Stanford Artificial Intelligence Laboratory J
Memo AIM-270 | |

Computer Science Department /
Report No. STAN-CS-7/5-523

{

BAIL

A debugger for SAIL

o) by
John F. Reiser

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2494
and
Nationai Science Foundation

\,[!H Y

@b

&
{ B
R
W% gl
i
f"‘} i
iVl

BTG e T R I I P e SO,
Seroe 2 e

o
B g 1




Stanford Avrtificial Intelligence Laboratory October 1975
Memo AIM-270

Computer Science Department
Report No. STAN-CS-75-523

BAIL -- A debugger for SAIL

by

John F. Reiser

ABSTRACT

BAIL is a debugging aid for SAIL programs, where SAIL is an extended dialect of ALGOL60
which runs vn the PDP-10 computer. BAIL consists of a breakpoint package and an expression
interpreter which allow the user to stop his program at selected points, examine and change the
values of variables, and evaluate general SAIL expressions. In addition, BAIL can display
text from the source file corresponding to the current location in the program. In may respects
BAIL is like DDT or RAID, except that BAIL is oriented towards SAIL and knows about
SAIL data types, primitive operations, and procedure implementation. :

The work reported here was funded in part by @ National Science Foundation graduate
fellowship. Computer facilities provided by Stanford University under the Advanced Research
Projects Agency ARP A Contract DAHCI5-73-C-0435, and by Institute for Mathematical Studies
in the Social Sciences at Stanford

T he vicws and conclusions contained in this document are those of the author(s) and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of Stanford
University, ARP 4 NSF,ortheU. 3. Government.

Reproduced in the U.S.A. Available from the National Technical Information Service, S pringfield,
Virginia 22151.




BAIL -- A debugger for SAlL TABLE OF CONTENTS

TABLE OF CONTENTS

SECTION

INTRODUCTION

EXAMPLES
COMPILE-TIME ACTION

RUN-TIME ACTION

Debugging Requests
ARGS

BREAK

DDT

HELP

SETLEX

SHOW
- TEXT

TRACE

TRAPS -
UNBREAK
WNTRACE

GO

HGSTEP

HSTEP

STRING TYPEQUT
BAIL and DDT
WARNINGS

1
2
3
4
5
6
7
8
S

RESOURCES USED |

_AGCESSIOH for
RT3
0o
B2t untey

SR

CURRENT STATUS

oY
USSHEAH IR AR S N




A 7Y

BAIL -- A debugger for SAIL INTRODUCTION

SECTION 1
INTRODUCTIGN

The ideal way to debug a computer program is to write it correctly in the first place
and not debug it at all. Experience has shown, however, that most programs of
moderate size contain errors, and that debugging is a eignificant part of software
production. BAIL is a tool which is designed to be useful for interactive debugging
of programs written in SAIL [4], a high-level ALGOL-based language for Digital
Equipment Corporation (DEC) PDP-10 computers.

In the very early days of computing, debugging was done at the conscle of the
computer.  The programmer manipulated switches, observed lights, and had complete
control af the whole machine. The pregrammer could examine and change any !ocation
in memory and could start, stop, and single-stzy the processor. Conscle debugging
soon became unecenomical on medium &1d large-scale machines. |t is still used on
minicomputers. This type of debugging is at the machine-language level; the lights and
switches are divent reprasentations of bite inside tha machine.

Debugging moved to the assernbly languaze level with the development oi interactive
time-sharing systems in the early 1960’s. The programmer typed commands at a
terminal, and a collection of special subroutines interpreted the commands so that the
effect was similar to working at the console of the machine. Instead of communicating
in bits, the programmer and subroutines used character strings in the format of octal
and decimal integers, text, symbolic machine instructiors, and symbclic addresses.
One of the most important features of the debugging routines was the ability to
suspend  the exccution of the program being debugped, enter the debugging
routines, communicate with the programmer, resume execution, and make the whole
process invisible to the pregram being debugged. This process became known as
breakpointing; the location where the main program was stopped is a breakpoint, and
the debugging routines are called a brealpeint package. The premier example of a
symbolic debugging package is DDT [1], developed for use on the DEC PDP-1 and
sutsaguently extended for use on the PDP-6 and PDP-10. DDT and its derivatives
are still among the most powerful tools for debugging assembly language programs.

BAIL is a high-level breakpoint package for use with SAIL programs. (Swinehart [3] and
Satterthwaite [2] contain descriptions of other high-level debugging systems.)
Communication between the programmer and BAIL is in character strings which are the
names and values of SAIL objects. BAIL reads genera’ SAIL expressions typed by
the programmer, evaluates them in the contex! of the place in the program where
execution was suspended, and prints the resulting velue in an appropriate format. The
evaluation and printing are performed just as if the programmer had inserted an
extra siatement into ‘the origingl program at the point where exacution wes
suspended. BAIL also provides a way to talk about the program, to answer the

A e e e S T e SR
i TR TR R e e L B




BAIL -- A debugger for SAIL INTRODUCTION

questions "Where was execution suspended?’, "By what chain of procedure calls
did execution proceed to that point?", and "What is the text of the program?”

