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\BSTRACT 

kThis paper  presents a semantic model   for parallel  systems with a 
scheduling mechanism that  is useful   for expressing and proymg a wider 
range of properties than semantic models which do not consider 

scheduling. 

Ue formally describe a number of properties related-to scheduling and 
deadlock, including "Fairness" and "Fullness", and show that schedulers 
with these properties behave  in desireable ways. 

Lastly, we prove and conjecture some proof rules for scheduled systems 
and outline briefly the relation of this work to modelling protection In 

parallel   systems. 
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INTRODUCTION 

Based on Scott's flathematical  Theory of Computation  [Scott 721,  Cadiou 
& Levy   [Cadiou & Levi; 731  and Milner   milner 731  have  introduced a model 
of  parallel   processis based on processes that communicate by sharing 
memory,   and have shoun .tow to state and prove properties such as mutual 
exclusion  formal lij within the mechanizable LCF system. 

They  treat nondeterminism by  introducing an oracle from  the domain TT* 
(sequence of   truth values,   see  [Kahn 731).   The detf-mination of which 
process  to execute next depends on an initial  sequence of  the oracle, 
with  th«!  new oracle becoming the remainder. 

In r"   te of  the elegance of  their system,   they are unable  to prove 
certain properties of parahel   systems that one would expect  to be  true. 
Primarily  this  trouble stems  from the difficulty of characterizing  the 
well-behavedness of  their oracle.    By using a model  derived  from 
Upton's work   [Lipton 731,  we replace the oracle with a scheduler and 
state a property of schedulers,   fairness,  which  is shown to be adequate 
to prove a property of a particular parallel  system that   is difficult  to 
express   in Cadiou & Levy's system. 

Ue  first present a variation of Cadiou & Levy's model  and note some of 
its problems.     Ue then  introduce a model  with a scheduling formalism 
that  solves, these difficulties.    The remainder of the paper contains 
properties and proofs using the scheduling model,  as well  as additional 

comments. 

tlODELS FOR PARALLEL PROCESSES 

The models  for parallel  processes we will   invetigate  in this paper 
have 3   important  features. 

1) Processes - Ue will  always consider a variable number of processes, 
each of  which may be  in one of  three sta'es,  runnable,  blocked or 
stopped. 

2) Indivisibility - Processes are ^     ided  into  indivisible actions 
(instructions)   called elementary processes or EP's.    Uhen a process   is 
selected  to run,   it executes exactly oi e EP,  after which a new decision 
is made about which process should be scheduled.    Concurrent execul ion 
of parallel  processes  is modelled by sequential   interleaving of actions 
from  the various processes. 

3) Abstract Machine - Two main approaches have emerged for proving 
general properties about programs (i 
well as Correctness), the Functional 
(related  is  the Relational  approach, 

.e.  - Termination and Equivalence as 
approach  [Scott & Strachey 731 
see  [deBakker 741.)  and the Abstract 
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Machine approach   [Uegner 721. 

The Functional   approach maps a program directly  into a mathematical 
function;   the meaning of a program  is then   just   the value of   the 
corresponding  function.    Not only   is  the  technique elegant,   but  a  format 
system.   LCF   (Logic  for Computable Functions)   [Milner 72]   has been 
developed and mechanized  in which one can prove properties about 
computable   functions.    Cadiou & Levy and Milner use such an approach   m 
their respective papers on semantics of parallel  programs. 

The Abstract Machine approach defines a programming system via a 
formal   definition of an abstract  machine.     The meaning of  a program   .8 
then  tho result of   its execution on their abstract machine.     Much of 
what might  be considered    nelegant about  this technique  is due  to  Its 
awkwardness  in modelling the execution of  statements nth complex 

control   structures. 

However,   in  the parallel   systems we will   be describing,   there   is only 
one   language construct,   the EP.    Ue are thus  in the unusual  pos.t.on of 
being able  to produce an abstract machine definition that   is as  simple 
and  somewhat   less opaque than the corresponding functional   seman   ics. 

Of course,   one question remains - how to define the Abstract Machine. 
Ue choose  to define  the machine  interpreter as a computable  function, 
thus making  the  tools of LCF available for our proofs. 

(As we note   in  the conclusion,   we expect work on semantics  for 
parallel   systems  to COM full  circle,   that   is.  back to  languages  that 
have  the appropriate structures for parallel  control.     It   is  likely  that 
an Abstract Machine approach would then be unsuitable.) 

A VARIANT OF CADIOU & LEVY'S MODEL 

In producing an Abstract Machine version o^ Cadiou & Levy's model,   we 
divide  the state of  the model   into 2 parts.  S,   the Data state and K,   the 

Dontrul   state. 

The Control   state. K.  can be viewed as a binary process  tree whose 
leaf  nodes represent processes.     The  interior nodes of  the  tree contain 
either  "//"  which  indicates parallel  execution of  its two subtrees or 
'V  which   indicates sequential  execution,   that  is,  no process   in  the 
right  subtree can run until  all  processes  in the  left subtree have 

Htopped.     For example: 
\ 
\oa 

\i    \ 
J5 g s 

S '4 
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n 
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I 
C 

I 
D 

I 
// 

I 
E 

A,.B,   0 and E are runnable, 
blocked until   E  stops. 

C  is blocked until  both A & B stop.   F   is 

The Abstract Machine selects a  leaf node representing a runnable 
process.     It  executes a single EP which first modifies the state S,   and 
then produces a process tree which replaces  the node selected,   thus 
becoming a subtree of K.     The subtree may be simply a single node,   which 
can be used  to represent  the continuation of  the same process,   a  "*" 
construct,   which can be used to represent  the call  of a subroutine,   or  a 
"//"  construct,   which can be used  to represent  the spawning of  a 
subprocess.   In addition,  a node can be the eJement   JSTOPI  which 
incjicates  the process has stopped. 

All   processes execute  the same program.    Ue can view programs as 
labelled  flowcharts,   where  it  is  the EPs that are  labelled.    For 
example,   the flowchart 

-> P(seih)   > V(sem) 

can be represented by the following program with  labels P i V, 

P:   sem > 0 —>   (  sem ♦- sem - 1    —> V ), 
V:   sem «- sem + 1    ■«> P 

•>   ' 

(Note:     Read "-->"  as "goto"  and "a ~> b,  c" as "if a then b else c") 

The   leaf nodes of K either contain STOP or  the  label  of  the EP  the 
process wad executing.  So,   the process tree for a system in which  two 
proceseee are executing the P/V  loop program above might be 

// 

P P 

The data state S contains an element sem. 

In the formal model, the abstract machine, given S and K determines 
the "Next1' state of S and K by selecting a runnable node from K and 

■Ifi iii IT r^ -" •  —- -  ' ■ ■ >'-"—" ■-•  



Semantic Models for Parallel Systems 

executing the EP it represents thus changing both S and K. 

To select the runnable EP, ue use an oracle, an infinite sequence of 
truth values. Ue start at the root of K and work our way towards a leaf 
node.  Each time we encounter a "//" with runnable nodes (not (STOP)) In 
each subtree, we pick off the first element of the oracle and use it to 
decide which subtree to continue down.  In the formal model, the "Next" 
function implements the abstract machine as as recursive tree-walk. 

