predicates.

To simplify proofs, it may:-be useful to partition the system. We
would have to define the notion of an "independent partition”, and then
prove that if <ml,...,mj> was an independent partition of m under s,
then

Safel(s,ml), ..., Safel(s,mj) I Safel(s,m)

SCHEDULER NOTES

1) As noted in an earlier section, scheduler properties depend
heavily on 3 and M as well as SCHED. Since future behavior of the
system is completely determined by the initial system, all we need
do ie allou the scheduler to be tailor made to the initial
configuration. Suppose that we demand that in the initial state of
the system, n < j > mB(j).LABEL = STOP, and call this property

20

ek b ———

Semantic Models for Parallel Systems

Init(mB,n).: The use of n, fixing an upper bound to the initial
number of runnable processes ailows us to define a recursive
scheduler prototype:

PROTOSCHED = N x S x M --> SCHED

and a scheduler maker

Makesched: PROTOSCHZD --> [N x § x M --> SCHED]
ie say that PROTOSCHED is fair if

Init(mB,n) > Fair(Makesched (protosched) (n, s8,m8)) (sB,md)

;nd similarly for other properties.

2) Because the scheduler 'gets its information by looking at EP's, EP
must be a domain over which a continuous "=" predicate |s defined so
that the scheduler can actually look at the components of the EP. Hence,
the various FORM's of the EP are specified as NAMEs and |lst of
ARGuments, rather than directly as functions. '

CONCLUSION

We have introduced a semantic model for parallel systems and have
presented a number of properties of parallel systems based on the model
as uell as some proofs and proof rules. '

The development with the most potential appears to be the conjectured
induction rule based on well founded sets As Cadiou & Levy note, LCF
proofs force the program prover to (sometimes tediously) explicate all
the possible states of the system. To make proofs of complex parallel
prdgrams more tractable, and especially to make the proofs more amenable
to automatic verification, it seems clear that some (elegant) embedded L
or externally imposed (see [Milner & Weyrauch 72]) structure is o
critical. Well founded sets may be a useful structure for proofs of
deadlock; for other properties of parallel programs, fuither exploration
is necessary.

There is a different kind of structuring choice more directly related
to this paper - uhat can be an indivisible operation embodied by a1 EP?
If we assume an implementation on a sequential machine, the safest
choice is the smallest action that cannot be Interrupted. The obvious
difficulty is that sequential machines are rare; even conventional
machines often have an 1/0 processor and both may simul taneously be
accessing memory. At best machines that use cycle-stealing force us to
safely choose as indivisible actions those which take place in a single
cycle.

21

et o e

_~ 1‘

Semantic Models for Parallel Systems

We have assumed in this paper that actions as complex as
synchronization operators may be viewed indivisibly and thus our proofs
must therefore be viewed as correct only for models in which that is the
case, thus we separate the model of indivisibility from its
implementation. In the cace of a multiprocessor, the code implementing
synchronization may be running in parallel with other processes, perhaps
even executing the same code. What must be shoun in such a case is that
the model of indivisibility is nonetheless valid regardless of such
concurrenry as may be introduced by the implementation. Such proofs are
beyond the scope of this paper.

" A somewhat serious deficiency of the scheduler model (and other models
as well) is its inability to model time dependent behavior - for example
timer interrupts in programming systems and timing considerations in
machine architecture. While the nature of problems to be studied with
respect to time dependencies would likely call for a different model In
any case, proving the correctness of something like a

mul tiplexor/scheduler for a multiprocessor would likely require a
scheduler model modified in some way to handle time dependencies.

Perhaps the most serious problem with the model| described here is in
the nature of the assumptions made about how processes interact (or
should interact). A formal semantics for a sequential programming i
language with structured control provides a better base for various
proofs than a semantics for a language with GOTO's. Similarly, suitably
restricted interactions between processes should provide a better
semantic system than the one described here in which arbitrary
interactions are allowed. A solution is to provide additional axioms
Wwhich restrict the possible schedules. P/V disciplines are too
unstructured. MWork along the lines of Path expressions [(Campbell &
Haberman 74] appear to be more promising in providing a semantic basis
in which proofs ui'l be less tedious.

