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1. Introduction

In this paper, we report simulations of turbulent shear flows by

numerical solution of the three-dimensional Navier-Stokes equations. This

approach provides several advantages over more conventional approaches.

First, the complete flow field is obtained at all times so that detailed

flow characteristics may be obtained that would be difficult to measure

in the laboratory. Second, iniial conditions can be accurately controlled

so that their effect may be determined. Third, numerical simulations are

convenient experiments to assess the effect of various physical processes,

.like chemical reactions, on turbulence and vice versa. Fourth, the simula-

tions rbsults can be used to test and suggest various statistical hypo-

theses involved in turbl,'nce l a nd t- *- ^-i

The present work is an extension to inhomogeneous shear flows of the

three-dimensional, homogeneous, isotropic turbulence simulations reported by

Orszag & Patterson (1972). In this earlier work, simulations using up to

3
(-32) Fourier modes to represent each velocity component were performed

at microscale Reynolds number 20-50 (grid Reynolds numbers 5000-3000),

corresponding to moderate Reynolds number grid turbulence. The results of

these homogeneous turbulence simulations agreed well with both turbulence

theory (e.g., the direct interaction approximation) and laboratory experiments.

Simuiations have also been made of two-dimensional 'turbulence' using up to

(128)2 Fourier medes (Herring et al 1973) with successful comparisons with

the results of turbulence theories. These successful simulations gave impetus

to the present extension to shear flows.



.. -2-

In te homogeneous turbulence simulations, it was observed t'hat some

important features of the flows were Reynolds number independent (Herring et

al 1973), so that there is basis for assuming that the large-scale features

of flows simulated at huge Reynolds numbers. It.is also reasonable to assume

Reynolds-number-independence of large scales in shear flows provided initial

and boundary conditions are Reynolds number independent. It seems that

Reynolds number dependencies observed in laboratory flows may be ascribed to

variations in initial or boundary conditions; for example, Reynolds number

"variations in turbulent jets seem to be mainly due to variations in inlet

conditions (like boundary layer thickness) with Reynolds number.

As a first application of our shear flow turbulence codes, we have

simulated the momentumess wake of a self-propelled body. As pointed out

by Naudascher (1965), the mmentumless wake bears close relationship to grid-

generated homogeneous turbulence, since both are'characterized by a very

limited region in which there is sigr1ficant energy transfer from mean flow

'to turbulence through Reynolds stresses.

In Sec..2, we summarize the dynamical equations and boundary conditions

nployed with particular emphasis on the momentumless wake model. In Sec. 3,

some -ovel aspects of the numerical approximation are discussed, while in

Sec. 4, some results are presented for wake turbulence. Finally in Sec. 5, we

summarize our results and fueure outlook.

2. Equation of Motion

The Navier-Stokes equations of motion for an imcompressible fluid are

St ) < +VV t)
at'

t)=o
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where y(Q,t) is the three-dimensional velocity field, (xt)= x -(;,t)

is the vorticity, 7(,t) = p + v2 is the pressure he", p~x,t) is the pressure,

and V is the kinematic viscosity. Eq. (1) is written in rotation form to fa-

cilitate numerical solution (Sec. 3).

Boundary conditions require more discussion. In order to simulate the

momentumless wake of a self-propelled body the computational domain should

include a sizeable region of potential flow bath upstream and downstream of

the body as large as the body itself. However, this would be very wasteful where

most of the computational degrees of freedom would be involved in resolving

the flow outside the turbulent wake. Even within the wake, the first several body

diameters downstream are of adjustment to more self-similar conditions down-

stream. The resolution problem is a serious one. Presently practicable numeri-

cal simulations involve at most order of 105 degrees of freedom to describe the

velocity field, there would remain little more than 103 degrees of freedom to,

do the flow in Liu Lui'Ulerit wak.. .. - ClarY, it iS not possible tn'im, I

details of a turbulent flow with so little resolution;

In order to avoid the resolution problem just described, we simulate

wake flow in the following way. We isolate a slab in a momentumless turbulent

wake (Fig. 1) and follow its time evolution by considering it enclosed in

a three-dimensional box as shown in Fig. 2. The wake axis is assumed to

be along tlie x1 - axis and periodic boundary conditions are applied at xI =

0, LI and x2 = 0, L2. On the other hand, regid free-slip (no stress) or

rigid no-slip boundary conditions are applied at x = 0, L3. This choice

f boundary c6naitions in the x3- direction is necessitated by the face that

our conputer codes are written to solve also the Boussinesq equation of

motion of a stratified fluid for which the x3-direction is singled as the

lirection of gravity and the equations of shear flow in a channel with rigid
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top and bottom boundaries.