FORMAL flODEL - Cadiou & Levy Adaptation 

Primi t ive Domains 

S - memory state 
TT - truth value  { elements tt, ff and uu - 

• we also use "uu" to represent the least defined element of 
any domain and let the user rely on context to determine the 
appropriate domain ) 

LABEL - label 

Constructed Domains 

ORACLE = TT»v (sequence of truth values) 
EP - S —> K x S 
K - (STOP)  + LABEL +  K x (ft,//) x K 

' PROG - LABEL —> EP 

The "Next" function uses the oracle to pick a runnable EP from K, 
reLurning the resulting process tree as well as the updated state and 
the remainder of the oracle. 

■ 
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Next! K K S x ORACLE —> K x S x ORACLE 

Next(k,a.ora) <■- 

Case k of 

STOP —> <k,s,ora>, 

<q,//,r> —>  ( 
Stop(q) —> Next(r,s,ora), 
Stop(r) —> Next(q,s,ora), 
Hd(ora) —> MkC Xt.<t,//,r>, Next(q.s.Tl(ora)) ), 

Mk( Xt.<q,//,r>, Next(r,8,TI(ora)) )  ), 

<q,Vf,r> —>  ( 

Stop(q) —> Next(r.s.ora), 
MkC At.<t,>v,r>, Next(q,s,ora) ) ), 

lb' -> <Exec(lbl)(s).K, Execdbl) (s) .S, ora>. 

(note that if AB - A x B, and ab: AB (ab is of type AB), then 
we use ab.A and ab.B to indicate the projections of ab onto it's 

A and B components respectively) 

The "Exec" function for a particular program Prog gets the EP labelled 

by Ibl and executes it in state s to produce a new k and s. 

Exec: LABEL —> [ S —> K x S ) 

Exec(lbl) (e) <-- ProgdblHs). 

Mk: [ K —> K 1 x [ K x S x ORACLE 1 —> t K K 8 M ORACLE 1 

nk(fk,<k,9,ora>) <-- <fk(k) ,s,ora>. 

Hd: TT>v -->'TT   and returns the first element of a sequence 
jls TT* --> TT*  and returns the remainder of a sequence 

Stop; K —> TT and is defined so that 
Stop(uu) a uu, Stop(STOP) ■ tt, and for all other k, 

Stop(k) a ff. 

The result (final state) of running kB with an initial 
state 80 and oracle oraB is Hem(kB,80,ora0), where Mem is 

 —-'"  ■     - ■• ^..-.^-^...t-a^ ■ir Hit  „.-"^A^^i^^-^^.,:.: j^Av .;^ . .».^ i..~   ■■ ..  ;    ■"■• -"- ■ *- ■■  - ■- Jm-Ji-J^ 
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I1em(k, s.ora) <-- 
Stop(k) —> 9, 
Mem(Next{kfs.ora)). 

(An alternate model   perhaps closer  to current   languages and systems 
might use- "&"   instead of  "//",  where "«"  spawns a totally  independent 
process.     Thus  in «p.//.q>.>v.r>.  - can only execute after both p and q 
STOP.     In «p.&,q>.v<,r> r can execute aflcr p STOPs,  regardless of what 
happens  to q.     And.   «ST0P.&.q>,>v.r> would act   like <r.&.q>  if a 
semantic description were  to be given.       However,   wt will   not pursue   it 

further   in  this paper.) 

The key departure  rrom Cadiou & Levy  is  that K   is represented by a 
"syntactic"  data structure rather  than by being embedded  in a purely 
functional   structure and "//"  and V  are used here as purely syntactic 
entities rather  than as  instances of more general  process combinators. 
A number  of  other changes have been made to produce an Abstract Machine 
model   from  their  functional  model,  but none significantly affect  the 
problems of   the model. 

The main advantage of   thp adaptation has been  that we have separated 
the selection of a process to be executed from  its execution.     This 
suggests  the  substitution of a scheduler  for  the oracle. 

FACTORS IN CHOOSING A MODEL 

There are  three major concerns that have prompted  the development of 
the scheduling model   that will  be the focus of  the rest of  the paper. 

1) It   is difficult   (at best)   to characterize anomalous oracles,   öince 
anomaly depends so heavily on the changing nature of   the state and 
control.     For  example,   in the 2 process P/V   loop example,  Cadiou & Levy 
are only able  to prove  that one or  the oth r will  run forever,  while 
under a reasonably "fair"  scheduler,  we would expect both to run 
forever.  Bg providing a model  with a scheduler,  we can characterize  the 
scheduler   in such a way that anomalous schedules can be avoided.     Thus, 
we will   replace  the Oracle by a Scheduler which has access to the state 
of  the system and specifies a partiuilsr process to be run as well  as 
producing a new scheduler  to schedule the next process  (presumably by 
modifying   internal   variables or queues). 

2) We wish  to model   situations where ont process may arbitrarily 
start,   stop or otherwise control  another process.     Thus,   instead of K, 
the model   contains a multiplexor M,  which may viewed as • vector of 
processes.     The Scheduler specifies a process to be run by supplying an 
integer   index   into M.    M  is also more general   than K  in that  for each 
process we associate not only a  label   indicating the current control 

 iiiMiium i 
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point, but a separate program as well. 

3) Ue wish to characterize processes which are blocked, so that the 
scheduler can choose not to attempt to run such a process. Thus, 
foMouing Li.pton [Lipton 731. ue provide each EP with a ^h/on'zat'0n 

part which can be used to determine which processes are blocked. 

An EP consists of 3 parts, all executed indivisibly of course. The 
first part, (SYNCHFORtl), represents a synchron izat .on "nd.t.on.  It 
he Scheduler schedu.es a process, and the swnchron.zat.on cond t on of 

its current EP is not met, no action is taken, and the Scheduler .8 

^p y nv ked to schedule again. If the ^^^JlTS^Si} 
lei,   the other 2 parts of the EP are executed. One Pf .^TATEFORm 
chafes the data state (S) of the system, and one prrt ^ONTROLFORm 
changes the control state CHI of the system (spec.fymg the abel of the 
next'EP of the current process or starting, stoppmg or otheruise 
controlling another process. There is one spec.al label. STOP, uh.ch 

denotes the completion of s process). 

Evaluation of "Next" proceeds in the following way: First the 
Scheduler produces an index into the Multiplexor (as we I as a new 
Scheduler to schedule the next iteration).  If the label mdexed .8 
"STOP" then no further action is ..ken this iteration. Othermse. the 
labeled EP is executed. First its synchronization condit.on Is teeted. 

f fl se. no further action takes place with the EP. VT, Äe 
rest rr the EP is evaluated to update both the data state (S) and the 

multiplexor (M). 

