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ABSTRACY

In this paper the problem of fault analysis in Linear and Affine
Sequential Circuits is treated. These classes of systems provide for
the treatment of several linear and nonlinear faults common in digital
circuitry, The solution to the linear and affine sequential circuit
fault analysis problem is obtained via the development of a spectral
theory for such systems over finite fields. A stepwise fault analysis
procedure for this problem class is presented along with many eramples

illustrating the advantages that memory provides in digital fault analy-

SiS.
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CHAPTER 1
INTRODUCT TON
1.1 Introduction to Fault Analysis:

The rapid progress of modern integrated circuit technology has
made it possible to manufacture many new digita! circuits with complex-
ity orders of magnitude greater than the circuits of the preintegration
period. A semiconductor "chip” which 15 just the size of a fingernail,
may have many individual circuit elcments embeded in it. Moreover, a
number of such chips may be combined together to construct a large cir-
cuit. This renders the structure of the circuit more complex which in
turn makes maintenance difficult. 1f the circuit does not behave in the
manner it s supposed to, the faulty element in the circuit must be
located. Techniques used for locating the faulty part or parts of a
circuit are termed as tault analysis techniques.

Historically, fault analysis techniques for analog and digital
circuits have devaloped independently. The reader is referred to the

bibliographies compiled by Rau]t]’2

Tor a review of the literature in
the two areas. Digital fault analysis techniques are mainly combina-
torial in nature. i.e., ore *<<ts each component of the circuit by
applying a family of test inputs to that circuit. If one obtains the
expected response from the circuit for each test input, the circuit is
operating properly and so are all of its components. On the other

hand, if the circuit fails to operate correctly for one or more test ir-
puts, the faulty component(s) may be isolated by determining the s .f

components which are exercised by exactiy that set of input test sig-

nals. In the case of analog circuits, one has the advantage of testing

the circuit by exponential signals of different frequencies. Hence the
i
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gain between various circuit test points at each of several different

frequencies may be measured. Then by some means, an eguation solver or

optimization routine, the circuit parameters are determined which wil)

yield these gains. If the resultant component parameters are in the

cperating range, the corresponding component can be assumed to be work-

ing correctly, whereas if a computed component parameter deviates sig-

nificantly from its cperating range, the corresponding components may be

assumed faulty. 3
Fault anmalysis techriaues for digital and analog circuits with

memory differs from each other., In digita!l circuits,3 due toc combina-

torial approach, test compl’exity increases exponentially with memory. 3

(Since the rumber of entries in a circuit truth table increases expo-

nentially.) In case of dynamical analog circuits, however, just the

opposite is true. One, here, uses the muitifrequency testing techniquos i

in which one may determine the gain between a pair of test points at

several different frequencies simultanecusly from a single test signal.

Thus total number of test inputs required for testing dynamical analog 3

circuits are less than for a memoryless circuit of a similar complexity.

1.2 Fault Analysis of Anzlna Circuits:4’5’6’7‘9’9’]o
Analog fault analysis is heavily pedicated on spectral theoretic

techniques formulated in a frequency domain setting. In tne area of

4.5.1 have

fault analysis of amnalog circuits a number of recent papers
given considerable attention to the comporent connection model of &
large scale system. Via the component connection model fault anal-. .

1s based on a system modeling technique wherein the observable system

behavior 15 expressed explicitly as a function of the internal re-

sponses. In the component connection model, one assumes that the jth
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component 1s characterized by an operator equation {usually expressed in

the frequency domain),

bi = Zi a, 1= 1,2,-,-4y-4-,N (1.1)

mapping the component input vector, a into its output vector, bi'

1'!
Although in actual practice one normally works with the n separate

component equations, notationally (1.1) mzy be combined into the single

2quation
b=2a (1.2)
where b = co?.(bi)
as= col.(ai)
Z = diag (Zi)

Since the connection elements (adders, scalers, etc.) are all
algebraic, the cornection model is represented by a set of linear
algebraic equations ot the form,

[}
Al I I L 4 .b..’ (1.3)
y tar v L2
where y is the overall syste; output and u is the input vector for the

-

overall system which are related by the overall system operator, S, by
y-_-SU (].4)
Upon combining equaticens (1.2), (1.3), and (1.4), one obtains the

equation,

1

= - \ T = ’
S =1 + L2](1 ZL]], ZL.'2 f(2) (1.3)

22
relating the overall system gperator to the composite component operator.
Since the function, f, is entirely determined by the fixed cornectior

matrices, it has been termed the connection function.” Now, if Z and

S are characterized in the frequency domain, one obtains,

S{w) = f(Z2(w)) (1.6)
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since the connections are independent of fregquency.

Finally, in many practical systems one can write the component . f%ﬁ
matrix, Z(w). in the form ”
Z{w) = E(u)CF(w) (1.7}
where E(w) and F(w) are freguency c:pendent matrices determined by the . ‘{;
cor~nent types but not their actua! values and C i1s a frequency inde- '

pendent matrix of component values (i.e. for an inductor the j. goes in
£ ar F and L goes in the { matrix). Such a viewpoint is quite reasonable R

for {he fault analysis problem wherein one can reasonably assume that the

-

componer:it types remain fixed and all faults manifest themselves as

P changes in component values. We then combine the known E and F matrices -

into the conrection function and characterize our system by

T

S(w) = F(O(.)CF(c)) = fN(C) (1.8)
Equation (1.8) is just the right form in which to study the fault
analysis problem for if we make the (standard) hypothesis that a1l faults
take the form of errors in C with the connections and component types
fixed, i.e. f is fixed, then one merely measures S{w) at some frequency

w

ard solves equation (1.8) for (. Unfortunately, solution of these non- 'lvﬁ

linear equations is equivelen: to left invertibilily of the matrix

.
K = L]2®Lm (1.9)

which requires that the system have a large number of test pointc,

If equation (1.8) is not soluble une has two alternatives; either
add more test points (which increases hardware costs) or use several ¥
test frequencies (which increases software costs). The former i¢ e
straightforward and may be carried out algorithmically by adding addi-

tional test points in such a manner that the additional rows added to the

i matrix K will render its columns linearly independent. From a practical
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point of view, however, it is preferable to use additional test frequen-
3 cies at the same test points in which case one must solve the sel of

simpltaneous eguations

1
-
—

¢
—~—

S((x‘])

L ¥

S(:;; ) = f (L‘
2t (1.10)

| .
ST
. “k
bet
Lquations {1.3C) 3 Tuairais tae zscance of the muitifrequency testi-
1n6 1dee in that he tdci.icnal test froouenzies qive us more cquations
s fep the same RUEDET 7 UAK Dhas (unich o tr Jdue Lo cur assumptrion that the
CC MLNERT VA aTicut wiih o ireGuenty oo spown ond won-Taulty . Morecver,
“Fe techntgue expiciis the ayvetoo ayn oo tor 7 Tng (Omponents we -
- ceoenane el toer fowmyto b Tentoonn 07 L and INC edualions co-

1 doruant. A osucn, for

et it ezcier 1o pectoim vault

fon-wmanics 1 cvstem in the

] vzl ot Y U ¢ i Teve. Tt faLtu ansiye.s 1or sequen-

fla irocitt fei@rret oy Into o th o) ieonuch cosrder tran ior

e trarersdl circuite, e ounve desorine. rosniti tor tne annlog clse

Lt ovre cppot TOOmTIL D2 LCuC. TNt TL. ok ndy Toriste a

et wee L0 tRe ccolo anntytro of shaatld oo te wnoch raralio. ne

LYY mequency test o cestrgss of cncdor Taull wralysis e <ny 1iot-

? R otas (arceit dvia.Cco Coowt LG Pauare iower LnoT Tputs vor

e 1e) ereuit than Thv o compinciotia] civegis of oo dar caaplern-




ity. Since a Linear Sequential Circuit can be viewed as a linear
operator on a sequence space, a perfectly valid spectral theory for the
Linear Sequential Circuit may be formulated. The resulting spectra!
theory parallels the steady state frequency domain theory for analog
circuits and thus may be used to formulate a tault analysis procedure for
Linear Sequential Circuits which closely parallel the multifreqguency
testing techniques for analog circuits.

The sequential circuits are defined over a finite field. These
finite ri1elds are denoted by GF(p) where p is a prime and its nth order
extension 1s denoted by GF(p"). A detailed review of finite fields and
an algorithm for generating elements of GF’D“) is given in Appendix A.
A11 these extension fields lie in the algebraic closusr'e]3 of a finite
field.

in the {hapter i1, The :pectral theory for Linear Sequential Cir-
cuits is formuleted. For this purpose a linear Sequential Circuit is
mathematically described by a pair of difference equations cover a finite
field. Rather than interpreting this set of equatiors as the tradition-
al initial value problem, it is interpreted as a central value problem
cf finding two sided state a4 output sequences. 1i.e., for the posi-
tive and negative values of time.

The delays used in the seguentia’® circuit are interpreted as
predictors. 1i.e., The next <iate value of the sequential circuit is
the delayecd presont state of the sequantial circuit. The corresponding
definition of the D-tvansform is given in Apperdix B.

