
AD-A019 484

F AN INTERACTIVE MANAGEMENT SUPPORT SYSTEM FOR PLANNING,

CONTROL, AND ANALYSIS

Richard E. Fikes, et ai

Stanford Research Institute

Prepared for:

Office of Naval Research

November 1975

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPAFI1MENT OF COMMERCE

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

/

0221f32

Technical Report 12

' AN INTERACTIVE MANAGEMENT
SUPPORT SYSTEM FOR PLANNING, CONTROL,
AND ANALYSIS

/. . 4

By. RICHARD E. FIKES dnd MARSIIALL C. PEASE

Prepared for:

OFFICE OF NAVAL RESEARCH
DEPARTMENT OF THE NAVY
ARLINGTON, VIRGINIA 22217

Contract Monitor MARVIN DENICOFF, PROGRAM DIRECTOR
INFORMATION SYSTEMS BRANCH

CONTRACT N00014.71 -C-0210

Distribution of th,s document is unlimited It may be releosed to the Clearinghouse, Department ot

Commerce for sale to the general puhlic

STANFORD RESEARCH INSTITUTE
Menlo Park, California 94025 • U.S.A.

Q.,pl du:ed by

NATIONAL TECHNICAL
INFCIMATION SERVICE

US O fparirnn 0$ C0rIme
r
C'

$0-r91'Id, VA 22151

Technical Report 12 November 1975

AN INTERACTIVE MANAGEMENT
SUPPORT SYSTEM FOR PLANNING, CONTROL,
AND ANALYSIS

By: RICHARD E. FIKES and MARSHALL C. PEASE

Prepared for:

OFFICE OF NAVAL RESEARCH
DEPARTMENT OF THE NAVY
ARLINGTON, VIRGINIA 22217 .U

Contract Monitor: MARVIN DENICOFF, PROGRAM DIRECTOR
INFORMATION SYSTEMS BRANCH

CONTRACT N00014-71-C-0210

SRI Project 1031

Distribution of this document is unlimited. It may be released to the Clearinghouse, Department of
Commerce for sale to the general public.

Approved by:

DAVID R. BROWN, Director
Information Science Laboratory

BONNAR COX, Executive Director
Information Science and Engineering Division

Copy No..Lft.....__ _

ABSTRACT

A Management Support System currently being implemented at SRI con-

siders the operational problems faced by the commander of a naval air

squadron. It provides a research environment in which to study means of

aiding him in planning the use of his resources of pilots, aircraft,

maintenance mechanics and facilities, and other limited resources to

accomplish missions and otier required objectives. It provides a tool

for studying how to aid him, also, in controlling the operations both by

identifying events which may require replanning and, where it can, by

adjusting operations appropriately. Finally, it provides a facility in

which to study hnw he can analyze and evaluate past operations to improve

the squadron's performance.

While the experimental system oDerates in the context of a naval air

squadron, the objective of the work is to develop concepts and techniques

thaL will be applicable to a range of managerial situations, independent

of the p:,rrcular type of organization involved, or its functions or ob-

jectives. The concept, of a knowledge-based system, that is being imple-

mented appears to be broadly applicable to managerial situations.

ii

CONTENTS

ABSTRACT

LIST OF TAB LES.. o. iv

I INTRODUCTION .. o. I

II CURRENT DESIGN AND STATUS 3

A. Introduction. 3

B. Activities, Events, and Messages...............6

C. Control Structure. 7

D. Scheduling Using Scroll Tables............ . 9

E. Planning Using Process Models. 12

F. Operational Control of Planned Activities. 14

G. Data Base Architecture 15

H. Demonstration System. 22

III RESEARCH PROGRAM. 23

A. Improved Replanning CapabiliLy o 23

B. Alert Functions. 24

C. Priorities and Value or Cost Functions 26

D. Multiple Process Types o.. 27

E. Retrospective Analysis 31

F. Accumulation and SUmmary Files. 34

IV SUMMARY .3

REFERENCES 37

iii

TABLES

1 An Exemplary Relation 18

2 Subschema for MISSION. SUBACTIVITY. TIMING 19

iv

I INTRODUCTION

This report is an interim progress report on our research program

on large-file management information systems, which we alst. refer to as

management support systems. It summarizes the status of the experimental

system being implemented and our immediate plans for future research.

The g&?neral objective of the program is the study of large-file man-

agement support systems that can serve as intelligent decision aids for

management in planning and controlling operations and for the analysis

of operations through the analysis of historical data.

To provide a meaningful context in which to study the problems of

creating an effective management support system, we are developing an

experimental demonstration system that addrcsses some of the problems of

actual naval managers. The context that we have chosen is the management

of a navdl air bquadron or group. We wish to emphasize, however, that

the goal of the program is the development of concepts ai1J techniques

that can be applied to many managerial situations, independ,.t oi che

particular types of organization or managerial situations, indei,'Idenc

of the particular types of organization or operations to which they ,A ght

be applied.

Within our general objective, the program has two specific goals:

r I * Knowledge-based planning systems that will effectively aid
a manager in a variety of complex situations are to be de-

veloped. Implicit in this goal is the objective that the

system have th2 flexibility to tailor its behavior, to the
manager's needs and preferences.

[,I

* Knowledge-based systems that can aid the manager in

evaluating operations through the analysis of historical
data are to be developed. Implicit here is the develop-

ment of a data system and question-atnswering capabilities

that reflect the concerns of the manager.

The experimental system currently being implemented is intended :o

provide an environment within which these objectives can be pursued.

This environment is described in some detail in Section II, "Current

Design and Status." The ways in which these objectives will be studied

and the problems that are foreseen for obtaining effective solutions to

them are discussed in Section III, "Research Program."

2

II CURRENT DESIGN AND STATUS

A. Introduction

Current project effort is focused on the design and implementation

of an experimental management support system capable of assisting in the

planning, monitoring, and recording of activities within the manager's

organizution. The system is being designed to reflect the actual struc-

ture of the manager's organization; it consists of a collection of inde-

pendent modules each responsible for a specific set of the organization's

resources, personnel, and activities. For example, in the naval air

squadron domain there is a module responsible for aircraft maintenance

activities, another responsible for pilot scheduling, another responsible

for flying missions, and so on.

