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Abstract 

There has been extensive research into the automatic generation of compilers. 

Much of th,s has concentrated on the issues of synt o< and semant.cs. while little has 

been done on the problem, of code generation.   This thesis represents one approach 

to the latter problem.   A model of a compiler-compiler is presented, w.th the research 

focussing on the construction of one component of the comp.ler. that module which 

determines the possible code sequences which realize a given program.   The input to 

this component is a set of code sequences which are possible r.dlizations of each 

language construct.    This thesis concentrates on the  automatic generation of  these 

code  sequences  from   a  formal   description of  the  hardware   and  the   language.    A 

notation is developed for representing machine instructions, and a prototype system 

has  been  constructed  to  demonstrate  that  this notation  ,s  amenable   to  automated 

analysis. 
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Background 

1.1.1 

Chapter I 

Introduction 

Background 

Problem statement 

Two long-standing problems, the construction of compilers and the transfer of 

programs between machines (i.e., portability), have recently been emphasized by the 

current proliferation of machines and languages today. This thesis addresses certain 

aspects of these problems with respect to generating machine code sequences from 

higher-level language constructs. 

Given a specific language and a specific machine, the construction of a good 

compiler (and a correct compiler) may take two or three years. In a research 

environment the impact of this long time frame is felt in many ways. It is difficult to 

explore new areas of language design; rapid turnover of personnel (such as 

undergraduate and graduate programmers) makes it difficult to maintain continuity in a 

project; other research projects which need to develop or use a specialized language 

may be forced to choose other, perhaps less desirable, alternatives. In the commercial 

environment the impact is more direct. Each new computer must be produced with a 

complete complement of programming languages in order to be a marketable 

commodity. A delay of six months could well alter the market position of a new 

computer. 

The issue of portability is particularly important in research environments, and is 
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Background 

of considerable concern to the very large class of end users of programs. Ideally a 

program is a realization of an algorithm. The user is generally interested only in the 

algonthm and not. in the program which represents it. Such occurrences as the 

replacement of one machine (or operating system) by another, for whatever reason, 

should be of little concern as long as the programs continue to run. Unfortunately, for 

reasons we shall discuss later, it is rarely the case that programs can be transferred 

directly from one operating environment to another. 

In many cases the end user is only concerned with the results: if the program is 

transferred to the new environment and produces correct output then the user is 

satisfied. The isolation of the user from the environment means that issues of 

efficiency often are ignored; hence the incidence of GZO/HB's sinulating IflOl's 

simulating 650's simulating tab card equipment. It is when the user must pay real 

money from a finite budget or spend time waiting for a timesharing system to respond 

that issues of efficiency become important. Computer cycles are a finite resource. Any 

cycles wasted because of inefficient code are not available for other purposes. As 

long as we must live with a finite resource, we should optimize its utilization as much 

as possible. 

This thesis is concerned with one aspect of a particular approach to the solution 

to these problems, namely compiler-compilers or translator writing systems. Compiler- 

compilers are programs which, when supplied with appropriate information, will 

generate a compiler for a specific language and machine combination. They have been 

studied for many years and have had some limited success in language research 

environments. They have not, however, had much success in the commercial 

environment. There are two related reasons for this.   First, compiler-compilers have 

1.1.2 
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Background 

tended to produce compilers which, in turn, produce object programs Of poor 

efficiercy. Second, they have tended to focus on 'ui issues of lexical and syntax 

analysis to the exclusion of code generation. As a consequence, much work remains 

for the user of the "automatic" systems to complete; and that which is related to code 

generation is usually tedious, complex, and subject to error. 

The specific concern of this thesis is to investigate a method to be employed in 

the construction of compiler-compilers such that (1) the resulting compiler produces 

code comparable to that produced by the best optimizing compilers, and (2) to oo so in 

a context that makes the specificatioi of code generation relatively easy. An 

outgrowth of this research is the ability to specify the machine characteristics of the 

target machine, making it possible to construct compilers which can produce code for 

many different machines. 

It is not an objective of this thesis to produce a compiler-compiler.   However, 

the research has developed a program which, given appropriate information about a 

language and machine, will supply information to a hypothetical compiler-compiler. 

History 

The   problems  of   compiler   construction   and   machine   portability   have   bee. 

investigated for many years.   In order to view this research in proper perspective it is 

necessary to examine some of the history of these efforts. 

The need for machine indepenoence has long been realized. The underlying 

philosophy is that we wish to reduce as much as possible the difference between 

algorithms and their realizations in programs. 

There are many issues involved in transferring a program from one machine to 

another, both in translation and execution. 

1.1.3 
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The translation problem is simply that of converting some representation of the 

program to a form which can be operated upon by the target machine. This means 

that there must be a translator whirh accepts the source program and outputs some 

representation of the object program. Unless the language is one with widespread 

acceptance, such as FORTRAN, COBOL, or BASIC, this step alone poses the most serious 

problem. Also, »van if a translator exists, it must accept all the features of the source 

language and produce correct code for them. Quite often the lack of standard notation 

for the source language or standard syntax for certain classes of operations becomes 

a virtually impenetrable barrier. One need only look at the dozens of variations of 

reserved word and input-output syntax represented by the many implementations of 

Algol 'which was intended to be an international standard) to realize the difficulty this 

imposes. 

Given that a program can be translated, it is then necessary to actually execute 

it. Mos: languages require the existence of an execution-time environment ("run-time- 

system") to perform everything from data space allocation to input-output. It is not 

only necessary to specify the syntax and semantics of the computational and control 

statements of the language but also to specify the semantics of the execution time 

environment (inducing input-output) as well. Even those languages with fairly 

rigorous language specifications often leave the semantics of the execution 

environment either unspecified, or worse, so ambiguously specified, that the variations 

in implementation makes the transfer of programs between any two environments 

nearly impossible. In particular, the semantics of input-output is usually determined by 

the behavior of the operating system under which the program will run, rather than 

forcing  the   operating  system  to  provide  a  set  of  facilities  satisfying   a  standard 

11A 

ÜÜMIMMHiiMMMMIWUlH   ttM.M, ___^ 



v^*^^*mmmiw*i m^^mmmmmmmmmmmmmmm' '"• ' '"■ i   i 

Background 

semantics  . 

Even if all of ther.e problems were solved, however, we still would have the 

problems of the physical hardware representation. These include such issues as the 

character set and collating sequence, word length, floating point precision, and 

behavior under exceptional conditions, e.g., does fixed overflow generate an interrupt 

or set a flag? If we can avoid all of these problems then we have, in fact, achieved a 

portable program. For a discussion of these issues and some responses, see Warren 

[War74]. 

If we rssume certain standards of external representation (e.g., the character 

set and the formal syntax), we are then left with issues such as machine word length 

and radix. Programs which pack data into words usually presume a certain radix or 

word size. Floating point computations assume (or tend to assume) certain properties 

of the floating-point arithmetic unit, such as the base, radix, rounding, etc. as well as 

significant factors such as the largest or smallest number which can be represented. 

An interesting approach to the latter problem is described by Malcolm [Mal72] in 

the form of some algorithms (expressed as FORTRAN subroutines) which determine the 

properties of the floating-point unit for any given machine. This defers the binding 

time of these properties to execution time rather than forcing the binding at compile 

time (and hence at coding time, in most cases). 

Newer languages, such as Algol-68 [vW69] respond to this issue by requiring a 

A possible cause of this difficulty is the fact that presumably rigorous 
specifications are made in English prose, a notation peculiarly subject to 
ambiguity. Alternative notations, such as the Vienna Description Language 
[Weg72] or van Wijngaarden grammars [vW69] would be mo-e suitable. The use 
of an informal but rigorous notation for the behavior of the run-time support 
system, such as the notation suggested by Parnas [Par72], would be a major 
advance for most languages. 

1.1.5 
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"standard prelude" in which important information such as the largest possible integer 

or the smallest floating point number is made available. Each compiler defines a 

standard prelude for its target machine. Unfortunately, both the Malcolm solution and 

the Algol-68 solution require that the programmer utilize the information made 

available.   Failure to do so will probably result in a non-portable program. 

Since we have abstracted the language and machine issues to some degree, it 

should now be evident that we should be able to achieve machine portability (modulo 

the issues given on page ^). 

In the following five sections we will examine some approaches to the issues of 

compiler construction and code generation.   They are 

(1) Compiler-compiler«: 
(2) Code generators 
<3) Standardized languages 
(4) UNCOL 

Compiler-compilers 

One might imagine that the problem of machine independence could be solved by 

constructing a compiler which would compile "any" sourc; language for "any" machine. 

The word "any" is quoted here since each researcher in the field restricts the classes 

of languages and machines to those for whicn he can (or intends to) find a solution. 

The diversity of languages and machines makes it nearly impossible to consider a 

solution which is truly universal. 

A much simpler solution is to construct a program which accepts the 

specifications of a language and the specifications of a machine, and then generates a 

compiler which compiles source programs in that 'anguage to code for that machine. 

Thus we enter the weld of compiler-compilers. The classical compiler-compiler 

paradigm is shown in Figure 1. 

1.1.6 
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Figure 1: The Classical Compiler-compiler structure (after [Hop69]) 

I 

In the past ther: have been many attempts to construct compiler-compilers 

[Ev6fl, FeiSfl, Ros67, WaS67, CLE59]. A classic paper by Feldman and Gries [FG68] 

reviewed the state of the art in 1968. 

The system described by Evans [Ev54] generated a syntax analyzer from an 

input specification of Floyd production' (the particular adaptation became known as 

Floyd-Evans productions). The input to the parser was a stream of lexemes produced 

by a lexical analyzer ("sibscan") and the output was another (linear) stream of lexemes 

which were used by the code generator. The use of Floyd-Evans productions was 

extended by Feldman [Fel6^] in FSL, which did not output a lexeme stream, but instead 

invoked a "semantic routine" for each successful production. The semantic routines 

were written in FSL, and allowed the compiler writer lu specify the setnanlics. of the 

compiled code without specifying the actual form of the code. The ideas of FSL have 

beer extended by others, notably by White in JOSSLE [Wh73]. 

The general-purpose table-driven compiler described by Warshall and Shapiro 

[WaS67] allowed specification of the syntax of the language by a slightly modified BNF 

1.1.7 
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(context free) grammar. The output of the syntax analyzer was a tree representation 

of the source program. A second notation allowed the specification of matches against 

the tree, which could output "macros", machine-independent representations of the 

operations to be performed. The expansion of these macros into machine code for the 

target machine is accomplished by the use of a th^d notation; the output from this 

phase is an assembler program which can be translated by conventional means. 

The Brooker-Morris system described in [Ros67] offers elaborate syntax 

analysis specifications. It is interesting in that both the syntax specification and the 

output ("format") specifications are expressed in a single notation. It is claimed that 

the notation allows for the handling of block structured declarations and typed data 

objects within the syntax specification. 

TREEMETA [CLE69] is a more unified implementation of the same ideas. It allows 

the compiler writer to specify the syntax of the language in an extended BNF grammar. 

The output of the parser is a tree with labeled nodes, where each label is the name of 

an "unparse rule". An unparse rule specifies a series of tests (matches) to be 

performed upon the node, and if a test succeeds it specifies a set of output rules 

which send text to an output file. The output text may then be passed through a 

conventional translator (such as an assembler) to obtain the object program. 

Code Generates 

One of the major difficulties in constructing a compiler is the generation of 

machine '"ode. This is especially important if the language is considered machine- 

independent, and intended to run on a variety of machines. Ideally, one wishes only to 

specify the cnaractenstics of the machine, and have a system which automatically 

produces a code generator tailored to the specific machine. Such systems are 

discussed by Miller [Mil71] and Donegan [Don73]. 

1.1.8 
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M^or deserves - sys.OT, DMACS, wh.ch IM. a desciphon 0( a machine In 

,.,„. o. ,«l...-., ..«n-, and Ih. anowabie opera,.« wh,ch map be,ween .he. 

(,nc,ud,ne »uch concept as data access.na (unc..ons,. He then speches a r»e,hod o. 

, t,n5 cpde us,ne .he in(.m.Hon as a da.a base.  The .npu. .o ,he cede 8ener..or 

cons,s.s o. .imp., .wo-address code, w„h an In^licil V..U.I address" .or each lln. o. 

two-address code.   For example, [Mil71, p 17]: 

Line Op Operands 
1 MUL C,D 
2 ADD l,C 
3 ASSG A^ 

represen.s .he eomplUtiOn o. "A - B . C . D".   The .Irs. line ..uUiplies C and D, the 

second lln. adds .0 .he resoi. 0. lin. . .he con.en.s .1 B; .he .hird lln. assiBns .0 A 

the result of line 2, 

An .mpor.an, ,d3a here I. .ha. .he comp.ler need only genera.e .he indicated 

code sequence.   .. does no. ma..er ,. C is an in.e6er, D is a ,..,, B is a bi, held wi.hin 

. word, or even across word boondanes, and A is a reg.s.er ..pllei«, designa.ed by 

the user.   The DMACS system will provide the necessary mappings, alloca.e space lor 

lh. intermedrate resolts, and provide the necessary access .onc.ions .0 obtain Ih. 

operands end s.ore .he resui.s.  Thos .he .ron. end o. .he compi.er I. cons.an. across 

a„  machines, and .he code ,.n.r.t., discovers the code se,uences based upon a 

desciphon o,  the machine    Signi.icantly, the code generator  can discover  if  the 

operands siven are suitable .or the operation (e.g., MUD and conver, them as r.ouired 

(M, move C .0 a regis.er, conver. .0 lloahng pom., perlorm lloa.ing point multiply). 

The model presented by Donegan [Oon73) i. '.ore elaborate, and is closer to the 

compiter-comp,ler ,dea.   A preprocessor accepts a notat.on descr,binf the translation 

1.1.9 
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of the Intermediate representation of the program into machine code. The output Of 

this preprocessor is then compiled to produce the code generator. Code generation is 

considered as a finite-state machine operation, where an accepting state emits an 

instruction. Given any state, there are a set of possible transitions derived from the 

machine description. The preprocessor examines the possible transitions and produces 

a code generator which will choose the minimum-cost transition. 

Standardized lan^uaaes 

An alternative to the compiler-compiler approach is to define a standard of 

syntax and semantics for a language, such that th^ language can be impkmented on a 

large class of machines. If this approach were completely successful it would be 

possible to transfer most programs directly from one system to another, providing 

direct source language portability. This has been attempted for several languages; 

FORTRAN, COBOL, APL, and PL/1 are the first examples which come to mind. If there 

were any adherence to the standards specified for these languages, indeed we would 

have a high degree of machine portability; in fact, we do not. One of the problems 

with such complex languages is the lack of completeness of the compiler (there are 

authoriied subsets in many cases) and the number of extensions to the compiler which 

the programmer has taken advantage of (nearly every compile has nonstandard 

extensions, either deliberate or accidental). However, if we chr 'e a language of 

suitably restricted syntsx and semantics it is possible to transfer p, ograms written in 

it to another machine. 

A variant of this approach has been taken by Bell Laboratories where they have 

defined a "standard" subset of FORTRAN IV. This is a restricted subset of the language 

which they have  found empirically to transfer to a large number of machines and 

1.1.10 
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remain   compatible,  syntactically   and  semant.cally,  with  each  of   their   FORTRAN   IV 

compilers. 

The inverse of the Bell Laboratories' approach has been taken by the 

Department of Defense (DOD) with respect to the COBOL language. A distribution tape 

contains a set of COBOL programs with rigidly specified behavior [Bai72]. In order for 

a COBOL compiler to meet the standard for a certain subset of the language, it must 

successfully compile and execute a certain sut set of these programs. 

Macro systems 

For some applications it is pcsible to use a language of very restrictec syntax 

and very rigid semantics to specify a program. The translation problem can then be 

viewed as mapping each statement in the language into a set of machine instructions 

wh.ch product the desired effect. This translation can usua"/ be performed by a 

macro processor of some sort, in wh.ch the components of each statement (the cctual 

parameters) are subst.tuted for placeholders in a template (the formal parameters in 

the macro body), The result of this substitution is the text for a language translator 

(compiler or assembler). When this text is translated the result is a machine-code 

program which produces the desired output. 

One of the earliest uses of a macro system to specify the code templates for a 

h.gh-level language was in the MAD language [AGG69]. In this system, a special- 

pH-pose macro prccessor was included in the MAD compiler. New data types could be 

defined, and the operations on these new types could be defined by specifying the 

To validate programs for "portability" they have a program which reads a 
FORTRAN IV program and verifies that it uses only the portable subset Of the 

language [Ryd72]. 

l.l.U 
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actual machine code to be used. A template of this form would be expanded whenever 

the operator it defined enfCi ntered the data types it accepted; in this manner 

standard operators (such as "O could be defined over new data types (such as 

complex numbers). The formal parameters in the template were replaced by actual 

parameters during the expansion. There were also conditional compilation facilities 

which controlled the text expansion. 

Macro systems are attractive from the viewpoint of portability) ideally, the 

program text, except for minor character set differences, can be read by nearly any 

machine. Once an algorithm is expressed in terms of macro text which can be 

expanded, it is in theory possible to transfer it to any macnine. 

There are several languages which are spec ;ied by macro language definitions; 

the two cited here were chosen because they are both well-documented in the 

literature and successful enough in practice to be more than theoretical approaches. 

(jne of the more successful attempts at machine portability is the Mobile 

Progiamming System of Orgass and Waite [OW69, Wai70]. A bootstrap macro 

processor called SIMCMP is written in a subset of FORTRAN IV, about 110 lines of 

code, and trivially translatable by hand to nearly any other language. It is used to 

compile a more powerful macro processor called STAGC-2. 5TAGE-2 is written in a 

language called FLUB, which has a very limited syntax and primitive semantics, and can 

be translated by SIMCMP. Once STAGE-2 is running, other systems may be written in 

the more powerful macro language which it translates. With proper care in the 

specification of the semantics of these macros any program written for translation by 

STAGE-? can be moved to another machine with a minimum of effort. 

Another very successful app-oach along these lines, for a single application, Is 

1.1.12 
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the SNOBOL Implementation Language (SiL) designed by Gnswold and his associates for 

implementing SN0D0L-4 [Gris72]. SIL consists of about 130 macros oriented explicitly 

towards the implementation of SNOBOL data structures and internal algorithms. It was 

also des'^ned to obey the syntactic restrictions of an archetypal assembly language 

macro processor, so in some ways it represents the intersection of features of several 

such macro processors. It has been used with great success (although not without 

difficulty) to implenent SNOBOL-^ on at lea«;! ten different machines (as of 1972). 

UNCOL 

There has been an assertion [Str58p Ste61] that if the syntax and semantics of a 

language are sufficiently rigorous and at the same time not very far removed from a 

machine representation that (ideally) we could code all of our programs in this 

language and have them execute on any machine. One obvious defect is that such a 

language would undoubtedly be too low-level to actually program in. In fact, this is 

true; but if we had all of our compilers produce code for the machine which "executed" 

this language, then the output of any compilation could be translsted and run on any 

machine. 

An early proposal along these lines was UNCOL [Con58, Str58, Sfe61]. This 

involved creating a single "universal" language into which all other langiiages could te 

compiled; it would then be necessary only to write programs which would translate 

UNCOL into the specific machine languages for the target machines. Had this solution 

been successful, it would have reduced the m x n problem to an m + n problem (see 

Figure 2). The m x n problem is characterized by the fact that for m 

languages and n machines it is necessary to construct (n x m) compilers to be able to 

run a program written in each language on each machine.   Using the UNCOL solution, 

1.1.13 
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only   m + n   "translators"  need  to  be  written---one  fc  each source-language-into- 

UNCOL transformation and one for each UNCOL-mlo-machine-code transformation. 

Q Q Q E 

Ml M?    |     |   M3   1 Ml MO I    MG 

,.      -   ,    «in '   .--  t'     t 

UNCOLI * • n triittlitofl 

Figure 2: The reduction of the m x n problem. 

There have been several attempts at UNCOL-like solutions. In general these 

have been restricted to defining particular intermeu:ate-level languages for the 

implementation of specific high-level languages (the 1 x m problem). The SN080L 

Implementation Language can be viewed as the output of a (human) compiler which 

allows a single language to be implemented on many machines. The OCODE 

representation of BCPL [Rich71] is produced by the BCPL compiler (which is written in 

BCPL). Thus to bring up BCPL on any system it is only necessary to translate OCOOE 

into machine language.   Once an OCODE translator is built, it is only necessary to 
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translate the OCODE representation of the compiler. The result is now a BCPL 

compiler which runs on the desired machine. This compiler may then be used to 

recompile the BCPL compiler source text, or any other DCPL program. 

One of the most recent proposals for an UNCOL-liKe system is JANUS [Cole74], 

an intermediate textual representation for the output of a compiler. A translator based 

on the STAGE-2 macro processor [Wai70, see page 12], which is already portable, is 

then used to translate JAMUS into assembler code for the target machine. JANUS is 

noteworthy because it is not des'^ned for any particular language (but rather a broad 

class of languages), and it is one of the most complete proposals for a truly "universal" 

intermediate language. 

Critique 

Compiler-compilers and their code generators 

All of the early major work in compiler-compilers seems to have concentrated on 

syntax analysis [Ev64, Rosö/, WaS67], with little or no work on code production or 

optimization. In particular, the conceots of global, or machine-independent, 

optimization have not been handled at all. The work of Geschke [Ges72] has now 

shown a notation for specifying how to detect and process global optimizations, such 

as those discussed by CL'-KB and Sthwartl [CS'OJ Compiler-compilers will have to 

incorporate these abilities if they are to compete with so-called "hand-coded" 

compilers. 

Code production in carl, compiler compilers was fairly simple, and optimization 

was usually restricted to keeping track of which results were currently in the 

accumulator1. More       sophisticated      code       oroduction       and      optimization 

The fact thaf most of this work was done on single-accumulator machines made 
the more sophisticated issues of register allocation irrelevant. 

1.1.15 
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was usually performed by hand-coded assembler routines rather than by using some 

notation at the compiler-compiler level, as in [Ev64J. In this system, the compiler- 

compiler provided a notation for specifying the translation of a source language (Algol- 

60) into a linear stream of toKens. Typical semantic problems such as requiring that an 

identifier be declared before use, declared only once at a given block level, used 

consistently with its declaration, etc., as well as issues about coercion between 

integers and reals, were han <led by a second, hand-coded phase of the compiler. This 

approach was not as successful as one would have hoped. The second phase of the 

translator was sensitive to the form of the token stream. Although the syntax could be 

changed easily, any charge in the order of the tokens, or in their type, required 

modification of the complex second phase in order to ensure that the mapping into 

machine code would operate correctly, or at all. 

One of the lessons learned from the Algol compiler of Evans [Ev64] was that 

syntax analysis was one of the easiest parts of the trar slation process (a view not 

generally held by the computing community at that time), and that semantic analysis 

and code generation were more difficult and more important problems. 

Later work on compiler-compilers was influenced by the recognition that syntax 

analysis is not the major issue, ard the effect of tnis influence was the provision of 

capabilities such as being able to specify the mapping from the semantics of the 

source program to the semantics of the target machin? [Fel64, Wh?^, Don73, Mil71, 

CLE69]. There are several shortcomings in these systems. The most serious is that 

they are either too far from, or too close to, the actual machine representation of the 

object program to make machine independence simple to handle and at the same time 

intain the goai of efficient object code.  Abstract semantics such as those embodied mair 

1.1.16 
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in FSL [F«I64] or J03SLE [Wh73] adequately abstract storage allocation, forward 

references, and other concepts independent of efficient code, but they specify machine 

operations suet; as addition by simply requesting the production of coae to evaluate 

the "+" operator (\he "code brackets" of FSL). In any given machine there may be a 

score or more different ways of implementing this language operator, each having 

particular cost tradeoffs'. The exact code sequence required to 

produce the desired effect is left to the ingenuity of the person coding the semantic 

routine. 

TREEMETA provides a convenient representation for specifying the syntax of a 

language but ties the semantics and code generation so tightly to the idea of the 

treewalk that converting a program to produce efficient local code on a different 

machine ca,-» involve rewriting the entire code production phase. The internal 

representation is inherently a tree; the use of a directed acyclic graph (dag) to 

represent common subexpressions is not possible in standard TREEMETA. Also, in 

standard TREEMETA it is impossible to restructure the tree once it has been 

constructed, so that "code motion" optimizations (such as moving constant computations 

outside of loops [CS70, Ges72]) cannot be performed. 