The entire mathematics outlined in the previocus section for the
analog case goes through if one interprets the vectors; a, b, u and y;

as sequences taking their values in the finiie field rather than real



valued functions and assumes that the entries in the L matrices take
; ; 3 their value in the same Tinite field.

In the case of sequential circuits if one deals with D-transform
rather than laplace transform, equation (1.1) th-ough equation (1.6) goes
-‘f o through i.e.,

S(0) = £{(Z(0)) = F((G)F(D)) = fD(G) (1.11)

where fD is a nonlinear function which is entirely determined by com-

21

ponent dynamics and the connections relating component parameter values

to the systems input and output. Here, the implicatien that fD is

known and non-faulty is that ali faul.s occur in the scalers, G, with
. rnemiry elements and connection good. In particular, this implies a

1. ea~ system fails linearly and hence one may include “stuck-on-zero",

"open” and “short circuit" faults but not "stuck-on-one" faults which

are nonlinear. “"Stuck-on-one" faults are, however, included when a

Linear Sequential Circuit is generalized to the case of affine circuits

which tail affinely. The latter generalization also permits a slight

generalization of the traditional Linear Sequential Circuit case by

alioning NOT gates and bias scurces in addition to the usual Linear

Seqrential Circuit components.

Finally, the «naiog of exponential test functions for the case of

sequential circuits are the segquences, {ue}, of the form,

k,

e] = {e Ty k = 0’4]'42.Q3,--‘-

k
where ¢ is an element of the alyebraic closure of a finite field.

{u

The input sequence {uk} = {ek} yields the equality,
k

Yy © S{e) e

for an appropriate initial state.

These exponential sequences "Yive" in an extension of the space on



pmﬁmwﬂmﬁmm voaRrey TEE TR LT e

l
!
|
|
|

e e A m— e e

- - < ——— A, S WOTEES

ST mmee

8
which the actual rircuit is defined and therefore can not be physically

implemented. This is precisely the same phenomena which occurs in
analog circuits where one must test with the real valued input Sin{wt)
to obtain information about the complex valued eJot  Therefore, in
Chapter Il, a technique for computing S{e) directly t.~om the system
impulse response is derived.

Once S(e) is known, one can write the set of equations paralieil to
those used for analog fault analysis for several e's in the algebraic

closure of a finite field. i.e.,

)
Z . (1.12)

As in the analog case it may be possible to solve this set of
simultaneous equations even though no single equation has a unique
solution., Thus it is possible to exploit the dynamics in a Linear Se-
quential Circuit in a similar manner to that used in the analog case, so
as to simplify the fault :nalvsis procedure.

In Chapter [!, the reauired spectral theory is formulated and also
a technique for computing S(e) directly from the impuise response is
derived. In Chapter IIl, a formuia for computing S{e) from the Linear
Sequential Circuit component parameters and the connection matrices is
obtained. As such, one may test a circuit with an impulsive input,
compute S(e) therefrom and then compute the ccmponent parameter. by
inverting this latter formula. This iaversion process can be formulated

as the solution of a set of poiynomial equations in several variables

———————————————————————
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via the "term expansion algorithm"l4

which is described in Chapter III.
A family of illustrative examples appears in Chapter IV and the general-

ization to affine circuits is presented in Chapter V.
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CHAPTER 11
SPECTRAL THECRY - LINEAR SEQUENTIAL CIRCUITS
2.1 "Two sided" Linear Sequential Circuits:

The characteristics of a Linear Sequential Circuit15 (LSC) are

depicted in Figure 2.7, -

N

Input

Combinatorial f——2—" Output

Network ‘_%>_____]

N

Next State
Present State | ¢.i o0e |
< Elements

Figure 2.1: Block Diagram Representation of a Linear Sequential Circuit

Essentially, a Linear Seguential Circuit consists of storage ele-

ments and combinatorial lcaic. An input senuence applied to an LSC
results in an output sequence, whose present vaiue i3 a linear function
of {he present input value and the present state. 7The present state in
turn is a linear function of past states and past inputs. Hence, a
Linear Seauential Circuit can be viewed as a linear operator on a
sequence space.

Mathematically, a "two sided" Linear Sequential Circuit over a

finite field is represented by a set of difference equations,

10
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Xp41 = Axk + Buk
Y A ~w<ck<em (2.1)
X = X

o X

Where the state sequence X, the output sequence Y and the input
sequence U are respectively s, m and r dimensional vectors cver the
finite field. X Yy and u, are respectively the state, the output and
the input sequence values at time k for the LSC. The matrices A, B, C
and J are finite field valued and constant with dimensions consistent
with X s Yy and Up -

Traditionally one interprets equation (2.1) as an initial vatue
problem in which one desires to find "one-sided" sequences; Xy and Y
k > 0 satisfying equation (2.1) for a given sequence u and initial
state, X, T X One in :rpretes equation (2.1) as a central value prob-
lem wherein one seeks '"two sided" seguences; Xp and Ypr — =< k < o
satisfying (Z.1) for a given sequence U and central value Xo = X
Unlike the case for LSC's defined over "one sided” sequences, this
central value problem for difference equations (2.1) does not admit a
unique solution for all X, =X In this chapter, the theory of exist-
ence and uniqueness ¢f solutions to the central value problem is de-
veloped and a viable spectral theory for the difference equations (2.1)
wiich closely parallels steady state frequency domain theory for con-
tinuous linear systems is formulated. Such a speqtral theory provides
a way for determining faults in a Linear Sequential Circuit.

The existence and uniqueness of solutions to the homcgeneous

version of (2.1) which 1s,

PR FTY N
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X4 © Axk
Y = ka -@w<k < w (2.2)
Xg =X

vill now be presented in the first two lemmas. The existence and
unigueness of solutions to (2.1) will then be establisted in the third
Temia.

Lemma 1: Let A be a linear transformation on a vector space X,

then X has a "fittirg decomposition"]6 given by,

X = fo @ f]
Where fo = {zlAtz =0,2eX, t>Tfor some T} and f, = R(At) = ~
ﬂAt+1) S R

The subspaces fo ard f] are respectively the "Fitting Null" and

the "Fitting 1" components of X. Furthermore, the restriction of A to
g p

) . . . L _
fo’ Ao : f0 : fo is nilpotent i.e., Ao 0 for some £, and the
restriction of A to f], A] : f] . f} is invertible on f].
16

The proof of this lemma is given in the literature, = but for com- -

pleteness and convenience i3 included here.
Proof :

Let x « R(AZ), then x = A[Ay] for some y. Which implies that
%)

x ¢ RIA) and hence R(A°) ¢ R(A). It then follows that rank (A%) <

vank [A). Similarly, one can inductively show that, R(A) QR{AZ) »)
R(ASY 2. . . . . . DR(A™) and rank (A") < vank (A" )y < . ... .«
rank (AZ) < rank (A). MNote that as r gets larger, rank (Ar) will rvin-

tually remain constant since it is bounded from below by zero. Thus

there exists an r such that
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rank (A") = rank (Ar+]) = . . ... .0r
RAT) = RA™H =L s,
Define 8; = (z[A'z = 0, z ¢ X} (2.3A)
Then By = {z]Az = 0 = Azz = A[B]]}, so one has £, € By similarly one
can inductively show that By & B, C By C . . ... . Then there exists

s for which the null space defined by equation (2.34) will attain some

constant value. It follows that es = BS+] = . . ... .= fo.
Let t = max{r,s). Then fo = By and f] = R(At).
Any x ¢ X can be written as x = (x ~ Aty) + Aty, Aty € f] for some A

2

Y e X. We also know that Atx = A ty i.e., At(x - Aty) = 0 which

pryegen

implies {(x - Aty) € fo' Hence we have x = fo + f}.

iet zcf af,. Thenz-= At for w ¢ X, since Alw ¢ o Atw = 0

0
) implying z = 0 = f_ M f,. thus X =f0@f]. !
Since f] = R(A") = R(Ar+]) = . ... .= f]A, hence A is surjective
in f]. Since fo = Byo at - o in fo then A is an isomorphism on f] i.e., 1
3 A] : f} -+ f] is invertible on f].
Lemma 2: (Homogeneous Case) l
; (a) The Equation x ., = Ax,» - =<k <o, Xy =X (2.3) 3
i & defined over a finite field hos a solution if and only if x_ = x ¢ f,. i
F In this case the solution is unigque, takes its values in f] for all k ]
E ? and is given by x, = A]ki. -~ o< k < w, (2.4,
% ’ (b) The Equation X4y © Axk, Yy = ka, - < KkK<w (2.5)
[

e Xq © X defined over a finite field has a solution if and only if x . e
; X

in this case the solution is unique, takes its values in C(f]) for all k

|
]
i » and is given by y, = CA]k5, ~w < k<o (2.6)

T U P T O L T S L i
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Proof:

(a) The equation x x Axk, ~o <k <= can also be written in

k+?