When a manager requests some activity, such as flying a mission, the

module responsible for that type of activity accepts the request and

attempts to create a plan to satisfy it. The planning effort consists

primarily of obtaining commitments from the other modules to provide re-

sources and services at specific times. For example, the mission planner

sends a requist to the aircraft scheduler that an aircraft ur assigned to

the mission fir a specific interval of time, and sends a request to the

maintenance coordinator for preflight maintenance on the aircraft to be

perforned at a specific time. If the system is successful in producing

a plan, and the plan is approved by the manager, then the same system

module acts as the administrator of that plan, in the sense that it ini-

tiates and monitors each of the plan's steps, provides status reports on

the plan's progress, responds to events that endanger the success of the

pian by replanning or sending alert messages to the manager, and acts,

I3

In general as a human might do who is delegated responsibility for fol-

lowing througn on the plan. Finally, the module creates a iecord of the

planning and occurrence of the activity on the system's historical files.

These files form a data base that describes the operational history of

the organization. They are used both by the system as input to its plan-

ning models and by the manager as a basis for analyzing the operation of

the organization.

The system concept is based in part on the use of process modelsl*

which are generalized plans for the execution of various types of activ-

ities. A plan that is developed to meet a particular requirement is an

instantiation of the appropriate process model and includes the identi-

fication of the particular resources and personnel that will be employed

and the starting and ending times of the activities that are required.

For example, the process of flying a missiou requires that a pilot and

aircraft be assigned for the necessary time. It a!so requires the exe-

cution of various activities sucn as briefing the pilot, executing the

preflight maintenance on the aircraft, and fueling and arming the aircraft.

The system concept is also based on the use of what can be called

"resource models." Each resource model models the current and expected

states of all instances of a given resource type--for example, all pilots in

the squadron, or all aircraft. A resource model applies the rules that

govern the u~e of that type of resource--both the rules that are inherent

in the nature of the resource involved and those that are set by policy.

For example, the aircraft resource model would apply the knowledge that

an aircraft can only be assigned to one activity at a time, as well as

the policies governing scheduled maintenance.

References appe-al, at the end of the report.

4

Within the system, as currently conceived, separate program modules

are responsible for each model. Those that handle process models are

called "planners." Those that implement resource models are "schedulers."

Developing a plan to meet a required objective is the responsibility

of the appropriate planner. It knows the resources that it needs and when

it needs thr.n. It interrogates the appropriate schedulers to determine

if the needed resources can be made available when needed. If there are

no conflicts, a plan is generated with the form of a set of coriLments

among the variois modules--for example, that an aircraft will be ready

for launct at the time required.

The interactions, both between the various modules and between the

4system and the user, are executed through a control structure that admin-

isters a message-handlin-g discipline. That is, each intermodule conmiunica-

tion is iniciated as a message that is placed in a message queue within

the control structure and delivered by the control structure to the

appropriate module. This proceflure is important for the implementation

of the system since it provides an orderly sequence of operations within

the system. It maintains the integrity and autonomy of the various models

while faci-itating the necessary in-eractions and negotiations.

The following subsections discuss the principal specifications and

behaviors of various components and functions of the system. Subsections

£l-B and 11-C define and specify the implementation of activities, events,

and messages and their use in the control structure. Subsection Il-D

discusses the schedulers and their implementation through the use of

"scroll tables," which are defined. SubsecLion I1-E considers the plan-

ners and their u:Sc of proces, irodels. While the discussions in Subsec-

tions II-D and II-E are primarily concerned with the planning of operations,

Subsection II-F considers the use of the system in the control of opera-

tions as plans are exccutcd, including the response of the svstem to events

5

o4

that might jeopardize existing plans. Subsection II-G then considers the

data structures used for the historical files which are available to the

manager for the analysis of operations. Finally, Subsection II-H includes

a brief description of some additional features that will permit use of

the system as an experimental environment.

B. Activities, Events, and Messages

Three data types are used throughout the system, namely "activities,"

"events," and "messages." An activity is a data structure that represents

a specific operation in the organization. Typically, the operation in-

volves performing a task such as flying a mission or doing a preflight

checkout of an aircraft. Activities are hierarchically structured in the

sense that any given activity may consist of a sequence of operations,

each of which is itself an activity. For example, the activity of flying

a mission consists of many subactivities, including preflight checkout of

the aircraft, briefing the piiot, and launching an aiicraft.

In the current implementation, ar activity is represented by a list

Jof property-value pairs. Each activity has a unique number as une of its

property values. Typical other properties include "scheduled start time,"

"name of planning module," and "type of activity."

An event is a data structure that reprcseltb a specific state-

changing occurrence in the organization. The occurrence happens at a

specific time and is considered to be instantaneous. Typical events

include beginning an activity, ending an activity, and changing the status

of a resource.

In the current implementation, an event is represented by a list of

property-value pairs. Each event necessarily has property values speci-

fying a unique ID number, the time at which the event occur., and a "type"

indicator (such as "start activity," 31 "change status"). An event also

6

oftenhasa list of functions, which is stored as the value of the prop-

erty "code." These functions are called when the event occurs, and they

typically update the system's model of the current status of the organi-

zation to reflect the effects of the event.

A message is a data structure that represents a request or response

of one system module to another system module. All intermodule communica-

tion within the system is done by sending and receiving such messages.

For example, when the mission monitor is ready to initiate preflight

checkout of the aircraft, it sends a message to the aircraft maintenance

nodule requesting that the preflight checkout activity begin; the main-

tenance module then sends a message back to the mission monitor module

indicating that the activity has begun, and another message later indica-

ting that the activity has ended.

In the current implemertation, a message is represented by a list

of property-value pairs. Each message necessarily has property values

specifying an ID number, the name of the sending module, the name of the

receiving module, the time at which the message is to be sent, and a type

indicator.

C. Control Structure

The processing framework within whir.n the system modules and the

users of the system operate has been designed and an initial version imple-

mented. This subsection describes the existing implementation.

The top level function is a system monitor that administers a queue

of messages and a queue of events. Each message contains the time at

which it is to be senc. When that time occurs, the monitor calls the

module that is to receive the message, with the message as an argument.

This is the only way in which modules are called, and they must return

control to the monitor when they have completed their processing. For

7

one module to communicate with another module, a message must be composed

and entered into the monitor's message queue.