In order to perform these functions, BAIL must have some information about the
program being debugged. The SAIL compiler will produce this information if the
program is compiled with an appropriate value supplied for the /B switch. (See the
technical portion of the manual for the exact meaning of the various switch values.)
In these examples the compiler produces two files. File PROG.REL contains the
relocatable eode and loader instruetions, grJ file FROGSM] contairs the Indorrmation for
BAIL. The PROG.SM1 information consists of the name, type, and accessing
information for each variable and procedure, the location of the beginning and end
of each statement, and a description of the block structure.

The code for BAIL itself is loaded autoriatically when the program is loaded. In order
for the added Information and code to be of any use, it must be possible to give
control to BAIL at the appropriate time. An explicit call to BAIL is possible by
declaring EXTERNAL PROCEDURE BAIL; in the program and using the procedure call
SAIL.. This werks well if it ea~ Le predicted in advance where BAlLing might be helgful.
Runtime errors, such as subscript overflow or CASE index errors, are not as predictable;
but responding "B" to the SAIL error handler will activate BAIL. Interrupting the
program while it is running (to investigate a possible infinite loop, for example) can be
achieved under the TENEX operating system by typing control-B. On a DEC TOPS-10
operating system, first return to monitor mode by typing one or more controi-C's, then
activate BAIL by typing DD<cr>.

BAIL performs some initialization the first time it is entered The information in the
SM1 tile(s) is collected and processed into a file PROG.BAIL This new file reflects all
ol the informalion from the SV  files of any sepsrately-compiled programs, and
the relocation performed by the loader. If the core image was SAVEd or SSAVEd then
in subsequent runs BAIL will use the .BAI file and bypass much of the initialization.

BAIL prompts the programmer for input by typing a number and a colon. The number
indicates how many times BAIL has been entered but not yet exited, and thus is the
recursion depth inside BAIL. Input to BAIL can be =dited using the standard SAIL
input-editing characters for the particular operating system under which the program
is running. [BAIL requests input via INCHWL on DEC TOPS-10 systems and via INTTY on
TENEX systems.] Input is terminated whenever the editor activates, string quotation
marks hkalance, and the last character is a semicolon; otherwise input lines are
concatenaled Inlo one slring before being processed further.

The programmer may ask BAIL to evaluate any SAIL expression or procedure call
whose evaluation would be legal at the point at which executien of the pregram being
debugged was suspended (except that expressions involving AND, OR, IF-THEN-
ELSE, and CASE are not allowed) BAIL evaluates the expression, prints the
resulting value in an appropriate format, and requests further Input.

Declared inside BAIL are several procedures whose values or side effects are useful




BAIL -- A debugger for SAIL INTRODUCTION

in the debugging process. These procedures handle the insertion and deletion of
breakpoints, display ‘the static and dynamic sccre of the current breakpoint, display
selected statements from the source program, allow escape to an assembly-
language debugging program, and cause resumption of the suspended main
program. Toese procedures aie dgsciibed in the technical porticn of the manual,

The following examples illustrate many of the features available in BAIL. Text was
recorded from an actual session on the computer.




E

BAIL -- A debugger for SAIL EXAMPLES

SECTION 2
EXAMPLES

This is a tect program, run on TENEX,
eTYPE TEST1SAl :

+ <REISER>TEST1.SAI;1  SAT 18-MAY-75 2:37PM PAGE 1

BEGIN "TEST" '
EXTERNAL PROCEDURE BAIL;

INTEGER I,J,K;

STRING A,B,C;

REAL X,Y,Z;

INTEGER ARRAY FOD([8:15); STRING -ARRAY STRARR(1:5,2:6];
INTEGER ITEMVAR DAY; ITEMVAR QQ;

INTEGER FROCEOURE AOO(INTEGER I,J); BEGIN "ADD"
OUTSTR ("
HI. GLAD YDU STOPPED BY."); RETURN(I+J) END "AOO";

RECURSIVE INTEGER PRDCEDURE FACT(INTEGER N); BEGIN "FACT"
RETURN(IF N LEQ 1 THEN 1 ELSE NxFACT(N-1)) END “FACT";

SIMPLE PRDCEDURE SIMPROC (REFERENCE INTEGER M); BEGIN “SBEG"
ADD (M,M«32) END "SBEG";

FOR 1«8 STEP 1 UNTIL 15 00 FOO[I)«IxI;
FOR l«1 STEP 1 UNTIL 5 DO
FOR Je2 STEP 1 UNTIL 6 00
STRARR (], J] «B4+8x] +J;
leby JeB; Kell2:

" A<"BIG OEAL"; B«"QEQ"; C«"THE LAST PICASSO";

Xe3.164159265; YB; Z«23.;
BAIL;

A0OD(7,45);
SIMPRDC (J) 4

USERERR (8, 1, "THIS ' A TEST");

ENO "TEST";
L




BAIL -- A debugger for SAIL EXAMPLES

Compile and load with BAIL.

@SAIL.SAY;18
TENEX SAIL 8.1 4-4-75 (? FOR HELP)

*TEST1,+
*xx/278

*K
TEST1.SAl;1 1
END OF COMPILATION.

