
■iRl .,-.-. , ■-. r^, „ ^ , . . ■-T-fj^^^^sniis^^^iB^rasiBW p-^^s^wsr^j^r^w^-^^^Tw^^,,^^^

Stanford Artificial Intelligence Laboratory
MemoAIM-270

1]

i ,

(r

Computer Science Department
Report No. STAN-CS-75-523

<

f 1

October 1975

r '

BAIL/
A debugger for SAIL

by

John F. Reiser

•:-% ip^ /-v

i!r- ■ ■ i!
< JAN «X w i w M

IkMEiflTEiy

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2494

and
National Science Foundation

I' i
■■■...■.■ ■ .,-.■■..■■ . . ., : -■ ■ o&mmaKm'jtu ■

■ ..

^^:^. ...^..^ ^..^^v^.. ^1.,.; , ^.—^ -.. , ^ a„.^.tlM^

"' ll"' IPPPPPPp^^P^^p^^^p^^^^l^^^..«;.» ^^^^»^www^^llwmww^^llBI!^^?^^!^^^^!^^ t.^,5^5^.

. .

Stanford Artificial Intelligence Laboratory
Memo AIM-270

Computer Science Department
Report No. STAN-CS-75-523

October 1975

,«

BAIL - A debugger for SAIL

by

John F. Reiser

ABSTRACT

, L A r^, <;AII nrnorams where SAIL is an extended dialect of ALGOL60
BAIL is a d^^J^'^^^^r IAIL consilts of a breakpoint package and an expression
wh.ch runs ^ J6^0 ^"3 op his program at selected points, examine and change the
interpreter whh alow the us^ sessions. In addition. BAIL can display

values of Jariab,es,
fi^^'^LY",, the current location in the program. In may respects

SLTH" is oriented towards SAIL and knows about
SAIL data types primitive operations, and procedure implementat.on.

I
j

in rA« Soda,! Sciences at Stanford

, ■ ^,„ir,*j ir, thl* document are those of the author(s) and should not be

University, ARP i, NSF. or the U. S. Government.

Reproduced in the U.S.A.
Virginia 22151.

Available from the National Technical Information Service. Springfield,

MM ar nMHMM

.i^W. A^^to^i^i^aii«tlfckK

I

I

■TOi>»i™*a«^t----n*w^ropB!pfw»w!f™»^^ PBBP85P|p5^^|P^p(^"'i?jSSf

■

BAIL -- A debugger for SAIL TABLE OF CONTENTS

TABLE OF CONTENTS

h

SECTION

1 INTRODUCTION

2 EXAMPLES

3 COMPILE-TIME ACTION

4 RUN-TIME ACTION

1 Debugging Requests
2 ARGS
3 BREAK
4 DDT
5 HELP
6 SETLEX
7 SHOW
8 TEXT
9 TRACE
10 TRAPS
11 UNBREAK
12 UNTRACE
13 !!GO
14 ÜGSTEP
15 ÜSTEP
16 STRING TYPEOUT
17 BAIL and DDT
18 WARNINGS

5 RESOURCES USED ,

6 CURRENT STATUS

PAGE

1

4

13

15

15
16
16
16
17
17
17
17
18
18
18
18
18
19
19
19
19
20

21

22

AECESSiaH tcf

«113

Disi!t;>DiiO(; •■•vÄiicUir W:B

~ U.M. AV.-'L. »M ^r ■Siiui

••»■•**(iJ«»»

;~l.--".;'.^--i.:,^>-. ■.>>/; '■•■■■■■■ Mife^aSaÄ!, , , ,.v. *. * _-V.. .../...,.. , ,_.>...- .. H. A- i^^*

PP^P^-' • ■™^r™*=*-vswm^r*m?%fmmfmrl,™r'' ^fT^'mf^^^ßfB^^^-'-'"- ' ' ' ■ '

BAIL — A debugger for SAIL INTRODUCTION

SECTION 1

INTRODUCTION

The ideal way to debug a computer program is to write it correctly in the first place
and not debug it at all. Experience has shown, however, that most programs of
moderate size contain errors, and that debugging is a fignificant part of software
oroduction BAIL is a tool which is designed to be useful for interactive debugging
of programs written in SAIL [4], a high-level ALGOL-based language for Digital
Equipment Corporation (DEC) PDF-10 computers.

In the very early days of computing, debugging was done at the console of the
computer The programmer manipulated switches, observed lights, and had complete
r'ontrol of the whole machine. The prcgnmrner could examine and change any location
in memory and could start, stop, and shgie-stsp the processor. Console debugging
soon become uneconomical on medium 6id large-scale machines. It is still used on
minicomputers. This type of debugging i i at the machine-language level; the lights and
switches are direct represent at ions of bitr inside ths machine,

Debugging moved to the assembly language level with the development of interactive
time-sharing systems in the early 1960's. The programmer typed commands at a
terminal, and a collection of special subroutines interpreted the commands so that the
effect was similar to working at the console of the machine. Instead of communicating
in bits, the programmer and subroutines used character strings in the format of octal
and decimal integers, text, symbolic machine instructions, and symbolic addresses.
One of the most important features of the debugging routines was the ability to
suspend the execution of the program being debugged, enter the debugging
routines, communicate with the programmer, resume execution, and make the whole
process invisible to the program being debugged. This process became known as
breakpointing; the location where the main program was stopped is a breakpoint, and
the debugging routines are called a breakpoint package. The premier example of a
symbolic debugging package is DDT [1], developed for use on the DEC PDP-1 and
subsequently extended for use on the PDP-6 and PDP-10. DDT and its derivatives
are still among the most powerful tools for debugging assembly language programs.