This control discipline has many desirable properties, including

the following. A module can "suspend" itself by returning control to the

monitor, and then be restarted by the occurrence of an event that sends

it a message or by receiving a "wake-up" message that it has scheduled

to be sent to itself; hence, the system can process and plan multiple

activities at any given time, and can respond to events in a straightfor-

ward manner. For example, when the mission module requests the initiation

of preflight checkout, the maintenance module issues a directive to a

mechanic to do the checkout, schedules a message to itself to be sent at

some later time if the preflight checkout is not completed when expected,

and returns control to the monitor for other processing to occur. When

the mechanic reports back to the system that the preflight checkoat is

completed, the maintenance module will send an "activity ended" message

to the mission module, and the mission module will proceed to request the

initiation of the next stcp in the mission. Hence, the interaction be-

tween the maintenance and mission modules is suspended while the preflight

checkout is in progress, and then is restarted when the activity ended

event occurs.

Since the message-passing control structure reflects the communica-

tion style of the actual organization, the system can interact with those

parts of the organization for which system modules do not exist in the

same manner that it interacts with other modules. For example, if there

is no aircraft maintenance module, then the system can send start activity

requests to the maintenance division in the same manner that it sends

messages to a maintenance module. Hence, the boundaries of the system

are flexible and, in a sense, invisible.

8

Events are scheduled by entering the data structure representing the

event on the monitor's event queue. At the time chat the event is to

occur, the monitor removes the event from the queue. fetches the type

of the event, calls a list of "demon" functions that are associated with

that event type, and executes the code associated with the event. The

demon functions typically look for events with some specific character-

istics and, when such an event is found, schedule a wake-up message to

some module.

The monitor also accepts interrupts from any terminals that are

attached to the system. When a user types a control character to request

access to the system, a "wait" message is typed out and an internal flag

is set. After the monitor has proces3ed all the messages and events that

Ii are queued for the current time (the internal clock is incremented in

steps of one minute), control is given to the terminal and an interaction

with the user is initiated.

D. Scheduling Using Scroll Tables

Many of the modules in the system will be responsible for scheduling

the use of a set of resources (including personnel). To facilitate this

task we have designed and implemented a type of data structure called a

scroll table that is basically a two-dimensional orray, in which each row

represents a resource and each column represents a time interval. The

primary piece of data that is stored in each element of the table is the

expected status of the row's resource during the column's time interval.

These tables are designed to represent the present and future only. As

time progresses, the table is automatically "scrolled" so that effectively,

the time interval represented by the first column of the table always

includes the current time. The advantage of this representation is that

it simplifies the search for a facility such as an aircraft, that is,

for example, unassigned over some specified period of time. Since there

9

may be many suitable aircraft, it permits what amounts to a parallel

search of the current plans for all aircraft simultaneously.

Each scroll table has a time quantum associated with it that indi-

cates the smallest interval that can be represented by the table. Each

column's time interval zan be any multiple of this quantum. Hence, a
scroll table can store status changes scheduled to occur at arbitrary

times in the future without the necessity of containing a column for each

quantum-sized interval. In the current implementation, the numibers of

rows and columns in a table varies dynamically with the module's scheduling

requirements, and the last column of a table always :'epresents an "open-

ended" interval starting at some specific time and continuing indefinitely

into the future. Hence, a table always has a column representing any

given future time, and new columns are created when needed by dividing an

existing column into two columns, with the new column boundary occurring

at the time where a status change is being scheduled to occur. Rows can

be added or deleted to indicate the addition or depletion of resources

assigned to the module.

When a module schedules a resource to be in a g4ven stEte for a

specific time interval, a list of property-value irs is created to

represent that state so that information in addition to its name can be

stored about it. For example, if the name of the state is "assigned,"

then the list would indicate the ID of the activity that the resource

will be assigned to. A pointer to this list is the "value" that is stored

in the appropriate elements of the module's scroll table. For example,

if aircraft AC3004 is to be assigned to mission M2345 from 08:00 to 15:00,

tnen a list would be created containing property-value pairs specifying

"assigned" as the state name, M2345 as the activity ID, and possibly

other information. A pointer to this list would be enteced in the row

of the scroll table that corresponds to aircraft AC3004 in those columns

that span the period from 08:00 to 15:00.

10

Our implementation of scroll tables also contains a demon activation

facility that allows functions to be called whenever new values are

entered into the table. In particular, there is a list of demon functions

associated with each element, each row, each column, and the entire table.

Whenever a new value is entered into an element of the table, any of the

demons associated with that element, the element's row, the element's

column, and the entire table are considered for activation.

Associated with each demon is a list of old state values and a list

of new state values. A demon is activated only if the name of the new

state being entered into the table is on the demon's list of new state

values and the name of the state being replaced is on the demon's list of

old state values. Hence, the demon facility allows one to specify a

demon's activation conditions in terms of resources, time intervals, and

state transitions. For example, one could specify a row demon that would

be activated whenever a particular resource is scheduled to enter an

assigned state, or a column demon could be specified to be activated

whenever any resource is scheduled to become "available" during a partic-

ular period.

The typical scheduling module receives resource allocation requests

specifying the type of resource desired, the length of time the resource

is needed, and the time interval during which the assignment must occur.

The module attampts to find a resource that has appropriate availability

to satisfy the request by consulting the scroll table for that resource

type. If such a resource is found, then an assigned state is created for

the resource and entered into the table. If no resource is available as

requested, the scheduler has several options, including finding resources

that are Ivailable in a time interval that is "close" to the interval

given in the request or rescheduling lower priority planned assign,._nts

to make a resource appropriately available. We are currently completing

the design of an initial version of these scheduling algorithms.

11

OF - _ - -

E. Planning Using Process Models

The previous section described the use of scroll tables for schedul-

ing resource allocations. The system will also be involved in the plan-

ning of activities. Typically, a module will receive a request (from

another module or from a terminal) that a specific activity be carried

out within a given time interval. The module's task is to create a plan

for that activity, including scheduled start and end times for each of

the plan's steps or subactivities. If the planning effort is successful,

the module will respond with a commitment that the activity will be

carried out as planned. If the requester must supply some resource (such

as an aircraft or a pilot) before the activity can begin, then the commit-

ment is a mutual one between the requester and the planning module that

if the resource is provided at a specific time the activity will be com-

pleted as planned.