LOADING

LOADER 6+9K CORE
EXECUTION

+C
8 Save the core image for later use.
i eSSAVE (PAGES FROM) g (TO) 577 (ON) TESTI INEW FILE]
i (CONFIRM)
Start the program.
@START

BAIL identifies itsqlf and the files involved.

BAIL VER. 18-MAY-75

TEST1.SM1;2
TEST1.GAl:1 '
End of BAIL initialization.

1:45;
The "1:" is BAIL’s prompt. It indicates the level of
recursive invocations of BAIL and the fact that BAIL

is awaiting input.

See how constants are entered and printed. The
"45.<cr>" is typed by the user, and the next line

"45" is BAIL’s reply.

45
1:7.089;
7.0889000
1:"SOME RANDOM STRING";
"gOME RANDOM STRING"

An octal constant; all printout is decimal.

1:°275;
189

Symbolic constants More than one expression
requested
1: TRUE,F ALSE,NULL; '

_1 a LR



BAIL -- A debugger for SAIL EXAMPLES

1:17;

4
1:J,X;

B 3.141583
1:]e46;

46
1:1;

4B

1:1<];
5]

1:1 GEQ J;
-1

1:98 LAND '17;
2

1:XYZ;
UNKNOWN 1D:  XYZ

’

1:45:4:(89.4-53.06);
1635.3008

1:X+J;
9.141593

1: ADD(3,4);
HI. GLAD YOU STOPPED BY.

1: ADD(3);
ADD TAKES 2 ARGUMENTS.:

1: FOO;

<ARRAY> [ 8:15]
1: FOOf4/;

16

1: F0OO/5 FOR 3);
25 36 48
1:STRARR;

Variables, assignment

Relational operators; remember O is FALSE.

An undeclared identifier

Usable as a desk calculator

Procedure call

7
Argument list checking

ADU (3)

Y

Arrays. Array name only gives dimension and
subscript bounds information.

Substring notation has been extended to cover array
elements.

¥ SL " cdd daand S
ksl ) TR B, et Ot AP, F A A

PSR L LT
TR e




1
BAIL -- A debugger for SAIL EXAMPLES :
<ARRAY>[ 135 2:6] i
1:STRARR[1 FOR 2, 4 TO 6/; f
||Lll "M" IINII IITII IIUII |Iv|l -
Array accesses are interpreted }
1: FOO[35]; b
SUBSCRIPTING ERRDR. INDEX VALUE MIN MAX
1 35 8 15 FDO [351]
LENGTH, LOCATION, and MEMORY
1:4;
"B{G DEAL"
13 LENGTH(A) :
8
1:1;
46
1: LOCATION(I);
718
1: MEMORY [718]«64; s
. B4 |
1 : ’,' ”.:i
B4 ¥
Substringing : f
1:A72 TO INFJ; , . %
"1G DEAL" '
1:B8/3 TO 4]; ,
IIDII .
| |
Type-in must be terminated by a semicolon | .
1.8 : ' i
. 5
"OED" iy
Tracing of procedure entry and exit
1 : TRACE("FACT"); é
1: FACT(4);

ENTERING FACT 4
ENTERING FACT 3

ENTERING FACT 2 '

ENTERING FACT 1

EXITING FACT=
EXITING FACT= 2 ' 1
!
: EXITING FACT= B " |
L
i

i EX%TING FACT= 24
i 4
i) 1: UNTRACE("FACT");




1: FACT(5);

128
1: BREAK("ADD");
1: ADD(3,4);

2: ARGS;
4

2:1;
3
2: J;
4
2:K;
112
2:11G0;
HI. GLAD YDU STDPPED BY.

1:1GO;
1: TEXT;

LEXICAL SCOPE, TOP DOWN:
$RUNS

TEST

ADD

DYNAMIC SCOPE, NDSTIRECENT FIRST:

TEXT .
INTEGER PROCEDURE ADD (INTEGER 1,J); BFGI
TEST H24 ADD(7,45)

ROUTINE
ADD #4

SIMPROC (J) 3

 USERERR(8,1,"

1: ARGS;

BAIL -- A debugger for SAIL

7

Breakpointing

Now one level deeper in BAIL recursion.

prints the arguments list.

Parameter names evaluate juét like variables.

To exit from one level of BAIL

EXAMPLES

ARGS

The message is from ADD itself; the value 7 is from

BAIL.

Leave another level of BAIL.

~ And come back again. Where are we?

Static block structure

Dynamic procedure invocations.

coordinate number 4.

The #4 means

Ry R

& &
s P e

st

L e

ey




BAIL -- A debugger for SAIL EXAMPLES

7 45

Remove the breakpoint.
1: UNBREAK("ADD");

1:11GO;

Output from other calls in the program
Hl. GLAD YOU STOPPED BY.
H1. GLAD YOU STOPPED BY.
THIS IS A TEST
CALLED FROM 642124 LAST SAIL CALL AT 480303
1B

Entry to BAIL from the error handler
1:TEXT;

LEXICAL SCOPE, TOP DOWN:
$RUNS

OYNAMIC SCOPE, MOST RECENT FIRST:

ROUTINE TEXT

,SIMPLE. 6421264 %%% FILE NOT VIEWABLE
TEST  #26 USERERR (8,1, "THIS 1S A TEST");
§ END T

1:1;