ACKNOWLEDGEMENTS i

I wish to thank Bill Wulf, Nico Haberman and J. W. de Bakker i
for their comments on earlier drafts of this paper. ‘

22

]

it

Semantic Models for Prrallel Systems

B1BL 10GRAPHY

[Cadiou & Levy 73] Cadiou, J. Levy, J. "Mechanizable Proofs about
Parallel Processes" l4th Sumposium on Switching Theory
and Automata, Oct 73

[Campbe! | & Haberman 74) Campbell, R.H. Haberman, A. N.
"The Specification of Process Synchronization by Path
Expressions” Proc. Int. Symp. on Operating System
Theory and'Practice, Apr 74

{Cohen 75] Cohen, E. "A Semantic Mode! for Parallel Systems with
Schedul ing" Proc. 2nd ACM Symp. Princ. Prog. Langs.,
Jan 75 '

{Cohen 75) Cohen, E. "Modelling Protection Systems", CHU

PhD Thesis, forthcoming

(deBakker 74] deBakker, J. W. "The Fixed Point Approach to Semantics:
. Theory and Applications" Mathematical Lentre Tract 63,
Mathematical Centre and Free University Amsterdam, 13974

[Dijkstra 72) Dijkstra, E. "A class of Allocation Strategies
Inducing Bounded Delay Only" SJCC 72

{(Kahn 73] Kahn, G. "A Preliminary Theory for Parallel
Programs", 1.R.I.A. Report, Jan 73

(Lipton 73] Lipton, R. "On Synchronization Primitive Systems",
CMU PhD Thesis, June 73 or see
Pruoceedings 6th Annual Symposium on the
Theory of Computing, May 74

(Manna & Viullemin 72] Manna, Z. Viullemin, J. "Fixpoint Approach
to the Theory of Computation” CACM v15,#7 July 72

(Milner 71) Milner, R, "An Algebraic Definition of Simulation
Between Programs" 1.J.C.A.1. 2, 1971

(Milner 72) Milner, R. "Implementation and Application of Scott's
Logic for Computable Functions”, Proceedings of a
Conference on Proving Assertions about Programs,

Jan 72

(Milner & Weyrauch 72) Milner R. Weyrauch R. "Proving Compiler Correctness
in a Mechanized Logic" Machine Intelligence 7

(Mitner 73] Milner, R. "An Approach to the Semantics of Parallel
Programs" Proc. Convegno Informatica Teorica, Mar 73

23

* tisiiabioderiranste Sty Syl TS T R

PETR I, .

Semantic Models for Parallel Systems

T

E fNeueg 73] Newey, M. "Axioms.and Theorems for Integurs, Lists
and Finite Sets in LCF", Stanford AIM-184, Jan 73

[Rotenberg 74] Rotenberg L. "Making Computers Keep Secrets" MIT PhD Thesis, i
MAC TR 115, Feb 74 E

[Scott 72] Scott, 0. "The Lattice of Flow Diagrams" Symposium
on Semantics of Algorithmic Languages, "uringer
Ver lag Lecture Notes in Mathematice 188, 1971

[Scott 72]) Scott, D. "Mathematical Concepts in Programming
Language Semantics" SJCC 72

[Scott & Strachey 721 Scott, D. Strachey, C. "Toward a Mathematical
Semantics for Computer Languages", Oxford Univ. .
Computing Lab PRG-6, 1872

(Wegner 72] Wegner, P. "The Vienna Definition Language", ACM
Computing Surveys vé,#1 Mar 72

24

Semantic Models for Parallel Systems

APPENDIX

The proofs here are presented as a series of Lemmas. Except for some
difficult cases, an outline of the proof of each Lemma is all that is
given. Only two inductive proof rules are used here, Computational
Induction [Milner & Viullemin 72, Manna 72] and Mathematical Induction
(Manna 72).

We use the abbreviations introduced by Milner (Milner72].
a 1 ¢ for la-->b,uu) = (a --> c,uu).
and 3(x) is the definedness predicate,
3d(uu) = uu, otharuwise, d(x)} = tt. We also use
ta) <== a --> tt,uu,

lle also assume an extended LCF theorem prover Wwith a knowledge
of arithmetic (see axioms by Newey [Newey 731) built in
and ‘therefore, when we are clearly dealing with a.natural number,
we dispense uWith the additional predicate isnat, e.g.
we urite a :: b(n) = c(n) instead of
a n isnatin) :: bin) = cinl.

We have not formally shown that Computational Induction is
legitimate as we use it over the domains introduced in this
paper. A proof in the style of Scott [Scott 72) is left to
the reader.

’

'We use "#" [Kahn 73) as a general concatenation operator, and
leave proofs about its obvious properties to the reader.

1

THEOREM 1

_Full (Ful Isched (sched)) (s,m)

Full sched (sched) <== Als,m) .Kfs(schad,8) (s,m).