During the planning of an activity that involves subactivity steps,

the planning module becomes a requester to other modules for scheduling

the subactivities. For example, when the mission module receives a re-

quest to plan a mission, it sends planning requests to the maintenance

module for a preflight checkout activity, to the flight deck module for

a launch activity, and so on. When a plnning module cannot schedule an

activity within the requested time period, it will, whenever possible,

return alternative schedule(s) that are close to the requested time

period. The requesting module can then try to modify the time period

constraints so that one of the alternative schedules satisfies them. This

may mean interacting with the manager at the terminal, or if the activity

is a single step in the plan of some superactivity, then it may mean

attempting to reschedule the steps immediately before and after the alter-

natively scheduled step.

12

WI

The planning algorithms we have designed and are now implementing

proceed by instantiating a process model of the activity. A process model

can be thought of as a geueralized plan for an activity type, such as a

mission or a preflight checkout. It includes the steps that a plan will

have, the preconditions and effects of each plan step, a set of variables

for which the planner must find acceptable values, and a set of constraints

on the values of those variables. Typical variables in a process model

are start and end times for subactivity steps, and identities and quanti-

ties of the resources that will be used by the activity. Typical con-

straints are partial ordering relations on the start an end timnes of the

individual plan steps.

Process models are useful for planning in situations where the order-

ing and identity of plan steps are the same for all activities of a given

type. In such situations, the planning task is basically one of obtain-

ing scheduling commitments for each subactivity and for the necessary

resources. This style of planning appears to be generally useful to a

manager, since many of the operational procedures in an organization have

the same steps each time they are carried out. For example, flying a

mission can be described by a process model that involves preflight check-

out of the aircraft, leading and fueling the aircraft, briefing the pilot,

launching the aircraft, a flight to the target, a delivery activity, a

flight back to the carrier, a postflight checkout of the aircraft, and a

pilot debriefing. Each mission typically involves this fixed set of steps

ordeied to satisfy a fixed set of constraints.

Variables in our process models are "describable" in the sense that

each one has a list of property-value pairs associated with it. One

important piece of information stored on a variable's property list is a

specification of how a planner can determine a value for the variable.

This information typically specifies the name of the module that can

13

"s

determine a value and the set of parameters needed by that module as

input. For example, the identity of the aircraft to be assigned to a

mission can be determined by sending a request to the aircraft scheduling

module; the request must include the estimated start and end time of the

mission and the type of aircraft desired. Other important types of infor-

mation found on variable's property list include default values and

symbolic constraints that restrict the range of possible values.

F. Operational Control of Planned Activities

The system will also have facilities for control of the execution of

an activity after a plan has been completed and approved. When a module

obtains approval from the manager for one of its plans, it will schedule

a wake-up message to itself to be sent at the start time for the first

step in the activity. When this message is sent, the awakaned module

will begin to function as an execution monitot by sending a start activity

message either to the module or to the person responsible for carrying

out the first step. Before releasing control, the monitoring module will

also schedule an "alarm" message to itself to be sent when the completion

of the first step would be considered overdue. If the first step ends

on schedule, an activity ended message will be sent to the monitoring

module, the alarm message will be canceled, and the next :tep of the plan

will be initiated in the same manner. If the alarm message is sent before

the first scep is completed, then the monitoring module will send out a

message requesting an estimate of when the first step will be completed,

and upon receiving an answer, will initiate replanning using the new

estimated end cime for the first step.

In general, modules make conmitments to each other during the crea-

tion of a plan to perform tasks and to provide resources at specific

times. Each module has the responsibility of monitoring those activities,

events, and resource usages in the organization that could jeopardize its

14

ability to keep its commitments. This monitoring is typically done by

demon functions set up by the modules at the time the commitments are

made. When such a demon is activated, it checks to see if the commitment

can still be kept, and if not. sends a message tc the involved parties.

A module receiving such a message will typically initiate an effort to

modify the plan being executed to correspond to the new situation.

G. Data Base Architecture

A major concern in our management support system is the creation,

maintenance, and review of large historical files of information about

system activity and performance of the organization. We have completed

the design and implementation of the basic filing techniques needed to

implement these data base facilities. These techniques are similar to

ones widely used in current commercial systems, with ours having slightly

more generality and correspondingly less efficiency. It is not these

filing techniques in themselves that are of interest in this project, but

rather their use in the context of a process model. To accommodate process

models, we have developed two original features: demons and process model

schemas, which we will discuss further. Subsection IV-E gives specific

examples of how the process model can be used in answering queries about

stored data. In this subsection II-G, we concentrate on the ways ii which

program modules interact with the data base.

As discu:3sed earlier, our management support system contains a set

of independent program modules, each of which is responsible for a

specific set of the organization's resources, personnel, and activities.

We have chosen to adopt a modular data base approach in which each program

module is tightly interconnected to the segment of the overall data base

relevant to it, so that the conplete data bas3 is "decentralized."

15

For example, the pilot scheduling module has responsibility for

scheduling and monitoring the assignment of pilots. These responsibilities

include ensuring that each pilot receives adequate rest time, and that a

reserve of pilots is maintained to allow for unplanned events such as a

pilot becoming unavailable due to illness or injury. To fulfill these

functions, the pilot scheduler needs current information about the number

of hours each pilot has been assigned during the preceding time period,

the policy that determines how much rest each pilot needs, and the prob-

ability (conditional on his past record) ot each pilot becoming unavailable.

Another exemplary module is the mission coordinator, which has

responsibility for the planning and monitoring of missions. In order to

make realistic plans, it must have accurate statistics on the time each

mission subactivity takes to execute. For example, it might use esti-

mates that the mean briefing time is 25 minutes with a standard deviation

of 5 minutes, obtained from weighted or running averages of past perfor-

mance.

The information that the pilot scheduler and mission coordinator

require in the above examples is stored in local data bases that these

modules have sole responsibility for creating, maintaining, and reviewing.

The complete data base is simply the union of these local data bases.

One of the primary advaatages of this decentralized approach is the

ease with which the system can be extended. When new modules are defined,

or when particular segments of th- lata base require restructuring because

of a change in the responsibilities or resource characteristics of a par-

ticular unit of the organization, an overall restructuring of che global

data base is not required. Instead, it is only necessary to change the

structure of a local data base.

The decentralized approach introduces several technical problems.

Specifically, assuring consistency of information included in more than

16

..... g m my, _A7....

one segment, allowing for cross-referencing between local data bases,

and providing for answering queries that review the system as a whole.

Another problem is providing a set of general-purpose access software

that can support all the local data bases without forcing them into a

single central organization. Clearly, any such general-purpose software

would have to be "content-free," in the sense that its procedures could

not be tied to any one local structuring of data.