Initial conditions are chosen so that the slab of turbulence is a

realization of a section of a fully developed turbulent wake, i.e.

v(x,O) (xO) + v' (x,0) (3)

Here the mean defect velocity v(x,O) is-ch.ac- .to be

(xO) = v d(r) X (4)

where X" is the unit vector in the x -directio., r (2-212). +(x3-L 3 )

and

fv (r)r dr=0Sd

in order to simulate the momentumless wake. The initial fluctuating

velocity v'(x,O) is chosen as a realization of an incompressible random

vit-lvcity field with specified local energy spectrum and turbulence. Some

,of the details involved in the construction of v' are explained in Sec. 3.

Numerical solution of the Navier-Stokes equations from the imposed

initial conditions gives the time evolution of the simulated cylindrical

section of turbulence. After evolution time t, the results are interpreted

as a realization of a section of the wake flow at a distance x= U0 t down-

stream from the location of the initial wake section, where U0 is the body

velocity. In other words, the initial flow is chosen to have the same (or

rather similar) statistical properties as a section of a turbulent wake and

the time evolution of the flow is interpreted as the downstream variation of

the wake. The model we solve numerically is statistically homogeneous along

the wake axis x1 but nonstationary in time; the wake in the frame of a uni-

formly moving body is statistically strLionary in time but is inhomogeneous

n x*0 it is asserted that the Galilean transformation x, =U 0t relates the



numerical and physical experiments.

3. Numerical Methods

3.1 Free-slip boundaries

If the boundary conditions at x3 = 0, L3 are no-stress (free-slip) while

those at x , and x2 = 0, L are periodic then

1v V 2  2

*avI x V 3 on x3  O,L3 ; V(xlimLlx+nL = v(x) (6)

3 3 3 x1 mLx+Lx) v)

In this case, the velocity field can be expanded In the Fourier series

- -U. (k,t)exp[2(kxI - x/
Jkl<i'Zi 1k21<K 2  0 k 3<K 3

cos rk3x 3 /L3  a = 1,2
* (7)

sin Trk x3/7. a = 3

where the Indicated summations are over integer ki, k2, k3. For the simulations

reported below, the cutoffs are chosen as K = K2 = 16, K3 32, so that the

3
spectral representations (7) each involve about (32) independent degrees of

freedom (Fourier amplitudes).

We have used the expansions (7) in two kinds of numerical approximation

to the Navier-Stokes equations. In the spec.Lal method (Orszag 1971a), equations

for u(k) are derived by substituting (7) into (1), multiplying the result by

exp[-21ri(klXl/L1 + k2/L2/L for a = 1,2 (and by the same

* expression with the cosine replaced'by sine if a = 3), and finally integrating

the result over the box 0 < < LI. The resulting equations are, after eliminaLL:

of the pressure by means of the incompressibility constraint (2),



au(k, t) I0 1
+ ua(k°t) - (6= -K K 0

"fr p q <K (8)

where lc 2fTlcaaL6 for a = 1,2 and k 3 7rk 3 /L3 1 and

2,

uczt) I 0 (9)Z21sgn k3u3( k2 k3 )a

Numerical solution of (8) is accomplished using fast Fourier transform

methods to evaluate the convolution sums, leapfrog time differencing on the

nonlinear terms, and Crank-Nicolion (implicit) time differencing on the

viscous terms. Overall, 18 Fourier transforms on (32)3 points must be per-

formed each time step (Orszag 1971a).

In the pseudospectral method (Fox and Orszag 1973), the expansions (7)

are used'as an interpolatory tool to evaluate the derivatives appearing in

-. p O, ... , f - xor a = 1,2, = L3 /

.13 3' - - - - - - - - - -

derivatives as, for example,

W 3 (x,t) = < k [iklu2 (k,t)-ik2U 1 (k,t)]
I k I k2 1<K2 2  L 3  3

exp[iT'lx +iK2x2  cos k x

The final result of this procedure is to give a set of equations for the

spectral amplitudes u(k), defined by (9), that are identical to (8) except for

the replacement of the convolution sums by similarly truncated sums with

Pt +  qa = kCL -± 2K or p, + qa = k. (Orszag 1971a). The additional terms

entering the sums in (8) are usually called "aliasing" terms. It has been

shown (Fox and Orszag 1973) that the differences in the results obtained by

the present pseudospectral method and :he spectral method are generally

-gligible so long as either method gives an accurate solution of the equations

ition. Since the pseudospectral method may'be implemented in only 9
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Fourier transforms over (32)3 points per time step, it is roughly a factor

2 more efficient than the spectral method and 3o has been used for most of

the simulations reported below.

Both the spectral and pseudospectral methods have been programmed for

a CDC 7600. The programs involve double buffering of data between small

core memory, large core memory, and disks. The spectral method requires

about 6's per time step on the CDC 7600, while the pseudospectral code

requires only 3.2 s per time step, both for the cutoffs K = K2 = 16, K3 = 32.

many of the critical internal loops of the program are written in assembly

language to avoid inefficiencies attributable to the Fortran compiler,

although further improvements in the code should permit a speedup of nearly

50%.