Kfs{sched,n) (s,m} <==
Let <s’,m’',sched’'> be Desc (s, m, sched) (Kfn(s,m,sched) (n}) in
< sched’ (s',m').N, Fullsched (sched’ (s’ ,m’).SCHED) >

Kfn{s,m, sched) (n) <==
Cr (Desc(s,m, sched) (n)) --> n,
Kfn(s,m,sched) (n+l).
Desc (s, m, sched) (n) <==
n =08 --> <s,msched>,
Next (Desc (s, m, sched) (n-1})}.

Cr(s.m, sched) <u= Canrun{sched(s,m) .N) (s,m}.

25

g e R AR M - Sl DN

Semantic Models for Parallel Systems

Aex(j,s,m) <== ExecfAction(j) (m)) (s,m).

LEMMA 1
Next (s, m, sched) =
-Cr (s,m, sched) --> < s, m, sched(s,m).SCHED >,
< Aex(sched(s,m).N,s,m), sched(s,m).SCHED >.
Proof: by definitions

LEMMA 2
-Cr (Desc (s, m, sched) (n)) ::
Desc (s, in, sched) (n).SH = Desc(s,m, sched) (n+1) .SM
Proof: Defined of Desc & Lemma 1

LEMMA 3
Canrun (K fs (sched,n) (s, m) .N) (Desc(s,m, sched) (n) .SM) € tt
Proof: Substitute Defn of Kfs, then use Computational
Induction on Kfii, using Lemma 2 & Defn of Cr

LEMMA 3a
Canr un (Ful | sched (sched) (s,m).N) (s,m) K tt

LEMMA 3b
Cr(s,m,Ful | sched(schec}) € tt

LEMMA 4
Desc (s, m, sched) (Kfn(s,m, sched) (n)).SH & Desc(s,m, sched) (n) .SH
Proof: Comp Ind on Kfn using Lemma 2

LEMMA 4a
Desc (s, m, sched) (Kfn(s,m, sched) (8)).SM £ <s,m>

LEMMA G
Cr {(Desc (s, m, sched) (Kfn(s,m, sched) (n))) =
Canrun (K fs (sched,n) (s,m) .N) (Desc (s, m, sched) (n).SM)
Proof: Defn of Kfs & Cr and Lemma 4

LEMMA 5a
Cr (Desc (s, m, sched) (Kfn(s,m, sched) (n))) E tt
Proof: Lemmas 3 & 5

LEMMA Sb .
Cr (Desc (s, m,sched) (Kfn(s,m, sched) (8))) = Cr (Ful | sched (sched) , s, m)

LEMMA 6
Next (s, m,Ful |sched(sched)) =
Let <s’,m’,sched’> be Desc (s, m, sched) (Kfn(s,m, sched) (8)+1) In
< 8', m’, Fullsched(sched') >
Proof:

Semantic Models for Parallel Systems

Next (s,m,Ful | sched (sched))

= Cr(s,m,Ful 1sched (sched)) -->.
s < Aex(Fullsched(sched)(s.m).N.s.m). Fullsched(sched)(s.m).SCHED >,
uu. Lemma 1 & 3b
= Cr1s.m.Fu||sched(sched)) -—>

Let <s,m’,sched’> be Desc(s.m.sched)(Kfﬁls.m.sched)(ﬂ)) in .
< Aex(sched’(s’,m').N,s,m), Fullsched(sched'(s'.m').SCHED) >

uu. Defn of Fullsched, Kfs

8 Let <s',m’,sched’> be Desc(s.m.sched)(Kfn(s.m.sched)(a)) in
Cr(s’',m’,sched’) --> < Aex (sched’ (8’ ,m’).N,8’,m"), '
Ful | sched (sched’ (s’ ,m’).SCHED) >,

| uu. Lemmas 4a & 5b
= Let <s’,m’',sched’> be Desc(s.m.sched)(Kfn(s.m.sched)(8)) in
< Next(s’',m’,sched’).SM, Ful|sched(Next(s'.m’.sched').SCHED) >
Lemmas 1 & 5a
o Let <s’',m’,sched’> be Desn(s.m.sched)(Kfn(s.m.sched)(8)+1) in
<s8', m, Ful | sched (sched’) > Defined of Desc QED ,
4 []
\ Proof of THEOREM 1

Full (Fullsched(sched)) (s,m) by Defn of Fuli, we must prove

Runnable(j.k)(s.m.Fullsched(sched)) C ttw
Proof: Compqtational Ind on Runnable

(j= Ful | sched(sched) (s,m) .N or Canrun(j) {s,m) or -Canrun(k)(s.m).)
Runnable(j,k)(Next(s.m.Ful|sched(sched)))

