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1. Introduction

In this paper, we report simuiations of turbulent shear flows by
numerical solution of the three~dimensional Navier-Stokes equations. This
approach provides several advantages over more conveational approaches. ,
First, the complete flow field is obtained at all times so that detailed
flow characteristics may be obtained that would be difficult to measure
in the laborator§. Second, inié;al conditions can be accurately controlled
%o that their effect may be determined. Third, numerical simuiations are
convenient experiments to assess the effect of various physical processes,

Jike chemical reactions, on turbulence and vice versa. Fourth, the simula-

tions results can be used tc test and suggest various statistical hypo-

.

theses involved in turbulsnce rodele 2nd thecrics,

The present work is an extension to inhomogeneous shear flows of the
three~dimensional, homogeneous, isotroéic turbulernce simulations reported by
Orszag & Pattcr;on (1972). 1In this earlier work, simulations using up to
f32)3 Fourier modes to represent each velocity.component were performed
at microscale Re&nolds nunber 20-50 (grid Reynolds numbers 5000-3000),
corresponding to moderate Reynolds number grid turbulence. The results of
these homogeneous turbulence simulations agreed well with both turbulence
theory (e.g., the direct interaction approximaticn) and laboratory experiments.

, .
Simulations have also been made of two-dimensional 'turbulence' using up to
(128)2 Fourier nmedes (Herring et al 1973) with successful cemparisons with
the results of turbulence theories. These successfu; simulations gave impetus

to the present extension to shear flows.
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In gﬁe homogeneous turbulence simulations, it was observed that some
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: ; important features of the flows were Reynolds number independent (Herring et

é ¢ a2l 1973), so that there is basis for assuming that the large-scale features

" :

g ; of flows simulated at huge Reynolds numbers. It.is also reasonable to assume
% E Reynolds-nunber-independence of large scales in shéar flows provided initial
g : and boundary conditions are Reynolds number independent. It seems that

Reynolds number dependencies observed in laboratory flows may be ascribed to

*

]
. variations in initial or boundary conditions; for example, Reynolds number

‘variations in turbulent jets seem to be mainly due to variations in inlet

conditions (like boundary layer thickness) with Reynolds number.

-
.

As a first application of our shear flow turbulence codes, we have
sinulated the romentumless wake of a self-propelled body. As pointed out

by Naudascher (i965), the mcmentumless wake bears close relationship to grid-

generated homogereous turbulence, since both are’characterized by a very
limited region in which there is sigrificant energy transfer from mean flow
‘to turbulence through Reynolds stresses.
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In Sec..2, we summarize the dynamical equations and boundary conditions

employed with particular emphasis on the momentumless wake model, In Sec. 3,
some ~ovel aspects of the numerical approximation are discussed, while in §

Sec. 4, some results are presented for wake turbulence. Finally in Sec. 5, we

summarize our results and fufure outlook.

L
{
2, Equation of Motion ) .

The Navier~Stokes equatiors of motion for an imcompressible fluid are .

e,

—— by

| 2,'%5{_9: ¥ (6, €)% (3, €)1 (8, )4V 1 (%, 2)
t

Vex(x,t)=0
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where y(x,t) is the three-dimensional velocity field, & (x,t)=Y x y(z,t)
is the vorticity, w(x,t) = p + % v2 is the pressure he-?, p(x,t) is the pressure,
and v is the kinematic viscosity. Eq. (1) is written in rotation form to fa-

cilitate numerical sclution (Sec. 3).

