
WOS« - TH - (

CD

O

SEMANTIC MODULS FOR PARALLEL SYSTEMS

Ellis S. Cohen

January 1975

Approve
älat

■

DEPARTMENT
of

COMPUTER SCIENCE

D D C
pESEffliaEI

JAK 23 arg

(V7 A

■Z T\

|g| , : . id 18
2 171)

'. . ■ ■

tmicai

Carnegie-Mellon University

 - - " nwMMi

m
■' " J " '■ ' -""-' ws

«

Semantic Plodela for Parallel Systems

Ellis S. Cohen
Department of Computer Science
Carnegie flöllon University

January 1975

\BSTRACT

kThis paper presents a semantic model for parallel systems with a
scheduling mechanism that is useful for expressing and proymg a wider
range of properties than semantic models which do not consider

scheduling.

Ue formally describe a number of properties related-to scheduling and
deadlock, including "Fairness" and "Fullness", and show that schedulers
with these properties behave in desireable ways.

Lastly, we prove and conjecture some proof rules for scheduled systems
and outline briefly the relation of this work to modelling protection In

parallel systems.

K
'

-

m
1976

•■iTTTE
A

This work Wcs supported by the Advanced Research Projects
Agency of tht department of Defense under contract no.
F44628-73-C-aB74 and monitored by the Air Fores Office of

Scientific Research.

__—-
- -■■"'■■■ -■ - — -^ - — *■'-*■ ■•'■■: •'-■-- - „ ^..

mnw. umpnpip^QHiipiip mmmrpmmmfni**'mi*m «•MB^SWI P« mm in

Semantic Models for Parallel Systems

•)

INTRODUCTION

Based on Scott's flathematical Theory of Computation [Scott 721, Cadiou
& Levy [Cadiou & Levi; 731 and Milner milner 731 have introduced a model
of parallel processis based on processes that communicate by sharing
memory, and have shoun .tow to state and prove properties such as mutual
exclusion formal lij within the mechanizable LCF system.

They treat nondeterminism by introducing an oracle from the domain TT*
(sequence of truth values, see [Kahn 731). The detf-mination of which
process to execute next depends on an initial sequence of the oracle,
with th«! new oracle becoming the remainder.

In r" te of the elegance of their system, they are unable to prove
certain properties of parahel systems that one would expect to be true.
Primarily this trouble stems from the difficulty of characterizing the
well-behavedness of their oracle. By using a model derived from
Upton's work [Lipton 731, we replace the oracle with a scheduler and
state a property of schedulers, fairness, which is shown to be adequate
to prove a property of a particular parallel system that is difficult to
express in Cadiou & Levy's system.

Ue first present a variation of Cadiou & Levy's model and note some of
its problems. Ue then introduce a model with a scheduling formalism
that solves, these difficulties. The remainder of the paper contains
properties and proofs using the scheduling model, as well as additional

comments.

tlODELS FOR PARALLEL PROCESSES

The models for parallel processes we will invetigate in this paper
have 3 important features.

1) Processes - Ue will always consider a variable number of processes,
each of which may be in one of three sta'es, runnable, blocked or
stopped.

2) Indivisibility - Processes are ^ ided into indivisible actions
(instructions) called elementary processes or EP's. Uhen a process is
selected to run, it executes exactly oi e EP, after which a new decision
is made about which process should be scheduled. Concurrent execul ion
of parallel processes is modelled by sequential interleaving of actions
from the various processes.

3) Abstract Machine - Two main approaches have emerged for proving
general properties about programs (i
well as Correctness), the Functional
(related is the Relational approach,

.e. - Termination and Equivalence as
approach [Scott & Strachey 731
see [deBakker 741.) and the Abstract

1

- — — - - - -■-- - •--

'"■'"«•"'"^ wm —r-—

Semantic Models for Parallel Systems

■

1

s

Machine approach [Uegner 721.

The Functional approach maps a program directly into a mathematical
function; the meaning of a program is then just the value of the
corresponding function. Not only is the technique elegant, but a format
system. LCF (Logic for Computable Functions) [Milner 72] has been
developed and mechanized in which one can prove properties about
computable functions. Cadiou & Levy and Milner use such an approach m
their respective papers on semantics of parallel programs.

The Abstract Machine approach defines a programming system via a
formal definition of an abstract machine. The meaning of a program .8
then tho result of its execution on their abstract machine. Much of
what might be considered nelegant about this technique is due to Its
awkwardness in modelling the execution of statements nth complex

control structures.

However, in the parallel systems we will be describing, there is only
one language construct, the EP. Ue are thus in the unusual pos.t.on of
being able to produce an abstract machine definition that is as simple
and somewhat less opaque than the corresponding functional seman ics.

Of course, one question remains - how to define the Abstract Machine.
Ue choose to define the machine interpreter as a computable function,
thus making the tools of LCF available for our proofs.

(As we note in the conclusion, we expect work on semantics for
parallel systems to COM full circle, that is. back to languages that
have the appropriate structures for parallel control. It is likely that
an Abstract Machine approach would then be unsuitable.)

A VARIANT OF CADIOU & LEVY'S MODEL

In producing an Abstract Machine version o^ Cadiou & Levy's model, we
divide the state of the model into 2 parts. S, the Data state and K, the

Dontrul state.

The Control state. K. can be viewed as a binary process tree whose
leaf nodes represent processes. The interior nodes of the tree contain
either "//" which indicates parallel execution of its two subtrees or
'V which indicates sequential execution, that is, no process in the
right subtree can run until all processes in the left subtree have

Htopped. For example:
\
\oa

\i \
J5 g s

S '4

! Bill
» c» => -

n

-■■--- " - in in ■■■ii n ^IIMM i i AM» .Ai-.^-.A -•■ "-^ ' ^■Kfeuk.

mmmmtm ^:~^ i wmmmmam wm^

— It
I

A

^

Semantic Models for Parallel Systems

 //

I
B

I
C

I
D

I
//

I
E

A,.B, 0 and E are runnable,
blocked until E stops.

C is blocked until both A & B stop. F is

The Abstract Machine selects a leaf node representing a runnable
process. It executes a single EP which first modifies the state S, and
then produces a process tree which replaces the node selected, thus
becoming a subtree of K. The subtree may be simply a single node, which
can be used to represent the continuation of the same process, a "*"
construct, which can be used to represent the call of a subroutine, or a
"//" construct, which can be used to represent the spawning of a
subprocess. In addition, a node can be the eJement JSTOPI which
incjicates the process has stopped.

All processes execute the same program. Ue can view programs as
labelled flowcharts, where it is the EPs that are labelled. For
example, the flowchart

-> P(seih) > V(sem)

can be represented by the following program with labels P i V,

P: sem > 0 —> (sem ♦- sem - 1 —> V),
V: sem «- sem + 1 ■«> P

•> '

(Note: Read "-->" as "goto" and "a ~> b, c" as "if a then b else c")

The leaf nodes of K either contain STOP or the label of the EP the
process wad executing. So, the process tree for a system in which two
proceseee are executing the P/V loop program above might be

//

P P

The data state S contains an element sem.

In the formal model, the abstract machine, given S and K determines
the "Next1' state of S and K by selecting a runnable node from K and

■Ifi iii IT r^ -" • —- - ' ■ ■ >'-"—" ■-•

Semantic Models for Parallel Systems

executing the EP it represents thus changing both S and K.

To select the runnable EP, ue use an oracle, an infinite sequence of
truth values. Ue start at the root of K and work our way towards a leaf
node. Each time we encounter a "//" with runnable nodes (not (STOP)) In
each subtree, we pick off the first element of the oracle and use it to
decide which subtree to continue down. In the formal model, the "Next"
function implements the abstract machine as as recursive tree-walk.

FORMAL flODEL - Cadiou & Levy Adaptation

Primi t ive Domains

S - memory state
TT - truth value { elements tt, ff and uu -

• we also use "uu" to represent the least defined element of
any domain and let the user rely on context to determine the
appropriate domain)

LABEL - label

Constructed Domains

ORACLE = TT»v (sequence of truth values)
EP - S —> K x S
K - (STOP) + LABEL + K x (ft,//) x K

' PROG - LABEL —> EP

The "Next" function uses the oracle to pick a runnable EP from K,
reLurning the resulting process tree as well as the updated state and
the remainder of the oracle.