Besides the speed advantage of the pse-tdospectral =to ovcr thc S .pectral

I,^ - 4* _n ;r Ohls e a o' Hnt it nnlip.- with but the most

minor of modifications to problems -nvolving more complicated physics, like

chemical reactions or radiation. Since the expansions (7) are used merely as

'an interpolatory tool in the evaluiation'of derivatives," they may be similarly

.used in the evaluation of these more complicated effects. Nevertheless, the

pseudospectral method shares allthe advantages of the spectral method with

regard to accuracy and, especially, efficiency improvement over finite-

difference schemes (Orszag'& Israeli 1974). The expression of (1) in rotation

form is useful since it gives pointwisc energy conservation.

3.2 No-slip boundaries

With no-slip boundary conditions applied at x3 = 0, L3, thevelocity satisfiesl

v - 0 on.x3  O,L3, v(xl-hnLlx 2+nL2,x3) = v(x) (11)

instead of (6). It is no longer appropriate to use the Fourier expansions

7), not just because v1 = V2  0 at x3 " O, To, but rather because imposition

1 2-3 3
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of a Fourier series representation of the x3 dependence would induce Gibbs I
phenomena at the boundaries and result in slow convergence of the Fourier

series (Orszag 1971a).

No-slip boundaries are best treated by Chebyshev expansion in x3

(Orszag 1971b). The velocity field is represented as

- IkI<~~kj<K C~ <K (k,t) exp (ik x +ik X ]Tk ([2x-L 3 )/L)Skl<K, lk 21'K 2 ,.0_-k3 <K 3  u 3 3

-(12)

where the nth degree Chebyshev polynomial T n(x) is defined by Tn (cosO) =

cos nO. It may be shown that, if v(x) is smooth, the series (12) or any of

its termwise derivatives do not exhibit Gibbs phenomena at the boundaries.

Equivalently, the series (12) converges faster than algebraically as K -.

Notice that the boundary conditions (11) must be imposed as constraints

on (12).

One advantage of (12) is chat iL leads Eu pbuudubpucLLdl dLUAi.atLons

to (1), (2) that are very similar in form to that -following from the Fourier

* series (7). In particular, the pseudospectral equations with (12) may be

implemented in 9 Fourier transforms per time step, and are but slightly less

efficient than for free-slip boundaries. With cutoffs KI = K2 
= 16 and K3 = 32,

* our code requires 4 s per time step. In this latter code, time differencing

is done by Adams-Bashforth differencing (Lilly 1965) on the nonlinear terms

(to avoid instability that would result from use of leapfrog because of the

stability induced by the boundary conditions) and Ciank-'Nicolson on the viscous

I: terms. The pressure computation is done by using (2) to get an equation

tridiagonal in the Chebyshev index k3 for the pressure and diagonal in kI

and k2. Solution of the resulting tridiagonal system accounts for most of

the additional time required by the rigid boindary code overthe free-slip

'ndnrv rnilo.
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Methods based on the spectral expansion (12) have an important advantage

over difference methods, in addition to the advantages they enjoy when

periodic of free-slip boundary conditions are applied. The "grid" points

for the pseudospectral method based on (12) are x3  L (1 + Cos IrjIK

for j3 = 0, ..., K3 so that the effective resolution near the walls x3 = 0,L3

is Ax 11v L /K . In fact, if there is a boundary layer of thickness 6 along
3 3 3a

either x3 = 0 or X3 = L3 , it may be shown (Orszag & Israeli 1974) that it

is sufficient to take K3 -v 3(L3/1)1/2 to achieve better than 1% accuracy

in the boundary layer. In effect, the Chebyshev polynomial expansion gives

a highly nonuniform grid near the boundaries. *This behavior is particularly

appropriate for the study of channel flows, etc. where thin boundary layer

- are apt to develop.

3.3 Initial conditions

-In the wake model introduced in Sec. 2, initial condiuions o LEW IULIU

of a "cylinder" of turbulence are required. The mean defect velocity (4) may

be imposed arbitrarily, but'the fluc!tuating component v'(x) must satisfy the

incompressibiiity constraint. This is done by writing

v'(x) = V x A'(x) (13)

where the vector potential A'(x) is chosen to achieve the desired local

energy spectrum and turbulence intensity. It suffices to choose A'(x) to be

of the form

A'(x) = fI(r)] B(x) (14)

-where the turbulence intensity function I(r) is a nonrandom function of

only the distance from the wake axis xI and the fluctuation component B(x)

is chosen as a realization of a homogeneous, isotropic random field with

specified isotropic energy spectrum, as done by Orszag & Patterson (1972). If
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the intensity function is chosen to vanish outside a radius r from the wake

axis, the resulting turbulent velocity field is, by (13), nonturbulenit

outside the cylinder of radius r0 centered on the wake axis.