_ a7 U
the form, x, = A'x, o ¢ R(A)) ¢ f, (2.7)

The condition that x ¢ f] follows from the fact that in any solution

X = X, can be written in the foim,

- - aV Ty .
X=X, * A Xy € R(A') = f]

k

The claim is Xy = A] Xy X = X ¢ f] (recall that the inverse of A1

)
exists), - w < k<o is a solution to (2.3). 1o nrove this show that

(2.4) satisfies (2.3).

. k
Ax, = AAKx
= A]A]kl' [A can be repiaced by A,
= p K+l . k
= A x since Ay'x ¢ f,]
= Yk

Unigqueness of the soiution can be proven by contradiction. Let

there be two solutions xk] e fy and xkz e f;. Such that X0l = X2 % X
. - a -k ko . .
Then we have x = A, "x, = A, "x, , - » < k < » which yields
= 1 k] i k2
X = X .
Ky Tk

(b) The condition x ¢ f, follows as in (a}. The converse can be
proved by constructing Y- Multiplying both sides of equation (2.4} hy

C, one obtains

Cx = CALKx € € (F)) since A% ¢ (2.8)

Kk

but comparing equations (2.¢) and (2.8), one obtains that




- k
Y © CA] ¥ € C(f]).

Unigueness foliows from the uniqueness of A]ki.

The following exampies illusirate Lemma 2:

Examplie 2.1:

Consider homogeneous L5C detined over GF(2) characterized by the

foilowing set of egquations.

X1(k+1)

X2(k+1) 0 1 x

o Clearly x = [g]. f, Mk and Y =1 ¥ i.e., Yy ¢ C(f]).

Now consider Xog T X

- Qo

]‘ fl, which yields,

1]
~—
.
-
-

0 1 0 1 .
{xk} «Io]’]’]s-----}a 1.e.,

L] ] *

X, € f] for all k and the output sequence, {yk}. with Yo © 1, is

{yk}={---.--,].O,],O.],O,--.-~-)

z
i.e., Yy € C(f]) for all .
In the above example, note that the unigueness of {yk‘ is solely
' determined by the "central value" of the state, Xo T X

In the following exampie, two distinct central values, X, = X
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one in f] and the other not in f] are considered. It is then shown that

the solution exists for x ¢ f, but does not exist for x not in f,.
Example 2.2:

Consider a homogeneous LSC defined over GF(2) characterized by

1 ] X

*(k+1) 1%
Xz(k+]) 0 0 sz

Clearly, i
R(A) = R(A%) = R(AD) = = f,.

Consider

Then A

. : 11
" f] - f] where A] = [; Q]'

With central value x =[-é] » one obtains,

g X, =[(1)]t f, for all k
g |

Now let x = [}} not in f,. Then one obtains ., = [8Jn_ot in f,.

Lemma 3: (Non Homoaeneou: Case)

Consider the cyquations, Xp4y © Axk + B“k' -~ o< k < o« , defined

over a fintte field and let up be a periodic sequence. Then there
exists x such that the equation has a periodic solution, {xk1. with

X = X,
0 —

Proof:

It is well known that when a finite state machine is driven by a

orne-sided ultimately periodic input <equence, the output sequence (and
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therefore state sequence) produced by the machine exists for any ini-
tial condition and is ultimately periodic.]7

Let {ﬁk]. k=0,1,2, ... . be the "one-sided" ultimately

periodic input sequence constructed from a two sided periodic sequence

{u b viau = ups ko> 00 Let () = {x o Xq0 Xpu o o o vy Xy Xppaqs
» XyTo1 (where xo is any initial state) be the

resultant "one-sided" ultimately periodic state sequence produced by

{ﬁk}. Without loss of generality one may assume that the values iNT’

iNT+1‘ . iMT-]' M N, constitute one period of the periodic
portion of {ik1 where T is the perind of fuki. Next define 3 periodic
sequence iy, which coincides with ix,* for NT « k < MT-1 i.e.. x, = x
where r is the unique integer r = L ¢+ ¢IM-N)T and NT < r - MT-1, q is

an integer {positive, zero or neagatived. 1t may he shown that the
sequence zxk3 satisfies Uhe nonhoioilenecus eauation.

Case 1: (NT < r « M°.7°

Substituting r = h * ¢{M-AYT i the eguation ;r‘l = Air + Bur yields

ik+]*Q(MT'NT) T ey B
= Axl':)'\'-"—‘.T\ + Ruk
Whick s
Xpey © AxL + f‘.U"

Case 2: (r = MT-1)
Substituting r = MT7-1 in the equation » . = Air + Bu_ yields,

Xyr = A

M7 -1 + auMT-] s SINCE Uyy 4 7 UNT -1

one obtains,

= Lo ¢« T
XNT T Pt T TN




R T i

or X = Axk + Buk for k = NT-T1.

k+1
Finally note the uniqueness of a periodic portion of {ik] i.e.,
iNT' iNT+1' e e, iMT-l where T is the period of {u,), implies
the uniqueness of {xk) satisfying X4 T Axk + B“k' ~w< k < &,
The following example illustrates Lemma 3:
Example 2.3:
Consider an LSC defined over GF(22) and characterized by the set

of equations,

X1 (k+1) b 1 (k) 0
s + U (2.12)
*2(k+1) ¢ 0 9 (k) 1
Let {ukl = {1, a, l+a, a, 1+a, . 3
and,
x=|0
- 0
which give

IER 1+a
144 T+a °

Consider one periodic portion of {ik? such tnat

Then
1 ] 1+, 0 1

k4

a a 1+, 1 a

T+a

where Xo © ] is the solution to equation (2.12).
T+3

2.2 Spectral Theory:

For an operator M on a vector space, one says that a scalar, », is
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said to be an eigenvalue if there exists a non-zero vector U such that

MU = aU (2.13)
and one says that U is the corresponding eifenvector. Although this
definition is traditionally associated with real or complex matrices
on a finite-dimensional space, the defining equality for eigenvectors
and eigenvalues also holds for arbitrary operator on an abstract
vector space. In particular, one can use the above eauality to define

the eigenvalues and eiaenvectors of a single input - single output

LSC by viewing it as a lineor operétcr on the infinite dimensiognal
vector srace of “"two-sided" sequence: with values in GF(p)}. In this
the defining equality becomes,

X+l = Axk + Buk

(2.14)

,,
[and
"

Cx, + Juk

k
Here {u, * is an etaenseauence takina its values in a €inite field
and the eigen values in general, takes their value in the algebraic
closure of GF(p). This is easily verified by observing that the eigen
values for a matrix, M, over GF(p) are the zeros of he polynomial
det(*1-M). Althou3y' the coetficients of this polynomial are - GF(p),
these 2eros of the pol,rnmia may lie in its algebraic c¢losure. The
algebraic closure of a finite field plays essentially the same roie for
an LSC defined over that field as complex numbers do for an analog
circuit defined over the real field. The minor problems arising due
to the use of the alaebraic closure are discussed in the next se¢¢tion.
For the periodic input fu b = ie*i, k=0, 1,22, . . .. (2.15)

where ¢ 15 an element of the algebraic closure of the finite field

over which an ''SC i defined. Cefine a "transfer function” in the

U e

Py

i i o d
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usual manner,
S(e) = J +C (el-A)"" B (2.16)

Here, Sle) is a rational functicn in e with coefficients in a

finite field, whose poles and zeros are well Jdefined elements of the

% algsbraic closure of the finite field. For each e (except for the

i poles of S(e)), the sequence {uk} = {ek}, -w <k <= {5 an eigen

' sequence of the LSC with eigenvaiue S(e). The eigenvalues of the LSC
are elements of the algebraic closure and the eigensequences take their
values in the algebraic closure just as eigervalues and eigenfunctions,
for a system defined over the real ficld are complex. The fundamentally

important fact here is that the eigensequence 1is independent of the

g

1 LSC under study and hence is assured to be an eigensequence  for a

faulty circuit even if the fault is unknown.
Theorem 1: Let an LSC be characterized by

“eal © Axk + By, (2.1R)

- ® < Kk « »

; Y ka + Juk {2.1B)

over a finite field. Then for each e in the algebraic ciosure of the

finite field for which S(e) = d + C (le-A)"! B s defined, there

i exists an initial condition % for (2.1) such that the sequence

tu) = 1e", k=0, 41, 22, . . . . . is an eigenseavence for the LSC

with this initic! condition and eigenvalue 1is S{e).

Froof:

K .
1

Since {uk} = {e’ Y, k=0, +1, #2, . . . . . i5 a periodic seq."nce,

the existence of a solution to (2.1) is quaranteed by Lemma 3. The

existence of an initial condition such that {uk] = {ek}, k =0, 1, +2, .