■

mpWR^^MHPPMHIilliqHP^wwuj ii ■.inu -i, miwwu mm'vmtmmmßmmqfß mm y^^^^^^^wwp^"^^*^^—!" rr»

Semantic tlodels for Parallel Systems

Next! K K S x ORACLE —> K x S x ORACLE

Next(k,a.ora) <■-

Case k of

STOP —> <k,s,ora>,

<q,//,r> —> (
Stop(q) —> Next(r,s,ora),
Stop(r) —> Next(q,s,ora),
Hd(ora) —> MkC Xt.<t,//,r>, Next(q.s.Tl(ora))),

Mk(Xt.<q,//,r>, Next(r,8,TI(ora)))),

<q,Vf,r> —> (

Stop(q) —> Next(r.s.ora),
MkC At.<t,>v,r>, Next(q,s,ora))),

lb' -> <Exec(lbl)(s).K, Execdbl) (s) .S, ora>.

(note that if AB - A x B, and ab: AB (ab is of type AB), then
we use ab.A and ab.B to indicate the projections of ab onto it's

A and B components respectively)

The "Exec" function for a particular program Prog gets the EP labelled

by Ibl and executes it in state s to produce a new k and s.

Exec: LABEL —> [S —> K x S)

Exec(lbl) (e) <-- ProgdblHs).

Mk: [K —> K 1 x [K x S x ORACLE 1 —> t K K 8 M ORACLE 1

nk(fk,<k,9,ora>) <-- <fk(k) ,s,ora>.

Hd: TT>v -->'TT and returns the first element of a sequence
jls TT* --> TT* and returns the remainder of a sequence

Stop; K —> TT and is defined so that
Stop(uu) a uu, Stop(STOP) ■ tt, and for all other k,

Stop(k) a ff.

The result (final state) of running kB with an initial
state 80 and oracle oraB is Hem(kB,80,ora0), where Mem is

 —-'" ■ - ■• ^..-.^-^...t-a^ ■ir Hit „.-"^A^^i^^-^^.,:.: j^Av .;^ . .».^ i..~ ■■ .. ; ■"■• -"- ■ *- ■■ - ■- Jm-Ji-J^

•wmi^mm*^ -™~ 1 " ' " ,,M"1 « '!■ H"«« wmi^^^mrmrmmmmmm Mian III i j PHI, !^uiu .ivmnmmni^qwp^

—-

Semantic Models for Parallel Systems

I1em(k, s.ora) <--
Stop(k) —> 9,
Mem(Next{kfs.ora)).

(An alternate model perhaps closer to current languages and systems
might use- "&" instead of "//", where "«" spawns a totally independent
process. Thus in «p.//.q>.>v.r>. - can only execute after both p and q
STOP. In «p.&,q>.v<,r> r can execute aflcr p STOPs, regardless of what
happens to q. And. «ST0P.&.q>,>v.r> would act like <r.&.q> if a
semantic description were to be given. However, wt will not pursue it

further in this paper.)

The key departure rrom Cadiou & Levy is that K is represented by a
"syntactic" data structure rather than by being embedded in a purely
functional structure and "//" and V are used here as purely syntactic
entities rather than as instances of more general process combinators.
A number of other changes have been made to produce an Abstract Machine
model from their functional model, but none significantly affect the
problems of the model.

The main advantage of thp adaptation has been that we have separated
the selection of a process to be executed from its execution. This
suggests the substitution of a scheduler for the oracle.

FACTORS IN CHOOSING A MODEL

There are three major concerns that have prompted the development of
the scheduling model that will be the focus of the rest of the paper.

1) It is difficult (at best) to characterize anomalous oracles, öince
anomaly depends so heavily on the changing nature of the state and
control. For example, in the 2 process P/V loop example, Cadiou & Levy
are only able to prove that one or the oth r will run forever, while
under a reasonably "fair" scheduler, we would expect both to run
forever. Bg providing a model with a scheduler, we can characterize the
scheduler in such a way that anomalous schedules can be avoided. Thus,
we will replace the Oracle by a Scheduler which has access to the state
of the system and specifies a partiuilsr process to be run as well as
producing a new scheduler to schedule the next process (presumably by
modifying internal variables or queues).

2) We wish to model situations where ont process may arbitrarily
start, stop or otherwise control another process. Thus, instead of K,
the model contains a multiplexor M, which may viewed as • vector of
processes. The Scheduler specifies a process to be run by supplying an
integer index into M. M is also more general than K in that for each
process we associate not only a label indicating the current control

 iiiMiium i
, —

^t^MMM» -•--'"■*' :,w,.a,.^ • iriHMl

F--™-^«, ,-■»" ■wiwpppipupwww -w»-—rwü ^mrnmrn^**™

Semantic Models for Darallel Systems

point, but a separate program as well.

3) Ue wish to characterize processes which are blocked, so that the
scheduler can choose not to attempt to run such a process. Thus,
foMouing Li.pton [Lipton 731. ue provide each EP with a ^h/on'zat'0n

part which can be used to determine which processes are blocked.

An EP consists of 3 parts, all executed indivisibly of course. The
first part, (SYNCHFORtl), represents a synchron izat .on "nd.t.on. It
he Scheduler schedu.es a process, and the swnchron.zat.on cond t on of

its current EP is not met, no action is taken, and the Scheduler .8

^p y nv ked to schedule again. If the ^^^JlTS^Si}
lei, the other 2 parts of the EP are executed. One Pf .^TATEFORm
chafes the data state (S) of the system, and one prrt ^ONTROLFORm
changes the control state CHI of the system (spec.fymg the abel of the
next'EP of the current process or starting, stoppmg or otheruise
controlling another process. There is one spec.al label. STOP, uh.ch

denotes the completion of s process).

Evaluation of "Next" proceeds in the following way: First the
Scheduler produces an index into the Multiplexor (as we I as a new
Scheduler to schedule the next iteration). If the label mdexed .8
"STOP" then no further action is ..ken this iteration. Othermse. the
labeled EP is executed. First its synchronization condit.on Is teeted.

f fl se. no further action takes place with the EP. VT, Äe
rest rr the EP is evaluated to update both the data state (S) and the

multiplexor (M).

THE FORMAL MODEL

Prim", ti ve Domains

TT - truth values
N - natural numbers
LABEL - labels, including the element STOP
ARG - function argument

NAME - names of functions

S - states

„^—^-^-^-^^-.. ..--^ - ^ ..^ .^. - - ■liTfcri'fniiiiifiiiiiiaii I'I^I ^ i^i'h-■:---- ■ --■ I

""■ •■'

Semantic flodels for Parallel Syetems

Constructed Domains

SYNCHFORn - NAHE x ARGS
STATEFORM = NAME x ARGS
CONTROLFORM - NAME * ARGS
EP - SYNCHFORn x STATEFORM x CGNTROLFORfl
M . N —> PROG x LABEL
PROG - LABEL —> EP
ARGS - {<>! + ARG x ARGS (Ue uil I use standard tuple notation

and thus represent <a,<b,<c,<»» as <a,b,c>)
SM - S x n

The Scheduler

SCHED - S x fl —> N x SCHED

Primitive Functions

Synchfn: NAME —> t ARGS —> t S —> TT)]
Statefn: NAME —> [ARGS —> [S —> S x ARGS 1 1
Control fn: NAME —> [ARGS —> t ARGS —> [r —> n] 3]

For reasons discissed in the section on Schedulur Notes, we model the
various FORtls as a function name and an argument list. To evaluate the
function, ue must provide a way of mapping the name of the function to
the function itself. That is what the three primitive functions do.
They are also guaranteed to be total. It is left to the reader to
imagine how they can be extended reasonably to total functions in the
cases where the name is undefined or the arguments are inappropriate. It
is important to note that arguments to Synchfn's and Statefn's will not
necessarily be values but will more likely represent variable names used
to select a value from s. Thus we are not providing an abstract model
of storage, but rrther modelling at a higher level of abstraction.

The Interpreter

Next: S x M x SCHED —> S x n x SCHED

Next(s,m,sched) <-■
Let <n,8ched'> be sched(s,m) in

m(n).LABEL - STOP —> <s,m,sched'>,
Let <s,,tn,> be Exec(n)(s,m) in o'.m',sched'>.

(note that i f AB - A x B, and ab: AB (ab is of type AB), then
ue use ab.A and ab.B to indicate the projections of ab onto It's
A and B components respectively)

8

^^Hik^-fed

ipn^nm.ifui ii iwii,» i - i IM..IIIII ■! II.IIUIU.IJM^I iiip|i.iiiiiiM<<ni inmwiiim^mt^wm«unmmmmfmimmm^''^iVBm'^^mimiili'>i'f'i'ii'^li'li^WKi

Semantic Models for Parallel Systems

Given an index into the multiplexor and a multiplexor, Action produces
the designated EP.