THE FORMAL MODEL 

Prim", ti ve Domains 

TT - truth values 
N - natural numbers 
LABEL - labels, including the element STOP 
ARG - function argument 

NAME - names of functions 

S - states 

„^—^-^-^-^^-.. ..--^      - ^     ..^   .^.    -    - ■liTfcri'fniiiiifiiiiiiaii I'I^I ^ i^i'h-■:----   ■   --■ I 
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Constructed Domains 

SYNCHFORn - NAHE x ARGS 
STATEFORM = NAME x ARGS 
CONTROLFORM - NAME * ARGS 
EP - SYNCHFORn x STATEFORM x CGNTROLFORfl 
M . N —> PROG x LABEL 
PROG - LABEL —> EP 
ARGS -   {<>!     +    ARG x ARGS        (Ue uil I  use standard  tuple notation 

and  thus represent <a,<b,<c,<»» as <a,b,c>) 
SM - S x n 

The Scheduler 

SCHED - S x fl —> N x SCHED 

Primitive Functions 

Synchfn:  NAME —>   t ARGS —>   t S —> TT )   ] 
Statefn:  NAME —>   [ ARGS —>   [ S —> S x ARGS 1   1 
Control fn:  NAME —>   [ ARGS —>   t ARGS —>   [ r —> n ]   3   ] 

For reasons discissed  in the section on Schedulur Notes,   we model   the 
various FORtls as a  function name and an argument   list.     To evaluate  the 
function,   ue must provide a way of mapping the name of  the function to 
the  function  itself.     That   is what  the three primitive  functions do. 
They are also guaranteed  to be total.     It  is  left  to  the reader  to 
imagine how  they can be extended reasonably to total   functions  in the 
cases where  the name   is undefined or  the arguments are   inappropriate.   It 
is   important  to note  that arguments to Synchfn's and Statefn's will  not 
necessarily be values but will  more  likely represent variable names used 
to select a value from s.    Thus we are not providing an abstract model 
of  storage,  but rrther modelling at a higher  level  of abstraction. 

The  Interpreter 

Next:   S x M x SCHED —> S x n x SCHED 

Next(s,m,sched) <-■ 
Let <n,8ched'> be sched(s,m) in 

m(n).LABEL - STOP —> <s,m,sched'>, 
Let <s,,tn,> be Exec(n)(s,m) in o'.m',sched'>. 

(note that   i f AB - A x B,  and ab: AB  (ab  is of  type AB),   then 
ue use ab.A and ab.B to  indicate the projections of ab onto It's 
A and B components respectively) 

8 
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Given an  index  into  the multiplexor and a multiplexor,  Action produces 
the designated EP. 

Action:  N x fl —> EP 

Action(n)(m)   <--  (m(n) .PROG) (m(n) .LABEL). 

Given an index into 11, ab well as S « M, Exec executes the designated 

EP to produce a new S & II. 

Exec:  N —>   [ S x M —> S x M ] • 

Exec(n)(s,m)  <-- 
Let  <syfrm,stfrm,cfrm> be Action(n)(m)   in 

SynchfnCsyfrm.NAIIE) (syfrm.ARGSHs)  ~>    ( 
Let <s,,re9ult> be StatefnCstfrm.NAME) (stfrm.ARGS) (s)   in 

<B' .Control fn(cfrm.NAflE) (cfrm.ARGS) (resul t) (m)> ), 
<s,m>. 

The reader  is encouraged to  look ahead to the Applications section for 
an example of how a particular system would be modelled. 

In  this model   (as  in actual  systems),   it  is not so clear when 
computation stops  (for example,  an idle process may run  in an Operating 
system when nothing can otherwise be scheduled).    However,   for 
simplicity,  we will   assume a continuous predicate,  Mstop. 

Mstop:  S x n x SCHED ~> TT 

For example,   if  the scheduler returns a zero  index when there  is 
nothing to schedule,   then we could define Ustop as: 

f1stop(s,m,sched)   <--    ( sched(3,m).N - 8 ). 

In any case,  we can define the result  (final  state)  of running m8 with 
state s0 and scheduler schedB as I1mem(s8,m0,sched8)  where Hmem  is 
defined as 

Nmem(s,m,sched)  <-■ 
t1stop(s,m,sched)   —> s, 
Mmem(Next(s,m,sched)). 

■ 
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PROPERTIES OF SCHEDULERS 

Treatment  of  schedulers   in  this paper will  be  independent  of  any 
particular  synchronizat ion pr imi t i ves   (e.g.  P/V.  P/Vchunk.   ufj/doun)   and 
any particular   implementation or  internal  structure of   the scheduler 
(e.g.   FIFO queues    priority order),  rather we simply express a number of 
scheduler  properiies using  the model.     The properties described are 
either ones  that will  be used  later  in the paper,  or ones  that have 
appeared already  in  the   literature.    A comparison of  these properties by 
example can be found  in  the Applications section of  this paper. 

The properties as described are dependent heavily on S & H as we I I  as 
the  scheduler,  wheras commonly,  we are simply interested  in a property 
of   a  scheduler   independent of  what   it  schedules.   The section of   this 
paper  on Scheduler Notes  indicates how this problem may be solved. 

Notes:  Ue will  be using "process j"  to  indicate the continuing 
behavior  of   the contents of I1(j). 

Ue use  the notation      £    to mean  less defined than - also 
.    ■    -    Strong equivalence   ( a ■ b  iff 

a C b    A    b C a ) 
E    -    Strictly  less defined than  ( a E b iff 

a E b    A    •« C • ■ b )     ) 

Note  that  sequence domains  (e.g.  TTvt)  are ordered by 
uu C a C  (a # b)       and      a ■ a # uu 

where  "#"   is the concatenation operator. 

1) Oefined(sched)(s,m) 

ttft <-- tt U  It*.   (The symbol "thv" is to be the least fixed 
point of this equation - which can be seen to be the 

infinite string of "tt"s.) 

Def (s.m.sched) <-- tt # Oef (Next (s,m, sched)). 

Def ined(sched) (s.m) iff Def (s,m, sched) ■ tt>v 

2) FulI (sched)(s,m) - A scheduler is full if it does not schedul 

unrunnable process when a runnable process can be run. 

Canrun(k)(s,m)  <-» 
m(k).LABEL - STOP —> ff, 
(Let  syn be Act ion(kMm) .SYNCHFORfl  in 

SynchfMsun.NAflE) (syn. ARGS) (s)   ). 

e an 

18 
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Runnable(j,k)(s.m,sched) <»= 
( j — sched(s,m).N v Canrun(j) (s.m) v -Canrun(K)(s.m) ) 
ft Runnabl e (j, k) (Next (s, m, sched)). 

Ful I (ached) (s.m)   iff   (Vj.k) ( Runnable(j,k) (s.m,sched)  C tt* ) 

3)  ReleaseCsched) (s.m)   - A scheduler  is a release scheduler   tLipton 
73]   if,   when some action unblocks a set of processes,   then some process 
from  that  set ul I I  be  the next  to run. 

Unblock(k)(s,m,sched)   <-- 
Let  <8'^ , sched'> be Next (s,m, sched)   in 

(  CanruhCk)(s.m)   —>  tt, 
Canrun(k)(s*,m')   —>     ( 

Let n'   be sched'(s',m') .N in 
n'   - k —>  tt, 
-€anrun(n') (s,m) A Canrun(n') (s'^ )  ), 

tt ) 
tt  Unb I ock (k) (s', m', sched'). 

Release(sched) (s.m) iff (Vk) ( Unblock(k) (s.m,sched) C tt« ) 

4) Ready\Run(8ched) (s.m) - A scheduler has the Ready Run property when 
no process has to wait forever to run from the time it becomes 
continuously capable of running. Ue actually state this in the logic as 
- any process which is unable to run at most a finite number of times 
must run infinitely often. Some thought should convince the*reader that 
these are the same. 

Run(j)(s,m,sched) <"= 
t( j ■ sched(s,m).N A Canrun(j) (s.m) ) 
tt  Run(j) (Next (e.m, sched)). 

t(p) <— p —> tt, uu. 