(Ctt# Runnable(j.k)(Next(s.m.Ful|sched(sched))) Lemma 3a

s tt # Let <s',m’,sched’> be Desc(s;m.sched)(Kfn(s.m.sched)(8)+1) in
Runnable(j.k)(s’.m’.Ful|sched(sched’)) Lemma &

I C tt # tte Induction

2 tt

THEOREM 2

et ——

Run(j!(s,m,sched) = Run(j)(s.m.Fulleched))

Rb! (j) (s, m, sch2d) <== A((j = sched(s,m).N) A Canrun(j) (s,m))

27

p——

Semantic Models for Parallel Systems

Col (j) (s,m,8ched) (n) <==
ne=0--> <,
Col (j) (s, m, sched) (n-1) # Rbl (j) (Desc(s,m,sched) (n-1)).

Crud(jl(s.mvsched) <== Let n be Kfn(s,m,sched) (8) + 1 in
Col (j) (s,m,sched) (n) # Crun(;j) (Desc(s,m, sched) (n)).

LEMMA 7
Desc(Desc (s, m, sched) (a)) (b) = Desc(s,m, sched) (a+b)
Proof: Math Ind on b

LEMMA 8)
3 (Desc (s, m, sched) (n+k)) E d(Desc(s,m, sched) (n))
Proof: Lemma 7 & Axioms for 9

LEMMA 9
k € n A Cr(Desc(s,m,sched) (n)) > Kfn(s,m, sched) (n-k) < n
Proof: Math Ind on k using Lemma 8

LEMMA Sa
Cr (Desc(s,m, sched) (n)) > Kfn(s,m,sched) (B) s n

LEMMA 10
Rbi(j) (s,m,sched) E *(Cr(s,m,sched))
Proof: Defn of Rbl & Cr

LEMMA 11° .
n s Kfn(s,m,sched) (8) :: Col(j) (s,m,sched) (n) = <>
Proof: Math Ind on n using Lemma Sa & 18

LEMMA 1la
Col (j) (s,m, sched) (Kfn(s,m, sched) (B)) = <>

LEMMA 12
Rbl (j) (s,m,Ful Isched(sched)) =
Rbi (j) (Desc(s,m, sched) (Kfn(s,m, sched) (B))
Proof: Lémma Sb & Defn of Ful lsched

LEMMA 13
Rbl (s,m,Ful lsched(sched)) =
Col (j) (s, m, sched) (Kfn(s,m, sched) (B) +1)
Proof: Lemmas 1la & 12 by Defn of Col

THEOREM 2a
Run(j) (s,m,Fulisched(sched)) = Crun(;j) (s,m, sched)
Proof: Parallel Comp Ind on Run & Crun

Semantic Models for Parallel Systems

LEMMA 14
Run(j) (s,m, sched) =
Col (j) (s, m, sched) (s, m, sched) (n) # Run(j) (Desc(s,m, sched) (n))
Proof: Math Ind on n

LEMMA 15
d(Run(j) (Desc(s,m, sched) (n)) & 3(Kfn(s,m, sched) (n}) _
Proof: Parallel Comp Ind on Run & Kfn using Lemmas 7 & 18

LEMMA 16
Run(j) (s,m, sched) = Let n be Kfn(s,m,sched) (8) + 1 in
"Col (j) (s, m, sched) (n) # Run(j) (Desc (s, m, sched) (n)) _
Proof: By cases of 3(Kfn(s,m, sched) (8)) using Lemmas 14 & 15

THEOREM 2b
Run(j) (s, m, sched) = Crun(j) (s, m, sched)
Proof: Parallel Comp Ind on Run & Crun using Lemma 16

Proof of THEOREM 2

Run(j) (s, m, sched) = Run(j) (s,m,Ful Isched(sched))
Proof: Theorem 2a & 2b

THEOREM 3

Infcan(j) (s,m,Fullsched(sched)) C Infcan(j) (s, m, sched)
Proof: Similar to proof or Theorem 2
Without use of Lemmas 11 & 11a and
Wweaker versions of Lemma 13 and Theorem 2i

Semantic Models for Parallel Systems

TIMINGS

The Scheduler formalism used in this paper is related closely to
the Timings that appear in Lipton’s work. The following section
clarifies the relationship.

SEP = EP + (STOP}
TIMING = {<>} + (N x SEP) x TINING

Thus, a Timing ic a list' of EP's (or {STOP}), With each EP
associated the index of the process that executed it.