BAIL is a high-level breakpoint package for use with SAIL programs. (Swinehart [3] and
Satterthwaite [2] contain descriptions of other high-level debugging systems.)
Communication between the programmer and BAIL is in character strings which are the
names and values of SAIL objects. BAIL reads genera' SAIL expressions typed by
the programmer, evaluates them in the context ef the place in the program where
execution was suspended, and prints the resulting value in an appropriate format. The
evaluation and printing are performed just as if the programmer had inserted an
extra statement into the original program at the point where execution was
suspended. BAIL also provides a way to talk about the program, to answer the

^ !.••.> ^ ■ ■-;.■■...V-'r ^X.KvxilLX

..■-.■ ■ ■■.■■■

MWJ-JIWJlS.IJW-Vl pnp^^p^Mpi ..■,■,■.■.■■ WSif^WSSW "•■

BAIL — A debugger for SAIL INTRODUCTION

questions "Where was execution suspended?", "By what chain of procedure calls
did execution proceed to that point?", and "What is the text of the program?"

In order to perform these functions, BAIL must have some information about the
program being debugged. The SAIL compiler will produce this information if the
program is compiled with an appropriate value supplied for the /B switch. (See the
technical portion of the manual for the exact meaning of the various switch values.)
In these examples the compiler produces two files. File PROG.REL contains the
relocatable code and loader instructions, and file PR0G.SM1 contains the information for
BAIL The PR0G.SM1 information consists of the name, type, and accessing
information for each variable and procedure, the location of the beginning and end
of each statement, and a description of the block structure.

The code for BAIL itself is loaded automatically when the program is loaded. In order
for the added Information and code to be of any use, it must be possible to give
control to BAIL at the appropriate time. An explicit call to BAIL is possible by
declaring EXTERNAL PROCEDURE BAIL; in the program and using the procedure call
BAIL;. This works well if it can be predicted in advance where BAILing might be helpful.
Runtime errors, such as subscript overflow or CASE index errors, are not as predictable;
but responding "B" to the SAIL error handler will activate BAIL Interrupting the
program while it is running (to investigate a possible infinite loop, for example) can be
achieved under the TENEX operating system by typing control-B. On a DEC TOPS-10
operating system, first return to monitor mode by typing one or more control-C's, then
activate BAIL by typing DD<cr>.

BAIL performs some initialization the first time it is entered. The information in the
.SMI file(s) is collected and processed into a file PR0G.BA1. This new file reflects all
of the information from the .SMI files of any separately-compiled programs, and
the relocation performed by the loader. If the core image was SAVtd or SSAVEd then
in subsequent runs BAIL will use the .BAI file and bypass much of the initialization.

BAIL prompts the programmer for input by typing a number and a colon. The number
indicates how many times BAIL has been entered but not yet exited, and thus is the
recursion depth inside BAIL Input to BAIL can be adited using the standard SAIL
input-editing characters for the particular operating system under which the program
is running. [BAIL requests input via INCHWL on DEC TOPS-10 systems and via 1NTTY on
TENEX systems.] Input is terminated whenever the editor activates, string quotation
marks balance, and the last character is a semicolon; otherwise input lines are
concatenated into one string before being processed further.

The programmer may ask BAIL to evaluate any SAIL expression or procedure call
whose evaluation would be legal at the point at which execution of the program being
debugged was suspended (except that expressions involving AND, OR, IF-THEN-
ELSE, and CASE are not allowed.) BAIL evaluates the expression, prints the
resulting value in an appropriate format, and requests further input.

Declared inside BAIL are several procedures whose values or side effects are useful

i
■

1

■ 3

t

■M «nil «pqw—■WMitMWIWa(aW»»MNW*W*»M HWi w Win M"

-.■:-'.•.■: ■ r^,, ..-_„_, .- .,,,,- ,„ -. ' »^pipjjfll» ■ -mroBipiji.

BAIL — A debugger for SAIL INTRODUCTION

in the debugging process. These procedures handle the insertion and deletion of
breakpoints, display the static and dynamic scope of the current breakpoint, display
selected statements from the source program, allow escape to an assembly-
language debugging program, and cause resumption of the suspended main
program. These procedures are described in the technical portion of the manual.

The following examples illustrate many of the features available in BAIL. Text was
recorded from an actual session on the computer.

':

i

i ; 5 I
I

&.,;,:,^:.at.A;^^.i.^';.;-^,^ia,j;i.M; iiiiiafeai^

^■jii^ivtiii'.iiiwwiiimiu ■<>. nmii.|i..p«j»iu, in.Mniii.pji.n, I<>.I.>I i^wn. il,j«iip.i«^w^iH™wiÄ^^'vi»«'i«r.«>i*»w«iW'".'!i»«'* '^•^^'•^••WH».«r^ipW!HwtiWi*^..ii%*»wjpvrw,H!™

ä_r-i,»*W«l-.'Ä^5{M!;!B'«i-^ ■

BAIL — A debugger for SAIL EXAMPLES

: !

i ii

i
i.

SECTION 2

EXAMPLES

©TYP/!; TESTl.SAI

; <REISER>TEST1.SAI;1 SAT 18-nAY-75 2:37Pn

This is a tect program, run on TENEX.