Cantrun(j)(s,m,sched) <=- 
t(-Canrun(j)'s,m)) tt  Cantrun(j) (Next (s.m,sched)). 

ReadyNRun(sched)(s,m) iff 
(Vj)( Cantrun(j) (s,m,sched) E tt* o Run(j)(s,m,sched) tt* ) 

B)  Point8r\Bounded(sched) (s.m)  - A scheduler  is pointer bounded 
[Lipton 731   when a process able to run infinitely often is scheduled 
infinitely often.     (Ue will  see  in the Application section that both 
ReadyNRun and PointerNBounded are too weak and that Fairness  Is a more 
appropriate property) 
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Tried(k)(s,m,sched)   <■- 
t(  k -  sGhed{9,m).N  )  tf Tr ied(k) (Next (s.m, sched)). 

Infcan(k)(s,m,sched)   <-- 
t(Canrun(k) (s.m))   tt InfcanCk) (Next (s.m.schdd)). 

PointerVBounded(sched)(s.m)   iff 
(Vk) (   Infcan(k) (s.m, sched)  ■  ttt 3 Tried(k) (s.m, sched)   ■  it« ) 

B)  Fair(sched)(s.m)   - A scheduler  is fair  if any process able  to run 
infinitely often,   runs  infinitely often at  times  that   it canrun  (is not 
blocked or  stop) 

Fair(sched)(s.m) i ff 
(Vk) ( Infcan(k) (s.m. sched) m  ttw 3 Run(k) (s.m, sched) ■ tt»v ) 

7)  Ue say a scheduler sched' is an idling extension of sched if 

a) ( sched(s,m) s uu A (Vk)(-Canrun(k)(s,m)) ) --> 
sched* (s,m).N «■ 8, 
sched'(s,m).N ■ sched(s,m).N 

b) sched'(s,m).SCHED is an idling extension of sched(s,m).SCHED 

This corresponds nicely with the example definition of Mstop in the 
previous section.  It is easily provable that every scheduler has an 
idling extension, that Run( j) (s,m,sched) ■ Run(j)(s,m,sched') and 
Defined(sched')(s,m).  Also Ful I (sched)(s,m) I- FulI (sched')(s.m) and 
si milarly for Fair. 

Fairness is in general the weakest property (along with definedness) 
that we would ever demand of a legitimate actual scheduler. Luckily, 
fairness (with definedness) will be adequate for proving properties that 
we are interested in.  However, proving certain properties (in 
particular, the example proven in the next section) given fairness alone 
turns out to be somewhat difficult The key problem is knowing exactly 
when a particular action will occur, even when it is known that it must 
occur eventually.  This problem often disappears if the scheduler is 
full as well. So we will show that to prove: 

A] Defined(9ched) (s,m), Fair(sched)(s,m), Q(j,s,m) h 
Run(j)(s,m,sched) ■ tt* 

it is sufficient to show that 

B] Defined(sched)(s,m), Fair(sched)(8,m), FulI(sched)(s,m), Q(j,8,m) h 
Infcan(j) (s,m,sched) ■ tt* 

12 
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1 

Proof: 

Suppose there were a function Fullsched: SCHED —> SCHED s.t. 

for any scheduler sched, 

1) FulI(FulIsched(sched))(s,m) 
2) hjn(j)(s.m.FulIsched(sched)) ■ Run(j) (s.m,sched) 
3) Infcan(j)(s,m,Fullsched(£Ched)) C Infcan(j)(s,m,sched) 
• 

Now, suppose Definedlsched)(s,m), Fairlsched)(s.m), Q(j,8,m)f 

but Run(j)(s.m,sched) ü it* 

Since Fair (sched) (s,m), Infcani j) (s.m,sched) E tt* 

Thus by (1), (2) and (3), 
FuI I(FuI Isched(sched))(s,m), 
Run(j)(s.m.FulIsched(sched)) E tt* and 
Infcan(j) (s.m.Ful Isched(sched)) E tt>v 

Then trivially, Fair (Full sched(sched)) (s.m), by defn of Fair 

Now, let fsched be an idling extension of FulIsched(sched). Then 
Defined(fsched)(s,m), Fair.(fsched) (s,tn), Ful I (fsched) (s.m) and 

Run(j) (s.m, fsched) E Hit 

If we can prove (81, then Infcan(j) (s,m, fsched) ■ ttft, and 

by defn of.Fair, Run(j)(s,m,fsched) ■ ttft. 

Thus, we have a contradiction to 
Run(j) (s,m, fsched) E ttv«, and therefore the original 
hypothesis that Run(j) (s,m,sched) E tt* must be false. Since 

it is easily shown that Run(j) (s.m,sched) C ttv», 
it must be the case that Run(j) (s,m,sched) ■ tt* and 
[Al follows. 

Definition of Fullsched and proofs of 1), 2) and 3) can be 

found in the Appendix. 

APPLICATIONS 

Some notion of the properties in the section above can be gained by 
consideration of the example (adapted from [Lipton 721) of 3 processes, 

each execut.ng the loop: 

.> > P(8em) V(sem) 

13 
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where the initial value of sem is 1. 

(He will describe execution sequence as a sequence of pi and vi, 
i-1,2,3 to denote the execute of a P or V by the i' th process) 

Under a scheduler that is merely defined and full, the execution could 

simply be 

pi vl pi vl pi vl pi vl ... 

that is, processes 2 and 3 might never execute. 

If the scheduler is additionally a Release scheduler, the 

execution could be 

pi vl p2 v2 pi vl p2 v2 pi vl p2 v2 ... 

that is, vl releases P of processs 2 and v2 releases pi, but again 

process 3 might never be «xecuted. 

If the scheduler additionally has the Ready\Run property, it helps 
matters not at all, since process 3 is never continuously capable of 
running.  It is blocked each time process 1 or 2 executes a P. Likewise 
the Pointer\Bounded property does not help, since process 3 might only 

be tried when it is blocked. 

If the scheduler though is merely defined and fair, each of pi, p2, 

p3, vl, v2 and v3 must execute infinitely often. 

He'll prove that last statement for the more general case where there 
are n processes.  As already noted, this is a problem that Cadiou & Levy 

would have difficulty proving. 

Jo  simplify, we'll assume that the state s is identically sem, and 

we'll define the following functions: 

trueO (s)   <=»  tt. 
tst()(s)   <==   (  s > 8  ). 
inc() (s)   <»= <s+l,uu>. 
decO (s)   <== <s-l,uu>. 
go(<n, lbl>) (res) (m)   <-- Xk. ( k - n —> <m(n)  PROG, lbl>,  m(k)   ). 

Introducing some notation,  we use 

Ibl:  Uhen syf(sya)   do stf(sta)  --> cf(ca) 

to represent  the EP 

<<syf,sya>,<stf,sta>,<cf,ca» 

14 
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arnulntll16 EP  i?.,abe,lBd Nl "lb!".    Uhera sya.   sta or ca are <>   (no 
arguments),   ue ehm.nate parentheses as uell.    Ue  further use the 
no ta 11on 

:n->   Ibl(args) for •> G0(n,lbl,arn8) 

r"°IeS TrC!i0n ?efinition9. Hk« "go", have their names in lower 
case.  The formal name, like "GO" (from the domain NAME) is thf 
same name written in upper case.) 