Action: N x fl —> EP

Action(n)(m) <-- (m(n) .PROG) (m(n) .LABEL).

Given an index into 11, ab well as S « M, Exec executes the designated

EP to produce a new S & II.

Exec: N —> [S x M —> S x M] •

Exec(n)(s,m) <--
Let <syfrm,stfrm,cfrm> be Action(n)(m) in

SynchfnCsyfrm.NAIIE) (syfrm.ARGSHs) ~> (
Let <s,,re9ult> be StatefnCstfrm.NAME) (stfrm.ARGS) (s) in

<B' .Control fn(cfrm.NAflE) (cfrm.ARGS) (resul t) (m)>),
<s,m>.

The reader is encouraged to look ahead to the Applications section for
an example of how a particular system would be modelled.

In this model (as in actual systems), it is not so clear when
computation stops (for example, an idle process may run in an Operating
system when nothing can otherwise be scheduled). However, for
simplicity, we will assume a continuous predicate, Mstop.

Mstop: S x n x SCHED ~> TT

For example, if the scheduler returns a zero index when there is
nothing to schedule, then we could define Ustop as:

f1stop(s,m,sched) <-- (sched(3,m).N - 8).

In any case, we can define the result (final state) of running m8 with
state s0 and scheduler schedB as I1mem(s8,m0,sched8) where Hmem is
defined as

Nmem(s,m,sched) <-■
t1stop(s,m,sched) —> s,
Mmem(Next(s,m,sched)).

■

'-"-"^ IWUV ■«IMipi

Semantic Models for Parallel Systems

PROPERTIES OF SCHEDULERS

Treatment of schedulers in this paper will be independent of any
particular synchronizat ion pr imi t i ves (e.g. P/V. P/Vchunk. ufj/doun) and
any particular implementation or internal structure of the scheduler
(e.g. FIFO queues priority order), rather we simply express a number of
scheduler properiies using the model. The properties described are
either ones that will be used later in the paper, or ones that have
appeared already in the literature. A comparison of these properties by
example can be found in the Applications section of this paper.

The properties as described are dependent heavily on S & H as we I I as
the scheduler, wheras commonly, we are simply interested in a property
of a scheduler independent of what it schedules. The section of this
paper on Scheduler Notes indicates how this problem may be solved.

Notes: Ue will be using "process j" to indicate the continuing
behavior of the contents of I1(j).

Ue use the notation £ to mean less defined than - also
. ■ - Strong equivalence (a ■ b iff

a C b A b C a)
E - Strictly less defined than (a E b iff

a E b A •« C • ■ b))

Note that sequence domains (e.g. TTvt) are ordered by
uu C a C (a # b) and a ■ a # uu

where "#" is the concatenation operator.

1) Oefined(sched)(s,m)

ttft <-- tt U It*. (The symbol "thv" is to be the least fixed
point of this equation - which can be seen to be the

infinite string of "tt"s.)

Def (s.m.sched) <-- tt # Oef (Next (s,m, sched)).

Def ined(sched) (s.m) iff Def (s,m, sched) ■ tt>v

2) FulI (sched)(s,m) - A scheduler is full if it does not schedul

unrunnable process when a runnable process can be run.

Canrun(k)(s,m) <-»
m(k).LABEL - STOP —> ff,
(Let syn be Act ion(kMm) .SYNCHFORfl in

SynchfMsun.NAflE) (syn. ARGS) (s)).

e an

18

" ^---■'-'■-,*■ tin • -■ * ---~-' ■«..- ^ ■ .

, i.». ..„. •mmviwwmm.ummm^^^i^^limp mm III.J.IUHIBII l■•", ■ IJ ,-m' '^mmmmmm^mmmimmmmmmmmmmmmm

Semantic Hode'o for Parallel Systems

Runnable(j,k)(s.m,sched) <»=
(j — sched(s,m).N v Canrun(j) (s.m) v -Canrun(K)(s.m))
ft Runnabl e (j, k) (Next (s, m, sched)).

Ful I (ached) (s.m) iff (Vj.k) (Runnable(j,k) (s.m,sched) C tt*)

3) ReleaseCsched) (s.m) - A scheduler is a release scheduler tLipton
73] if, when some action unblocks a set of processes, then some process
from that set ul I I be the next to run.

Unblock(k)(s,m,sched) <--
Let <8'^ , sched'> be Next (s,m, sched) in

(CanruhCk)(s.m) —> tt,
Canrun(k)(s*,m') —> (

Let n' be sched'(s',m') .N in
n' - k —> tt,
-€anrun(n') (s,m) A Canrun(n') (s'^)),

tt)
tt Unb I ock (k) (s', m', sched').

Release(sched) (s.m) iff (Vk) (Unblock(k) (s.m,sched) C tt«)

4) Ready\Run(8ched) (s.m) - A scheduler has the Ready Run property when
no process has to wait forever to run from the time it becomes
continuously capable of running. Ue actually state this in the logic as
- any process which is unable to run at most a finite number of times
must run infinitely often. Some thought should convince the*reader that
these are the same.

Run(j)(s,m,sched) <"=
t(j ■ sched(s,m).N A Canrun(j) (s.m))
tt Run(j) (Next (e.m, sched)).

t(p) <— p —> tt, uu.

Cantrun(j)(s,m,sched) <=-
t(-Canrun(j)'s,m)) tt Cantrun(j) (Next (s.m,sched)).

ReadyNRun(sched)(s,m) iff
(Vj)(Cantrun(j) (s,m,sched) E tt* o Run(j)(s,m,sched) tt*)

B) Point8r\Bounded(sched) (s.m) - A scheduler is pointer bounded
[Lipton 731 when a process able to run infinitely often is scheduled
infinitely often. (Ue will see in the Application section that both
ReadyNRun and PointerNBounded are too weak and that Fairness Is a more
appropriate property)

11

*- ■ - -

- --.> ..^- *^*~***>ä~~~^~ t.*±~^.^-*.-*~ :■ ^ „.. - ^- ^-

np^xppmpnnnpnfmnipOTainpampp!« 1 ■•"■■' ' '

Semantic Hodels for Parallel Systems

Tried(k)(s,m,sched) <■-
t(k - sGhed{9,m).N) tf Tr ied(k) (Next (s.m, sched)).

Infcan(k)(s,m,sched) <--
t(Canrun(k) (s.m)) tt InfcanCk) (Next (s.m.schdd)).

PointerVBounded(sched)(s.m) iff
(Vk) (Infcan(k) (s.m, sched) ■ ttt 3 Tried(k) (s.m, sched) ■ it«)

B) Fair(sched)(s.m) - A scheduler is fair if any process able to run
infinitely often, runs infinitely often at times that it canrun (is not
blocked or stop)

Fair(sched)(s.m) i ff
(Vk) (Infcan(k) (s.m. sched) m ttw 3 Run(k) (s.m, sched) ■ tt»v)

7) Ue say a scheduler sched' is an idling extension of sched if

a) (sched(s,m) s uu A (Vk)(-Canrun(k)(s,m))) -->
sched* (s,m).N «■ 8,
sched'(s,m).N ■ sched(s,m).N

b) sched'(s,m).SCHED is an idling extension of sched(s,m).SCHED

This corresponds nicely with the example definition of Mstop in the
previous section. It is easily provable that every scheduler has an
idling extension, that Run(j) (s,m,sched) ■ Run(j)(s,m,sched') and
Defined(sched')(s,m). Also Ful I (sched)(s,m) I- FulI (sched')(s.m) and
si milarly for Fair.