The worK of Miller [Mil71] and Doncgan [Don73] provide convenient notations 

for specifying the case analysis required to produce code from an intermediate 

representation. However, optimum code production requires careful case analysis 

based on the actual (often pathological) behavior of a machine.   The more the compiler 

Note that addition can be accomplished by "ADD" instructions, "INCREMENT" 
instructions, indexing, effective address calculation, and all these same variations 
with use of a "SUBTRACT" instruction! The result is that the BLISS/ll compiler 
must actually consider 32,000 possible cases of operand evaluation for a single 
"+" node (although, in fact, most of these cases are redundant). 

1.1.17 
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attempts to explü't the behavior of the particular machine the more likely it is that it 

will run afoul of these quirkv This can be attributed to either lack of adequate 

documentation of the machine or the inability of the human mind to cope with the huge 

number of variables that seem to be involved. 

In the classical model of code generation, register allocation and code production 

are joint operations, where the code generator obtains registers upon request. This 

allocation strategy ignores many issues of global register optimization, and usually only 

works well in the aosence of common subexpressions. There are other problems 

caused by lack of global knowledge, such as optimal selection of the intermediate 

result register to prevent unnecessary transfers of data . Ir an 

optimal global allocation strategy, the occupancy of a register by a result is a complex 

function based upon such factors as the required lifetime of the result, the importance 

of the result, and the need to preserve the result in a register. It is complicated by 

such issues as requiring the specific register involved for a specific purpose, e.g., 

parameter passing. In machines with a small number of registers (such as 

minicomputers) one cannot reserve a register implicitly for such a purpose without 

degrading the quality of the code pr ."»duced. In the model of the compilation process 

which we use (given in section 2), the classical code production phase is 

divided into several components, of which register allocation is only an intermediate 

step. Finite-state models such as those assumed by classical code generators are 

inadequate to model this style of compiler construction. 

Donegan makes the observation that even when the case analysis required for 

code generation is done manually, and a case table produced (readable by humans), 

1       Known in BLISS/11 as "targeting" 
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when this table is translated to code in most currently available notation for code 

generators the meanng is almost entirely lost (e.g., as in [ER70]). One of the strengths 

of his system is that once the case analysis has been performed, the translation into a 

suitable notation is relatively straightforward, and the actual production of a code 

generator is automatic. 

The lajor weakness in the classical finite-state machine model of code 

generation, as exemplified in nearly all code generators associated with compiler- 

compilers, is that there is insufficient information available at any point to produce 

really optimal code. The three-address code model (or n-address, where n^3) is one 

of the most difficult intermediate representations to optimize, although it is one of the 

most common representations used. However, a collection of techniques for the n- 

address model is described by Frailey [Fra70]. 

Macro systems 

With only a few notable exceptions, the use of a macro language to transfer 

programs from one environment to another has not met with much success. The class 

of macro languages as exemplified in the MAD definitional facility are clearly machine 

and environment dependent although they constitute a valid approach to language 

extension within an environment. In most cases, the available macro processors are 

not compatible, and one is forced to various artifices to achieve a successful transfer. 

The syntax of the language must be restricted to that which can be accepted by the 

macro processor; the syntax and semantics can also be restricted by the power of the 

macro processor, such as conditional text inclusion, ability to omit parameters, and 

ability to store and manipulate global state information. 

The macro system of Orgass and Waite [OW69] avoids many of these problems 
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simply by defining the macro processor in such a way that it can be easily 

bootstrapped onto another machine. This approach is one of the prime reasons for its 

success. The SN0B0L experience [Gris72] attempted to avoid some of the difficulties 

by using a syntax which represented the intersection of several known assembler 

macro processors. The difficulties encountered in transferring the system from one 

machine to another were due, in part, to the incompatibilities oetween the SIL 

definition and the abilities of the macro processor. In terms of coding the SIL 

implementation, it was often necessary to place undue restrictions on the syntax of the 

language simply because some macro processors could not accept a more desirable 

syntax. This seems to indicate that unless great care is exercised in the design of a 

macro implementation that it would be no easier to transfer a set of macros from one 

machine to another than it would be to transfer any other type cr program. 

Macro systems also present severe problems with respect to code optimization. 

Global state information which can be made available to an optimizer under other 

representations (such as trees or graphs) is lost when the program representation is 

processed by a macro processor, due to the «irgie pass nature of such systems. It 

should be pointed out, however, that Waite has illuscated a very simple local code 

optimizer implemented entirely within the STAGE-2 macro processor [Wai69]. The 

optimizations are very similar to those of conventional code generators in compiler- 

compiler systems, such as being able to detect that the result in an accumulator is 

used in a following computation. Properties such as commutativity are also used to 

advantage. However, such a system is still not powerful enough to detect more global 

optimizations. 

UNCOL 
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The UNCOL solution suffered from several basic problems. In particular, the 

UNCOL representation had to embody the union of the semantics of all languages past 

and future. To do this would require a single representation able to express the low- 

level semantics of FORTRAN, Algol, PL/1, SNOBOL4, APL, LEAP [FR69], Aigol-68[vW69], 

and SIMÜLA-67 [Dah67] (to name a diverse set). It is not likely that any language 

could in fact represent this diversity of semantics and still remain manageable, and 

simple or efficient to compile. 

In addition, UNCOL was supposed to be a very low level machine code for an 

abstract machine1; thl translation to an actual set of machine 

instructions was supposed to be very simple. It is not likely that such a low level 

representation could be efficiently translated across the variety of architectures 

currently available, even ignoring such raoical departures from "conventional" 

architecture as ILL1AC-IV and STAR. A representation which would be efficient for a 

7090 (three index registers, one accumulator) would undoubtedly be extremely 

inefficient on a IBM/350 architecture (16 fixed-point accumulators/index registers, A 

floating-point accumulators) compared to coae generated for that architecture. Since 

our goal is to produce efficient machine code we must find such a solution 

unsatisfactory. 

Note that this rejection of the UNCOL-class of solutions is based upon a stated 

goal of efficient object code. The validity of this solution is not questioned for those 

cases where portability is considered a more important goal, although we expect that 

the long-term results of our research will make it possible to achieve both portability 

and efficiency. 

1       A one-address machine without an explicit accumulator [c>te61]. 
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If we treat the SNOBOL Implementation Language (&IL) as an UNCOL-liKe notation 

(although admittedly for only one source language), we find that it produces a system 

about three times larger and three times slower than an equivalent non-portable 

system (SITBOL, see [Gim74]). SITBOL is, however, not portable outside the 

environment of a PDP-10, and users who wish to produce portable SN0B0L4 programs 

must only use the SNOBOLA-compatible subset of SITBOL. 

he conclusion here is that with current techniques one tends to sacrifice speed 

?nd size for portability; not just by a few percent, but by large factors. These factors 

are especially significant il one considers the large community of minicomputer users; 

the machines possess both small address spaces and small physical memory. A factor 

of two in the size of a program is extremely important here. A system which 

preserves machine independence at the cost of physical size may not actually be 

portable if programs can iot operate in a large class of real machines. 

Standard lanRua^es 

Another approach is to define an "abstract machine" in terms of some high-level 

language, i.e. an Algol, FORTRAN, PL/1, or APL "machine", and then provide a mapping 

from this to a real machine. This approach has suffered from the lack of a notation for 

the specification of the semantics of such languages, ambiguities in the specifications, 

and/or errors of commission and omission in the implementations. This is further 

complicated by extensions which each compiler embodies which are not part of the 

standafd. Note that although the previously listed languages in fact have "standard" 

definitions, it is rare that a complex program operating in one environment can in fact 

be transferred to another environment, independ?nt of issues of machine word length, 

floating  point  precision, or  radix of  internal  representation.   Again, we  note that 
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SN000L4 as implemented in SIL avoids many of these problems by defining a standard 

implementation, not just a standard definition. 

Problems with optimizations 

Nearly all optimizing compilers embody certain assumptions about the data upon 

which they operate. For example, nearly all such compilers make the assumption that 

"AB-(-A)" is true, and thus collapse unary minus operations ITra70p KKR65]. This 

equivalence is only valid as long as one assumes that no variable takes on the largest 

possible negative value wnen the hardware uses two's complement 

representation . Compilers which use this equivalence assume that 

the largest negative number is an "unlikely" occurrence. On the other hand, they will 

naturally assume that the value 0 is a common occurrence, and thus not use the 

equivalence "(A/(B/C))s((A*C)/B)", even though floating point multiply is often 

substantially faster than floating point divide. (Note that we ignore for a moment the 

issue of floating point accuracy of the result). 

Beatty [Bea72] refers to the former as a use of an axiom in its "permissive 

role", and the latter as the use of an axiom in its "strict role". The decision of whether 

to interpret an axiom in its strict or permisfive role seems to be based only upon a 

stochastic model of values, which probably bears no resemblance to the actual values 

encountered in a given application. In particular, there are a large number of axioms 

which, when used in their permissive roles, can be employed if the range and accuracy 

of the data is known, but which must be rejected in the general case. This leads to 

the desire to be able to specify these to the compiler. 

lr, two's complement the largest possible negative number is -2n (for n bits of 
representation) while the largest positive number is 2"M. The negation of the 
largest possible negative number, which we denote as -oo, does not exist. 

1.1.23 

,"'- '--• '"■■-^-■' - ^^^^-^-.>.—^^^-,^^-. ■MMiWMMMHIäi     - 



^^^^^^^^^^^" 

24 Background 

Certain well-known "good" programming practices can also result in poor object 

code. For example, modification of the program is easier if certain knowledge is 

localized rather than distributed throughout the program. One example is the 

specification of indices to arrays of data. In languages such as FORTRAN one stores 

structured data in several n-dimensiona^ arrays, where the indices of certain data are 

.ixed. Thus A{I,1) would be a particular field of the data stored in array A, A(I,2) 

another field, etc. The only way to localize this knowledge is to associate it with a 

symbolic name in one (and only one) place and thereafter use only the symbolic name. 

There is no way to do this in FORTRAN except by the DATA statement or dynamic 

assignment, both of which leave the assumption that the value can be changed, when in 

fact this (should) never occur. Even very good compilers such as H-level FORTRAN on 

the IBM/360 can be made to reject the assumption that a certain variable has one and 

only one value. Admittedly this is one of the many major defects in FORTRAN as a 

language, but it shows how a simple lack of knowledge about the data can profoundly 

influence the efficiency of the object program. 

The conclusion from such behavior is that it would be desirable for the compiler 

to know something about the data on which the program will operate. In one mode of 

use, this knowledge would allow the compiler to generate checks that the data is within 

the assumed bounds. This would make it possible to detect errors caused by invalid 

assump.ions or incorrect data. From our viewpoint, it also makes it possible for the 

compiler to select optimizations which would normally be considered "unsafe" (such as 

COMMON data prohibiting certain optimizations in FORTRAN), or t^ avoid optimizations 

normally considered "safe" (unary minus). 

1.1.24 
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Goals of research 

Outline of ßoals 

This research addresses four related issues: 

1. Simple, rapid, and inexpensive construction of compilers. 

2. Construction of correct compilers. 

3. Construction of highly optimizing compilers. 

4. P-ogram portability. 

As we have seen, there are a large number of techniques for rapidly 

constructing "front ends" for compilers to handle syntax analysis, consistency checking, 

and similar issues. There are also efficient techniques for detecting potential global 

optimizations. The mappmg between the intermediate representation and the object 

code presents the most difficulties, consumes the most time, and is most prone to 

error. When we aod the constraint that the object code must be highly efficient, we 

increase all of these problems by several orders of magnitude. 

We     wish     to     produce     a    compiler    which    produces     optimum1     code 

along some metric (such as time, space, memory accesses, etc.).  This should be a real, 

There is some controversy about the use of the word "optimum" In fact we 
have no analytic lower bound which we can use to judge whether we have 
achieved opt.mality, or come within some specified distance of if. One author has 
suggested the use of the phrase "code amelioration" as an alternative. Painter 
lHain70] has suggested a measure of "effectiveness" of optimizations, which is a 
measure of how well an optimization decreases the cost function over that of the 
unopfimized version. We will define "optimum" for our purposes as meaning "the 
best that can be done using all available knowledge about the program structure 
and machine characteristics". Our goal, then, if to maximize the effectiveness of a 
compiler by making as much of this knowledge as possible available to it in a 
usable form. 
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production compiler to be used for large programs designed to solve complex 

problems. We are less concerned with the amount of time required to compile the 

program (within reasonable limits) than with the cost and accuracy of the object code. 

We v/ish to produce a compiler whieii can accept and use Knowledgo about the data 

upon which the object program will operate. Thus we will gain in two ways: (1) we 

will be able to use optimizations based upon known characteristics of the data (e.g., if 

it will ever be zero); and (2) we can compile checks into the object code to allow the 

user to debug the program more rapidly by detecting errors previously undetecfable. 

None of these are particularly new concepts. Most compilers which provide 

dynamic array index bounds checking have an option to defeat it for some or all arrays 

(thus asserting that the range of the data will not exceed the limits of the array). 

Compilers may also allow definitions of constants at compile time, or explicit 

specification of the exact values which a variable can take (see, for example, PASCAL 

[Wir71] and MARY [CH74]). We simply intend to exploit these features more 

thoroughly for code production. 

The nature ani direction of this research was influenced strongly by the 

BLISS/11 compiler. Thus it is difficult to explain the exact scope of the research 

without first presenting the context in which the results must be viewed, the structure 

of the BLISS/11 compiler. 

The choice of the BLISS/11 model was based on three considerations: (1) it is 

necessary to choose some model of the compilation process; (2) the BLISS/11 model, 

although not a "natural" decomposition by traditional standards in fact achieves 

substantially better performance than previous compilers; and (3) the choice of the 

BLISS/11   model  is  not  restrictive, since it  is more general  than the conventional 
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compiler model. It should be noted here that the portion of the compiler we are 

interested in is largely independent of the syntax of BLISS, since it treats only a tree 

representation of the program. Although a great deal of power is realized because of 

the GOTO-free nature of BLISS, the optimizations realized because of this are largely 

independent of the issues we are concerned with. 
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BLISS/11 

The BLISS/11 compiler [Wu71, Wu73] converts programs written in the BLISS 

language [Wu70] to code for the Digital Equipment Corporation (DF.C) PDP-11 [DtC71]. 

BLISS/11 is a highly optimizing compiler, performing exte .„ive global and local 

optimization. The compiler itself is partitioned into several phases; a simplified 

structure is shown in Figure 3. The results of this thesis will be biased 

toward this structure, as discussed on page 26. A detailed description of the various 

portions of the compiler may be found in [Wu73]; the description here will be 

superficial except for those modules of particular interest. 
umwio 

S 

—> IE>BN  > intTM fLDUAS OELBY «ourcr 

1 

1 
TMtiND  > CODE > nudi *     objtcl 

Figure 3: The structure of the BLISS/11 Compiler 

i 

i 
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Lexical and syntactic analysis are straightforward. Lexical analysis is done by a 

finite state machine model, and syntax analysis is performed by a recursive descent 

parsing algorithm. One fact worth noting about the syntax analyzer is that it detects 

and marks common subexpressions (cse's) "on the fly". Also, it performs nearly all 

cornpile-time arithmetic. The resultant tree representation (or more correctly, directed 

acyclic graph (a.'.g) representation) is then presented to the global optimization 

detection module, FLOWAN; which is part of LEXSYNFLO. FLOWAN detects all feasible 

global optimizations, based on the concepts and notations of Geschke [Ges72].   The 
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output of FLOWANI is the tree representation of the program with threads added to link 

together common subexpressions and indicate the feasible optimizations (e.g., code 

motions). 

The remaining modules, DELAY, TNBIND, CODE and FINAL, perform the functions 

classically included in a single "code generation" module. The distribution of functions 

was chosen to maximize the amount of knowledge available when any given function of 

code generation is carried out. 

Briefly, DELAY performs a pass on the tree and "suggests" optimum code 

sequences. TNBIND performs the resource allocation of registers to abstract registers 

(called "temporary names"). CODE is a rather straightforward code generator, although 

it performs more extens.ve case analysis than most co^e generators. FINAL performs 

some sophisticated "peephole" optimizations which are based on code adjacency 

relationships. Most of the concepts involved in these modules are independent of the 

syntax and semantics of BLISS. 

After we have processed the tree through FLOWAN, the output is presented to 

DELAY, which in BLISS/11 has the following functions: 

"(1) to determine the "general shape" of the ultimate object code to be 

produced; (2) to form an estimate of the cost of each program segment; 

and (3) to determine the evaluation order for the expressions in a 

program segment" [Wu73]. 

Note that DELAY does not actually produce any code; it sets flags, computes costs, and 

indicates desired register usage (desired register usage is not always feasible). This 

information is used to produce code at a later stage in the processing (the CODE 

1.2.5 
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module). DELAY employs a set of heuristics and is based upon a set of assumptions 

which in fact are very effective, as can be deduced from the performance of the 

compiler in producing optimized code. However, it is possible to construct programs 

for which the heuristics fail and/or the assumptions are violated. In such cases the 

compiler will revert to simple (non-optimized) code production for the offending 

expression. In some rare cases, such as the use of unary minus, the compiler may 

produce incorrect code by interpreting the double-negation axiom in its "permissive" 

role (see page 23). 

One of the assumptions made by DELAY is that the machine has an infinite 

supply of registers. Thus it assumes that results may be placed in registers. In 

particular, when a value is used to index into a structure, it is often possible to employ 

the indexing ability of the hardware to accomplish part of the effective address 

calculation required. It is convenient and desirable to assume that the index value is in 

a register. Note that unlike many similar approaches to code generation, DELAY in fact 

performs no register assignments to real registers; it uses abblract registers referred 

to (in the BLISS implementation) as "temporary names". It is the responsibility of J 

later module, TNBIND, to bind these temporary names to physical hardware locatiors. 

The output of DELAY is the tree representation of the program with flags added 

to indicate sign and location preferences, result types, etc. TNBIND takes this as input, 

and using the flags added by DELAY, information about the program flow (so that 

result lifetimes can be determined) and knowledge about the behavior of CODE, binds 

the temporary names to physical locations. TNBIND knows (in the sense that the 

Knowledge is part of the coding of TNBIND) the cost tradeoffs that will occur when 

certain results are kept in registers instead of in memory (or on the itack). 

1.2.6 
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The fact that temporary names cannot always be bound to registers means that 

TNÖIND can (and often does) change the estimated cost. In all cases TN'BIND attempts 

to assign registers for the highest-cost computations, and do it in such a way that any 

other permutation of assignments would incur a higher cost. The determination of 

these cost figures is a complex process which takes into account the "Known" behavior 

of the CODE module given the characteristics of the PDP-11. To produce a TNBIND 

module for any other architecture would involve nearly as much effort as constructing 

the original version. TNBIND cannot, with its current algorithm, produce optimum 

bindings based upon complex lifetime considerations. The general register-assignment 

problem1 is the subject of current research [John74]. However, any 

general solution must be able to obtain accurjte cost data without requiring that the 

compiler-builder code "by hand" a special machine-dependent routine which performs 

this calculation. 

The output of TNBIND is again the tree representation of the program, with the 

bindings indicated. CODE takes this as input and produces 

relocatable'1 machine code. This is presented as a doubly-linked list 

to FINAL, which performs a set of machine-dependent uptimizations based upon the 

control flow of the machine code and the machine characteristics. This is roughly 

analogous to the "peephole optimization" [McK653 performed by many compilers and is 

discussed in more detail in [Wu73].   The output of FINAL is the object program in a 

1 

2 

As opposed to the general-register assignment problem. 

In a more abstract sense than "relocatable by the loader". The code has not yet 
been committed to any particular physical relationship with any other segment of 
code (see [Wu73], section IV.5). 

1.2.7 
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suitable form for loading^. 

The BLISS/11 compiler structure is used as a model here because it is designed 

with the goal of maximizing compiler effectiveness by making as much information 

about the program and machine available at^ the place where [t [s needed most. 

Admittedly, certain heuristics are used where complete algorithms are not known, do 

not exist, or are prohibitively expensive. The lack of complete algorithms in such 

places results in incomplete use of knowledge or incomplete generation of knowledge 

for later use. However, the effectiveness of the compiler is quite high, and the 

discovery of complete algorithms or better heuristics for generation and use of 

knowledge does not seem to imply any major restructuring of this decomposition. 

One of the major problem areas in the design of a machine-independent compiler 

is to properly partition out the machine-dependent assumptions which are used in code 

production. If we «re attempting to build a compiler-compiler, we must also be careful 

to partition out language-dependent concepts. 

The classical compiler-compiler method tends to defer the machine-dependent 

aspects to the code-generation phase of the compiler. It should be pointed out, 

however, that language-dependent issues (in particular, scope of names) are not 

usually addressed at a sufficiently abstract level. In the case of scope of names, for 

example, compiler-compilers either presume static (FORTRAN-like) allocation, or nested 

(Algol-60-like) allocation. It is typically difficult or impossible to implement complex 

scopes, such as those of SIMULA-67 [Dah67], OSL [AI71] or ALPHARO [Wu74]. 

If we intend to produce a compiler-compiler which in turn will produce compilers 

Actually, BLISS/11 outputs symbolic assembler code. The reasons fcr this decision 
are irrelevant here. 

1.2.8 
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with a BLlSS/U-iike structure, it is important to realize that language issues are not 

easily separable from what have been classically thought of as "machine-dependent" 

issues. The detection of feasible global optimizations depends heavily upon the ability 

to change the implied execution order of arbitrary statements. The cases in which the 

re-ordering is permitted, or is not permitted, depend only upon the formal definition of 

the language, and should not be considered an integral part of the syntax analyzer. 

Specific assumptions about the characteristics of the target machine must also 

be removed from the implementation. For example, DELAY assumes that the unary 

cornplement prcoerty of the unary minus operator. As we have mentioned previously, 

unary minus is in fact not. a unary complement operator on any machine using 2,s 

complement arithmetic (as the PDP-11 does). Although the cases in which this 

assumption is violated are rare (thus justifying its use), there is in fact no way of 

removing this assumption if the need arises. There is a need to decouple such 

assumptions from their actual implementation. This is related to the concept of 

decoupling the policy and mechanism components of a s/stem [Jon73, Wu74]. The 

collapsing of unary minus coerations is a mechanism for performing an optimization; 

the decision to do this is a policy. In the current implementation they are not 

distinguishable; in future implementations we expect they shall be. 

One of the results of our work here is to be able to provide DELAY and TNB1ND 

with specific cost data for each possible code sequence which can Le crrsployed to 

evaluate a node. Since this cost data is derived from a parameterized description of a 

machine, it now becomes separable from the actual implementation of DELAY and 

TNBIND; the optimization phase and register allocation phase should then become 

machine-independent. 

1.2.9 
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Scope of research 

The long-term goal of this research is to rnaKe it possible to automatically 

produce a compiler from a language and machine description. In turn, this compiler will 

produce rode at least as good as that produced by the hcst current optimizing 

compilers. The immediate goal, i.e., the scope of this thesis, is restricted to the area of 

machird-dependent code generation. 

There sre three major aspects of this research. They are: (1) developing a 

notation which allows the specification of the behavior of machine instructions; (2) 

developing a set of strategies, using this notation, for code generation in a compiler; 

and (3) developing a set of methods which may be used in a compiler-compiler to 

construct machine-independent optimizing compilers. 

The need to specify the behavior o' a machine instruction is not new. Informai 

Or prose descriptions are the conventional method, and although they are usually 

readable they are sometimes incomplete, incorrect, or subject to misinterpretation. 

Some formal notations are biased towards specific machine implementation strategies 

(such as microprogramming) and in fact are used to derive parts of the implementation 

directly (such as the microcode). One of the more readable notations is ISP [BN71], 

which has a form similar to most programming languages'. Such 

notations are designed to present the user with formal, unambigu 'JS descriptions of 

the behavior of the machine. Our notation is designed with a similar inten». but is 

biased toward our application, the generation of machine code for a given 

language . 

1 

2 

For a survey of several such notations, see [Bar73]. 