PAGE 1

BEGIN "TEST"
EXTERNAL PROCEDURE BAIL;

INTEGER I.J.K;
STRING A,B,C;
REAL X,Y,Z;
INTEGER ARRAY F0Ü[8:15]; STRING ARRAY STRARR[Is 5,2:6];
INTEGER ITEHVAR DAY; ITEtlVAR QQ;

INTEGER PROCEDURE ADDdNTEGER I,J)i BEGIN "ADD"
OUTSTRC
HI. GLAD YOU STOPPED BY."); RETURN!I+J) END "ADD";

RECURSIVE INTEGER PROCEDURE FACTdNTEGER N); BEGIN "FACT"
RETURN (IF N LEG 1 THEN 1 ELSE N*FACT(N-1)) END "FACT";

SIMPLE PROCEDURE S1MPR0C(REFERENCE INTEGER II); BEGIN "SBEG"
ADD (11,11-32) END "SBEG";

FOR 1-8 STEP 1 UNTIL 15 DO FODHM*!;
FOR 1-1 STEP 1 UNTIL 5 DO

FOR J-2 STEP 1 UNTIL G DO
3TRARR [I,J]-64+8*1+J;

1-4; J-B; K-112;
A-"BIG DEAL"; B-"QED"; C-"THE LAST PICASSO";

X-3.141592G5; Y-8; Z-23.;

BAIL;

ADD(7,45);
SinPROC(J);

USERERR(8,1,"THIS IS A TEST")}

END "TEST";
11

fi»*S*5c&3iu^>iiiS£

|P«TOBPPI!BpiWffSw™n»p^^

BAIL — A debugger for SAIL
EXAMPLES

Compile and load with BAIL.

@S/1//'.SAV;10 , . , 7r ,? FnR HELP)
TENEX SAIL 8.1 4-4-75 l? »"UM Mttrj

*T/':s'n,«~

TESTl.SAl',1 1
END OF COflPlLATION.
LOADING

LOADER G+9K CORE
EXECUTION

tc
Save the core image for later use,

eSSAVE (PAGES FROM) 8 (TO) 577 (ON) TESTl (NEU FILE]
[CONFIRtl]

@ST/]RT

BAIL VER. 10-nAY-75
TESTl.SflliZ

TESTl.SA1;1
End of BAIL initialization.

1:45;

45
1:7.089;

7.083800
\i*SOME RANDOM STRING i

"SOUE RANDOn STRING"

1: '275;
189

l-TRVE,FALSE,NULLi
-1 0 ""

Start the program.

BAIL identifies itself and the files involved

The "1:" is BAIL'S prompt. It indicates the level of
recursive invocations of BAIL and the fact that BAIL
is awaiting input.

See how constants are entered and printed. The
"45}<cr>" is typed by the user, and the next line
"45" is BAIL'S reply.

An octal constant; all printout is decimal.

Symbolic constants More than one expression
requested

4

■bpas

«WWWW"-" ii iJ »TT»^!W»WR>WI«»«^>>«W»««-WWP>-*1WP^^^^

■■■■:■■....

BAIL — A debugger for SAIL EXAMPLES

li i

1:1;
4

iiy.v.-
B 3.141593

1: l*-46i
46

l:U
4B

l:l<J;
8

1:/ GEQ J;
-1

1:90 LAND'17;
2

1 i XYZ;

UNKNOUN 10: XYZ

Variables, assignment

;

Relational operators; remember 0 is FALSE.

An undeclared identifier

Usable as a desk calculator
1:45:r.(89A-53.06);

1G35.308
IJX+J;

9.141593

l'./iDD(3,4);

HI. GLAD YOU STOPPED BY. 7

1: ADDO);

ADD TAKES 2 ARGUflENTS.: ADD (3)

1: FOO;
<ARRAY>[0:15]

1: FOO/4J;
IG

Procedure call

Argument list checking

Arrays. Array name only gives dimension and
subscript bounds information.

Substring notation has been extended to cover array
elements.

1: f 00/5 FOR 3j;
25 36 49

1: STRARR;

i

i m

:my^-^P'-U>:J^:^:J^-^iT^ y .• < ' . ,

ppwiipillilpywi^^^"Hi^^w^"w.j.«w^^w»TW.i!WJ|!''.1 "'■»' ■ MW.JPpipipajVipiBiw^wwiwaw'qil»^^ "W- ^mvmjmm

BAIL — A debugger for SAIL

<ARRAY>[1:5 2J6]

i^r^wR(^roR^^T0^ "u" -r

EXAMPLES

1: FOOf35j;

SUBSCRIPTING ERROR. INDEX VALUE HIN »AX

Array accesses are interpreted

: F00 [35]

l-./l;
"BIG DEAL"

I'.LKNGTHiA);
8

1:1;
4G

liiOCATIONilh
718

l.MKMORV/718/*-64,-
G4

Is/;
G4

l:/l/2TO /NF/i
"IG DEAL"

1: B/3 TO 4;.'
"D"

' "QED"

1: TR/ICECFACT");

1: F/ICIYO;

ENTERING FACT 4
ENTERING FACT 3

ENTERING FACT 2
ENTERING FACT 1
EXITING FACT- 1

EXITING FACT- 2

EXITING FACT- 5

EXITING FACT- 24

ijüNTR/lCErF/Cr,)!

LENGTH, LOCATION, and MEMORY

Substringing

Type-in must be terminated by a semicolon

Tracing of procedure entry and exit

. : ■.;. ■-:■■■:'■ ■'■■'

^ili^^il^^^i. ,.-;....,.;..l.,:Ji;,.;.l„.,,...^. . ,;. .,.: ^(.J ^Su^^ij. ^^u,:^„.^.Cü.^.. ^I±

■.

i ^«WIIÄWmpJWJHWW^^ ' ^"-^l

BAIL — A debugger for SAIL EXAMPLES

i f.

i I

ItFACTtSh
120

1: liREAKCADD");

iiADDOA);

2: ARCS;
3 4

2:1;
3

2:J;
4

2:K;
112

li.'IGO;

HI. GLAD YOU STOPPED BY.

1: //CO;

1: TEXT;

LEXICAL SCOPE. TOP DOUN:
8RUNS
TEST
ADD

Breakpointing

Now one level deeper in BAIL recursion. ARGS
prints the arguments list.

Parameter names evaluate just like variables.

To exit from one level of BAIL

The message is from ADD itself; the value 7 is from
BAIL

Leave another level of BAIL

And come back again. Where are we?

Static block structure

Dynamic procedure invocations. The »4 means
coordinate number 4.

