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Abstract

There has been extensive research into the automatic generation of compilers.
Much of this has concentrated on the issues of syntix and semantics, while little has
been done on the problems of code generation. This thesis represents one approach
to the latter problem. A model of a compiler-compiler is presented, with the research
focussing on the construction of one component of the compiler, that module which
determines the possible code sequences which realize a given program. The input to
this component is a set of code sequences which are possible realizations of each
fanguage construct. This thesis concentrates on the automatic generation of these
code sequences from a formal description of the hardware and the language. A
notation is developed for representing machine instructions, and a prototype system
has been constructed to demonstrate that this notation is amenable to automated

analysis.
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Chapter |

Introduction

Background

Problem statement

Two long-standing problems, the construclion of compilers and the transfer of
programs between machines (i.e., portability), have recently  been emphasized by the
current proliferation of machines and languages today. This thesis addresses certain
aspects of these problems with respect to generating machine code sequences from
higher-level language constructs.

Given a specific language and a specific machine, the construction of a good
compiler (and a correct compiler)' may lake two or three years. In a research
environment the impact of this long time frame is felt in many ways. It is difficult to
explore new areas of language design; rapid turnover of personnel (such as
undergraddate and graduate programmers) makes it difficult to maintain continuity in a
project; other research projects which need to develop or use a specialized language
may be forced to choose other, perhaps less desirable, alternatives. In the commercial

environment the impact is more direct. Each new computer must be produced with a

complete complement of programming languages in order to be a marketable-

commodity. A delay of six months could well alter the market position of a new

computer.

The issue of portability is particularly important in research environments, and is
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of considerable concern 1o the very large class of end users of programs. ldeally a

program is a realization of an algorithm. The user is generally interested only in the
algorithm and nol in the program which represents it. Such occurrences as the
replacement of one machine (or operaling system) by another, for whatever reason,
should be of little concern as long as the programs continue to run. Unfortunately, ‘or
reasons we shall discuss later, it is rarely the case that programs can be transferred
directly from one operating environment to another.

In many cases the end user is only concerned with the results: if the program is
transferred to the new environment and produces ccrrect output then the user is
satisfied. The isolation of the user from the environment means that issues of
efficiency often are ignored; hence the incidence of 370/145's sin.ulating 1401’s
simulating 650's simulating tab card equipment. It is when the user must pay real
money from a finite budget or spend time waiting for a timesharing system to respond
that issues of efficiency become important. Computer cycles are a finite resource. Any
cycles wasted because of inefficient code are not available for other purposes. As
tong as we must live with a finite resource, we should optimize its utilization as much
as possible,

This thesis is concerned with one aspect of a particular approach to the solution
to these problems, namely compiler-comgilers or transiator writing systems. Compiler-
compilers are programs which, when supplied with zppropriate information, will
generate a compiler for a specific language and machine combination. They have been
studied for many years and have had some limited success in language research
environmenits, They have not, however, had much success in the commercial

environment. There are two related reasons for this. First, compiler-compilers have




Background

tended to produce compilers which, in turn, produce object programs of poor
efficiercy. Second, they have tended to focus on *“e issues of lexical and syntax
analysis to the exclusion of code generation. As a consequence, much work remains
for the user of the "automatic” systems to complete; and that which is related to code

[ generation is usually tedious, complex, and subject to error.

The specific concern of this thesis is to investigate a method to be employed in
ihe construction of compiler-compilers such that (1) the resulting compiler produces
code comparable to that produced by the best optimizing compilers, and (2) to ov so in
a context that makes the specification of code generation relatively easy. An

outgrowth of this research is the ability to specify the machine characteristics of the

target machine, making it possible to construct compilers which can produce code for
many ditterent machines.
It is not an objactive of this thesis to produce a compiler-compiler. However,
the research has developed a program which, given appropriate information about a
language and machine, will supply information to a hypothetical compiler-compiler.
History
The problems of compiler construction and machine portability have been
investigated for many years. In order to view this research in proper perspective it is
necessary to examine some of the history of these efforts.

The need for machine indepencence has long been realized. The underlying

philosophy is that we wish to reduce as much as possible the difference between

algorithms and their realizations in prograrns.

There are many issues involved in transferring a program from one machine to

another, both in translation and execution.
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4 Background

The translation problem is simply that of converting some representation of the
program to a form which can be operated upon by the target machine. This means
that there must be a translator which accepts the source program and outputs some
representation of the object program. Unless the language is one with widespread
acceptance, such as FORTRAN, COBOL, or BASIC, this step alone poses the most serious
problem. Also, even ii a translator exists, it must accept all the features of the source
language and produce correct code -for them. Quite often the lack of standard notation
for the source language or standard syntax for certain classes of operations becomes
a virtually impenetrable barrier. Cne need only look at the dozens of variations of
reserved word and input-output syntax represented by the many implementations of
Algol (which was intended to be an international standard) to realize the difficulty this
imposes.

Given that a program can be translated, it is then necessary to actually execute
it. Mos' languages require the existence of an execution-time environment ("run-time-
system”) to perform everything from data space allocation to input-output. It is not
only necessary to spacify the syntax and semantics of the computational and control
statements of the language but also to specify the semantics of the execution time
environment (incluaing input-output) as ‘well. Even those languages with fairly
rigorous language specifications often leave the semantics of the execution
environment either unspecified, or worse, 50 ambiguously specified, that the variations
in implementation makes the transfer of programs between any two environments
nearly impossible. In particular, the semantics of input-output is usually determined by
the behavior of the operating system under which the pr.ogram will run, rather than

forcing the operating system to provide a set of facilities satisfying a standard

1.1.4
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semanticsl.

Even if all of these problems were solved, however, we still would have the
problems of the physical hardware representation. These include such issues as the
character set and collating sequence, word length, floating point precision, and
behavior under exceptional conditions, e.g., does fixed overflow generate an interrupt
or set a ilag? If we can avoid all of these problems then we have, in fact, achieved a
portable program. For a discussion of these issues and some responses, see Warren
[War74].

If we rssume certain standards of external representation (e.g., the character
set and the formal syntax), we are then left with issues such as machine word length
and radix. Programs which pack data into words usually presume a certain radix or
word size. Floating point computations assume (or tend to assume) certain properties
of the floating-point arithmetic unit, such as the base, radix, rounding, etc. as well as
significant factors such as the largest or smallest number which can be represented.

An interesting approach to the latter problem is described by Malcolm [Mel72] in
the form of some algorithms (expressed as FORTRAN subroutines) which determine the
properties of the floating-point unit for any given machine. This defers the binding
time of these properties to execution time rather than forcing the binding at compile
time (and hence at coding time, in m_ost cases).

Newer languages, such as Algol-68 [vW69] respond to this issue by requiring a

A possible cause of this difficulty is the fact that presumably rigorous
specifications are made in English prose, a notation peculiarly subject to
ambiguity. Alternative notations, such as the Vienna Description Language
[Weg72] or van Wijngaarden grammars [vW69) would be more suitable. The use
of an informal but rigorous notation for the behavior of the run-time support
system, such as the notation suggested by Parnas [Par72), would be a major
advance for most languages.

1.1.5
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“standard prelude” ir which important information such as the largest possible integer
or the smallest floating point number is made available. Each compiler defines a
standard prelude for its target machine. Unfortunately, both the Malcolm solution and
the Algol-68 solution require that the programmer utilize the information made
available. Failure to do so will probably result in a non-portable program.,

Since we have abstracted the language and machine issues to some degree, it
should now be evident that we should be able to achieve machine portability (modulo
the issues given on page 4).

In the following five sections we will examine some approaches to the issues of
compiler construction and code generation. They are

(1) Compiler-comptlers
(2) Code generators

(3) Standardized languages
(4) UNCOL

Compiler-compilers

One might imagine that the problem of machine independence couid be solved by
constructing a compiler which would compile "any" source language for "any” machine.
The word "any” is quoted here since each researcher in the field restricts the classes
of languages and machines to those for whicn he can (or intends to) find a solution.
The diversity of languages and machi.nes makes it nearly impossible to consider a
solution which is truly universal.

A much simpler solution is to construct a program which accepts the
specifications of a language and the specifications of a machine, and then generates a
compiler which compiles source programs in that 'anguage to code for that machine.
Thus we enter the wcrid of compiler-compilers. The classical compiler-compiler

paradigm is shown in Figure 1.
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Oef inition of Comp Jer - k
’ 1 Algnl comprjer f,
! ! alanl algol
i proaram compiler {'-1
1 {
i
Irout Machine codc ‘r
data program .
|
Output :..
data ;
' Figure 1: The Classical Compiler-compiler structure (after [Hop63])
i . .
i In the past ther: have been many attempts to construct compiler-compilers
f [Ev64, Fel64, Ros67, WaS67, CLE69). A classic paper by Feldman and Gries [FG63] ¥
: reviewed the state of the art in 1968, :
: The system described by Evans [Ev64) generated a syntax analyzer from an
input specification of Flovd productione (the particular adaptation became known as
Floyd-Evans productions). The input to the parser was a stream of lexemes produced i
r

by a lexical analyzer ("stbscan) and the output was another (linear) stream of lexemes ;:
which were used by the code generator. The use of Floyd-Evans productions was
extended by Feldman [Fel64] in FSL, which did not output a lexeme stream, but instead
invoked a “"semantic routine” for each successful .production. The semantic routines
were written in FSL, and allowed the compiler wrller lo specify the semantics of the
compiled code without specifying the actual form of the code. The ideas of FSL have
beer extended by others, notably by White in JOSSLE [Wh73]).

The general-purpose table-driven compiler described by Warshall and Shapiro

[WaS67] allowed specification of the syntax of the language by a slightly modified BNF
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(context free) grammar. The output of the syntax analyzer was a tree representation
of the source program. A second notation allowed the specification of matches against
the tree, which could output "macros”, machine-independent representations of the
operations to be performed. The expansion of these macros into machine code for the
target machine is accomplished by the use of a third notation; the output from this
phase is an assembler program which can be transiated by conventional means.

The Brooker-Morris system described in [Ros67] offers elaborate syntax
analysis specifications. It is interesting in that both the syntax specification and the
output ("format") specifications are expressed in a single notation. It is claimed that
the notation allows for the handiing of block structured declarations and typed data
objects within the syntax specification.

TREEMETA [CLE69] is a more unified implementation of the same ideas. It allows
the compiler writer to specify the syntax of the language in an extended BNF grammar.
The output of the parser is a tree with labeled nodes, where each label is the name of
an "unparse rule". An unparse rule specifies a series of tests (malches) to be
performed upon the node, and If a test succeeds it specifies a set of output rules
which send text to an output file. The output text may then be passed through a

conventional translator (such as an assembler) to obtain the object program.

Code Generatars

One of the major difficulties in constructing a compiler is the generation of
machine rode. This is especially important if the language is considered machine-
independent, and intended to run on a variety of machines. ldeally, one wishes only to
specify the cnaracteristics of the machine, and have a system which automatically
broduces a code pgenerator tailored to the specific machine. Such systems are

discussed by Miller [Mil71) and Donegan [Don73).

118
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Miller describes a system, DMACS, which takes a description of a machine in
terms of registers, storage, and the allowable operations which map between them
(including such concepls as data accessing functions). He then specifies a method of
generating code using the information as a data base. The input to the code generator
consists of simple two-address code, with an implicit "result address” for each line of

two-address code. for example, [Mil71, p 17}

Line Op Operands
1 MUL C,D
2 ADD e

3 ASSG A2

represents the compilation of "A =B+ CcsD" The f.ifsl.ft. .!i_rTe._.n}q!.ti.plies C and D; the
second line adds to the result of line 1 the contents of B; the third line assigns to A
the result of line 2. |

An important idea here is that the compiler need only generate the indicated
code sequence. It does not matter if C is an integer, Dis areal, B is a bit field within
a word, or even across word boundaries, and A is a register explicitly designated by
the user. The DMACS system will provide the necessary mappings, allocate space for
the intermediate results, and provide the necessary access functions to obtain the
operands and store the results. Thus the front end of the compiler is constant across
ail machines, and the code generator discovers the code sequences based upon a
description of the machine. Significantly, the code generator can discover if the
operands given are suitable for the operation (e.g. MUL) and convert them as required
(e.g., move Ctoa register, convert to floating point, perform floating point multiply).

The mode! presented by Donegan [Don73] is more elaborate, and is closer to the

compiler-compiler idea. A preprocessor accepts 3 notation describing the translation

1.1.9
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of th.e iitermediate representation of the program into machine code. The output of
this preprocessor is then compiled to produce the code generator. Code generation is
considered as a finite-state machine operation, where an accepling state emits an
instruction. Given any state, there are a set of possible transitions derived from the
machine de§cription. The preprocessor examines the possible transitions and produces

a code generator which will choose the minimum-cost transition.

Standardized languages

An alternative lo the compiler-compiler approach is to define a standard of
syntax and semantics for a language, such that tk2 language <an be imple mented on a
large class of machines. If this approach were completely successful it would be
possible to transfer must programs directly from one system to another, providing
direct source language portability. This has been attempted for several languages;
FORTRAN, COBOL, APL, and PL/! are the first examples which come to mind. If there
were any adherence to the standards specified for these languages, indeed we would
have a high degree of machine portability; in fact, we do not. One of the problems
with such complex languages is the lack of compieteness of the compiler (there are
authorized subsets in many cases) and the number of extensions to the compiler which
the programmer has taken advantage of (nearly every compile” has nonstandard
extensions, either deliberate or accidental). However, if we ch ~e a language of
suitably restricted syntax and semantics it is possible to transfer g.ograms written in
it to another machine.

A variant of this approach has been taken by Bell Laboratories where they have
defined a "standard" subset of FORTRAN IV. This is a restricted subset of the language

which they have found empirically 1o transfer to a large number of machines and
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remain compatible, syntactically and semantically, with each of their FORTRAN 1V
compilersl.

The inverse of the Bell Laboratories’ approach has been taken by the
Desartment of Defense (DOD) with respect 10 the COBOL language. A distribution tape
cotains a set of COBOL programs with rigidly specified behavior [Bai72). In order for

a COBOL compiler to meet the standard for a certain subset of the language, it must

successfully compile and execute a certain sut set of these programs.

Macro systems

For some applications it is pcasible to use a language of very restrictec. syntax
and very rigid semantics to specify a program. The translation proble n can then be
viewed as mapping each statement in the language into a set of machine instructions
which produce the desired effect. This translation can usua'y be performed by a
macro processor of some sort, in which the components of each statement (the actual
parameters) are substituted for placeholders in a template (the formal parumetérs in
the macro body). The result of this substitution is the text for a language translator
(compiler or assembler). When this text is translated the result is a machine-code
program which produces the desired output.

One of the earliest uses of a macro system to specify the code templates for a
high-level language was in the MAD language [AGG69]). In this system, a special-
pL-pOsSe macro precessor was included in the MAD compiler. New data types could be

defired, and the operations on these new types could be defined by specifying the

To validate programs for “portability” they have a program which reads a
FORTRAN IV program and verifies that it uses only the portable subset of the
language [Ryd72])

LL11




P

12 Background

actual machine code to be used. A template of this form would be expanded whenever
the operator it defined encointered the data types it accepted; in this manner
standard operators (such as “+") could be defined over new data types (such as
complex numbers). The formal parameters in the template were replaced by actual
parameters during the expansion. There were also conditional compilation facilities
which controlled the text expansion.

Macro systems are attractive from the viewpoint of portability; ideally, the

program text, except for minor character set ditferences, can be read by nearly any

" machine. Once an algorithm is expressed in terms of macro text which can be

expanded, it is in theory possible to transtfer it to any macnine.

There are several languages which are spec iied by macro language definitions;
the two cited here were chosen because they are both well-documented in the
literature and successful endugh in practice to be more than theoretical approaches.

Une of the more successful attempts at machine portability is the Mobile
Programming System of Orgass and Waite [OW69, Wai70]. A bootstrap macro
processor called SIMCMP is written in a subset of FORTRAN 1V, about 110 lines of
code, and trivially translatable by hand to nearly any other language. It is used to
compile a more powerful macro processor called STAGC-2. STAGE-2 is written in a
language called FLUB, which has a very limited syntax and primitive semantics, and can
be trarslated by SIMCMP. Once STAGE-2 is running, other systems may be written in
the more powerful macro language which it translates. With proper care in the
specification of the semantics of these macros any program written for translation by
STAGE-2 can be moved to another machine with a minimum of effort.

Another very successful approach along these lines, for a single application, Is

1112
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the SNOBOL Implementation Language (Sil) designed by Griswold and his associates for
implementing SNOBOL-4 [Gris72). SIL consists of about 130 macros oriented explicitly
towards the implementation of SNOBOL data structures and internal algorithms. It was
also des‘tned to obey the syntactic restrictions of an archetypal assembly language
macro processor, so in some ways it represents the intersection of features of several
such macro processors. It has been used with great success (although not without

difficulty) to impleraent SNOBOL-4 on at least ten different machines (as of 1872).

UNCOL

There has been an assertion [Str58, Ste61] that if the syntax and semantics of a
language are sufficiently rigorous and at the same time not very far removed from a
machine representation that (ideally) we could code all of our programs in this
language and have them execute on any machine. One obvious defect is that such a
language would undoubtedly be too low-level to actually program in. In fact, this is
true; but if we had all of our compilers produce code for the machine which "executed"”
this language, then the output of any compilation could be translzted and run on any
machine.