The notation v/as designed to be easily manipulated by a compiler or compiler- 
compiler. The intent was, in fact, that simple encoding techniques would reduce 

1.2.10 
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Common to all compilation methods is the specification of v,wch code sequences 

realize a given language construct. These are typically specified as code skeletons, 

called templates, which contain formal parameters. When a template is choson by the 

compiler, the actual parameters (memory locations, variable names, etc.) are substituted 

for these formal. In many code generators, only one or two templates are used for 

each 'anguage construct; however, in any real machine there may be many equivalent 

code sequences, with varying costs and side effects. The goal of an optimizing 

compl'er is to choose the lowest cost sequence. 

One of the problems in constructing an optimizing compiler is deciding which 

code sequences are semantically equivalent. An error on the conservative side may 

omit valuable optimizations; an error on the liberal side may produce more efficient 

code which is incorrect (i.e., nonequivalent in certain cases or for certain values of the 

data). Given that we have expressed a machine's behavior in our notation we will be 

able to discover all semantically equivalent code sequences and the conditions under 

which they are equivalent. We will also be able to attach very specific cost data to 

each code sequence, thus allowing a compiler to select the cheapest code sequence for 

known conditions. 

The discovery of semantically equivalent code sequences is subject to 

combinatorial complexity. Many possibilities must be explored before an actual code 

sequence (or template, in the conventional code-generation sense) is discovered. Thus, 

we ure a preprocessing program to perform the exploration, and its output is a set of 

the notation to an easily processed bit-level representation inside the machine. 
Part of this notation has been based on that used in the BLISS/11 compiler 
[Wu73] where it in fact does have a bit-level representation and thus sarves as 
an existence proof of the feasibility of this conversion. 

1.2.11 
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templates with cost OMa and input-output relationships attached. The compiler then 

uses this data to choose the best code sequence for any given language construct. If 

the compile'' is designed in such a way that this choice is based entirely on the data in 

the templates, with no built-in assumptions about the machine, then it should be 

possible to substitute a set of templates for another machine and have optimized code 

produced for that machine. Thus we achieve a substantial degree of machine 

independence. 

Note that the selection of code templates is not the only machine dependent 

portion of the compiler. The modules for register allocation, machine-dependent code 

optimizations which are based upon the effects of concatenating codepieces, and 

interface to the loader (or equivalent) are also involved. Thus we suggest a compiler- 

compiler solution which attempts to parameterize as many of these functions as 

possible. 

We postulate a compiler-compiler structure such as that shown in Figure 

4. Each module in the system requires knowledge of certain properties of 

the language or machine, and produces a specific piece of the compiler. Note that the 

output of each module is illustrated as being a portion of the compiler; in fact, it may 

only be the data necessary for some other translation process to generate the 

required piece of the compiler. The single-step operation is indicated here for 

simplicity. The various pieces of knowledge required to t istruct a compiler are: 

Syntax specification 

A context-free grammar which specifies the parse rules for the source 

language. 

1.2.12 
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Figure 4: A Compiler-compiler structure 

Semantic specification 

The specification of bindings, declarations, type consistencies, coercions, 

etc. necessary to determine that the program is properly constructed, that 

operators in fact apply to their operands, etc. These semantic 

specifications do no[ indicate mappings into machine code. 

Language axioms 

A specification of the permissible equivalences which may be used in 

evaluating a program. Generally, these will be axioms about allowable 

arithmetic transformations, such as A+B ■ B+A", but can also include 

certain implementation-dependent specifications, such as "VI, I S 32767" 

or "VA | A »<-oo D A ■ -(-A)". 

1.2.13 
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Flow axioms 

These   axioms   specify   allowable   alterations   the   compiler   can   make   in 

evaluation order, rules for common subexpression detection, and rules for 

various code motions.   The flow axioms could, for example, be expressed 

in a notation such as that developed by Geschke [Ges72j. 

Machine Description Language (MDL) 

This notation will specify all the relevant information concerning the 

behavior of the target machine. For the sake of discussion we could 

consider this the ISP description of the machine [BN71], although in fact 

we require a more robust and rigorous definition of the machine. Also, 

the MDL notation must be rich enough to provide the diverse types of 

information required by DELAY, TNBIND, and FINAL, which take somewhat 

different views of the world. 

Binding rules 

The binding rules describe the strategy to be used in determining how to 

bind real machine resources (such as registers) to the virtual resources 

allocated   by   the  compiler   (temporary   names).    The   relative   costs  of 

various   »tcrage  heirarchies,  and  the  costs  of  transferring  information 

between   them, can   be  deduced   from  the  (ideal)  machine  description 

language. 

We consider the development of the general notations for the machine, language 

axioms, and binding rules to be part of the future research which will folio«-.   Some of 

the issues involved in the development of machine descriptions suitable for a variety 

of applications are the subject of current research; for example, see [BS74]. 
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Given that we have a notation, or set of notations, suitable for describing the 

characteristics of a language and * machine, we must convert the information 

expressed in these notations into a form suitable for use by a compiler. As illustrated 

in Figure 4 we assume the existence of programs capable of effecting this 

transformation. We will concentrate here on the template generator, the key to 

producing a 0*:LAY module. 

1.2.15 
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The Compiler Model 

Given that we have generated a set of templates, we must now devise a 

compiler structure which uses them effectively. As stated earlier, we have adopted 

the BLISS/11 compiler structure for the purpose of this thesis. In this context, then, 

the module we are particularly concerned about here is DELAY. In the current 

BLISS/11 compiler, DELAY makes a recommendation to TNBIND and CODE, indicating 

which code sequences will be optimum, assuming that TNBIND can satisfy the 

assumptions made about register binding. Should these assumptions prove to be 

infeasible, in the sense that TNBIND cannot satisfy them, then less than optimal code 

will be produced. It is also the case that the model used by TNBIUO to choose the 

least expensive fe; ible binding is based upon knowledge about how CODE will actually 

generate code from the recommendations of DELAY and the bindings of TNBIND. The 

result is a very large and complex TNBIND, which contains knowledge of CODE 

distributed widely within itsdf. Thus any change to the behavior of DELAY, TNBIND or 

CODE can affect either of the other two modules; the result can be either suboptimal 

code or incorrect code, depending upon the changes. This interdependence has had a 

serious impact in two areas of compiler development and maintenance: it has made 

debugging of the compiler quite difficult at times, and it has made it difficult to predict 

the impact of any new optimization being added to the compiler. 

Our new version of DELAY produces not one recommendation for the entire tree, 

but a sei of recommendations. We could view DELAY as producing a forest of trees, 

Ti, T2, ... Tn, for a single input tree. This forest can be ordered so that if Cj is the 

overall cost of tree Tj, then i<j => C, <Cj. The only difference between any two trees 

T   and Tk is the set of possible bindings which TNBIND will assign. 

1.2.16 
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At each operator node in the tree, DELAY can select one of several code 

sequences depending upon the state of the operands. Therefore, to choose a code 

sequence, DELAY (recursively) examines each of the subtrees, and upon return selects 

all possible code sequences which are feasible for the operands obtained. There is a 

mechanism, discussed more fully on page 65, which guides the search of the opo.-and 

subtrees to insure that a maximum number of code sequences will be found. 

The behavior of TNB1ND il now much simpler. It examines all the alternative 

trees in the order presented, and for each tree determines whether or not it is 

feasible. Thus all TNBIND needs to do is choose the first tree for which a feasible 

binding can be found. Note that in some cases it is impossible to find a feasible 

binding^, in which case the program cannot be compiled. 

The behavior of CODE is likewise greatly simplified. It only has to perform an 

endorder t^eewalk on the chosen tree, collecting the code and substituting the actual 

bindings for the formal bindings in the templates. The resultant code sequence may 

now be passed to FINAL for terminal processing. 

Such is the case in BLISS/10, which requires a register for the controlled variable 
for every INCR/DECR loop. An attempt to nest loops deeper than the number of 
available registers results in a program which is impossible to compile. 

1.2.17 
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Orthogonal issues 

Several issues will not be treated here, because they are either irrelevant or 

subjects of other research.   These may be summarized as follows: 

1. Code   generation   for   parallel   machines   (CDC6600/7600,   1LLIAC-1V, 

STAR). 

2. Global program optimization. 

3. Register allocation. 

4. Formal program equivalence 

In constructing programs for parallel machines, particularly the array or stream 

processors, one is concerned primarily with structuring the algorithms and/or data to 

take advantage of the architecture. Code generation for such machines involves 

recognizing explicit or implicit structures in the program which lend themselves to this 

type of processing, such as the CDC-STAR version of LRLTRAN [Zw75] or the ILLIAC- 

IV version of FORTRAN, IVTRAN [MM75, PJTS] are being designed to do. Code 

generation for machines with parallel or pipjlined computational units, such as the 

CDC-6600 or the 360/91 and 360/195 involves organizing the computation so that as 

many computational units as possible are utilized as efficiently as possible. This 

sometimes involves knowing the actual data paths used in transferring results 

internally [IBM69]. These aspects of code generction are complete research areas in 

their own right, and are the subject of ongoing research elsewhere. 

Global program optimization has already been investigated [CS70, Ges72] and, 

since it is machine independent, isnot treated here. Note that the results of global 

optimization may in fact influence the optimality of local code, and we will consider the 

results of such optimizations. 

1.3.1 
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Register allocation, or the assignment of particular locations for intermediate 

results, i» an extrnmely complex problem. It has been worked on since the first 

FORTRAN compilers, and a d.scussion of the problem is included in nearly every paper 

on compiler construction. For certain assumptions, s^ch as commutativitv or 

associativity of operators, particular machine architectures, or absence of common 

subexpressions, there exist algorithms which minimize code size, renter usage, 

intermediate stores into memory, etc. One such result is given by Sethi and Ullman 

[SU70], and they cite earlier results. 

Register allocation algorithms which minimize code size, intermediate storage into 

memory, etc. usually work only in the absence of common subexpressions. There are 

also problems in languages such as BLISS/11 [Wu?!. Wu73] where the programmer 

can make explicit bindings of a name to a register, or where the compiler will implicitly 

bind a local name to a register. The problem of register allocation is then complicated 

by the "lifetime" of a result, i.e., the time a result which will be re-used resides in the 

register.   This problem is being investigated by Johnsson [John74], who cites earlier 

work in the field. 

■ Formal program equivalence, the proof that one program is semanticaily 

equivalent to another, is likewise the subject of ongoing research. It is pointed out by 

Aho, Sethi, and Ullman [ASU70] that some earlier results by other investigators have 

shown certain equivalence questions to be unsolvable, such as the equivalence of two 

arithmetic expressions if absolute value and/or trigonometric functions are permissible 

operators. The problems of formal proofs of program equivalence are M complex that 

there are not yet >ny "practical" results. The classes of machines, problems, and 

results are still too restricted to have applicability in compiler construction for real 

languages on real machines. 

1.3.2 
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While all of these topics bear on the opic of this thesis, they are not treated 

here; each represents a major research area in its own right, which can be explored 

independent of this research. Although we will use the results of research in these 

areas in the construction of our ultimate compiler-compiler system, the scope of this 

thesis is such that most of these issues are not immediately relevant. 

I 

1.3.3 
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Chapter Ii 

Methods 

Introduction 

In this chapter we shall develop a notation which can be used to express the 

behavior of machine instructions. By using this notation, we will illustrate a set of 

methods to be used in discovering code sequences for compiling a given language 

construct. In the next chapter we shall show how this notation has been used to 

implement a prototype system for discovering code templates. 

Introduction to attributes 

We shall characterize the behavior of machine instructions in terms of their 

input-output relationships. Each machine instruction has a set of conditions which must 

be true before it can be executed, and it produces a set of conditions as the result of 

it«; execution; these are often referred to as "preconditions" and "postconditions". We 

wish to describe these preconditions and postconditions in a form that can be 

manipulated by another program in order to find a sequence of instructions with the 

desired overall behavior. 

The techniques used in this thesis are standard methods of artificial intelligence. 

Although simple, they have demonstrated the validity of the proposed solution. 

Investigation of methods for general problem solving lies outsiae the scope of this 

thesis. 

The method used here follows the paradigm of means-end analysis given by 

II.l.I 
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Ernst and Newell for GPS [EN69]. The basic problem faced by such a program is lo 

taKe a state description which represents an initial state, and a state description which 

represents a "solution" state, and transform the initial state to Ihe solution state. The 

operations required to effect this transformation then rep^asent a solution of the 

problem. 

The technique is applied recursively.   The program, in a given state, examhes 

the current state of objects and compares this state to the desired state ("goal state"). 

If it discovers that  these two are not "equivalent" then it searches for an operator 

which will  reduce  the difference between the current state  and the desired (goal) 

state.   A set of such operators may exist; some criterion is applied to decide which, if 

any, of these operators are to be applied to the currnnf state to achieve to goal state. 

Note that although an operator may reduce the difference between the current state 

and the goal state it may not directly achieve the goal state; furthermore, there may 

be no other operators which can act upon the reduced state to reduce the differences 

still further.   In this case it is necessary to "back up" and attempt another operatcr (it 

available) to reduce the difference between the current state and the goal state.   "Inis 

process will continue until there is no longer any difference between the current state 

and the goal state, or until no operators remain to be tried.   In the former case the 

succession of operators represents the complete reduction operator from the current 

state to the goal state, and may now be stored away as a single operator, if desired; in 

the  latter case,  failure   is  reported, and the search  will  return  to  a  higher  level 

(previous   state)   if   one   exists,  otherwise  there   is   no  solution.    The   initial   state 

description and the "solution" state description are taken as the initial "current" and 

"goal" states, respectively. 

II.1.2 
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We do not implement GPS to solve this problem. Indeed, to use the "pure" GPS 

paradigm requires that the program discover a great deal about what it is trying ^o 

solve. Instead, our system contains a great dt-»! of specific Knowledge about its task 

domain and how to explore it. In addition, information is stored in rigidly defined 

structures, and the Knowledge of these structures is an integral part of the program. 

A significant deviation from the GPS approach is that we cannot accept arv£ 

solution, but must discover the best solution. The optimum solution may not be the 

first solution found; in particular the optimum local solution may not be the optimum 

global solution, so we must discover aH solutions. It is not until an actual program is 

compiled that sufficient information is available to choose any one particular solution 

over the alternatives. 

The objects we operate on are parse trees1 which have been 

processed through some global optimization phase of a compiler. There is no loss of 

generality in assuming thet the tree is structured as in the BLISS compiler [Ges72, 

Wu73]; indeed this structuring is more general than that encountered in most other 

compilers. At each node of the tree we have the typical represenhtion: an operator 

for non-leaf nodes, with n descendants for each of the n operands of the operator; the 

name (or a symbol table pointer, or some other equivalent datum) of the symbol for 

leaf nodes. In addition to this conventional information, we include a set of property- 

value pairs at every node which describe relevant properties of the node. Typical 

examples might be the location of the value computed at the node (memory or register) 

and whether or not the value is required at a later time, or can be destroyed once it is 

used (common subexpression). 

Or directed acyclic  graphs (dags).   Although the current implementation in fact 
only generates trees this is not an inherent restriction in the system. 

II. 1.3 
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In order to distinguish the operators which manipulate objects during the search 

from other typet of operators, we will make the following distinctions: operators which 

manipulate objects during the search are called transformation operators or T- 

oper.^tors; operators of a source language are called lanRuaRe operators or L; 

operators; and operators in the marhine we are considering are called m?chine 

operators Or J-operators. 

T-operafors on objects are of two kinds: those which compute the result Of 

applying the L-operator to its subnodes, and thus represent an evaluation of the tree, 

and those which transform a subnode into a form which can be operated upon. This 

latter ;orm of l-operator is similar to the transfer function of Hopgood [Hop69, pp 

7Sf]. Hopgood specifies tran-Jer functions as properties of unary operators (not 

necessarily unary complement operators ; such unary operators as 

FIX, FLOAT, ABS, snd -ABS are included). Transfer functions are applied to the tree 

representation to delay the actual evaluation of the unary operators; the result is that 

certain unary operators become absorbed (in much the same manner as unary 

complement operators) and need never be explicitly applied. 

When we examine a machine architecture, we find that many M-operators art 

defined only over a restricted domain. In the mathematical sense, arithmetic operators 

are defined only for results which can be represented within the finite precision of a 

machine   word.    However,  this   is  only  a  simple  example  of  why   M-operators  are 

A unarv complement operator is an operator which when applied twice to the 
same operand produces no net effect. In common algebra, such as the field of 
real numbers, unary minus is a unary complement operator, i.e., -(-A)5A; in 
Boolean algebra it Is the "not" operator: "(^A^A; over the field of real numbers 
we also have the multiplicative inverse: (1/(1/A))5A. Specific use of the unary 
complement operators will be discussed later.  See also Frailey [Fra70]. 
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"partial" functions. In a conventual general register architecture, an M-operator sum 

a3 "ADD" is defined only if one of its operands is in a register and the other in 

memory. If both operands are in registers, then there might be another M-operator, 

■ADR", which is defined for thi< condition. One of the .'unctions of a compiler is 

therefore to map the operands of an M-operator into the location range over which 

the M-operator is defined. 

We associate with each L-operator a set of M-operator sequences which effect 

the computation desired; for example, the machine-language instruction (M-coerator) 

"ADD" '. associated with the source-language operator (L-operator) 

"+"1. We then explicitly state the domain over which the M-operator 

is defined. As we process the tree, if we find that the subnodes of a given node fall 

within the domain of the M-operator sequence associated with the L-operalor at that 

node, then we can state that the M-operator sequence represents the "compilation" of 

that L-operator. The problem becomes more complex when the subnodes do not fall 

within the domain of any M-operator sequence associated with the node. This, in fact, 

is the typical case encountered during compilation. 

In the case where one or more subnodes of a given node do not fall within the 

domain of (any) M-operator sequence which evaluates the node, we search for some 

way of transforming the offending subnodes into a usable form. To accomplish this we 

compute the difference between what we have (current state) and what we need (goal 

state). We then se.r.h 'or some ."difference reducing operator" which effects the 

transformation.   For example, if we have an ADD instruction which requires one of its 

The   method   for   determining  this   association   constitutes   an  entire   research 
problem in its own right, and discussion of it will be deferred until a later section. 

11.1.5 
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operands in a register, and both of its operands are in memory, then one Of the 

possible difference reducing operators is that one which transforms an operand in 

memory to an operand in a register, e.g., a LOAD instruction. 

One of the aesired goals of a compiler is to p'^Joce the minimum 

COSK code sequence (M-operator sequence) which evaluates a given 

tree. It is therefore necessary to explore aH possibilities which represent evaluations 

and eliminate those which exceed the least-cost solution and are semantically 

equivalent to it. This semantic equivalence is also related to the effect of a machine 

instruction (M-operator) on the global program state in the context in which the M- 

operator sequence is executed. It is therefore necessary to express the global 

program state conditions under which an M-operator sequence may be applied, and the 

resultant transformation in this state. 

Note that achieving this goal results in a deviation from the normal GPS goal- 

search technique. In GPS, any operation which reduced the difference between the 

initial state and the goal state, such that the goal state could eventually be reached, 

was satisfactory. Here, we have the additional constraint of requiring a minimum-cost 

transformation. The determination of minimum cost is complicated by the fact that it 

depends upon a context more global than that of any single node. The minimum code 

sequence for a subtree may not result in optimal evaluation of its parent tree; what 

appears to be suboptimal code for a subtree may be, overall, more efficient. Note 

particularly  in  the context  of the BLISS/11  compiler structure that  absolute costs 

Note that "cost" is treated in most of this worK as an abstract concept. It could 
be memory cycles, code size, register requirements, or something ever more 
complex; only the concept of cost is involved, not a specific set of parameters to 
be measured 

II.1.6 
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cannot be determined until TNBIND has assigned locations in temporary results, and 

that this allocation depend;, upon accurate knowledge of the cost that each alternative 

allocation will incur. We tcnnot, therefore, accept either the first sequence which 

satisfies the expression, nor the locally best sequenrj; it is necessary to obtain all 

sequences (modulo semantic equivalence). The general solution to the determination of 

semantic equivalence of code sequences is another complete research area and outside 

the scope of this thesis; however, it has been shown for some cases cited in [ASU70] 

that the problem is unsolvable. The current implementation assumes all sequences are 

unique. 

Global side effects introduce an additional dimension of freedom. All M- 

operators have side effects, but not all of these are relevant. For example, an ADD 

instruction sets the carry and overflow bits, but if there is no test of these bits in the 

program the side effect is not relevant. The relevance of such side effects depends 

upon context and therefore changes from site to site within the program. 

It should now be obvious why we are approaching this from the viewpoint of a 

compiler-compiler. The entire process just described is much too slow to be included 

in a compiler. Compilers must be reasonably efficient, and not much more complex 

than a simple finite-state automaton when processing each node during code 

generation. The research described here represents only one small portion of an 

actual compile., -compiler. The task of the system described is to derive the templates 

which would be used in some fairly conventional code generator. However, since it 

does this derivation by exhaustive search, it is more likely to find all the obscure cases 

and unsuspected equivalences than most hand-designed sets of tempidies. 

It is poin'.ed out by Wulf (who is «yrtainly not th* first to discover it!) that the 

II.1.7 
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generation of code templates {specifically, the case analysis required) for a real 

compiler "represents a substantial amount of intellectual effort, has been modified 

many times as new cases were uncovered, and still has no guarantee of being 

exhaustive" [WU73, p.81]. Extensive case analysis was required, to guarantee both 

efficient and correct code. In particular, when the compiler generated incorrect code it 

required extensive effort to locate where an incorrect optimization was first chosen. 

We hope to substantially reduce this effort by not choosing incorrect ootimizations! 

11.1.8 
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Attributes (informal) 

Motivation for using attributes 

In the next section we formally define attributes. The intent of this section is to 

provide an informal motivation for their need and use. 

If was previously mentioned that M-operators are partial functions over both 

the values they operate on and the locations in which the values may be stored. 

Compilers do not generally concern themselves with the specific values on which they 

operate, but leave this to the discretion of the run-time support system. However, 

optimizing compilers must be concerned with the types of locations in which values 

may be stored, with certain abstract properties of these locations and values, and with 

the sets of M-operators are applicable to these situations. 

We therefore assume that all we need to examine is a tree on which all global 

optimizations have been performed. We need to produce a set of directives to the 

compiler which determine what code to emit for a given construct, given the properties 

of the M-ope. ators and the state that the object program will be in when they are 

executed. Several existing systems provide notation for this, including TREEMETA 

[CLE69] and the systems described by Miller [Mil71] and Donegan [Don73]. The use of 

such systems poses much the same problem for the user as most of their predecessors 

(although, in the case of the last two, not to the same degree), i.e., complex case 

analysis is required to use them correctly and effectively. We intend to perform this 

case analysis exhaustively; this is based on the premise that two solid weeks of 

computer time is cheaper than six man-years of human time, especially since the task, 

II.2.1 

■ ■■"   --■'■ -" -  " -.-...—^-^.^ ■_.J„^„.,^^J^_J^^^.^_^»aa1^tJ1J.^^.,^^^J^ MMMMUkU üMlIieiiüllÜiii  ■ — 



—-  " ■■■ " — "..— ■  

54 Attributes 

when performed manually, involves a substantial amount of debugging time, which is 

neither creative nor interesting. It will be seen later that the actual case analysis only 

involves a few thousand cases for each L-operator. 

It should be noted at this ooint that we seem to be describing a system for 

producing input to a compiler-compiler, or in fact a compiler-compiler-compiler. 

Beyond a certain level the description of such distinctions becomes quite complex; for 

a technique used for describing such interactions see the paper by Early and Sturgis 

[ES70]. Until we find it necessary to talk in detail about the output of the system we 

are building, it is convenient to assume that its output is the code generator of the 

ultimate compiler, instead of the data used to create that code generator. 

In order to analyze the trees, it is necessary to characterize the problem in a 

way which makes it amenable to purely mechanical analysis. We therefore examine the 

requirements of the M-operators first. A small set of properties characterizes an M- 

operator. Typical properties include the type of machine location (e.g., register or 

memory) where its operands can or must reside, the sign of the result relative to its 

expected sign (i.e. the treatment of unary minus), whether or not the M-operator 

destroys its operands (M-operators of single-address and two-address or general 

register machine architectures), and whether or not if affects the program counter 

(SKIP and branch instructions) or condition codes (if such exist). 