. is an eigensefjuence with the eigenvalue 3(e) can be proven by
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; substitution as follows:
. The ciaim is that x, * (le-A)”) Be® (2.17)
] is a unique solution to x, ,, = Ax Bu s, -x<k<oa (2.18)
1
f with an input sequence {uk} = {ek}, k =0, =1, #2, . . . . . such that
)
: x, = (1e-8)"1 B, To show this, substitute (2.17) in (2.18)
;
] , ~ -1 .k k
] Axk + Buk = A[(le-A) " Be ] + Be
) = (1e-A)"T BeX + 1
] T ke
]
F Unigueness of X, can 2e shown be contradiction, let there be two solu-
E;. tions xk' and xk" to equation (2.18) such that xo' - xo" = (Ie-A)-] B.
} f b
1 ; Then one obtains
4
f X o1 = Ax 't Bug (2.19) %
X = Ax T rsuk (2.20) 1
i Subtracting (2.20) from {2.19)
; (xk+]' - xk$]”) = A(XL. - xk") (2.21)
3 .
f Let xv' - Xk" =X then (2.21) becomes, ]
-~ ~ i
X1 T A, Xo = xo' - xo” =0 3
z Then irom Lerrg 770 one gets ]
X * ]
which implies,
' {
This shows Xz (Ie-A)'] Bek is the unique solution to equation (2.7A) ;
{ such that Xg = % = (IevA)'] B.
E ; 1 Substituting (2.17) into (7.16) yields

e



22
Yo © ka + Juk

= [C(1e-A)"" B + 3] X

= s(e) e" (2.22)

Uniqueness of Y follows from the uniqueness of X Ak

The essence of Theorem 1 is that it allows one to interpret the
“transfer function" of an LSC as a function such as is done for contin-
uous time systems cver the real field rather than as an abstract oper-
ator as is usually done for LSC's. Thus, it is a function which iden-
tifies an eigenvalue with its efgenvector. In the case of multiple -
input -multiple output, the above arguments go *“.-ough with the matrix

S(e) = ¢ + C(Ie—A)'l B interpreted as a matrix of eigenvaiues.

R ol A an d o0

Example 2.4:

Xl T X T Y
- ® < K < « (2_23)
; v T %
defined over GF(2).
u + ——r—y

R st ol A o o DAL AR

Figure 2.2: Figure for Lxampie 2.4
Substituting the values of A, B, C, J, into (2.16) yields

S(e) = 1—1— (2.24)

Consider the extension field GF(22) whose elements are (0, 1, «a,
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2) and let e = o, then k. {uk} = {ek) = {ak}. i.e.. u_ =1

1=
Q a 0

and {u b = {. ... 1,a, V+a, 1,0, 1 ta, 1,0, 1 +ep, .. ..}
which produces an output sequence, y, = S(e)ek = S(a)ak, i.e., {yk} =
{« + « . Gy 02, i, a, az, 1, a, az, 1, . . . .) where Yo = @ Now
letting e = a + 1, {"k} = {a + 1}k produces an cutput sequence {yk‘ =
{. . .. a2, a, 1, uz, as 1, a2, a, 1, . . . .} where _y0=a2.

In the above example, the eigensequence {uk} = {ek} is SsO-
ciated with an eigenvalue S(e) = T—}—Eu This example shows that by
choosing different elements from the extension field of 6F(2), differ-
ent output sequences are generated. Also note that ir this case the
state and the output seguences will be the same.

2.3 Computing S{e) from the Impulse Response:

Using input signals taking their values in the algebraic closure
of a finite field presents two problems. First, one must be abie to
do computation in the extension field and, second, one must actually
test the system with signals that take their values in the original
field since the physical system is not capable of accepting inputs from
the extension fieid. The first problem can be solved without much
difficulty since GF(pm) car. be represented as a field of mth degree
polynomials with coefficients in GF(p).13 Here, addition is the usual
polynomial addition and multiplication is the usual polynomial multi-
plication modulo of the (m + 1)St order irreducible polynomial.

The second problem can be solved by simpiy measuring the impulse
response of the system and then computing the "exponential" response.

Since the goal here is to be able to find the relationship be-

tween the zero state impulse response; {h )V, k > 0, and the matrix

transfer function S(e). one can assume that the input-output relatior-

— v e e S WA AT T, — .
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ship of the LSC is characterized by a minimai (A, 8, C, J) realization,
which characterizes the actual pnysicel system under study. Since such
a realization is controllable it can always be driven from the zero
state at time k = ko to any desired state at time k = 0 by a sequence
of inputs b_j, ko < ) < 0 provided ko < = & where 6 is the degree of
the LSC.

The relationship between the "expconential” response of a single
input - single output LSC and its zero state impulse response is
given by the following theorem. The results of this theorem can easily
be generalized for the case of multiple input - multiple output L5C's.
Theorem 2: Let {h,}, k > 0 be the zero state impulse response of a
single input - single output LSC and S(e) = J + C(Ie—A)'] B be its
transfer function. The "exponential response” S(e)ek to an input

; . ko .
sequence {u } = {e"} 15 given oy,

k

K ‘o
S(e)e" = ¥ h
3=

k-7-1
b+ k1t ks (2.25)
AL

The b_j's are {unknown) inputs that drive the system from the

"

zero state at time k = k to x_ = x (possibly non-zero) at k = Q.

Proof:
re¥) k< -1
Define {eX) & (2.76)
(G) k> -1
10) K < -1
TN (2.27)
1y K> -1
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Then 1e¥) = 1" + 185, k=0, =1, 22, . . . ... tety, be the

{ek}. Let y , be the response of the LSC

response of the LSC to {uk}
due to {u,} = {gF}. Let ;& be the response of the LSC due to {u,} =
e 4.

It follows firectly from the defining equatiouns for the minimal

realization of the LSC that

k-1 .
x, = Al e 7 Al g edT] (2.29)
i=0
and
) k“] : .
yo=CAfx v+ T calB ek Tl 4 g K (2.30)
i=0
Now let b ., k -~ -j < 0 bea sequence of inputs Lhatl drives the

b_i» %o J
minimal realization from the zaro state at time k = ko to x at time

k = 0. Such a sequence exists for a minimal realization if ko < =&,
where & is the dimension of the minimal realization.
It follows that

X_k =0

x“(ko"]) = Bb-n

X-(kO-Z) = /-\Bb__n + Bb—(n—])
Y
X (k -3) © ABb_ + ABb_( 1y * BB o)
_ _ _ K_-2 k -1,,- r
X=X " X (g k) T (B AB . ... A0°B Ao 'Bj b_, T




which gives

cA¥x = ek caktle . L L . . caktRo?

B ca*%cle] b,

P~ (kg-1)

by

0 (2.31)

-l

The values of the impulse response {hk} are given in terms of the LSC

minimal realization description by,
h =4
h, = CB
h, = CAB

Substituting (2.32) in (2.31) yieids,

k. -
CA' = [y Ppap « v v - - e -2 hk+ko_]]

(2.33)

i
(LY panr] &)

h. b .
j] J+k -J

Substituting (2.33) into (2.30) yields,

Eald

0 k-1 : .
h,,, b.+ J CcA'gefi”

¥, = o b
k TR AT R

n e~

J
Utilizing (2.32) yields,
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ko k-1
= 3 hj+k b-j + 7 h1+'| e (2.34)

j:} =-]

[ 4]

From (2 2) the "exponential response" is given by
k
Vg * S(e)e
Thus from (2.34). it follows that,

0 k-1

h.,. b .+ } h

K
S(Eje = . R, i
SRALIRC B S

i+]

I~ =
—

J
- In ¢ = where the LSC is not in the zero state, the zero state
impulse res: se can be determined as foliows: Observe the response
of the LSC due to an input sequence {uk1 = {0}. When this response
becomes periodi , apply an impulse safguence to the LSC. The zero
state impulse .c<ponse is then given by the diiference of twe responses
i.e., responses cbtained after and before the impulse sequence is

applied.

¢

To apply Theorem 2, one observes that Equation (2.25) is linear
in all the unknowns (S5(e) and the b_s» ky -3 < 0) hence by writing
2 the equation for v =1, 2, . . . ., k0+1, one may set up a ko+l by
k0+1 matrix equation which may be solved for S(e) in terms of the
measured values of hk , 0 < k < 2k0+]. In the case of muitiple input -
b § multiple output LSC's, S(e) is a matrix of eigenvalues and the impulse
response is also a matrix. The procedure for determining S(e) in the
single input - single cutput case can easily be generalized for deter-

N ) mining the impulse .esponse matrix and (in turn) the matrix S(e).

rore

The following example illustrates Theorem 1.

|
H
t
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Example 2.5:

Consider the LSC defined in Example 2.3. The zero state impulse
response is given by
hy =0, hy =hy, =hy=. .. ... =1,

from Theorem 1

k0 k-1

s(ejeX = jzl hysy by * 1; : LT i1
Let & = a « GF(2%), k= 1.
For k = 1, S(a)a = b-] + 1 (2.35)
and for k = 2, S(a)a? = b_y +a + ! (2.36)
Solve (2.35) and (2.36) simultaneously, one obtains,

S(a) = o = = (2.37)
Now let e = a2 = 1 + a ¢ GF{Z).
for k = 1, S(a®)(a?)! = b, +1 (2.38)
for k = 2, 5%} (%)% = by + o¥ + 1 (2.39)

Solving (2.38) and (2.39) simultaneously, one obtains,

S(a?) = —— (2.40)
1 +a”

Equations, (2.37) and (2.40), could be verified by substituting the

corresponding value of e in equation (2.24).