DYNAHIC SCOPE, MOST RECENT FIRST:

ADDTINE #4 INTEGER PROCEDURE ADDdNTEGER I,J)j BFGI
TEST #24 ADD(7,45);
SinPROCU);

USERERRO.l,"

1: ARCS;

........«■

P^PPPS^F^T^^^^SppSSSfW^W-™-!^'- T,,™,.^^^™^;. -x= ^^vrn^^^j^^igpjypp^TIB^^f^lo^^ w»-,T;-»-^Wf.-^-(^..- -.;,-.;■■

Remove the breakpoint.

BAIL — A debugger for SAIL

7 45

liUNURE/lKCADD");

1: //CO;

Output from other calls in the program
HI. GLAD YOU STOPPED BY.
HI. GLAD YOU STOPPED BY.

CALLEDSFROn 642124 LAST SAIL CALL AT 400383
te

Entry to BAIL from the error handler
1: TEXT;

LEXICAL SCOPE, TOP DOWN:
8RUNS

DYNAniC SCOPE, MOST RECENT FIRST:
ROUTINE TEXT
SIMPLE. '642124 %%% FILE NOT VIEWABLE
TEST #26 USERERR(0,1."THIS IS A TEST");

END "T

lil;

EXAMPLES

UNKNOUN ID: I

l:SETLEX(l);

LEXICAL SCOPE, TOP DOWN:
8RUNS
TEST

I'.I;
64

1:C;
"THE LAST PICASSO"

1: //CO;

END OF SAIL EXECUTION.

The static scope needs to be set back one on the
dynamic chain.

I

■L^^A.-.,^'-.:^ :;i.^-^:v.^ii-.,^L..^. v.. .i... s... .. . ^,..,,....- . .,.....^.„ ..,.. s.. .).. ^„. ,.,.... K.. ■.u,.^...<..,,^,.~ M

^^^^gg^^^^g^^^^a^r^^mr^^^^^f^rwmvwrivv^ ■ '■•■'•-.■ ". , . 5WWW5?^^^ilijp^pp|BiUHi,.',ji"^

BAIL — A debugger for SAIL EXAMPLES

Leap and records, DEC TOPS-10 system.

. TYPE TKST2.S/U

!
I

BEGIN "TEST"
EXTERNAL PROCEDURE BAIL;
REQUIRE 583 SYSTEM!POL, 10 PNACIESi

LIST L; SET S,SI,S2,S3,S4,S5;
INTEGER I TEH SUNDAYi ITEM MONDAY, TUESDAY,UEDNESDAY,THURSDAY.FRIDAY SATURDAY; .rmuHT,
INTEGER ITEMVAR DAY; ITEMVAR QQ;
ITEMVAR ARRAY PCI: 181;

RECORD!CLASS CELL (RECORD!POINTER(CELL) CAR.CDR);
RECORD!POIN1ER(CELL) CX.CV;

CX^-NEU! RECORD (CELL);
CY-NEU!RECORD(CELL)i

CELL! CAR [CK3 »-NULL ! RECORD; CELL: CDR O) ^NULL!RECORD;
CELL:CAR [CY]-CX; CELL:COR [CY] «-NULL!RECORD;

PH]-SUNDAY; P [2]-MONDAY;
L-I (SUNDAY)); DATUM(SUNDAY)-0; DAY-SUNDAY; QQ-MDNDAY; S-{QQ}-
SI-(SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY) •
S2-(MONDAY, TUESDAY,WEDNESDAY,THURSDAY, PR I DAY) ;
S3-(MONDAY, WEDNESDAY,FRIDAY) ; S4-(SATURDAY,SUNDAY) ;
S5-(SUNDAY, FRIDAY);

FOREACH DAY SUCH THAT DAY IN SI DO MAKE DAY XOR SUNDAY EQV SATURDAY;

BAIL;

USERERR(8,1, "THIS IS A TEST");

END "TEST";

EXIT
tc
. EXECUTE TEST2.S/iI(27B,)
SAIL: TEST2 1
LOADING
LOADER 1BK CORE
25K MAX 153 WORDS FREE
EXECUTION '

BAIL VER. 10-f1AY-75
TEST2.SM1

TEST2.SAI
END OF BAIL INITIALIZATION.

1;L;
((SUNDAY))

10

i
■ (

i

;HI;

..m

a.,,...-,,. iismMi&ar,,.'. , .,< _ ,,.*!-Miäi&äälUM

P^|B^lP(B9lip»pw|^»W■||^'>'W^Ä«l?WWW™^*'^»mww.^^*^^ A--^ ' ■■••■.• ,^-. .„T,„,,. ,. •» »««PSWP«!"* ^ ' '

BAIL — A debugger for SAIL EXAMPLES

S4;
ISUNDAY, SATURDAY}

S5;
(SUNDAY, FRIDAY)

S4 UNION S5;
(SUNDAY, FRIDAY, SATURDAY)

FRIDAY IN S4;
0

S2 LEQ S2;
-1

DAY;
SATURDAY

DATUM (DAY);
8

CX-
CELL.3231

CELLCM/CX/;
NULL!RECORD

CEI.LC/IR/CYJ;
CELL.9231

SUND/IY /1SS0C SATURDAY:
(SUNDAY)

SUNDAY EQV SATURDAY;
(SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY)

SUNDAY XOR SATURDAY;
PHI

SUNDAY EQV SUNDAY;
PHI

rc

11

.,,., •.■...• .,.;,..,• k^l^fl^^^ ■:

'

l ,1

i

BAIL — A debugger for SAIL

aTESTLSAV;!

EXAMPLES

Go back to the earlier example

Initialization uses file created last time.
BAIL ver. 10-May-75 using TEST1.BAI
End of BAIL Initialization.