UNKNDWN 1D: 1
}

| : The static scope needs to be set back one on the
e | dynarnic chain.
o 1:SETLEX(1);

LEXICAL SCOPE, TOP DOWN:
SRUNS
TEST

; i 1:1,‘
k! 64

"THE LAST P1CASSO"
1:11G0;

H END DF SAIL EXECUTIDN. b

‘.
o i

e




BAIL -- A debugger for SAIL

Leap and records, DEC TOPS-10 system,
.TYPE TEST2.8A1

BEGIN “TEST"
EXTERNAL PRDCEDURE BAIL;
REQUIRE 588 SYSTEM!POL, 18 PNAMES;

LIST L; SET S,S1,52,53,54,55: . '

INTEGER ITENRSUNDAY; ITEM MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRI DAY,
SATURDAY;

INTEGER [TEMVAR DAY; ITEMVAR QQ;

ITEMVAR ARRAY P(1:10];

RECORD!CLASS CELL (RECDRD!PDINTER(CELL) CAR,COR);
RECDRD!PDINTER (CELL} CX.CY;

CX«NEW!RECDRD (CELL);

CY<NEW!RECDRD (CELL1};

CELL:CAR[CX]«NULL !RECDRD; CELL:CDR [CX) «NULL |RECDRD;
CELL:CARICY]«CX; CELL:CDRICY]«NULL!RECDRD;

P{1]<SUNDAY; P (2] «MDNDAY;

L {{SUNDAY}} ; DATUMISUNDAY) «8; DAY+SUNDAY; QQ-MONDAY; S« (QQ) ;
SlleUNDAY.NDNDAY,TUESDAY,NEDNESDAY.THURSDAY,FRIDAY,SATURDAY};
S2«{MDNDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY] ;

53« {MONDAY, WEDNESDAY, FRIDAY} 5S4« {SATURDAY, SUNDAY] ;

S5« {SUNDAY,FRiDAY} ;

FOREACH DAY SUCH THAT DAY IN S1 DD MAKE DAY XDR SUNDAY EQV SATURDAY;
BAIL;

USERERR(8,1,"THIS IS A TEST");
END "TEST";

EXIT

TC

EXECUTE TEST2.SAI(218,)
SAIL: TEST2 1

LLDADING

LDADER 15K CDRE

25K MAX 153 WDRDS FREE
EXECUTIDN

BAIL VER., 18-MAY-75
TEST2,5M1

TEST2.5Al
END DF BAIL INITIALIZATIDN,

1:L;
{ (SUNDAYY )

EXAMPLES

1

i g i



BAIL -- A debugger for SAIL

1:84;
{SUNDAY, SATURDAY}
1:85; .
{SUNDAY, FRIDAY}
1:84 UNION 8§5;
{SUNDAY, FRIDAY, SATURDAY!
1: FRIDAY IN S4;
%]
1:82 LEQ S2;
-1
1: DAY;
SATURDAY
1: DATUM(DAY );
B
1:CX;
CELL.9231
1:CELL:CAR/CX];
NULL 'RECORD
1:CELL:CAR/CY ];
CELL.9231
1: SUNDAY ASSOC SATURDAY;
{SUNDAY}
1:SUNDAY EQV SATURDAY;
{SUNDAY, MONDAY, TUESDAY,
1: SUNDAY XOR SATURDAY;
PHI .
1:SUNDAY EQV SUNDAY;
PHI - ,
1:1C

WEDNESDAY, THURSDAY, FRIDAY, SATURDAY}

EXAMPLES




BAIL -- A debugger for SAIL EXAMPLES

Go back to the earlier example
@TEST1.8AV;1

Initialization uses file created last time.
BAIL ver. 18-May-75 using TEST1.BAl
End of BAIL initialization.

Switch /27B at compile-time makes SAIL
predeciared runtime routines known to BAIL.
1:OPENFILE(NULL,"W"); '
TODAY.TMP

4
1:QUT(4,"TI11S 1S A TEMPORARY FILE CREATED WHILE IN BAIL");

1+CFILE(4);

-1
1:OPENFILE("","RC");
TODAY.TMP [0LD VERSION)

A
1:SINI(4,200,"2");

"TRIS 1S A TEMPORARY FILE CREATED WHILE IN BAIL."
1:ODTIM(-1,-1)% '

"SATURDAY, MAY 18, 18975 17:19:28"

Quickie review of BAIL capabilities
1:7? '

EXPRESSION;

PROCEDURE ! CALL

TRACE ("PROCEQURE") ;

UNTRACE ("PROCEDURE" )

BREAK ("PROCEDURE, BLOCK, OR LABEL'};
UNBREAK ("PROCEOURE, BLOCK, OR LABEL"};

11G0;

SETLEX (LEVEL) ;
TEXT;

ARGS;

HELP;

ODT;

?

1:17C

End of the examples.

12




BAIL -- A debugger for SAIL

COMPILE-TIME ACTION

SECTION 3
COMPILE-TIME ACTION

The principal result of activating BAIL at compile-time is the generation of a file of
information about the source program for use by the run-time interpreter. This file has
the same name as the .REL file produced by the compilation, except that s extension is
.SM1. If requested, BAIL will also generate some additional code for SIMPLE procedures
to make them more palatable to the run-time interpreter.