• So we name the program described pictorial ly above. pvloopM]. where 

t 'f^T689,^" (indeX int0m- " has tH0 '^'8. P « V To 
Itf formal description usmg the shorthand notation developed above is: 

P: When TST do DEC :j-> V 
V: When I RUE do INC :j-> P 

Now, the problem can be staled in the logic as. Prove: 

Defined(sched0)(s8.mB). Fair (schedBMsB.mB). Range(i) h 
Run(j)(sB.mB.schedB) ■ tt« 

where 

mB <-- ^j.( Range(j)   --> <pvloop[j] ,P>,  <uu,ST0P> ). 
so   <-"   1. 
Range(j)  <—  j  > 1    A    j  s ,,. 

Inf can (j) (sB.mB.schedB)  ■ tttv. 

PROOF: 
■ 

0efined(schedB)(8B.mB).  Fair (schedB) (sB.mB). 
Full(schedB)(sB,mB).  Range{j)    h 

Infcan(j)(sB.mB.schedB)  > ttft 

Infcan2k(j)(s.m.sched)(k)  <-- 
t(Canrun(j)(Desc(s,m.ached)(2*k).Sn)) 
» J,(Canrun(j)(Desc(s,m,8ched)(2ftk+l).SM)) 
tf lnfcan2k(j) (s.m.sched) (k+1). 

LEflfIA 1 

Defined(sched)(8.m) A Ful Ksched) (s.m) D 

(Vk)( Let <s'.m',8ched'> be Desc(s.m,8ched) (kJ   in 
Def(ned(8ched,)(8,.m') A Ful Ksched') (s'.m')  ) 

Proof:  Math Ind on k 

« 
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LEMMA 2 
Infcan2k( j) (s.m, sched) (K) E Infcan( j) (Oesc (s.m, sched) (2frk)) 

Proofi Parallel Comp Ind on InfcanZk & Infcan 

LEMMA 3 
Def ined(sched8) (s8,m8), Ful I (schedB) (s0,in8) h 

Let o',m'.sched^ be Desc(sB,fflB,sched8) (2ii!rk), 
<s",m",9ched"> be Desc{s8,m8,schedB)(2Ak+l), 
j be sched'(s'.m') in 
Ranged) D Canrund ) (s'.m') A 
Canrun(j)(3",m") A 
i * j D --CanrunCi) (s",m") 

Proof; Math Ind on k usirig Lemma 1 

LEMMA 3a 
De fined(schedB)(sB.mB). FuI I (schedB)(sH.m8), Range(j) F 

Canrun(j) (DescCsB.mB.schedB) (2v<k).SM) > tt 

The proof of the theorem follous directly from Lemmas 2 & 3a 

Ue can also state (though we Mill not prove) the mutual 
exclusion.problem as 

Range (j), Range(k), j-k F MuiexIsB.mB,schedB) « uu 

Mutex(j,k)(s,m,sched) <-= 
t( m(j). LABEL - r,(k). LABEL - V ) # Mutex(j,k) (Next (s.m, sched)). 

DEADLOCK 

Briefly, we can state some deadlock properties in the logic 
based on the model. 

1) Starved(k)(sched)(s,m) - A process is starved [Dijkstra 72] 
if it is not "STOP" and is continuously incapable of running. 

Infsafe(k) (s,in, sched) <»- 
t( m(k).LABEL - STOP or Canrun(k)(s.m) ) 
# Infsafe(k)(Next(s,m,sched)). 

i 

Starved(k) (sched) (s,m)   iff  Infsafe(k) (8,m,sched)  E tt>v 

2)   Deadlock(sched)(s,m) 
process becomes starved. 

- The system  is deadlocked  if  some 

IG 
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DeadlocMschedMs.m)   iff   Gk) (Blocked(k) (sched) (s.m)) 

31   Safels m)   - Ue are often  interested,   regardless of  the
i
fe^ed"ll

er
w 

Whe her o To    a particular  set of processes can ever   lead to deadlock, 
wnexner or nuv an rannot  ianore  the scheduler 

the  scheduler be  fair and defined. 

SafeCs.m)   iff 
(VschedH Defined(sched)(s.m)  A Fair (sched) (s.m)  o 

(Vk) (  Infsafe(k) (sched) (s,m)  ■  tt»v )   I 

Clearly,   the P/V system of  the previous section  is safe.   ■ 

0, course    U  U  in ^•' ^,*-;,•JSt^,^.^l-,^»,^". 

occur. 

donsider • composed of a semaphore, sem. •"»*lji[li|
,'fJ;ft^;4 

k and n in tially 0, and f. a descript.on of a total function or 
type N --> TT And let m be running the two processes informal lU 

described by: 

Process 1 

k  :- 0; 
n :- B; 
V(sem); 
loop 

if Eval(f)(n)   then V(sem); 
n :- n + 1; 
end loop 

Process 2 

k s- 1; 
loop 

if k = 0  then Vlsem); 
PCsem); 
end Ioop 

Nou    under a scheduler  that runs process 2 first,   the eventual  value 
of k uillbe 0 and there will  never be deadlock,  but  if ^1*1 runs 
f  rst    k will  be 1.   and determining Safe(s.m)  becomes •^•«f*.* 
d^mg whether  f   is  true  infinitely often,  which  is reducible to the 

ha I ting problem. 

MODELLING PROTECTION SYSTEMS 

In  the model  presented,  each process operates on a common ^ *tate 

S.     Yet   in programming systems,  different processes do ^ *'*fe^ ual 

accessing rules  for  accessing the memory  (e.g.  Frames.  Co"tou^'   i'^31 

or Lo ^Name Spaces and Execution Domains)      By P^mg    he *J* 
multiplexor  slot as an argument,  differential  accessing of S can easily 

17 
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be achieved.   For  example,   i f S - N -> DOMAIN,   then  if p   is executing   in 
Multiplexor   slot  k,   s(k)   could represent   its execution domain. 

Now,   consider   the modeling of a segmented operating system.   Process 
j's data segments would be part of S,  whereas  its code segment would be 
modeled directly by the PROG component of M(j).    Ue could then model   tho 
starting of  process n by  the EPs 

Start:   Uhen TRUE do CONTENTS(<seg>)   --> L0ADG0(<n>) 

where rontent3(<seg>)(s)   returns as  its result  the contents of  segment 
seg   (in  state s),   and   loadgo(<n>)   loads up those contents   in M(n)   and 
begins executing  the process. 

loadgo(<n>) (segcontents) (m)  <— 
Ak. (  k-n --> <l ■mk(segcontents,n),BEGlN>,   m(k)   ) 

where   link(x,n)   assembles x   into PROG  form with start  address,   BEGIN 

in process n. 

An   interesting byproduct   is that one can model  a process changing a 
data segment of  another process  (possible  in systems with shared data) 
bu using a STATEFORM,   whereas a rhange  in an executing P™6"",COd» 
segment   (most   likely a bug)  can c-ily be modeled by using a CQNTRÜLFORM 
(like LÜADG0).     In fact,   in pursuing this modified model,   just  such a 
bug was discovered  in CMU's HYDRA system. 

(  The bug  in HYDRA can be circumvented by the use of  "frozen"  pages 
(see   [Rotenberg 74]).    A  f.nzen Lüde page  is permanently protected 

against modification.   ) 

Other  small  changes  in the model  make  it more useful   for describing 
and proving properties about protection systems.   [Cohen 75]  will   report 

further  results. 