Switch /27B at compile-time makes SAIL
predeclared runtime routines known to BAIL

liOPENFILEfNULL'W");
TODAY.TMP

1: OUm-TIlIS IS Pi TEMPORARY FILE CREATED WHILE IN BAIL");

ItCFILEU);
-1

ItOPENFlLECVRC");
TODAY.TMP [OLD VERSION]

4
l!S"THIsTs,,A,;TEt1PÜRARY FILE CREATED UHILE IN BAIL."

1:^SATURDAY.'MAY 18, 1975 17S19J29"

Quickie review of BAIL capabilities

Is?

EXPRESSION;
PROCEDURE!CALL;
TRACE ("PROCEDURE");
ÜNTRACE("PROCEDURE");
BREAK ("PROCEDURE. BLOCK, OR LABEL")i
UNBREAK("PROCEDURE, BLOCK, OR LABEL");

! !G0;
SETLEX (LEVEL);
TEXT;
ARGS;
HELP;
DDT;
7

IstC

End of the examples

'SSmää

ggo^gps^ * ^•^t^^^w^mj^mMm^mmmm.

.

BAIL — A debugger for SAIL COMPILE-TIME ACTION i

SECTION 3

COMPILE-TIME ACTION

The principal result of activating BAIL at compile-time is the generation of a file of
information about the source program for use by the run-time interpreter. This file has
the same name as the .REL file produced by the compilation, except that the extension is
.SMI. If requested, BAIL will also generate some additional code for SIM0LE procedures
to make them more palatable to the run-time interpreter.

The action of BAIL at compile time is governed by the value of the /B switch passed to
the compiler. If the value of this switeri is zero (the default li no value is specified) then
BAIL is completely inactive. Otherwise, the low-order bits determine the actions which
BAIL performs, [The value of the /B switch is interpreted as octal.]

bit action

1 If this bit is on, then the .SMI file will contain the program counter to source/listing
text directory,

2 If this bit is en, then the .SMI file will contain symbol information for all SAIL
symbols encountered in the source. If this bit is off, then information is kept only
for procedures, parameters, blocks, and internals; i.e., non- internal local variables
are not recorded.

4 If this bit is on, then SIMPLE procedures will get procedure descriptors, and one
additional instruction (a JFCL 0, which is the fastest machine no-op instruction) is
inserted at the beginning of SIMPLE procedures. Except for these two changes, all
properties of SIMPLE procedures remain the same as before. The procedure
descriptor is necessary if the procedure is to be called interpretively or if the
procedure is to be TRACEd.

'10 If this bit is on, then BAIL will not be automatically loaded and initialized, although
all other actions requested are performed. This is primarily intended to make it
easier to debug new versions of BAIL without interfering with SYS:BAILREL By
using this switch the decision to load BAIL is delayed until load time.

'20 If this bit is on, then a request to load SYS:BAlPDn.REL is generated. This file
contains procedure descriptors for most of the SAIL predeclared runtime routines,
making it possible to call them from BAIL. The procedure descriptors and their
symbols occupy about 6K.

The B switch must occur on the binary term, not the listing or source term. Thus:
.R SAIL or .COM PR0G(27B,)
PROG/27B-PROG

13

a

-

i

WWW**"*—^ ■' ■ ■■■■. ■ ■, '

BAIL — A debugger for SAIL
COMPILE-TIM.E ACTION

The program -1. |o ^ Ä^y
coordinate "inter's zeroed at the beg^^^^^^ K d ^ |east one word

one for each BEGIN, ELSE and se^co on ^ ^^ was defined Note that

myylVs are s^en oÄ ^ot the parser, and that DEFINES and many
COMMENTS are seen oniy oy instructions to be generated. For
declarations ^^'^ X'"® %7o'tains the coordinate number, the value of the program
each coordinate the directory« appropriate place is the source

counter, and a f e PontfX°^ J^duced and the CREF switch is off, in which case it is

switch is en.

The symbol table information consists of the block structure and the name, access
information, and type for each symbol.

If a BEG1N-END pair has declarations (i.e., is a true block and not just a compound
sta emen) but doPe not have a name, then BAIL will invent one The name is of the
om Snnnn where nnnn is the decimal value of the current coordmate.

14

.:

r, .,■;.:.„„

PIIPPI^SIIPIPPPJ. , ' -■ ' • • — - ■. ■ ■■:'■?■«: ■■■■■■■■ ..r-. ■...,~,.^,.^.^^,,.r.,.^.Vr,-r..:i. -,:-T, ■- .,■„,,. ,.v.......

BAIL -- A debuggöf for SAIL RUN-TIME ACTION

SECTION 4

RUN-TIME ACTION

The BAIL run-time interpreter is itself a SAIL program which resides on the system disk
area. This program is usually loaded automatically, and does some initialization when
entered for the first time. The initialization generates a .BA1 file of information collected
from the .SMI files produced by separate compilations (if any). The ,SM1 files
correspond to .REL files, and the .BAI file corresponds to the .DMP or .SAV tile. Like
RPG or CCL, BAIL will try to bypass much of the initialization and use an existing .BAI file
if appropriate. During initializat'on BAIL displays the names of the .SMI flies it is
processing. For each .SMI file which contains program counter/text index information,
BAIL displays the names of the text files and determines whether the text files are
accessible.

The interpreter is activated by explicit call, previously inserted breakpoints, or the SAIL
error handler. For an explicit call, say EXTERNAL PROCEDURE BAIL; ... BAIL;. From the
error handler, respond B. Breakpoints will be described later in this section.

4.1 - Debugging Requests

:i

y \

When entered, BAIL prints the debugging recursion level followed by a colon, and awaits
a debugging request. BAIL accepts ALGOL and LEAP expressions of the SAIL language.
A complete description is given in [4] and in the addenda describing the syntax of
records and record-pointers. The following exceptions should be noted. Expressions
involving control structure are not allowed, hence BAIL will not recognize AND, OR, IF-
THEN-ELSE, or CASE. Bracketed triple items are not allowed. The TO and FOR
substring and sublist operators have been extended to operate as array subscript
ranges, FOR PRINT-OUT ONLY. If F00 is ?n array, then F00[3 TO 7]; will act like F00[3],
F00[4], F00[5], FOO[6], FOO[7]; but is easier to type, This extension is for print-out
only; no general APL syntax ot semantics are provided.