An early proposal along these lines was UNCOL [ConB8, Str58, Ste6l]). This
involved creating a single "universal" language into which all other languages could te
compiled; it would then be necessary only to write programs which would translate
UNCOL into the specific machine languages for the target machines. Had this solution
been successful, it would have reduced the m x n problem to an m + n problem (see
Figure 2). The mxn problem is characterized by the fact that for m
languages and n machines it is necessary to construct (n x m) compilers to be able to

run a program written in each language on each machine. Using the UNCOL solution,

1.1.13
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only m + n "translators" need to be written---one fc- each source-language-into-

UNCOL transformation and one for each UNCQOL-into-machine-code transformation.

7

:.r | lfu:l—|
d d

UNCOLIm « n transiators

Figure 2: The reduction of the m x n problem.

There have been several attempts at UNCOL-like solutions. In genera these
have been restricted to defining particular intermediate-level languages for the
implementation of specific high-level languages (the 1 x m problem). The SNOSOL

_ Implementation Language can be viewed as the outpul of a (human) compiler which

allows a single language to bLe implemented on many machines. The OCODE

P Sp——

representation of BCPL [Rich71] is produced by the BCPL compiler {which is written in
BCPL). Thus to bring up BCPL on any system it is only necessary to translate OCODE

into machine language. Once an OCODE translator is built, it is only necessary to

L1.14
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translate the OCODE representation of the compiler. The result is now a BCPL
compiler which runs on the desired machine. This compiler may then be used to
recompile the BCPL comniler source text, or any other BCPL program.

One of the most recent propusals for an UNCOL-like system is JANUS [Cole74],
an intermediate textual representation for the output of a compiler. A translator based
on the STAGE-2 macro processor [Wai70, see page 12], which is already portable, is
then used to translate JANUS into assembler code for the target machine. JANUS is
noteworthy because it is not desianed for any particular language (but rather a broad
class of languages), and it is one of the most complete proposals for a truly “universal”
intermediate language.

Critique

Corpiler-compilers and their code generators

All of the early major work in compiler-compilers seems to have concentrated on
syntax analysis [Ev64, Ros67, WaS67), with little or no work on code production or
optimization. In particular, the concents of global, or machine-independent,
optimization have not been handied at all. The work of Geschke [Ges72] has now
shown a notation for specifying how to detect and process global optimizations, such
as t?;ose discussed by Cunhe and Schwarlz [C570]) Compiler=compilers will have to
incorporate these abilities if they are to compete with so-called "hand-coded”
compilers.

Code production in ear!, compiler-compilers was fairly simple, and optimization
P 7 P Y P

was usually restricted to keeping track of which results were currently in the

accumulator?. More  sophisticated code  production and  optimization

The fact that most of this work was done on single-accumulator machines made
the more sophisticated issues of register allocation irrelevant.

L1.15
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was usuzlly performed by rand-coded assembler routines rather than by using some
notation at the compiler-compiler level, as in [Ev64]. In this system, the compiler-
compiler provided a notation for specifying the translation of a source ianguage (Algol-
60) into a ilinear stream of tokens. Typical semantic problems such as requiring that an
identitier be declared before use, declared only once at a given block level, used
consistently with its declaration, etc., as well as issues about coercion between
integers and reals, were han-led by a second, hand-coded phase of the compiler. This
approach was not as su-cessful as one would have hoped. The second phase of the
translator was sensitive to the form of the token stream. Although the syntax could be
changed easily, any charge in the order of the tokens, or in their type, required
modification of the complex second phase in order to ensure that the mapping into
machine code would operate correctly, or at all.

One of the lessons learned from the Algol compiler of Evans [Ev64] was that
syntax analysis was one of the easiest parts of the trarslation process (a view not
generally held by the computing community at that time), and that semantic analysis
and code generation were more difficult and more important problems,

Later work on compiler-compilers was influenced by the recognition that syntax

analysis is not the major issue, ard the effect of this influence was the provision of

capabilities such as being able to specify the mapping from the semantics of the -

source program to the semantics of the target machina [Fel6d, Wh73, Don73, Mil7l,
CLE69). There are several shortcomings in these systems. The most serious is that
they are either too far from, or too close to, the actual machine representation of the
object program to make machine independence simgie to handle and at the same time

maintain the goai of efficient object code. Abstract semantics such as those embodied

1.1.16
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in FSL (Fel64] or JOSSLE [Wh73) adequately abstract storage allocation, forward
references, and other concepts independent of etficient code, but they specify machine
operations suct, as addition by simply requesiing the production of code to evaluate

the "+" operator (the "code brackets" of FSL). In any given machine thete may be a
score or more different ways of implementing this language operator, each having
particular cost tradeoffs !, The exact code sequerce required to
produce the desired eifect is left t.o the ingenuity of the person coding the semantic
routine,

TREEMETA provides a convenient representation for specifying the syntax of a
language but ties the semantics and code generation so tightly to the idea of the
treewalk that converting a program to produce efficient local code on a different
machine caa involve rewriting the entire code production phase. The internal
representation is inherently a tree; the use of a directed acyclic graph (dag) to
represent common subexpressions is not possible in standard TREEMETA. Also, in
standard TREEMETA it is impossible to restructure the tree once it has been
constructed, so that “"code motion" optimizations (such as moving constant computations
outside of loops [CS70, Ges72)) cannot be performed.

The work of Miller [Mil71]) and Donegan [Don73) provide convenient notations
for specifyling the case analysis required to produce code from an intermediate
representation. However, optimum code production requires carefu! case analysis

based on the actual (often pathological) behavior of a machine. The more the compiler

Note tha! addition can be accomplished by "ADD" instructions, "INCREMENT"
instructions, indexing, effective address calculation, and all these same variations
with use of a "SUBTRACT" instruction! The result is that the BLISS/11 compiler
must actually consider 32,000 possible cases of operand evaluation for a single

+" node (although, in fact, most ¢f these cases are redundant).

L1.17
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attempts to exploit the behavior of the particular machine the more likely it is that it
will run afoul of these quirks. This can be attributed to either lack of adequate
documentation of the machine or the inability of the human mind to cope with the huge
number of variables that seem to be involved.

In the classical model of code generation, register allocation and code production
are joint operations, where the code éenerator obtains registers upon request. This
allocation strategy ignores many issues of globat register optimization, and usually only
works well in the absence of common subexpressions. There are other problems
caused by lack of global knowledge, such as optimal selection of the intermediate
result register to prevent unnecessary transfers of datal, Ir  an
optimal global allocation strategy, the occupancy of a register by a result is a complex
function based upon such factors as the required lifetime of the result, the importance
of the result, and the need to preserve the result in a register. It is complicated by
such issues as requiring the specific register involved for- a specific purpose, e.g,
parameter passing. In machines with a small number of registers (such as
minicomputers) one cannot reserve a register implicitly for such a purpose without
degrading the quality of the code piaduced. In the model of the compilation process
which we use (given in section 2), the classical code production phase is
divided into severa!l components, of which register allocation is only an intermediate
step. Finite-state models such as those assumed by classical code generators are
inadequate to model this style of compiler construction.

Donegan makes the observation that even when the case analysis required for

code generation is done manually, and a case table produced (readable by humans),

1 Known in BLISS/11 as "targeting”.
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when this table is translated to code in most currently available nolation for code
generators the meaning is almost entirely lost (e.g., as in (ER70]). One of the strengths
of his system is that once the case analysis has been performed, the translation into a
suitable notation is relatively straightforward, and the actual production of a co.de
generator is automatic,

The ajor weakness in the classical finite-state machine model of code
generation, as exemplified in nearly all code generators associated with compiler-
compilers, is that there is insufficient information available at any point to produce
really optimal code. The three-address code model (or n-address, where n23) is one
of the most difficult intermediate representations to optimize, although it is one of the
most common representations used. However, a collection of techniques for the n-
address model is described by Frailey (Fra70).

Macro systems

With only a few notable exceptions, the use of a macro language to transfer
programs from one environment to another has not met with much success. The class
of macro languages as exemplified in the MAD definitional facility are clearly machine
and environment dependent although they constitute a valid approach to language
extension within an environment. In most cases, the available macro processors are
not compatible, and one is forced to various artifices to achieve a successful transfer. .
The syntax of the language must be restricted to that which can be accepted by the
macro processor; the syntax and semantics can also be restricted by the power of the
macro processor, such as conditional text inclusion, ability to omit parameters, and
ability to store and manipulate global state information.

The macro system of Orgass and Waite [OW69] avoids many of these problems

L1189
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simply by defining the macro processor in such a way that it can be easily
bootstrapped onto another machine. This approach is one of the prime reasons for its
success. The SNOBOL experience [Gris72) attempted to avoid some of the difficulties
by using a syntax which represented the intersection of several known assembler

macro processors. The difficulties encountered in transferring the system from one

machine to another were due, in part, to the incompatibilities vetween the SIL

definition and the abilities of the macro processor. In terms of coding the SIL
implementation, it was often necessary to place undue restrictions on the syntax of the
language simply because some macro processors could not accept a more desirable
syntax. This seems to indicate that unless great care is exercised in the design of a
macro implementation that it would be no easier to transfer a set of macros from one
machine to another than it would be to transfer any other type cr program.

Macro systems also present severe problems with respect to code optimization.
Global state information which can be made available to an optimizer under other
representations (such as trees or graphs) is lost when the program representation is
processed by a macro processor, due to the sirgle-pass nature of such systems. It
should be pointed out, however, that Waite has iliusiated a very simple local code
optimizer implemented entirely within the STAGE-2 macro processor {Wai69). The
optimizations are very similar to those of conventional code generators in compiler=-
compiler systems, such as being able to detect that the result in an accumulator is
used in a following computation. Properties such as commutativity are also used to
advantage. However, such a system is still not powerful enough to detect more global

optimizations.

UNCOL
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The UNCOL solution suffered from several basic problems. In particular, the
UNCOL representation had to embody the union of the semantics of all languages past
and future. To do this would require a single representation able to express the low-
leve! semantics of FORTRAN, Algol, PL/1, SNOBOL4, APL, LEAP [FR69], Algol-68[vW69],
and SIMULA-67 [Dah67] (to name a diverse set). It is not likely that any language
could in fact represent this diversity of semantics and still remain manageable, and
simple or efficient to compile.

In addition, UNCOL w~as supposed to be a very low level machine code for an
abstract  machinel; th: translaton to an actual set of machine
instructions was supposed to be very simple. It is not likely that such a low level
representation could be efficiently transiated across the variety of architectures
currently available, even ignoring such raaical departures from “"conventional”
architecture as ILLIAC-IV and STAR. A representation which would be efficient for a
7090 (three index registers, one accumulator) would undoubtedly be exiremely
inefficient on a IBM/360 architecture (16 fixed-point accumulators/index registers, 4
floating-point accumulators) compared to code generated for that architecture. Since

our goal is to produce efficient machine code we must find such a soidtion

unsatistactory.

Note that this rejection of the UNCOL-class of solutions is based upon a stated

goal of efficient object code. The validity of this solution is not questioned for those
cases where portability is considered a more important goal, although we expect that
the long-term results of our research will make it possible to achieve both portability

and efficiency.

1 A one-address machine without an explicit accumulator [Ste61)
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If we treat the SNOBOL Implementation Language (GIL) as an UNCOL-like notation
(although admittedly for only one source language), we find that it produces a system
about three times larger and three times slower than an equivalent non-portable
system (SITBOL, see [Gim74]). SITBOL is, however, not portable outside the
environment of a PDP-10, and users who wish to produce portable SNOBOL4 programs
must only usc the SNOBOLA-compatible subset of SITBOL.

he conclusion here is that with current techniques one tends to sacrifice speed
2nd size for portability; not just by a few percent, but by large factors. These factors
are especially significant \f one considers the large community of minicomputer users;
the machines possess both small address spaces and small physical memory. A factor
of two in the size of a program is extremely important here. A system which
preserves machine independence at the cost of physical size may not actually be
portable if programs cannot operate in a large class of real machines.

Standard [anguages

Another approach is to define an "abstract machine" in terms of some high-level
language, i.e. an Algol, FORTRAN, PL/1, or APL "machine”, and then provide a mapping
from this to a real machine. This approach has suffered from the lack of a notation for
the specification of the semantics of such languages, ambiguities in the specifications,
and/or errors of commission and omission in the implementations. This is further
complicated by extensions which each compiler embodies which are not part of the
standard. Note that although the previously listed languages in fact have “standard”
definitions, it is rare that a complex program operating in one environment can in fact
be transferred to another environmenl, indepenc2nt of issues of machine word length,

floating point precision, or radix of internal representation. Agaln, we note that
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SNOBOL4 as implemented in SIL avoids many of these problems by defining a standard

implementation, not just a standard definition.

Problems with optimizations

Nearly all optimizing compilers embody certain assumptions about the data upon

;A/hich they operate. For example, nearly all such compilers make the assumptian that
"As-(-A)" is true, and thus collapse unary minus operations [Fra70, KKR65). This
j equivalence is only valid as long as one assumes that no variable takes on the largest
possible  negative value wnen the hardware uses two's complement
representationl. Compilers  which use this equivalence assume that
I the largest negative number i1s an "unlikely” occurrence. On the other hand, they will

naturally assume that the value O is a common occurrence, and thus not use the
{ equivalence "(A/(B/C))=((AsC)/B)", even though floating point multiply is often
substantially faster than floating point divide. (Note that we ignore for a moment the
issue of floating point accuracy of the result).

Beatty [Bea72] refers to the former as a use of an axiom in its "permissive
role”, and the latter as the use of an axiom in its "strict role". The decision of whether
to interpret an axiom in its strict or permiscive role seems to be based only upon a
stochastic model of values, which probably bears no resemblance to the actual values
encountered in a given application. In particular, there are a large number of axioms
which, when used in their permissive roles, can be employed if the range and accuracy
of the data is known, but which must be rejected in the general case. This leads to

¢ the desire to be able to specify these to the compiler.

| { In two’s complement the largest possible negative number is -2" (for n bits of
representation) while the largest positive number is 27-1. The negation of the
largest possible negative number, which we denote as -0, does not exist.
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Certain well-known “good” programming practices can also result in poor object
code. For example, modification of the program is easier if certain knowledge is
iocalized rather than distributed throughout the program. One example is the
specification of indices to arrays of data. In languages such as FORTRAN one stores
structured data in several n-dimensional arrays, where the indices of certain data are
iixed. Thus A(l,l) would be a particular field of the data stored in array A, A(],2)
another field, etc. The only way to localize this knowledge is to associate it with a
symbolic name in one (and only one) place and thereafter use only the symbolic name.
There is no way to do this in FORTRAN except by the DATA statement or dynamic
assignment, both of which leave the assumption that the value can be changed, when in

fact this (should) never occur. Even very good compilers such as H-level FORTRAN on

the IBM/BSO can be made to reject the assumption that a certain variable has one and

only one value. Admittedly this is one of the many major defects in FORTRAN as a
language, but it shows how a simple lack of knowledge about the data can profoundly
influence the efficiency of the object program.

The conclusion from such behavior is that it would be desirable for the compiler
to know something about the data on which the program will operate. In one mode of
use, this knowledge would allow the compiler to generate checks that the data is within
the assumed bounds. This would make it possible to detect errors caused by invalid
assumpiions or incorrect data. From our viewpoint, it also makes it possible for the
compiler to select optimizations which would normally be considered “"unsafe” (such as
COMMON data prohibiting certain optimizations in FORTRAN), or tn avoid optimizations

normally considered "safe" (unary minus).
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Goals of research

Qutline of poals

This research addresses four related issues:

1. Simple, rapid, and inexpensive construction of compilers,
2. Construction of correct compilers,
3. Construction of highly optimizing compilers.

4. P-ogram portability.

As we have seen, there are a large number of techniques for rapidly
constructing “front ends" {or compilers to handle syntax analysis, consistency checking,
and similar issues. There are also efficient techniques for detecting potential global
optimizations. The mapping between the intermediate reprgsentation and the object
code presents the most difficulties, consumes the most time, and is most prone to
error. When we add the constraint that the object code must be highly efficient, we
increase all of these problems by several orders of magnitude.

1

We wish to produce a compiler which produces optimum! code

along some metric (such as tim, Space, memory accesses, etc.). This should be a real,

There is some controversy about the use of the word "optimum", In fact, we
have no analytic lower bound which we can use to judge whether we have
achieved optimality, or come within some specified distance of it. One author has
suggested the use of the phrase "code amelioration” as an alternative. Painter
(Pain70] has suggested a measure of “effectiveness” of optimizations, which is a
measure of how well an optimization decreases the cost function over that of the
unoptimized version. We will define “optimum" for our purposes as meaning "the
best that can be done using all available knowledge about the program structure
and machine characteristics”. Our goal, then, is to maximize the effectiveness of a
compiler by making as much of this knowledge as possible available to it in a°
usable form.

l2.1
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production compiler to be used for large programs designed to solve complex.
problems, We are less concerned with the amount of time required to compile the
program (within reasonable limits) than with the cost and accuracy of the object code.
We wish to produce a compiler whicii can accept and use knowledge about the data
upon which the object program will operate. Thus we will gain in two ways: (1) we
will be able to use optimizations based upon known characteristics of the data (eg., if
it will ever be zero); and (2) we can compile checks into the object code tu allow the
user to debug the program more rapidly by detecting errors previously undetectable.