The action of BAIL at compile time is governed by the value of the /B switch passed to
the compiler. If the value of this switei is zero (the default it no value is specified) then
BAIL is corapletely inactive. Ulherwise, the low-order bits determine the actions which
BAIL performs. [The value of the /B switch is interpreted as octai.]

bit
1

’10

action

If this bit is on, then the .SM1 file will contain the program counter to source/listing
text directory.

If this bit is on, then the SM1 file will contain symbol information for all SAIL
symbols encountered in the source. If this bit is off, then information is kept only
for procedures, parameters, blocks, and internals; l.e, non- interral loeal variatles
are not recorded.

If this bit is on, then SIMPLE procedures will get procedure descriptors, and one
additional instruction (a JFCL O, which is the tastest machine no-op instruction) is
inserted at the beginning of SIMPLE procedures. Except for these two changes, all
properties of SIMPLE procedures remain the same as oefore. The procedure
descriptor is necessary if the procedure is to be called interpretively or if the
procedure is to be TRACEd,

If this bit is on, then BAIL will not be automatically loaded and initialized, although
all other actions requested are performed. This is primarily intended to make it
easier to debug new versions of BAIL without interfering with SYS:BAIL.REL. By
using this switch the decision to load BAIL is delayed until load time.

if this bit is on, then a request to load SYS:BAIPDn.REL is generated. This file
contains procedure descriptors for most of the SAIL predeclared runtime routines,
making it possitie to call them from BAIL. The procedure descriptors and their
symbols occupy about 6K,

The B switch must occur on the binary term, not the listing or source term. Thus:

R SAIL or .COM PROG(27B,)
*PROG/27B«PROG

13




e e

BAIL -- A debugger for SALL COMPILE-TIME ACTION

l' The program counter to source/listing index is kept in terms of coordinates. The
coordinate counter is zeroed at the beginning of the compilation and is incremented by
one for each BEGIN, ELSE, and semicclon seen by the parser, crovided at least one word
of ccde has been compiled since the previous coordinate was defined. Note that
COMMENTSs are seen only by the scanner, not the parser, and that DEFINEs and many
declarations merely define symbols and do not cause instructions to be generated. For
each cocrdinate the directory contains the coordinate number, the value of the program
counter, and a file pointer to the appropriate place. The appropriate place is the source
file unless a listing file is being produced and the CREF switch is off, in which case it is
the listing file. [The listing file produced for CREF is rearly urreadable ] On a non-CREF
listing, the program counter is replaced by the coordinate number if bit 1 of the /B i

switch is cn.

W A S

The symbol table information consists of the block structure and the name, access
information, and type for each symbol.

Y AR :
O g, T 2w

If a BEGIN-END pair has declarations (i.e, is a true block and not just a compound
statement) but does not have a name, then BAIL will invent one. The name is of the
form Bnnnn where nnnn is the decimal velue of the current coordinate. .

14




BAIL -- A debuggs: for SAIL RUN-TIME ACTION

SECTION 4
RUN-TIME ACTION

The BAIL run-time interpreter is itself a SAIL program which resides on the system disk
area. This program is usually loaded automatically, and does some initialization when
entered for the first time. The initialization generates a .BAl file of information collected
from the .SM1 files produced by separate compilations (if any). The .SM1 files
correspond to .REL files, and the .BAl file corresponds to the .DMP or .SAV tile. Like
RPG or CCL, BAIL will try to bypass much of the initialization and use an existing .BAl file
if appropriate. During initializat'on BAIL displays the names of the .SM1 files it is
processing. For each .SM! file which contains program counter/text index information,
BAIL displays the names of the text files and determines whether the text files are
accessible.

The interpreter is activated by explicit call, previously inserted breakpoints, or the SAIL
error handler. For an explicit call, say EXTERNAL PROCEDURE BAIL; .. BAIL;. From the
error handler, respond B. Breakpoints will be described later in this section.

4.1 - Debugging Requests

When entered, BAIL prints the debugging recursion level followed by a colon, and awaits
a debugging request. BAIL accepts ALGOL and LEAP expressions of the SAIL language.
A complete description is given in [4] and in the addenda describing the syntax of
records and record-pointers. The following exceptions should be noted. Expressions
involving control structure are not allowed, hence BAIL will not recognize AND, OR, iF-
THEN-ELSE, or CASE. Bracketed triple items are not allowed. The TO and FOR
substring and sublist operators have been extended to operate as array subscript
ranges, FOR PRINT-QUT ONLY. If FOO is a1 array, then FOO[3 TO 7J; will act like FOO[3],
FOE4Y, FOO[8), FOU[6], FOTI7); but is easter 1o 'type. This extznsion is for print-out
only; no general APL syntax o1 semantics are provided.

BAIL evaluates symkolic names according to the scope rules of ALGOL, extended to
. always recognize names which are globally unique and have a fixed memory location
{avorything excepl parsmaters and recursive logals). For ary activation of SAall, the
initial scope is the ALGOL scope of the statement from which BAIL was activated. The
procedure SETLEX (see below) may be used to change the scope to that of any one of
the links in the dynamic activation chain.