We shall refer to such properties as "attributes". The prototype system 

depends heavily upon this concept. However, it is important to note here that the 

system understands only the concept of attributes. There are ro specific attributes 

built into the system. Thus "fundamental" concepts such as registers can be totally 

ignored, and either a two-address memory-to-memory machine, a stack machine, or a 

three-address machine could be handled with equal facility. 

11.2.2 
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The result of treating such concepts as registers, program counters, condition 

codes, etc. as abstract properties of the machine is that there is no commitment to 

any particular machine architecture. The existence of zero, one, or more general 

registers, a single program counter, and similar assumptions are not built into the code 

generator.  This is a significant step toward a machine-independent compiler structure. 

The selection of a set of attributes is thus a function of the choice of target 

machine, not, an inherent property of the language or compiler, i.e., for a machine M 

chosen from the set 1IJI of all possible machines and for ^ the universe of all possible 

attributes, Vm | m c ffll, 3A | A c ^ which defines the relevant attributes for a given 

machine mj it is certainly nol the case tial for any set d that ^ will be applicable to 

all machines. 

In the next section we define a formal relationship, designated <, between sets 

of attributes. Informally, the relationship may be characterized as a "more general" 

relationship; if A < B, then B is considered "more general" than A. This relationship is 

used to search for code sequences, compare current states to goal states, and related 

applications. 

If we consider a general register architecture for the sake of illustration, we 

might consider the question of where to leave a temporary result. The process of 

binding a temporary name to a physical location is the function of .I\IB1ND. The DELAY 

module may have indicated that the name should be bound to a register, or that it may 

be bound to either a register or a stack location; we could indicate this by stating 

"locnode < {register}" or "locnode i {register, stack}". The latter constraint is more 

general, and we could indicate this by writing {register} < {register, stack}. This is 

only one example of the use of the < relationship; it is more complex when the 

properties represent disjoint attributes. 

II.2.3 
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With this as background, we now give a formal description of these attributes. 

Attributes (formal) 

The   property-value   pairs   which   we   associate   with   each   node   are   called 

attributes.   We will now give a formal definition of these attributes. 

Let W={ N1( N?, ... } where each symbol N, is referred to as an attribute name. 

Let Vj-l VM, \/J2, ... } where i ( (??.   The symbols Vjj are referred to as attribute 

values. 

Let i4V=[ <n,V> | n ^ W, V c y }.   Each pjir <n,V> is a particular attribute with a 

set of values and is referred to as an attribute-value pair or A^V pair. 

We define a partial ordering < over subsets of each V^ by the common subset 

relationship c1, i.e., 

for Vj, V2 c«r,, V| < V2 iff V| CV2. 

Note that < is not defined across value sets with different indices, e.g., for some 

VicJ/j and ^2-^i' '^ if^P1'65 Vl - v2 's undefined^. 

We define the symbol "•" such that for any sets X, Y:  X - Y iff X < Y A Y s X. 

We define a partial ordering < over members of dV as given below.   Note that 

We use this definition (rather than the subset operator c primarily for an 
implementation reason: the partial-order predicate is implemented in such a way 
that it can accept any two operands of the same type (value sets, attribute-valuf 
pairs, or attribute sets, and will always return the correct result. It is thus 
meaningful to use a single operator in the external representation as well. 

Note that the tokens used to designate values are always unique, if we define 
Z/j^fA, B, C} and lA^lA, B, C}, it is impossible to determine the meaning of the 
relationship {A, B} < {A, B, C}. Infernally, these value designators would be 
unique, i.e., 2/j would really be defined as {A^B^Cj} and ^ as ^2' ^2» ^2^' 
Thus, the only predicates that could be posed would be of the form 
{A|, Bi) < {Aj, Bj, Cj}, which is meaningful, or {Aj, Bj) < {A2, B2>C2^ which is 

undefined. This rather sticky problem can be avoided by choosing unique print 
names for each of the values to be considered, or using typed sets. 

II.2.4 
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the same symbol will be used for all partial orderings; it will always be clear from the 

context what is being compared. 

For Qj, Q2 < M, and letting Q1-<n1,V1> and C^'"^^, we define Q^ < Q2 If* 

n^ •» n2 A V^ < V2. 

Let dS be any set defined as 

i4S'{ <n,V> I <n,V> ( M] 

such that 

V <ni,V1>,<n2,V2> < dS, r^'^ "* ^1"V2 

Note that >}J? is a function in the mathematical sense; for each attribute name in 

the pairs of the set there is one and only one possible set of values associated with 

that name.  We will refer to sets of this nature as attribute sets. 

We wish to extend the partial ordering relationship to attribute sets. However, 

we must first impose the requirement that both of the attribute sets being compared 

contain exactly one occurrence of an attribute-value pair for each name in the set (7?. 

In many cases we are interested in only a subset of the attribute-value pairs, and the 

remainder are "don't care" conditions. We can accomplish this by extending the sets 

with pairs of the form <n|, U> for all n( not in the original set. We define the closure, 

CidS), of any attribute set dS formally as 

CMS)' dS u { <n, Vn> I « (<n, X> < dS) where X c Un] 

We can now define a partial ordering S over attribute sets as follows: 

^ 5 ^2 iff ^'V * ^1 "* <n,V2> ( C{liS2) A Vl s V2- 

As a convention in the implementation, we make attribute names distinguishable 

symbols.   Attribute names are denoted by names beginning with the symbol "S".   For 

convenience, we allow a singleton set of attribute values to be represented as a single 

name, e.g. Ml'.M i {MEM}. 

11.2.5 
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Some examples illustrating the < relation are given below. Recall that the 

symbol "<" may be used to apply to sets of values, attribule-value pairs, or attribute 

sets. We allow subscripts of sets to be symbolic names, not just numbers; values are 

designated by symbolic names.   For this illustration we define 

(7? = {SLOC 8S1GNJ 

Vloc = {REG MEM CC} 

^sign - I* "I 

Over some typical value sets, the relationships are: 

{REG} < {REG MEM} 
{REG} < {REG} 
{REG} < Vloc 

{REG MEM] i {REG} 
{REG MEM} < {REG MEM CC} 

Using the same sets as above, over attribute-value pairs, 

<SLOC {REG}> < <SL0C {REG MEM}> 
<8L0C {REG}> < <SL0C {REG}> 
<«L0C {REG MEM}> i <8L0C {REG}> 

Note that a tes' such as 

<SLOC {REG MEM}> < <SSIGN {+ -}> 

is undefined because the attribute names differ. 

We can express the closure set C as 

C(0) ■ {<SI.OC {REG MEM CC}> <SSiGN {+ -}>} 

(where 4, is the empty set) and thus express relationships over attribute sets as 

{<$LOC MEM>} < {<SL0C {REG MEM}-} 
{<SLOC MEM>} < {<SL0C MEM>} 
{<.SLOC MEM> <8SIGN +>} < {<SLC: MEM>} 
{<SL0C MEM>} = {<SL0C 0>} = {} 
{<SLOC MEM^} < {<SL0C MEM> <SSIGN *>} 
{<SLOC MEM> <SSIGN +>} < {<SL0C 0> <SSIGN {+ -}>} 
{<SLOC MEM>} i {<SLOC REG>} 
{<vSLOC «>} < {<SLOC MEM>} 
{<SLOC ^> <8SIGN +>} < {<SL0C REG> <SSIGN ^>} 

II.2.6 
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Notational abbreviation 

Part of the actual notation used in the implementation will be explained here 

because it will be used in many subsequent examples.   The choice of representation 

was influenced strongly by the use of LISP as the implementation language, and at the 

implementation level it reflects many conventions of the LISP language, which are not 

of interest here.   The "formal" notation, with its many levels and different types of 

brackets, is rather cumbersome to write and read.   Since the names can be delimited 

by recognizing the "S" symbol, we typically omit the pairing brackets, "<>".   We also 

replace the set symbols for the attribute set by square brackets, and the set symbols 

for the values by parentheses.  The resultant notation is not only more readable, but it 

is closer to that actually used in the implementation.   Thus we represent 

{<8L0C [MIM REG}> <8SIGN {+ -}>} 
as 

[ SLOG (MEM REG) SSIGN (♦ -)] 

The empty set  is denoted by the LISP atom NIL.   The universal set  can be 

obtained from the closure set of NIL. 

II.2.7 
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Operations on attributes 

In this section, we will define one representation of attribute transformations. 

This representation is used in the prototype system, and is satisfactory for the GPS- 

like model used. The choice of some other heuristic search technique would influence 

the representation, as well as the implementation system chosen. The representation 

used if PLANNER [Hew72] or C0NN1VER [SM72] might be considerably different. This 

representation is presented here because it illustrates a concrete use of the concepts 

of attributes introduced in the previous chapter, and it also demonstrates some of the 

factors which must be taken into account in any implementation. 

V/e will also introduce the concept of a "preferred-attribute set", a technique 

used to guide the search for a machine operator. This concept is extremely powerful 

when used by the BLISS/11 compiler in DELAY. Our proposed compiler will also use It, 

and its generalization and formalization at this level is necessary for understanding the 

behavior of the compiler. It also means that a fairly powerful heuristic tool is available 

to whatever system actually searches a machine description for desired code 

sequences. 

Attribute transformations 

The attribute sets describe certain properties of the nodes of a tree. The name 

associated with any leaf of a tree is merely a token, and has no significance to the 

search algorithms. These concern themselves only with the attributes of the leaves. 

For any non-leaf node, both the L-operator and the attributes at that node are used 

by the search algorithms. 

In order to avoid the problem of whether an address or the contents of an 

II.3.1 
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address are required for the evaluation, the tree representation of the program must 

contain an explicit dereferencing operator to obtain the contents of a node. This 

closely follows the semantics of several languages, including BLISS [Wu70]. There is 

no loss of generality in this assumption -.ince it is always possible for the syntax 

analyzer to place this dereferencing operator in the tree as it is constructed. For 

notational convenience, since BLISS will be used for most of our examples, we will use 

the BLISS dereferencing operator, ".". 

The T-operators 

A T-operator is defined as a 7-tuple, 

< K, ?, h, (Fpre, (rpost,«. s > 

where we define the elements to be from the following sets; 

K The set of retrieval Keys for the operator. 

IP The patterns (parse trees) to be matched against the current state.   If the 

pattern match is successful, then the operator may be applied to the parse 

tree. 

9? The   "result"  pattern.    If  the  operator  is  applied  to  the  parse   tree   this 

describes the resulting node of the tree. 

CT This  is  a set  of  predicates which  must  be  true (simuitanenusly) of  the 

program  state  before  the target compiler  will  be able  to apply  this T- 

operator.    Although this is of no  concern of  the compiler-compiler, it  is 

necessary  for  the  target compiler  to  be  able  to  recognize  what  global 

conditions influence the validity of a T-rperator. 

ff      j        If  the operator is applied, this is a set of predicates which describe the 
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resultant   transformations  in the global  program state  which the compiler 

must be aware of.   These are described as a set of assertions about what is 

now true about the global program state. 

TO The   set  of  machine   instructions  (possibly  empty) which  are   'equired  'o 

evaluate the node in the object code representation of the program. 

8 The "cost function" data used to determine minimum-cost code sequences. 

Retrieval keys are of two varieties in our implementation.   First, we define the 

set of language operators tyg    : 

^lang ^ ( * I * is an L-operator}. 

This will allow us to retrieve T-operators for evaluating a given node. We will also 

define a set Z/r of "retrieval values", a generalization of attribute sets. The precise 

definition in our implementation will be given later; at this point it is sufficient to say 

that the purpose of retrieval values is to make it possible to locate code sequences 

which effect transformations of a nodes attribute set -for example, the Iransformation 

of a value in memory into a value in a register.   Therefore, we will define 

« - "lang u V- 

If, for some p ( K, if p € tyang then the T-operator represents a code sequence 

which evaluates the source language operator (L-operator), p, assuming the necessary 

conditions are met. If k ( K and k ( yr then the T-operator represents a code 

sequence which transforms the node being examined, again if the necessary conditions 

are met. 

In order to evaluate a parse tree (which we will refer to as the source tree), we 

take the L-operator of the root node, call it q, and use it as a retrieval key to select a 

II.3.3 
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set o. potent.atly .pplle.bl. T-opera,ors, For each T-opera.or we then compare the 

source tree to the pattern tree Mn..in.d in the T-operator (i.e., a ™mbe, ot PI The 

conditions of applicability are ^ II (1) the Ire« have the same shape, (2) the 

operators at each node are idenhcat, and (3) the attnbule sets o( the source tree .re 

<-related to the attribute sets ol the pattern tree. 

We compare tree shapes by performing a praorder tree.alk in paraltet on both 

trees, and compare attr.bules by performmj. an endorder treewalk on both trees.  This 

requ,res    oniy    a    singie    tra.ersa,    o,    the   tree    [KneS,   P    3.6.,]'.     During 

,h. recurve descent int. the c.mp.ri»r o. the source tree and the pattern tree we 

do   not  compare  attnbute  sets  0.  the  nodes-, IN. is performed during  the  return 

upwards in the trees.   It is meanmg.ess to perform the comparisons unfit the subtrees 

o,  a node have been evatuafcd, since .heir resutts can in fact aiter the at.ribu.es 

prcsen, a. .he node.   The a..ribu.e se.s are compared as par. of the "evaluate root 

„ode" operation of the endorder portion of .he tree.a*.   1, the attribute sets do not 

match, i.e., are not .-rotated, a differencing operator is applied, and the resulting 

difference   indica.es  wha.   attributes   must  be  transformed  in  order   10   maKe  .he 

operator applicable. 

Once we have met the above conditions, the compil.r-compiltr can apply the T- 

operator. However, this only produces a tempiate to be used by the actual compiler. 

During compilat.on, several other conditions may determine whether or not the 

template  can be  used.   These  are  desc.ibed in the precondition set. Gpre.   These 

A preorder treewalK I. "roof, left, '^'^^"^'^^t 
root".  If 
preorder functions during the 

"roof ". 
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include conditions both of the internal state of the compiler and the defined external 

state of the program.   For example, there is a T-operator which transforms a value in 

memory (.M) to a value in a register (.R) and incun no cost, providing the assertion 

"VALUE(.R)  =  VALUE(.M)"   is   true,  i.e.,  the  value  already  exists  in   the   register. 

Similarly, the optimization ,As-(-.A) can be applied if the assertion "VALUE(.A)j'-oo" is 

true  for  all values of .A (where  -oo is the largest negative number which can be 

represented in the machine).   Note that such an assertion would not be necessary on a 

machine with a representation other than two's complement; in this case a different set 

of assertions would be required, for example, to handle the case of negative zero in a 

signed-magnitude representation. 

When the compiler-compiler applies the T-operator, the resulting effect on the 

tree is described by giving a new tree. The entire set of sjch results is the result set, 

ffl. The result pattern can contain "active" parts, which in the implementation are LISP 

X-expressions. A typical such result would bo that which changes the sign of a node: 

it would have a codepiece associated with the $SIGN attribute which we could define 

as 

SSIGN: V -»'-';'-' -» V l. 

If we call the set of all such codepieces CE, then the set of attribute values for a result 

pattern for attribute i, Vr^ V\ u ffj.   I.e., for all attribute-value pairs <A, Vj>, we allow 

Vj to belong to the set V^ U (fj. 

Such a'tive parts are implemented as LISP X-expressions. For nofational 
convenience this codepiece may be named; thus two more of the attributes of 
SSIGN are "OPPOSITE" and "SAME". For those who are interested in such things, 
these are stored on the property lists of the identifiers OPPOSITE and SAME 
under the indicator ATTRIBUTE-LAMBDA. 
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' 

If the compiler finds that the specified preconditions are met, it applies the T- 

operator, producing a code template and determining the effects upon the program 

state. The set of code templates, as mentioned before, is 9JI. The effects on the 

program state are described in the set of output conditions, CLosf. For example, a T- 

operator which transforms a result in memory to a result in a register has the output 

condition the assertion that VALUE(.R) - VALUE(.M). 

The cost of the code emitted, a member of the set 8, can be thought of as a 

function which is evaluated and yields an integer result. There are many ways of 

implementing this, such as building another active codepiece into the tuple, or simply 

building a vector of integers and incorporating the cost function into the compiler- 

compiler and/or the result compiler. These methods may be considered isomorphic, 

along with many others, and therefore we will not define the actual appearance of a 

cost function until we get to specific examples. 

The reason the cost function is undefined is to allow the compiler builder to 

choose what constitutes "cost". It is therefore possible to build a compiler which 

optimizes only code size, or register usage, or memory references; it is equally 

possible to build a compiler which optimizes along one of these dimensions which can 

be selected by the coder of a source program (ideally, for any part of the program). 

Furthermore, there is no reason to restrict the optimization to a single dimension, or 

even to be statically defined. However, if the cost depends upon context that cannot 

be determined until a program is compiled, then there are fewer opportunities to 

detect semantically equivalent code sequences during template generation, and thus 

the compiler may have to search many more (possibly redundant) templates to locate 

valid code sequences. 

Preferred-attribute sets 
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One of the powerful techniques used in the BLISS/11 compiler is the use of 

"preferred-attribute sets" (PAS). A PAS allow« an ancestor node in the tree to specify 

to its descendant nodes which attributes it would prefer the descendant to return for 

the evaluation of its result. Thus, if it is desirable for a node to produce a value 

whose sign is the opposite of that expected, the compiler will perform a case analysis 

based on considerations such as its operator type and the amount of code required to 

change the si^n of its result, and determine iwhich signs would be best for its 

descendants ;o produce. It then passes this information to the descendant nodes, who 

will attempt to comply with the request. Note, however, that if they fail to comply, 

they return whatever they have to the parent node, who then has the responsibility of 

deciding what to do with the results. It may well be that it cannot satisfy the request 

made by its. parent, and the whole process is repeated higher in the tree. 

The power of the PAS lies in its ability to pass global context information down 

into the tree. Without this global information, if would be necessary for each node to 

assume that the least general result must be produced; e.g., for a ♦ node the compiler 

would have to assume that a full word bit representation with proper sign is 

necessary. In fact, the parent node might be willing to accept any sign, or it might 

require only an address; and in both cases the compiler would have more freedom to 

choose a code sequence and thus allow for a less expensive code sequence. The PAS 

also can restrict the type of result by insisting that it be a full-word bit representation 

with proper sign, in which case it reduces the alternative: which must be examined and 

thus prunes the case analysis. 

BLISS/11 as implemented uses only a very small number of attributes in its PAS. 

These include the sign bit, the name of a register which is to hold the result (this is 
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Known, in the BLISS/11 terminology, as "targeting"), the context in which the result 

may be used (e.g., as a operand, as an address, etc.) and the "type" of the result: real 

(a bit representation of a value), flow (a change in the program counter), both, or 

neither (equivalent to the Algol-68 concept of "voiding" [LvdM73]). Our choice of 

attributes  is  similar, but there are several extensions and some special cases are 

subsumed into more general cases. 
■ 

The creation of a PAS is highly machine-dependent. It requires knowledge of 

the instruction set and its symmetries (or asymmetries), the addressing modes of the 

hardware, and the relative costs of computationally equivalent sequences which have 

the same external result but different internal results, such as leaving a result in a 

register, in memory, or on the stack (the result is the same; the cost of accessing it 

may be different). 

The compiler we envision will have a structure similar to that of the BLISS/11 

compiler, but the implementation of DELAY, TNBIND, and CODE will be substantially 

different. All machine-dependent knowledge will be separated out of the actual code 

into a set of tables.  One of the central tables is the code template table. 

We will repiesent code templates as T-operators1. The 

"pattern" component indicates which attributes are required of the subnodes, and the 

"result" cortvonen' i idicafes what attributes the node will return, given the indicated 

attributes from its subnodes. The "cost" component is the cost of the code under 

these conditions. 

For those who are concerned with efficiency issues, please note that most, if not 
all, of the information of a T-operator may be packed in some suitable form for 
efficient manipulation. The "retrieval key", for example, may be used simply to 
thread T-operators of keys onto a list. The order of this threading could be 
chosen in some way to minimize search time. 
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When we perform the treewalK in DELAY we pass control to a node-specific 

routine each time we descend in the tree. One of the parameters to this routine is a 

PAS. A PAS is an ordered list of attribute-cost pairs, sorted in amending order by 

cost.   If we let a be an attribute set, and c be a cost value, a PAS appears in the form; 

< (oj, Cj), (03, C2),... ,(on, cn) > 

whore C: is less than or equal to Cj^i.   Each Cj represents the cost the parent node will 

iticur if the subnode returns an attribute set otj. 

In order to explain how this is accomplished, it is necessary to introduce some 

notation at this point. We define ear i descendant of a node to have a named path by 

which it can be reached, e.g., LO: will reach the left operand of a binary node and RQ: 

will reach its right operand. It is useful for expository reasons to be able to apply 

these path names to any structure related to the tree. Thus, a binary operator is 

represented as a T-operator, call it TQ. The pattern" part of TQ may be accessed by 

some pathname, such as PAT, applied to TQ (e.g., ff**: TQ), and the desired attributes of 

the left subnode of the T-operato1- may then be accessed as LO: ((P*: TQ). As a 

notational convenience, we will assume the composition rule Aj: (A2: ...(An: X)...) may 

also be written without parentheses as Aj: A2: ... An: X, for any pathnames Aj and 

object X. 

We generate a PAS in the following manner: given the pathname of a subnode, 

SN:, we  wish to generate the PAS for SN:.   We first form a PAS (which we will 

designate the "uncollapsed PAS") by forming the ordered set U!P from the set of T- 

operators for the node TQ, {: 

UJP - < <SN: IP*: t|, COST: t,> 11| « l /\ COST: t, S COST: t,4j > 
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That is, the uncollapsed PAS is a set ordered by cost and consisting of attribute- 

cost pairs, where the attribute is selected from the pattern component of all the 

templates, for the pathname to which we are about to pass control. We then partition 

the uncollapsed PAS into equivalence classes based upon cost, where each equivalence 

class E; is defined as 

Ej - { «j | <oj, COST^ i U(P A COSTj - i) 

Thus EQ is the equivalence class of all zero-cost code sequences, Ej tne class of 

all sequences of cost 1, etc. 

Within each equivalence class we collapse attributes by forming the union of all 

attribute sets which diifer in no more than one attribute-value pair. The result is a 

new equivalence class of the same cost. The actual method of collapsing is simpler to 

represent as an algorithm^ than as a formal description: 

The algorithm is :oded in a notationally convenient hybrid of BLISS, LEAP [FR69] 
and SAIL [VL73]. The only construct which may require some explanation is the 
leave statement, which causes control to exit the block named by the leave. In 
the algorithm given, "leave LOOP" causes control to pass to the first statement 
•following the loop, thus providing a premature termination of the loop. 
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procedure collapse.attributes{ Ej ); 
begin 

set. RESULT, E2, Al, A2; 
RESULT «- E2 «- *; 
while Ej ?< * do 

begin 
Al *- al | al ( Ej-, 
Ej^-Ej -Al; 

LOOP: while E, ^ do 
bepjn 

while Ej >< ^ do 
begin 

A2 •- a2 | a2 < Ej| 
Ej «- Ej - A2; 
if_ collapsible {A1,A2) 

then 
begin 

Ej *- Ej u collapse(Al,A2); 
leave LOO13; 
comment put collapsed result back 

to try to collapse it more; 

end 
else 

E2 «- E2 u A2; 
end: 

comment *s have exhausted the set 
without collapsing Al with anylhing; 

RESULT *■ RESULT U Al; 
end; comment end of LOOP; 

end; 
iiE2 y * 

then 
return RESULT;' 

return RESULT u collapse.attributes (E2); 

end; 

Two attribute sets are collapsible iff they differ in no ;Tiore than one attribute- 

value pair, or formally: 

collapsible   (Aj,  A2)  iff  A! - A2  v  (3<Ni,Vi>(A1   A  3 <NJ( VJ'> « A2 

such that V <Nj, V^ « Aj A V <Nj, V^ « A2. if j H i then V| -Vp 

and where the collapse is defined to be the union of the values for the attribute which 

is different. 
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coliapse(Al, A2) - Al u A2 

where we define V over attnbute sets as a union over the altnbute-value pairs, and 

the union over attnbute-value Pa,rs as a union over the attributes. As in the partial 

ordering operator, <, the context will always make clear which "union" we are 

performing: 

A u B ■= { <N1, Vj U Vj> I <N|, Vj> i A A <Ni. Vj> < B} 

Note that this has also specified the u operation for attribute-value pairs, i.e. 

i 

<N, v^ U <N, V2> ■ <Ni vj u V2> 

Note that u. is not defined on attribute-value pairs if the attribute names differ.   The 

operation u on attribute values is the ordinary set union operator. 