The solution we have formulateo to these difficulties is based on

structuring all local data bases in a simple "relational" form, and main-

taining local data base declarations, or subschemas, that table-drive

general-purpose access functions. The union of the subschenmas for inde-

pendent modules serves as the schema for the complete data base.

The relational data structure has been shown by E. F Codd2 to be

general and to facilitate the maintenance of multiple consistent views of

a data base. A relation is simply a table whose columns correspond to

particular "data attributes," and whose rows correspond to a collection

of "associated data values." Each relation resides in a functional

entity that we refer to as a relational file. A simple example of a

'istorical relation recording information for the mission coordinator is

shown in Table 1. The data attributes are generic items that take on

values for each mission.

Since our management support system is being implemented in INTERSLIP,

we have chosen to represent the subschema for a relation as a list

structure. rable 2 gives the subschema for the MISSION. SUBACTIVITY.

TIMING relation.

Our schema approach has been widely advocated3 and almost universally

adopted in sophisticated data base management systems. In essence, the

schema records in a form that can be machine-interpreted, the structure

of the data base, in a manner independent of procedures that access data.

17

Table I

AN EXEMPLARY RELATION

Relation: MISSION. SUBACTIVITY.TIMING

Mission Preflight Briefing Fueling Launch

Id. Checkout Time Time Time Time

#2931 10 mins. 15 mins. 10 mins. 7 mins.

#2932 15 mins. 25 mins. 12 mins. 6 mins.
1

#2933 12 mins. 20 mins. 8 mins. 9 mins.

The subschema for MISSION. SUBACTIVITY.TIMING contains precisely the

information about the structure of its local data base that programs other

than the mission coordinator should know to use data in this relation.

The schema language requires that for each attribute its name and primitive

type, PRIM.TYPE, be given. The name is a symbolic reference name by which

procedures can refer to each attribute. PRIM.TYPE is the low-level type

of the data, which is NUMERIC, TEXT, or LIST.

Several other optional specifications are possible. Statistical

type, STAT.TYPE, tells review programs what types of statistical techniques

apply, i.e., whether variables have ciscrete or continuous values, or

whether, for instance, they are exponentially or normally distributed.

The retrieval feature, RETRIEVAL, of a data item indicates what special

"retrieval files" should be maintained by the system so that data used

in certain ways can be accessed efficiently. Initially two types of

18

Table 2

SUBSCHEMA FOR MISSION. SUBACTIVITY. TIMING

(MISSION. SUBACTIVITY. TIMING

((NAME . MISSION.ID)

(PRIM.TYPE . NUMERIC)

(STAT.TYPE . SEQUENTIAL)

(RETRIEVAL . INDEX))

((NAME . PREFLIGH[. CHKOUT. TIME)

(PRIM. TYPE NUMERIC)

(STAT. TYPE CONTINUOUS)

(UNITS . MINUTES))

((NAME . BRIEFING.TIME)

(PRIM. TYPE NUMERIC)

(STAT.TYPE CONTINUOUS)

(UNITS . MINUTES))

((NAME . FUELING.TIME)

(PRIM. TYPE NUMERIC)

(STAT. TYPE CONTINUOUS)

(UNITS . MINUTES))

((NAME. LAUNCH.TIME)

(PRIM. TYPE NUMERIC)

(STAT. TYPE CONTINUOUS)

(UNITS . MINUTES)

(RETRIEVAL . TRANSPOSED)))

19

retrieval files will be available as well as the primary relational files:

an index file that increases the speed of searches, and a transposed file

that reduces the time required to process a few attributes of a relation.

The full set of schema language options for declaring process models

has not yet been developed. When it is, the schema declaration will not

only provide for accessing data, it wil also drive planning procedures

and facilitate inferences related to queries.

As well as describing all the data items and their grouping into

relations, the data base schema stores a set of procedures, or demons,

that are executed when data are stored or modified in certain reletions.

The purpose of these demons is to alert interested modules of occurrences

significant to them that have been recorded in the data base, and to main-

tain useful summary information aLout particular relations. A typical

alert demon might print a message on a tertainal, warning the commander

whenever the number of available reserve pilots drops below a threshold.

A typical summary demon might count the number cf missions flown each week.

Demons may also be used to check for unlikely or impossible values result-

ing from data entry errors, thereby helping to improve the quality of the

information in the historical files. This implementation of demons on

the relational files gives the same progr.mming power for operating on

historical data that is provided for planning using the scroll tables.

Three logical group of general purpose functions are used for cceat-

ing, maintaining, and reviewing data relatir - -. Vic first is a set of

functions for creating and mod.fying the data base schema. These func-

tions allow the programmer to add, delete, and rearrange particular

attributes among several relations, and they allow an individual attri-

bute'sdescriptionto be modified. Once a schema is defined, it becomes

possible to store, retrieve, and modify data in it with thc functions

RELATION.PUT and RELATION.GET. RELATION.UT stores a row of data

20

specified as an association list of attribute-value pairs in a relation.

For example, the firmt row in the example of Table 1 would have been

recorded:

RELATION.PUT(HISSION. SUBACTIVITY.TIMING

((MISSION.ID . #2931)

(PREFLIGT.CHKOUT.TIME . 10)

(BRIEFING.TIME 15)

(FUELING.TIME . 10)

(LAUNCH.TIME . 7)))

RELATION.GET retrieves data after performing a pattern match of

a "query template" against the data stored in a relation. This query

template is, in essence, a filper through which the whole relation is

passed. From a programming point of view, RELATION.GET returns a generitor

function that can be called on successively to return each of the rows of

the subrelation that passes the filter. A third set of functions is

provided that allows the set operations "and," "or, " and "relative

complement" to be applied to generators. The resulting query language

is general and convenient tc use.

In addition to relational files, we have defined a secondary set of

data base entities called "trace files" that are optimized for keeping

a complete log of system messages and Pvents. Trace files record sequen-

tially Lvery message and event processed by the management support

system. They are used to isolate and debug errors or shortcomings of

individual modules, and to verify that each module is capable of handling

the requests sent to it by other modules (hence facilitating debugging

of module interactions).