Fairness is in general the weakest property (along with definedness)
that we would ever demand of a legitimate actual scheduler. Luckily,
fairness (with definedness) will be adequate for proving properties that
we are interested in. However, proving certain properties (in
particular, the example proven in the next section) given fairness alone
turns out to be somewhat difficult The key problem is knowing exactly
when a particular action will occur, even when it is known that it must
occur eventually. This problem often disappears if the scheduler is
full as well. So we will show that to prove:

A] Defined(9ched) (s,m), Fair(sched)(s,m), Q(j,s,m) h
Run(j)(s,m,sched) ■ tt*

it is sufficient to show that

B] Defined(sched)(s,m), Fair(sched)(8,m), FulI(sched)(s,m), Q(j,8,m) h
Infcan(j) (s,m,sched) ■ tt*

12

•■UMMM ■ - ' - ^.. ■ ■ .-- -^

WBPWMPPWHWP' ■ll "i .iii»inWii i.. i inmmmmi*v*mim »..,,«.«..,„ ■'-1" n^'l

Semantic Mode IB for Parallel Systems

^

1

Proof:

Suppose there were a function Fullsched: SCHED —> SCHED s.t.

for any scheduler sched,

1) FulI(FulIsched(sched))(s,m)
2) hjn(j)(s.m.FulIsched(sched)) ■ Run(j) (s.m,sched)
3) Infcan(j)(s,m,Fullsched(£Ched)) C Infcan(j)(s,m,sched)
•

Now, suppose Definedlsched)(s,m), Fairlsched)(s.m), Q(j,8,m)f

but Run(j)(s.m,sched) ü it*

Since Fair (sched) (s,m), Infcani j) (s.m,sched) E tt*

Thus by (1), (2) and (3),
FuI I(FuI Isched(sched))(s,m),
Run(j)(s.m.FulIsched(sched)) E tt* and
Infcan(j) (s.m.Ful Isched(sched)) E tt>v

Then trivially, Fair (Full sched(sched)) (s.m), by defn of Fair

Now, let fsched be an idling extension of FulIsched(sched). Then
Defined(fsched)(s,m), Fair.(fsched) (s,tn), Ful I (fsched) (s.m) and

Run(j) (s.m, fsched) E Hit

If we can prove (81, then Infcan(j) (s,m, fsched) ■ ttft, and

by defn of.Fair, Run(j)(s,m,fsched) ■ ttft.

Thus, we have a contradiction to
Run(j) (s,m, fsched) E ttv«, and therefore the original
hypothesis that Run(j) (s,m,sched) E tt* must be false. Since

it is easily shown that Run(j) (s.m,sched) C ttv»,
it must be the case that Run(j) (s,m,sched) ■ tt* and
[Al follows.

Definition of Fullsched and proofs of 1), 2) and 3) can be

found in the Appendix.

APPLICATIONS

Some notion of the properties in the section above can be gained by
consideration of the example (adapted from [Lipton 721) of 3 processes,

each execut.ng the loop:

.> > P(8em) V(sem)

13

-- ~*~M**. „■>....■«. I, niniii lABiiiii .^t.K-u^fl^H^^BIai&^wBii.

■",'i,!"''T"""",""lp^^
mmmmm 11 '■«•■■»l

Semantic flodels for Parallel Systems

where the initial value of sem is 1.

(He will describe execution sequence as a sequence of pi and vi,
i-1,2,3 to denote the execute of a P or V by the i' th process)

Under a scheduler that is merely defined and full, the execution could

simply be

pi vl pi vl pi vl pi vl ...

that is, processes 2 and 3 might never execute.

If the scheduler is additionally a Release scheduler, the

execution could be

pi vl p2 v2 pi vl p2 v2 pi vl p2 v2 ...

that is, vl releases P of processs 2 and v2 releases pi, but again

process 3 might never be «xecuted.

If the scheduler additionally has the Ready\Run property, it helps
matters not at all, since process 3 is never continuously capable of
running. It is blocked each time process 1 or 2 executes a P. Likewise
the Pointer\Bounded property does not help, since process 3 might only

be tried when it is blocked.

If the scheduler though is merely defined and fair, each of pi, p2,

p3, vl, v2 and v3 must execute infinitely often.

He'll prove that last statement for the more general case where there
are n processes. As already noted, this is a problem that Cadiou & Levy

would have difficulty proving.

Jo simplify, we'll assume that the state s is identically sem, and

we'll define the following functions:

trueO (s) <=» tt.
tst()(s) <== (s > 8).
inc() (s) <»= <s+l,uu>.
decO (s) <== <s-l,uu>.
go(<n, lbl>) (res) (m) <-- Xk. (k - n —> <m(n) PROG, lbl>, m(k)).

Introducing some notation, we use

Ibl: Uhen syf(sya) do stf(sta) --> cf(ca)

to represent the EP

<<syf,sya>,<stf,sta>,<cf,ca»

14

■ ■ - ■-- - --■-■■ - - ■■ -^-^ --■-""---"-- ■—-- —-- - - - — --—- -■-'■■ ■

■iPipP«PPPPPP^*^WiWlillMIW . II« W«Wpi rmm * um mi, IIUJII,! II«WW."PIP

Semantic Models for Parallel Systems

arnulntll16 EP i?.,abe,lBd Nl "lb!". Uhera sya. sta or ca are <> (no
arguments), ue ehm.nate parentheses as uell. Ue further use the
no ta 11on

:n-> Ibl(args) for •> G0(n,lbl,arn8)

r"°IeS TrC!i0n ?efinition9. Hk« "go", have their names in lower
case. The formal name, like "GO" (from the domain NAME) is thf
same name written in upper case.)

• So we name the program described pictorial ly above. pvloopM]. where

t 'f^T689,^" (indeX int0m- " has tH0 '^'8. P « V To
Itf formal description usmg the shorthand notation developed above is:

P: When TST do DEC :j-> V
V: When I RUE do INC :j-> P

Now, the problem can be staled in the logic as. Prove:

Defined(sched0)(s8.mB). Fair (schedBMsB.mB). Range(i) h
Run(j)(sB.mB.schedB) ■ tt«

where

mB <-- ^j.(Range(j) --> <pvloop[j] ,P>, <uu,ST0P>).
so <-" 1.
Range(j) <— j > 1 A j s ,,.

Inf can (j) (sB.mB.schedB) ■ tttv.

PROOF:
■

0efined(schedB)(8B.mB). Fair (schedB) (sB.mB).
Full(schedB)(sB,mB). Range{j) h

Infcan(j)(sB.mB.schedB) > ttft

Infcan2k(j)(s.m.sched)(k) <--
t(Canrun(j)(Desc(s,m.ached)(2*k).Sn))
» J,(Canrun(j)(Desc(s,m,8ched)(2ftk+l).SM))
tf lnfcan2k(j) (s.m.sched) (k+1).

LEflfIA 1

Defined(sched)(8.m) A Ful Ksched) (s.m) D

(Vk)(Let <s'.m',8ched'> be Desc(s.m,8ched) (kJ in
Def(ned(8ched,)(8,.m') A Ful Ksched') (s'.m'))

Proof: Math Ind on k

«
15

mMMMM -'-;-- — ^- - ittMiMilllttflrirtidflift.Vwai-. ..■:..^^.-.^.-.^.^ ->

' m*?~i^^*m

Semantic Models for Parallel Systems

LEMMA 2
Infcan2k(j) (s.m, sched) (K) E Infcan(j) (Oesc (s.m, sched) (2frk))

Proofi Parallel Comp Ind on InfcanZk & Infcan

LEMMA 3
Def ined(sched8) (s8,m8), Ful I (schedB) (s0,in8) h

Let o',m'.sched^ be Desc(sB,fflB,sched8) (2ii!rk),
<s",m",9ched"> be Desc{s8,m8,schedB)(2Ak+l),
j be sched'(s'.m') in
Ranged) D Canrund) (s'.m') A
Canrun(j)(3",m") A
i * j D --CanrunCi) (s",m")

Proof; Math Ind on k usirig Lemma 1

LEMMA 3a
De fined(schedB)(sB.mB). FuI I (schedB)(sH.m8), Range(j) F

Canrun(j) (DescCsB.mB.schedB) (2v<k).SM) > tt

The proof of the theorem follous directly from Lemmas 2 & 3a

Ue can also state (though we Mill not prove) the mutual
exclusion.problem as

Range (j), Range(k), j-k F MuiexIsB.mB,schedB) « uu

Mutex(j,k)(s,m,sched) <-=
t(m(j). LABEL - r,(k). LABEL - V) # Mutex(j,k) (Next (s.m, sched)).

DEADLOCK

Briefly, we can state some deadlock properties in the logic
based on the model.

1) Starved(k)(sched)(s,m) - A process is starved [Dijkstra 72]
if it is not "STOP" and is continuously incapable of running.

Infsafe(k) (s,in, sched) <»-
t(m(k).LABEL - STOP or Canrun(k)(s.m))
Infsafe(k)(Next(s,m,sched)).

i

Starved(k) (sched) (s,m) iff Infsafe(k) (8,m,sched) E tt>v

2) Deadlock(sched)(s,m)
process becomes starved.