Boundary conditions require more discussion. In order to simulate the

momentumnless wake of a self-propelled body the computational domain should

dnclude a sizeable region of potential flow beth upstream and downstream of

the body as large as the body itself. However, this would be very wasteful where

‘most of the computational degrees ¢f freedom would be involved in resolving
the flow outside the turbulent wake. Even within the wake, the first several body

. diameters downstream are of adjustment to more self-similar conditions down-

stream. The resolution problem is a serious one. Presently practicable nuneri-
cal simulations involve at most order of 10° degrees of freedom to describe the

velocity field, there weuld remain little more than 103 degrees of freedom td

do the flow in thie Lurbulent wake.» C it ic not possihle ta'cimulare

. details of a turbulent flow with so little resolution:

H

In order to‘avoid the resolution problcé'jus; descriged, Qe simuléte
wake flow in the following way. We isolate a slab in a momentumless turbulent
wake (Fig. 1) and follow its time evolution by considcriné it enclosed in
a three-dimensional box as shown in Fig. 2. The wake axls is assumed to
be along the X1 -~ axis and periodic boundary conditions are applied at xj =
0, L; and %y = o, LZ' On the other hand, regid free-slip (no stress) or
rigid no-slip boundary conditions are appiied at Xy = 0, L3. This choice
of boundary conditions in the Xq= difeciion is necessitated by the face that
our computer codes are written to solve also the Boussinesq cquation of
motion of a stratified f£luid for which the x3-direction is singled as the

tirection of gravity and the equations of shear flow in a channel with rigid

L
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top and bottom boundaries. T ' |

Initial conditions are chosen so that the slab of turbulence is a

realization of a section of a fully developed turhulent wake, i.e.

v(x,0) = v(x,0) + v'(x,0) (3)

Here the mean defect velocity §(§,0) is-ches. .o be
v(x,0) = v (r) & (%)
2

q

where 21 is the unit vector in the x,-direction,

oty 1y 2 12

and

fgv {r)r dr=0
° 4

in order to simulate the momentumless wake. The initial fluctuating

velocity v'(g,O) is chosen as a realization of an incompressible randcm

P

velocity field with specified local energy spectrum and turbulence. Some

-of the details involved in the construction of v' are explained in Sec. 3.

Numerical solution of the Navier-Stokes equations from the imposed

. mr————— e

initial conditions gives the time evolugtion of the simulated cylindrical
section of turbulence. After evolutjion time t, the results are interpreted

as a realization of a section of the wake flow at a distance X = Uot down- .

? strecam from the location of the initial wake section, where U, is the body

0

velocity. In other words, the initial flow is chosen to have the same (or

rather similar) statictical properties as a section of a turbulent wake and

the time evolution of the flow is interpreted as the downstream variation of

the wake. The model we solve numerically is statistically homogeneous along

=the wake axis 3 but nonstationary in time; the wake in the frame of a uni-~

formly moving body is statistically stctionmary in time but is inhomogeneous

1 xl. it is asserted that the Galilean transformation Xy =Uot relates the




numerical and physical experiments.

3. Numerical Methods

3.1 Free-slip boundaries '

1f the boundary conditions at X3 =0, L

those at X = o, Ll and x, = 07 L2 are periodic then

5 are no-stress (free-slip) while

.

v v ' ' :
Er il V3 on xq = 0,L3; g(xlile,x2+nL2,x3) = Y(§) (6)

In this case, the velocity field can be expanded in the Fourier series

Vo (x,t) = z Z Z u, (k t)c*p[2ﬂ1(k l-!-kzleLZ)]

[k, <k, kylex, 02 ky<ky

cos nk /L o=

. (7N
sin ﬂk /L a=3

|
-
~
o

where the Indicated summations are over integer kl, k2’ k3. For the simulations

reported below, the cutoffs are chosen as Kl = KZ = 16, K3 = 32, so that the
spectfal representations (7) each involve about (32)3 independent degrees of

freedon (Fourier amplitudes).
We have used the expansions (7) in two kinds of numerical approximation
to the Mavier-Stokes equaticens. In the spec.ial method (Orszag 197l1a), equations

for g(k) are derived by substituting (7) into (1), multiplying the result by

‘gxp[—ZHi(klxl/Ll + kzleLz)]cos[nk3x3/L3] for ¢ = 1,2 (and by the same

expression with the cosine replaced by sine if a = 3), and {inally integrating

the result over the box O j_xa < Lh' The resulting ecquations are, aiter eliminat.un

of the pressure by means of the incompressibility constraint (2),

Lot

NI




Bu (k) - e E
————— + vk u (k,t) = -ik (6 (p,t)u (q,1)
at B
ok (8)
- <
3 3 Ky < ps 95 < K,
where ka = 2ﬂku/La fora = 1,2 and k3 = ﬂk3/L3, and .
lu (kl,k2,|k3l,t),a= 1,2
u (k,t) = 9)