At present, the design of the data base procedures is complete, and

we have finished the implementation of direct access file procedures for

21

INTERLISP, which represents about one third of the data base implementa-

tion work. The filing procedures allow random access to variable length,

arbitrarily nested or circular s-expressions, stored under symbolic keys

(which may also be s-expressions). Records can be overwritten by larger

records, and the index can be searched with an n-ary tree (logarithmic)

search algorithm. The filing procedures also allow for sequentially

scanning a file either in key order or reverse key order, and they will

generate unique record identifiers sequential to allow record writing.

The data base system being implemented is described in detail in a

concurrent Technical Report.
4

H. Demonstration System

To facilitate debugging, testing, and demonstrating our experimental

system, we aro designing and implementing a facility for simulating the

occurrence of activities and events. Hence, in a situation where a start

activity message 4ould be sent to a person in an actual operational

environment, our experimental system will send the message to a module

that will simulate the occurrence of the activity. These simulation

modules will determine the duration and effects of each activity, and will

generate the appropriate messages and events to note the occurrence. We

will also provide a facility for entering unexpected events, such as a

pilot becoming ill or some piece of equipment failing. These events will

be either prestored on an event file or entered from a terminal in "real

time" while the system is operating.

In general, we will create simulations and scenarios that will

exercise as many of the system's features as possible in a reasonable

length of time. Also, we will provide appropriate trace and com!entary

features so that an observer can understand and appreciate the behavior

of the system.

22

III RESEARCH PROGRAM

Future directions planned for the research program include effort

in the following areas:

Improved replanning capability

Use of alert functions to warn of critical situations

* Use of priorities and value functions during planning

New maintenance modules

* Retrospective analysis of historical files

• Use of accumulation and summary files during planning.

In the following subsections we describe some particular problems

and needs in each of these areas, and discuss how we expect to meet these

needs.

A. Improved Replanning Capability

The system being currently implemented does not have the capability

to consider modification of existing plans as a means of fulfilling the

resource requirements of a new plan. There is need for techniques to

remove this limitation as a step toward achieving the general goal of a

system capable of modifying existing plans to acconnivvAte a variety of

circumstances,

In the system being currently implemented, if an action that is part

of a planned process is not completed at the planned time, the system

replans the rest of the process a- well as it can, but without taking

Into account the possibility of adjusting other operations to facilitate

recovery. Alsoi a new exogenic demand, such as a new mission, initiates

I23

a planning procedure that seeks to schedule the mission as required by

the demand, but again without taking into account the possibility of

adjusting the schedules of other operations to make room for the new one.

Additionally, it is desirable tc base planning on estimates of the

time needed for the various actions that are either "safe" or "tight,"

depending on the level of activity currently expected of the squadron.

For example, aafe planning might use for the preflight checkout time the

experienced average time plus three times the experienced average devia-

tion, while tight planning would use the experienced average time itself.

As the planned level of activity grows, we would like the system to use

tighter estimates for all the activities required, and modify existing

plans accordingly.

To obtain the capabilities that are desired, the system raust be able

to evaluate the total situation and to use this evaluation to guide its

handling of a given requirement either for a new activity being added to

the schedule, or for the replanning of currently scheduled activities.

Development of the procedures for evaluating the general state of plans

and for adjusting planning strategies according to that evaluation will

be an important focus of future work.

B. Alert Functions

It would be desirable for the s;s~em to warn the commander when

there is danger that a critical situation may be developing that may limit

the capabilities of his organization. The planning facility currently

being implemented produces information that can be used to recognize such

potential threats relating to the exhaustion of some necessary resource.

One of the functions of the system as currently planned is to advise

a commander when events happen that force a substantial modification of

existing plans, such as a delay in the execution of an approved mission.

24

I %

This capability can be extended to provide advance warning when the situa-

tion becomes such that current plans are sensitive to the possibility of

unf-reseen events. For example, the system can recognize that some vital

resource, such as the pilot pool or the maintenance facility, is becoming

saturated. It should warn the commander of this fact so that he is made

aware that any trouble in any of the existing plans, or any new require-

ment such as an additional mission, may create a bottleneck that the

system will not be able to resolve.

In the current system it is not difficult to identify times of peak

loading for any resource from the corresponding scroll table. However,

the need is for an alert capability that is somewhat more disckiminating.

First, some activities may be easily deferrable, or have low priority,

and should be -,cluded in evaluating loading. Other activities, such as

scheduled maintenance, may be easily deferrable so long as they have not

actually been started, buc should not be interrupted. The evaluation

procedure should take account of these different possibilities.

In addition, account should be taken of the flexibility that may be

present in scheduled activities. For example, maintenance may be heavily

scheduled in one period, but only lightly loaded in an inmediately pre-

ceding period. This does not constitute a bottleneck for any activity

that can be done during the lightly loaded period, and should not be

reported, except, perhaps, as a suggestion that the schedule should be

rearranged.

The alert facilities envisioned here may be said to be a part of the

general capability called "crisis management." It is intended to warn

the commander of the possibility of a crisis before it actually occurs,

enabling him to take appropriate steps to avert the possibility.

25

C. Priorities and Value or Cost Functions

The current system does not provide for the use of priorities during

planning. All demands for missions, and all activities planned by the

system have equal weight and are undertaken on a first-in basis. This

is undesirably restrictive. There should be a capability through which

the conmander may set priorities, either for individual activities or

for classes or types of activities. We expect in the near future

to incorporate the use of priorities, both internally and externally

generated, into the system's planning and administrative procedures.

A set of priorities or value functions can serve several purposes

that are important to the use of the system. it can describe require-

ments that have a degree of flexibility, such as that an action shall be

done "as soon as possible." It can be used to improve the overall con-

dition of the squadron or of some department in the squadron. reflecting,

for example, the desirability of keeping a fairly uniform load on the

maintenance facility. It can be a powerful and subtle tool for guiding

scheduling in a complex situation.

The assignment and use of priorities is a procedure that often

requires assessment of the entire present and future situation. The

setting of priorities must remain a command prerogative, and be one tool

by which the commander enforces his decisions regarding the future of

the squadron. There is need, however, for effective means by which the

commander can enter priorities, either as a general policy, or in par-

ticular types of situations, and to automate the use of priorities in

scheduling.

In addition, there are priorities that may be set by the system

itself. For example, in periods in which the maintenance department is

very busy, its scheduling may be very tight. It may become critical

26

that all aircraft reach the maintenance department on schedule. The

requirement to get them there on schedule should then be given higb

priority.