None of these are particularly new concepts. Most compilers which provide
dynamic array index bounds checking have an option to defeat it for some or all arrays
(thus asserting that the range of the data will not exceed the limits of the array).
Compilers may also allow definitions of constants at compile time, or explicit
specification of the exact values which a variable can take (see, for example, PASCAL
(Wir71] and MARY [CH74)). ‘We simply intend to exploit these features more
thoroughly for code production.

The nature ani direction of this research was influenced strongly by the
BLISS/11 compiler. Thus it is difficuf.t to explain the exact score of the research
without first presenting the context in which {he results must be viewed, the structure
of the BLISS/11 compiler.

The choice of the BLISS/11 model was based on three considerations: (1) it is
necessary to choose some model of the compalation process; (2) the BLISS/11 model,
although not a "natural” Jecomposition by traditional standards in fact achieves
substantially better performance than previous compilers; and (3) the choice of the

BLISS/11 model is not restrictive, since it is more general than the conventional
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compiler model. It should be noted here that the portion of the compiler we are
interested in is largely independent of the syntax of BLISS, since it treats only a tree
representation of the program. Although a great deal of power is realized because of

the GOTO-free nature of BLISS, the optimizations realized because of this are largely

independent of the issues we are concerned with,
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BLISS/11

The BLISS/11 compiler [Wu71, Wu73] converts programs written in the BLISS
language [Wu70] to code for the Digital Equipment Corporation (DEC) PDP-11 '[DEC71].
BLISS/11 is a highly optimizing compiler, performing exte ..ive global and local
optimization. The compiler itself is partitioned into several phases; a simplified
structure is shown in Figure 3. The results of this thesis will be biased
toward this structure, as discussed on page 26. A detailed description of the various
portions of the compiler may be found in [Wu73} the descripticn here will be

superficial except for those modules of particular interest.

LEASINFLO
A
N\
source A texan A syNtax FLOWAN DELAY
TNBINO ooE 2 FInL > object

Figure 3: The structure of the BLISS/11 Compiler

Lexical and syntactic analysis are straightforward. Lexical analysis is done by a
finite state machine model, and syntax analysis is performed by a recursive descent
parsing algorithm. One fact worth noting about the syntax analyzer is that it detects
and marks common subexpressions (cse's) "on the fly". Also, it performs nearly all
compile-time arithmetic. The resultant tree representation (or more correctly, directed
acyclic graph (aig) representation) is then presented to the global optimization

detection module, FLOWAN. which is part of LEXSYNFLO. FLOWAN detects all feasible

global optimizations, based on the concepts and notations of Geschke [Ges72). The
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output of FLOWAN is the tree representation of the program with threads added to link
together common subexpressions and indicate the feasible optimizations (e.g., code
motions).

The remaining modules, DELAY, TNBIND, CODE and FINAL, perform the functions
classically included in a single "code generation" module. The distribution of functions
was chosen to maximize the amount of knowledge available when any given function of
code generation is carried out.

Briefly, DELAY performs a pass on the tree and "suggests” optimum code
sequences. TNBIND performs the resource allocation of registers to abstract registers
(called "temporary names"). CODE is a ‘rather straightforward code generator, although
it performs more extensive case analysis than most coue generators. FINAL performs
some sophisticated "peephole” optimizations which are based on code adjacency
relationships. Most of the concepts involved in these modules are independent of the
syntax and semantics of BLISS.

After we have processed the tree through FLOWAN, the output is presented to

DELAY, which in BLISS/11 bas the following functions:

“(1) to determine the “"general shape” of the ultimate object code to be

produced; (2) to form an estimate of the cost of each program segment;

and (3) to determine the evaluation order for the expressions in a

program segment" [Wu73].

Note that DELAY does not actually produce any code; it sets flags, computes costs, and
indicates desired register usage (desired register usage is not atways feasible). This

information is used to produce code at a later stage in the processing (the CODE
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module). DELAY employs a set of heuristics and is based upon a set of assumptions
which in fact are very effective, as can be deduced from the performance of the
compiler in producing optimized code. However, it is possible to construct programs
for which the heuristics fail and/or the assumptions are violated. In such cases the
compiler will revert to simple (non-optimized) code production for the offending
expression. In some rare cases, such as the use of unary minus, the compiler may
produce incorrect code by interpreting the double-negation axiom in its “permissive”
role (see page 23).

One of the assumptions made by DELAY is that the machine has an infinite
supply of registers. Thus it assumes that results may be placed in registers. In
particular, when a value is used to index into a structure, it Is often possitie to employ
the indexing ability of the hardware to accomplish part of the effective address
calculation required. It is convenient and desirable to assume that the index value is in
a register. Note that unlike many similar approaches to code generation, DELAY in fact
performs no register assignments to real registers; it uses absiract registers referred
to (in the BLISS implementation) as "temporary names”. It is the responsibility of a
later module, TNBIND, to bind these temporary names to physical hardware locatiors.

The output of DELAY is the tree representation of the program with flags added
to indicate sign and location preferences, result types, etc. TNBIND takes this as input,
and using the flags added by DELAY, information about the program flow (so that
result litetimes can be determined) and knowledge about the behavior of CODE, binds
the termporary names to physical locations, TNSIND knows (in the sense that the
knowledge is part of the coding of TNBIND) the cost tradeoffs that will occur when

certain results are kept in registers instead of in memory (or on the stack).

1.2.6
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The fact that temporary names cannot always be bound to registers means that
TNBIND can (and often does) change the estimated cost. In all cases TNBIND attempts

to assign registers for the highest-cost computations, and do it in such a way that any

other perrautation of assignments would incur a higher cost. The determination of

these cost figures is a complex process which takes into account the "known" behavior
of the CODE module given the characteristics of the PDP-11. To produce a8 TNBIND
module for any other architecture would involve nearly as much effort as constructing
the original version. TNBIND cannot, with its current algorithm, produce optimum
bindings based upon complex lifetime considerations. The general register-assignment

s the subject of current research [John74)  However, any

problem
general solution must be able to cotain accurste cost data without requiring that the
compiler-builder code "by hand" a special machine-dependent routine which performs
this calculation,

The output of TNBIND is again the tree representation of the program, with the
bindings indicated. CODE takes this as input and produces
relocatable? machine code. This is presented as a doubly-linked list
to FINAL, which performs a set of machine-dependent vplimizations based upon the
control flow of the machine code and the machine characteristics. This is roughly

analogous to the “peephole optimization" [McK65) performed by many compilers. and is

discussed in more detail in [Wu73). The output of FINAL is the object program in a

As opposed to the general-register assignment problem.

In a more abstract sense than "relocatable by the loader”. The code has not yet
been commitled to any particular physical relationship with any other segment of
code (see [Wu73], section IV.5).
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suitable form for loadings.

The BLISS/11 compiler structure is used as a model here because it is designed

with the goal of maximizing c0mpiler.effectiveness by making as much information

Admittedly, certain heuristics are used where complete algorithms are not known, do
not exist, or are prohibitively expensive. The lack of complete algorithms in such
places results in incomplete use of knowledge or incomplele generation of knowledge
for later use. However, the effectiveness of the compiler is quite high, and the
discovery of complete algorithms or better heuristics for generation and use of
knowledge does not seem to imply a2ny mzjor restructuring of this decomposition.

One of the major problem areas in the design of a machine-independent compiler

is to properly partition out the rachine-dependent assumptions which are used in code

production. If we are attempting to build a compiler-compiler, we must also be careful

to partition out language-dependent concepts.

The classical compiler-compiler method tends to defer the machine-dependent
aspects to the code-generation phase of the compiler. It sheuld be pointed out,
however, that language-dependent issues (in particular, scope of names) are not
usually addressed at a sufficiently abstract level. In the case of scope of names, for
example, compiler-compilers either presume static (FORTRAN-like) aiiocation, or nested
(Algol-60-like) allocation. It is typically difficult or impossible to implement complex
scopes, such as those of SIMULA-67 [Dah67], OSL [AI71] or ALPHARD [Wu74].

If we intend to produce a compiler-compiler which in turn will produce compilers

3 Actually, BLISS/11 outputs symbolic assembler code. The reasons fcr this decision
are irrelevgnt here.
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with a BLISS/11-like structure, it is important to realize that language issues are not
easily separable from what have been classically thought of as "machine-dependent”
issues. The detection of feasible global optimizations depends heavily upon the ability
to change the implied execution order of arbitrary statements. The cases in which the
re-ordering is permitted, or is rot permitted, depend only upon the formal definitior.\ of
the language, and should not be considered an integral part of the syntax analyzer.
Specific assumptions about the characteristics of the target machine must also
be removed from the implerrentation. For example, DELAY assumes that the unary
coniplement prooerty of the unary minus operator. As we have mentioned previously,
unary minus is in fact not a unary complement operator on any machine using 2's
complement arithmetic (as the PDP-11 does). Although the cases in which this
assumption is violated are rare (thus justifying its use), there is in fact no way of
removing this assumption if the need arises. There is a need to decouple such
assumptions from their actual implementation, This is related to the concept of

decoupling the policy and mechanism -components of a system [Jon73, Wu74). The

collapsing of unary minus ¢nerations is a mechanism for performing an optimization;
the decision to do this 1s a policy. In the current implementation they are not
distinguishable; in future implementations we expect they shall be.

One of the results of our work here is to be able to provide DELAY and TNBIND
with specific cost data for each possible code sequence which can Le cmployed to
evaluate a node. Since this cost data is derived from a parameterized description of a
machine, it now becomes separable from the actual implementation of DELAY and
TNBIND; the optimization phase and register allocation phase should then become

machine-independent.

12.9
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Scope of research

The long-term goal of this research i1s to make it possible to automatically
prodt_Jce a compiler from a language and machine description. In turn, this compiler will
produce code at least as good as that produced by the best current optimizing
compilers. The immediate goal, i.e., the scope of this thesis, is restricted to the area of
machire~dependent code generation.

There are three major aspects of this research. They are: (1) developing a
notation which allows the specitication of the behavior of machine instructions; (2)
developing a set of strategies, using this notation, for code generation in a compiler;
and (3) developing a set of methods which may be used in a compiler-compiler to

construct machine-independent optimizing compilers.

The need to specify the behavior ¢t a machine instruction is not new. Informal

or prose descriptions are the conventional method, and although they are usually
readable they are sometimes incomplete, incorrect, or subject to misinterpretation.
Some formal notations are biased towards specific machine implementation strategies
(such as microprogramming) and in fact are used to derive parts of the implementation
directly (such as the microcode). One of the more readable notations is ISP [BN71),
which  has a form similar to most programming Ianguagesl. Such
notations are designed to present the user with formal, unambigusnus descriptions of
the behavior of the machine. Qur notation is designed with a similar intent, but is
biased toward our application, the generation of machine code for a given

Ianguagez.

For a survey of several such notations, see [Bar73]

The notation was designed to be easily manipulated by a compiler or compiler-
compiler. The intent was, in fact, that simple encoding techniques wouid reduce

12.10




{ Goals of research : 35

| Common to all compilation methods is the specification of v'hich code sequences
realize a given language construct. These are typically specified as code skeletons,
called templates, which contain formal parameters. When a template is chosen by the
compiler, the actual parameters (memory locations, variable names, etc.) are substituted
for these formals. In many code generators, only one or two templates are used for ¢
each 'anguage construct; however, in any real machine there may be many equivalent
code sequences, with varying costs and side effects. The goal of an optimizing

compiler is to choose the lowest cost sequence.

Ei———

One ‘of the problems in constructing an optimizing compiler is deciding which
code sequences are semantically equivalent. An error on the conservative side may
omit valuable optimizations; an error on the liberal side may produce more efficient
code which is incorrect (i.e., nonequivalent in certain cases or for certain values of the
data). Given that we have expressed a machine’s behavior in our notation we will be
able to discover all semantically equivalent code sequences and the conditions under
which they are equivalent. We will also be able to attach very specific cost data to
each.code sequence, thus allowing a compiler to select the cheapest code sequence for

known conditions.

e

'- The discovery of semantically equivalent code sequences |s subject to
combinatorial complexity. Many possibilities must be explored before an actual code

sequence (or template, in the conventional code-generation sense) is discovered. Thus,

e T e

we uce a preprocessing program to perform the exploration, and its output is a set of

- a sy e -

! tive notation to an easily processed bit-level representation inside the machine.
Part of this notation has been based on that used in the BLISS/11 compiler
[Wu73] where it in fact does have a bit-level representation and thus sarves as
an existence proof of the feasibility of this conversion.

l2.11
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templates with cost data and input-output relationships attached. The compiler then
uses this data to choose the best code sequence for any given language construct. If
the compiler is designed in such a way that this choice is based entirely on the data in
Fhe templates, with no built-in assumptions about the machine, then it should be
possible to Isubstitute a set of templates for another machine and have optimized code
produced for that machine. Thus we achieve a substantial degree of machine
independence.

Note that the selection of code templates is not the only machine dependent
portion of the compiler. The modules for register allocation, machine-dependent code
optimizations which are based upon the effects of concatenating codepieces, and
interface to the loader (or equivalent) are also involved. Thus we suggest a compiler-
compiler solution which attempts to parameterize as many of these functions as
possible.

We postulate a compiler-compiler structure such as that shown in Figure
4. Each module in the system requires knowledge of certain properties of
the language or machine, and produces a specific piece of the compiler. Note that the
output of each module is illustrated as being a portion of the compiler; in fact, it may
only be the data necessary for some other translation process to generate the
required piece of the compiler. The single-step operation is indicated here for
simplicity. The various pieces of knowledge required to ¢ 1struct a compiler are:
Syntax specification

A context-free grammar which specifies the parse rules for the source

language.

l2.12
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Figure 4: A Compiler-compiler structure

Semantic specification
| The speciiication of bindings, declarations, type consistencies, coercions,

elc. necess;ry to determine that the program is properly constructed, that
operators in fact apply to their operands, etc. These semantic
specifications do not indicate mappings into machine code.

Language axioms
A specification of the permissible equivalences which may be used in
evaluating a program. Generally, these will be axioms about allowable
arithmetic transformations, such as 'A+B » B+A", but can also include

certain implementation-dependent specifications, such as "Vl , 1< 32767"

or "YA | A #-00 5 A m-(-A)",

1.2.13
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Flow ax.oms
These axioms specify allowable alterations the compiler can make in
evaluation order, rules for common subexpression detection, and rules for
various code motions. The flow axioms could, for example, be expressed
in a notation such as that developed by Geschke [Ges72).

Machine Description Language (MDL)
This notation will specify all the relevant information concerning the
behavior of the target machine. For the sake of discussion we could
consider this the ISP description of the machine [BN71), although in fact
we require a more robust and rigorous definition of the machine. Also,
the MDL notation must be rich enough to provide the diverse types of
information required by DELAY, TNBIND, and FINAL, which take somewhat

different views of the world.

Binding rules

The binding rules describe the strategy to be used in determining how to
‘bind real machine resources (such as registers) to the virtual resources
allocated by the compiler (temporary names). The relative costs of
various storage heirarchies, and the costs of transferring information
between them, can be deduced from the (ideal) machine description
language.
We consider the development of the general notations for the machine, language
axioms, and binding rules to be part of the future research which will follow. Some of
the issues involved in the development of machine descriptions suitable for a variety

of applications are the subject of current research; for example, see [BS74).
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Given that we have a notation, or set of notations, suitable for describing the
characteristics of a language and a machine, we must convert the informativn
expressed in these notations into a form suitable for use by a compiler. As illustrated
in Figure 4 we assume the existence of programs capable of effecting this
transformation. We will concentrate here on the template generator, the key to

producing a DELAY module.

12.15
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The Compiler Model

Given that we have generated a set of templates, we must now devise a
compiler structure which uses them effectively. As stated earlier, we have adopted

the BLISS/11 compiler structure for the purpose of this thesis. In this context, then,

the module we are particularly concerned about here is DELAY. In the current

BLISS/11 compiler, DELAY makes a recommendation to TNBIND and CODE, indicating
which code sequences will be optimum, assuming that TNBIND can satisfy the
assumptions made about register binding. Should these assumptions prove to be
infeasible, in the sense that TNBIND cannot satisfy them, then less than optimal code
will be produced. It is also the case that the model used by TNBIID to choose the
least expensive fe: ible binding is based upon knowledge about how CODE will actually
generate code from the recommendations of DELAY and the bindings of TNBIND. The
result is a very large and complex TNBIND, which contains knowledge of CODE
distributed widely within itsclf. Thus any change to the behavior of DELAY, TNBIND or
CODE can affect either of the other two modules; the result can be either suboptimal
code or incorrect code, depending upon the changes. This interdependence has had a
serious impact in two areas of compiler development and maintenance: it has made
debugging of the compiler quite difficult at times, and it has made it difficult to predict
the impact of any new optimization being added to the compiler.

Our new version of DELAY produces not one recommendation for the entire tree,
but a set of recommendations. We could view DELAY as producing a forest of trees,
Ty Toy o Ty for a single input tree. This forest can be ordered so that if C; is the
overall cost of tree T;, then i<j > C st. The only difference between any two trees

Tj and Ty is the set of possible bindings which TNBIND will assign.

12.16
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At each operator node in the tree, DELAY can select one of several code
sequences depending upon the state of the operands. Therefore, to choose a code
sequence, DELAY (recursively) examines each of the subtrees, and upon return selects
all possible code sequences which are feasible for the operands obtained. There is a
mechanism, discussed more fully on page 65, which guides the search of the opsrand
subtrees to insure that a maximum number of code sequence§ will be found.