Several procedures are predeclared in the outermost block to handle breakpoints and
display information. These are described individually below.
1:5




BAIL -- A debugger for SAIL ‘ RUN-TIME ACTION

416 - ARGS
STRING PROCEDURE ARGS;

The arguments to the procedure which was most recently called.

4.3 - BREAK
PROCEDURE BREAK("Iocation","condition"(NULL),"action"(NULL),count(O));

BREAK inserts a breakpoint. The syntax for the first argument is
<lacation>::=<label>|<procedure>|<block name>[#<nnnn>
|<block name><delim><location>
<delim>::=<any character not legal in an identifier>
<nnnn>::=<decimal coordinate number>

If the location is specified by the <block name><delim><location> construct then the
blocks of the core image are searched in ascending order of address of BEGINs until the
first <block name> is matched. The search continues until the second <block name> is
matched, etc. The breakpoint is inserted at the label, procedure, or coordinate declared
within the scope of the last <block name> Tnis detailed specification is not usually
necessary, as shown in the examples. The last three parameters are defaultable and
need not be specified, again as in the examples. The action taken at a breakpoint is

IF LENGTH(condition) AND EVAL(condition) AND (count«count-1)<0 AND
LENGTH(action) THEN EVAL(action);
EVAL(TTY);

Here EVAL is a procedure which evaluates its string argument and returns the value of
the last expression evaluated (similar to PROGN in LISP).

4.4 - DOT
PROCEDURE DDT;

This procedure transfers control to an assembly language debugging program (if one was
loaded).

16

e

ol o b |
S NP

CO

f



i bre N T e L I T P i = s ian v doy g il e i i b R G G S % et A
Nospagtodlb sdtis s 8l e iy gl }3'-. S et i e ’,‘,,r.,.-y.‘_ PR e _v’-,‘z\v S AT nf{ ok AR b -‘.‘.“1‘3‘{ e SRR e kg T AR TP AP 1T o0 By s e S B L s

BAIL -- A debugger for SAIL RUN-TIME ACTION

4.5 - HELP
PROCEDURE HELP;
A list of options, including short descriptions of the procedures described in this section,

is nrinted. A question mark followed by a carriage return is interpreted as a call to
HELP.

4.6 - SETLEX
PROCEDURE SETLEX(level);
Evaluating SETLEX(n) changes the static (lexical) scope to the scope of the n-th entry in

the dynamic scope list. SETLEX(O) is the scope of the breakpoint; SETLEX(1) is the
scope of the most recent procedure call in the dynamic scope, etc.

4.7 - SHOW
STRING PROCEDURE SHOW!first, last(0));

The text of the program from the source or listing file. If last is less than first then set
last to last+first. Return coordinates first through last. SHOW(5,3) gives coordinates 5,
6, 7, and 8; SHOW(5,7) gives coordinates 5, 6, and 7; SHOW(5) gives coordinate 5 only.
A plus sign ("+") following the coordinate number [ndicates that the values of some
variables have been carried over in accumulators frsm the previous coordinate.
Changing the value of variables might not be successful in such a case, because BAIL will
not change any accumulator value directly. The MEMORY construct can be used to
modify ary lcealion in & care image, including the accumulntors.

48 - TEXT
STRING PROCEDURE TEXT;

The current static and dynamic scopes, with text from the source or listing file.

17




BAIL -- A debugger for SAIL RUN-TIME ACTION

4,9 - TRAC
PROCEDURE TRACE("procedure");

Special breakpoints are inserted at the beginning and end of the procedure named. On
entry, the procedure name and arguments are typed. On exit, the name and value
returned (if any) are typed.

4.10 - TRAPS
o STRING PROCEDURE TRAPS;
:~ A list of the current breakpoints and traces.

E 4,11 - UNBREAK
PROCEDURE UNBREAK("location");

The breakpoint at the location specified is removed.

| 412 - UNTRACE
PROCEDURE UNTRACE("procedure");

R

The breakpoints inserted by TRACE are removed.

413 - GO
pseudoPROCEDURE !!GO;

An immediate exit from the current instantiation of BAIL is taken and execution of the .
program is resumed. 130 is a reserved word (the only one) in BAIL.

E | 18




BAIL -- A debugger for SAIL RUN-TIME ACTION

414 - GSTEP
pseudoPROCEDURE !GSTEP;

Ternporary breakpoints are inserted at all of the logical exits of the current statement,
and execution of the program is resumed. Logical exits are the next statement and
locations to which the current statement can jump, excluding any procedure calls. All of
the breakpoints which are inserted will be reiwoved as soon & oOne ot them is
encountered.

4.15 - STEP
pseudoPROCEDURE !STEP;

Temporary breakpoints are inserted at all locations to which the current statement can
jump, including procedure calls, and execution of the program is resumed.

4.16 - STRING TYPEOUT

Strings are usually typed so that the output looks the same as the input, i.e., a string is
typed with surrounding quotation marks and doubled internal quotation marks. For
SHOW, ARGS, and TEXT this would ordinarily create confusion, so they are handled
specially. When these procedures are evaluated they set a flag which ir.hibits quotation
mark fiddling, provided that no further evaluation takes place before ine next typeout.
Thus SHg)W(S,B); will be typed plain, but STR«SHOW(5,3); will have quotation marks
massaged.