There are problems associated with the introduction of priorities

and value functions, and, in particular, important questions regarding

the resolution of conflicts. In the absence of a satisfactory resolution

algorithm, it is possible either that the system will thrash, or that it

will reach a solution that is totally dominated by one consideration and

essentially ignore other requirements. Future work with priorities will

include consideration of such problems involving the resolution of opera-

tional conflicts.

D. Multiple Process Types

The system currently being implemented is concerned with a single

type of process, in our particular experimental demonstration context, the

flying of missions. It doer take into account a variety of conditions

that may affect the available resources or that may alter the execution

of a planned process. There are additional problems, however, when there

are different types of processes competing for the same resources.

In order to study the effect of completing process Lypes, we intend

to extend the experimental system to include two additional process types

that have some interesting differences in the demands they place on the

planning facility.

The first process type is that involved in handling the scheduled

Imaintenance requirements that are carried out by squadron personnel. The

second concerns the handling of unscheduled maintenance on the squadron's

aircraft. As discussed below, the integration of these two types of

activities with flying missions poses some interesting problems.

27

1. Scheduled Maintenance

Scheduled maintenance performed within the squadron's own facili-

ties represents a long-term and continuing requirement. Its scheduling

involves a number of constraints and goals of quite different types from

those used in planning missions. First, scheduled maintenance is not

tightly constrained in time. In general, it can easily be deferred,

although it is likely to become more urgent the longer it has been

deferred. Second, scheduled maintenance can be anticipated, and therefore

planned well in advance. Third, it can be executed in advance of its

normal time. This allows it to be scheduled so as to smooth the antici-

pated load on mintenance facilities, or in anticipation of a future tac-

tical situation, e.g., prior to engaging the enemy.

These considerations are quite different from those that apply

to planning missions. Different procedures for the allocation of resources

are required. It is the effect of these different procedures that requires

study.
We envision establishing means for identifying scheduled main-

tenance operations, to keep track of what is required, and to initiate

and monitor the actions that are required. The means for ident~fying the

required operations can be incorporated within the aircraft scheduling

module through the use of demons acting on the scroll table for aircraft

scheduling. Whenever a scheduled maintenance job is done on an aircraft

the demon for that type of job is activated and enters tne time when it

should next be done. Whenever a job is deferred past its scheduled time,

a demon is activated that reenters it into the schedule at a later time,

with higher priority if appropriate.

Some scheduled maintenance requirements are expressed in terms

of flight hours, rather than elapsed time. For such actions, a different

procedure is needed since the scroll tables are set up in terms of elapsed

28

time. One possible procedure is to includt the requirement in the prop-

erty list for the aircraft in terms of the total flight time since the

last time the job was done. The current accumulated flight time is also

maintained on the property list and updated each time the aircraft is

flown. On each update, a demon checks the current value of th2 accumu-

lated flight time against the threshold values listed there for various

scheduled maintenance requirements. When a threshold is passed the

activity is scheduled.

If it were convenient to do a scheduled maintenance action prior

to the threshold to smooth out the load on the maintenance shop or for

tactical reasons, this action would be initiated elther by the maintenance

scheduler or by the alert module that watches for possible bottlenecks

(see Section IV-B).

The actual scheduling should be done according to a set of

priorities or a value measure, as discussed in Section IV-C. Given the

capability of planning according to a specified set of priorities, or to

maximize a given value function, there appears to be no intrinsic dif-

ficulty in the inclusion of scheduled maintenance.

2. Unscheduled Maintenance

Unscheduled maintenance differs from scheduled maintenance not

only in the fact that it cannot be anticipated in advance, but also

because it may lead to some quite complicated priority situations. The

priority given to an unscheduled maintenance requirement may be a complex

function of the nature of the action required and of the operational

demands being placed on the squadron as a whole. If the fault makes the

plane unusable or NOR (not operationally ready), then the plane is a

lost resource until the action is performed. How critical this may be

depends on the anticipated load on the squadron's aircraft. Other main-

tenance actiorq. such as preflight checkouts for currently planned

29

missions, may be more critical. If the fault makes the plane RMC

(reduced materiel condition) so that it can still fly certain types of

missioas, then the urgency of the corrective action depends also on what

kinds of missions are likely to be required in the near future.

It does not seem reasonable that these factors should be auto-

mated; the commander should retain control. Assuming that the decision

is retained as a command prerogative, the system should give the com-
mander the information he needs to exercise command responsibility.

The scope of the system can be extended, then, to include un-

scheduled maintenance with two objectives in mind:

The system should provide the commander with informa-
tion that may help him to determine what priorities

should be set for unscheduled maintenance actions.

The system should schedule unscheduled maintenance
actions in accordance with the priorities set by the

commander, and should oversee their execution.

The second objective is, in many respects, similar to the

planning and monitoring of a mission. It is a process that is initiated

by a demand to do the required maintenance action, although the demand

may be originated differently. For example, the failure of a system or

subsystem discovered in flight and confirmed during the postflight check-

out should automatically generate a demand for the appropriate unscheduled

maintenance action without requiring a separate exogenic demand.

The principal new factor is the almost automatic requirement

that the job be done as soon as possible, consistent with the assigned

priorities. This differs from a mission for which, generally, a specific

time for execution will be required, and from scheduled maintenance which

is executed on a planned schedule.

30

In Section IV-C, we discussed the use of priorities and value

functions in a broader context. The requirements of the second objective

listed above can be met through the use of priority planning. The details

must be worked out, but no intrinsic difficulty is anticipated.

For the first objective of advising the commander so that he

may best judge what priority to assigp a job, the critical question is

the effect on operations of either doing the job or deferring it. This

depends on evaluating the situation in terms of a possible overload of

critical resources under various contingencies and alternative decisions.

The evaluation of the situation in these terms has been discussed in a

more general context in Section IV-B, Alert Functions." Again, ways to

implement the required capabilities must be developed, but no intrinsic

difficulty is anticipated.

In summary, the need for an unscheduled maintenance action will

be initiated either by an exogenic demand, or automatically as a con-

sequence of trouble detected during some other process. The facility

provided for the alert capability can be used to assist the commander in

determining what priority should be given to the action. Once the

priority has been set, the system will schedule the required action and

will oversee its execution.

E. Retrospective Analysis

Primary attention has so far been given to developing the basic

facilities for planning and monitoring ongoing operations. As part of

this work, we have been concerned with the construction of the historical

files that will hold the detailed records of past operations. However,

we have given little attention to the use of these files in any depth,

except to make certain that we retain the ability to determine the con-

nections between data elements that are likely to be required by

31

anticipated uses. Future work will include the development of a data-

base querying facility to verify the utility of our process-model oriented

handling of the historical files.