- The system is deadlocked if some

IG

---- - - - - — ^i^l*i*i afciMfc'at »imiiiiitfc niiiiii ii läm .

■PHHPppiJi« .1 Hin in! i •«ppppipipppillPipilt ■uiiJii.ii.uiui[.ß.ijmiinmmvmmmßmmmmmm wm^v*v»iiivmmmm' < 'mvßvm n m*m**ll*t*lm

Semantic flodels for Parallel Systems

DeadlocMschedMs.m) iff Gk) (Blocked(k) (sched) (s.m))

31 Safels m) - Ue are often interested, regardless of the
i
fe^ed"ll

er
w

Whe her o To a particular set of processes can ever lead to deadlock,
wnexner or nuv an rannot ianore the scheduler

the scheduler be fair and defined.

SafeCs.m) iff
(VschedH Defined(sched)(s.m) A Fair (sched) (s.m) o

(Vk) (Infsafe(k) (sched) (s,m) ■ tt»v) I

Clearly, the P/V system of the previous section is safe. ■

0, course U U in ^•' ^,*-;,•JSt^,^.^l-,^»,^".

occur.

donsider • composed of a semaphore, sem. •"»*lji[li|
,'fJ;ft^;4

k and n in tially 0, and f. a descript.on of a total function or
type N --> TT And let m be running the two processes informal lU

described by:

Process 1

k :- 0;
n :- B;
V(sem);
loop

if Eval(f)(n) then V(sem);
n :- n + 1;
end loop

Process 2

k s- 1;
loop

if k = 0 then Vlsem);
PCsem);
end Ioop

Nou under a scheduler that runs process 2 first, the eventual value
of k uillbe 0 and there will never be deadlock, but if ^1*1 runs
f rst k will be 1. and determining Safe(s.m) becomes •^•«f*.*
d^mg whether f is true infinitely often, which is reducible to the

ha I ting problem.

MODELLING PROTECTION SYSTEMS

In the model presented, each process operates on a common ^ *tate

S. Yet in programming systems, different processes do ^ *'*fe^ ual

accessing rules for accessing the memory (e.g. Frames. Co"tou^' i'^31

or Lo ^Name Spaces and Execution Domains) By P^mg he *J*
multiplexor slot as an argument, differential accessing of S can easily

17

 m^iummjimmimi tttatm '•- ';-~-^--- '■

mmmmmmmmmmmmmmmmmm^mmmm . ipia.IPWK'.l'UWI t--1"1' «)pj»i«iwijiiii.iiiiii, ummmmmmmmfmmmm

f

Semantic Models for Parallel Systems

be achieved. For example, i f S - N -> DOMAIN, then if p is executing in
Multiplexor slot k, s(k) could represent its execution domain.

Now, consider the modeling of a segmented operating system. Process
j's data segments would be part of S, whereas its code segment would be
modeled directly by the PROG component of M(j). Ue could then model tho
starting of process n by the EPs

Start: Uhen TRUE do CONTENTS(<seg>) --> L0ADG0(<n>)

where rontent3(<seg>)(s) returns as its result the contents of segment
seg (in state s), and loadgo(<n>) loads up those contents in M(n) and
begins executing the process.

loadgo(<n>) (segcontents) (m) <—
Ak. (k-n --> <l ■mk(segcontents,n),BEGlN>, m(k))

where link(x,n) assembles x into PROG form with start address, BEGIN

in process n.

An interesting byproduct is that one can model a process changing a
data segment of another process (possible in systems with shared data)
bu using a STATEFORM, whereas a rhange in an executing P™6"",COd»
segment (most likely a bug) can c-ily be modeled by using a CQNTRÜLFORM
(like LÜADG0). In fact, in pursuing this modified model, just such a
bug was discovered in CMU's HYDRA system.

(The bug in HYDRA can be circumvented by the use of "frozen" pages
(see [Rotenberg 74]). A f.nzen Lüde page is permanently protected

against modification.)

Other small changes in the model make it more useful for describing
and proving properties about protection systems. [Cohen 75] will report

further results.

A CONJECTURED INDUCTION RULE

Ue will often want to prove (for some predicate Q)

A] Defined(schedB)(s0,m0). Fair(schedB)(sB.mB). Q(j,sB,mB) H
Run(j)(sB,mB,schedB) ■ tt*

under more difficult conditions than in the simple example of the
applications section. Ue note that in the P/V example, process j
becomes blocked when some other process, say k, has successfully
executed a "P". Process k's subsequent execution of a "V" will

then make process j runnable once more.

This is an instance of a more general observation. Suppose that

18

-—- ■»-- - •■•• - --'--
,;.

»^WH^IPPPi^Püli

Semantic Models for Parallel Systems

whenever process j is blocked, we are able to find a runnable process
whose execution brings process j "closer" to becoming runnable and
furthermore execution of any other process does not take process j
farther away from becoming able to run. If ue can show that after doing
this a finite (though not necessarily bounded) number of times, process
j actually becomes runnable, then under a fair scheduler we should be
able to show that process j runs forever. Formally, we have the
following induction principle:

Suppose that (U, <) ,5 a wel l-founded set with a set of least
elements U8 in which all intervals are of finite length. We
write Iwl for the maximum distance from w to an element of UO.
Furthermore, let Assoc: U —> [S x fl —> TT] and

Closer: U —> N be total functions. Then to prove [A], it is
suff icient to prove:

a) Q(j,s,ffl) I- Gw) (Assoc(w) (s,m))

b) wB (U0, Assoc(w8)(s,m) H Canrun(j)(s.m)

c) w0 c WB, Assoc(w0)(s,m) h (Vk) Gw) (Ascoc(w) (Exec(k) (s,m)))

d) w -c U0, Assoc(w)(s,m) h

Gw'M IM*I < Iwl A Assoc(w')(Exec(Clo8er(w))(8,m)))

e) w -c W0, Assoc(w) (3,m) I- (VkJGw'H
Assocfw*) (s.m) /\

(,w'1 < lwl v (Iw'l - Iwl A CloserCw') -Closer(w))))

Intuitively, we use an abstraction of a token machine *o determine
whether or not process j can run forever. A token is always associated
with some element w of W depending on s « m. A3 EP's are executed, s ft
in change, thus the token becomes associated with different elements of
W. By proving properties about the movement of the token in W, we can
prove that process j runs forever.

The basic idea is to associate the bottom elements of U, that is U8,
with the states in which process j canrun. Then when the token is not
associated with an element of W8, we must show that the token is
eventually forced down towards an element of W8. We do this by

demanding that when w ^ WB, there is some proces? Closer(w), such that
the execution of that process will force the token to an element w' such
that Iw I < Iwl. Furthermore executing any other process must have the
effect that either the token is forced to a w' lower than w anyway or
the token moves to a w' at the same distance from the bottom (Iw' I -
Iwl) but such that CloseMw') - CloseHw). Thus in the case that we
have a fai. schedulpr, process k wi11 eventually run and the token will
eventually be pushed down closer toward WB. Since all intervals are of
finite length, the token will eventually end up in WB. This will go on

19

.__ *tm - - - - - - ■ '•■■' ' ••- -- -' -

'^^^mmmmmmm *mv9^^^mmmmmm "•'•- ••••- •■ ■««■■"

Semantic Models for Parallel Systems

forever, thus, process j will be runnable forever, and again, given a
fair scheduler, process j will actually run forever.

Using this conjectured induction principle, we car easily prove the

PVlaop example. Define
U - !>vl + fult...tl«nl and UB - !>vJ, under the ordering,
Vf < w i, i - 1,..., n.

Let Assoc (»v) (s,m) « s - 1 /\
m(k).LABEL - (Range(k) —> P, STOP)

and Assoc(wi)(s,m) = 9 - 0 A

m(k).LABEL - (k-i —> V, Range(k) —> P, STOP)

and CloserCwi) - i.

Then, it is relatively trivial to prove that:

a) Assoc(ft)(s0,m0)

b) Assoc(JV) (s,m) h Canrun(j) (9,111)

c) Assocdv) (s,m) h
(Vk) (Range (k) —> Assoc(wk)(Exec(k)(9,m)),

Assoc (vt) (Exec (k) (s,m)))

d) Assoc(wi)(s,m) h
(Vk) (k-i —> Assoc(>v) (Exec(k) (s,m)),

Assoc(wi)(Exec(k)(s.m)))

which is easily seen to satisfy the induction predicates.