Since a timing is a list, there are three functions predeclared with
the usual interpretation:

Car: TIMING --> N x SEP
Cdr: TIMING --> TIMING
Empty: TIMING --> TT

History: S x M x SCHED --> [.N -=> TIMING]

History(s,m, sched) (k) <==
k=0 --> (<),
Let n be sched(s,m).N in
Let sep be
m{n) .LABEL = STOP --> STOP, Action{n) {(m)
in
< <n,sep>, History(Next(s,m,sched)) (k-1) >,

Apply: SEP --> [S --> §]
Applyl(sep) () <==

sep = STOP --> s,
‘Let < <syname, syargs>, <stname, stargs>, <cname,cargs> > be sep in

Synchfn(syname) (syargs) (s) --> Statefn(stname) (stargs) (s).S, s.

Value: TIMING --> { S --> S]
Value(timing) {s) <==

Empty(timing) --> s, Value(Cdr (timing)) (Apply(Car (timing) .SEP) (8)).
We use the predicate "Valid" for what Lipton calls "Semi-Active"

Valid{timing) {(s,m) iff
(Jsched, k) { History(s,m,sched) {k) = timing)

38

e A e

Semantic Models for Paralle! Systems

Active: TIMING --> [S --> TT]

Active(timing) (g} <==
Empty(timing) --> tt,
Let < <n,sep>, rtiming > be timing in
sep = STOP --> ff,
Let <syname,syargs> be sep.SYNCHFORM in
. =Synchfn(syname) (syargs) --> ff,
Active (rtiming) (Apply(sep) (s)).

Timings form a partial order described in the fol loning way:
st TIMING x TIMING --> TT

tl < t2 <==
Empty(tl) --> tt,
Empty(t2) --> ff,
Let < <nl,el>, rtl > be t1 and < <n2,e2>, rt2 > be t2 in
nl =n2Anel =e2 --> rtl srt2, ff,

Conjecture:

Valid(timing) (s,m} 'F Active(timing) (s) iff
(3k, sched) (Full (sched) (s,m} A History(s,m, sched)(k) = timing)

UNCLASSIFIED

SECURITY CL ASSIFICATION OF THIS PAGE (When Dete Entered) & 2
READ INSTRUCTIONS
¢ GOVT ACCESSION WO| 3 RECIFIENT'S CAT ALDG MUMBER
5. TRACT GF GRANT NUMBERFa)
0 . ; y
Ellis §. Lohen MI°¥44620-73-C-0074)
/ — J AR P Order=2406
9. PERFOKMING ORGANIZATION NAME AND ADDRESS o ; E; e WORK UNIT“-“NUMBERS
] '/Carnegie-Mellon University 61101F
. Computer Science Department AO 2466 .3 ' .
| _Pittsburgh, PA 15213
1V CONTROLLING JFFIGE NAME AND ADQRESS rn—-mwm!—/\
Defense Advanced Research Projects // ﬁ% i
1400 Wilson Blvd _|
/ Arlington, VA __22209 33
4. MONITDORING AGENCY NAME & ADORESSA! diflerent from Controlling Oftice) 15. SECURITY CLASS /of thle report)
J Air Force Office of Scientific Research (M)
Bolling AFB, DC 20332 UNCLASSIFIED
§ 15a. gg.&.aatngncnﬁi DOWNGRADING
II* 16. DISTRIBUTION STATEMENT (of thie Report)
Approved for public for public release; distribution unlimited.
I
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if diffecent froor Report)
l
{
18. SUPPLEMENTARY NOTES
{
s 19. KEY WORDS 7Continue on reveree elde If neccrerry and identlty by block number)
]
1
20. ABST WA 'Y /Continue on raveree elde If neceecary end identtfy by block num . i
his paper presents a semantic
model for parallel systems with a scheduling mechanism that is useful for expres}-
_ sing and proving a wider range of properties than semantic models which do not
R consider. We formally describe a number of properties related to scheduling and
.. i deadluck, including 'Fairness and Fullness", and show that schedulers with these
properties behave in desireable ways. Lastly, we prove and conjecture some
{ £ prcof rules for scheduled systems and outline briefly the relation of this work
¥ to modelling protection in parallel systecms.
y DD 55", 1473 €uiTION OF 1 NOV 65 1S OBSOLETE UNCLASSIFIED

SRR e R AT g

i . Vd 02/ ECURITY CLAGSSIFICATION OF THIS PAGE rWhen Deata Pntered

+