Language transformations 

Language transformations represent the machine-independent trans'ormations of 

the intermediate representation.   Concepts such as commutativity or associativity are 

handled by language transformations. 

In the structure of the BLISS/11 compiler (see Figure 3, page 28), the first 

three phases of lexical, syntactic, and flow analysis (known collectively as LEXSYNFLO) 

detect feasible global optimizations. It is the responsibility of later phases to decide 

which of the feasible optimizations are actually desirable. Given a tree or dag 

representation of the program, the use of a feasible optimization represents a change 

in the shape of the tree. If we wish to discover all possible M-operator sequences 

which evaluate a node, we must consider all possible representations of that node, 

given that all possible feasible optimizations are to be taken into account. 
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The  use  of  language transformations  allows us to generate the set of trees 

equivalent under feasible global optimizations. 

There are various formalisms and techniques for using languagp transformations. 

One such set is given by FJeatty [Bea72], and another by Sethi ano üliman [SU70]. The 

application of the cited techniques can bi proven formally to minimize some cost 

function, such as regster usage or memory accesses. The choice of any given 

technique depends upon the choice of a cost function—for example, if t,'e only coit 

function involved was the minimization of memory references within very local scope, 

one particular technique may be chosen over another. Unfortunately, when faced with 

a "real" machine (which usually cannot be modeled in a simple manner) the problem 

becomes more complex. Idiosyncrasies of the machine must be considered, not matter 

how strange. The use of global cost functions, such as complex register allocation 

schemes, introduces another level of complexity. An algorithm which produces the 

minimum number of memory references and uses the minimum number of registers may 

generate unusable code if the global register allocation strategy can only provide (at 

most) fewer registers than the minimum needed. In such a case, locally suboptimal 

code may produce a shorter or faster overall program. 

The representation of language transformations chosen in the implementation 

was one sufficient to demonstrate that the use of language transformations is 

necessary to produce optimal code. Using such transformations, several equivalent 

code sequences w-.re discovered which would not have otherwise been detected. It 

was also obvious th«t a more elaborate set of transformations would be necessary in a 

fully operational system. 

Each language transformation is represented by a triple 

C = < I, 0, P> 
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where 1 ,s an In^yi pattern. 0 i« an OutM pattern, and P -s a set of Preconditions 

which ind.cate when the application is feasible. Thus a language transformation which 

represents commutativity. (A+BMB+A), would be represented by the triple 

< (A+B), (B^A), comm({A+B))>( indicating that for an input pattern (A+B) the output 

pattern (a new tree) is (B+A). and th.s transformation may be applied if the top node 

of the pattern (in this case, the + node) is commutative. 

In specifymg the patterns it is necessary to indicate whether or not the terminal 

nodes in the pattern must match terminal nodes in the tree being considered, or if they 

are permitted to match arbitrary subtrees. As a notational convenience we allow any 

terminal beginning with the symbol "S" to match an arbitrary subtree, and any terminal 

node with any other name is restricted to matching a terminal node . 

There is no explicit commitment to how the predicates of the language 

transformations are implemented. In practice, they may be represented in the same 

manner as aitnbutes (as they are in the BLISS/11 compiler). The fact that the same 

rep.esentation may be chosen internally should not cause any confusion. The two 

concepts are. in fact, conceptually disjoint in our model of code generation. 

The language transformations and attribute transformations overlap at one point: 

the concept of expected sign. The expected sign of a result is both a language-related 

concept and a machine-related concept. Thus we find a language transformation of the 

form: 

< (-S), (S[SSIGN OPPOSITE]), (value(S)^-oo)> 

\i The very simple pattern matcher implemented does not allow for complex pattern 
specification, so that separate patterns are required for commutatmty of add.t.on 
and multiplication, rather than a more general specification, such as 
< (A{+,x}B), (B{op}n comm{(A{op)B))>. This restriction had no significant impact 
upon the research, but might not be desirable in a production system. 
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Applications  of  language  transformations usually do  nol   .onverge.    They will 

tend to either oscillate among a set of trees or to diverge,   it is therefore necessary 

to    decide    when    to    cease    application    of    language    transformations.     In    our 

imp ementation,  we   chose   to   apply  each  transformation  only   once.    Thus   it   was 

necessary to construct language transformations of the form: 

<{S1+S2)1 (SI[«SIGN OPPOSITE] +[SSIGN OPPOSITE] S2[$SIGN OPPOSITE], 
(value(SD^-oo A V«II»(S2)I'-OO)> 

which would be equivalent to the application of the following transformations: 
(i):<{Sl*S2).-((-SIW-S2))(...> 
(ii):<-Sl,Sl[SSIGN OPPOSITE],..^ 
(iii): apply (ii) again 
(iv): apply (ii) again 

The precise choice of language transformations can have a profound influence 

on the code generated. Although we have chosen a few that appear to be highly 

effective, there is no reason to believe that this set is complete. The choice was 

based upon experience, and upon observed behavior of the system while exploring 

various alternatives. 
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Search methods 

The search technique consists of determining, for each node of a tree, all 

possible code sequences which could evaluate the operator at that node, and their 

associated costs. Some pruning techniques can be applied to the search in order to 

reduce the number of paths which must be explored, but a discussion of these will be 

deferred until the basic search technique is presented. 

An underlying assumption is that we will search aH possible paths in order to 

determine all possible code sequences. Although this can become expensive in terms 

of machine time, ideally it will be done only once per compiler. The results should also 

be more comprehensive (and more correct!) than the traditional manual generation of 

code sequences. 

The search uses the idea of a difference operator, similar to that described by 

Ernst and Newell for GPS [EN69]. As we travel down the tree, we find, for each L- 

operator node, a set of M-operators (code templates) which will evaluate if. Howevsr, 

these code templates are partial functions, both over the doman of values they can 

operate upon and the domain of macliine locations upon which they can operate. If we 

ignore the value domain (which can only be determined by the compiler we produce, 

for the specific program it is compiling) then we must map the locations of the 

operands into the domain upon which the M-operator can act. We represent the 

location domain as an attribute set. 

The representation as attribute sets allows us to extend the idea of the location 

domain to cover more general attributes of an operand. Thus the expected sign, for 

example,   becomes   one   of   the   attributes  which   we  can   use   in   determining   the 
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applicability of an M-operator sequence. By considering mor- u .nera\ attributes of 

the operands we have available much more information which we can use to perform 

optimizations. 

At   any   node   which   represents   an   n-ary   L-operator   we   have   n  subtrees 

representing the operands.  We apply a retrieval operator to the data base and obtain 

a list of all possible M-operator sequences which can be used to evaluate it.   For each 

subtree we generate the preferred attribute set (PAS) as described earlier, and pass it 

down the tree.   Upon return, we are presented with a set of M-operators, each of 

which  represents the  evaluation of  the  subtree, and each of  which possesses an 

attribute set describing the result of this evaluation.  There is guaranteed to be a null 

difference   between  each   result   attribute   set   and  at   least   one   member   of   the 

PAS .      When    we    have    completely    evaluated    all    the    subtrees,    the    tree 

will now correspond to an n-ary L-operator and n sets of possible subtrees.  If we call 

each set of subtrees Tj, then ws can designate the size of each set as |T||.   We can 

then form a new set X by selecting all possible combinations of subtrees.   Tie size of 

this set is IZHJ^IJ^*...*^^.   For each M-operator M in BJl we then check to see if 

there are any trees in X whose subtree results satisfy the domain requirements of M. 

We then form the set which consists of all trees which represent the evaluation of the 

L-operator, including the attribute set which represents the result of the evaluation, 

and pass it back to the parent node.   When we reach the root of the tree we have 

determined all possible code sequences which could evaluate the tree. 

The selection of T-operators is determined in the current implementation by use 

If this condition cannot be met, the search reports failure and is aborted to some 
higher level. 
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of a GPS-like difference operator, i. The implementation and definition of 4 depends 

upon how a particular implementation chooses to perform its search and what it 

requires to direct that search. The current implementation uses a very 

straightforward difference operator, which consists of matching corresponding value 

sets irr each attribute name in the current-state description and the goal-state 

description. For each attribute-value pair in the current state description that is not 

satisfied in the goal-state description we produce a value which "describes" the 

difference. For example, if the value of SSIGN in the current state description is "♦" 

and in the goal state description is "-", then the description of that difference is 

"OPPOSITE". 

Note that the name chosen to describe a difference is arbitrary; any unique 

string of symbols would suffice. However, it is convenient to use symbo s whose 

representation has some mnemonic value. Note that the same designator may be used 

as was used to name an active codepiece (see page 64). The use of a name is identical 

to using the explicit difference, i.e., "OPPOSITE" is equivalent to the explicit value set 

{V -♦ '-', '-' •* '+'). 

In order to present this more formally we mutt define some operators and 

explain the representa'.ons used. The basic operator is the difference Operator, j. To 

define 5 we first define a simple operator, i'; 

«'(C,G)-      {<N, V>|     V/*,     where     V - { y-»V2 I     <N, vjX C(C) A 

<NI V2> i C(G), y < vj A y < vg) } 

In the above definition C represents the current attr bute set and G represents the 

goal attribute set. 

s 
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The operator « is only a slight extension to «'. and allows certain transformations 

to be named symbolically1. 

The data base, % consists of a set of T-operators, as descnbeH on page 61.   T- 

operators are retrieved by use of the -etrieval operator. R. which is defined in terms 

of two sub-operators, lRlans and R,,,.   The operalor K». ^en applied to a T-operator. 

gives the "key" part of the operator, i.e., a member of the set K.   IR|ang(OP) is used to 

retrieve T-operatc. ? which evaluate the L-operator OP, and is defined as 

■    0l,ang(OP)MD|D^^*:DDO?) 

and R-i»(AS) for an attribute set AS is defined as 
'alt 

R.,t(AS>- (D|D(£-AS<K*. D} [att 

1 In a manner similar to the use of "active" parts in a result pattern (W M). For 
example, if the difference is in the SSIGN attribute. I would IndtetU hat a sign 
change is required by returning the value "OPPOSITE". The set o^ such 
Äc.. is given as a set of triples. R - {n. x. v}. such that »^ 'irs e^ment of 
every triple is an attribute name n, the second element x is of the form V, ^Vj. 
where V, and V, are aHowaue members of the set l/n, (i not necessarily dist.nct 
from j), and the third element v is some new value, a membrr of the set »n 

(described on page 64).  Thus, for the set *'sign-{+ "1. we have :' 
i 

IP = { ASSIGN, ♦ -♦ -, 0PP0S1TE> 
<SSIGN. - ■* ♦, 0PP0SITE> 
<SS!rN. - •* -, SAME> 
<Sr'ÜN, ♦ -» ♦, SAME> } 

The choice of narr^s "OPPOSITE' and "SAME" is arbitrary, but the obvious mnemonic 
' value of these names influenced their choice. The actual construction of the set R 

would ultimately be performed by whatever system produced T-operators from a 
machine description; this set would be very large, because the set of possible 
transformations would be large. We have chosen a minimum Mt here for our 
example. The automatic construction of a set of T 'ators is a major research 

project outside the scope of this thesis. 
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Chapter III 

The Template-generator System 

Introduction 

Using the theory and notation evolved in the previous sections, a prototype 

system was constructed. The system was implemented in several ways, with the latest 

implementation written in LISP. It contains several major components: a parser which 

converts expressions into the desired internal representation; an "unparser" which 

converts the internal representation to a printable format (such as a ttee or a string); 

the searcher, which given a goal and appropriate information about the allowable 

transformations will attempt to find the code sequence; and support code, such as 

tracing functions, interactive debugging facilities, file support, and several other 

facilities which were though necessary to make the LISP system habitable. 

The implementation has been parameterized in such a way that the introduction 

of a new machine structure is a relatively simple task; all of the machine-dependent 

information has been isolated into a few "setup" functions for each type of machine. 

In the next section, the details of the external (implemt^ation) representation 

will be given. A machine (the Digital Equipment Corporation PDP-10) is presented, and 

a sample attribute set is constructed for it. Using this attribute set, we then construct 

a simple data base for some instructions on the PDP-10. A typical search is outlined, 

showing the results obtained from the original data base; the data base is then 

augmented anu the results of this augmentation are shown. 
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External representation 

We associate a set of attributes with every node of the tree, whether or not we 

presume that any M-operator is to be associated with the L-operator of that node. 

We also associate a set of attributes with the leaves of the tree, which describe the 

properties o( the names associated with those leaves. 

Although the symbols at the leaves of the tree have no significance to the 

pattern matcher, it is convenient for the user of the input language to attach some 

mnemonic significance to these tokens. Thus an operation which adds the contents of 

a register to the contents of memory could be expressed as (.X[8L0C REG 8S1GN +] + 

.Y[SLOC MEM 3SIGN ♦]) but it is more obvious and more concise to stata (.R+.M). We 

thus attach attribute sets to both the external toKen and the derpferenced token; the 

current system parameterizes these in a very simple way in the 

parser1. The parser will also cause any attributes supplied explicitly 

by the user to override any default values. 

The external representation of expressions for the current implementation is 

described informally here; for a more formal definition see appendix A. Identifiers 

are conventional, and the operators are likewise the usual ♦, -, », /, and reserved word 

operators AND, OR, NOT. LEQ, LSS, GEQ, GTR, EQL, NEQ, MOD, XOR, LSH Jogical snift) 

and the assignment operator. *-.   The common IF-THEN-ELSE and WHILE-DO constructs 

By use of the property indicators ATTRIBUTES and DQTATTRIBUTES on the 
property lists for the leaf names. Only the first character of the name is 
significant in locating the properties; thus M, Ml, and MUMBLE are all equivalent 
(and happen to indicate memory locations). The complete description of the 
abbreviations used and their meanings for a specific application are given on 

page 87. 
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are also included, and are assumed to be expressions as in BLISS. Operations at the 

same priority level are always left associative, so multiple assignment such as A*-B*-C 

is interpreted as (A*-B)*-C, rather than the expected AHB«-C) . 

The external representation of an attribute set is a bracketed list of attribute- 

value pairs. There is no explicit pairing delimiter. Everything between one attribute 

name and the next is considered to be the attribute value. TNs is a simple decision, 

since attribute names are distinguished symbols; each begins with the chary.cter "8". 

Experience indicated that an explicit pairing delimiter, although "formally" correct, 

merely cluttered up the representation to the point of illegibility. 

An attribute set may be associated with any symbol in the expression simply by 

writing it after that symbol. It is then attached to the same node in the tree as the 

symbol.   Examples are: 

.R[8L0C LIT] ♦ .[SLOC MEM] M 

Which associates the pair <$L0C LIT> with the symbol R and the pair 

<SLOC MEM> with the immediately preceding . for this particular tree. 

Please  note  that   this  is  only  a peculiarity of  the  particular   syntax  analyzer 
involved here and should in no way be construed as a commitment by the author. 

II1.2.2 
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A Sample Attribute Set 

We will now illustrate the use of attributes with a concrete example. The set 

here is used to represent PDP-10 machine code [DEC72]. All examples given, until 

stated otherwise, are based upon the PDP-10 architecture. 

Briefly, the PDP-10 is a rather conventional multiregister machine, with 16 

"general njrpose" registers which can be used as accumulators, floating point 

accumulators, index registers, or memory locations. These registers reside in locations 

0-15 (decimal) of the address space, thus eliminating the need of special register-to- 

register instructions. The instruction code is highly symmetric; within a class of 

instructions, if one option exists (such as a test for equality), it is usually the case that 

ail options exist (such as the other five relationals). Arithmetic and logical instructions 

can operate in several modes, such as R«-(R op M), R^KMR op M), M«-(R op M), etc., 

allowing results to be developed in a register, in memory, or both simultaneously. 

Control consists of both skip-type instructions and transfer-type instructions, 

several varieties of subroutine calling mechanism, including nested subroutine calls by 

use of a stack. One or more registers can be designated stack pointers, and there are 

instructions for pushing data onto and popping data from the stack; the stack pointer 

register is addressed explicitly in the push, pop, call, and return instructions. It should 

be pointed out that the PDP-10 is nol a stack machine; it only allows data to be 

pushed onto and popped from the stack, as well as allowing subroutine calls and 

returns to store and use addresses on the stack. There are no stack operations, such 

as ADD, which implicitly pop the stack. Of course, since tSe stack pointers are general 

purpose registers, the register can be used to index onto the stack.   As in many 
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: 

general register architectures, register 0 cannot be used as an index register. Certain 

instructions which allow an option of producing a result in a register can only use 

registers other than register 0 for the same reason: if the register field is zero, it 

implies that a register is not involved. 

The entire address space of the PDP-10 is directly addressable by any 

instruction, i.e., no "base registers" are required to make the entire 25GK address 

space available. Address decoding is completely consistent in all instructions, where 

an address consists of a 23-bit quantity in the low-order bits of an instruction: 18 bits 

of direct address, 4 bits of index register designation, and 1 bit which is the indirect 

addressing flag. When fetching an indirect address, the entire low-order 23 bits of the 

address retrieved are decoded, allowing infinite-depth indirection. Any subfield of a 

single 36-bit machine word can be accessed, for either storage or retrieval, by 8 

construct known as a "byte pointer". A byte pointer contains a 23-bit address field 

(decoded as described), and two 6-bit values representing the position of the low- 

order bit of the subfield (relative to the low-order bit of the word) and the number of 

bits in the subfield. 

All fixed-point values are represented as two's complement binary numbers; and 

floating point values have an 8-bit e.xcess-128 exponent with a two's complement 

fractior (27 bits, with the sign bit the high-order bit of the word). In addition to 

memory and registers, there are several flags directly testable by the user for 

conditions such as overflow, and some other status bits which are used by the central 

processor. The remainder of the architecture, including relocation and I/O structure, is 

of no concern here. 

For any architecture there are a set of locations in which data can be stored. 

111.3.2 
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These locations may be main memory, auxiliary memory (scratchpad), registers, 

condition codes, program counter, etc. Some, or possibly all, of these locations are 

addressable from machine instructions; most architectures restrict addressability by 

requiring special insttuctions to access special locations. When it becomes necessary 

to use an intermediale result, it may be recessary to transfer from one location to 

another, in order to maKe it addressable. 

Let u? define 

9? - {8L0C SS1GN SADDR SDT SCSE SPS) 

These attrioute names represent the Location, Sign, Addressability, 

Destructability, Reusability and Bitwise Position and Size of the results we wish to deal 

with. The value sets are indexed by these names and we will designate the value set 

of some name i by the notation Vv  We can now define the value sets: 

V]oc - {REGO REGNO MEM PC OVF CRYO CRY1 FOVF LIT} 

REGO is register 0; REGNO is any register other than register 

0^. MEM is memory, PC is the program counter, and {OVF CRYO 

CRY1 FOVF} refer to the four directly testable flag registers: fixed point overflow, two 

types of carry, and floating overflow. LIT is any value which can be stored as a 

constant in an immediate machine instruction. In addition, we will define an 

abbreviation REG-"REG0, REGNO". 

ysign - {TRUE, COMP, +, -} 

These  attributes  define  the  condition  of  the  result  relative   to   fhr>  desired 

This   distinction   is   necessary   since   register  0  cannot   participate   in   certain 
operations or functions, e.g., indexing. 
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condition. The choice of this set is made by inspection of the PDP-10 instruction set 

and study of existing compiler designs [Wu70, KKR65]. Ex.-nination shows that it is 

often possible to produce a result at a node which is in the complement condition of 

the desired result, and produce it at lower cost than the uncomplemented result. 

Presumably it can be complemented during a later evaluation, if reouired, but such an 

operation may not be required. For example, in computing -.A*-.B it is not necessary 

to actually compute the negative of either operand in order to obtain a correct result. 

' TRUE" and "COMP" deal with logical (36-bit) results while "♦" and "-" deal with signed 

(35-bit plus sign) results. 

Note that this attribute deals with those aspects of data representable by a 

unary conpler.ent operator, i.e., an operator which when applied twice to the same 

data has no net effect [Fra70]. Note also that it is not always true that -(-.A)i.A. In 

a two's complement binary representation such as the PDP-10 uses there is one value 

(the largest negative number) to which this does not apply. This issue will be 

discussed in more detail later. If one were to ignore certain finite-precision issues 

dealing with floating-point representations, it would be desirable to include another 

attribute inoicating whether the result were the true or inverted result relative to 

division. 

t/addr - {REG, MEM, EA, BYTE, FLAGS} 

This attribute defines the addressability of results. It ^ convc lisnt, although 

perhaps n..-leading, to use the same symbols here as in the LOG attribute. REG means 

that the result can be addressed by the roister field of most instructions. MEM means 

that it can be accessed by an 18-bit address which points into memory (which thus 

includes the registers).   EA means that it can be addressed by an effective address 
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calculation performed during the instruction fetch cycle. BYTE means that a PDP-10 

byte pointer can access the result. FLAGS means that one of the instructions which 

interrogates the flag register can access the result. 

Ud{ = {YES, NO} 

This attribute is related to the language-level concept of common 

subexpressions, and indicates whether or not the result will be required later and 

therefore must be saved. It is important at this level since most M-operators destroy 

one of their operands. The concept of the "destroyable temporary" also applies to 

situations where user-defined variables are involved, such as in the expression 

(A«-.A+1), where the computation may be done by an increment instruction which adds 

1 to A, providing the value of A is not otherwise required. 

J/C5e = {YES DONE NO} 

This indicates whether or not a node is a common subexpression, and if so 

whether or not its result has been computed. (YES implies «'DONE; DONE implies YES). 

This is useful in determining whether or not code must be produced to evaluate a 

node; if the attribute is YES then code must be produced to evaluate the node. The 

result of executing this code is to produce a node whose attribjte is DONE. 

Z/ps - { <p,s> | 0 < p < 3c, 0 < s < 36, 0 < p+s < 36} 

This attribute represents the position and size of an operand within a data word. 

Note that although these names follow directly from the PDP-10 definitions, *hey in 

fact are machine ;ndependent. For a discussion of this machine independence, which is 

also radix independsnee, see Knuth's MIX computer [Kn68, p.l20ff]. We will follow the 

PDP-10  and  BLISS conventions that  the  position is the number of bits  (or  basic 
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information units, in general) from the right end of the data word and the size is the 

width of the field in the sarr.e information units. Besides the obvious use in computing 

shift instructions, there are f.ome other uses relating to the finite precision available in 

the machine representation which are handled bv this attributed 

In the implementation we have provided for a shorthand 'or defining the 

attributes associated with a symbol. We will now define some of these abbreviations 

here, and then use them implicitly in subsequent examples. Note that when we must 

distinguish between two nodes with the same desired attributes, we will append 

numbers to the symbols given here, e.g. Ml, M2, etc. 

M      [SLOC LIT SAODR LIT SDT NO SCSE NO «SIGN TRUE «PS <0,18>] 

.M     [SADDR MEM 8SIGN (TRUE +)] 

Note that  the other  attributes of  the .M node, as in  all other 

dereferenced nodes, are  undefined unless explicitly stated here. 

These are considered to be either the empty set or the universal 

closu, e set Cj unless changed during the evaluation of the tree. 