CHAPTER 111
FAULT ANALYSIS - LINEAR SEQUENTIAL CIRCUITS
3.1 Component Connection Model:

A Linear Sequential Circuit is usually characterized by ar input-
output state model for the purpose of fauit aralysis; wherein cne
attempts to collect input-output data to determire faulty components
withir the LSC. The fault analysis algorithm developed in this chapter
use< the component connection which relates input-output behavior
directly to component parameters rather than the state.

The component connection model was first intuitively used by

Prasad and Traboth]8 and has been used by several other investigators

in the area cf fault analysis in analog circuits.4’5'14

The primary reason in choosing the component connection model for
fault analysis is that it is so heavily algebraic that it unities
various graphical and diagramatic connection theories and at the same
time smooths the transition from mathematical model to computer algo-
rithm.

In the sequel the digital version of the component ccnnection

model is developed which is =3sentiaily the same as in the analog case

except for minor changes. The development is repeated here for the

sake of completeness and for demonstrating the interpretaticn of terms
used in the model for the digital case.

A mathematical interpretation of & system is: a mapping from a
set of inputs to a set of outputs i.e., an input-output relation.
Letting u and y represent system input and output sequences, respec-
tively, with values in a finite field or its algebraic closure, we may

29
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abstractly denote a system by,

y = Su (3.1)
where S is the mapping (operator) representing the system. The s;stem,
S, is primarily determined by two factors: the component types, and
the ways the components are interconnected. In the case of an LSC, a
system consists of a fixed interconnection of several Linear Scquential
Circuits, each in turn which is a fixed interconnection of components
or devices. Components can be scalars, adders, delayors or linear
gates. The form of the algebraic connection model, known as the Com-

ponent Connection Model, can be conceptually deduced f om Figure 3.1.

Components

Figure 3.1: System Rapresentation

In Figure 3.1, u and y represent overall system inputs and outputs

(finite field valued sequences) while a and b are, respectively, com-

porient input and output sequences over the same field.

By a "Component Connection Model" is meant a system model where-

in the components and connections are characterized by separate equa-

tions. In particular, one assumes that each component in a system is

characterized by the D-transform equation,

bi(D) = [(gi)fi(b)] ai(D) . i=1,2,...n (3.2)




-
~

3

where a1(D) and bi(D) are respectively the D-transforms of the input

th 1th

and output sequences of the i~ component. The dynamics of the

component are represented by fi(D) and the scalar constant, g, is the

1th component. For the purpose of fault anmalysis, it is

gain of the
assumed that the component dynamics, fi(D), do not change even after a
fault has occurred and all failures manifest themselves as changes in

95 with mowmory elements and connections good. This guarantees that a
linear system fails linearly. Such a fault model includes the usual
“open" and “short circuit® faults and “stuck-on-zero" faults. "Stuck-
on-one" faults can not be included in a strictly linear theory since a
device which is "stuck-on-one” is nonlinear. “Stuck-on-one” faults are,

however, included in the generalization of the theory to Affine Sequen-

tial Circuits described in Chapter V.

r

7 the n separaie Componeént

LA

In actual practice one normally works wit

equaticns like (3.2). hotationally this may be combined into the

singie matrix equation,

b(D) = [(6)F(D)] a(D) ' (3.3)
where b(D) = Col. (bi(D))
a(p) = Col. (ai(D)) \
6 = diag. (Gi) :
F(D) = diag. (fi(D))

To obtain a mathematical model for the connections, redraw Fig.
3.1 as in Fig. 3.2 where the components and connections are shown
separately. The connections may be viewed as a separate multiple

jnput - multiple output component.
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3_ Components

u Connections y

R 4

Figure 3.2: Component Connectian Model Representation

Since connection elements are linear and alaebraic, and connections

can be characterized by linear algebraic constraints (Adders, scalers,

etc.) the connection mcée! can ba ranresented by the matrix aquation,
a(D) Ly ; g,z"l b(D)
- = fe---- } ----- ———— (3.4)
)
y(0) Lav o L2 u(D)

Entries in the L matrices take their values in the same finite field
over which the LSC under study is defined. For digital circuits the
Lij matrices are usually permutation matrices describing how the out-
puts of one component are connected to the inputs of another. In
Equation (3.4}, u{D) and y(D) are respectively the D-transforms of the
externally accessible inputs and outputs of the LSC. The digital ver-
siorn of the component connection model is sufficiently general to in-

clude most LSC's, although it is nc* universal. Equation (3.4) has the

symbolic representation shown in Figure 3.3.




¢
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Figure 3.3: 3Symbolic Representation of Lij Matrices

In the following example, Lise G and F(D) matrices are determined

J
for the LSC shown in Fig. 3.4.
Example 3.1:

Consider the system defined over GF(2) as shown in Figure 3.4,

' 42 DNZ
L/ 7

Figure 3.4: Figure for Example 3.1

The L matrices for the system described in Figure 3.5 are given by
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Simultaneous solution of equations (3.1), (3.3) and (3.4) yields a
compiete description of the LSC input-output relationship of the form,
y(0) = [S(D)] u(D) (3.5)
= [y + Ly U-@FOIL D THEF I, D) (3.6)
That is, the overall system operator is5 given in terms of the com-
porent dynamics, F(D), component parameters, G, and connections, Lij’
by the eauality,
S(D) = Ly + Ly (1-(G3F(0)L;,) T B)F(DIL,, (3.7)
S(D) is a matrix of rational functicns in D with coefficients in
a finite field, whose poles and zeros are well defined elements of the
algebraic closure of the finite field.

In view of the hypothesis that all (SC failures manifest them-eclves

as changes in G, with F(D) and Lij remaining constant, it is natural to

view Equation (3.7) as,
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s(p) = fD(G) (3.8)
where fD is a nonlinear function even though S is & linear operator.
The function, fD’ is entirely determined by the component dynamics and
the connections relating component parameter values to the system's
input and output. The function, fD’ is called the connection function.5
Equation (3.8) is in just the right form for th? study of fault analysis
because faults are assumed to manifest themselves only as changes in G.
3.2 Fault Analysis:

The following theorem gives the relationship between S(e) which
may be computed trom the zero state impulse response of the LSC and
s(D).

Thecrem 3:

Given an LSC described by y(D) = S(D)u(D). Let {uy) = {e'*}, k = 0,
t1,#2, . . . . , where e is an element in the algebraic closure of &
finite field over which the LSC is defined. Then S{e) | D = e (3.9)
Proof:

Consider, first, the single input - single output case. In this
case S(D) is a rational function in D with well defined poles and zeros

that can be expressed ac

2 n
a, * a]D + aZD IR R anD
S(D} = (3.10)
2 m
1+ b]D + sz t eem t --- 4 me
which implies
aj t a0+ a2D2 S +an"
y(0) = u(D)
T4 b0 + b+ —ceme- + b "
1 2 m

Equivalently,




{yk} + b]{yk+1} + o=+ bm{ykh“} = ao{uk} + a]{uk"']} + -+ an{uk'.' }

36 ;
y(D)[1 + byD + b202 + -4 b 0" =[5 +aD+ aZDZ + —em + 2 D"Ju(D).
(3.104)

Since Dmy(D) = {yk+m} and Dnu(D) = {"kﬂn}’ (3.10A) becomes,

n
(3.11)
Let u, = (e}, k=0, 1, 22, . ...
Then y, = {ye+k} (3.12)
Substituting (3.12) into (3.11) yield,
(ve")[1 + bie + bye? + <= + b €] = (e¥)[a, + aje + --- + a e"]
or a, *+ ae+ a2e2 + e ane" -
1+ b]e + bze + -t bme
= S{e){u,}, where S(e) = S(D) | D=¢e (3.13)

The multiple input - multiple output result follows easily by applying
the above analysis over all possible input-output pairs with all inputs
zero except the one corresponding tc the pair in question,
Given the Theorem 3, Equation (3.6) may now be written as
S{e) = £,(6) = [L,, + L, (1-(6)F(e)Ly ;) (B)F(e)Ly,). (3.14)
If (3.14) can be solved for G, the fault analysis of the Linear
Sequential Circuit is complete. Unfortunately, however, most LSC's
have more components than input-output equation, in which case (3.14)
represents a set of equations that has more unknowns than the number
of equations. However, this difficulty can be overcome by exploiting
the LSC dynamics. Indeec, this exploitation of the circuit dynamics is

the key to the spectral theoretic approach because it permits the
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number of externaliy accessible LSC terminals reguired for fault analy-

sis of an LSC to be reduced from that required for a combinatorial cir-
cuit of similar complexity rather than increased as i1s the case with
traditional fault analysis techniques. To see this, note that Equa-
tion (3.14) is valid for any e in the algebraic closure of a finite
field over which the LSC is defined and that fhe resulting equations
are dependent on the choice of e. As such, more equaticas can be creat-
ed without changing the number of unknowns by writing the set of simul-

taneous equations for different e's in the algebraic closure as,

S(e) = T, (6) = Ligp * Lyy (1-(6)F (e )Lyy) ™ (@IF (o))
S(ey) = o (6) = [Lyy + Ly (1-(6)F (,)Ly1)  (6)F ()L,

2 (3.15)
Sley) = g (6) = [Ly, * L,y (1=(6)F (e, )Ly ) ™ (8)F (e, )Ly, T,

In the case of a combinatorial circuit fei is independent of e,
hence the additional equations are not independent and do not simplify
the fault analysis process. In the case of a Linear Sequential Circuit,
Equations (3.15) will be independent and solvable for G even though a
single Equation (2.14) 1is not solvable.