2i sgn kyu 3(k1,k2,|k [,t)a=

Numerical solution of (8) is accomplished using fast Fourier transform
methods to evaluate the convolution sums, leapfrog time differencing on the

nonlinear terms, and Crang-Nicoléén (implicit) time differencing on the
viscous terms. Overall, 18 Fourier transforms on (32)3 points must be per-
férmed each time step (Orszag 1971a).

In the pscudospectral method (Fox and Orszag 1573), the expansions (7)

are used as an interpolatory tool to evaluate the derivatives appearing in

:\ (1023 ” 2o - =v°I-- [ o Ao = = = 1 % =17 <
{3). Y6rid" poinis %y oua,zaa, oy = 8s +ee» 2K = 1 for «a=1,z, *q L3J3/K3.
j3 =0 ..., K3 2re introduced and the serice (7) are used to avaluate
derivatives as, for example,
v 5
w3(§,t) = z Z.J [ik:L 2(k t)-ik.u l(k t)]
[y [<k;  [kyl<k, OSk,<K, g :
(10)

. exp[ik l+1k2 2] cos k3x3

The final result of this procedure is to give a set of equations for the
spectral amplitudes E(E), defined by (9), that are identical to (8) except for
the replacement of the convolution sums by similarly truncated sums with
o + 9y = ka'i 2K or Py + 9y = ka (Orszag 1971a). The additional terms

entering the sums in (8) are usually called "aliasing" terms. It has been

. shown (Fox and Orszag 1973) that the differences in the results obtained by

the present pscudospectral method and :he spectral method are generally
~gligible so long as either method gives an accurate solution of the equations

ation. Since the pseudospectral method may *be implemented in only 9
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Fourier transforms over (32)3 points per time stép, it is roughly a factor

2 more efficient than the spectral method and zo0 has been used for most of
the simulations reported below.
Both the spectral and pseudospectral methods have been programmed for
a CDC 7600. The programs involve double buffering.of data between small
core memory, large core memory, and disks. The spectral method requires
about 6 s per time step on the CDC 7600, while the pseudospectral code
requires only 3.2 s per time step, both for the cutoffs Kl = K2 = 16, K3 = 32.
"Many of the critical internal loops of the progéam are written in assembly
language to avoid inefficiencies attributable to the Fortran compiler,‘
_ although further improvements in the code should permit a speedup of nearly
50%. '
Beéides the specd advantége of the pseudospectral methed ovcr.:hc spectral
zcthod, the former hag the great advantage that it anplies with but the most
minor of modifications to problems dnvolving more complicated physics, like

_chemical reactions or radiation. Since the cxpansions (7) are used merely as

1 an interpolatory tool in the evaluation of derivatives, they may be similarly

used in the evaluation of these more complicated effects. Nevérthcless, the
pseudospectral method shares all'the advantages of the spectral method with
regard to accuracy and, especially, cfficiéncy improvement over finite-
difference schemes (Orszag & Israeli 1974). The expression of (1) in rotation '

form is useful since it gives pointwisc energy conservation.

3.2 No-slip boundaries

J With no-slip boundary conditions applied at x., = O, L3, the velocity satisfies:

3
instead of (6). It is no longer appropriate to use the Fourier expansions

‘7), not just because vy ® Vv, = 0 at Xq = 0, L3, but rather because imposition

e e i AT N
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of a Fouriler series representation of the x, dependence would induce Gibbs

3

phenomena at the boundaries and result in slow convergence of the Fourier
K1 series (Orszag 1971a).