To simplify proofs, it may be useful to partition the system. Ue
would have to define the notion of an "independent partition", and then
prove that if <ml,...,mj> was an independent partition of m under s,

then

Safe(s,ml) Safe(s,mj) I-SafeU.m)

SCHEDULER NOTES

1) As noted in an earlier section, scheduler properties depend
heavily on 9 and H as well as SCHED. Since future behavior of the
system is ccmpletely determined by the initial system, all we need
do ie allow the scheduler to be tailor made to the initial
configuration. Suppose that we demand that in the initial state of
the system, n < j D m0(jJ.I.ABEL - STOP, and call this property

20

 .■■

WH^^Aill^MiMilMMMMMili - --—

^~w- mmm

Semantic flodels for Parallel Systems

Init(mB,n).' The use of n, fixing an upper bound to the initial
number of runnable processes allows us to define a recursive
scheduler prototype;

PROTOSCHED ^ N x S x H ~> SCHED

and a scheduler maker

Makesched: PROTOSCKZD --> [N x S x M —> SCHED]

He say that PROTOSCHED is fair if

Init(m8,n) o Fair (flakesched(protosched) (n, sB,m8)) (s0,m0»

and similarly for other properties.

2) Because the scheduler gets its information by looking at EP's, EP
must be a domain over which a continuous " = " predicate is defined so
that the scheduler can actually look at the components of the EP. Hence,
the various FORfl's of the EP are specified as NAflEs and list of
ARGuments, rather than directly as functions.

CONCLUSION

We have introduced a semantic model for parallel systems and have
presented a number of properties of parallel systems based on the model
as well as some proofs and proof rules.

The development with the most potential appears tc be the conjectured
induction rule based on well founded sets As Cadiou & Levy note, LCF
proofs force the program prover to (sometimes tediously^ explicate all
the possible states of the system. To make proofs of complex parallel
programs more tractable, and especially to make the proofs more amenable
to automatic verification, it seems clear that some (elegant) embedded
or externally imposed (see [Hi Iner & Weyrauch 721) structure is
critical. Well founded sets may be a useful structure for proofs of
deadlock; for other properties of parallel programs, further exploration
is necessary.

There is a different kind of structuring choice more directly related
to this paper - what can be an indivisible operation embodied by ai EP?
If we assume an implementation on a sequential machine, the safest
choice is the smallest action that cannot be interrupted. The obvious
difficulty is that sequential machines are rare; even conventional
machines often have an 1/0 processor and both may simultaneously be
accessing memory. At best machines that use cycle-stealing force us to
safely choose as indivisible actions those which lake place in a single
cycle.

21

■-- - ■ - ■- —- ■—
-—- - ^:^-^^-.> *- .- - ■

mmmmmmmm i m M«(PW(H i. uii Muvniiq jnypinnpipp IPIII^IPIPpppiHIIIPIPPiillPn^niijijii^PW^^ .111 ivmy

Semantic Models for Parallel Systems

Ue have assumed in this paper that actions as complex as
synchronization operators may be viewed indivisibly and thus our proofs
must therefore be viewed as correct only for models in which that is the
case, thus we separate the model of indivisibility from its
implementation. In the cace of a multiprocessor, the code implementing
synchronization may be running in parallel with other processes, perhaps
even executing the same code. Uhat must be shown in such a case is that
the model of indivisibility is nonetheless valid regardless of such
concurrency as may be introduced by the implementation. Such proofs are
beyond the scope of this paper.

A somewhat serious deficiency of the scheduler model (and other models
as well) is its inability to model time dependent behavior - for example
timer interrupts in programming systems and timing considerations in
machine architecture. While the nature of problems to be studied with
respect to time dependencies would likely call for a different model In
any case, proving the correctness of something like a
multiplexor/scheduler for a multiprocessor would likely require a
scheduler model modified in some way to handle time dependencies.

Perhaps the most serious problem with the model described here is in
the nature of the assumptions made about how processes interact (or
should interact). A »ormal semantics for a sequential programming
language with structured control provides a better base for various
proofs than a semantics for a language with GOTO's. Similarly, suitably
restricted interactions between processes should provide a better
semantic system than the one described here in which arbitrary
interactions ere allowed. A solution is to provide additional axioms
which restrict the possible schedules. P/V disciplines are too
unstructured. Uork along the lines of Path expressions [Campbell 6
Haberman 74] appear to be more promising in providing a semantic basis
in which proofs wi' I be less tedious.

ACKNOULEDGEMENTS

I wish to thank Bill Uulf, Nico Haberman and J. U. de Bakker
for their comments on earlier drafts of this paper.

22

■----■ ■'•'-' ■—'-"■iiii ii ir tiiiiAii iinfii'M« 'Hin ■'-'- - '■

 *m ^WIIiPiHHHWM^PW^ """'"P1"' »«•«JIHP.IWI ■■•■.! MI i lau i, ui.iini in ■ i_ w^immmi

Semantic flodela for P-rallel Systems

BIBLIOGRAPHY

[Cadiou & Levy 731 Cadiou. J. Levy, J. "flechanizable Proofs about
Parallel Processes" lAth Symposium on Switching Theory

and Automata, Oct 73
■

[Campbell & Haberman 74] Campbell, R.H. Haberman, A. N.
"The Specification of Process Synchronization by Path
Expressions" Proc. Int. Symp. on Operating Systerti

Theory and'Practice, Apr 74

[Cohen 75)

[Cohen 75]

tdeBakker 74]

[Dijkstra 72]

[Kahn 73]

[Lipton 73]

Cohen, E. "A Semantic Model for Parallel Systems with
ScheduLng" Proc. 2nd ACM Symp. Prlnc. Prog. Langs.,

Jan 75

Cohen, E. "flodel I ing Protect ion Systems", CMU

PhD Thesis, forthcoming

deBakker, J. U. "The Fixed Point Approach to Semantics:
Theory and Applications" Mathematical Centre Tract B3,
Mathematical Centre and Free University Amsterdam, 1974

Dijkstra, E. "A class of Allocation Strategies

Inducing Bounded Delay Dnly" SJCC 72

Kahn, G. "A Preliminary Theory for Parallel

Programs", I.R.I.A. Report, Jan 73

Lipton, R. "On Synchronization Primitive Systems",

CMU PhD Thesis, June 73 or see
Prüc?edings Bth Annual Symposium on the
Theory of Computing, May 74

[Manna & Viullemin 72] Manna, Z. Viullemin, J. "Fixpoint Approach
to the Theory of Computation" CACM vl5,Ä7 July 72

[Milner 71] Milner, R. "An Algebraic Definition of Simulation
Between Programs" I.J.C.A.I. 2, 1971

[Milner 72] Milner, R. "Implementation and Application of Scott's
Logic for Computable Functions", Proceedings of a
Conference on Proving Assertions about Programs,

Jan 72

[Milner & Ueyrauch 72] Milner R. Ueyrauch R. "Proving Compiler Correctness
in a Mechanized Logic" Machine Intelligence 7

[Milner 73] Milner, R. "An Approach to the Semantics of Parallel
Programs" Proc. Convegno Informatica Teorica, Mar 73

■ ■ - - - - - -' -MII i nm im ii-'-- -" - .^. —-i

wmfmm ' "i" ii ■■IM m.n .—

[Neuey 731

Semantic Models for Parallel Systems

Newey. K. "Axioms and Theorems for Integnrs, Lists
and Finite Sets in LCF", Stanford A1I1-184, Jan 73

[Rosenberg 74] Rotenberg L. "flaking Computers Keep Secrets" MIT PhD Thesis.

MAC TR 115, Feb 74

[Scott 721 Scott. D. "The Lattice of Flow Diagrams" Symposium
on Semantics of Algorithmic Languages. -inger
Verlag Lecture Notes in Hathematice 188, 1971

[Scott 721 Scott. D. "flathematical Concepts in Programming
Language Semantics" SJCC 72

[Scott & Strachey 723 Scott, D. Strachey, C. "Toward a Mathematical
Semantics for Computer Languages", Oxford Univ.