With the above theory, one can bormulate the tfault arnalysis algo-
rithm. The procedure consists of the following steps.

(i) Measure the zero state impuise response of an LSC under study.
(ii) Compute S(ei) from (2.25) for various elements €1s €5, €3,0..5 €
in the extension of the finite field over which the LSC under study is

defined. The number of e's that one should choose depends on how many

component parameters are to be solved.
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(i1i) From S(e]), S(ez),..... S(ek) calculated in Step (ii) and from

the known natrices Lij’ write the simultaneous equations (3.15).
(iv) Soive the equations (3.15) for G,

In the next section, the algorithm for solving (3.15) 1s formulated.
3.3 Equation Solving:

A procedure is now given for solving the set of simultaneous
equations (3.15). This procedure is based on a “term expansion" algo-
rithm developed by Ransom]4 for analog fault analysis.

tet T(D) = ((G)F(D))‘]. Equation (3.7) becomes,

S(D) = Lyy + Lyy (T(D)-Ly3) MLpps 1= 12,0000k (3.16)

Next, perform the "term expansion" of the “inverse" in (3.16).

(T(D)-L]])_] = %—adj.(T(D)—L”)t where t denotes transposition, & =

(T{D)—L]]), and adj.\T\D)-L]]) denotes the matrix whose iijth element ;
. . .th

is the 1, cofactor of (T(D)-L]1).

Taking che “vec" operation on both sides of (3.16) yields

_ t 1
vec(S) = vec(L22) + (L]2 ® "21) V;E;' Gapa (3.17)

where ® denotes the Kronecker matrix product.]9
In arriving at (3.17) one needs to use the formula vec(ABC) =

(CT ® A)vec(B), the equalities a = Vo, and vec adj.(T-L”)t =60,

where Va is a row vector, Ga is a matrix and
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Here n is the dimension of T(D) and 7 i is a vector wkose elements
are all product combinations of the diagonal elements of T taken i at a
time. That is, for an LSC with three g's, € = mn, 9y» 095 935 919;:
9193 993> 919293]. Here the elementc of vV, and Ga are constants in
an extension of a finite field. An alcorithm Tor determining Va and Ga
12 given in referonce and will not be repeated.
One can write, Vdna =Vp + T
Gapa =Gy + 2 (3.18)
where p, V, G are A Va ard Ga’ resgectively, with their first element
(celumn) deleted. The first element {(column) of Va and Ga are recpec-
tively, T and .
Substituting (3.7%8) into (3.17) yields,
(it @ Lyl - vesiTH il 6 = LT B Ly - ves(T-l,)T
or, deo= 8 (3.19)
vritine Eceetior (2.12) ior various veluzs of e;» Lnoe can obtain

decird form of set of Simuitaneols eguations,

v o= ox{e )
Y(El,) M ((‘F',

wnich can be writ-en mcre compactly with *he obvious notationel defin-

itions as,

G o= ¢ {2.79)
In yenaral, : may have linearl: dependent zulumns (over an exten-

1

sice Tield containing aill of the above ci's) e, x.
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akck + -e- = Ca
¥Where Ci» CJ’ ..... ) €, are columns of @, and O Gjoeene are scai-
ers which may be elements of the extension field. Thus if Cn is the
dependent column, delete c_ from v and R, from 0. Add a;R, to row R,
°JRm to row Rj. etc.. Repeat this process until all linear dependen-

cies among the columns of v have been deleted. Denote the resuiting

equations by vVo=256 (3.21)
Here & is a vector of the extension field elements, @ has a left

inverse given by, v be @t 7! ot (3.22)

Hence, one can solve for p as, p = ¢ © 3, (3.23)

which is a vector of elements in the extension field. Finully, one
desires to compute the g;'s from o. One can express p as p = Bp where
B is a known matrix of extension field elements. There is also an add-
itional constraint that the gi‘s lie in GF(p), even though g and p are
composed of extension field elements. Since every extension field ele-

th

ment can be uniquely represented as a m~ order polynomial in ar indeter-

minant o with coefficients in GF(p),q'3 Equation (3.23) can Le written

m y mo r
R R R R O
-Y: r:

where eY and q, are the cvoefficients of the polynomial.

lipon equating coefficients of 1ike powers of o, one obtains a set
of simultaneous equations in GF(p) that are to be solved for the gi's.

These equations can be solved by any standard solution techniques
in GF(p). In particular, in GF(2), one can set up a Boolean express-
ion, which after simplification, reduces to 3 list of all possible sets

of componcnt values consistent with the specified data.
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In the following chapter, several examples of LSC fault analysis

are considered in which the technique described above is used for solv-

ing the set of simultaneous equations arising in the fauit analysis.
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CHAPTER IV
FAMILY OF EXAMPLES

Example 4.1: Consider the LSC shown in Figure 4.1, defined cver GF(2).

Figure 4.1: A LSC for Example 4.1

Assume that the zero state impulse response for the LSC in
I'igure 4.1 is measured and is given by, h0 =1, h] =1, h2 =1,.....
It is desired tc compute all possible values of the gains 9y 9p-
9ys 9y which are compatible with the zern state impulse response date

given above,

Solution: The connection equations for this c¢ircuit are as follows.
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- -y r- —
2 fo 0 1 0 1 b,
2, 0 0 1 1 1 b,
a4 - 1 1 0 0 0 b3
3, 0 1 0 ¢ 0 b4
y 1 1 0 0 0| u ' (4.1)
and,
rg] 0 0 0 ]
0 9, 0 0
[(6)F(D)] = 0 0 gy 0
0 0 0 /D
o %"
rg] 0 0 0 r; 0 0 e |
0 g, O 0 0 1 0 0
0 0 9; 0 0 ¢ /0 0
| 0 0 0 gQ- _F 0 i} l/?J(Q.Z) ‘

Substituting the matrices Lij’ G and F(D) obtained from (4.1) and (4.2)

into (3.6) and then using the term expansion algorithm, one obtains,

1 os@ s s@ 1 os@] [ e ] [s(o)]
D D D D 2

92

9,93

9,94

9193

91929

b
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Equation (4.3) is of the form,

Y¥p =26
where zero entries in ¥ and in the corresponding rows of o are deleted.
The solution of the set of Equation (4.3) is carried out in (GF(23)).
Choose the elements @y =a, e2=u2. e3=a3, e4=u4. e5=a5, e6=a6 from
GF(23) where a is an indeterminant. Use (2.25) to compute S(e,) for
i=1,2,3,4,5, 6 from the zero state impulte response data. They

are given as in (4.4)

S(e]) -

S(ez) = o3

S(e3) = uz

5(84) = o°

slegl = o

S(eg) = o4 (4.4)

The set of simultaneous equations (4.3) are,

| , - r- ‘T [~ -

1 1 S{e,) S(e;) Sle;) S(e;)
1 ] i M i S(e.)
. ? Sy i
€ € 1 & €
. 92
. 9,9 |—=
. . 993
919,9
11 s(eg) Sleg) Sieg) 1 Sleg) rplgzgz,g,; Sley)
2
- N O R O R

Substituting (4.4) into (4.5),
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— N T r -
4 ) 4 6 3 5
1 1 a a a a a 9 o
1 1 a a a us 06 9, 03
i 1 06 06 06 a4 a3 9,94 u2
1 1 uz 02 02 03 05 9,94 a 06
1 1 u3 03 a3 a2 ns 9,95 a
N B A (X3!

(4.6) is of the form,
\}'p=3
In (4.6) the mairix, ¥, has only three linearly independent columns

and can be reduced to ¥ by using the equalities,

-('5
-c7

th column of ¥. The resulting equations are,

where eF is the i

—
9 9

919,94 * 919,939,

L
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The ecuation (4.7) is of the form,

-

v o~ 4
where, —
Nt
= 9593 * 959, * 9993 * 919,959,

9]9294 + 91929394

or, ,
1 0 0 0 0 o] [ 9
- 0 \ 1 1 1 0 1 9n
I} =
c 0 0 0 ¢ 1 1 9,94 :
9,9,
9193
919,59,
: 9192939
} -L e —_
' Now multiplying tath sides of (4.7) by y . one obtains,
— = = )
9 *9, 1 -
- = ,‘,-L & =
o= 19,93 %929 * 993 % 99,939 !
919,94 * 3195939, ] | 0 | (4.8)

Note that a.i coefficients are in GF(2), so the g;'s can be solved for
directly by expanding the Boolean equation, where "+" in GF{2) i5 inter-

preted as an “EXCLUSIVE OR" operation in Roolean Algetra.