A CONJECTURED  INDUCTION RULE 

Ue will   often want  to prove  (for some predicate Q) 

A]   Defined(schedB)(s0,m0).  Fair(schedB)(sB.mB).  Q(j,sB,mB)  H 
Run(j)(sB,mB,schedB) ■ tt* 

under more difficult conditions than in the simple example of the 
applications section. Ue note that in the P/V example, process j 
becomes blocked when some other process, say k, has successfully 
executed a "P". Process k's subsequent execution of a "V" will 

then make process j runnable once more. 

This is an instance of a more general observation.  Suppose that 

18 
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whenever process j is blocked, we are able to find a runnable process 
whose execution brings process j "closer" to becoming runnable and 
furthermore execution of any other process does not take process j 
farther away from becoming able to run.  If ue  can show that after doing 
this a finite (though not necessarily bounded) number of times, process 
j actually becomes runnable, then under a fair scheduler we should be 
able to show that process j runs forever. Formally, we have the 
following induction principle: 

Suppose that ( U, < ) ,5 a wel l-founded set with a set of least 
elements U8 in which all intervals are of finite length.  We 
write Iwl for the maximum distance from w to an element of UO. 
Furthermore, let Assoc: U —> [ S x fl —> TT ] and 

Closer: U —> N be total functions. Then to prove [A], it is 
suff icient to prove: 

a) Q(j,s,ffl) I- Gw) ( Assoc(w) (s,m) ) 

b) wB ( U0, Assoc(w8)(s,m) H Canrun(j)(s.m) 

c) w0 c WB, Assoc(w0)(s,m) h (Vk) Gw) ( Ascoc(w) (Exec(k) (s,m)) ) 

d) w -c U0,  Assoc(w)(s,m) h 

Gw'M IM*I < Iwl A Assoc(w')(Exec(Clo8er(w))(8,m)) ) 

e) w -c W0, Assoc(w) (3,m) I-  (VkJGw'H 
Assocfw*) (s.m)  /\ 

( ,w'1 < lwl v ( Iw'l - Iwl A CloserCw') -Closer(w) ) ) ) 

Intuitively, we use an abstraction of a token machine *o determine 
whether or not process j can run forever. A token is always associated 
with some element w of W depending on s « m. A3 EP's are executed, s ft 
in change, thus the token becomes associated with different elements of 
W.  By proving properties about the movement of the token in W, we can 
prove that process j runs forever. 

The basic idea is to associate the bottom elements of U, that is U8, 
with the states in which process j canrun. Then when the token is not 
associated with an element of W8, we must show that the token is 
eventually forced down towards an element of W8. We do this by 

demanding that when w ^  WB, there is some proces? Closer(w), such that 
the execution of that process will force the token to an element w' such 
that Iw I < Iwl. Furthermore executing any other process must have the 
effect that either the token is forced to a w' lower than w anyway or 
the token moves to a w' at the same distance from the bottom ( Iw' I - 
Iwl ) but such that CloseMw') - CloseHw). Thus in the case that we 
have a fai. schedulpr, process k wi11 eventually run and the token will 
eventually be pushed down closer toward WB. Since all intervals are of 
finite length, the token will eventually end up in WB.  This will go on 
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forever, thus, process j will be runnable forever, and again, given a 
fair scheduler, process j will actually run forever. 

Using this conjectured induction principle, we car easily prove the 

PVlaop example.  Define 
U - !>vl + fult...tl«nl   and UB - !>vJ, under the ordering, 
Vf < w i, i - 1,..., n. 

Let     Assoc (»v) (s,m)     «    s - 1    /\ 
m(k).LABEL -   ( Range(k)   —> P,  STOP ) 

and Assoc(wi)(s,m) = 9 - 0 A 

m(k).LABEL - ( k-i —> V, Range(k) —> P, STOP ) 

and CloserCwi) - i. 

Then, it is relatively trivial to prove that: 

a) Assoc(ft)(s0,m0) 

b) Assoc(JV) (s,m) h Canrun(j) (9,111) 

c) Assocdv) (s,m) h 
(Vk) ( Range (k) —> Assoc(wk)(Exec(k)(9,m)), 

Assoc (vt) (Exec (k) (s,m)) ) 

d) Assoc(wi)(s,m) h 
(Vk) ( k-i —> Assoc(>v) (Exec(k) (s,m)), 

Assoc(wi)(Exec(k)(s.m)) ) 

which is easily seen to satisfy the induction predicates. 

To simplify proofs, it may be useful to partition the system. Ue 
would have to define the notion of an "independent partition", and then 
prove that if <ml,...,mj> was an independent partition of m under s, 

then 

Safe(s,ml) Safe(s,mj) I-SafeU.m) 

SCHEDULER NOTES 

1)  As noted in an earlier section, scheduler properties depend 
heavily on 9 and H as well as SCHED. Since future behavior of the 
system is ccmpletely determined by the initial system, all we need 
do ie allow the scheduler to be tailor made to the initial 
configuration. Suppose that we demand that in the initial state of 
the system, n < j D m0(jJ.I.ABEL - STOP, and call this property 
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Init(mB,n).'   The use of n,   fixing an upper bound  to the  initial 
number  of  runnable processes allows us  to define a recursive 
scheduler  prototype; 

PROTOSCHED ^ N x S x H ~> SCHED 

and a scheduler maker 

Makesched:   PROTOSCKZD -->   [ N x S x M —> SCHED ] 

He  say  that PROTOSCHED   is  fair   if 

Init(m8,n)   o Fair (flakesched(protosched) (n, sB,m8)) (s0,m0» 

and similarly  for other properties. 

2)   Because  the scheduler gets  its  information by  looking at EP's,  EP 
must  be a domain over which a continuous " = " predicate  is defined so 
that   the  scheduler  can actually  look at  the components of  the EP.  Hence, 
the various FORfl's of  the EP are specified as NAflEs and  list  of 
ARGuments,   rather  than directly as functions. 

CONCLUSION 

We have   introduced a semantic model   for parallel   systems and have 
presented a number of properties of parallel  systems based on  the model 
as well   as some proofs and proof rules. 

The development  with  the most potential   appears  tc be  the conjectured 
induction rule based on well   founded sets As Cadiou & Levy note,  LCF 
proofs  force  the program prover  to  (sometimes tediously^  explicate all 
the possible states of  the system.    To make proofs of complex parallel 
programs more tractable,  and especially to make the proofs more amenable 
to automatic verification,   it seems clear  that some  (elegant)   embedded 
or  externally  imposed  (see   [Hi Iner & Weyrauch 721)   structure   is 
critical.     Well   founded sets may be a useful  structure for proofs of 
deadlock;   for other properties of parallel  programs,   further exploration 
is  necessary. 

There  is a different kind of structuring choice more directly related 
to  this paper - what can be an  indivisible operation embodied by ai EP? 
If  we assume an  implementation on a sequential  machine,   the safest 
choice  is  the smallest action that cannot be interrupted.     The obvious 
difficulty  is  that  sequential  machines are rare;  even conventional 
machines often have an 1/0 processor and both may simultaneously be 
accessing memory.     At best machines that use cycle-stealing force us  to 
safely choose as  indivisible actions those which  lake place   in a single 
cycle. 
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Ue have assumed in this paper that actions as complex as 
synchronization operators may be viewed indivisibly and thus our proofs 
must therefore be viewed as correct only for models in which that is the 
case, thus we separate the model of indivisibility from its 
implementation. In the cace of a multiprocessor, the code implementing 
synchronization may be running in parallel with other processes, perhaps 
even executing the same code. Uhat must be shown in such a case is that 
the model of indivisibility is nonetheless valid regardless of such 
concurrency as may be introduced by the implementation. Such proofs are 
beyond the scope of this paper. 