R      [SLOC LIT $ADDR LIT SDT NO SCSE NO SS1GN TRUE 8PS <0,fl>] 

.R     [SADDR REG 8S1GN (TRUE +)] 

EA    [SLOC LIT SADDR LIT SDT NO SCSE NO SSIGN TRUE SPS <0,18>] 

.EA   [SADDR EA SSIGN (TRUE ♦)] 

X       [SLOC LIT SADDR LIT SDT NO SCSE NO SSIGN TRUE SPS <0,18>] 

.X     [SADDR (REG MEM) SSIGN (TRUE ♦)] 

PC    [SLOC PC SADDR PC SDT NO SCSE NO SSIGN TRUE SPS <0118>] 

Note than in the sample printouts which appear later that the SPS property is 
represented by two properties, SPOS and SSIZ. This was a concession to an 
implementation quirk, and does not affect the formal definition. A formal definition 
of SPS as two attributes is clumsy and serves no useful purpose. 
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Given these abbreviations, we can now explore some of the instruction set of the PDP- 

10.   By way of examples, consider the following PDP-10 instructions: 

Transformation M-operator Cost1 

R-+M 

M->R 

PC-»R 

LIT-»EA 

EA-*PC 

EA-»PC, PC-»R 

MOVEM R,M 

WOVE R,M 

JSA R,.+l 

none 

ref: 2; size: 1 

ref: 2; size: 1 

ref: 1; size: 1 

ref: 0; size: 0 

(Accomplished by a T-operator) 

JRST EA ref: Ij size: ' 

JSA R,EA ref: 1; size: 1 

In this greatly simplified cost function we treat all register accesses 
as 0 cost and all memory accesses as unit cost. Each instruction fetch 
cycle is assumed to require one memory access, which ignores 
indirect addressing. The real cost function which an actual compiler 
would use would be far more complex. 
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A Sample Data Base 

We wiU now illustrate the use of the system by constructing a small data base 

and iMn using it to construct some machine-code templates. We will first define the 

semant.es of the terminal symbols, then construct the T-operators. The machine used 

in this example is the PDP-10 [Dec72]. In this example we do not use the full set of 

attributes for the PDP-10 as defined on page 84, but use a subset. This was done 

because our examples do not require the complete set of attributes, and to include 

them would only make it more difficult for the reader to readily understand what is 

happening. 

R    [HOC LIT SPS <0,18> SS1GN (+ TRUE) «ADDR LIT 8CSE NO 8DT NO] 

.R   [SLOG REG «PS <0,36> SS1GN (TRUE +) «ADDR REG 8CSE NO SOT YES] 

M   [SLOG LIT SPS <0,I8> 8S1GN (TRUE ♦) 8ADDR LIT SCSE NO 8DT NO] 

.M  [SLOG (REG MEM) 8PS <0,36> SSIGN (TRUE ♦> SADDR EA 8CSE NO SDT YES] 

X    [SLOG LIT SPS <0,18> SS'.GN (TRUE ♦) SADDR LIT SCSE NO SDT NO] 

We define two more special values for the attribute SSIGN. These special values 

can only be used in the result part of a T-opera'or, and instead of representing static 

values they represent either a variable in the pattern (in the pattern part) or a 

transformation to be performed on the actual input node by the compiler (in the result 

part). The ability to use and name such special values is described on page 64 for 

result parts and paf.e 77 for patterns. The two values are OPPOSITE, w^rh in the 

pattern part indicates that a sign change is desired and in the result part indicates that 

a sign change has occurred, and SAME, which indicates a sign retention is desired or 

effected. A trivial extension of the example given on page 78 to include the attributes 

TRUE and GOMP would suffice here. 

IIIA1 i 
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The set of T-operators described here is quite small, and is the minimum set 

required for an interesting example without exceeding reasonable limits on the sizt ot 

the example or the patience of the reader. 

Key ♦ 
Pattern .R+.EA 
Result .R 
Preconditions None 
Postconditions None1 

Code <ADD RIEA> 
Cost Ref: 2; Size: 1 

Key ♦ 
Pattern .R+.EA[SSIGN -] 
Result .R 
Preconditions value{.EA)^-oo 
Postconditions None 
Code <SUB R1EA> 
Cost Ref: 2; Size: 1 

Key [SLOC MEM-»REG SSiGN SAME] 
Pattern .EA 
Result .R 
Preconditions None 
Postconditions    None 
Code <M0VE R,EA> 
Cost Ref: 2; Size: 1 

Key [SLOG MEM-REG SSIGN OPPOSITE] 
Pattern .EA 
Result ,R[SSIGN OPPOSITE] 
Preconditions      value(.EA)^-co 
Postconditions    None 
Code <M0VN R,EA> 
Cost Ref: 2; Size: 1 

Key [SLOC L1T-»EA SSIGN SAME] 
Patte-n X 
Resu't EA 
Preconditions      None 
Postconditions    None 
Code <> 
Cost Ref: 0; Size: 0 

There is an implicit postcondition to every operator which states that the result 
(such as .R) rtpresents the evaluation of the tree node. 

1II.4.2 
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The choice of representing the operand' by "EA" is based on the fact that the 

PDP-10 can use She effrctive-address calculation to determine the location of a data 

word.   The typical operand in a fixed location (suci. as an "OWN" variable in the BLISS 

or Algol sense) has an address which is represented by an 18-bit literal address, while 

an  operand on the execution-time stack is represented by an offset from  a swxk 

pointer register.   The  "ADD" instruction will work equally well with either  type of 

operand,   so   the   more   general   representation  of   an   effective   address   is   used. 

However, this does require that an operand be converted to an effective address.   We 

wish to have a transformation which converts a literal or stack-relative address into an 

effective address.   We locate such transformatici    ov applying the difference operator 

5 to the current slate of an operand attribute set and the desireo state of an operand 

attribute set (how we obtain the desired state is discussed later).   We then obtain a 

difference which we use to search for a difference-reduction operator.   Difference- 

reduction operators are indexed in terms of attribute sets, where an operator Oj is 

considered app'icable to reduce a difference D; iff Dj < index{0j). 

This exp.ains the appearance of the T-operator with the key 

[SLOG LIT-+EA 8SIGN SAME]. Any time the difference operator requires an effective 

address from a literal, this is one of the possible choices. Note that converting a literal 

to an effective address is a trivial operation, and in practice co-isists of putting the 

literal value into the 18-bit addrtss field. In other architectures, for example that of 

the IBM/360, addresses are computed as offsets from base registers. The literals are 

restricted to the range 0 through 40S5. If an arbitrary address has a base register 

available, then the conversion from address to effective address consists of specifying 

a base register and an offset, which in most instructions incurs no cost.  However, if no 

III.4.3 

^^^^^te^^ug|^^i|||M^w| m^ttum -— - 



•"»i^mmmmmmmmmmm^^mmmi^^^- ** mmimwm 

92 
A Sample Data Base 

base register is available, it is necessary to use any number of a set of techniques for 

computing the address, i.e., changing a machine address to an effective address. These 

will incur various costs in terms of code size and/or number of memory accesses. 

Thus the appearance of zero-cost T-operators such as the one to convert a literal to 

an effective address are not incidental, but fundamental to the proper formulation of 

the data base. 
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Example: a typical search 

This section presents one example in depth in order to examine the system in 

detail. A complete printout of the example described here may be found in Appendix 

8. 

We are given the tree: 

.M1+.M2 

The data base is searched for a set of T-operators which could evaluate the 

tree, and we obtain: 

ADD R.EA 

SUB R.EA 

We then form the preferred-attribute set (PAS) for each of the suolrees, based 

on the forms acceptable to the machine instructions, and we obtain 

. [JLOC REG] R  *  .[JLOC EA 8SIGN (♦ -)] 

i.e., the PAS for the left subtree is the same as that for .R, and for the right subtree it 

is [8L0C EA 8SIGN {+ -)]. 

The program then uses this pseudo-tree in its tree-search.   It  performs an 

endorder walk in parallel on the original tree and the PAS tree.   When it encounters 

the node .Ml, it compares the node to the corresponding node of the PAS tree, an 

discovers that they are different;    pecifically, we require the operand to have the 

attribute SLOC REG. 

The program then attempts to transform the current node into one which 

satisfies the criterion by using the definition of the goal state to search the data base 
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, 

for a T-operator.   In Ihis manner, it finds two T-operators which will move something 

into a register, ana which have associated M-operators, specifically: 

1) [SLOC MEM-REG SSIGN SAME] 

MOVE R,EA 

2) [SLOC MEM-REG SSIGN OPPOSITE] 

MOVN R,EA 

The data base I« searched using the < operator to test the T-operators against the 

goal state; any T-operator whose Key Kj satisfies the goal ^, defined as Gj < Kj, is 

acceptable. Thus we obtain two T-operators, both of which leave their result in a 

register, but which have different effects upon the sign. These T-operators are then 

che-Ked  to  see  if  they can operate upon the  node in the tree; both  in  fact  are 

accepted. 

As we search the right subtree, we find a similar difference in the actual 

operands and desired operands. The PAS indicates that we can act upon any operand 

which has the attribute [SLOC EA]. However, the actual operand (M2) has the attribute 

[SLOC LITERAL]. We use the difference in the same manner to locate a T-operator 

which will transform the attributes.   In this case, we obtain the single T-operator: 

[SLOC LITERAL-»EA SSIGN SAME] 

<nil> 

Note that there is no M-operator associated w;th this transformation. This is because 

a literal can be changed to an effecuve address simply by having the compiler place its 

value in the effective address field of an instruction, and th is incurs no execution time 

cost. 

III.5.2 
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j 

We have now generated sets of subnodes which repre snt evaluations of the 

subtrees, i.e., 
♦ 

/    \ 
/      \ 

{..-}{.} 
I  I        I 
R R EA 

* 

If we take all possible combinations of left and right subnodes, we would have two 

trees, representing 

.R + .EA 

. [SSIGN -] R ♦ .EA 

Every time we attempt to process a tree, we also attempt to process any trees 

equivalent to it under the language axioms.   In this example we have only one axiom, 

which states 

-(-A ♦ -B) ■ (A + B> 

We apply this axiom to our candidates, and obtain the following set of equivalent trees: 

.R ♦ .EA 

. [8S1GN -] R + .EA 

(the two original trees obtained trom the search) 

.R * .[8S1GN -] EA 

.[SSIGN -] R ♦ . [SSIGN -] EA 

This set of trees is then compared against the code sequences possible, and the 

following two complete code sequences are thus obtained: 

MOVE R.Ml 
ADD  R,M2 

111.5.3 
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MOVN R.Ml 
SUB   R.M2 

Note that Jh* latter case produces a result with the oppose sign than that expected. 

This information could then be passed up the tree to a higher node. 

The result of this search has produced two templates which can accomplish an 

"ADD" operation.   Given the data base, these are the only two possibilities.   Some of 

the results obtained wth more complex data bases have produced more alternatives. 

Each extension of the data base has provided more possibilities for code 

sequences. In the data base given on page 90, it is impossible to generate code for 

adding the contents of a subfiela of one memory location to the contents of another 

location. By adding the bit-field extraction operator. Load Byte (LOB), we can perform 

this operation. The PDP-10 requires the specification of a 36-bit word which is the 

"byte pointer", and is used as an indirect reference to the word containing the byte. A 

byte pointer def.res a pos.tion of the byte, in bits from the right end of the word, and 

a size of the byte in bits. The low-order 23 bits of the byte pointer are interpreted 

in the same way as a machine instruction address.   Thus the instruction: 

LDB  R, [BYTEPOINTER  POS, S1Z, ALOR] 

will move into register R the subfield of the word at ADDR described by POS, SIZ.  The 

appearance of the BYTEPOINTER pseudo-op in square brackets causes the assembler 

to    treat    it    as    a   literal    and   place   it    in   the   literal    pool1.     This   operation 

.s the general implementation of the BLISS subfield operation, ".ADDR<POS,SIZ>".   If 

we are piven the tree: 

Those familiar with the PDP-10 assembler will recognize the liberties being taken 
for the sake of exposition. The BYTEPOINTER pseudo-op does not txitt, but the 
more incomprehensible POINT pseudo-op is its realization. 
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.R ♦ .M2<18,18> 

we obtain the code sequence: 

LDB        r^BYTEPOlNTER   18, 18, M2] 

ADO        R,r 

wh.ch, in its most general application also allows us to use the sequence 

LDB r.[BYTEPOINTER 0.36,M] in place of a MOVE instruction. Although these two 

sequences    are   equivalent,   the   lower-cost   MOVE   instruction   would   be   used   in 

preference. 

The  possibility of a lower-cost  alternative code sequence can be shown by 

adding the halfword-move instruction HLRZ to the data base.   The HLRZ instruction 

moves the left half cf the memory locat.on to the right half of the register, and 2eroes 

the remaining half of the register.  Tnus. our original tree of .R * .M2<18.18> can also 

be evaluated by the code sjquence: 

HLRZ      r,M2 
ADD        R,r 

The PDP-11 is a 16-bit computer with several addressing modes.   These modes 

allow computations to be performed register-to-register, register-to-memory, memory- 

to-register and memory-to-memory (there are other options, but they are not relevant 

here).   Thus it is possible in the PDP-11 to perform computations which may not 

involve  the  use of  any intermediate  registers.   However, for each operand which 

requires  a memory address, an additional  16 bits is required in the instruction.   A 

memory-to-memory instruction requires A8 bits (three words), while a register-to- 

register  instruction requires only  16 bits (one word).   Operations are of  the form 

"OP src desl", where Vc" is the source operand and "dest" is the destination operand. 

III.5.5 
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Optimization of code in the PDP-11 is therefore complicated by the tradeoffs in 

time and space between using registers (of which only 6 are available in most cases) 

for operands and leaving the operands In memory. 

Using a short data base for the PDP-li, which described three basic types of 

ADO instruction  (add  memory to memory, add  register to memory, add memory  to 

register), and  a single  instruction which would move the contents of memory  to  a 

register, the tree .Ml ♦ .M2 was evaluated by three different code sequences, with 

approximate costs as indicated: 

Size Instruction       Ref 

MOV Ml.Rl 3 
MOV M2>R2 3 
ADD R2,R1 1 

2 
2 
1 

MOV Ml.R 
ADO M2,R 

3 
3 

6 

ADD M2,M1 6 

6 

2 
2 

4 

3 

3 

In this case, the choice the compiler would make would be influenced by factors 

not known until the actual program was being compiled. For example, the direct 

memory-to-memory addition is the shortest sequence, but it presumes that the 

contents of location Ml can be destroyed by this operation [SOT YES]. This fact 

cannot be detarmined until a program is compiled, and the global properties about the 

locations are fixed. 

Returning to the PDP-10, we add some machine operations for adding constants. 

III.5.6 
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A constant whose value is less than 2l8-l can be added by use of an immediate 

instruction, where the actual value of the constant occupies the address field. If we 

consider the example of .R ♦ K, for k a constant, then that tree can be evaluated with 

an instruction of the form ADD! R.K. However, because of the nature of index registers 

on the PDP-10, if we know that the result must be less than 218-1 then we can use 

indexing to perform the addition1. The tree .(.R ♦ k) could be 

evaluated by either of these sequences: 

ADDI       R,k 
MOVE      r,0(R) 

MOVE      r,k(R) 

Our  system discovers  that  for  this case constant  arithmetic can be  performed  by 

indexing, at (nominally) zero cost; the result of evaluating ,R + k is indicated as either 

the ADDI instruction (whose result is a 36-bit value) or by indexing (whose result is an 

18-bil value). 

Template output 

The actual templates generated are very large list structures.   For an example 

of the  actual templates for the first example, see the structure named "»CODE-'ZT" 

given   in   Appendix   B   on   pp.   128-136.    From   this   structure   all   the   information 

necessary to construct the T-operators may be obtained. 

If we had a compiler which acceptfed assertions about the values taken on by a 
variable we could perform this optimization any time the result was known to be 
a positive integer whose value was less than 218-1. Currently the only time the 
compiler knows that this assertion is true is when the value is used as an 
address. 

111.5.7 
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Chapter IV 

Conclusion 

Summary ^ 
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the external syntax. : 

DELAV mc<iu,e .or a co.pi.er. We Have no, «.- .be d- .« !«»«•« »• BUSS. bu. 

;„,i„H,n= Uul FORTRAN, and a large subsc. 
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DEUV module, bu. a se. o- in.or^bon wb,cb coold be osed .0 cons.ruc. a DELAY 
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module. Depending upon the approach taken in developing the compiler-compiler, we 

forsee between one and three processing steps required to convert the template 

information into the actual code (or tables) of a DELAY module. 

The major contribution of this thesis is the characterization of machine 

operators in terms of attribute sets, and the use of attribute sets in a search strategy 

which permits the discovery of code sequences using only the abstr-d concept of 

attributes. The formalization of the preferred-attribute set and its relation to 

attributes makes it possible to take advantage of the search strategy found highly 

effective in the BLISS/11 compiler. 

Several examples were run to demonstrate the flexibility of this method. 

Although there remains a significant amount of work before an actual production 

version of this system is operational, and is integrated into a compiler-compiler system, 

that work represents a one-time investment. The result will be a system which makes 

it possible to produce high-quality compilers with much less effort than Is currently 

expended. 

IV. 1.2 
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Relationship to Automatic Programming 

By this point the reader who i| familiar with the ideas of "adomatic 

programming" has undoubtedly seen the similarity between the methods used here and 

those used in automatic programming. Our goals are remarkably similar; consider this 

statement from Buchanan [Buch74]; 

The need for some automation in the task of software production is 

becoming increasingly clear. Systems are getting bigger and more 

complex which has caused maintenance cost to rise (it is now 50^ of the 

programming budget). Software costs too much, isn't reliable, takes too 

long to develop and is difficult to modify or fix. Programming has not 

attained the maturity to develop standard engineering practices with their 

attendant reliability that other disciplines have. Research in automatic 

programming seeks to understand the nature of the task and thereby 

improve production. 

One of the earliest attempts to automate a compiler was the "heuristic compiler" 

of Simon [Sim63]. Given a set of input-output relationships between data, the 

heuristic compiler produced a oiece of 1PL-V code (or, in our notation, a series of M- 

operators for an IPL-V machine) which processed data according to the desired 

relationship. The Heuristic Compiler was implemented (in one of its versions) in GPS 

[EN69]. In this model, the data base we use becomes the GPS "table of 

connections"—specifically, it indicates allowable transformations aiid possible 

difference-reducing operators. However, the requirement of minimum cos], code means 

that searching for the first set o.' operators which satisfies the goal is not adequate; 

IV.2.1 
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we mutt prune the search using other criteria which are highly task-dependent. 

Although it would be possible to express our problem in GPS, the solutions would not 

be satisfactory unless GPS were modified. 

Our model of the compiler-compiler and the compiler processes are very similar 

to those proposed by Buchanan [Buch74]. The differences teno to be in the 

representations chosen to represent input-output conditions (primarily represented as 

attribute sets), the form of indicating desired solutions (preferred-attribute sets), and 

the minimum-cost criterion. Many of the techniques used by Buchanan would be 

desirable in a production system, such as synthesis of conditional statements and 

loops Loop sy-thesis, in part.cular, could be used to construct such M-operator 

sequences as multiple-bit shift operations on machines with only single-bit shift 

instructions. 

One of the features of the automatic programming s/stem described by 

Buchanan is the "program library"; once a program "A" with input predicates "P" and 

output predicates Q" (represented as P{A}Q) has been generated, it may be 

"generalized" anc stored in the program library. Generalization is described as a 

process by which a procedure declaration is created for a code segment (which is in 

Algo -60), and a set of goal, input, and output conditions are specified. If we call the 

goal conditions "retrieval keys and input pjttterns", and include cost data, tfvn in fact 

the program library resembles the code template lists used by a compiler. We could 

then use such a system to construct more powerful templates, or complete subroutines 

(perhaps a machine-dependent 1/0 and device support package in assembly code 

would be a significant example). 

The ability to add cost data to the program library is a significant advance.  For 

IV.2.2 
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example, a procedure to compute a simple fund:-. =.uch as rounding a real result and 

converting it to an integer might, as a side effect, recursively compute Ackermann(5.5)} 

ible this might never be discovered.   By 

•cost solution and determine if the 

since the internals of a procedure are mvisit 

adding cost data we can always choose the minimum 

m.mmum-cost solution ,s feasible.   Note that the cost data may not be a constant, it 

may be a function of any or all of the input parameters, and the resultant cost function 

may thus be a parameterized function which requires additional information to produce 

an actual cost figure.   Judicious cho,ce of the parameters should produce lower and 

upper bounds on the computation. 

?''■>•*.*»' M '^ 
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Evaluation and retrospect 

The   ideas   presented   here   form   a   basis   for   a   system   which   auiomaticali/ 

products optimizing compilers.   There are, of course, a number of unsolved problems; 

several   of    these   are    interesting   research   projects   in   their   own   right.     The 

implementation of  the system was intended to be a test bed on which to try out 

various  ideas.    Thus it  has many limitations which preclude its use in a production 

environment.      For     example,     it     was     coded     in     LISP1,     which     provided     a 

very   nearly   idea!   envirunment   for   interactive  development   aid  deougging  of   the 

system, but  which also incurs enormous overhead in space and time.   Although the 

system could be compiled, the factor of  10-100 in speed improvement will probabl> 

not be sufficient to process a real machine description.   Since it was intended at the 

outset   that   this   implementation  would  be  only  a  prototype,  there   are  numerous 

deficiencies (or inefficiencies) in some of the internal algorithms.   In most cases these 

deficiencies were left  in because their removal, although it would produce  a more 

aesthetically pleasing system, would not contribute to understanding the problems of 

code generation. 

None of the limitations we encountered seem to be inherent in the basic ideas, 

only in one particular realization of them. However, for the benefit of those who may 

wish to pursue this research further, we would like to summarize some of the 

problems we encountered in implementing the ideas developed here. 

The search strategy implemented needs to be more powerful. In particular, 

methods of reducing the total search space should be implemented.   The concept of 

1       The UC1 extensions of Stanford LISP 1.6. 

IV.3.1 
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"theorem- i« relevant, for example, in that once a certain search is performed the set 

of T-operators should be retained m such a way that any future attempts to perform 

the same search would only need to access the theorem, not "re-prove" it from the 

basic "axioms". This p-ocess of retaining knowledge is usually an important component 

Of most artificial intelligence programs; we did not include it in our implementation 

because the effort of coding it would not be justif.ed. It was clear from the observed 

performance of the syst3m that such a component would be essential in other than a 

prototype system. 

Faster methods of combmmg sets in order to test the validity of the results of 

subtree searches could have been implemented. In the current .mpiementation it was 

expedient (from the programming viewpoint) to form the cross-product space of all the 

subtree s-vches, and then reject all those members of the cross-product which did 

not meet the requirements of the node. For the smal! examples for which this 

prototype system was intended that was satisfactory, but it would be far too 

expensive to employ a limit« technique in a production system. 

The concept of "semantically equivalent" sequences has not been implemented. 

Although precise determination of semantically equivalent code sequences is unsolvable 

[ASU70], there are many cases for which this is solvable. The rejection of all 

semant.cally equivalent sequences of equal or greater cost than the chosen one would 

not only reduce the amount of time required to discover t,.e . ide templates, but would 

also reduce the amount of time required by the compiler to examine the alternatives 

for a given node. 

Many minor problems arose during the implementation due to the fact that the 

system was  a test  bed; as our understanding of code generation evolved through 

1V.3.2 
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experiments with the system, it likewise evolved to become more general and more 

powerful. The resultant system accurately follows the model of code generation 

presented here. 

IV.3.3 
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Future research 

Many areas of future research remain. The most important area is the 

transformation of thr templates generated by this type of system into a DELAY module. 

There are many techniques which could be used for this. Whether vs use a "table 

driven" DELAY, where the code remains constant and the data changes, or a "decision 

table" generated DELAY, where the data is used to generate the code, are only two 

choices. The use of more sophisticated automatic programming techniques, such as the 

frame model of Buchanan, is another, not necessanly mutually exclusive possibility. 

Nonetheless, before an actual compiler can be built we must be able to produce a 

functioning DELAY module. 

We also need to use more powerful artificial intelligence techniques to generate 

the templates. The construction of a production version of this system would involve 

the development of efficient methods of implementing the basic ideas presented here. 

An actual compiler, or course, involves more than just the DELAY module; it 

includes everything from lexical analysis to formatting a file of relocatable code. We 

could use many standard methods of parsing the input, although new ones are still 

beding developed. The discovery of common subexpressions and feasible global 

optimization strategies has been modelled, and that model has been realized in 

BLISS/11; however, the generation of a FL0WAi\l for an arbitrary language from the 

description of the ordering relations (such as those of Geschke [Ges72]) is still a 

manual process. The construction of modules such as TNB1ND and FINAL must still be 

automated; partly because these modules represent significant amounts of time to 

implement, and partly because our model of DELAY is not compatible with the current 
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implementations. The latter case implies that even a direct copy or a re- 

irnp'ementation of the TNBIND and FINAL models from the BLISS/11 compiler would not 

operate with the nev   DELAY. 