No-slip boundaries are best treated by Chebyshev expansion in X3

(Orszag 1971b). The velocity field is represented as

% v(z,2) = 3<§,t) exp[iﬁlxl+ik2x2]Tks([2x3-L3]/L3)

[k, [<Ky [k, |<K, -0Sky<K;

i
1}

_where the nth degree Chebyshev polynomial Tn(x) is defined by Tn(cosO) =

cos n®. It may be shown that, if v(x) is smooth, the series (12) or any of
i 1its termwise derivatives do not exhibit Gibbs phenomena at the boundaries.
Equivalently, the series (12) converges faster than algebraically as Ka+w.

Notice that the boundary conditions (11) must be imposed as constraints

..

% *on (12).

.....

to (1), (2) that are very similar in form to that following from the Fourier

. series (7). In particular, the pseudospectral equations with (12) may be
% . iwplcmented in.9 Fourier transforms per time step, and are but slightly less
efficient than for free-slip boundaries. With cutoffs Kl = Kz = 16 and K3 = 32,

our code requires 4 s per time step. In this latter code, time differencing

is done by Adams-Bashforth differencing (Lilly 1965) on the nonlinear terms
; (to avoid instability that would result from use of leapfrog because of the

stability induced by the boundary conditions) and Crank-liicolson on the viscous

terms. The pressure computation is done by using (2) to get an equation

[,

tridiagonal in the Chebyshev index k, for the pressure and diagonal in kl

3

and kz. Solution of the resulting tridiagonal system accounts for most of

the additional time required by the rigid boundary code overthe free-slip

ndarv ecadn.

.
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Methods based on the spectral expansion (12) have an important advantage
over difference methods, in addition to the advantages they enjoy when

periodic of free-slip boundary conditions are applied. The "grid" points

for the pseudospectral method based on (12) are Xg = %-L% (1 + cos wj3/K3)
for 33 = 0, veey K3, so that the effective resolution near the walls Xy = O,L3

is Ax3 ~N L3/K§. In fact, if there is a boundary layer of thickness § along
either X3 = 0 or X3 = L3, it may be shown (Orszag & Jsraeli 1974) thgt it
is sufficient to take K3 ~ 3(L3/<‘3)l/2 to achieve better than 1% accuracy

in the boundary layer. 1In effect, the Chebyshev polynomial expansion'gives

a highly nonuniform grid near the bcundaries. 'This behavior is particularly

appropriate for the study of channel flows, etc. where thin boundary layer

are apt to develop.

3.3 Initial condicions

.

-In the wake model introduced in Sec. 2, initial conditions of ihe fotm
of a "cylinder" of turbulence are required. The mean defect velocity (%) may

be imposed arbitrarily, but the fludiuating éompénént Y'(g) must safisfy the

" incompressibiiity constraint. This is done by writing

Ve = Tx A o ' (13)
where the vector potential A'(x) is chosen to achicve the desired local
energy spectrum and turbulence intensity. It suffices to choose g'(f) to be

of the form

A = [11F B (24)

- where the turbulence intensity function I(r) is a nonrandom function of

only the distance from the wake axis X1 and the fluctuation component B(x)
is chosen as a realization of a homogeneous, isotropic random field with

specified isotropic energy spectrum, as done by Orszag & Patterson (1972). If

IR RS RRITIITARINTT KRB,

P ———




Ll Sty

YT

i

4
e

~10-

the intensity function is choseit to vanish outside a radius %o from the wake

axis, the resulting turbulent velocity field is, by (13), nonturbulent
outside the cylinder of radius I centered on the wake axis:
In summary, our technique ¢£ imposing the initial conditions allow

arbitrary mean velocity profile, turbulence intensity profile, and local

turbulerce energy spectrum.

4. Momentumless Wake

The wake model of Sec. 2 and the numerical methods of Sec. 3 pernmit
simulation of the turbulent wake of a self-propelled body. Free-slip boundary

conditions are applied at Xy = 0, L3 and the spectral cutoffs Kl = Kz = K

16’
K3 = 32 are used. The following choice of initial parameters was made: ‘
L =1,= ?3 = 2, vd(r) = v, sin (r/rl)/(r/rl) where r, = 1/4, I(x) =

(4] z’

2. . - . . - - ' -
wax[1-r“/4.5,0], and turbulence energy specrrum E{k) — Ak eap{-Bh°) [v£f. Cirszap

& Patterson 1972). The initial conditions are chosen to match as closely
as Pos§ib1e the results of Naudascher (l965) and Wang' (1965) at a locaFion
4 bodyAdiameCers behind a sclf—prépeiled disk in a wind tunnel. 1In the

numerical simdlations, the viscosity is chosen to be v = ,005, so that the
Reynolds number of the simulation is roughly 13,000 (run 2a), and Vv = .003

vith Reynolds number roughly 22,000 (run 3). In comparisom, the laboratory

~

experiments of Naudascher and Wang were run at Reynolds numbers of roughly
55,000.