4.17 - BAIL and DDT

If BAIL is initialized in a core image which does not have DDT or RAID, then things will be
set up so that the monitor command DDT gets you into BAIL in the right way. That is,
BAIL will be your DDT. To enter BAIL from DDT (provided that the SAIL initialization
sequence has already been performed), use

pushi P,<program counter>8X

JRST BAILSX

For example, if .JBOPC contains the program counter,

PUSH P,.JBOPCSX

19

el B, el el




BAIL -- A debugger for SAIL , RUN-TIME ACTION

e

fogiecs T

JRST BAILSX

Iy

The entry B. provides a path from DDT to BAIL which works whether or not the core
image has been initialized. One use of this feature is to BREAK a procedure in an
existing production program without recompiling. For example,
@; PROG originally compiled, loaded with BAIL and DDT, and SAVEd
@GET PROG {«
@DD
B.8G
BAIL initialization

b :BREAK("procedure");
1:1GO;

8G

To enter DDT from BAIL, simply say DDT; For operation under TENEX, control-B is a i
pseudo-interrupt character which gets you into BAIL. i

4.18 - WARNINGS

Since BAIL is itself a SAIL procedure, entering BAIL from the error handler or DDT after A
a push-down overflow or a string garbage collection error will get you into trouble. 1

SIMPLE procedures cause headaches for BAIL because they do not keep a display
ointer. [Indeed, the compiler gets lost in the following example, and does not complain:
BEGIN "LOST" '
PROCEDURE A(INTEGER 1); BEGIN "A"
SIMPLE PROCEDURE B; OUTSTR("THE VALUE OF 1 1S " & CVS(I));
PROCEDURE C(INTEGER J); B; ;
C(2);
END "A";

A(1); ‘f"
END "LOST"; ]
BAIL tries valiantly to do the right thing, but occasionally it also gets lost. BAIL will try \

to warn you if it can. In general, looking at value string parameters of SIMPLE 4
procedures does not work.

20




BAIL -- A debugger for SAIL RESOURCES USED

SECTION 5
RESOURCES USED

l. Compile-time

A. One channel. This means that REQUIREd sourci: files may only be nested to a
depth of about 9.

B. Memory. Up to 1l1%(maximum lexical nesting depth) more words of memory may
Ire required compared with previous compilations.

C. CPU time. Approximately 0.3 seconds per page of dense text.

[l. Run-time

>

Channels. Three during initialization, two thereafter. Channels are obtained via
GETCHAN.

@

BAIL uses 7 of the privileged breaktables, obtaining them via GETBREAK.

O

REQUIRE 64 STRING!PDL. Necessary if the debugging recursion level will exceed
3 or 4

D. Memory. (9.5K +((# of coordinates+127) DIV 128) + (2% # of blocks) + (5% # of
symbols)) words.

E. CPU time.
1. Initialization. Typically 4 seconds for a 30 page program.
2. Debugging requests. 0.07 seconds per simple request. DDT response time.
lll. Disk space

A. The .SM1 file for a /7B compilation is typically one-fourth the size of the
corresponding .REL file.

B. The .BAl file for a group of /7B compilations is typically one-third the total size
of the corresponding .REL files.

21

o i s e e R S S g 58
. T T T e T CpLg— s -




BAIL -- A debugger for SAIL CURRENT STATUS

SECTION 6
CURRENT STATUS

The state of the world is determined by the values of the accumulators and the value of
the SAIL variable !SKIP!.

The run-time interpreter recognizes only the first 15 characters of identifier names; the
rest are discarded without comment. The characters which are legal in identifiers are

ABCDEFGHI JKLMNOPQRSTUVWXYZ
abcdefghi jkimnopgrstuvixyz
B123456789! _afnAcoVIs~HE\|

Notable for its absence: period.
LOCATION of a procedure does not work.
PROPS is read-only.

Bracketed triple items are not allowed.

A procedure call containing the name of a parametric procedure (functional argument) is

not handled properly.

Contexts are not recognized.
The run-time interpreter will not recognize macros.

External linkage: If an identifier is never referenced by code (i.e., has an empty fixup
chain at the time fixups are put out to the loader) then that identifier is nut defined by
SAIL. Thus variables which are never used do not take up space, and a request to the
loader is not made for EXTERNALS which are not referenced. This feature of SAIL is
cast in concrete and will not be changed. As a resuit, the following DOES NOT WORK
unless special precautions are taken:

BEGIN

EXTERNAL PROCEDURE BAIL;

EXTERNAL PROCEDURE PLOT(REAL XO,YO,X1,Y1);

REQUIRE "CALCOM" LIBRARY;

BAIL END
PLOT will not be defined by SAIL, hence BAIL will not know about it. However if there

22




g Gk Biaes e TS AR O
s 3 et o e O
e Y T T T S s @t 2 . T 0

BAIL -- A debugger for SAIL CURRENT STATUS

are any references to PLOT (real or "dummy" calls) then BAIL will know. The foliowing
trick can also be used, assuming that CALCOM is a SAlL-compiled prucedure: Compile
CALCOM with /10B, which says "make the .SMI file but don’t automatically load
SYS:BAILREL". Then the above will win (due to BAIL recognizing things which are
globally unique) and programs which do not use BAIL wili ~ot have it loaded just beacuse
the library was used. This same problem occurs wich EXTERNAL RECORD!CLASS
declarations. Use of the subfield index information does not cause a reference to the
clags name but NEWRECOND does Thus the same J10B trick must be used ¥ there are
no NEW!RECORD calls.