Computing Lab PRG-B, 1972

[Uegner 721 Uegner. P. "The Vienna Definition Language", ACM

Computing Surveys v4,#l Mar 72

24

Jk.
i II i "^ " .^-^-—-^itw^ ,.-... . ..^a^M. .^.^^.....,...,...i».

pi-11 uinimpiwwppwBppipwppipiw«^!»^ ■! mi.. ,11 mmt mm~**m*m i, i ifiiiw« m« jiimmnMiinniiiiJ ■ mmm

Semantic Models for Parallel Systems

J

1

APPENDIX

The proofs here are presented as a series of Lemmas. Except fOP some
difficult cases, an outline of the proof of each Lemma is all that IB

given. Only two inductive proof rules are used here. Computat.onal
Induction tminer &Viullemin72. Manna 721 and Mathemat ical Induction

tManna 721.

Ue u.^e the abbreviations introduced by Milner [Milner72].
a :: b i c for (a —> b.uu) s (a —> c.uu).
and a(x) is tht< definedness predicate,
a(uu) ■ uu, otherwise, dix) * tt. He also use
t(a) <-- a r-> tt.uu.

Ue also assume an extended LCF theorem proven with a knowledge
of arithmetic (see axioms by Newey [Newey 731) built in
and -therefore, when we are clearly dealing with a-natural number,
we dispense with the additional predicate isnat, e.g.
we write a :: b(n) s c(n) instead of
a A isnat (n) i: bin) B c(n).

Ue have not formally shown that Computational Induction is
legitimate as we use it over the domains introduced in this
paper. A proof in the style of Scott [Scott 72] is left to

the reader.

' Ue use "#" [Kahn 73) as a general concatenation operator, and
leave proofs about its obvious properties to the reader.

THEOREM 1

FulI (Ful Isched(sched))(s.m)

Ful leched(sched) <-- Ms.m) .KfsCschad.B) (s.m).

Kfs(sched.n)(s.m) <-- .
Let <s,.m',sched,> be De3c(3.m,sched)(Kfn(s.m.3ched)ln)J in

< sched* (s'.m'KN. Ful Isched^ched'(s* .m'KSCHED) >

Kfn(s.m.sched) (n) <==
Cr(Desc(s.m,sched) (n)) —> n.
Kfn(s.m.sched) (n+1).

Desc(s,m.'sched) (n) <==
q - B —> <s.m.3Ched>.
Next(Desc(s.m.sched) (n-D).

Cr (e.m.sched) <-- Canrun(3ched(8,ni) .N) (s.m).

_
- — - - - •■■' • ■ ■-■~'-<.^i^ *.*"*■■■. -*-— ...i- -^■,-

mmmmmm mmmmmt.

Semantic Hodels for Parallel Systems

Aex(j,s,m) <-- ExecCAction(j)(m))(s.m).

LEMMA 1
Next(s.m,sched) ■

-Cr (s.m, sched) --> < s, m, sched(s.m).SCHED >,
< Aex(sched(s,m).N,s,m), sched(s.m).SCHED >.

Proof: by defini tions

LEMMA 2
-Cr(Desc(s,m,sched) (n)) ::

Desc(s,m,sched) «nl.SM a Desc(s,m,sched) (n+1) .Sfl

Proof: Defined of Desc & Lemma 1

LEMMA 3
Canrun(Kfs(sched,n)(s.m).N)(Desc(s,m,sched)(n).Sn) C tt

Proof: Substitute Defn of Kfs, then use Computational
Induction on Kfn, using Lemma 2 & Defn of Cr

LEMMA 3a
Canr •jn(Ful Ischedlsched) (s,m).N) (s.m) C tt

LEMMA 3b
Qr (s.m.Ful Isched(schec)) E tt

LEMMA k
Desc (s.m, sched)(Kfnls.m,sched)(n)).SM E Descis.m,sched)(n).Sn

Proof: Comp Ind on Kfn using Lemma 2

LEMMA 4a
Desc(s,m, sched)(KfnCs.m,sched)(0)).SM C <8,m>

LEMMA 5
Cr (Desc (s,m,sched)(Kfn(s,m,sched)(n))) H

Canrun(Kf8(sched,n)(s.m).N)(Desc(s.m,sched)(n).SM)
Proof: Defn of Kfs & Cr and Lemma 4

LEMMA 5a
Cr(De9c(s,m',sched) (Kfn(s,m,sched) (n))) C tt

Proof: Lemmas 3 & 5

LEMMA 5b
Cr (Desc (s,m, sched) (Kfn(s,m, sched) (8))) ■ Cr(Ful IschedUched), s.m)

LEMMA B
Next (s.m,Fullsched(sched)) ^

Let o'.m'.schedS be Desc(3,m,sched) (Kfn(8,m,sched) (8)+l) In

< 8*, m', Fu11sched(sched') >
Proof:

26

., „i i — —
- ■

-,— :
■-■ ii i ii nail- ■ ii ■ liiMfculi ifiMillü fii'luMillf ill i nil -■

 -^iimmmmm^mmmmmmun v mui J I J nmrnn t^r^^mmimm

Semantic Models for Parallel Systems

Next(s,m,FulIsched(sched))

■ Cr(s,m,Fullsched(sched)) --> .i «\ cruFn >
< Ae><(Furisched(sched)(s.m).N.s.m). Ful Isched(sched) (s.m) .SCHED >.

uu. Lemma 1 & 3b

■ Cr(s,m,Fullsched(sched)) —> ^won in
Let <s.m'.sched'> be Descls.m.sched)(Kfn(s m sched) 0)) m^

• < AeK(8chedMs',m').N.s.m), Ful Ischedlsched (s .m I.SCHED) >.

uu. Defn of Fullsched, Kfs

. Let <s'.m'.sched'> be Descls.m.sched)(Kfnjs.m sched)(0)) »n

Crls'.m'.sched*) --> < Aexlsched'(s*.m').N.s .m),
Ful IschedCsched'(s* .mM.SCHEO) >,

uu. Lemmas 4a & 5b

. Let <s\m',sched'> be Descls.m.schedHKfnJs.m sched)(0)) In

< Ne.Us'.m'.sched'KSn. Ful lsched(Next (s'.m'.sched).SCHED) >.

Lemmas 1 & 5a

. Let <8'.m'.sched'> be Desc(s.m.sched) (Kfn(sm sched)(0)+l) in

< e'. tn'. Fullsched(sched') > Defined of Desc QED .

Proof of THEOREn 1

Full (Ful lsohed(8Ched))(s,m) by Defn of Fuh, Me must prove

Runnable(j,k)(s,m,Fullsched(sched)) C tt«
Proof: Computational Ind on Runnable

(j 0 Fullsched(sched)(s.m).N or Canrun(j)(s.m) or -Canrun(k)(s.m))

RunnabIe(j,k)(Next(s,m.FulIsched(sched) 11

C tt # Runnable(j,k)(Next(s.m.Full8Ched(sched))) Lemma 3a

H tt # Let <s'.m'.sched'> be Desc(s.m.sched)(Kfn(s.m sched)(0)+l) in
Runnable(j,k)(8,,m',Full8ched(sched')) Lemma B

C tt tt ttv< Induction

■ tt*

THEOREM 2

Run(jMs,m,8ched) ■ Run(j) (s.m,Ful Inched))

Rpi(j)(s.m.sch-d) <- t((j - sched(8.m).N) A Canrun(j) (s.m))

27

. .. ._. -- UUUät^mämitmmXkiuiaäuShäämti.

'*m*mm*mii\m»»mmmmmmmmmm*mmmmmmim*>*li*'mmmi\itii.i \ ..m\m» «»■^ J"« ' ■■«,"

i

Semantic Models for Parallel Systems

Col(j)(s,m,sched)(n) <=»
n - 8 —> <>,
Col (j) (s,m, sched) (n-l) Ä Rbl (j) (Desc(s,m, sched) (n-D).

Crun(j) (s.m,sched) <-- Let n be Kfn(s,m,sched)(8) + 1 in
Col (j) (s,m, sched)(n) tt Crun(j)(DescCs.m,sched)(n)).