Some measure of the degree of complication of the flow that is simulated
is given by Figs. 3&4. In Fig. 3, contours of the run‘i axial mean velocity
are plotted at t = .8, corresponding to about 7 diameters dvmstrean from
the body upon making didentification of body velocity by the ratio max[vd(r)]/U6

At the station at x/D = 4 with the evpérimental results. The axial mecan is
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determined by averaging over the xl-direction. In Fig. 4, contours of the

C]

run 3 xl-component of vorticity are plotted at t = .8,

In Fig. 5, we compare the axial variation of maximum turbulent intensity'
with the results of Wang and Naudascher. Here UO and to are determined as

explained above by correspondence with the data at the station at x = 4D,

while Xy = 2D according to Naudascher and Wang. It is apparent from these

results that the present simulations are in substantial agreement with the

laboratory results of Naudascher and Wang, at least over the limited downstream

range of the present experiments.

In Fig. 6, we compare the radial variation of axial mean-square turbulent

intensity in the laboratory experiments and the numerical calculations. The

curve labelled t = 0 shows the initial distribution, while that labelled t = .522

shows the resulting distribution for run 2a at about 6D downstream from the

body. Again, the agreement with the experimental results is satisfactory.

.

It is apparent from the simulation results of this section that numericail

simulation of turbulent shear flows is well within present computational.

.

capabilities. However, the process of extracting useful information about

shear flows from numerical simulations is still in its infancy. The most

significant problem with the present simulations is the scarcity of points
\

in the axial direction .with which to compute averages. With just 32 peints

in the longitudinal direction, statistical errors are more large and eithe:

.

nulti-time step information or ensembles must be employed to improve the

statistics. This situation should be contrasted with the case for homogeneous,

isotropic turbulence where space averages suffice to give statistical results

generally to within 5% (Orszag & Patterson 1972).

!
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5. Conclusions i

The present simulations of turbulent shear flows are but a first step
toward proper understanding of the basic mechanisms and dynamics of these
flows. Detailed comparisons and tests are presently being made between
various turbulence modeliling hypotheses, l.aitlidi:ét-t:g')_;:'5''expe'riment:s,i and the

preseat simulations. As time and the art of numerical simulation progress,

simulations like the present ones should be expected to fulfill more and

more the need of a laboratory workhorse. Out présent simulations provide

ample evidence for this. The coﬁéuter codes we have written and sufficiently
general to study channel flows like plane Poiseuille and plane Couette flows,
as well as momentumless an& momcntumfpl; wakes, both in homogeneous and
stratified fluids. Experimental set:up of this variety of shear. flows, not—‘
withstanding specifying the form of the shear and turbulence profiles that
ﬁay be imposed, would be a herculean task: On the other hand, the computer
simulations can handle allxthuse cases.

In future work on the momentumless wgke, we shall report on longer simulation
ru;s ;owiﬁnderwa; aﬁdlon techniques to improve the statistics of the results,
In ordgr to imérove the choice of initial conditions, simulations runs are made
in which the pseudorandom initial conditions imposed as described in Sec. 3.3
are let to evolve for about 10 body diameters downstream and then are reapplieé,
amplified in excitation, at a virtual upstream point in order to begin the
calculation anew. This approach avoids the difficulty of modelling imprecisely
known laboratory experiments. With, the initial conditions imposed as in Sec. 3.3,

the wake is very sensitive to the initial turbulence level relative to the mean

shear, while much of this dependence is aveided by the present technique.

- ————
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