THe behavior of TNBIND is now much simpler. It examines all the alternative
trees in the order presented, and for each tree determines whether or not it is
teasible. Thus all TNBIND needs to do is choose the first tree for which a feasible
binding can be found. Note that in some cases it is impossible to find a feasible
bindingl, in which case the program cannot be compiled.

The behavior of CODE is likewise greatly simplified. It only has to perform an
endorder t.reewalk on the chosen tree, collecting the code and substituting the actual
bindings for the formal bindings in the templates. The resultant code sequence may

now be passed to FINAL for terminal processing.

Such is the case in BLISS/10, which requires a register for the controlled variable
for every INCR/DECR loop. An attempt to nest loops deeper than the number of
available registers results in a program which is impossible to compile.

12.17
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Orthogonal issues

Several issues will not be treated here, because they are either irrelevant or
subjects of other research. These may be summarized as follows:

1. Code generation for parallel machines (CDC6600/7600, ILLIAC-1V,

STAR).

2. Global program optimization.

3. Register allocation.

4, Formal program equivalence

In constructing programs for parallel machines, particularly the array or stream
processors, one is concerned primarily with structuring the algorithms and/or data to
take advantage of the architecture. Code generation for such machines involves
recognizing explicit or implicit structures in the program which lend themselves to this
type of processing, such as the COC-STAR version of LRLTRAN [Zw75] or the ILLIAC-
IV version of FORTRAN, IVTRAN [MM75, PJ75] are being designed to do. Code
generation for machines with parallel or pipzlined computational units, such as the
CDC-6600 or the 360/91 and 360/195 involves organizing the computation so that as
many computational units as possible are utilized as efficiently as possible. This
sometimes involves knowing the actual data paths used in transferring results
internally [IBM69). These aspects of code generzlion are complete research areas In
their own right, and are the subject of ongoing research elsewhere.

Global program optimization has already been investigated [CS70, Ges72) and,

since it is machine independent, is not treated here. Note that the results of global

optimization may in fact influence the optimality of local code, and we will consider the

results of such optimizations.
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Register allocation, or the assignment of particular locations for intermediate
results, is an extremely complex problem. It has been worked on since the first
FORTRAN compilers, and a discussion of the problem is included in nearly every paper
on compiler construction. For certain 2ssumptions, such as commutativity or
associativity of operators, particular machine architectures, or absence of common
subexpressions, there exist algorithms which minimize code sizc, register usage,
intermediate stores into memory, etc. One such result is given by Sethi and Ullman
[SU70), and they cite earlier results.

Register allocation algorithms which minimize code size, intermediate storage into
memory, etc. usually work only in the absence of common subexpressions. There are
also problems in languages such as BLISS/11 [Wu71, Wu73] where the programmer
can make explicit bindings of a name to a register, or where the compile’r will implicitly
bind a local name to a register. The problem of register allocation is then complicated
by the “lifetime" of a result, i.e., the time a result which will be re-used resides in the
register. This problem is being investigated by Johnsson [John74), who cites earlier
work in the field.

Formal program equivalence, the proof that one program is semantically
equivalent to another, is likewise the subject of ongoing research. It is pointed out by
Aho, Sethi, and Uliman [ASU70] that some earlier results by other investigators have
shown certain equivalence questions to be unsolvable, such as the equivalence of two
arithmetic expressions if absolute value and/or trigonometric functions are permissible
operators. The problerns of formal proofs of program equivalence are 50 complex that
there are not yet 1wny "practical" results. The classes of machines, problems, and
results are still too restricted to have applicability in compiler construction for real

languages on real machines.
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While all of these topics bear on the opic of this ihesis, they are not treated

here; each represents a major research area in its own right, which can be explored

independent of this research. Although we will use the results of research in these

areas in the construction of our ultimate compiler-compiler system, the scope of this

thesis is such that most of these issues are not immediately relevant,
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Chapter i

Methods

Introduction

In this chapter we shall develop a notation which can be used to express the
behavior of machine instructions. By using this notation, we will illustrate a set of
methods to be used in discovering code sequences for compiling a given language
cclmstruct. In the next chapter we shall show how this notation has been used to
implement a prototype system for discovering code templates.

Introduction to attributes

We shall characterize the behavior of machine instructions in terms of their
input-output relationships. Each machine instruction has a set of conditions which must
be true before it can be executed, and it produces a set of conditions as the result of
its execution; these are often refer;'ed to as "preconditions™ and "postconditions”. We
wish to describe these preconditions and postconditions in a form that can be
manipulated by another program in order to find a sequence of instructions with the
desired overall behavior.

The techniques used in this thesis are standard methods of artificial intelligence.
Although simple, they have demonstrated the validity of the proposed solution.
Investigation of methods for general problem solving lies outside the scope of this
thesis.

The method used here follows the paradigm of means-end analysis given by

IL11
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Ernst and Newell for GPS [EN69]. The basic problem faced by such a program is to

take a state description which represents an initial state, and a state description which

represents a "solution" state, and transform the initial state to .he solution state. The

operations required to effect this transformation then reprasent a solution of the

problem.
. The technique is applied recursively. The program, in a given state, examiyes
the current state of objects and compares this state to the desired state ("goal state").
; If it discovers that these two are not "equivalent" then it searches for an operator
which will reduce the difference between the current state and the desired (goal)
state. A set of such operators may exist; some criterion is applied to decide which, if
any, of these operators are to be applied to the curront state to achieve to goal state.
E Note that although an operator may reduce the difference between the current state
and the goal state it may not directly achieve the goal state; furthermore, there may
be no other operators which can act upon the reduced state to reduce the differences
still further. In this case it is necessary to "back up" and attempt another operatcr (it
available) to reduce the difference between the current state and the goal state. 1iis
process will continue until there is no longer any difference between the current state
and the goal state, or until no operators remain to be tried. In the former case the
i succession of operators represents the complete reduction operator from the current
state to the goal state, and may now be stored away as a single operator, if desired; in

the latter case, failure is reported, and the search will return to a higher level

(previous state) if one exists, otherwise there is no solution. The initial state
description and the "solution" state descriptiun are taken as the initial "current" and

"goal” states, respectively.
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We do not implement GPS to solve this problem. Indeed, to use the “pure" GPS
paradigm requires that the program discover a great deal about what it is trying to
solve. Instead, our system contains a great el of specitic knowledge about its task
domain and how to explore it. In addition, information is stored in rigidly defined
structures, and the knowledge of these structures is an integral part of the program.

A significant deviation from the GPS approach is that we cannot accept any
solution, but must discover the best solution. The optimum solution may not be the
first solution found; in particular the optimum local solution may not be the optimum
global solution, so we must discover all solutions. It is not until an actual program is
compiled that sutficient information is available to choose any one particular solution
over the alternatives.

L which have been

The objects we operate on are parse trees
processed through some global optimization phase of a compiler. There is no loss of
generality in assuming that the tree is structured as in the BLISS compiler [Ges72,-
Wu73}; indeed this structuring is more general than that encountered in most other
compilers. At each node of the tree we have the typical representition: an operator
for non-leaf nodes, with n descenadants for each of the n operands of the operator; the
name (or a symbol table pointer, or some other equivalent datum) of the symbol for
leat nodes. In addition to this conventional information, we include a set of property-
value pairs at every node which describe relevant properties of the node. Typical
examples mizht be the location of the value computed at the node (memory or register)

and whether or not the value is required at a later time, or can be destroyed once it is

used (common subexpression).

Or directed acyclic graphs (dags). Although the current implementation in fact
only generates trees this is not an inherent restriction in the system.

1.3




Introduction

In order to distinguish the operalors which manipulate objects during the search
from other types of operators, we will make the following distinctions: operators which

manipulate objects during the search are called transformation operators or T-

operators; operators of a source language are called language operators or L-
operators; and operators in the machine we are considering are called machine

operators or 4-operators.

T-operators on objects are of two kinds: those which compute the result of
applying the L-operator to its subnodes, and thus represent an evaluation of the tree,
and those which transform a subnode into a form which can be operated upon. Ttus

latter {orm of 7-operator is similar to the transfer function of Hopgood [Hop69, pp

78f). Hopgood specifies tran<fer functions as properties of unary operators (not
necessarily  unary  complement operatOrsl; such unary  operators as
FiX, FLOAT, ABS, and -ABS are included). Transfer functions are applied to the tree

representation to delay the actual evaluation of the unary operators; the result is that

certain unary operators become absorbed (in much the same manner as unary

complement operators) and need never be explicitly applied.

When we examine a machine architecture, we find that many M-operators are
defined only over a restricted domain. In the mathematical sense, arithmetic operators
are defined only for results which can be represented within the finite precision of a

machine word. However, this is only a simple example of why M-operators are

A unary complement operaior is an operator which when applied twice to the
same operand produces no net effect. In common algebra, such as the field of
real numbers, unary minus is a unary complement operator, i.e, -(-A)zA; in
Boolean algebra it is the "not” operator: ~(~A)zA; over the field of real numbers
we also have the multiplicative inverse: (1/(1/A)zA. Specific use of the unary
cumplement operators will be discussed later. See also Frailey [Fra70]).

11.1.4
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"partial” functions. In a conventional generai register architecture, an M-operator sucn

as "ADD" is defined only if one of its operands is in a register and the other in

merory. If both operands are in registers, then there might be another M-operator,

i "ADR", which is defined for this condition. One of the iunctions of a compiler is

therefore to map the operands of an M-operator into the location range over which

the M-operator is defined.
We associate with each L-operator a set of M-operator cequences which effect

the computation desired; for example,- the machine-language instruction (M-cperator)

! “ADD" ', associated with the source-language operator  (L-operator)

vool  We then explicitly state the domain over which the M-cperator

is defined. As we process the tree, if we find that the subnodes of a given node fall

within the domain of the M-operator sequence associated with the L-operator at that

node, then we can state that the M-operator sequence represents the "compilation™ of

that L-operator. The problem becomes more complex when the subnodes do not fall

within the domain of any M-operator sequence associated with the node. This, in fact,

is the typical case encountered during compilation.

In the case where one or more subnodes of a given node do not fall within the

domain of (any) M-operator sequence which evaluates the node, we search for some

way of transforming the offending subnodes into a usable form. To accomplish this we

compute the difference between what we have (current state) and what we need (gnal

¢ state). We then sear:h for some “difference reducing operator” which eifects the

transformation. For example, if we have an ADD instruction which requires one of its

1 The method for determining this association constitutes an entire research
problem in its own right, and discussion of it will be deferred until a later section.
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operands in a register, and both of its operands are in memory, then one of the

possible difference reducing operators is that one which transforms an operand in

memory to an operand in a register, e.g., a LOAD instruction.

One of the desired goals of a compiler is to priluce the minimum
costl  code sequence (M-operator sequence) which evaluates a given
tree. It is therefore necessary to explore all possibilities which represent evaluations
and eliminate those which exceed the least-cost solution and are semantically
equivalent to it. This semantic equivalence is also related to the effect of a machine
instruction (M-operator) on the global program state in the context in which the M-
operator sequence is executed. It is therefore necessary to express the global
program state conditions under which an M-operator sequence may be applied, and the
resultant transformation in this state.

Note that achieving this goal results in a deviation from the normal GPS goal-
search technique. In GPS, any operation which reduced the difference between the
initial state and the goal state, such that the goal state could eventually be reached,
was satisfactory. Here, we have the additional constraint of requiring a minimum-cost
transformation. The determination of minimum cost is complicated by the fact that it
depends upon a context more global than that of any single node. The minimum code
sequence for a subtree may not result in optimal evaluation of its parent tree; what
appears to be suboptimal code for a.subtree may be, overall, more efficient. Note

particularly in the context of the BLISS/11 compiler structure that absolute cests

Note that "cost" is treated in most of this work as an abstract concept. It could
be memory cycles, code size, register requirements, or something even more
complex; only the concept of cost is involved, not a specific set of parameters to
be measured

I1.1.6
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cannot be determined until TNBIND has assigned locations to temporary results, and

that this allocation depends upon accurate knowledge of the cost that each alternative
allocation will incur. We cannot, therefore, accept either the first sequence which
salisfies the expression, nor the locally best sequencz; it is necessary to obtain all
sequences (modulo semantic equivalence). The general soluticn to the determination of
semantic equivalence of code sequences is another complete research area and outside
the scope of this thesis; however, it has been shown for some cases cited in [ASU70]
that the problem is unsolvable. The current implementation assumes all sequences are
uniqt.;e.

Global side effects introduce an additional dimension of freedom. All M-
operators have side effects, but not all of these are relevant. For example, an ADD
instruction sets the carry and overflow bits, but if there is no test of these bits in the
program the side effect is not relevant. The relevance of such side effects depends
upon context and therefore changes from site to site within the program.

It should now be obvious why we are approaching this from the viewpoint of a
compiler-compiler. The entire process just described is much too slow to be included
in a compiler. Compilers must be reasonably efficient, and not much more complex
than a simple finite-state automaton when processing; each node during code
generation. The research described here represents only one small portion of an
actual compile. -compiler. The task of the system described is to derive the templates
which would be used in some fairly conventional code generator. However, since it
does this derivalion by exhaustive search, it is more likely to find all the obscure cases
and unsuspected equivalences than most hand-designed sets of templaies.

It is poiried out by Wulf (who is ~prtainly not th» first to discover it!) that the
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generation of code templates (specifically, the case analysis required) for a real
compiler "represents a substantial amount of intellectual effort, has been modified
many tlimes as new cases were uncovered, and still has no guarantee of being

exhaustive” [Wu73, p.81] Extensive case analysis was required, to guarantee both

efficient and correct code. In particular, when the compiler generated incorrect code it

required extensive effart to locate where an incorrect optimization was first chosen.

We hope to substantially reduce this effort by not choosing incorrect ootimizations!
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Attributes

Attributes (informal)

Motivation for using attributes

In the next section we formally define attributes. The intent of this section is to
provide an informal motivation for their need and use.

It was previously mentioned that M-operators are partial functions over both
the values they operate on and the locations in which the values may be stored.
Compilers do not generally concern themselves with the specific values on which they
operate, but leave this to the discretion of the run-time support system. However,
optimizing compilers must be concerned with the types of locations in which values
may be stored, with certain abstract properties of these locations and values, and with
the sets of M-operators are applicable o these situations.

We therefore assume that all we need to examine is a tree on which all global
optimizations have been performed. We need to produce a set of directives to the
compiler which determine what code to emit for a given construct, given the properties
of the M-ope. ators and the state that the object program will be in when they are
executed. Several existing systems provide notation for thic, including TREEMETA
(CLE69] and the systems described by Miller [Mil71] and Donegan [Don73). The use of
such systems poses much the same problem for the user as most of their predecessors
(although, in the case of the last two, not to the same degree), i.e,, complex case
analysis is required to use them correctly and effectively. We intend to perform this
case analysis exhaustively; this‘is based or the premise that two solid weeks of

comnuter time is cheaper than six man-years of human time, especially since the task,

11.2.1
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when performed manually, involves a substantial amount of debugging time, which is
neither creative nor interesting. 1t will be seen later that the actual case analysis only
involves a few thousand cases for each L-operator.

It should be noted at this point that we seem to be describing a system for
producing input to a compiler-compiler, or in fact a compiler-compiler-compiler.
Beyond a certain level the description of such distinctions becomes quite complex; for
a technique used for describing such interactions see the paper by Early and Sturgis
[ES70). Until we find it necessary to talk in detail about the output of the system we
are building, it is convenient to assume that its output is the code generator of the
ultimate compiler, instead of the data used to create that code generator.

In order to analyze the trees, it is necessary to characterize the problem in a
way which makes it amenable to purely mechanical analysis. We therefore examine the
requirements of the M-operators first. A small set of properties characterizes an M-
operator. Typical properties include the type of machine location (e.g., register or
memory) where its operands can or must reside, the sign of the result relative to its
expected sign (i.e. the treatment of unary minus), whether or not the M-operator
destroys its operands (M-operators of single-address and two-address or general
register machine architectures), and whether or not it affects the program counter
(SKIP and branch instructions) or condition codes (if such exist).

We shall refer to such properties as “attributes”. The prototype system
depends heavily upon this concept. However, it is important to note here that the
system understands only the concept of attributes. There are ro specific attributes
built into the system. Thus "fundamental” concepts such as registers can be totally
ignored, and either a two-address memory-to-memory machine, a stack machine, or a

three-address machine could be handled with equal facility.

11.2.2
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The result of treating such concepts as registers, program counters, condition
codes, etc. as abstract properties of the machine is that there is no commitiment to
any particular machine architecture. The existence of zero, one, or more general
registers, a single program counter, and similar assumptions are not built into the code
generator. This is a significant step toward a machine-independent compiler structure.

The selection of a set of attributes is thus a function of the choice of target
machine, not an inherent property of the language or compiler, ie., for a machine M
chosen from the set M of all possigle machines and for A the universe of all possible
attributes, Ym | m ¢ M, 3A | A ¢ A which defines the relevant attributes for. a given
machine m; it is certainly not the case that for any set A that A will be applicable to
all machines.