A somewhat serious deficiency of the scheduler model (and other models 
as well) is its inability to model time dependent behavior - for example 
timer interrupts in programming systems and timing considerations in 
machine architecture. While the nature of problems to be studied with 
respect to time dependencies would likely call for a different model In 
any case, proving the correctness of something like a 
multiplexor/scheduler for a multiprocessor would likely require a 
scheduler model modified in some way to handle time dependencies. 

Perhaps the most serious problem with the model described here is in 
the nature of the assumptions made about how processes interact (or 
should interact).  A »ormal semantics for a sequential programming 
language with structured control provides a better base for various 
proofs than a semantics for a language with GOTO's. Similarly, suitably 
restricted interactions between processes should provide a better 
semantic system than the one described here in which arbitrary 
interactions ere allowed.  A solution is to provide additional axioms 
which restrict the possible schedules. P/V disciplines are too 
unstructured. Uork along the lines of Path expressions [Campbell 6 
Haberman 74] appear to be more promising in providing a semantic basis 
in which proofs wi' I be less tedious. 
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APPENDIX 

The proofs here are presented as a series of Lemmas.  Except fOP some 
difficult cases, an outline of the proof of each Lemma is all that IB 

given.  Only two inductive proof rules are used here. Computat.onal 
Induction tminer &Viullemin72. Manna 721 and Mathemat ical Induction 

tManna 721. 

Ue u.^e   the abbreviations  introduced by Milner   [Milner72]. 
a  ::   b   i  c     for     (a —> b.uu)   s   (a   —> c.uu). 
and a(x)    is  tht< definedness predicate, 
a(uu)   ■  uu,   otherwise,  dix)  * tt.    He also use 
t(a)   <--  a r-> tt.uu. 

Ue  also assume an extended LCF  theorem proven with a knowledge 
of  arithmetic  (see axioms by Newey   [Newey 731)  built   in 
and -therefore,  when we are clearly dealing with a-natural  number, 
we dispense with the additional   predicate  isnat,   e.g. 
we write  a  ::  b(n)   s c(n)   instead of 
a A  isnat (n)   i:  bin)   B c(n). 

Ue have not  formally shown that Computational   Induction  is 
legitimate as we use  it over the domains  introduced  in this 
paper.     A proof   in the style of Scott   [Scott 72]   is  left  to 

the reader. 

' Ue use  "#"   [Kahn 73)   as a general   concatenation operator,  and 
leave  proofs about  its obvious properties to the reader. 

THEOREM 1 

FulI (Ful Isched(sched))(s.m) 

Ful leched(sched)  <-- Ms.m) .KfsCschad.B) (s.m). 

Kfs(sched.n)(s.m)   <-- . 
Let  <s,.m',sched,> be De3c(3.m,sched)(Kfn(s.m.3ched)ln)J   in 

<  sched* (s'.m'KN.  Ful Isched^ched'(s* .m'KSCHED)  > 

Kfn(s.m.sched) (n)  <== 
Cr(Desc(s.m,sched) (n))   —> n. 
Kfn(s.m.sched) (n+1). 

Desc(s,m.'sched) (n)   <== 
q - B —> <s.m.3Ched>. 
Next(Desc(s.m.sched) (n-D). 

Cr (e.m.sched)  <-- Canrun(3ched(8,ni) .N) (s.m). 

_ 
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Aex(j,s,m) <-- ExecCAction(j)(m))(s.m). 

LEMMA  1 
Next(s.m,sched)   ■ 

-Cr (s.m, sched)  --> < s,  m,   sched(s.m).SCHED >, 
< Aex(sched(s,m).N,s,m),   sched(s.m).SCHED >. 

Proof:   by defini tions 

LEMMA 2 
-Cr(Desc(s,m,sched) (n)) :: 

Desc(s,m,sched) «nl.SM a Desc(s,m,sched) (n+1) .Sfl 

Proof: Defined of Desc & Lemma 1 

LEMMA 3 
Canrun(Kfs(sched,n)(s.m).N)(Desc(s,m,sched)(n).Sn) C tt 

Proof: Substitute Defn of Kfs, then use Computational 
Induction on Kfn, using Lemma 2 & Defn of Cr 

LEMMA 3a 
Canr •jn(Ful Ischedlsched) (s,m).N) (s.m) C tt 

LEMMA 3b 
Qr (s.m.Ful Isched(schec)) E tt 

LEMMA k 
Desc (s.m, sched)(Kfnls.m,sched)(n)).SM E Descis.m,sched)(n).Sn 

Proof: Comp Ind on Kfn using Lemma 2 

LEMMA 4a 
Desc(s,m, sched)(KfnCs.m,sched)(0)).SM C <8,m> 

LEMMA 5 
Cr (Desc (s,m,sched)(Kfn(s,m,sched)(n))) H 

Canrun(Kf8(sched,n)(s.m).N)(Desc(s.m,sched)(n).SM) 
Proof: Defn of Kfs & Cr and Lemma 4 

LEMMA 5a 
Cr(De9c(s,m',sched) (Kfn(s,m,sched) (n))) C tt 

Proof: Lemmas 3 & 5 

LEMMA 5b 
Cr (Desc (s,m, sched) (Kfn(s,m, sched) (8))) ■ Cr(Ful IschedUched), s.m) 

LEMMA B 
Next (s.m,Fullsched(sched)) ^ 

Let o'.m'.schedS be Desc(3,m,sched) (Kfn(8,m,sched) (8)+l) In 

< 8*, m', Fu11sched(sched') > 
Proof: 
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Next(s,m,FulIsched(sched)) 

■ Cr(s,m,Fullsched(sched))   --> .i    «\  cruFn > 
< Ae><(Furisched(sched)(s.m).N.s.m).  Ful Isched(sched) (s.m) .SCHED >. 

uu. Lemma 1 & 3b 

■ Cr(s,m,Fullsched(sched)) —> ^won in 
Let <s.m'.sched'> be Descls.m.sched)(Kfn(s m sched) 0)) m^ 

•  < AeK(8chedMs',m').N.s.m), Ful Ischedlsched (s .m I.SCHED) >. 

uu.     Defn of Fullsched, Kfs 

.   Let <s'.m'.sched'> be Descls.m.sched)(Kfnjs.m sched)(0)) »n 

Crls'.m'.sched*) --> < Aexlsched'(s*.m').N.s .m ), 
Ful IschedCsched'(s* .mM.SCHEO) >, 

uu.     Lemmas 4a & 5b 

.   Let <s\m',sched'> be Descls.m.schedHKfnJs.m sched)(0)) In 

< Ne.Us'.m'.sched'KSn. Ful lsched(Next (s'.m'.sched ).SCHED) >. 

Lemmas 1 & 5a 

.   Let <8'.m'.sched'> be Desc(s.m.sched) (Kfn(sm sched)(0)+l) in 

< e'. tn'. Fullsched(sched') >      Defined of Desc    QED . 