BAIL -- A debugger for SAIL CURRENT STATUS

REFERENCES

[1] , DECsystemlO Assembly Language Handbook DEC-10-NRZC-D, Digital
Equipment Corporation, Maynard, Massachusetts, 1973.

[2] Edwin H Satterthwaite Jr, "Source language Debugging Tools™ (PhD thesis),
Computer Science Department, Stanford University, May 1975.

[3] Daniel C. Swinehart, "COPILOT: A Multiple Process Approach teo Interactive
Programming Systems" (Ph.D. thesis), Computer Science Department, Stanford
University, August 1974

(4]  Kurt VanLehn (ed), SAIL USER MANUAL, Stanford Artificial Intelligence Laboratory
Tgemo AIM-204 (Computer Science Department report STAN-CS-73-373), July
73.




e AT g

UNULASS LI ) KD !
SECURITY CLASSIFICATION OF THI3 PAGE (When Data Entered) § g
' READ INSTRUCTIONS
| L BERORT NUMBERm— e S 2. GOVT ACCESSION HO.[ 3. ZECIPIENT'S CATALOG NUMBER iy . l‘
‘ /4 | sTAN-cs~75-523, Amprd } L ,
! a—\_ﬂ___ e e (ond Subtitl@)amumr: | e S. TYPE OF REPORT & PERIOD COVERED { i
‘ / & BAIL - A Debugger for SAIL ity A ZZ a |
\ ] g : i 1
./ S Wz ) Cl/? ) Technical [*& /0 - i |
.——‘—-——-‘W“‘." 5 4
~— - FE=BERFORMING ORG. nspon'r/ﬁuuaea :
i 7. AUTH»O_“R{VQ),M..WM,. ) /g CONTRACT OR GRANT NUMBER 3) i
/ﬂ John F./Reiser Vi) | i
«: ~ Y S . (fE mase15-15-0-gi35 ),/\ ! |
{ TN :; ?
|
ll 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, ASK :
| . . AREA & WORK UNIT NUMSERS ;
Artificial Intelligence Laboratory ' 4
‘ Stanford University ARPA Orders2L9l4 ™ _j : )
Stanford, California 94305 g ——— i :
ll 11, CONTROLLING OFFICE NAME AND ADDRESS ! PORT DAI_EM ;
‘ Col.Dave Russell, Dep. Dir., ARPA, IPT, /1//] 8ctaexzyrs / ;
ARPA Headquarters, 1400 Wilson Blvd. : s -‘ré%uasn GF PAGES*”‘"““"" " ‘ 4
! Arlington, Virginia 22209 ot A ! N D 3 ;
i 14, MONITORING AGENCY NAME & ADDRESS(If dl.”ll'.ﬂf from Contrelling Oftice) 1S. SECURITY CLAW!M l:cpqgg)”,,i.
b Philip Surra, ONR Representative /
; Durand Aeronautics Building Room 165 15 (i-/
| Stanford University 1Sa. DECL ASSIFICATION/ DOWNGRADING
Stanford, California 94305 SELEELED !

16. DISTRIBUTION STATEMENT (of thls Report) |

Releasable without limitations on dissemination.| .-

R X

Eppicved for thc, 1elease;
o Distribution Unlimited

7. DISTRISBUTIIN STATEMENT (of the abetract entered In Block 20, If dl{ferent [rom Report)

b
8. SUPPLEMENTARY NOTES T i T o

19. KEY WORDS (Continue on raverss aside If neceeeary and Identlly by block number)

et oo e - o i

\ i 2
\ ' .
! } Y e

20. ABS?‘?CT (Continue on revarae elde if necessary and ldentlty by block numbar)

-

. BAIL is a debugiing aid for SAIL programs, where SAIL is an extended dialect of ALGOLEO | ‘

{ wkich runs.on the PDP-10 computer, BAIL consists of a breakpoint package and an I

{f 1 expression interpreter which allow the user to stop his program at selected points,

1 ) exarine and change the values of variables, and evaluate general SAIL expressions. ‘
‘ll In addition, BAIL can display text from the source file corresponding to the current |

o ) location in the program. In many respects BAIL is like DDT or RAID, except that BAIL li

+ 1 is oriented towards SAIL and knows about SAIL data types, primitive operations, and

| procedure implementation.

% ]‘ e 1 ._.___/_,,_&4 o —;}

FORM

DD, IR 25 1473 EDITION OF 1 NOV 6515 ORSOLETE UNCLASSIFIED ;
S/N 0102-014-6601 | 2 |

SECURITY CLASSIFICATION OF THIS PAGE (When Dats fnl!fld)

®
07 Y o g0

~