In the next section we define a formal relationship, designated <, between sets
of attributes. Informally, the relationship may be characterized as a "more general"

relationship; if A < B, then B is considered "more general” than A. This relationship is

used to search for code sequences, compare current states to goal states, and related

applications,

If we consider a general register architecture for the sake of illustration, we
might consider the question of where to leave a temporary result. The process of
binding a temporary name to a physical location is the function of {WBIND. The DELAY
rmodule may. have indicated that the name should be bound to a register, or that it may
be bound to either a register or a stack location; we could indicate this by stating
"locode € {register}” or "oc,oqe € {register, stackj”. The latter constraint is more
general, and we could indicate this by writing {register} < {register, stack}. This is
only one example of the use of the < relationship; it is more complex when the

properties represent disjoint attributes.

11.2.3
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With this as background, we now give a formal description of these attributes.

Attributes (formal)

The property-value pairs which we associate with each node are called
attributes. We will now give a formal definition of these attributes.

Let ?={ N, N, ... } where each symbol N; is referred to as an attribute name.

Let ¥;={ Viy, Vip - } where i € Q1. The symbols Vij. are referred to as attribute
values.

Let AU={ <n,V> | n ¢ 0, V c ¥, }. Each pdir <nV>is a particular attribute with a
set of values and is referred to as an attribute-value pair or A-V pair.

We define a partial ordering s over subsets of each U; by the common subset

relationship ¢!

, L.e,

for Vi, Vo € ¥, V] sV iff Vi c V).

Note that < is not defined across value sets with different indices, e.g.,, for some
V1€¥; and Ve, if] implies V) < Vp is undefined?.

We define the symbol "=" such that for any sets X, Y: X = Y iff XS YA Y S X,

We define a partial ordering < over members of AV as given below. Note that

1 We use this definition (rather than the subset operator ¢ primarily for an
implementation reason: the partial-order predicate is implemented in such a way
that it can accept any two operands of the same type (value sets, attribute-value
pairs, or attribute sets, and will always return the correct result. It is thus
meaningful to use a single operator in the external representaticn as well.

2

Note that the tokens used to designate values are always unique. If we define
Vy={A, B,C} and U,={A, B, C}, it is impossible to determine the meaning of the
relationship {A, B} < {A, B,C}. Internally, these value designators would be
unique, i.e, U would really te defined as {Ay, Blvcl) and U2 as {A,, By, Cz).
Thus, the only predicates that could be posed would be of the form
{Al’ Bl) < {Al’ 81, Cl}’ which is meaningful, or {Al' 81) < {Az, 82,02), which is
undefined. This rather sticky problem can be avoided by choosing unique print
names for each of the values to be considered, or using typed sets.

11.2.4
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the same symbol will be used for all partial orderings; it will always be clear from the
context what is being compared.
For Q;, Qp ¢ AU, and letting .Ql-<nl,Vl> and Qp=<n,,V,>, we define Q) <Qiff
np=np AV <V
Let A3 be any set defined as
;48-{ <n,V> | <nV> ¢ AV}
such that
¥ <npVy><ngVp> €AS, ny=ng = Vy=Vp

_ Note that A3 is a function in the mathematical sense; for each attribute name in

the pairs of the set there is one and only one possible set of values associated with’

that name. We will refer to sets of this nature as attribute sets.

We wish to extend the partial ordering relationship to attribute sets. However,
we must first impose the requirement that both of the attribute sets being compared
contain exactly one occurrence of an attribute-value pair for each name in the set n.
In many cas.,es we are interested in only a subset of the attribute-value pairs, and the
remainder are "don’t care" conditions. We can accomplish this by extending the sets
with pairs of the form <n, U;> for all n, not in the original set. We define the closure,
C(A3), of any attribute set A formally as

C(AS)= AS U { <n, V> | ~ (<0, X> € AS) where X ¢ U]

We can now define a partial ordering < over attribute sets as follows:

AS| S ASH i <V > € AT =+ <nVp> € ClAS) A V) S Vo

As a convention in the implermentation, we make attribute names distinguishable
symbols. Attribute names are denoted by names beginning with the symbol "§". For

convenience, we allow a singleton set of attribute values to be represented as a single

name, e.g. MM & {MEM}.
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Some examples illustrating the < relation are given below. Recall that the

|
|

syrbol "s" may be used to apply to sets of values, attribu‘e-value pairs, or attribute
sets. We allow subscripts of sets to be symbolic names, not just numbers; values are {

; designated by symbolic names. For this illustration we define

? = {SLOC $SIGN}
V0. = {REG MEM CC] i
VUsign = [+ -}

Over some typical value sets, the relationships are:

{REG} <
{REG]} <
{REG} < V|4
{REG MEM]} ¢
{REG MEM]} <

Using the same sets as above, over attribute-value pairs,
1 <§LOC {REG}> < <$LOC {REG MEM}>
_ <8LOC {REG}> = <SLOC {REG}>
i <$LOC {REG MEM}> # <8LOC {REG}>
Note that 5 tes! such as
<$LOC {REG MEM}> < <SSIGN {+ -}>
is uncefined because the attribute names differ.
We can express the closure set C as

C(¢) = {<§1.0C {REG MEM CC}> <SSIGN {+ -}>}

(where ¢ is the empty set) and thus express relationships over atiribute sets as

{<SLOC MEM>} < {<SLOC {REG MEM}*}
{<SLOC MEM>} < {<SLOC MEM>}
{<SLOC MEM> <S§SIGN +>} < {<SLC> MEM>}
{<SLOC MEM>} = {<SLOC ¢>} = {}
| {<SLOC MEM>} ¢ {<SLOC MEM> <SSIGN ¢}
{<SLOC MEM> <8SIGN +>} < {<8LOC ¢> <SSIGN {+ -}>}
g {<SLOC MEM>} ¢ {<SLOC REG>}
{<SLOC ¢>} < {<SLOC MEM>}
{<SLOC ¢> <8SIGN +>} < {<SLOC REG> <SSIGN ¢>}

I1.2.6
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Notational ahbreviation

Part of the actual notation used in the implementation will be explained here
because it will be used in many subsequent examples. The choice of representation
was influenced strongly by the use of LISP as the implementation language, and at the
implementation level it reflects many conventions of the LISP language, which are not
of interest here. The "formal" notation, with its many levels and different types of
brackets, is rather cumbersome to write and read. Since the names can be delimited
by recognizing the "$" symbol, we typically omit the pairing brackets, "<>", We also
replace the set symbols for the attribute set by square brackets, and the set symbols
for the values by parentheses. The resultant notation is not only more readable, but it
is closer to that actually used in the implementation. Thus we represent

{<8LOC {MEM REG}> <8SIGN {+ -}>}

as
[ SLOC (MEM REG) SSIGN (+ -)]

The empty set is denoted by the LISP atom NIL. The universal set can be

obtained from the closure set of NIL.

11.2.7
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Operations on attributes

| In this section, we will define one representation of attribute transformations.,
This representation is used in the prototype system, and is satisfactory for the GPS-
like model used. The choice of some other heuristic search technique would influence
the representation, as well as the implementation system chosen. The representation
used if PLANNER [Hew72] or CONNIVER [SM72] might be considerably ditferent. This
representation is presented here because it illustrates a concrete use of the concepts
of attributes introduced in the previous chapter, and it also demonstrates some of the

factors which must be taken into account in any implementation.

V/e will also introduce the concept of a “preferred-attrioute set”, a technique
used to guide the search for a machine operator. This concept is extremely powerful
when used by the BLISS/11 compiler in DELAY. Our proposed compiler will also use it,
and its generalization and formalization at this level is necessary for understanding the
behavior of the compiler. It also means that a fairly powerful heuristic tool is available
to whatever system actually searches a machine description for desired code
sequences.

Attribute transformations

The attribute sets describe certain properties of the nodes of a tree. The name
associated with any leaf of a tree is merely a token, and has no significance to the
search algorithms. These concern themselves only with the attributes of the leaves.
For any non-leaf node, both the L-operator and the attributes at that node are used
by the search algorithms.

In order to avoid the problem of whether an address or the contents of an
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address are required for the evaluation, the tree representation of the program must
contain an explicit dereferencing operator to obtain the contents of a node. This
closely follows the semantics of several languages, including BLISS [Wu70). There is
no loss of generality in this assumption since it is always possible for the syntax
analyzer to place this dereferencing operator in the tree as it is constructed. For
notational convenience, since BLISS will be used for most of our examples, we will use

the BLISS dereferencing operator, "."

The T-operators

A T-operator is defined as a 7-tuple,

<K, P n0,e(0

pre! Ypost’ m 8>

where we define the elements to be from the following sets:

X The set of retrieval keys for the operator.

.

P The patterns (parse trees) to be matched against the current state. If the

pattern match is successful, then the operator may be applied to the parce

tree."

N The “result" pattern. If the operator is applied to the parse tree this
describes the resulting node of the tree.

Gpre This is a set of predicates which must be true (simultanenusly) of the
program state before the target compiler will be able to apply this T-
operator. Although this is of no concern of the compiler-compiler, it is
necessary for the target compiler to be able to recognize what global
conditions influence the valiaity of a T-rperator.

post If the operator is applied, this is a set of predicates which describe the

3.2
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resuitant transformations in the global program state which the compiler
must be aware of. These are described as a set of assertions about what is
now true about the giobal program state.

The set of machine instructions (possibly empty) which are required ‘o
evaluate the node in the object code representation of the program.

The "cost function” data used to determine minimum-cost code sequences.

Retrieval keys are of two varieties in our implementation. First, we define the
set of language operators 9Iang‘

Qiang =y X | x is an L-operator}.

This will allow us to retrieve T-operators for evaluating a given node. We will also
define a set U™ of "retrieval values", a generalization of attribute sets. The precise
definition in our implementation will be given later; at this paint it is sufficient to say
tHat the purpose of retrieval values is to make it possible to locate code sequences

which effect transformations of a nodes attribute set --for example, the transformation

of a value in memory into a value in a register. Therefore, we will define

K= Qang v (/8
If, for some p € X, if p ¢ ﬂ‘ang then the T-operator represents a code sequence
which evaluates the source language operator (L-operator), p, assuming the necessary
conditions .are met. If k€KX and k € ¥" then the T-operator represents a code
seguence which transforms the node being examined, again if the necessary conditions
are met.
In order to evaluate a parse tree (which we will refer to as the source tree), we

take the L-operator of the root node, call it q, and use it as a retrieval key to select a
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set of potentially applicable T-operators. For each T-operator we then compare the
source tree to the pattern tree cortained in the T-operator (ie, a member of P). The

conditions of applicability are me: if (1) the trees have the same shape, (2) the

operators at each node are identical, and (3) the attribute sets of the source tree are

<-related to the attribute sets of the pattern tree.

We compare tree shapes by performing a preorder treewalk in parallel on both
trees, and compare attributes by performing an endorder treewalk on both trees. This
requires only a single traversal of the tree [Kn68, p 316”]1. During
the recursive descent into the comparison of the source tree and the pattern tree we
do not compare attribute sets of the nodes; this is performed during the return
upwards in the trees. It is meaningless to perform the comparisons until the subtrees
of a node have been evaluated, sinze their results can in fact alter the attributes
present a\ the ncde. The attribute sets are compared as part of the "evaluate root
node" operation of the endorder portion of the treewalk. If the attribute sets do not
match, i.e., are not <-related, a differencing operator is applied, and the resulting
difference indicates what attributes must be transformed in order to make the
operator applicable.

Once we have met the above conditions, the compiler-compiler can apply the T-
operator. However, this only prcduces a template to be used by the actual compiler.
During compilation, ceveral other conditions may determine whether or not the

template can be used. These are described in the precondition set, Gpre' These

A preorder treewalk is "root, left, right” an endorder treewalk is "left, right,
root". If we use the sequence "root, left, right, root’ " we can perform the
preorder functions during the "root, left, right” and the endorder functions during

"root’ ",

11.3.4
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include conditions both of the internal state of the compiler and the defined externa
state of the program. For example, there is a T-operator which transforms a value in
memory (M) to a value in a register (.R) and incurs no cost, providing the assertion
"VALUE(.R) = VALUE(M)" is true, ie., the value already exists in the register.
Similarly, the optimization .,Az-(-,A) can be applied if the assertion "VALUE(.A)#-o" is
true for all values of .A (where - is the largest negative number which can be
represented in the machine). Note that such an assertion would not be necessary on a
machine with a representation other than two’s complement; in this case a different set
of assertions would be required, for example, to handle the case of negative zero in a
signed-magnitude representation.

When the compiler-compiler applies the T-operator, the resulting effect on the
tree is described by giving a new tree. The entire set of such results is the result set,
M. The result pattern can contain "active” parts, which in the implementation are LISP
A-expressions. A typical such result would be that which changes the sign of a node:
it would have a codepiece associated with the $SIGN attribute which we could define
as

SSIGN: 4 & = oty 1,

If we call the set of all such codepieces &, then the set of attribute values for a result
pattern for attribute i, U'iu Ui v G. le, for all attribute-value pairs <A, V>, we allow

V; to belong to the set U v G;.

Such a-tive parts are implemented as LISP A-expressions. For notational
convenience this codepiece may be named; thus two more of the attributes of
8SIGN are "OPPOSITE" and "SAME". For those whe are interested in such things,
these are storec on the property lists of the identifiers OPPOSITE and SAME
under the indicator ATTRIBUTE-LAMRBDA.
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If the compiler finds that the specitied preconditions are met, it applies the T-
operator, producing a code template and determining the effects upon the program
state. The set of code templates, as mentioned before, is M. The effects on the
program state are described in the set of output conditions, cpost' For example, a T-
operator which transforms a result in memory to a result in a register has the output
condition the assertion that VALUE(.R) = VALUE(.M).

The cost of the code emitted, a member of the set 8, can be thought of as a
function which is evaluated and yields an integer result. There are many ways of
implementing this, such as building another active codepiece into the tuple, or simply
building a vector of integers and incorporating the cost function into the compiler-
compiler and/or the result compiler. These methods may be considered isomorphic,
along with many others, and therefore we will not define the actual appearance of a
cost function until we get to specific examples.

The reason the cost function is undefined is to allow the compiler builder to
choose what constitutes "cost". It is therefore possible to build a compiler which
optimizes ‘only code size, or register usage, or memory references; it is equally
possible to build a compiler which optimizes along one of these dimensions which can

be selected by the coder of a source program (ideally, for any part of the program).

Furthermore, there is no reason to restrict the optimization to a single dimension, or

even-to be statically defined. However, if the cost depends upon context that cannot
be determined until a program is compiled, then there are fewer opportunities to.
detect semantically equivalent code sequences during template generation, and thus
the compiler may have to search many more (possibly redundant) templates to locate
valid code sequences.

Preferred-attribute sets
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One of the powerful techniques used in the BLISS/11 compiler is the use of
“preferred-attribute sets" (PAS). A FAS al'yws an ancestor node in the tree to specify
to its descendant nodes which attributes it wou'd prefer the descendant to return for
the evaluation of its result. Thus, if it is desirable for a node to produce a value
whose sign is the opposite of that expected, the compiler will perform a case analysis
based on considerations such as its operator type and the amount of code required to
change the sijn of its result, and determine which signs would be best for its
descendants (o produce. It then passes this information to the descendant nodes, who
will attempt to comply with the request. Note, however, that if they fail to comply,
they return whatever they have to the parent node, who then has the responsibility of
deciding what to do with the results. It may well be that it cannot satisfy the request
made by its parent, and the whole prc.ess is repeated higher in the tree.

The power of the PAS lies in itslability to pass global context information down
into the tree. Without this global information, it would be necessary for each node to
assume that the least general result must be produced; e.g., for a + node the compiler
would have to assume that a full word bit representation with proper sign is
necessary. In fact, the parent node might be willing to accept any sign, or it might
require only an address; and in both cases the compiler would have more freedom to
choose a code sequence and thus allow for a less expensive code sequence. The PAS
al'so can restrict the type of result by insisting that it be a full-word bit representation
with proper sign, in which case it reduces the alternatives which must be examined and
thus prunes the case analysis.

BLISS/11 as implemented uses only a very small number of attributes in its PAS.

These include the sign bit, the name of a register which is to hold the resuit (this is
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known, in the BLISS/11 terminology, as "targeting”), the context in which the result
may be used (e.g., as a operand, as an address, etc.) and the "type” of the result: real
(a bit representation of a value), flow (a change in the program counter), both, or
neither (equivalent to the Algol-68 concept of "voiding” [LvdM73)). Our choice of
attributes is similar, but there are several extensions and some special cases are
subsumed into more general cases.

The creation of a PAS is highly machine-dependent. It requires knowledge of
the instruction set and its symmetries (or asymmetries), the addressing modes of the
hardware, and the relative costs of computationally equivalent sequences which have
the same external result but different internal results, such as leaving a result in a
register, in memory, or on the stack (the result is the same; the cost of accessing it
may be different).

The compiler we envision will have a structure similar to that of the BLISS/11
compiler, but the implementation of DELAY, TNBIND, and CODE will be substantially
ditferent. All machine-dependent knowledge will be separated out of the actual code
into a set of tables. One of the central tables is the code template table.

We will repiesent code templates as T-operatorsl. The
“pattern" component indicates which attributes are required of the subnodes, and the
"result” com,onen’ iidicates what attributes the node will return, given the indicated
attributes from its subnodes. The "cost" component is the cost of the code under

these conditions.

For those who are concerned with efficiency issues, please note that most, if not
all, of the information of a T-operator may be packed in some suitable form for
efficient manipulation. The "retrieval key", for example, may be used simply to
thread T-operators of keys onto a list. The order of this threading could be
chosen in sore way to minimize search time.