The actual construction of a compiler using this model is still an open area for 

research. The model presented here requires that every possible tree which 

represents the evaluation of an expression be generated before the least-cost tree is 

discovered. Ai*hough it might be possible to use clever encoding techniques to reduce 

the exponential explosion in memory requirements, such a solution does not reduce the 

basic complexity of the exhaustive search. Like others faced with problems of 

exhaustive search, we would like to find a set of heuristics which reduce the search 

and do not unduly limit the solutions found. 

A number of heuristics are possible; for example, a set of heuristics which would 

tend to generate the trees in ascending order of cost would require generating only 

one tree at a time. The construction of a compiler which uses heuristic methods to 

perform "nearly as well" as one whir.i performs the exhaustive search is clearly an 

area of future research. 

There are other, leng-term, research problems which would contribute 

significantly to our goal of constructing correct compilers. The gercation of a set of 

attributes and T-operators is certainly one of these. In the ideal model of automatic 

compiler production, only the machine descriptlon(s) and language description(s) are 

required; everything else is automatic to the generation of the final compiler. If we 

could generate the attributes and T-operators for the data base directly from a 

machine description we would have reduced a significant possibility of errors in the 

final compiler. 
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There w,il be a need for opt,m,2,ng compilers as long as it if po^.ible to benefit 

from them.   Even a breakthrough in computer architecture wh.ch makes it difficult to 

produce inefficient code will not 'eplace all the existing machines in the world.   The 

reductions in resource utilization made possible by using an opt.mizmg comp.ler are 

great enough that .here w.ll continue to be emphasis on them in the future.   However, 

the    cost    and    difficulty    of    constructing    an   optimizing   compiler    for    a    given 

language/m.chme   combination   is   high   enough   that   the   investment   is   often   not 

justif.able except by a manufacturer or software house,   increasing costs will make.the 

investment even less feasible in the future.   Thus, we must now begin to develop the 

tools   necessary   to   automate   the   construction  of   compilers.    This   thesis   is   one 

contribution towards that goal. 
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Appendix: Syntax of the input language 

This  appendix  gives  a  formal  definition of the  input  language  used  by  the 

implementation. 

<expression> ::- <simple-expression> | <control-expression> 

<5imple-expression> ::- <logicalexp> «- <expression> | <logicalexp> 

<logicalexp> ::- <relationalexp> | <logicalexp> <lop> <relationalexp> 

<lop> ::- <logop> <attributes> 

<logop> ::= AND | OR | XOR 

<rclationalexp> ::> <addexp> | <relationalexp> <rop> <addexp> 

<rop> H" <relop> <attributes> 

<relop> ::= EQL | NEQ | LSS | GTR | GEQ | LEQ 

<addexp> ::= <mulexp> | <addexp> <aop> <mulexp> 

<aop> ::= <addop> <attributes> 

<add jp> ::■ + !- 

<mulexp> ::- <unexp> | <mulexp> <mop> <unexp> 

<mop> ::» <mulop> <attributes> 

<mulop> ::=■ * | / I MOD 

<unoxp> :;- <primary> | <üOp> <unexp> 

<uop> ::- <unop> <attributes> 

<unop> ::■ NOT | . 

<primary> ::» <symbol> | (<expression>) 

<symbol> ::= <number> <attributes> | <name> <attributes> 

<control-expression> ::■» «conditional | <iterative> 

<conditional> ::- IF <expression> THEN <expression> ELSE <expression> 

<i1'.-.'ative> :•.- V.V'.'.t <eo'e?s:c-.> ZO <ttp»tlf"9*> 

<^t*r;but9s^ ■f ^?mctv^ 1 r v.^t-'ist> 1 

,z 
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Appendix: Syntax of the input language 12C? 

<att-list> ::- <att-val-pair> | <att-val-pair> <att-list> 

<att-val-pair> ::= <att-name> <att-values> 

<att-values> ::- <att-val> | (<att-val-tuple>) 

<att-val-tuple> ::- <att-val> | <att-val> <att-val-tuple> 

Note that we do not define the following primitives; one may treat their definitions as 

the obvious intuitive ones: 

<name> is an identifier in whatever characters are considered permissible. 

<nunnber> is a string of digits; we accept integers only but real numbers could be 

equally valid. 

<att-name> is a member of the set W of attribute names (see page 56).   Recall the 

convention that attribute names begin with a distinguished symbol, $ (see 

page 57). 

<att-val> is a member of the set V of attribute values (page 56). 

A.878 
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Appendix: Actual search for one example 121 

The   output  which  follows  represents  an  actual  trace  for   jne  example,  the 

expression .Ml ♦ .M2.   The output was generated by an extensive set of debugging 

aids developed  by the author.   The consequence is that some of  the output  uses 

conventions suitable for debugging rather than exposition.   Some of  these  will  be 

explained brief'/, should anyone wish to study this trace in detail. 

The appearance of a single quote D associated with e node, operator, or 

identifier, indicates the presence of the attribute [SSIGN -] or [SSIGN OPPOSITE]. This 

'.vas ^he shortest unambiguous way of providing this information in the trace. 

The symbols PE001 PEnnn represent trace depths, and allow the reader of 

the trace to associate a given level of trace with those which precede it, contain it, or 

are  collateral  to it.   The search tree dump on pp  121-138 summarizes the search 

operaiions and provides an index into the trace. 

LISP output 23:23 13-fipr-7b from core image SV642 
PE081  
Enter GENCODESET:     ((  .   fll ♦ .   112 )) 

CENCOOESET candidates 
(1) «.He,  ER >) 

(RDO R ER) 

(<C0ST> REF 2 SI2E 1> 

(2) ((  .  R ♦  .   '  Efl- )) 

(SUB R Efl-) 
(<C0ST> REF 2 SIZE 1) 

Merged CENCOOESET c«ndid*teii 

(1) (( . [ $SIGN (4 TRUE) $L0C REG SRDOR REG SPOS 8 SSI2 36 1 R I S- 

OT NO SSIGN U TRUE) JLOC LITERfiL ) ♦ . [ ILOC (REG tlEtl) SSIGN (- ♦ TRUE) SflOOR (REG HEM S« 

PREL)  SPOS 0 SSI2 36 1  ER-  I SOT NO SSIGN  U TRUE)  SLOC ER 1   )) 

<No code> 

NIL    . 

(RDO R ER) 

(<C0ST> REF 2 SIZE 1) 

(SUB R ER-) 
(<C0ST> REF 2 SIZE 1) 

PE001  
PE007—PE001   
Enter  PPRfll.LEL-ENDORDER: 

[+]—(.'J — CER-I 

I 

I 
I.) —tRJ 

M—M — mzi 
I 

A.O 
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122 Appendix: Actual search for one example 

I 
l.)--(in) 

Pf007—PE001 - -    
PE008--PE007--PE001- —   -   
Enlor  PBRflLLEL-ENOOROERi 
t.]—tR) 
(.) —IPIl) 
PE008—PE007—PEOei  - —   
PE009--PE008--PE007--PE8ei ■     
Enter  PfiRPLLEL-ENOOROERt 
tR] 
mn 
Pt009—PE008—PE007—PE001- — 
PE009—PE008--PE007--PE001- -  
Possible   i^nyuayu  axioms   (or:     (rtl) 

None 
PEOOg—PE008—PE007—PE001   
PE010—PE009—PE008—PEe97—PE9P1   
NODE-MfiTCH success!      (ni).(R) 
Seciuence  retained: 
CODE COST 
it >*>;;«.>+:><!<:.:^-«« >.^.^:;*«:i« **<-•**«.•;•>;■><'♦**«'♦««*** ♦*♦»*♦ 

PE013—PE009—PE008—PE007—PE081  —   
PE008—PE007--PE0ei  -   
Possible   lancjuaye  axioms   (or:     (.   HI) 

None 
PE008—PE007—PE001 - -   
PE011~PE008—PE007—PE001     
NOOE-MOTCH   (ailure: 

<UfiNT>  ULOC REG SSICN   (♦ TRUE)  IRODR REG fOT NIL $P0S fl $SI2 36 ) 
<HHVE>  ISLOC HEM SSIGN  (♦ TRUE)  IRODR   (HEM REG SPREL)  $DT NIL JPOS 8 JS- 

IZ 36 1 
<DIFF>  :$LOC n2R ) 
(.    Rl)    I »I    r    (,    R) 

PE011~PE008—PE007~PE001   -     
PEO12~PE011—PtG08—PE007—PE001-   
CEN-fiTTRIBUTE-XFORtl possibilities: 

(1) (ILOC n2R $SICN SfiME)   ((MOVE Ä ER)) 
(2) ($L0C n2R SSIGN OPPOSITE)   tlBOVN R ER)) 

PE012—PEOU—PE008—PE007—PEOO:    
PE013—PE012—PE011--PE008—PEee7—PEBOl - -   
Enter PRRfiLLEL-ENOORDER: 
[.)—(ER) 
M —mn 
PE013—PE012~PE011—PE008—PE007—PEDGl   
PE014—PE013—PE012--PE811—PE008—PE807—PEOei--   
Enter PRRRLLEL-ENDORDER: 
CEfll 
inn 
PEOU--PE013—PE012—PEOU—PEBBa—PE007—PEeoi  
PE013—PE012—PEOU—PE003--PE007—PE981  
Possible   language  axioms   (or:      (.   (11) 

None 
PE013—PE012—PEOU—PE008—PE007—PEOOl     
PE0i5--PE913—Pc:012—PE811—PE088—PE007—PE001-   
NODE-tlBTCH  success:      (.   ni) = (.  EB) 
Sequence  retained: 
CODE COST 

B.l 

u. -■—■-■---       MMMiMttWiHuliaiiltMlWibMiiita&Jttiiu mmm  —;  '-*  tfugl^UM^jjull 



Appendix: Actual search for one example 123 

PE015—PE013—PE012—PE011—PE008—PE807—PE0B1   

PE012—PCOil—PE008—PE307—PE001   

CEN-fiTTRIBUTE-XFORH »uccess:    Satisfied by 
(1) ($L0C 02« SSICN SflHE) 

((MOVE R Efi)) 
PE012—PEOU—PE008—PE007—PE001 - -   
PE016—PE012—PE811--PE808—PE087—PE001    
Enter  PflRRLLEL-ENDOROERi 
(.) —[Efll 
t.l —(Uli 
PEOiG—PE012—PEOU—PE808—PEe07—PEeei   
PE017—PEO16~PE012—PE811—PE008~PE807—PE881 -   
Enter  PflRRLLEL-ENDOROERi 
(Efll 
mn 
Pt017—PE016—PE012—PEOU—PE008—PE0e7—PEOOl   
PE016--PE012—PEOU—PE008--PEee7—PE88i   
Possible   language «xioms  lor:     (.  Ml) 

None 
PEOIG—PE012—PE811—PE008—PE807—PE8ei   

PEO18--PE01G—PE812—PE011—PEBOS—Pt887—PEBBl   

NODE-nflTCH success!     (.  Rlla(.  ER) 

Sequence  retained; 

CODE COST 

PE018—PE016—PE012—PEOU—PEe08—PE007—PE801   

PE012—PEOU—PE008—PE007—PEOOl-   

CEN-flTTPIBUTE-XFORfl success;    Satisfied by 
(2) ($L0C n2R $SIGN OPPOSITE) 

UtlOVN R ER)) 

PE012—PEÜU—PE008—PE087—PEOOl   

PE019—PE007—PE081 —  

Enter  PORflLLEL-ENDOROER: 

[.')—lEfl-l 

t.l —tn2i 
PE019—PE007—PEOOl—   
PEO20—PEO19—PEO07—PEOOl  

Enter PflRflLLEL-ENDOROER: 

[1121 
PE020—PE019—PE007--PEOOl   

PE020—PEC19—PE007—PEOOl  

Possible   language axioms  for;     (M2) 

None 

PEO2O—PEO19--PEO07—PEOOl   

PE021~PE020—PE019—PEOO7"PE80i  

NODE-nflTCM  («llurei 
<linNT>  (JLOC ^fl SSICN  (♦ TRUE)  SflDOR NIL $DT NO $P0S NIL $SI2 NIL ) 
<HflVE>  (SLOC LITERAL $SICN  (♦ TRUE)  IflDOR LITERAL »OT M SPOS 8 SSIZ 18i 

<OIFF>   [tLOC L2Efl 1 
(112)  not =   (Efl-) 

PE021—PE020—PE019—PE007—PEOOl  

PE022—PE021—PE020—PE019—PE007—PEOei  

CEN-flTTRIBUTE-XFORM possibilities: 
(1)   (SLOC L2ER SSICN ifltlC)  NIL 

PE022—PE021—PEO20~PEO19—PE007—PEOOl  

PEO23~PE022—PE021—PEO20—PE019—PE007—PEOOl  

Enter PflRflLLEL-ENDOROER: 

B.2 



    

12A Appendix: Actual search for one example 

m 
tn2) 
PE023—PE022—PE021—PE82e--PE019-PE007—PEeei   

PE022--PC021—PE020--PE019—PE007--PE001 -  

GEN-fiTTRIBUTE-XFORn success:     S*tisfiotlby 
(1)   (SLOG L2ER $SICN SfinE) 

tUo cod8> 

PE022—PE021—PE020~PE819—PE007—PE001—   

PE019—Pfc007--PE001    
Possible   language  axioms   for;      (.   n2) 

None 

PE019—PE007—PE801 — -    
PE824--PE019—PE007 —PEeOl     
NOOE-MOTCH success:  (. n2)*t. ' ER-) 
Sequence  relamed: 

COOE COST 

<T-op>        REF 8 SIZE 8      (n2) 
Total    REF 8 SIZE 8 

PEOZ«—PE019—PE087—PEeOl  
PE007—PE001 -  
Possiblt   language axioms   for:     (.  til ♦ .  n2) 

♦ (  SI   I  ISUBTREE T ISIGN OPPOSITE )   *  I ISIGN OPPOSITE J  52  ( SSUBTREE 

T SSIGN OPPOSITE I   ) 

(  SI   I »SUBTREE T ) ♦ 12 I SSUBTREE T 1   ) 

f:=]„(+)-.lS21 

1 I 
I        isn 
I 
[♦'}~{S2'] 
1 
csri 

Pre:   T 

Post:   NIL 
«.•:;■******:; 4. ^^«*******+****+*t**t ******************* 

PE007—PE001 -  

PE026—PE0e7—PE801~ "* 
NODE-nRTCH  success:      (.   Ml  ♦  .   I12) = (.   R ♦  .   '   Efl-) 

Sequence retained: 
CODE COST 

■-;;•.;;; ■>:>:>iK:***«*#««*«';",V^***>;:*:; ********************** 

(HOVE R E0>      REF 2 SIZE 1      (. HI) 
<T-op> REF 0 SIZE 8      (1121 

Total    REF 2 SIZE 1 
PE028—PE007—PE001   
PE029—PEOe7—PEOei—   
NOOE-nfiTCH «allure (SUBNOOE mismatch) i 
LO: 

<HfiNT> [$L0C REG JSIGN (- COHP) IflDDR (HEH REG SPREL) $DT NIL JPOS 8 JSIZ 36 ] 
<HRVE> ULOC REC SSICN (♦ TRUE) JRDDR REG $DT NIL $P0S 8 $SIZ 36 J 
<OIFF> [SSICN OPPOSITE ) 

<, ' HI ♦ • . ' HZ) not r (. R ♦ . ' ER-) 
Sequence rejected; 
CODE COST 
;::;^;>;:**C<''.;:**«*';:«***«';-* »***<•< i********************** 

(MOVE R Efl)       REF 2 SIZE 1      (. ' HI) 
<T-op>        REF 8 SIZE 8      (02) 

Total    REF 2 SIZE 1 

B.3 
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PE829—PE007—PE001     
PEO07—PE801  

Po...b..   I^^f -(
,e

s7[
,0,:;BT*EE

,
T

nis;cN SUm ,   *  I »SIGN OPPOSITE I  S2  I SSUeiREt 

T SSICN OPPOSITE )  ) 

"( SI  t ISUBTREE T 1 ♦ S2 I $SUBTRE£ T 1  > 
(!.) —UJ"[S2) 

I I 
I ISll 
1 
UM—(t2'l 
I 
isri 

Pre:   T 
Post;   NIL 

«<:;:«**4=C*:;:t««**««-*****»»****»*,(;****»**;'***********   

PE007—PE001  "  
PE033—PE007—PE081    
NOOE-HRTCH   failurt   (SUBNODE mism*tch)i 

L0;UPNT>   tSLOC REG SS.GN  (- COnP)  SflDDR  (REG "")  SOT NIL SPOS 8 SSIZ 36 1 
<HOVE>   [$L0C REG SSICN   (4 TRUE)  SflODR REG $0T NIL $P0S 8 $S1Z 36 1 

<D1FT>   IJSIGN OPPOSITE 1 
(. • ru ♦ . n2) no» « (. R ♦ • ' ER-) 
Sequenc«  rajecttdi 
COOE C0ST 

(HOVN R Efi) REF 2 SIZE 1 (•   '  "D 
<T-op> Kf 8 SIZE 8 WZ) 

Total REF 2 SIZE  I   

PE033—PE007—PE001 .'.'".  
PE034-PE007-PE001 --" ""■" 
NODE-nflTCH  success.     (.  Ml ♦  '   .   '  «)•<• I ♦  •      "-» 

Sequence retimed; 

CODE C0ST 

««^***««**«»«»**^*****—********************* 
(HOVN R ER) REF 2 SIZE  1 <•  HI) 

<T-op> REF 8 SIZE 8 «"2) 
Total REF 2 SIZE  1    

PE034—PE0e7—PE881  ___   

PE0O1   
CENCOOESET possibilityi     <1) 
(I   ((   .   Ml ♦  .   "2  ))   ((  •  "1 ♦ '   •   ' "2 "   •' 

(«NODESET 
.(«TREE 

(:;:EXPR 
(4L0 

(*TR£E 
<*FXPR 

(«LO 
(*TREE 

UEXPR 
(tflTOM HI) 
(«OP RTF) 

(uJTT?-BRTT> SSI2 18 »POS 8 »ROOR LITERAL SOT NO SSIGN (♦ TRUE) SLOC L1TERRL))))) 

uSTTRlB   «UF-RTT> SSIZ 36 SPOS 8 SRDOR  (HEH REG SPREL)  SSICN  U TRUE.  SLOC REC))) 

B.4 
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(^nflCHIHE-COOE 
(cHRCHOP 
(«TYPE ($L0C n2R JSICN SflnE)) 
(*OP 
(«TREE 
UEXPfi 
(*0P /.) 
(«LO 

(♦TREE 
(cEXPR («RTOM EH) 

(«OP RTF) 
URTTRIB (<RTF-flTT> $0T NO JSICN (TRUE ♦) $L0C Efi))))) 

(«OTTRIB (<UF-flTT> SSIGN (TRUE ♦) JLOC HEfl))))) 
(«RESULT 
(«TREE 
(«EXPR 
(«OP /.) 
(«LO 
(«TREE 
(*EXPR («DTOfl R) 

(«OP RTF) 

(«RTTRIB (<flTF-flTT> $DT NO JSICN (♦ TRUE) JLOC LITERRL))))) 
(«RTTRIB (<UF-flTT> JSICN (+ TRUE) JLOC REC))))) 

(*SE ((EQURL (VALUE /.R) (VRLUE (/. ER))))) 
(«CODE ((MOVE R ER))) » 
(«COST (<C03T> REF 2 SIZE D) 
(«LRBEL (JLOC MEfl -> JLOC REC)))))) 

(«RO 
(«TREE 
(«EXPR 
(«LO 
(«TREE 
(«EXPR 
(«fiTOH n2) 
(«OP RTF) 

(«RTTRIB (<RTF-RTT> JSI2 18 IPOS 9  JROOR LITERr.i JOT NO JSICN (TRUE ♦) JLOC Efi))) 
(«I1RCHINE-COOE 
(«flRCHOP 
(«TYPE (JLOC L2ER JSICN SANE)) 
(«OP 
(«TREE 
(«EXPR («RTOM X) 

(«OP RTF) 

(«RTTRIB (<ATF-ATT> JOT NO JSICN (♦ TRUE) JLOC LITERAL))))) 
(«RESULT 
(«TREE 
(«EXPR («ATOM Efl) 

(«OP RTF) 

(«RTTRIB (<fiTF-ATT> JOT NO JSICN (TRUE ♦) JLOC EA))))) 
(«Si" (NIL)) 
(«CODE NIL) 
(«COST (<COST> REF 0 SIZE 8)) 
(«LABEL (JLOC LITERAL -> JLOC EA)))))) 

(«OP /.) 

(«RTTRIB (<UF-RTT> JS1Z 38 JPOS 8 JROOR (HEU REG SPREL) JSICN (♦ TRUE) JLOC nEfl))))) 
(«OP +) 
(«ATTRIB (<BF-PTT>)))) 

(«TREE 
(«EXPR 
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( 

(v-OP  ♦> 

(»LO 
(»TREE 

(iEXPR 

(»LO 

(♦TREE 

(«EXPR 
uflTon ni) 
{*0P flTF> 

UPTF-fiTT> $SIZ 18 $P0S 8 «DOR LITERfiL $0T NO $SICN  (♦ TRUE)  ILOC LITERAL))))) 

(■RTTRIB   (<UF-RTT> $S1Z 36 $P0S 8 SPOOR  (REG HEfl)  $S1CN  (♦ TRUE)  $L0C REG))) 

(<it1PCHINE-CODE 

<^nncHOP 
(iTYPE   (SLOG  MZR »SIGN OPPOSIfE)) 

(«•OP 

UTREE 
<*EXPR 

(-CP  /.) 

(cLO 
(CTREE 

(«EXPR   C«A7M Efi) 
(»OP (UP) 
URTTRIB   (<fiTP-flTT> SOT NO $JICN   (TRUE ♦)  SLOG LITERAL)))))     ( 

(RTTRIB   (<UF-fiTT> «SIGN NIL SLOG MEH))))) 

(;.RESULT 

(*TREE 

(*EXPR 
U-QP /.) 

(*LO 
(*TREE 

(«EXPR   URTOn R) 

(*OP RTF) 
(»RTTRIB   (<flTF-RTT> JOT NO »SIGN  (♦ TRUE)  $LOC LITERAL))))) 

(*RTTRIB 
(<UF-fiTT> $SIGN 

(LRneDR   (FROM TO)   (CHANGE-SIGN FROH TO)) 

SLOG 

REG 

SRDOR 
(REG MEn)))))) 

USE   ((EQURL   (VRLUE  /.R)   »VALUE  (-  (/.  EA)))))) 

UCOOE   ((nOVN R EA))) 
(+COST   (<COST> REF 2 SIZE II) 
ULRBEL   (SLOG HEfl -> SLOG REG SSIGN OPPOSITE)))))) 

(«RO 

(*TR£E 

(cEXPR 

(*LO 

(»TREE 

(«EXPR 

(^RTOfl HZ) 

('OP RTF) 
(■^TTRIB   (<RTF.ATT> $SIZ 18 $POS 3 $AODR LITERAL $OT NO $SIGN  (TRUE ♦> $LOC EB))) 

(cnnCHINE-CODE 

(inflCHOP 
(•TYPE   (SLOG L2ER »SIGN SÄHE)) 

(«OP 
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(«TUCI 
(*EXPR   (:fiT0n  X) 

(:>0P  ATF) 
URTTRIB   (<flTr-0TT> $DT NO SSICN  I« TRUE)  tLOC LITERAL))))» 

(vRESULT 

(*TREE 

(*EXPR   («ATOil Efl) 

(iOP OTF) 
(*RTTRIB   (<«TF-flTT> $0T NO $SICN  (TRUE ♦)  $L0C ER))))) 

USE   (NIL)) 

(«COOC  NIL) 
(^.COST   (<C0ST> REF  0 SIZE 8)) 

ULRBEL   ($LOC LITERAL   -> $L0C Efl)))))) 

(.;0P /.) 
(<RTTRIB   (<UF-RTT> $S1Z 36 IPOS 0 tflOOR   (HEH REG SPREL)   SSICN   (- COtlP)   $L0C MEH))))) 

(^RTTRIB   (<BF-flTT> ISICN   (- COflP)))))) 

CODE COST 

(HOVE  R ER) REF  2 SIZE  1 (.  "D 

<T-op> REF 6 SIZE 8 (02) 

Total REF 2 SIZE 1 

(riOVN R ER)                 REF  2 SIZE  1                 (.  IU> 

<T.op>                     REF  3 SIZE 8               (HZ) 

Total           REF  2 SIZE  1 

PE001   
(.:COOESET 

(cNOOESET 

(«TREE 

(4:EXPR 

(*L0 

(CTREE 
UEXPR 

(«LO 
(cTREF 

(<EXPP 

(KflTOM HI) 

(vOP RTF) 

(«ATTill 
(<flTF-RTT> $SIZ  18 $POS 8 SRDOR LITERAL JOT NO $SICN   (« TRUE)  $LOC LITERAL))))) 

it»  /.) 
URTTRIB (<UF-RTT> $SIZ 36 JPOS 8 $RDOR Wt»  RFC SPREL) SSIGN (♦ TRUE) $LOC REG))) 
UI1RCHINE-C0DE 

(i-nncHOP 
(cTYPE   ($LOC HZR SSIGN SflttE)) 

(*0P 

<*TREE 

(cEXPR 

(cOP /.) 