BAIL evaluates symbolic names according to the scope rules of ALGOL, extended to
always recognize names which are globally unique and have a fixed memory location
(everything except parameters and recursive locals). For any activation of BAIL, the
initial scope is the ALGOL scope of the statement from which BAIL was activated. The
procedure SETLEX (see below) may be used to change the scope to that of any one of
the links in the dynamic activation chain.

Several procedures are predeclared in the outermost block to handle breakpoints and
display information. These are described individually below,

15

..j..^...•.-.>.

■wmwwif?Bww*l!l»PP»w^

BAIL -- A debugger for SAIL

4.16 -ARGS

STRING PROCEDURE ARGS;

The arguments to the procedure which was most recently called.

RUN-TIME ACTION

il

4.3 - BREAK

PROCEDURE BREAK("location,V,condition,,(NULL)/,action,,(NULL),count(0))i

BREAK inserts a breakpoint. The syntax for the first argument is
<location>::=<label>|<procedure>|<block name>|#<nnnn>

|<block name><delim><location> _
<delim>::=<any character not legal in an identified
<nnnn>::=<decimal coordinate number>

If the location is specified by the <block name><delim><location> construct then the
blocks of the core image are searched in ascending order of address of BEGINs until the
first <block name> is matched, The search continues until the second <block name> is
matched etc The breakpoint is inserted at the label, procedure, or coordinate declared
within the scope of the last <block name>. Tnis detailed specification is not usually
necessary, as shown in the examples. The last three parameters are defaultable and
need not be specified, again as in the examples. The action taken at a breakpoint is

IF LENGTH(condition) AND EVAL(condition) AND (counts-count-1)<0 AND
LENGTH(action) THEN EVAL(action);

EVAL(TTY)i

Here EVAL is a procedure which evaluates its string argument and returns the value of
the last expression evaluated (similar to PROGN in LISP).

1 3
■i -'i

I

4.4 - DDT

PROCEDURE DDT;

This procedure transfers control to an assembly language debugging program (if one was
loaded).

16

i&asLMMsae/sam

■-.■ ■ ■ ■■

■■,. ;■■ ■■■ ,-,.,..:.-. .,■..■- ■ ■■..■".,., .■;. ■,-., . ;".:•■.. .-...■;, ■-■,:.■■:,■.

,....,.;;,.■■

 ■ ■ ■ ■ ...

— ■■■:■■■■■■■ ■ ■ ■ ■

M

BAIL -- A debugger for SAIL RUN-TIME ACTION

4.5 - HELP

PROCEDURE HELP;

A list of options, including short descriptions of the procedures described in this section,
is orinted. A question mark followed by a carriage return is interpreted as a call to
HELP.

. if

4.6 - SETLEX

PROCEDURE SETLEX(level);

Evaluating SETLEX(n) changes the static (lexical) scope to the scope of the n-th entry in
the dynamic scope list. SETLEX(O) is the scope of the breakpoint; SETLEX(l) is the
scope of the most recent procedure call in the dynamic scope, etc.

SB

4.7 - SHOW

STRING PROCEDURE SH0W{f;rst, last(O));

The text of the program from the source or listing file. If last is less than first then set
last to last+first, Return coordinates first through last. 5H0W(5,3) gives coordinates 5,
6, 7, and 8; SHOW(5,7) gives coordinates 5, 6, and 7; SH0W(5) gives coordinate 5 only.

A plus sign ("+") following the coordinate number indicates that the values of some
variaoles have been carried over in accumulators fnm the previous coordinate.
Changing the value of variables mig(-,t not be successful in such a case, because BAIL will
not change any accumulator value directly. The MEMORY construct can be used to
modify any location in a core image, including the accumulators.

4.8 - TEXT

STRING PROCEDURE TEXT;

The current static and dynamic scopes, with text from the source or listing file.

17

PPPIjjlllpi^PIgpSH'fi^ra^^ iromnr- -m—w-i .-,:,.,

BAIL — A debugger for SAIL RUN-TIME ACTION

4.9 - TRACE

PROCEDURE TRACE("procedure")!

Special breakpoints are inserted at the beginning and end of the procedure named. On
entry, the procedure name and arguments are typed. On exit, the name and value
returned (if any) are typed.

I
I I

4.10-TRAPS

STRING PROCEDURE TRAPS;

A list of the current breakpoints and traces.

4.11-UNBREAK

PROCEDURE UNBREAKC'location");

The breakpoint at the location specified is removed.

■

■

4.12-UNTRACE

PROCEDURE UNTRACEfprocedure");

The breakpoints inserted by TRACE are removed.

4.13-GO

pseudoPROCEDURE ÜGO;

An immediate exit from the current instantiation of BAIL is taken and execution of the
program is resumed !!G0 is a reserved word (the only one) in BAIL.

■

18

iiiiiii^i i r L^iiLÜii.' *-.;■: ■.^■'^-^■- :-^^.:^^/^;-^,^^^^^;^^■■-•.'/;^^^■^^^^V-.>^V.^^:^'^;^■^^;^^■^;^-^^^J^^'^• ^ ^ ^ ^ ' ^ ^ ■ ■ ^ ' ^] ^ O ^ ^ ■ ^ ^ ^ : :...... ;. >• L....^..' :..-^ . ■ ■-.. ^.■Li

SWPPwptMWJuiiuy1 i . , : ,.,.••, ... • , ,■ • • ■ - , ■•, ; • . -. ..,

,••- - . -•. ■,■ ■

BAIL — A debugger for SAIL RUN-TIME ACTION

4.14-GSTEP

pseudoPROCEDURE ÜGSTEP;

Temporary breakpoints are inserted at all of the logical exits of the current statement,
and execution of the program is resumed. Logical exits are the next statement and
locations to which the current statement can jump, excluding any procedure calls. All of
the breakpoints which are inserted will be removed as soon as one of them is
encountered.