11.3.8
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When we perform the treewalk in DELAY we pass control to a node-specific

routine each time we descend in the tree. One of the parameters to this routine is a

. A —

PAS. A PAS is an ordered list of attribute-cost pairs, sorted in as-ending order by

cost. If we let a be an attribute set, and ¢ be a cost value, a PAS appears in the form:

< (al, Cl), (az, Cz), o )(an; Cn) >

l where ¢, isv less than or equal to ¢;,;. Each ¢, represents the cost the parent nude will
, incur if the subnode returns an attribute set a;

In order to explain how this is accomplished, it is necessary to introduce some

i notation at this point. We define eacn descendant of a node to have a named path by

which it can be reached, e.g,, LO: will reach the left operand of a binary node and RO:

N will reach its right operand. It is useful for expository reasons to be abie to apply

these path names to any structure related to the tree. Thus, a binary operator is

repre;sented as a T-operator, call it Tg. The "pattern” part of To may be accessed by

some pathname; such as PAT, applied to T (e.g, P*: To), and the desired attributes of

the left subnode of the T-operator may then be accessed as LO: (P*: To) As a

notational convenience, we will assume the composition rule A;: (As: w(Api X)) may

also be written without parentheses as A1:A2: An: X, for any pathnames A, and

object X.

We generate a PAS in the following manner: given the pathname of a subnode,

- . — =

SN:;, we wish to generate the PAS for SN:. We first form a PAS (which we will

¢ designate the "uncollapsed PAS") by forming the ordered set UIP from the set of T-

operators for the node Ty, T:

| UP = < <SN: P*: t;, COST: t;> | t; € T A COST: t; s COST: t;,y >
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That Is, the uncollapsed PAS is a set ordered by cost and consisting of attribute-
cost pairs, where the attribute is selected from the pattern component of all the
templates, for the pathname to which we are about to pass control. We then partition
the uncollapsed PAS into equivalence classes based upon cost, where each equivalence

class Ei is defined as

E; = { aj | <aj COST)> < UP A COST = )

Thus Eq is the equivalence class of all zero-cost code sequences, El the class of
all sequences of cost |1, etc.

Within each equivalence class we collapse attributes by forming the union of all
attribute sets which diifer in no more than one attribute-value pair. The result is a
new equivalence class of the same cost. The actual method of collapsing is simpler to

represent as an algorithm1 than as a formal description:

The algorithm is :oded in a notationally convenient hybrid of BLISS, LEAP [FR69]
and SAIL [VL73]. The only construct which may require some explanation is the
leave statement, which causes control to exit the block named by the leave. In
the algorithm given, “leave LOOP" causes control to pass to the first statement
following the loop, thus providing a premature termination of the loop.

11.3.10
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procedure collapse.attributes( £ %
begin
set RESULT, E2, Al, AZ;
RESULT « E2 « ¢;

. while €, # ¢ do
) begin
‘ Alkallal(Ei;
l' EI - EI - Al;
] LOOP: while E; # ¢ do
’ begin
| while E; # ¢ do
‘ begin
l A2 « a2 | a2 € Ej
E, « E; - A2
if collapsible (A1,A2)

| then

begin

Ej«Ev collapse(Al,A2);
leave LOO;
I comment put collapsed result back
' to try to collapse it more;
end
else

E2 « E2 VU A2

s end;

comment we have exhausied the set
without collapsing Al with anytning;
RESULT « RESULT v Al;
end; comment end of LOOP;
end;

it €

—_ N
5
S e

|

return RESULT}
return RESULT v collapse.attributes (E2);
end;

Two attribute sets are collapsible iff they differ in no inore than one attribute-

value pair, or formally:

L e a T e -

collapsible (Al’ Az) iff Al = Az v (3 <Ni' Vi> € Al A3 <Ni’ Vi'> € A2

b | such that ¥ <Nj, Vj> €Ap A \J <Nj, Vj'> €Ay, if j#ithen Vj -Vj')

and where the collapse is defined to be the union of the values for the attribute which

is different.
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collapse(Al, A2) = Al U A2

where we define "U" over attribute sets as a union over the attribute-value pairs, and
the union over attribute-value pairs as a union over the attributes. As in the partial
ordering operator, s, the context will always make clear which "union" we are

performing:
AuB-={<N,VV Vj> | <N;, V> € A A <N, Vj> ¢ B}

Note that this has also specified the U operation for att-ibute-value pairs, i.e.
<N, vi>V <N, vp> = <N, vi Uvyp>

Note that u is not defined on attribute-value pairs if the attribute names differ. The
operation U on attribute values is the ordinary set union operator.

Language transformations

Language transformations represent the machine-independent transformations of
the intermediate representation. Concepts such as commutativity or associativity are
handled by language transformations.

In the structure of the BLISS/11 compiler (see Figure 3, page 28), the first
three phases of lexical, syntactic, and flow analysis (known collectively as LEXSYNFLO)
detect feasible global optimizations. It is the responsibility of later phases to decide
which of the feasible optimizations are actually desirable. Given a tree or dag
representation of the program, the use of a feasible optimization represents a change
in the shape of the tree. If we wish to discover all possible M-operator sequences
which evaluate a node, we must consider all possible representations of that node,

given that all possible feasible optimizations are to be taken into account.

H3.12
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The use of language transformations allows us to generate the set of trees
equivalent under feasible global optimizations.

There are various formalisms and techniques for using language transformations.

One such set is given by Beatty [Bea72), and another by Sethi ano Uliman [SU70). The

application of the cited techniques can be proven formally to minimize some cost
function, such as resister usage Or memOry accesses. The choice of any given
technique depends upon the choice of a cost function---for example, if tiie only cost
function involved was the minimization of memory references within very local scope,
one particular technique may be chosen over another. Unfortunately, when faced with
a "real" machine (which usually cannot be modeled in a simple manner) the problem
becomes more complex. Idiosyncrasies of th_e machine must be considered, not matter
how strange. The use of global cost functions, such as complex register allocation
schemes, introduces another level of ccmplexity. An algorithin which produces the
minimum number of memory references and uses the minimum number of registers may
generate unusable code if the global register allocation strategy can only provide (at
most) fewer registers than the minimum needed. In such a case, locally suboptimal
code may produce a shorter or faster overall program.

The representation of language transformations chosen in the implementation
was 'one sufficient to demonstrate that the use of language transformations is
necessary to produce optimal code. Using such transformations, several equivalent
code sequences wzre discovered which would not have otherwise been detected. It
was also obvious that a more elaborate set of transformations would be necessary in a
fully operational system.

Each language transformation is represented by a triple

g=<] 0P
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where 1 is an Input pattern, O is an Qutput pattern, and P is a set of Preconditions
which indicate when the application is feasible. Thus a language transformation which
represents commutativity, (A+B)=(B+A), would be represented by the triple
< (A+B), (B+A), comm((A+B))>, indicating that for an input pattern (A+B) the output
pattern (a new tree) is (B+A), and this transformation may be applied if the top node
of the pattern (in this case, the + node) is commutative.

In specifying the patterns it is necessary to indicate whether or not the terminal
nodes in the pattern must match terminal nodes in the tree being considered, or if they
are permitted to match arbitrary subtrees. As a notational convenience we allow any
terminal beginning with the symbol "S" to malch an arbitrary subtree, and any terminal
node with any other name is restrictedto matching a terminal node!.

There is no explicit commitment to how the predicates of the language
transformations are implemented. In practice, they may be represented in the same
manner as aiiributes (as they are in the BLISS/11 compiler). The fact that the same
repiesentation may be chosen internally should not cause any confusion. The two
concepts are, in fact, conceptually disjoint in our model of code generation.

The language transformations and attribute transformations overlap at one point:
the concept of expected sign. The expected sign of a result is both a language-related
concept and a machine-related concept. Thus we find a language transformation of the
forrv

< (-5), (S[$SIGN OPPOSITE]), (value(S)#-c0)>

The very simple pattern matcher implemented does not allow for complex pattern
specification, so that separate patterns are required for commutativity of addition
and multiplication, rather than a more general specification, such as
< (A{+x}B), (Blop}#), comm((A{op}B))>. This restriction had no significant impact
upon the research, but might not be dcsirable in a production system.
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Applizations of language transformations usually do noi converge. They will
tend to either oscillate among a set of trees or to diverge. il is therefore necessary
to decide when to cease application of language transformations. In our
imp ementation, we chose to apply each transformation only once. Thus it was
necessary to construct language transformations of the form:

<(Sl*52 (S1[$SIGN OPPOSITE] +[$SIGN OPPOSITE] S2{8SIGN OPPOSITE],

(value(S1)#-00 A value(S2)#-00)>

which would be equivalent to the apphcatlon of the followmg transformations:

(i): <«(S1+52), -((-S1)+(-S2)), ..

(ii): <-S1, S1{SSIGN OPPOSITE]

(iii): apply (ii) again

(iv): apply (ii) again

The precise choice of language transformations can have a profound influence

on the code generated. Although we have chosen a few that appear to be highly
effective, there is no reason to believe that this set is complete. The choice was

based upon experience, and upon observed behavior of the system while exploring

various alternatives.
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Search methods

The search technigue consists of determining, for each node of a tree, all
possible code sequences which could evaluate the operator at that node, and their
associated costs. Some pruning techniques can te applied to the search in order to
reduce the number of paths which must be explored, but a discussion of these will be
deferred until the basic search technique: is presented.

An underlying assumption is that we will search all possible paths in order to
determine all possible code sequences. Although this can become expensive in terms
of machine time, ideally it will be done only once per compiler. The results should also
be more comprehensive (and more correct!) than the traditional manual generation of

code sequences.

The search uses the idea of a difference operator, similar to that described by

Ernst and Newell for GPS [EN69). As we travel down the tree, we find, for each L-
operator node, a set of M-operators (code templates) which will evaluate it. However,
these code templates are partial functions, both over the domai*s of values they can
operate upon and the domain of maciiine locations upon which they can operate. If we
ignore the value domain (which can only be determined by the compiler we produce,
for the specific program it is compiling) then we must map the locations of the
operands into the domain upon which the M-operator can act. We represent the
location domain as an attribute set.

The representation as attribute sets allows us to extend the idea of the location
domain to cover more general attributes of an operand. Thus the expected sign, for

example, becomes one of the attributes which we can use in determining the
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épplicability of an M-operator sequence. By considering mors , -neral attributes of
the operands we have available much more information which we can use to perform
optimizations.

At any node which represents an n-ary L-operator we have n subtrees
representing the operands. We apply a retriaval 0perator.to ‘he data base and obtain
a list of all possible M-operator sequences which can be used to evaluate it. For each
subtree we generate the preferred attritute set (PAS) as described earlier, and pass it
down the tree. Upon return, we are presented with a set of M-operators, each of
which represents the evaluation of the subtree, and each of which possesses an
attribute set describing the result of this evaluation, There is guaranteed to be a null
difference between each result attribute set and at least one member of the
PASl. When we have completely evaluated all the subtrees, the tree
will now correspond to an n-ary L-operator and n sets of possible subtrees. If we call
each set of subtrees T, then we can designate the size of each set as lTil. We can
then form a new set T by selecting all possible combinations of subtrees. T1e size of
this set is |¢|-|T1|*|T2|t...:|Tn|. For each M-operator M in M we then check to see if
there are any trees in & whose subtree results satisfy the domain requirements of M.
We then form the set which consists of all trees which represent the evaluation of the
L-operator, including the attribute set which represents the result of the evaluation,
and pass it back t¢ the parent node. .When we reach the root of the tree we have
determined all possible code sequences which could evaiuate the tree.

The selection of T-operators is determined in the current implementation by use

It this condition cannot be met, the search reports failure and is aborted to some
higher level.
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of a GPS-like difference operator, 8. The implementation and definition of § depends
upon how.a particular implementation chooses to perform its search and what it
requires to direct that search., The current implementation uses a very
straightforward difference operator, which consists of matching corresponding value
sets frr each attribute name in the current-state description and the goal-state
description. For each attribute-value pair in the current state description that is not
satisfied in the goal-state description we produce a value which “"describes” the
difference. For example, if the value of §SIGN in the current state description is "+"
and in the goal siate description is "-", then the description of that difference is.
"OPPOSITE".

Note that the name chosen to describe a difference is arbitrary; any unique
string ot symbols would suffice. However, it is convenient to use symbo's whose
representat.ion has some mnemonic value. Note that the same designator may be used
as was used to name an active codepiece (see page 64). The use of a name is identical
to using the explicit difference, i.e., "OPPOSITE" is equivalent to the explicit value set
A e i

In order to present this more formally we must define some operators and

explain the representaiions used. The basic operator is the difference operator, 8. To

define 8§ we first define a simple operator, §"

F(CG = {<NV>| V#¢g, where V={yavy| <Nv;>€¢CC)A

<N, vp> ¢ C(G), y € vy Ay fvo})

In the above definition C represents the current attribute set and G represents the

goal attribute set.
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The operator § is only a slight extension to &', and allows certain transformations
to be named symbolicallyl.

The data base, D, consists of a set of T-operators, as describer on page 61. T-
operators are retrieved by use of the retrieval operator, B, which is defined in terms
of two sub-operators, mlang and R4y The operator K*, winen applied to a T-operator,

gives the "key" part of the operator, ie., a member of the set K. !R|ang(OP) is used to

retrieve T-operatc. s which evaluate the L-operator OP, and is defined as

- MygpgOP) = {DID DA ¥*:D = 07}
and mau(AS) for an attribute set AS is defined as

iRa“(AS) ={D|D®D~ AS < X*. D}

In a manner similar to the use of "active" parts in a result pattern (page 64). For
example, if the difference is in the $SIGN attribute, § would indicate that a sign
change is required by returning the value "OPPOSITE". The set of such
differences is given as a set of triples, P = {n, x, v}, such that the first element of
every triple is an attribute name n, the second element x is of the form Vi "Vi’
where V, and V; are allowavie members of the set Uy, (i not necessarily distinct
from j), ard the third element v is some new value, a member of the set G".n
(describea on page 64). Thus, for the set Usign"* -}, we have &
P = { <$SIGN, + » -, OPPOSITE>

<8SIGN, - =+ +, OPPOSITE>

<§SIY, - » -, SAME>

<§CIGN, + - +, SAME> }

The choice of names "OPPOSITE" and "SAME" is arbitrary, but the obvious mnemonic
value of these names influenced their choice. The actual construction of the et P
would ultimately be performed by whatever system produced T-operators from a
machine description; this set would be very large, because the set of possible
transformations would be large. We have chosen a minimum set here for our
example. The automatic construciion of a set of T -ators is a major research
project outside the scope of this thesis.
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Chapter 111

The Template-generator System

Introduction

.Using the theory and notation evolved in the previous sections, a prototype
system was constructed. The system was implemented in several ways, with the latest
implementation written in LISP. It contains several major components: a parser which
converts expressions into the desired internal representation; an "unparser” which
converts the internal representation to a printable format (such as a tree or a string);

the searcher, which given a goal and appropriate information about the allowable

transformations will attempt to find the code sequence; and support code, such as

tracing functions, interactive debugging facilities, file support, and several other
facilities which were though necessary to make the LISP system habitable.

The implementation has been parameterized in such a way that the introduction
of a new machine structure is a relatively simple task; all of the machine-dependent
information has been isolated into a few "setup” functions for each type of machine.

In the next section, the details of the external (implementation) representation
w.ill be given. A machine (the Digital Equipment Corporation PDP-10) is presented, and
a sample attribute set is constructed for it. Using this attribute set, we then construct
a simple data base for some instructions on the POP-10. A typical search is outlined,
showing the results obtained from the original data base; the data base is then

augmented anu the results of this augmentation are shown.
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External representation

We associate a set of attributes with every node of the tree, whether or not we
presume that any M-operator is to be associated with the L-operator of that node.
We also associate a set of attributes with the leaves of the tree, which describe the
properties of the names associated with those leaves.
| Although the symbols at the leaves of the tree have no significance to the
pattern matcher, it is convenient for the user of the input language to attach some
mnemonic significance to these tokens. Thus an operation which adds the contents of
a register to the contents of memory-could be expressed as (X[SLOC REG $SIGN +) +
.Y[SLOC MEM SSIGN +]) but it is more obvious and more concise to statz ((R+.M). We
thus attach attribute sets to both the external token and the dereferenced token; the
current system parameterizes these in a very simple way in the
parserl. The parser will also cause any attributes supplied explicitly
by the user to override any default values.

The external representation of expressions for the current implementation is
described informally here; for a more formal definition see appendix A. Identifiers
are conventional, and the operators are likewise the usual +, -, %, /, and reserved wo:d
operators AND, OR, NOT, LEQ, LSS, GEQ, GTR, EQL, NEQ, MOD, XOR, LSH Jogical snitt)

and the assignment operator, «. The common IF-THEN-ELSE and WHILE-DO constructs

1 By use of the property indicators ATTRIBUTES and DOTATTRIBUTES on the
property lists for the leaf naines. Only the first character of the name is
significant in locating the properties; thus M, M1, and MUMBLE are all equivalent
(and happen to indicate memory locations). The complete description of the
abbreviations used and their meanings for a specific application are given on

page 87.
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l . arl'e also included, and are assumed to be expressions as in BLISS. Operations at the
‘ same priority level are always left associative, so multiple assignment such as A«B«C
i is interpreted as (A«B)«C, rather than the expected A=(B<C)!.