The following are representative examples of the kinds of questions

that are important to a squadron commander:*

(1) Why was the mission on date xyz canceled?

(2) How many missions were canceled or delayed last month?

Give a breakdown of the reasons for each.

(3) For the last six months, divide all missions into two

groups--those for which the preflight checkout took less
than the current average, and those for which it took more.

What is the percentage of mission aborts for equipment

problems in the two groups? What is the number by type of

equipment malfunction found during flight or during post-
flight checkout in the two groups?

In (1), the manager is looking for a specific event. The system

must first find the event. Then it must interpret what is expected as

a reason. It is sensible to limit the reasons to those that are implied

by the process model or by the scheduling procedures. Specifically,

the system can respond through a hierarchical sequence of tests. If

there were an inability to schedule some part of the process due to an

overload, then that fact becomes the answer; if there were a default of

some preparatory action without a satisfactory recovery, then that is

the answer; or the cancellation was a command decision.

In (2) he may be trying to determine what c itical resource most

often causes trouble. The reasons for cancellation or delay can be

interpreted as in (1).

While the questions are given in natural language for the sake of clarity,
the system will require that they be given in an appropriate formal

language. Our concern is with the identification, retrieval, and proces-

sing of the responsive data elements, not the development of a natural

language capability.

32

In (3) he may be testing the hypothesis that preflight maintenance

is sometimes being cut short, perhaps when there is too much pressure

from the schedule. Or he may be hypothesizing that excessive time in pre-

flight checkout is a symptom of a more deep-seated trouble that inter-

feres with, but is not caught by, the preflight checkout procedure.

The responses to these questions require, first, the identification

of the missions involved. This can be done from the file of exogenic

demands. It cannot be done from the file of aircraft assignments, since

some of the questions concern cancelled missions. Searching the exogenic

demands will also uncover the delayed missions, since a scheduling delay

would be referred back to the commander for his acceptance of the revised

plan.

These examples, which are not intended to be exhaustive, illustrate

the use of the historical files for the analysis of past operations.

They illustrate the ways in which, given appropriately structured data,

questions that are of direct significance to the commander can be handled.

The information required to respond to questions such as those

listed is contained in the historical data files as they are currently

planned. It is an important aspect that the information likely to be

important to the commander is associated with the appropriate process

model. Regardless of the detailed structure used in the data files, there

should be ways to recover data elements that are connected as described

by the process model, It is this capability that makes the data useful

for retrospective analysis by the commander. This capability is being

built into the file system currently being implemented.

Research is needed to determine suitable ways of responding to such

queries. It appears that the capability can bc implemented through one

or more modales introduced for that purpose. The user's query will be

directed to a module that will then operate through the control structure

33

i2M
as do the scheduling, planning, and monitoring modules. This is signifi-

cant in that it permits a uniformity of design through both the opera- -

tional and analytic functions of the system. It also provides an effec-

tive interface between these two types of functions. Finally, it simpli-

fies the problem of adding new capabilities to the system, such as the

capability of responding to a new type of query.

F. Accumulation and Summary Files

In the current system, data describing operations are recorded on

the historical files. During this process, there is provision in ouz

procedures for the development of various special files that build

running accumulations of selected data and summary figures. For example,

provision can be made to accumulate total flight time, number of flights,

scheduled and unscheduled NOR time, NORS (NOR Due to Supply) time, and

total time in squadron for each aircraft in the squadron during the

month. At the end of the month, the accumulated totals are those that

must be reported in the Aircraft Readiness/Flight Summary report card

code 79).

Another, somewhat more interesting, example is the accumulation of

weighted total of the time taken for various activities, together with

the correspondingly weighted number of occurrences. The ratio of these

two accumulations gives a weighted average that can be used for planning

purposes. For example, the average, weighted to emphasize recent experi-

ence, rf the duration of preflight maintenance can provide a better

figure for planninL than a preassigned standard value. A similarly

weighted normal deviation can be computed. Use of this figure, together

with the weighted average, would allow planning to be based on either

the average experience, or on th2 safer figure of the average plus, for

example, three deviations. ThLs would permit planning to be either tight

or safe, depending on the importance of the missions and on the general

load conditions.

34

IV SUNKARY

The system being implemented provides an environment for the study

of the principles and techniques that are useful for the design of

knowledge-based systems to aid a manager in planning, control, and anal-

ysis of operations.

The work done so far verifies the importance of the concept of a

process model as one component in structuring both the system itself

and the data that it generates and records. To the extent that it

describes the way in which the manager regards the operations of his

organization and the way in which the organization itself responds to

the demands placed on it, it leads to a system design that will be

capable of recognizing significant events and of responding to them in

ways that are meaningful in the managerial context.

The concept of a process model is not sufficient, however. In

addition, means must be provided for handling the allocations of limited

resources to the activities that implement the process models. The means

may be regarded as implementing a set of what might be called "resource

models." In a sense, the sets of process models and resource models

are orthogonal views of the real-world operations. In this sense, the

problem of system design is, first, to implement these two views

separately, and then to implement their interactions in an appropriate

manner.

The system being implemented handles the two types of models

separately. The process models will be implemented in a set of "planner"

modules which will include also much of the control function and part

of the analysis function. The resource models are implemented in a set

35

I- 16

of "scheduler" modules, each dealing with a given type or class of

resources. The separation of these two types of modules permits the use

of data structures that are appropriate to each type and the separation

of the data itself according to its use. The interactions between the

two types of modules are then achieved through the message discipline

and the control structure.

While the implementation of these principles must be further demon-

strated, refined, and brbadened. the system concept being implemented

appears to have great potential.

36

REFERENCES
r

1. M. C. Pease, "Application of a Process Model to a Management Support
System," Technical Report 9, Project 1031, Stanford Research Insti-

tute, Menlo Park, California (July 1974).

2. E. F. Codd, "A Relational Model for Large Shared Data Banks," C M
Vol. 13, p. 377 (1970).

3. CODASYL Data Base Task Group Report," ACM (April 1971).

4. Stephen Weyl, "An Interlisp Relational Data Base System," Technical

Report 11, Project 1031, Stanford Research Institute, Menlo Park,

California (November 1975).

1

37