4.15-STEP

pseudoPROCEDURE ÜSTEP;

Temporary breakpoints are inserted at all locations to which the current statement can
jump, including procedure calls, and execution of the program is resumed.

4.16-STRING TYPEOUT

Strings are usually typed so that the output looks the same as the input, i.e., a string is
typed with surrounding quotation marks and doubled internal quotation marks. For
SHOW ARGS, and TEXT this would ordinarily create confusion, so they are handled
specially When these procedures are evaluated they set a flag which ir.hibits quotation
mark fiddling, provided that no further evaluation takes place before me next typeout.
Thus SHOW{5,3); will be typed plain, but STR<-SH0W(5,3); will have quotation marks
massaged.

4.17-BAIL and DDT

If BAIL is initialized in a core image which does not have DDT or RAID, then things will be
set up so that the monitor command DDT gets you into BAIL in the right way. That is,
BAIL will be your DDT. To enter SAIL from DDT (provided that the SAIL initialization
sequence has already been performed), use

pushi P,<program counter>8X
JRST BAILSX

For example, if JBOPC contains the program counter,
PUSH. P.JBOPCSX

19

iri- -y:--;:: v;;; >^ ^.'^ ~>mkw-.; I ^.a. .;.;.;;,i. ;,.-.>>., ^.^.eMiiäm i^^Äii,

|pppWl(WFM^iiw,iij..m™»-w™^H^-

»ä

BAIL — A debugger for SAIL RUN-TIME ACTION

i

i
l 5

JRST BAILSX

The entry B. provides a path from DDT to BAIL which works whether or not the core
image has been initialized. One use of this feature is to BREAK a procedure in an
existing production program without recompiling. For example,

(S; PROG originally compiled, loaded with BAIL and DDT, and SAVEd
©GET PROG
@DD
B.8G

BAIL initialization

hBREAKOocedure");
1:!!G0;

SG

To enter DDT from BAIL, simply say DDT;. For operation under TENEX, control-B is a
pseudo-interrupt character which gets you into BAIL

4.18-WARNINGS

Since BAIL is itself a SAIL procedure, entering BAIL from the error handler or DDT after
a push-down overflow or a string garbage collection error will get you into trouble.

SIMPLE procedures cause headaches for BAIL because they do not keep a display
pointer. [Indeed, the compiler gets lost in the following example, and does not complain:

BEGIN TOST"
PROCEDURE AdNTEGER I); BEGIN "A"

SIMPLE PROCEDURE B; OUTSTRC'THE VALUE OF I IS " & CVS(I));
PROCEDURE CdNTEGER J); B;

C(2)i
END "A";

Ad);
END "LOST";]

BAIL tries valiantly to do the right thing, but occasionally it also gets lost. BAIL will try
to warn you if it can. In general, looking at value string parameters of SIMPLE
procedures does not work.

||(Pfl|N^l|lll-B»W''l'l>.'!W1.'iJ!."«.«<'i»J<UJ*JlSCT-

BAIL -- A debugger for SAIL RESOURCES USED

SECTION 5

RESOURCES USED

1 il

■

I. Compile-time

A. One channel. This means that REQUIREd source files may only be nested to a
depth of about 9.

B. Memory. Up to ll*(maximum lexical nesting depth) more words of memory may
be required compared with previous compilations.

C. CPU time. Approximately 0.3 seconds per. page of dense text.

II. Run-time

A. Channels. Three during initialization, two thereafter. Channels are obtained via
GETCHAN.

B. BAIL uses 7 of the privileged breaktables, obtaining them via GETBREAK.

C. REQUIRE 64 STRINGIPDL Necessary if the debugging recursion level will exceed
3 or 4.

D. Memory. (9.5K +((« of coordinates+127) D1V 128) + (2* * of blocks) + (5* # of
symbols)) words

E. CPU time.

1. Initialization. Typically 4 seconds for a 30 page program.

2. Debugging requests. 0.07 seconds per simple request. DDT response time.

III. Disk space

A. The .SMI file for a /7B compilation is typically one-fourth the size of the
corresponding .REL file,

B. The .BA1 file for a group of /7B compilations is typically one-third the total size
of the corresponding .REL files.

21

il

a;Mätoafa-^.r. -.;. v l^^^Li^^^^^^,^^^^^M^.

l!>^™5WTO!-"WWW?W!»7^"TmWW^

BAIL -- A debugger for SAIL CURRENT STATUS

SECTION 6

CURRENT STATUS

The state of the world is determined by the values of the accumulators and the value of
the SAIL variable '.SKIP!.

The run-time interpreter recognizes only the first 15 characters of identifier names; the
rest are discarded without comment, The characters which are legal in identifiers are

ABCDEFGHiJKLflNOPQRSTUVUXYZ
abcdefghi jklmnopqrstuvwxyz
9123456789 ! _a(3n>,CDV3->~m |

Notable for its absence: period.

LOCATION of a procedure does not work.

PROPS is read-only.

Bracketed triple items are not allowed.

A procedure call containing the name of a parametric procedure (functional argument) Is
not handled properly.

Contexts are not recognized.

The run-time interpreter will not recognize macros.