(::L0 

(«TREE 
UEXPR   URTOIl  ER) 

(cOP RTF) 
URTTRIB   (<flTF-flTT> JOT NO JSIGN  (TRUE  ♦)  JLOC ER))))) 

(:::RTTRIB   (<UF-RTT> JSIGN   (TRUE ♦)  JLOC riEH))))) 

(cRESULT 

(«.TREE 
(+EXPR 

(*0P /.) 

B.7 
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ULO 

(«TREE 

(*EXPR   (»ATOM R) 

UOP fiTD 

(«NTTIII   (<fl7r-fiTT> $DT NO tSICN   (♦ TRUE)  $L0C LITERRL))))) 
(;fiTTRIß   (<UF-PTT> $SICN  (♦ TRUE)  $L0C REG))))) 

(iSE   ((EOUOL   (VRLUE  /.R)   (VPLUE  I/.  Efl))))) 
UCODE   ((HOVE R Efl))) 

(+COST   (<COST> REF 2 SIZE 1)) 

(«LABEL   ($LOC nEH -> $LOC REG)))))) 
URO 

(*TREE 

(*EXPR 

(«LO 

(«TREE 

(.:EXPR 
(.•■flTOn n2) 

(^OP OTF) 

(«RTTRIB 

(<f.TF-OTT> $SIZ 18 JPOS 0 $flOOR LITERAL $OT NO $SIGN  (TRUE ♦)  $LOC Efl))) 
(iMRCHINE-CODE 

(«hPCHOP 

(^TYPE   ($LOC L2Efl SSIGN SflHE)) 
(«OP 

(sTREE 

(;EXPR   (iflTOM X) 

(:OP flTF) 

(«RTTRIB   (<flTF-flTT> $0T NO ISICN  (♦ TRUE)  $LOC LITERAL))))) 
(vRESULT 

(«TREE 

(«EXPR   (^RTOn Efl) 

(«OP flTF) 

(«flTTRIB   (<flTF-flTT> $OT NO SSIGN  (TRUE ♦)  $LOC Efl))))) 
(^SE   (NIL)) 

(«CODE  NIL) 

(«COST   (<C03T> REF 8 SIZE 0)) 

(«LRBEL   (SLCC LITERRL -> SLOG Efl)))))) 
(«OP  /.) 

(«ATTR1B 

(<UF-ATT> SbiZ 36 $P0S 8 JADDR  (MEH REG SPREL)  SSIGN  (♦ TRUE)  SLOC tlEfl))))) 
(.•OP +) 

(:RTTRIB   (<BF-flTT> SSIZ 36 SPOS 8 SLOC REG SSIGN ♦))) 
UMRCHINE-CODE 

(illflCHOP 

(«TYPE  ♦> 

(«OP 

■ («TREE 
(«EXPR 

(«OP  ♦) 

ULO 

(«TREE 
(<EXPR 

(«OP  /.) 

(«LO 

(«TREE 

(«EXPR   («ATOM R) 

(«OP ATF) 

(«ATTRIB  (<flTF-flTT> SOT NO SSIGN  (♦ TRUE)  SLOC LITERAL))))) 

UATTRIB   (<UF-ATT> SSIGN  (♦ TRUE) SLOC REG SAODR REG SPtS 9 SSIZ 36))))) 

B.8 
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UTREE 
(;EXPR 

<;0P  /.) 

(«LO 
(.>TR£E 

(+EXPR   (.;RTOn Efl) 

(«CP OTF) 

(♦RTTRIB   (<fiTF-flTT> $DT NO SSIGN  (♦ TRUE)  $LOC EO))))) 

(4.PTTRIB 

(<UF-fiTT> JS1CN 

(♦  TRUE) 

$LOC 

(REG mn) 

snooR 

(REG MEfl SPREL) 

$POS 

e 
SSI2 
36))))) 

CRTTRIB   (<BP-fiTT>))))) 
(«RESULT 

(iTREE 
(«EXPR 

(*0P  /.) 

(*L0 

(*TREE 
UEXPR   («fiTOn R) 

(sOP RTF) 

(«ftTTRII   (<RTF-flVT> JUT NO ISICN  (♦ TRUE)  JLOC LITERfiL))))) 

(<RTTRIB  (<UF-RTT> SSIGN ♦ JLOC REG JPOS 9 JSI2 36))))) 

(•:.SE   ((EQUfiL   (VfiLUE   (/.   R))   (♦  (VALUE  (/.  R))   (VPLUE  (/.  Efi)))))) 

l*C0OC   <(«D0 R Efl))) 
UCOST   (<COST> REF 2 SI2E  1)1 

(^LflBEL   (Add R.Efl))))) 

(<.TREE 
(cEXPR 

(>0P  ♦) 

(*L0 

(*TREE 

UEXPR 

ULO 

(*TRFE 

(tEXPR 

(«ATOM Ml) 

(*0P RTF) 

(^RTTRIB 
(<flTF-flTT> JSI2 18 IPOS 8 JROOR LITERAL JOT NO JSIGN  (♦ TRUE)  JLOC LITERAL))))) 

(«OP /.) 
(«ATTRIB   UUF-flTT> JSI2 36 JPOS 0 JflOOR  (REG NOI)  JSIGN  (♦ TRUE)  JLOC REG;!? 

(*I1RCHINE-C00E 

u-nncHOP 

UVtn   (JLOC n2R JSIGN OPPOSITE)) 

(«OP 

(«TREE 

LEXPR 

(«OP /.) 

(«LO 

(«TREE 

B.9 
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UEXPR  («ATOH Efl) 
U-OP ATP) 
(*PTTRIB   (<flTP-flTT> tOT NO »SIGN   (TRUE ♦)  $L0C LITERAL))))) 

UflTTRIB   (<UF-RTT> SSICN NIL $LOC HEn))))) 
(^RESULT 

(♦TREE 
(^EXPR 

(«OP /.) 
(cLO 

(iTREE 
(*EXPR   UfiTOn R) 

(:;0P RTF) 
(<PTTR1B  UflTP-fiTU $DT NO SSIGH  (♦ TRUE)  »LOG LITERAL))))) 

(«ATTRIB 
(<UF-RTT> JSr.N 

(LAtlBOfl  (FROtl TO)   (CHaNCE-SIGN FROH TO)) 
SLOG 
REG 
MOM 
(REG Rcnmm 

(^SE   ((EQUAL   (VALUE /.R)   (VALUE  (-  (/.  EA)))))) 
UCODE   ((MOVN R ER))) 
(»COST   (<COST> REF 2 SIZE D) 
(»LABEL   (JLOC tlEH -> ILOC REG tSIGN OPPOSITE)))))) 

(•■»RO 
(*TREE 

UEXPR 
(*IC 

(iTREE 
(*EXPR 

(^nTon n2) 
(tOP RTF) 
(«ATTRIB 
(<RTF-RTT> $SI2 13 $P0S 8 »RDDR LITERAL JOT NO »SIGN (TRUE ♦) SLOG EB))) 

UMRCHINE-CODE 
(«IWCNM 
(iTYPE (»LOG L2ER »SIGN SÄHE)) 
(«OP 
(«TREE 
(«LXPR UATOn X) 

(«OP ATF) 
(«ATTRIB (<flTF-ATT> $OT NO SSICN (♦ TRUE) SLOG LITERAL))))) 

(«RESULT 
(«TREE 
(«EXPR («ATOn Efl) 

(«OP ATF) 
(«ATTRIB (<ATF-flTT> JOT NO SSIGN (TRUE ♦) $LOC EA))))) 

USE   (NIL)) 
(vCOOE NIL) 
(«COST (<COST> REF 3 SIZE 0)) 
(«LABEL (SLOG LITERAL -> SLOG ER)))))) 

(«OP /.) 
(^ATTRIB 
(<UF-ATT> $SIZ 36 IPOS 0 JADDR (MEd REG SPREL) »SIGN (- COHP) »LOG HEtl))))) 

(«ATTRIB (<BF-ATT> $SI2 36 $POS 8 $LOC REG SSIGN ♦))) 
(«linCHIME-CQOE 
(«nncHOP 
(«TYPE +) 
:*OP 

B.10 
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(J.TREE 
(cEXPR 

UOP  ♦) 
(.:L0 

UTREE 
(.EXPR 

(iOP   /.) 
ULO 

(*TREE 
(cEXPR   (vfiTOn R) 

UOP RTF) 
URTTRIB   (<fiTF-fiTT> $DT NO SSICN   (♦ TRUE)   $L0C LITERAL))))) 

(^RTTRIB   (<UF-flTT> $SICN  U TRUE)  $LOC REG JfiDDR REG JPOS 8 $SI2 36))))) 

URO 
(<:TREE 

(«.EXPR 
(<:QP  /.) 
ULO 

UTREE 
(iEXPR   (*fiTOn Efi) 

UOP  RTF) 
URTTRIB   (<RTF-RTT> $DT NO SSIGN   (♦ TRUE)  $LOC ER))))) 

URTTRIB 
<<UF-RTT> SSICN 

(+ TRUE) 
JLOC 
REG HEU) 
SRDOR 
(REG flErt SPREL) 
$POS 
0 
$SI2 
36)))n 

(*flTTfiIB   <<BF-RTT>))))) 
(«RESULT 

UTREE 
(«EXPR 

(.;OP /.) 
(«CO 

UTREE 
UEXPR   (^RTOn R) 

UOP RTF) 
URTTRIB   UflTF-RTT> JOT NO $3IGN  (♦ TRUE)   $LOC LITERRl   /))» 

(*RTTRIB   (<UF-flTT> SSIGN ♦ JLOC REG IPOS 8 iSlZ 36))))) 
USE   ((EQUAL   (VALUE   (/.  R))   U  (VALUE  (/.  R))   i''  UE   (/.  EA))))') 
(*COOE   ((ADO R EA))) 
UCOST   (<COST> REF 2 SIZE  D) 
(;LABEL   (Add R,EA))))) 

(CTREE 
(KEXPR 

(:LO 
UTREE 

UEXPR 
ULO 

(«TREE 
UEXPR 

UATOr ni) 
(«OP RTF) 
(«RTTRIB 

B.ll 
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(<RTF-RTT> $SI2 18 $P0S 8 $flOOR LITERAL $0T NO $SICN (♦ TRUE) JLOC LITERAL))))) 
(.;0P /.) 
(sATTRIB UUF-ATT» $SIZ 36 $P0S 0 SADDR (HEH REG SPREL) SSICN (♦ TRUE) $L0C REC))) 

(»nACHlNE-COOE 
unocHOP 

(«TYPE   (JLOC n2R SSIGN SAME)) 

(»OP 

UTREE 

(*EXPR 

(*OP  /.) 

(«LO 
(*TREE 

(*EXPR (^ATon ER; 

(.:OP RTF) 
(•>RTTR1B  (<flTF-RTT> $OT NO $SIGN   (TRUE +)  $LOC ER))))) 

(«RTTRIB   (<UP-flTT> $S1GN   (TRUE ♦)  SLOC flEtt))))) 

(«RESULT 

(*TREE 

(«EXPR 

(*OP  /.) 

(*LO 
(«TREE 

UEXPR   (iRTOM R) 
(■•,OP RTF) 
(:RTTRIB   (<RTF-RTT> $DT NO JS1CN   (♦ TRUE)   $LOC LITtRRL))))) 

(*RTTRIB   (<UF-RTT> »SIGN   (♦ TRUE)   SLOG REG))))) 

USE   ((EQUAL   (VRLUE  /.R)   (VRLUE   (/.  EA))))) 

(tCOOE   ((HOVE R ER))) 
UCOST   (<COST> REF 2 SIZE  D) 

(«LRBEL   (JLOC HEtl -> SLOG REG)))))) 

(*RO 
(«TREE 

(«EXPR 

(«LO 

(«TCEE 

(*EX)R 

(«RTon n2) 
U-OP  RTF) 

(«.RTTftlB 
(<RTF-RTT> $SIZ 18 JPOS 8 SROOR LITERAL JOT NO JS1CN (TRUE ♦) JLOC Efl))) 

(«flRCHIME-COOE 
(«MRCHOP 
(«TYPE (JLOC L2Efl JSICN SAME)) 
(«OP 
(«TREE 
(«EXPR («ATOM X) 

(«OP ATF) 
(«RTTRIB (<RTF-ATT> JOT NO JSIGN (♦ TRUE) JLOC LITERAL))))) 

(«RESULT 
(«TREE 
(«EXPR («ATOn EA) 

UOP ATF) 
(.i-ATTRIB {<RTF-RTT> JOT NO JSICN (TRUE ♦) JLOC ER))))) 

(«SE (NIL)) 
(«CODE NIL) 
(«COST (<COST> REF 8 SIZE 8)) 
(«LRBEL (JLOC LITERRL -> JLOC ER)))))) 

(«OP /.) 
(«RTTRIB 

B.12 
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( 

(<UF-BTT> $SI2 36 IPOS 0 JRDDR (WH REC SPREL) $SICN U TRUE) $L0C nEH))))) 
(iOP ♦) 
(^RTTRIB (<BF-RTT> $SI2 36 IPOS 0 $L0C REC SSICN ♦))) 

(■vMOCHINE-COOE 
(iHfiCHOP 
(«TYPE ♦) 
<*0P 
(*TREE 
(*EXPR 
(*OP ♦) 
(«LO 
(+TREE 
UEXPR 
(*0P /.) 
(^LO 
(«TREE 
(+EXPR (»ATOfl R) 

(.>0P RTF) 
URTTRIB (<RTF-RTT> $0T NO ISICN (♦ TRUE) $L0C LITERAL))))) 

(*RTTRIB (<UF-RTT> $S!CN (♦ TRUE) $L0C REC $flODR REG $POS 8 JSIZ 36))))) 
(«RO 
(«TREC 

(*EXPR 
(*0P /.) 
(*L0 
(*TREE 
(«EXPR URTOn ER-) 

(/OP RTF) 
(«RTTRIB (<fiTF-flTT> $0T NO $SICN (♦ TRUE) $LOC ER))))) 

(*RTTRia 
(<UF-RTT> ISIGN - JLOC (REG HErt) SRODR (REG ntn  SPREL) $POS 8 $SI2 36))))) 

(iRTTRIB (<BF-RTT>))))) 
(^RESULT 
(*TREE 
«:EXPR 
(^OP /.) 
(*LO 
(*T(EE 
(«EXPR (*RTOn R) 

(*OP RTF) 
(*ftTTRIB (<flTF-flTT> $OT NO $SICN (+ TRUE) $LOC LITERRL))))) 

(«RTTRIB (<UF-flTT> »SIGN ♦ JLOC RC8 SPOS 8 $512 36))))) 
(«SE ((EQUAL (VRLUE (/. R)) (♦ (VALUE (/. R)) (VRLUE (/. ER-)))))) 
(«COOE ((SUB R ER-))) 
(«COST (<COST> REF 2 SI2E 1)> 
(«LRBEL (Sub R,EA-))))) 

(«TREE 
(«EXPR 
(;OP ♦) 
(*LO 
(«TREE 
(«EXPR 
(«LO 
(«TREE 
(«EXPR 
(«RTOfl Ml) 
(«OP RTF) 
(«RTTRIB 
(<flTF-RTT> $512 18 $POS 8 $R00R LITERRL $DT NO SSIGN U TRUE) ILOC LITERAL))))) 

B.13 
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U-OP /.) 
UflTTRIB   <<UF-fiTT> $SIZ 36 $P0S 0 $flDDR  (REG nEfl)  $S1CN   I« TRUE)  $L0C REG))) 

(^l1flCHINE-C0DE 

(iMflCHOP 
(iTYPE   ($LOC n2R  SSICN O^'OSHE)) 

<+OP 
(«TREE 

(«EXPR 

(;.OP /.) 

(»TREE 
(«EXPR (^OTOn Efl) 

(<OP RTF) 
(UflTTRIB (<flTF-RTT> IDT NO SSIGN (TRUE ♦) $LOC LITERfiL))))) 

(*flTTRIB (<UF-fiTT> SSIGN NIL $L0C HEH))))) 
(v RESULT 
(*TRE£ 
(*EXPR 
(tOP /.) 
(*LO 
(«TREE 
(«EXPR (««TOO R) 

(«OP RTF) 
(«flTTRIB {<fiTF-flTT> $DT NO SSIGN (♦ TRUE) $LOC LITERAL))))) 

(«RTTRIB 
(<UF-fiTT> JSIGN 

(LfillBDfl (FROH TO) (CHANGE-SIGN FROM TO)) 
ILOC 
REG 
MDM 
(REC nEH)))))) 

(+SE ((EQURL (VALUE /.R) (VALUE (- (/. EA)))))) 
(;CODE (aiOVN R EA))) 
(«COST (<COST> REF 2 SIZE D) 
(«LABEL (JLOC HEM -> $LOC REC SSICN OPPOSITE)))))) 

(.vRO 
(«TREE 
(«EXPR 
(*LO 
(«TREE 
(«EXPR 

(■■-ATOn M2) 
(«OP RTF) 
(«ATTRIB 
(<ATF-ATT> $SIZ 18 IPOS 8 SADOR LITERAL IOT NO $SICN (TRUE ♦) SLOG Eft))) 

UnACHINE-COOE 
(«HACHOP 
(«TYPE (SLOC L2ER SSICN SAME)) 
(«OP 
(«TREE 
(«EXPR («RTOn X) 

(«OP RTF) 
(«RTTRIB (<ATF-ATT> SOT NO SSIC" (♦ TRUE) SLOC LITERAL))))) 

(«RESULT 
(«TREE 

(♦EXPR («ATOM EA) 
(«OP RTF) 
(«ATTRIB (<ATF-ATT> SOT NO SSICN (TRUE »1 SLOC Eft))))) 

(«SE (NIL)) 

135 
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con?) SLOG nEmnn 

UCODE NIL) 
UCOST (<C0ST> REF 8 SI2E 8)) 
(slflBEL ($L0C LITERAL -> ILOC Efl)))))) 

(*0P /.) 
(«ATTftll 
(<UF-RTT> $SI2 36 $P0S 8 fRDOR (Mil REG SPREL) »SIGN (■ 

(ifiTTRIB (<BF-OTT> $SIZ 36 IPOS 0 SLOG REG SSICN ♦))) 
(::nfiCHINE-CODE 
(::;t1flCMOP 
(*TYPE +> 
(tOP 
(*TREE 
(iEXPR 
(«OP ♦) 
<*L0 
(*TR£E 
(*EXPR 
UOP /.) 
(«LO 
(.»TREE 
(^EXPR («ATM R) 

UOP  RTF) 
(i-RTTRIB (<flTF-fiTT> $0T NO SSICN (♦ TRUE) JLOC LITERRL))))) 

(«RTTF B (<UF-RTT> SSIGN (+ TRUE) HOC REG JRDOR REG $POS 8 $SIZ 36)>))> 
(*RO 
(*TREE 
(*EXPR 

(:kLO 
(«TREE 

(.>EXPR   URTOn Efl-) 

UOP Ml ) 
URTTRIB   (<RTF-flTT> SOT NO SSIGN  (♦ TRUE)  SLOG Efl))))) 

(cRTTRIB 
UUF-flTT> SSICN - SLOG   (REG HOII  SRDOR  (REG HEn SPREL)  SPOS 8 SSIZ 36)M>) 

(^RTTRIB   (<BF-RTT>))))) 

(«RESULT 

(«TREE 
(«EXPR 

(«OP  /.) 

(«LO 

(«'REE 
(tEXPR   («RTOrt R) 

(«OP RTF) 

(«RTTRIB  (<flTF-RTT> SOT NO SSICN  U TRUE)  SLOG LITERAL))))) 

(«RTTRIB   (<UF-RTT> SSIGN ♦ SLOG REG SPOS 0 SSIZ 36))))) 

(«SE   («EQURL   (\RLUE   (/.  R))   (+  (VRLUE  (/.  R))   (VRLUE   (/.  Efl-)))))) 

(«CODE   ((SUB R Efl-))) 
(«COST   (<COST> REF 2 SIZE  D) 

(«LflBEL   (Sub R.Efl-))))))) 
(178208 msec 21295 CONSes 7950 CC-iim«  178258 non-CC-tim« *.4612794  X CC-timt) 

PE001 - -  

CODE COST 

««*««*:;:«<.« ^««*t*#««<.«**«««*««->* + ***«*«*****4«t«»»*« 

(MOVE R Efl) REF 2 SIZE 1 (.  HI) 

<T-op> REF 0 SIZE 8 (HZ) 

(ADO R Efl) REF 2 SIZE 1 (. HI 4 .  112) 

Tot»l REF 4 SIZE 2 

«;:*<,(! A *<■«««¥«««««* «*««<■*« *««VV ««*««« 4«*««»»«»»«*»* 

B.15 
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. 

(MOVN R  ER) 

<T-op> 

(000 R Efl) 

Total 

REF 2 SIZE 1 

REF 0 SIZE 0 

REF 2 SIZE 1 

REF 4 SIZE 2 

(. ni) 

(. m ♦ . • nz) 

(MOVE R Efl)       REF 2 SIZE 1       (. til) 
<T-op> REF 0 SIZE 8      (HZ) 

(SUB R £fi-)      REF 2 SIZE 1      (. HI ♦ . HZ) 
Total    REF 4 SIZE 2 

»♦♦♦♦♦♦♦♦♦♦#♦♦♦*♦♦—♦♦»♦♦♦»♦»»♦♦♦»♦»♦♦♦♦♦♦»♦♦<♦♦♦< 
(MOVN R Efl)      REF 2 SIZE 1      (. HI) 
<T-op> REF 8 SIZE 8      (MZ) 

(SU8 R Efl-)      REF 2 SIZE 1      (. Ml ♦ . ' M2) 
Total    REF 4 SIZE 2 

PE001   - 
Search   tree  dump     23:31   13-flpr-75 

PE001   Test  case:    (.   Ml  ♦   .   M2) 

PE007 Compannt)   (.   R ♦  .   '  ER-)  and  (.  Ml ♦ .  n2) 

PE808 Comparmcj   (.   R)   and   (.   Ml) 

PE889 Comparing   (R)   and   (Ml) 

PE016   Itcratt  acrotl  axiom   trans formaticni    (HI) 

PE811   Iterate «cross axiom transformation:   (.  Ml) 

PE812 Attribute  transformation!  need <DIFF> $LOC M2R 

PE013 Comparing (. Efl) and (. Ml) 

PE014 Comparing (ER) and (fll) 

PE01S Iterate across axiom transformation: (. ni- 

PE016 Comparing (. Efl; and (. Ml) 

PE817 Comparing (Efl) and (Ml) 

PEBIS Iterate across axiom transformation! (. 

mSm 

PEei9 Comparing (. ' Efl-) and (. R2) 

PE82e Comparing (Efl-) and (M2) 

PE621 Iterate across axiom transformat ioni (.12) 

PE022 Attribute transformation: need <0IFF> $L0C L2Efl 

PE023 Comparing (X) and mi) 

PE824   Iterate across axiom transformation:   (.  MZ) 

PE028  Iterate across axiom transformation:   (.   Ml +  .  HZ) 

B.16 
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PE029   ItorMe  across  *xiom  tr«nslorm»t ion:   (.   '   HI  ♦ n2) 

PE033 Ilarate »cross »xfom transform*!ion: ( . ' ni ♦ H2) 

PE034 llerale «cross axiom tramlormal ioni ( . Ml ♦ ' . • H2) 

B.17 
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