(9149,) (9,95%9,94%9,95%9,9,9354) (979,94%9;9,959,) =1 (e.q)
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Expanding (4.9) intc sum of products,

§3929394 v 91559394 v 91659362 =1 (4.10)
which yields three possible solutions consistent with the measured
impulse response. They are,

9 °0,9,=1,9;=1,9, =1

9 = 1.9, =0, 9,=1,9,=1.

9 =1.9,=0,95=1, 9,= C. (4.11)

Example 4.2 : Consider the LSC shown in figure 4.2, defined over GF(2).
This circuit differs from that given in figure 4.1 in that

it has two delays in series with component 2.

Figure 4.2: A LSC for Example 4.2

il oY




Assume that the measured zero state impulse response is

{h}={1,1,0,1,0,0,.1,....

Solution :

L‘!J matrices are same as given in (4.1) and

48

€
: — ] — )
; gy 0 0 0 1 0 0 o0
E 0 g, 0 0 o 1% 0 o
% LE@I=10 o 4, o 0 0 /D 0
i 0o o0 0 g 0 0 0 D (2.12)
: e Jﬁa L__ -
Substituting the matrices Lij’ G and F(D) obtained from (4.1), (£.12)
into (3.6) and then using the term expansion algorithm , one gbtains
the set of equations,
i1 sy s 1 s(p) B — fsin)]
D p3 ) 03 ne 4y
o 92
9,93 .
R . = e
3 2% N
9193 .
B 919,94
&
" 9]929394
L.
i — (4.13) R
' (4.12) i. ,f the form, 2

v p = &

where zero entries in v

anc in corresponding rows of # are deleted.

e,

Attempting to use the e's from GF(?3), one obtains,
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S(ey) = Sla) = o
S(e,) = S(a%) = o°
S(e;) = $(a3) = a°/0  i.e., undefined
S(eg) = S(a") = o’
S(es) = S(as) = 03/0 1.e., undefined
S(eg) = S(a®) = o0 i.e., undefined

Nete that ey = 03, e = 05, e ~ a6 are poles of S(e) and hence

these three elements can not be used to set up the set of simultaneous
equations (2.26). As such one can write three fault analysis equations
in GF(23) which are not sufficient to solve for the gi's. However, S(ei)
is defined in GF(24). Tables of multiplication and adcition for GF(24)

. . 1
are given in reference 5.

-
-h

Equation {Z.25) can now be used to compuie S(ei,

state impulse response data. These are given by,

S(e;) = Sla) =a'

Sey) = S(e?) = o

S(ey) = S(+7) = a°

Sleg) = st:*) =o'

S{eg) - S(a”) = 1

S(eg) = S(a®) = a'?

S(e,) = S(a’) = o° (2.18)

Upon expanding (4.13) for each e from GF(24) and substituting in (4.14)

and in (4.13), the set of simultaneous equations obtained are,
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— T r

) 13 8 8 10 12 7 N

a o a a a 9,

) 1 a a o"5 09 14 8, a7

] u9 312 a12 03 u6 cl9 9,9, Ol6

i 07 02 02 10 03 13 9,9 14

1 as 1 1 010 1 u]o 9,93 1

1 03 ug 09 06 012 03 9]9294 01]2

1 a 02 02 ¢ u9 a]i'l g]gzg3gﬂ a8
- - ~ (8.15)

Equation (4.15) is of the form,

vp =28
After deleting linearly dependent columne of v and then using the tech-

nique described in Exampie 4.1, one obtains,
r'— b e i g

7 2
a 9]9294 * a 91929394

_21?91 + 0119]93 + u79]929385J (4.186)
Equation (4.16) yields a unique solution,
9; * 1, 9, * i, 93 * 1, 9, = 0. (4.17)
One can check this splution by finding an impulse response of the
LSC 1n Figure 4.2 by using the values of gain in (4.15).
The important point here is that with the additional delays, the
internal component parameters can be determined exactly from the imp :'spe

response whereas without the delay the best that one can do is to obtain

a list of three possible Tauits.
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CHAPTER V

FAULT ANALYSIS - AFFINE SEQUENTIAL CIRCUITS
5.1 Introduction:
Mathematically, a "two-sided" Affine Sequential Circuit (ASC) over

3 finite field is represented by a set of difference equations,

X4y = Axk + Buk,
Y = ka + Juk W, e Kk < o (5.1)
Xy = X,

where {"k} is a sequence of constants cver a finite field and LY is
some constant at time k. Other terms in (5.1) are as defined in Chap-
ter 1I.

In cases where ASC's are not given in the form shown in (5.1), a
change of variabies and Some manipuiations will
(5.1). Hence, without loss of gererality, (5.1) can be considered as a
standard form for the purpose of fault analysis in Affine Sequential
Circuits.

For Affipe Sequential Circuits the present value of the output
depends riot only on the present input value and the present state (as is
the case with LSC's) but alsc cn some constants defined over a finite
field. Since the mathematical representation of ASC's and LSC's only
differ by some constant value in the output equation, the existence and
uniqueness theory for the solution of (5.1) is simiiar to that discussed
in Chapter 11 for LSC's and will not be repeated here.

5.2 Component Connection Model:
Since Affine Sequential Circuits have affine components, each

component of an ASC is characterized by the D-transfer equation,

51
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b;(0) = [{g;)f;(B)] a;(B) + [q,(D)], i =1,2,....,m (5.2)

where, ai(D) is the D-transform of the input sequence to the ith
component,

bi(D) is the D-transform of the ouput sequence to the ith
component ,

fi(D) represents the dynamics of the ith companent,
g;» a scalar of the underlying finite field, is the gein of the
linear part of ith compenent .

Let n; be a bias sequence added to the ith component. The D-trans-

form of this bias sequence, ”i(D) is given by,

ns (DY = (55 In,
qi(D) is, then, a product of r (D} and whatever part of the com-
ponent dynami¢s the bias signal passes through.

For the purpose cf fault analysis, it is assumed that the compunent
dynamics fi(D) remain constant and all fauits manifest themselves as
changes in S, and nye Such a fault model includes "stuck-on-one" faults
which are not included in the case of LSC's.

One may note that an ASC over GF(?) can be viewed in either of two
ways; first as an LSC in which a constant bias source is introduced and
secondly as an LSC into which NOT gate has been inserted. These two
viewpoints are equivalent since one can construct a NOT aate with a

bias adder and conversely.

For notational simplicity, the n scalar equations, (5.4), can

combined into a single matrix eguation,

b{D) = [(G}F{D)] a(n) + [Q(M)] (5.5)




b(D) = column(b. (D)),
2(D) column(ai(D)).
G = diag.{g,),
F(D) = diag.(f (D)),
QD) = diag.(q;{D)).
Example 5.1:

This example illustrates the formulation of Equation (5.5) for the

component shown in Figure 5.1.

Component
[

Figure 5.1: Figure for Example 5.1

B L Ta0) ¢ (5P g 0.

As in the previous discussion of the component connection model,
the connection structure ot an Affine Sequential Circuit is described
bv the algebraic constraints,

a(D) 5 b{n)
y(D) , u(D)

Simultancous solution of (5.%Y and (5.6) yields,
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y(0) = [ Ly, *+ Ly (1 = (GIF(D) L)) (BF (D)L, J uD)

+ [ Ly (1~ (G)F(D) Lyy)™" {0(D)) ] (5.7)
Denote s(n) = [L22 + Lz](l - (G)F(D)L]])~](G)F(D)L]?] and
T(0) = [L,y (1 - (6)F(DIL,;) 7 (0(D))] (5.8)

Then (5.7) becomes,
y(D) = S(D) u(D) + T(D) (5.9)

From (5.8) it is seen that the D-transform of & transfer function,
S(0), is the linear part of the ASC.

5.3 Fault Anglysis:

Fault analysis in Affine Sequential Circuits involves developing
techniques for determining G and n. The unknown, G, can be soived for
by considering the linear part of an Aftine Sequential Lircuit.

If one can determine the impulse response of the linear part of an
ASC, Equation (3.15) may be set up for several e's in the algebraic
closure of a finite field anc then can solve for the unknown g;'s using
the algorithm described in Chapter I]1. The impulse response of the

linear part of an ASC is determined as follows.

Observe the response ¢f “~he ASC due to an input sequence {uk} = {0}.

khen this response becomes periodic, apply an impulse sequence to the
ASC under study. The impulse response of the linear part of an ASC is
then given by the difference of two responses 1i.e., response obtained
after and before the impulse sequence is applied.

After the gi's are determined, it remains to determine the “i's'

Taking the D-transform of Equation (5.1) and then comparing with

{5.9), one obtains,

ansste . snalh

aiIIlIlllIllllllll............................................................................................‘
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w(D) = T(D) , (5.10)
where W{D) is the D-transform of the ssquence {wk}.

it iwk} can be determined from the measurement on &n ASC, n can be

determined from (5.10). The sequence {w ' is determined from the
measurements on an ASC as follows:

Let an input sequence {”k} be an impulse sequence, then is follows

from (5.1) that

hy = CAx + A TB 4w, k>0 (5.104)

where h& is the impulse response of an Affine Sequential Circuit. Again
using the controllability criteria as discussed in Chapter IIl, one can

write,

0
CAkx =

A b _ (5.11)

Hne-1 x>

j=1

where B-J° &o < -j < 0 is a sequence of inputs that drives the minimai
realization of an ASC from the zero state at time k = ﬁo to x at time
k = 0. Such a sequence exists for a minimal realization if Eo < ~8,
where 7 is the dimension of ihe minimal realization. One has the
equaiity,

[cA*" 18] =, (5.12)
where h js the impulse response (at time k) of the linear part of an
ASC.