External linkage: If an identifier is never referenced by code (i.e., has an empty flxup
chain at the time fixups are put out to the loader) then that identifier is not defined by
SAIL Thus variables which are never used do not take up space, and a request to the
loader is not made for EXTERNALS which are not referenced. This feature of SAIL Is
cast in concrete and will not be changed. As a result, the following DOES NOT WORK
unless special precautions are taken:

BEGIN
EXTERNAL PROCEDURE BAIL;
EXTERNAL PROCEDURE PL0T(REAL X0,Y0,X1,Y1);
REQUIRE "CALCOM" LIBRARY;

BAIL END

PLOT will not be defined by SAIL, hence BAIL will not know about it. However if there

22

!. ,■■ .;■..■ „^.■-. ■>.!.7..:,V.- -. n. iv::.l^iJti.»lk,.a.„IAH- .-.j, ', :.: '. . .. ,.„,. :.;; .,...:., .^.aj,;;,.; ia^iÄ* ^^Ä^.^..-.^-,,^,^..^:,^ .,},i-^.^

,„1,,„,?w,,.™,pw^ irm-eTTtiym

BAIL — A debugger for SAIL CURRENT STATUS

are any references to PLOT (real or "dummy" calls) then BAIL will know. The following
trick can also be used, assuming that CALCOM is a SAIL-compiled procedure: Compile
CALCOM with /IOB, which says "make the .SMI file but don't automatically load
SYS:BAIL.REL". Then the above will win (due to BAIL recognizing things which are
globally unique) and programs which do not use BAIL wi'l -ot have it loaded just beacuse
the library was used. This same problem occurs .^ch EXTERNAL RECORD1CLASS
declarations. Use of the subfield index information does not cause a reference to the
class name but NEWiRECORD does. Thus the same /IOB trick must be used if there are
no NEWIRECORD calls.

23

.■.■.■ ■ ■ ■-■'•■

•I

-.-- ^M! n-... ^..i.^.,,..- , .-.,^,J....„-J.,.^.,^.WW......^

^tmmmmmm^a^mimmmmammvi'^i^^mmmf?^^—•^ammmmmm' -• — -^w^^m^mm^^^^

BAIL — A debugger for SAIL CURRENT STATUS

[4]

REFERENCES

[1]

[2]

[3]

., DECsystemlO Assembly Language Handbook DEC-10-NRZC-D, Digital
Equipment Corporation, Maynard, Massachusetts, 1973.

Edwin H. Satterthwaite Jr., "Source Language Debugging Tools" (Ph.D. thesis),
Computer Science Department, Stanford University, May 1975.

Daniel C. Swinehart, "COPILOT: A Multiple Process Approach to Interactive
Programming Systems" (Ph.D. thesis), Computer Science Department, Stanford
University, August 1974.

Kurt VanLehn (ed.), SAIL USER MANUAL, Stanford Artificial Intelligence Laboratory
memo AIM-204 (Computer Science Department report STAN-CS-73-373), July
1973.

!
■:

24

■

■i

I

:

 _ siaäämmsfa^

IWJMÄpi^PIWÄW!^*1"^"1^^ ^WIILH^WliWip.^ !•.<.*.>,. .

■ ■ .

;

i

i

i

!
1!

SECURITY CLASSIFICATION OF THIä PAGE fWien 0«(« Enl.rot/J

•—L

(ft

REPORT DOCUMENTATION PAGE
Jj_ß£ EQB,T_N.U« B 6R--—-• --•——■ 12. GOVT ACCESSION ^O.

STAN-CS-7^-^23, A™??^ J ^

BAIL - A Debugger for SAIL
iy

'fr-ir^PEÄFORMING ORG. REPORT^UNt

7- ^nrun^i ^^„^„...-^

John F./Reiser /
—.,„~^—

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Artificial Intelligence Laboratory
Stanford University
Stanford, California 914-305

II. CONTROLLING OFFICE NAME AND ADDRESS

Col.Dave Russell, Dep. Dir., ARPA, IPT,
AREA Headquarters, lÜ-OO Wilson Blvd.
Arlington, Virginia 22209

14. MONITORING AGENCY NAME 4 ADDRESSC//di//»r«n(from ConttolUnA Olllc»)
Philip Surra, ONR Representative
Durand Aeronautics Building Room 165
Stanford University
Stanford, California 9J+505

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. 3ECIf»IENT'S CATALOG NUM3ER

5. TYPE OF REPORT & PERIOD COVERED

Technical f

aeR

8. CONTRACT OR GRANT NUMaERfiJ

/^DAHC^-^-C-^j, g

10. PROGRAM ELEMENT, PROJECT, TIASK
AREA 4 WORK UNIT NUMBERS

Vl -HlIÖBEK OF PAGES ■•"' BE« OF PAGES--

A2
15, SECU RIT Y CLASfcHte*"«»!*/ repcfUi

15

, I

l /
IS«. DECLASSI FIG ATI ON/DOWN GRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (al this Report)

Releasable without limitations on dissemination.

Appicved for public release;
Distribution Unlimited

17. DISTRIBUTON STATEMENT (ol tht mbilracl »nl»rmd In Block 20, II dlllirtnl horn Report)

18. SUPPLEMENTARY NOTES

19. KEY WO^OS (Contlnu* on revaram aids II nacaaamry and Idantity by block number)

IST^A 20! ÄBSwÄCT fConMm» on tavaraa alda II nacaaamry and Idantity by block numbar)

BAIL is a debugging aid for SAIL programs, where SAIL is an extended dialect of ALG0L60
vhich runs on the PDP-10 computer, BAIL consists of a breakpoint package and an
expression interpreter which allow the user to stop his program at selected points,
examine and change the values of variables, and evaluate general SAIL expressions.
In addition, BAIL can display text from the source file corresponding to the current
location in the program. In many respects BAIL is like DDT or RAID, except that BAIL
is oriented towards SAIL and knows about SAIL data types, primitive operations, and
procedure implementation.

A
DD ,

FORM
JAN 73 1473 EDITION OF 1 NOV 65 IS OUSOLETC

S/N 0102-014-6601 |
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data tnlarad)

oqu iöc
hu ̂ iMMiWfeM^^