Proof of THEOREn 1 

Full (Ful lsohed(8Ched))(s,m)  by Defn of Fuh, Me must prove 

Runnable(j,k)(s,m,Fullsched(sched)) C tt« 
Proof: Computational Ind on Runnable 

( j 0  Fullsched(sched)(s.m).N or Canrun(j)(s.m) or -Canrun(k)(s.m) ) 

# RunnabIe(j,k)(Next(s,m.FulIsched(sched) 11 

C tt # Runnable(j,k)(Next(s.m.Full8Ched(sched)))   Lemma 3a 

H tt # Let <s'.m'.sched'> be Desc(s.m.sched)(Kfn(s.m sched)(0)+l) in 
Runnable(j,k)(8,,m',Full8ched(sched'))   Lemma B 

C tt tt  ttv<  Induction 

■ tt* 

THEOREM 2 

Run(jMs,m,8ched) ■ Run(j) (s.m,Ful Inched)) 

Rpi(j)(s.m.sch-d) <- t( (j - sched(8.m).N) A Canrun(j) (s.m) ) 
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Col(j)(s,m,sched)(n) <=» 
n - 8 —> <>, 
Col (j) (s,m, sched) (n-l) Ä Rbl (j) (Desc(s,m, sched) (n-D). 

Crun(j) (s.m,sched) <-- Let n be Kfn(s,m,sched)(8) + 1 in 
Col (j) (s,m, sched)(n) tt  Crun(j)(DescCs.m,sched)(n)). 

LEMMA 7 
Desc(Desc (s.m, sched) (a)) (b) = Oescls.m, sched) (a-fb) 

Proof: Math Ind on b 

LEMMA 8 
d(Desc(s,m, sched) (n+k)) C 3(Desc(s,m,sched) (n)) 

Proof; Lemma 7 & Axioms for 9 

LEMMA 9 
k < n A Cr (Desc(s.m,sched)(n)) D Kfn(stm,sched)(n-k) S n 

Proof; Math Ind on k using Lemma 8 

LEMMA 9a 
Cr (Desc(s,m,sched) (n)) 3 Kfn(s,m, sched) (8) Sn 

LEMMA 18 

Rbl (j) (s,m, sched) E t(Cr (s,m,sched)) 
Proof: Defn of Rbl & Cr 

LEMMA 11 

n s Kfn(s,m,sched)(8) :: Col(j)(s,m,sched)(n) ■ <> 
Proof: Math Ind on n using Lemma 9a 4 18 

LEMMA 11a 

Col (j) (s.m, sched) (Kfn(s,m,sched)(8)) ■ <> 
i 

LEMMA 12 

Rbl (j) (s.m.Ful Isched(sched)) = 
Rbl (j) (Desc (s,m,sched)(Kfn(s,m,sched)(8)) 

Proof: Lemma 5b & Defn of Fullsched 

LEMMA 13 
Rbl (s.m.Ful Isched(sched))  s 

Col (j) (s,m, sched)(Kfn(s,ffl,sched)(B)+l) 
Proof:   Lemmas Ua & 12 by Defn of Col 

THEOREM 2a 
Run(j) (s,m,Fullsched(sched))   s Crun(j)(s,m,sched) 

Proof:  Parallel  Comp Ind on Run & Crun 
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LEflMA U 
Run(j)(s.m.sched) = 

Col(j) (s.m.sched)(s.m.sched)(n) # Run(j)(Desc(s,m,sched)(n)) 
Proof: Math Ind on n 

LEnilA 15 

a(Run(j) (Descls.m.sched) (n)) C aiKfnU.m.sched) (n)) 

Proof: Parallel Comp Ind on Run &  Kfn using Lemmas 7 « 18 

LEMMA IB 

Run(j) (s.m.sched) * Let n be Kfnts.m, sched) (B) +1 in 
Col (j) (s.m.sched)(n) # Run(j)(Desc(s.m,sched)(n)) 

Proof: By cases of a(Kfn(s.m,sched)(B)) using Lemmas 14 & 15 

THEOREM 2b 

Run(j) (s.m.sched) = Crun(j)(s.m,sched) 

Proof: Parallel Comp Ind on Run & Crun using Lemma 16 

Proof of THEOREM 2 

Run(j) (s.m.sched) a  Run( j) (s.m.Ful IschedUched)) 
Proof: Theorem 2a &  2b 

THEOREM 3 

Infcan(j)(s,m,Fullsched(sched)) C Infcan(j) (s.m.sched) 
Proof: Simil.ir to proof or Theorem 2 
without use of Lemmas 11 & Ha and 
weaker versions of Lemma 13 and Theorem 2a 
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TiniNGS 

The Scheduler formalism used in this paper is related closely to 
the Timings that appear in Lipton's work.  The following section 
clarifies the relationship. 

SEP - EP +   ISTOP} 
TIMING -   lol     +    ( N x SEP )   x TIMING 

Thus,   a Timing  is a  list'of EP's  (or   ISTOP)),   with each EP 
associated  the  index of  the process that executed  it. 

Since a  timing  is a  list,   there are throe functions predeclared with 
the usual   interpretations 

Car:   TIMING —> N x SEP 
Cdr:   TIMING —> TIMING 
Empty:   TIMING -> TT 

History:   S  x M x SCHED - >   IN —> TIMING ] 

Hi story(s,m,sched)(k)   <== 
k  - 8    —>     I<>), 
Let  n be  sched(s,m).N  in 

Let  sep be 
m(n).LABEL = STOP —> STOP,   Action(n)(m) 

in 
< <n,sep>.  Hi storyCNext (s.m.sched) Mk-1)  >. 

Apply:   SEP  —>   [ S —> S ] 

Applylsep)(s)   <-- 
sep = STOP —> s, 

'Let  < <syname,syargs>,  <stname,stargs>,   <cname,cargs> > be sep  in 
Synchfn(syname) (syargs) (s)   —> Statefn(9tname) (stargs) (9) .S,   8. 

Value:   TIMING —>   [ 8 —> 8 ] 

Value(timing)(s)   <== 
Empty(timing)   —> s,  ValuelCdr (t iming)) (ApplylCar (timing) .SEP) (s)). 

Ue use  the predicate "Valid"  for what Lipton calls "Semi-Active' 

Valid(timing)(s,m)     iff 
(39ched,k)( History(s,m, sched)(k)  - timing ) 
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Active:   TIMING —>   I S —> TT ] 

Active (timing)(s)   <= = 
Empty(timing)   -->   tt, 
Let  <  <n,sep>,   rtiming > be timing  in 

sep = STOP -->  ff, 
Let  <9yname,syarg3> be sep.SYNCHFORM  in 

•   -Synchfn(syname) (syargs)   —>  ff, 
Active(rtiming) (Apply(sep)(s)). 

Timings  form a partial order described  in  the  following ways 

S!   TIMING x TIMING —> TT 

tl   <   t2    <=> 
Empty(tl)   -->  tt, 
Empty(t2)   —>  ff, 
Let    < <nl,el>,  rtl > be tl    and    < <n2,e2>l  rt2 > be t2  in 

nl  = n2 A el  » e2 —>    rtl  S rt2,     ff. 

Conjecture! 

Val id(timing) (s.m»    I- Active(timing) (s)     iff 
(3k,8ched)( FulI(sched)(9,m)   A History(s,m,sched)(k) t i m i ng  ) 
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