Substituting (5.11) and (5.12) into (5.10) yields,

ko

- ks &
hy = j; CA™B b s +h +w, k>0 (5.13)

From (5.13) one can sclve for W, (and B-j)' Mo attempt is made

here to develop any technique for solving W, from (5.13). Instead an




assumption is made that Xg = X = 0 which simpiifies the expression
(5.10), yielding
Py

hk + W

w = hL - hk (5.14)

With the above theory, one can formuiate the fault analysis algo-

rithm on ASC's. The procedure consists of the following steps:

(1) Solve for 9y from the impulse response of the 1inear part of an
ASC and then use steps (i) through step {iv) given in Chapter III for
the purpose of fault anaiysis on LSC's;

(11) Substitute *he value of gi's (obtained from step (i)} in T(D);
(iii) Measure the impulse response of the Affine Sequential Circuit and
using (5.18) obtain {wk};

(iv) Obtain the D-transform of the sequence {w i.e., obtain wW(D);
(v) Using equality (5.10), solve for n, since n is contained in 7(D).

5.4 Examples:

In this section twe examples are presented. Both examples illus-

trate the fault analysis algorithm discussed in the section 5.3. The
second example also illustrates how stuck-on-one faults are modeled
using Affin~ Sequential Circuits.
Example 5.2:

Consider the ASC shown in Figure 5.2 defined over GF(2).

Figure 5.2° Fiaure for Example 5.2
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Assume that the impulse response of the l1inear part of an ASC s

weasured and is given by ho = (), h‘ =1, h2 =1, h3 Y, ceisensse The
impuise response of the Affine Sequential Circuit {is measured and is

LI ' » ' x t x ' 5 ' =
given by h° 0, h] 0, hz 1, h3 c. h4 1, h5 Osecvecnns It is
desired to compute the values of 9, and ™M that are compatible with the
gfven data.
Solution:

The connection equations for this circuit are as follows:
]
2 T [,
S22 B T P ym—— ——— (5.15)
v R [u

by (D) = [9y/0] 2,(0) + (%) [1/0] ny (5.16)

and

SO) = (0411 - gy/0 * )7 gy - 1]

(0 - 9,/ g0 (5.17)

T0) = (o) 1 - (1 - g0~ 7 (1/0)]

(1 - 9,/0) (2p) (5.18)

]

Calculating g,:

Choose an element ey = a from GF(?Z) where a is an indeterminant.
Then use (2.25) to compute S(e]) = S{a) from the given impulse responsc
of the linear part of an ASC.

From (2 .25) one obtains,

S(o)n" = b_] + 1 "5.19)

Sado? = b +a + 1 (5.20)
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Simultaneous solution of (5.19) and (5.20) yields,

S{a) = a . (5.21)
Since S(e,) = S{D) .._ = S{a), one can repiace D by o in (5.17)
1 D’-C]’:u

and obtain,
9

$(a) = (1 - ;‘:—'- )7 L (5.22)

Simultaneous solution of {5.21) and (5.22) yields
g] = 1.
Substitute g, = 1 in (5.18) to obtain,

1y-1,2

T(D) = (] < DI (ﬁﬁ—)

D 1
- ) o

D Fs
{14D)°

- (5.23)
1+D

Obtaining {wk}:
from (5.14) one obtains,

W, =h - hi=0-0%0

Wy h] - h] -1 -0z

so, {wkl =10, 1,0, 0, . .. .. v, such that w, = 0.
2

o+ 10V s 00l p e L ‘-

1]
o
2

w(D) - Diw, !

wo) = - (5.24)
1+D
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solving for h:
Substituting (5.23) and (5.24) in (5.10), i.e.,
WiD) = T(D)“l
ie -5, - __27 *on
1152_ 140" !
whicn yields n T 1. (5.25)

It is interesting to note from Figure 5.2 that bl is exactly oppo-
site to a, which is a characteristic of the NOT aate. So ASC's also
permit modeling of NOT gate for the purpose of fault analysis.

Example 5.3:

Consider the ASC shown in Figure 5.2. Assume that the impulse
-espcnse of the linear part of the ASC is measured and is given by
*J = 0, h] =0, hz =0, ciii.... The impulse response of the Affine
sequential Circuit is measured and is given by hé = {, hi =1, hé =1,
DU It is desired to compute the values of 9, and -.
that are compatible with the given data.

The connection equations are the sare as those of the previous
e=ample. Thet is, they are given by (5.15), (5.16), (5.17) and (5.18).
Calculating 6,:

Choose an elerent €y = frem GF(22). Use (2.25) and the impulse
recporse of the linear part of an ASC to compute S(a). This is viven
ty : 7. (5.7¢;

Simul taneous solution of (5.26) and (5 22) yields 3 = 90

Supstitute ¢, = G in {5.18) to obtain,
1

\
ny = .-

Obtaining 'wk-:



W= w——m oy e—m— s

e - —reg——— T T =

'2 = hz - hé = !
so, {'k} = {0, 1,1, 1,01, . ...} such that ¥, = 0.
M(D) = Diw) = (0:0° + 107 + 102w 103w L)
1
il s (5.28)

Substituting (5.27) and (5.28) in (5.10) yields n e 1.

The above example is an illustration of a “stuck-on-one" fauit.

€0
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CHAPTER VI
CONCLUSION
In this work, a spoctral theory for Linear Sequential Circuits has
been fornulated and thc component connection theory has been apnlied %o
LSC's. From the spectral theory and the connection function of the com-
penent connection theory, a fault analysic procedure for a Linear Sequen-
tial Circuit has been developed. This procedure paraliels the myltifre-
quency testing technique for fault analysis in analog circuits. It has
bee:: showr. that it is uften casier to do fauit analysis in sequential
circuits than in combinatorial circuits.
This fault analysis algorithm has been extended to include Affine
Seanential Circuits. The fault analysis procedure vor Affine Sequential
Circuits has turned cut to be no harder than fault analysis in LSC's

{even though ASC's are nonlinear), 1

ct

has been shown with the hslp of an
example that Afyine Sequential Circuits can be used for modeling nonlin-
ear faults such as "stuck-on-cune" faults. Affine Sequential Circuits
should cover a broad range of digital circuits hence an interesting area
for further research.
Not much work is done in the area of fault analysis in nonlinear

analog or digital circuits. Due to the finiteness of states of cequential
circuits, one may possibly generate fault analysis algorithms for nonlin-

2ar sequential circuits. Such algorithms can then be generalized to in-

clude large scale digital systems.
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APPENDIX A

GALOIS FIELD THEORY
Finite Fields : A finite field >*'0 45 a field with a finite num-
ber cf elemer*s. These fieids are known as Galois Fields in honor of
French mathematician who first investigated their properties.
Let I denote the integral domain of all integers and p be a prime

number. Consider the systen I/(p), whose elements are,
0=(0+ B, )

T=0+ B, )

p-T = (p-1+8 )
where B = { b |b=kp, pel, ¥=0,1,2,3,

If 3 and ¢ are elements of 1/(p), addition and multiplication

are given

known that I/(p) forms a finite field. This field is denoted
by GF(p). For example, GF(2) has two elements. They are 0 and 1. It's
addition and multipiication tables are given below :
+ 0 T

0 1

0




.
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C.tension Fields : If E s 2 field and F i5 a subfield of F,
£ is an extension of F. The relation of being an extension of F is
dencted by F E.

The following theorems characterize the properties of an extension
field. Their proofs are given in refernces ]3.

Theorem 1 : Each Galors field contains a unicue sut.field with a
p-ire nunver of elevents,

Theorem 2 @ For every pesitive integer m and @ prive rusier p,
there exists an irreducible polynomial in GF(p) of degree m and these
fields, denoted by GF(pm), have pm elements. GF(pm) is an finite
extensiun of F.

Kronecker Theovem : 1f f{x) is a polyncmial with ceefficients in
a field F, thore exists an externcion ©oof Fosuch thas for o7 4 in F,
f(xo) = 0.

The algorithe for generating elerents of GF(pm) is Adrscribed below:

Pick an irreducitle polyntial P(x) of dencee m. intvaluce a »ow

A

pm-p will te ¢ wet of
svithol..r, and as~v=e Py = 00 Then O0,1,...... .. " o

1
pn gierents of Gf(pm) su_h that
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APPENDIX B
DEFINITLON OF THE D-TRANSFCRM
Let 1 denote natural integers and G be the set of all sequences.
Let g : 1 + GF(p™) for all g ¢ G,
The N-transiorm of g(I) is deftned in terms of formal power series
in indeteminant D denoted by D {g(1)}.

i==

Dia(i)i = £ g(i) D"