LEMMA 7
Desc(Desc (s.m, sched) (a)) (b) = Oescls.m, sched) (a-fb)

Proof: Math Ind on b

LEMMA 8
d(Desc(s,m, sched) (n+k)) C 3(Desc(s,m,sched) (n))

Proof; Lemma 7 & Axioms for 9

LEMMA 9
k < n A Cr (Desc(s.m,sched)(n)) D Kfn(stm,sched)(n-k) S n

Proof; Math Ind on k using Lemma 8

LEMMA 9a
Cr (Desc(s,m,sched) (n)) 3 Kfn(s,m, sched) (8) Sn

LEMMA 18

Rbl (j) (s,m, sched) E t(Cr (s,m,sched))
Proof: Defn of Rbl & Cr

LEMMA 11

n s Kfn(s,m,sched)(8) :: Col(j)(s,m,sched)(n) ■ <>
Proof: Math Ind on n using Lemma 9a 4 18

LEMMA 11a

Col (j) (s.m, sched) (Kfn(s,m,sched)(8)) ■ <>
i

LEMMA 12

Rbl (j) (s.m.Ful Isched(sched)) =
Rbl (j) (Desc (s,m,sched)(Kfn(s,m,sched)(8))

Proof: Lemma 5b & Defn of Fullsched

LEMMA 13
Rbl (s.m.Ful Isched(sched)) s

Col (j) (s,m, sched)(Kfn(s,ffl,sched)(B)+l)
Proof: Lemmas Ua & 12 by Defn of Col

THEOREM 2a
Run(j) (s,m,Fullsched(sched)) s Crun(j)(s,m,sched)

Proof: Parallel Comp Ind on Run & Crun

28

 -^- - - ■■-— ..^M^aidiimuäM^ut^M^L. .^ - .-^ ,1^ ^i-^. .,.^... ■..:.c.u,^,..
•■*'*-—'-

-^, wmmmm^mmmfGfm II ..•• .!■ imti III» IIJI I IMII I Mill i mit um MI IIP»I ■wi

Semantic Hodels for Parallel Systems

LEflMA U
Run(j)(s.m.sched) =

Col(j) (s.m.sched)(s.m.sched)(n) # Run(j)(Desc(s,m,sched)(n))
Proof: Math Ind on n

LEnilA 15

a(Run(j) (Descls.m.sched) (n)) C aiKfnU.m.sched) (n))

Proof: Parallel Comp Ind on Run & Kfn using Lemmas 7 « 18

LEMMA IB

Run(j) (s.m.sched) * Let n be Kfnts.m, sched) (B) +1 in
Col (j) (s.m.sched)(n) # Run(j)(Desc(s.m,sched)(n))

Proof: By cases of a(Kfn(s.m,sched)(B)) using Lemmas 14 & 15

THEOREM 2b

Run(j) (s.m.sched) = Crun(j)(s.m,sched)

Proof: Parallel Comp Ind on Run & Crun using Lemma 16

Proof of THEOREM 2

Run(j) (s.m.sched) a Run(j) (s.m.Ful IschedUched))
Proof: Theorem 2a & 2b

THEOREM 3

Infcan(j)(s,m,Fullsched(sched)) C Infcan(j) (s.m.sched)
Proof: Simil.ir to proof or Theorem 2
without use of Lemmas 11 & Ha and
weaker versions of Lemma 13 and Theorem 2a

29

- — "■"-^ -A:»-»^-'...>-^.Ui>:^.'».i.- ■■■ *~,^..*.~. ■.!...

■ ii i jM,«im r imjummfmmmmmmmmmmmmmmmf» liniliam i fin* IJIIII IIII«|IIIBI in v^mm

Semantic Mode 19 for Parallel Systeme

TiniNGS

The Scheduler formalism used in this paper is related closely to
the Timings that appear in Lipton's work. The following section
clarifies the relationship.

SEP - EP + ISTOP}
TIMING - lol + (N x SEP) x TIMING

Thus, a Timing is a list'of EP's (or ISTOP)), with each EP
associated the index of the process that executed it.

Since a timing is a list, there are throe functions predeclared with
the usual interpretations

Car: TIMING —> N x SEP
Cdr: TIMING —> TIMING
Empty: TIMING -> TT

History: S x M x SCHED - > IN —> TIMING]

Hi story(s,m,sched)(k) <==
k - 8 —> I<>),
Let n be sched(s,m).N in

Let sep be
m(n).LABEL = STOP —> STOP, Action(n)(m)

in
< <n,sep>. Hi storyCNext (s.m.sched) Mk-1) >.

Apply: SEP —> [S —> S]

Applylsep)(s) <--
sep = STOP —> s,

'Let < <syname,syargs>, <stname,stargs>, <cname,cargs> > be sep in
Synchfn(syname) (syargs) (s) —> Statefn(9tname) (stargs) (9) .S, 8.

Value: TIMING —> [8 —> 8]

Value(timing)(s) <==
Empty(timing) —> s, ValuelCdr (t iming)) (ApplylCar (timing) .SEP) (s)).

Ue use the predicate "Valid" for what Lipton calls "Semi-Active'

Valid(timing)(s,m) iff
(39ched,k)(History(s,m, sched)(k) - timing)

"*" ^ ■-~-^-.~ ■ ...-^■,.-.--,.J.--. ■-,.^.. ■-.-.-..-^— ■■-■. ^.J.-,..—>L^ yrrnrni rTa^irilinMi

'—— —r- ^^»"^■«^■■P«^»WW»»^wwi»|i^piWi^^i^w»P!P«w™i "inwii ii ■

Semantic Models for Parallel Systems

Active: TIMING —> I S —> TT]

Active (timing)(s) <= =
Empty(timing) --> tt,
Let < <n,sep>, rtiming > be timing in

sep = STOP --> ff,
Let <9yname,syarg3> be sep.SYNCHFORM in

• -Synchfn(syname) (syargs) —> ff,
Active(rtiming) (Apply(sep)(s)).

Timings form a partial order described in the following ways

S! TIMING x TIMING —> TT

tl < t2 <=>
Empty(tl) --> tt,
Empty(t2) —> ff,
Let < <nl,el>, rtl > be tl and < <n2,e2>l rt2 > be t2 in

nl = n2 A el » e2 —> rtl S rt2, ff.

Conjecture!

Val id(timing) (s.m» I- Active(timing) (s) iff
(3k,8ched)(FulI(sched)(9,m) A History(s,m,sched)(k) t i m i ng)

31

■'- -' - —^ - .^.-i-.^.^ fufciMitonlm

,,■,■,l■ ""• """■, ""»II-" .wmwn, ».Mil i.ji- Ji.i iiaii „Hum "•,l» WWW PI» WHPRI^MIMIV^nmi^RHMMHai^nWMMKi

UNCLASSIFIED
JECUKITV CLASSIFICATION OF THIS PACK '*>i»n 0»l« Enlmrtd)

READ INSTRUCTIONS
BEFORE COMPLETING EORM

9 PERFORMING ORGANIZATION NAME AND ADDRESS

"Carnegie-Mellon University
^/Computer Science Department

Pitt abur.£tu_-EA 1^213
<< CONTROUl INC, OFFICE NAME AND ADpRESS

Defense Advanced Research Projects
1400 Wilson Blvd

rr MONM^VJG'IWEN^'N AME9ft?ADDRESSl-<< dlll^nl Iron, Conlrolllne Oltlr.)

F44620.73-C-0074; , , ,

I'IIJ«WI>II ■LnunT BBnigrr "'m "■
' ASEA» WORK UNIT NUMBIS-S

61101E
AC 2466

>« WL>UWI U»IL—"^

Air Force Office of Scientific Research (NM)
Boiling AFB, DC 20332

-aä- 15. SECURITY CLASS 'ol Ihl» rmpntt)

UNCLASSIFIED
in DuCLASSIFICATION DOWNGRADING

SCHEDULE

16 DISTRIBUTION STATEMENT rof IhJ» ReporO

Approved for public for public release; distributbn unlimited.

17 DISTRIBUTION STATEMENT (ot Ih, «b.lrae/ »nlefed (n Block 10. 11 dlllfrenl Iron, Hepotl)

18. SUPDIEMENTARV NOTES

19. KEY WORDS 'ConHnu» on trvern tide II necru« iry end Idrnllly by blnck number)

20 ABS'«.A""'^on/(n„. on r.v.,., .«*.(/n«ce.r«ry.nd Men»//vM blorfcnumD«1rhis paper presents a semantic

model for parallel systems with a scheduling mechanism that is useful for expres
sing and proving a wider range, of properties than semantic models which do not
consider. We formally describe a number of properties related to scheduling and
deadlock", including "Fairness and Fullnoss", and show that schedulers with these
properties behave in desireable ways. Lastly, we prove and conjecture some
proof rules for scheduled systems and outline briefly the relation of this work
to modelling protection in parallel systems.

DD . F«rJM,i 1473 EDITION OF 1 NOV 05 IS OBSOLETE UNCLASSIFIED ^^—^

 - —. J— - - .. laiiuMJUtiMiiaii ati> ■['- - <