The external representation of an attribute set 1s a bracketed list of attribute-

value pairs, There is no explicit pairing delimiter. Everything between one attribute -

-,

l
!
. name and the next is considered to be the attribute value. This is a simple decision,
‘ since attribute names are distinguiéhed symbols; each begins with the character "§".

Experience indicated that an explicit pairing delimiter, although “formally" correct,

!
‘- merely cluttered up the representation to the point of illegibility.
i An éttribute set may be associated with any symbol in the expression simply by

writing it after that symbol. It is then attached to the same node in the tree as the

1 symbol. Examples are:
; R[SLOC LIT) + .[SLOC MEM] M

l Which associates the pair <§LOC LIT> with the symbol R and the rair:

{1 <8LOC MEM> with the immediately preceding . for this particular tree.

-t — e e —

Please note that this is only a peculiarity of the particular syntax analyzer
involved here and should in no way be construed as a commitment by the author.

l1.2.2
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A Sample Attribute Set

We will now illustrate the use of attributes with a concrete example. The set
here is used to represent PDP-10 machine code [DEC72). All exampies given, until
stated otherwise, are based upon the POP-10 architecture.

Briefly, the PDP-10 is a rather conventional muitiregister machine, with 16
"general rurpose” registers which can be used as accumulators, floating point
accurnulators, index registers, or memory locations. These registers reside in locations
0-15 (decimal) of the address space, thus eliminating the need of special register-to-
register instructions. The instruction code is highly symmetric; within a class of
instructions, if one option exists (such as a test for equality), it is usually the case that
all options exist (such as the other five relationals). Arithmetic and logical instructions
can operate in several modes, such as Re(R op M), ReM«(R op M), M«(R op M), etc,,
allowing results to be developed in a register, in memory, or both simultaneously.

Control consists of both skip-type instructions and transter-type instructions,

several varieties of subroutine calling mechanism, including nested subroutine calls by

use of a stack. One or more registers can be designated stack pointers, and there are
instructions for pushing data onto and popping data from the stack; the stack pointer
register is addressed explicitly in the push, pop, call, and return instructions. It should
be pointed out that the PDP-10 is not a stack machine; it only allows data to be
pushed onto and popped from the stack, as well as allowing subroutine calls and
returns to store and use addresses on the stack. There are no stack operations, such
as ADD, which implicitly pop the stack. Of course, since the stack pointers are general

purpose registers, the register can be used to index onto the stack. As in many




{
{

——e m v me P Amm——

A Sample Attribute Set 83

general register architectures, register O cannot be used as an index register. Certain
instructions which allow an option of producing a result in a register can only use
registers other than register O for the same reason: if the register field is zero, it
implies that a register is not involved.

The entire address space of the PDP-10 is directly addressable by any
instruction, i.e., no "base registers" are required to make the entire 256K address
space available. Address decoding is completely consistent in all instructions, where
an address consists of a 23-bit quantity in the low-order bits of an instruction: 18 bits
of direct address, 4 bits of index register designation, and 1 bit which is the indirect
addressing flag. When fetching an indirect address, the entire low-order 23 bits of the
address retrieved are decoded, allowing infinite-depth indirection. Any subfield of a
single 36-bit machine word can be accessed, for either storage or retrieval, by a
construct known as a "byte pointer”. A byte pointer contains a 23-bit address field
(decoded as described), and two 6-bit values representing the position of the low-
order bit of the subfield (relative to the low-order bit of the word) and the number of
bits in the subfield.

All fixed-point values are represented as two's complement binary numbers; and
floating point values have an 8-bit excess-128 exponent with a two's complement
fractior (27 bits, with the sign bit the high-order bit of the word). In addition to
meraory and registers, there are several flags directly testable by the user for
conditions such as overflow, and some other status bits which are used by the central
processor. The remainder of the architecture, including relocation and 1/0 structure, is
of no concern here.

For any architecture there are a set of locations in which data can be stored.

111.3.2
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These locations may be n.1ain memory, auxiliary memory (scratchpad), registers,
condition codes, program counter, etc. Some, or possibly all, of these locations are
! addressable from machine instructions; most architectures restrict addressability by
{ requiring special instructions to access special locations. When it becomes necessary

! to use an intermediate result, it may be rccessary to transfer from one location to

" another, in order to make it addressable.
| Let us define
’l N = {SLO(?J..SS.lGN SADDR SDT SCSE $PS}
1 These attrioute names represent the Location, Sign, Addressability,
] Destructability, Reusability and Bitwise Position and Size of the results we wish to deal

with. The value sets are indexed by these names and we will designate the vaiue set

! of some name i by the notation ¥;. We can now define the value sets:

U)o = {REGO REGNO MEM PC QVF CRYO CRY1 FOVF LIT}
REGO is register 0; REGNO is any register other than register
ol. MEM s memory, PC is the program counter, and {OVF CRYO
CRY1 FOVF} refer to the four directly testable flag registers: fixed point overflow, two
types of carry, and floiting overflow. LIT is any value which can be stored as a
constant in an immediate machine instruction. In addition, we will define an

abbreviation REG="REGO, REGNO".
|
t
; Usign = {TRUE, COMP, +, -}
t

These attributes define the condition of the result relative to tho desired

This distinction is necessary since register 0 cannot participate in certain
operations or functions, e.g., indexing.
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condition. The choice of this set is made by inspection of the PDP-10 instruction set
and study of existing compiler designs [Wu70, KKR65). Ex.mination shows that it is
otten possible to produce a result at a node which is in the complement condition of
the desired result, and produce it at lower cost than the uncomplemented result.
Presumably it can be complemented during a later evaluation, if reauired, but such an
operation may not be required. For example, in computing -.A¢-.B it is not necessary
to actually compute the negative of either operand in order to obtain a correct result.
'TRUE" and "COMP" deal with logical (36-bit) results while "+" and "-" deal with signed
(35-bit plus sign) results.

Note that this attribute deals with those aspects of data representable by a
unary compler.ant operator, i.e., an operator which when applied twice to the same
data has no net effect [Fra70). Note also that it is not always true that ~(-A)a.A. In
a two’s complement binary representation such as the PDP-10 uses there is one value
(the largest negative number) to which this does not apply. This issue will be
discussed in more detail later. If one were to ignore certain finite-precision issues
dealing with floating-point representations, it would be desirable to include another
attribute inuicating whether the result were the true or inverted result relative to

division.

V,qqr = {REG, MEM, EA, BYTE, FLAGS}

This attribute defines the addressability of results. It ic conve iiznt, although
perhaps mi..leading, to use the same symbols here as in the LOC attribute. REG means
that the result can be addressed by the r~jister field of most instructions. MEM means
that it can be accessed by an 18-bit address which points into memory (which thus

includes the registers). EA means that it can be addressed by an effective sddress

111.3.4
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calculation performed during the instruction fetch cycle. BYTE means that a PDP-10
byte pointer can access the result. FLAGS means that one of the instructions which

interrogates the flag register can access the result.

Y4t = {YES, NO}

This attribute is related to the language-level concept of common
subexpressions, and indicates whether or not the result will be required later and
therefore must be saved. It is important at this level since most M-operators destroy
one of their operands. The concept of the "destroyable temporary" also applies to
situations where user-defined variables are involved, such as in the expression
(Ae,A+1), where the computation may be done by an increment instruction which adds

1 to A, providing the value of A is not otherwise required.

Ucse = {YES DONE NO}
This indicates whether or not a node is a common subexpression, and if so

whether or not its result has been computed. (YES implies ~DONE; DONE implies YES).

. This is useful in determining whether or not code must be produced to evaluate a

node; if the attribute is YES then code must be produced to evaluate the node. The

result of executing this code is to produce a node whose attribute is DONE.

Z/ps-{<p,s> |0<sps380<s<360<p+s <36}
This attribute represents the position and size of an operand within a data word.
Note that although these names follow directly from the PDP-10 definitions, they in
fact are machine ‘independent. For a discussion of this machine independence, which is
also radix independsnce, see Knuth's MIX computer [Kn68, p.120ff]. We will follow the

PDP-10 and BLISS conventions that the position is the number of bits (or basic
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information units, in general} from the right end of the data word and the size is the
width of the field in the sane information units. Besides the obvious use in computing
shift instructions, there are tome other uses relating to the finite precision available in
the machine representation which are handled by this attribute .

In the implementation we have provided for a shorthand ‘or detining the
attributes associated with a symbol. We will now define some of these abbreviations
here, and then use them implicitly in subsequent examples. Note that when we must
distinguish between two nodes with the same desired attributes, we will append
numbers to the symbols given here, e.g. M1, M2, etc.

M [SLOC LIT SADOR LIT $DT NO SCSE NO §SIGN TRUE $PS <0,18>)

.M [SADDR MEM $SIGN (TRUE +)]

Note that the other attributes of the .M node, as in all other
dereferenced nodes, are undefined unless explicitly stated here.
These are considered to be either the empty set or the universal
closure set C; unless changed during the evaluation of the tree.

R [SLOC LIT SADDR LIT $DT NO §CSE NO $SIGN TRUE $PS <0,4>]

R [SADDR REG $SIGN (TRUE +)]

EA [8LOC LIT SADDR LIT SDT NO 8CSE NO $SIGN TRUE §PS <0,18>]

.EA [SADDR EA $SIGN (TRUE +)]

X [SLOC LIT $ADDR LIT $DT NO SCSE NO $SIGN TRUE §PS <0,18>)

X [$ADDR (REG MEM) SSIGN (TRUE +)]

PC [SLOC PC SADDR PC §DT NO SCSE NO SSIGN TRUE $§PS <0,18>)

1 Note than in the sample printouts which appear later that the $PS property is
represented by two properties, $POS and $SIZ. This was a concession to an
implementation quirk, and does not affect the formal definition. A formal definition
of 8PS as two attributes is clumsy and serves no useful purpose.
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Given these abbreviations, we can now explore some of the instruction set of the PDP-

|

10. By way of examples, consider the following POP-10 instructions:

Transformation M-operator Cost!
R-M MOVEM RM ref: 2; size: 1
M=R MOVE RM ref: 2; size: 1
PC-R JSA R,.+1 ref: 1; size: 1
LIT=EA none ref: 0; size: 0
(Accomplished by a T-operator)
f EA-PC JRST EA ref: 1; size: )
| EA-PC, PC-R JSA REEA ref: 1; size: 1
I
i ]
4
! |
|
it
i_
|

) In this greatly simplified cost function we treat all register accesses
as 0 cost and all memory accesses as unit cost. Each instruction fetch
cycle is assumed to require one memory access, which ignores
indirect addressing. The real cost function which an actual compiler
would use would be far more complex.
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A Sample Data Base

We will now illustrate the use of the sysiem by coastructing a small data base
and .F>n using it to construct some machine-code templates. We will first define the
semantics of the terminal symbols, theﬁ construct the T-operators. The machine used
in this example is the PDP-10 [Dec72]. In this example we do not use the full set of
attributes for the PDP-10 as defined on page 84, but use a subset. This was done
because our examples do not require the complete set of attributes, and to include
them would only make it more difficult for the reader to readily understand what is

' happening.
R [SLCIC LIT 8PS <0,18> SSIGN (+ TRUE) $ADDR LIT $CSE NO $OT NO)
".R [SLOC REG 8PS <0,36> SSIGN (TRUE +) $ADOR REG $CSE NO $DT YES]
M [SLOC LIT $PS <0,18> $SIGN (TRUE +) $ADDR LIT $CSE NO $DT NOJ
M [$LOC (REG MEM) 8PS <0,36> §SIGN (TRUE +) $ADDR EA $CSE NO $DT YES]

X [8LOC LIT §PS <0,18> §SIGN (TRUE +) $ADDR LIT §CSE NC $0T NOJ

We define two more special values for the attribute $SIGN. These special values
can only be used in the result part.of a T-opera'or, and instead of representing static
values théy represent either a variable in the pattern (in the pattern part) or a
transformation to be performed on the actual input node by the compiler (in the result
part). The ability to use and name such special values is described on page 64 for
result parts and pase 77 for patterns. The two values are OPPOQSITE, which in the
pattern part indicates that a sign change is desired and in the result part indicates that
a sign change has occurred, and SAME, which indicates a sign retention is desired or
effected. A trivial extension of the example given on page 78 to include the attributes

“TRUE and COMP would suffice here.

111.4.1
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The set of T-operators described here is quite small, and is the minimuin set

required for an interesting exampie without exceeding reasonable limits on the size of

the example or the patience of the reader.

Key

Pattern

Result
Preconditions
Postconditions
Code

Cost

Key

Pattern

Result
Preconditions
Postconditions
Code

Cost

Key

Pattern

Result
Preconditions
Postconditions
Code

Cost

Key

Pattern

Result
Preconditions
Fostconditions
Code

Cost

Key

Pattern
Resu't
Preconditions
Postconditions
Code

Cost

+

R+.EA

.R

None

None

<ADD REA>
Ref: 2; Size: |

+

0R+0EA[SSIGN ']
.R
value(.EA)#-00
None

<SUB R,EA>
Ref: 2; Size: 1

[SLOC MEM=REG SSIGN SAME]

EA

.R

None

None

<MOVE R,EA>
Ref: 2; Size: 1

[SLOG MEM~REG S$SIGN OPPOSITE]

.EA

R[SSIGN OPPOSITE]

value(.EA)#-00
None

<MOVN R,EA>

Ref: 2; Size: 1

[SLOC LITSEA $SIGN SAME]

X
EA
None
None
<>

Ref: 0; Size: 0

1 There is an implicit postcondition to every operator which states that the result
(such as .R) represents the evaluation of the tree node.

111.4.2
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The choice of representing the operand- by "EA" is based on the fact that the
POP-10 can use the effective-address calculation to determine the location of a data
word. The typical operand in a fixed location (suci. as an "OWN" variable in the BLISS
or Algol sense) has an address which is represented by an 18-bit literal address, while

an operand on the execution-time stack is represented by an offset from a siick

pointer register. The "ADD" instruction will work equally well with either type of

operand, so the more general representation of an effective address is used.
However, this does require that an operand be converted to an effective address. We
wish to have a transformation which converts a literal or stack-relative address into an
effective address. We locate such transformatici® vy applying the difference operator
§ to the cur.rent state of an operand attribute set and the des.irecl state .o.f_an operand
attribute set (how we obtain the desired state is discussedr Ilatler).. We then obtain a
difference which we use to search for a difference-reduction operator. Difference-
reduction operators are indexed in terms of attribute sets, where an operator Q; is
ccnsidered applicable {o reduce a difference Dj iff D’- < index(0;).

This expiains the appearance of the T-operator with the key
[SLOC LIT-EA $SIGN SAME]. Any time the difference operator requires an effective
address from a literal, this is one of the possibie choices. Note that converting a literal
to an effective address is a trivial operation, and in practice consists of putting the
literal value into the 18-bit address field. In other architectures, for example that of
the 1BM/360, addresses are computed as ofisets from base registers. ;I’he literals are
restricted to the range O through 4095. If an arbitrary address has a base register
available, then the conversion from address to efiective address consists of specifying

a base register and an offsei, which in most instructions incurs no cost. However, if no

111.4.3
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base register is available, it is necessary to use any number of a sel of techniques for

computing the address, i.e., changing 2 machine address to an effective address. These

l will incur various costs in terms of code size and/or number of memory accesses.
Thus the appearance of zero-cost T-operators such as the one to convert a literal to

an effective address are not incidental, but fundamental to the proper formulation of

o P e —

the data base.
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\ Example:; atypical search

This section presents one example in depth in order to examine the system in

| detail. A complete printout of the example described here may be found in Appendix

B.

M1+.M2

‘ A We are given the tree:
{

1 The data base is searched for a set of T-operators which could evaluate the
|

tree, and we obtain:

ADD R,EA

-

| SUB R,EA '

] We then form the preferred-attribute set (PAS) for each of the subtrees, based

i on the forms acceptable to the machine instructions, and we obtain

« [$LOC REG] R + .[$LOC EA SSIGN (+ -)]

i.e., the PAS for the left subtree is the same as that for \R, and for the right subtree it
is [SLOC EA $SIGN (+ -)}

Sl

KRR o

The program then uses this pseudo-tree in ils tree-search. It petforms en

endorder walk in parallel on the original tree and the PAS tree. When it encounters h

the node .Ml, it compares the node to the corresponding node of the PAS tree, an

e

discovers that they are different; -pecifically, we require the operand to have the

attribute SLOC REG.

The -program then attempts' to transfor:n the current node into one which

salisfies the criterion by using the definition of the goal state to search the data base

115, |




PR s S e B

e = v o o

94 Example: a typical search

for a T-operator. In this manner, it finds two T-operators which will move something
into a register, and which have associaled M-operators, specifically:
1) [SLOC MEM-REG SSIGN SAME]
| MOVE R,EA
2) [$LOC MEM-REG $SIGN OPPOSITE]

MOVN R,EA

The data base is searched using the s operator to test ihe T-operators against the
goal state; any T-operator whose key K; satisfies the geal G, defined as G < K is
acceptable. Thus we obtan two T-operators, both of which leave their result in a
register, but which have different effects upon the sign. These T-operators are then
checked to see if they can operate upon the node in the tree; both in fact are
accepted.