C!" In summary, our technique cf imposing the initial conditions allow

arbitrary mean velocity profile, turbulence intensity profile, and local

turbulence energy spectrum.

4. Momentumless Wake

The wake model of Sec. 2 and the numerical methods of Sec. 3 permit

simulation of the turbulent wake of a self-propelled body. Free-slip boundary

conditions are applied at x3  0, L and the spectral cutoffs K1 = K2 = K1 6,

K3  32 are used. The following choice of initial parameters was made:

L1 I L2  L3 = 2, vd(r) = v0 sin (r/r 1 )/(r/r1 ) where r1 = 1/4, Ir)

... 4 2
max[l-r /4.5,0], and turbulence energy spectrum V) - t.r

&Patterson 1972]. The initizl conditions are chosen to match as closely

as possible the results of Naudascher (1965) and Wang" (1965) at a location

4 body diameters behind a self-propelled disk in a wind tunnel. In the

numerical simulations, the viscosity is chosen to be v = .005, so that the

Reynolds number of the simulation is roughly 13,000 (run 2a), and V = .003

Yith Reynolds number roughly 22,000 (run 3). In comparison, the laboratory

experiments of Naudascher and Wang were run at Reynolds numbers of roughly

55,000.

Some measure of the degree of complication of the flow that is simulated

Is given by Figs. 3&4. In Fig. 3, contours of the run 3 axial mean velocity

are Plotted at t = .8, correspondins, to about 7 zA~tcr: c' rea: from

the body upon making identification of body velocity by the ratio max[vd(r)] /U

*t the station at x/D = 4 with the exjerimental results. The axial mean is
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determined by averaging over the xl-direction. In Fig. 4, contours of the

run 3 xl-component of vorticity are plotted at t = .8.

In Fig. 5, we compare the axial variation of maximum turbulent intensity
with the results of Wang and Naudascher. Here U0 and to are determined as

explained above by correspondence with the data at the station at x = 4D,

while x0 
= 2D according to Naudascher and Wang. It is apparent from these

results that the present simulations are in substantial agreement with the

laboratory results of Naudascher and Wang, at least over the limited downstream

range of the present experiments.

In Fig. 6, we compare the radial variation of axial mean-square turbulent

intensity in the laboratory experiments and the numerical calculations. The

curve labelled t = 0 shows the initial distribution, while that labelled t .522

shows the resulting distribution for run 2a at about 6D downstream from the

body. Again, the agreement with the experimental results is satisfactory.

It is apparent from the simulation results of this section that nimerical

simulation of turbulent shear flows is well within present computational

capabilities. However, the process of extracting useful information about

* shear flows from numerical simulations is still in its infancy. The most

significant problem with the present simulations is the scarcity of points

in the axial direction.with which to compute averages. With just 32 points

in the longitudinal direction, statistical errors are more large and eithei

multi-time step information or ensembles must be employed to improve the

statistics. This situation should be contrasted with the case for homogeneous,

isotropic turbulence where space averages suffice to give statistical results

generally to within 5% (Orszag & Patterson 1972).
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5. Conclusions

The present simulations of turbulent shear flows are but a first step

towaid proper understanding of the basic mechanisms and dynamics of these

flows. Detailed comparisons and tests are presently being made between

various turbulence modelling hypotheses, la.66atory experiments, and the

present simulations. As time and the art of numerical simulation progress,

simulations like the present ones should be expected to fulfill more and

more the need of a laboratory workhorse. Out prdsent simulations provide

ample evidence for this. The computer codes we have written and sufficiently

Eeneral to study channel flows like plane Poiseuille and plane Couette flows,

as well as momentumless and momentumfull wakes, both in homogeneous and

stratified fluids. Experimental set-up of this variety of shear. flows, not-

withstanding specifying the form of the shear and turbulence profiles that

may be imposed, would be a herculean task. On the other hand, the computer

simulations can handle all thuse cases.

In future work on the momentumless wake, we shall report on longer simulation

runs now underway and on techniques to improve the statistics of the results.

In order to improve the choice of initial conditions, simulations runs are made

in which the pseudorandom initial conditions imposed as described in Sec. 3.3

are let to evolve for about i0 body diameters downstream and then are reapplied,

amplified in excitation, at a virtual upstream point in order to begin the

calculation anew. This approach avoids the difficulty of modelling imprecisely

known laboratory experiments. With.the initial conditions imposed as in Sec. 3.3,

the wake is very sensitive to the initial turbulence level relative to the mean

shear, while much of this dependence is avoided by the prescnt technique.
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1 FiC. 4 Axial conmponenr of vorticity contours for run 3 at t = .3
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