As we search the right subtree, we find a similar difference in the actual
operands and desired operands. The PAS indicates that we can act upon any operand
which has the attribute [SLOC EA). However, the actual operand (M2) has the attribute
[SLOC LITERAL]. We use the difference in the same manner to locate a T-operator
which will transform the attributes. In this case, we obtain the single T-operator:

[SLOC LITERAL-EA SSIGN SAME]

<npil>

Note that there is no M-operator associated with this transformation. This is because
a literal can be changed to an effeciive address simply by having the compiler place its
value in the effective address field of an instruction, and this incurs no execution time

cost.
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We have now generated sets of subnodes which repre-snt evaluations of the

subtrees, i.e.,

+

/\

B
() ()
IR
R R EA

If we take all possible combinations of left and right subnodes, we would have two
trees, representing
R +.EA
. [SSIGN -] R + .EA
* Every time we attempt to process a tree, we also attempt to process any trees
equivalent to it under the language axioms. In this example we have only one axiom,.

which states

-(-A+-B)=(A+8B)

We apply this axiom to our candidates, and obtain the following set of equivalent trees:
"R +.EA
. [SSIGN -] R + .EA
(the two original trees obtained from the search)
.R + .[§SIGN -] EA

[SSIGN -] R + . [§SIGN -] EA

This set of trees is then compared against the code sequences possible, and the
following two complete code sequences are thus obtained:

MOVE RM1
ADD RM2
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MOVN RM!

SUB RpM2
Note that the latter case produces a result with the opposite sign than that expected.
This information could then be passed up the tree to a higher node.

The result of this search has produced two templates which can accomplish an
“"ADD" operation. Given the data base, these are the only two possibilities. Some of
the results obtained with more complex data bases have produced more alternatives.

Each extension of the data base has provided more possibilities for code
sequences. In the data base given on page 90, it is impossible to generate code for
adding the contents of a subfield of one memory location to the contents of another

location. By adding the bit-field extraction operator, Load Byte (LDB), we can perform

this operation. The PDP-10 requires the specification of a 36-bit word which is the

"byte pointer”, and is used as an indirect reference to the word containing the byte. A
byte pointer defires a position of the byte, in bits from the right end of the word, and
a size of the byte in bits. The low-order 23 bits of the byte pointer are interpreted
in the same way as a machine instruction address. Thus the instruction:

LDB R, [BYTEPOINTER POS, S1Z, ALDR]

will move into register R the subfield o.f the word at ADDR described by POS, SIZ. The
appearance of the BYTEPOINTER pseudo-op in square brackets causes the assembler
to treat it as a literal and place it in the literal pooll. This operation
is the general implementation of the BLISS subfield operation, " ADDR<PO5,51Z2>", If

we are given the tree:

Those familiar with the PDP-10 assembler will recognize the liberties being taken
for the sake of exposition. The BYTEPOINTER pseudo-op does not exist, but the
more incomprehensible POINT pseudo-op is its realization.

111.5.4
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R +.M2<18,18>

we obtain the code sequence:

: LOB r,[BYTEPOINTER 18, 18, M2)
. ADD Rr

i t which, in its most general application also allows us to use the sequence

LDB r,[BYTEPOINTER 0,36,M] in place of a MOVE instruction. Although these two

the lower-cost MOVE instruction would be used in.

preference.

3
|
1
i sequences are equivalent,
! { alternative code sequence can be shown by

The possibility of a lower-cos

adding the halfword-move instruction HLRZ to the data base. The HLRZ instruction

alf of the register, and zeroes

| moves the left half ¢f the memory location to the right h

' the remaining half of the register. Thus, our original tree of R + \M2<!8,18> can also

be evaluated by the code s:quence:

HLRZ rM2
ADD R,r

The PDP-11 is a 16-bit computer with several addressing modes. These modes

allow computations to be performed register-to-register, register-to-memory, memory-

| to-register and memory-to-memory (there are other options, but they are not relevant

here). Thus it is possible in the PDP-11 to perform computations which may not

involve the use of any intermediate registers. However, for each operand which

e

requires a mermory address, an additional 16 bits is required in the instruction. A

memory-to-memory instruction requires 48 bits (three words), while. a register-to-

register instruction requires only 16 bits (one word). Operations are of the form

|
"OP src dest", where "src" is the source operand and "dest” is the destination operand.
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4
I
{
E Optimization of code in the POP-11 is therefore complicated by the tradeoffs in
} time and space between using registers (of which only 6 are available in most cases)

for operands and leaving the operands in memory.

Using a short data base for the PDP-11, which described three basic types of

ADD instruction (add memory to memory, add register to memory, add memory to

i
|
{
t
«
{
l register), and a single instruction which would move the contents of memory to a
t register, the tree .Ml + .M2 was evaluated by three different code sequences, with
1
| approximate costs as indicated:
} Instruction  Ref Size
! MOV M1,RI 3 2
| MOV M2R2 3 2
| ADD R2,R1 1 1
{! -=-- ===
{ 7 5
l
‘ MOV M1 R 3 2
_“ ADD M2R 3 2
' CF) Sy [
i 6 4
, ADD M2MI 6 3
6 3

In this case, the choice the compiler would make would be influenced by factors
not known until the actual program was being compiled. For example, the direct
memory-to-memory addition is the shortest sequence, but it bresumes that the

contents of location M1 can be destroyed by this operation [$DT YES). This fact

cannot be detarmined until a program is compiled, and the global properties about the

locations are fixed.

Returning to the PDP-10, we add some machine operations for adding constants.

[11.5.6
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A constant whose value s iess lhan 218_1 can be added by use of an immediate
instruction, where the actual value of the constant occupies the address field. If we
consider the example of R + k, for k a constant, then that tree can be evaluated with
an instruction of the form ADDI Rk. However, because of the nature of index registers
on the PDP-10, if we know that the result must be less than 218-1 then we can use
indexing to  perform the addition].  The tree (R +k) could be
evaluated by either of these sequences:

ADDI Rk

MOVE  r,0(R)

MOVE  rk(R)

Our system discovers that for this case constant arithmetic can be performed by
indexing, at (nominally) zero cost; the result of evaluating R + k is indicated as either
the ADDI instruction (whose result is a 36-bit value) or by indexing (whose result is an

18-bit value).

Template output

The actual templates generated are very large list structures. For an example
of the actual templates for the first example, see the structure named "«CODE=ZT"
given in Appendix B on pp. 128-136. From this structure all the information

necessary to construct the T-operators may be obtained.

If we nad a compiler which acceptéd assertions about the values taken on by a
variable we could perform this optimization any time the result was known to be
a positive integer whose value was less than 218, Currently the only time the
compiler knows that this assertion is true is when the value is used as an
address.

11.5.7
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Chapter IV

Conclusion

Summary

o

/

o

// .
This thesis has been intended as a contribation {o the technology of compiler

—
construction. Becausc&me/br/eadth and complexity of the task, we have made

-

—

—
certain assumptions and restricted the scope in certain ways. We have assumed that

-

/
o we will be working within the framework of a compiler-compiler system; the flexibility

of such an approach has been proven, and it is now necessary to provide the
technology which will remedy a serious deficiency in most compiler-compilers, namely
the lack of adequate techniques for describing code generation. We have also
presumed a specific model of the compiler which such a system would produce,
specifically, the basic structure of the BLISS/11 compiler. We have then focussed on
one particular module of the BLISS/11 compiler, DELAY. This compiler model was
chosen primarily because it performs substantially better than the classical compiler
model in the area of optimizing code; the issues are largely separable from those of
the external syntax. |

Ultimately, a system such as we have modelled here will be able to produce a
DELAY module for a compiler. We have not limited the class of languages to BLISS, but
the general class of algebraic languages, including Algol, FORTRAN, and a large subset
of PL/L. The direct output of a program such as the one developed here is not the

DELAY modute, but 2 set of information which could be used to construct a DELAY
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module. Depending upon the approach taken in developing the compiler -compiler, we
forsee between one and three processing steps required to convert the template
information into the actual code (or tables) of a DELAY module.

The major contribution of this thesis is the characterization of machine
operators in terms of attribute sets., and the use of attribute sets in a search strategy
which permits the discovery of code sequences using only the abstract concept of
attributes. The formalization of the preferred-attribute set and its relation to
attributes makes it possible to take advantage of the search strategy found highly
effective in the BLISS/11 compiler.

Several examples were run to demonstrate the flexibility of this method.
Although there remains a significant amount of work before an actual production
version of this system is operational, and is integrated into a compiler-compiler. system,
that work reprgsents a one-time investment. The result will be a system which makes.
it possible to produce high-quality compilers with much less effort than ls currently

expended.

v.1.2
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Relationship to Automatic Programming

By this point the reader who is familiar with the ideas of “automatic
programming” has undoubtedly seen the similarity between the methads used here and
those used in automatic programming. Our goals are remarkably similar; consider this
statement from Buchanan [Buch74}):

The need for some automation in the task of software production is
becoming increasingly clear. Systems are getling bigyer and more
complex which has caused maintenance cost to rise (it is now 507 of the
programming budget). Software cosls too much, isn't reliable, takes too
long to develop and is difficult to modify or fix. Programming has not
attained the maturity to develop standard engineering practices with their
attendant reliability that other disciplines have. Research in automatic
programming seeks to understand the nature of the task and thereby
improve production,

One of the earliest attempts to automate a compiler was the "heuristic compiler”
of Simon [Sim63]. Given a set of input-output relationships between data, the
heuristic compiler produced a piece ¢f IPL-V code (or, in our notation, a series of M-
operators for an IPL-V machine) which processed data according to the desired
relationship. The Heuristic Compiler was implemented (in one of its versions) in GPS
[EN69]. In this model, the data base we use becomes the GPS "table of
connections”---specifically, it indicates allowable transformations and possible

difference-reducing operators. However, the requirement of minimum cost code means

that searching for the first set uf operators which satisfies the goal is not adequate;
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we must prune the search using other criteria which are highly task-dependent.
Although it would be possible to express our problem in GPS, the solutions would not
be satisfactory unless GPS were modified.

Our model of the compiler-compiler and the compiler processes are very similar
to those proposed by Buchanan [Buch74) The ditferences tena to be in the
representations chosen to represent input-output corditions (primarily represented as
attribute sets), the form of indicating desired solutions (preferred-attribute sets), and
the minimum-cost criterion. Many of the techniques used by Buchanan would be
desirable in a production system, such as synthesis of conditional statements and
loops. Loop sy thesis, in paiticular, could be used to construct such M-operator
sequences as multiple-bit shift operations on machines with only single-bit shift
instructions,

One of the features of the automatic programming system described by
Buchanan is the “"program library"; once a program “A" with input predicates "P" and
output predicates 'Q" (represented as P{A}JQ) has been generated, it may be

"generalized” anc stored in the program library. Generalization is described as a

process by which a procedure declaration is created for a code segment (which is in

Algoi-60), and a set of goal, input, and output conditions are specified. 1f we call the
goal conditions "retrieval keys and input patterns”, and include cost data, then in fact
the program library resembles the code template lists used by a compiler. We could
then use such a system to construct more powerful templates, or complete subroutines
(perhaps a machine-dependent 1/0 and device support package in assembly code
would be a significant exampla).

The ability to add cost data to the program library is a significant advance. For
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example, 2 procedure to compute a simple functinn such as rounding a real result and
converting it to an integer might, as a side effect, recursively compute Ackermann(5,5);
since the internals of a procedure are invisible this might never be discovered. By
adding cost data we can always choose the minimum-cost solution and determine if the
minimum-cost solution is feasible. Note that the cost data may not be a constant; it
may be a function of any or all of the input parameters, and the resultant cost function
may thus be a parameterized function which requires additional information to produce

an actual cost figure. Judicious choice of the parameters should produce lower and

upper bounds on the computation.

“‘.‘. "b‘ "
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Evaluation and retrospect

The ideas presented here form a basis for a system which automaticalty
produces optimizing compilers. There are, of course, a number of unsolved problems;
several of these are interesting research projects in their own right. The
implementation of the system was intended to be a test bed on which to try out
various ideas. Thus it has many limitations which preclude its use in a production
environment. For example, it was coded in LlSPl, which provided a
very nearly idea! envirunment for interactive development axd deougging of the
system, but which also incurs enormous overhead in space and time. Although the
system could be compiled, the factor of 10-100 in speed improvement will probably
not be sufficient to process a real machine description. Since it was intended at tle
outset that this implementation would be only a prototype, there are numerous
deficiencies (or inefficiencies) in some of the internal algorithms. In most cases these
deficiencies were left in because their removal, although it would produce a more
aesthetically pleasing system, would .not contribute to understanding the problems of
code generation.

‘ None of the limitations we encountered seem to be inherent in the basic ideas,
only in one particular realization of them. However, for the benefit of those who may
wish to pursue this research further, we would like to summarize some of the
problerms we encountered in implementing the ideas developed here.

The search strategy implemented needs to be more powerful. In particular,

methods of. reducing the total search space should be implemented. The concept of

1 The UCI extensions of Stanford LISP 1.6.

Wal
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“t- .orem” is relevant, for example, in that once a certain search is performed the set
of T-operators should be retained in such a way that any future attempts to perform
the same search would only need to access the theorem, not "re-prove" it from the
basic “axioms". This p-ocess of retaining knowledge is usually an important component
of most artificial intelligence programs; we did not include it in our implementation
because the effort of coding it would not be justified. It was clear from the observed
performance of the systzm that such a component would be essential in other than a
prototype system.

Faster methods of combining sets in order to test the validity of the results of
subtree searches could have been implemented. In the current imniementation it was
expedient (from the programming viewpoint) to form the cross-product space of all the
subtree sevi-ches, and then reject all those members of the cross-product which did
not meet the requirements of the node. For the small examples for which this
prototype system was intended that was satisfactory, but it would be far too
expensive to employ a similar technique in a production system.

The concept of "semantically equivalent” sequences has not been implemented.
Although precise determination of semantically equivalent code sequences is unsolvable
[ASU70), there are many cases for which this is solvab.le. The rejection of all
semantically equivalent sequences of equal or greater cost than the chosen one would
not only reduce the amount of time required to discover t..¢ « >de te;mpiates, but would
also reduce the amount of time required by the compiler to examine the alternatives
for a given node.

Many minor problems arose during the implementation due to the fact that the

system was a test bed; as our understanding of code generation evolved through

V3.2
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experiments with the system, it likewise evolved to become more general and more

powerful. The resultant system accurately follows the model of code generation

presented here.

V.33
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{ Future research

Many areas of future research remain. The most important area is the
transformation of the templates generated by this type of system into a DELAY module.
There are many techniques which could be used for this. Whether we use a "table

{ driven” DELAY, where the code remains constant and the data changes, or a "decision
table" generated DELAY, where the data is used to generate the code, are only two

b | choices. The use of more sophisticated automatic programming techniques, such as the

frame model of Buchanan, is another, not necessarily mutually exclusive possibility.

Nonetheless, before an actual compiler can be built we must be able to produce a

functioning DELAY module.

1 We also need to use more powerful artificial inteliigence techniques to generate
the templates. The construction of a production version of this system would involve
the development of efficient methods of implementing the basic ideas presented here.

An actual compiler, or course, involves more than just the DELAY module; it

includes everything from lexical analysis to formatting a file of relocatable code. We

| could use many standard methods of parsing the input, although new ones are still
being developed. The discovery of common subexpressions and feasible global

optimization strategies has been modelled, and that model has been realized in

BLISS/11; however, the generation of a FLOWAN for an arbitrary language from the

description of the ordering relations (such as those of Geschke [Ges72]) is still a

manual process. The construction of modules such as TNBIND and FINAL must still be

automated; partly because these modules represent significant amounts of time to

implement, and partly because our model of DELAY is not compatible with the current

Iva.l
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implementations. The latter case implies that even a direct copy or a re-
imp'ementation of the TNBIND and FINAL models from the BLISS/11 compiler would not
operate with the nev DELAY.

The actual construction of a compiler using this model is still an open area for
research. The model presented here requires that every possible tree which
represents the evaluation of an expression be generated before the ieast-cost tree is
discovered. Aithough it might be possible to use clever encoding techniques to reduce
the exponential explosion in memory requirements, such a solution does not reduce the
basic complexity of the exhaustive search. Like others faced with problems of
exhaustive search, we would like to find a set of heuristics which reduce the search
and do not unduly limit the solutions found.

A number of heuristics are possible; for example, a set of heuristics which would
tend to generate the trees in ascending order of cost would require generating only
one tree at a time. The construction of a compiler which uses heuristic methods to
perform "nearly as well" as one whicn performs the exhaustive search is clearly an
area of future research.

There are other, lcng-term, research problems which would contribute
significantly to our goal of constructing correct compilers. The gercration of a set of
attricutes and T-operators is certainly one of these. In the ideal model of automatic
cornpiler production, only the machine description(s) and language description(s) are
required; everything eise is automatic to the generation of the final compiler. If we
could generate the attributes and T-operators {or the data base directly from a

machine description we would have reduced a significant possibility of errors in the

final compiler.
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Future research

There will be a need for optimizing compilers as long as it is possible to benefit
from them. Even a breakthrough in computer architecture which makes it difficult to
produce inefficient code will not replace all the existing machines in the world. The
reductions in resource utilization made possible by using an optimizing compiler are
great enough that ihere will continue to be emphasis on them in the future. However,
the cost and difficulty of constructing an optimizing compiler for a given
language/machine combination is high enough that the investment is often not
justifiable except by a manufacturer or software house. Increasing costs will make the
investment even less feasible in the future. Thus, we must now begin to develop the
tools necessary to automate the constructior; of compilers. This thesis is one

contribution towards that goal.

Iv43
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