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ABSTRACT

In this paper the problem of fault analysis in Linear and Affine

Sequential Circuits is treated. These classes of systems provide for

the treatment of several linear and nonlinear faults copmmon in digital

circuitry. The solution to the linear and affine sequential circuit

fault analysis problem is obtained via the development of a spectral

theory for such systems over finite fields. A stepwise fault analysis

procedure for this problem class is presented along with many examples

illustrating the advantages that memory provides in digital fault analy-

sis.
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CHAPTER I

L I N1 RODLIC T I ON

1.1 Introduction to Fault Analysis:

The rapid progress of modern integrated circuit technology has

made it possible to manufacture many new digital circuits with complex--

ity orders of magnitude greater than the circuits of the preintegration

period. A semiconductor "chip" which is just the size of a fingernail,

may have many individuri1 circuit elements embeded in it. Moreover, a

number of such chips may be combined together to construct a large cir-

cuit. This renders the structure of the circuit more complex which in

turn makes maintenance difficult. If the circuit does not behave in tle

manner it is supposed to, the faulty element in the circuit must be

located. Techniques used for locating the faulty part or parts of a

circuit are termed as tault analysis techniques.

Historically, fault analysis techniques for analog and digital

circuits have developed independently. The reader is referred to the

bibliographies compiled by Rault 1 , 2 for a review of the literature in

the two areas. Digital fault analysis techttiques are mainly combina-

torial in nature. i.e., oie .. ts each component of the circuit by

applying a family of test inputs to that circuit. If one obtains the

expected response from the circuit for each test input, the circuit is

operating properly and so are all of its components. On the other

hand, if the circuit fails to operate correctly for one or more test ir.-

puts, the faulty component(s) may be isolated by determining the s" J

components which are exercised by exactly that set of input test sig-

nals. In the case of analog circuits, one has the advantage of testing

the circuit by exponential signals of different frequencies. Hence the

I



gain between various circuit test points at each of several different

frequencies may be measured. Then by some means, an equation solver or

optimization routine, the circuit parameters are determined which will

yield these gains. If the resultant component parameters are in the

cper'ating range, the corresponding conponent can be assumed to be work-

ing correctly, whereas if a computed component parameter deviates sig-

nificantly from its cperating range, the corresponding components may be

assumed faulty.

Fault analysis techriques for digital and analog circuits with
3

memory differs from each other. In digital circuits, due to combina-

torial approach, test cornp'exity increases exponentially with memory.

(Since the rumber of entries in a circuit truth table increases expo-

nentially.) In cast of dynamical analog circuits, however, just the

upposite is true. One, here, uses the muitifrequency testing techniques

in which one may determine the gain between a pair of test points at

several different frequencies simultaneously from a single test signal.

Thus total number of test inputs required for testing dynamical analog

circuits are less than for a memoryless circuit of a similar complexity.

1.2 Fault Analysis of An,.b(,a Circuits: 4 ' 5 ' 6 ' 7 ','9' 1 0

Analog fault analysis is heavily pedicated on spectral theoretic

techniques formulated in a frequency domain setting. In the area of

fault analysis of analog circuits a number of recent papers4,5,11 ha vc.

given considarable attention to the component connection model of a

large scale system. Via the component connection model fault anal..

is brised on a system modeling Technique wherein the observable system

behavior is expressed explicitly as a function of the internal re-

sponses. In the component connection model, one assumes that the ith



3
com~ponent is characterized by an operator equation (usually expressed in

the frequency domain),

bi = Zi a ,2,-,,-,-,n (1.1)1l
mapping the component input vector, a,, into its output vector, bi-

"Although in actual practice one normally works with the n separate

component equations, notationally (1.1) may be combined into the single

equation
b = Z a (1.2)

where b = col.(b )

a = col.(ai)

Z = diag (Z1i)

Since the connection elements (adders, scalers, etc.) are all

algebraic, the connection model is represented by a set of linear

algebraic equations of the form,

L - b> _ (1.3)

where y is the overall system output and u is the input vector for the

overall system which are related by the overall system operator. S, by

y = S u (1.4)

Upon combining equations (1.2), (1.3), and (1.4), one obtains the

equation,

S = L22 + L2 1 (1-ZL 11 -ZL 1 2 = f(Z) (1.b}

relating the overall system oFerator to the composite component operator.

Since the fuiiction, f, is entirely determined by the fixed cornectior

matrices, it has been termed the connection function.5 Now, if Z and

S are characterized in the frequency domain, one obtains,

S(,.,) = f(Z(.)) (1.6)
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since the connections are independent of irtquency.

Finally, in many practical systems one can write the component

natrix, Z(). in the forn

Z(,) = E(,)CF(.) (1.7)

where E(w) and F(w) are frequency ejpendent matrices determined by the

c(r'onent types bUt not their actua! values and C is a frequency inde-

pendent matrix of component values (i.e. for an inductor the j., goes in

E or F and L goes in the C matrix). Such a viewpoint is quite reasonable

for the fault analysis problem wherein one can reasonably assume that the

component types remain fixed and all faults manifest themselves as

changes in component values. We then combine the known E and F matrices

into the connection function and characterize our system by

S(•) • f([(L.)CF(L,)) = f (C) (1.8)

Equation (1.8) is just the right form in which to study the fault

analysis problem for if we make the (standard) hypothesis that dll faults

take the form of errors in C with the connections and component types

fixed, i.e. f is fixed, then one merely measures S(u,) at some frequencv

ar-d solves equation (1.8) for C. Unfortunately, solution of these non-

linear equations is equiv,:l,-" to left invertibility of the matrix

K L 2 L () L2 1  (1.9)

which requires that the system have a large number of test points.

If equation (1.8) is not soluble one has two alternatives; either

add more test points (which increases hardware costs) or use several

test frequencies (which increases software costs). The former is

straightforward and may be carried out algorithmically by addinq addi-

tional test points in such a manner that the additional rows added to the

matrix K will render its columns linearly independent. From a practical

Ins.
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point of view, however. it is preferable to use additional test frequen-

S cies at the samce test points in which case one~ must solve the seL of

sirmt1:aneouý eo-ation,

S( f )

Lqu~i~tiol I !C) i 1L, rd'a iqc os~ of the muTtifrequenc, tast-

i rc.i eoi.n ths- hE -dci i cn-31 ttest f r&-, IiflC if give uis more L-quations

r r ,ýe same ru;iý,e- c unk 'w'5 i 9 Juc Lýo cuýr assunit i,'n that the.

Cc 'x'vat . ~ *- 'r•cV- 'CJ: j Od iui-f t) t, Moreover.

:t- cIncie.:c' V. nh e. 5) cr -:;z low -)r Yfp on v nL', we

f .( i L ` :t !-z. I il r I. L IL A.I :.(.df LI I fo

I ~ ~ ~ ~ ~ ~ e -i . ~. "1*T~~ t E( , er io p~-ci-i r-"aul t

5ý!. C2i' I '(*.. 1 pfl -1i~ij cý -n the

d oE rc t*~

ýcvc a ýr ý.que.

c r,.: ýian o

* -c LII -Vi~2 :.2. '- tne 11SeUO

* ~ ~ ~ ~ ~ ~ ~ ~ ) .ý-*~j'** c -2~ Uc. 01:2. K. o..-iiy -11'. )3t(' a

'U -O1L~ti C2.s -r (JC a1 IO x.vP ! ; I iot-

r I. ' IrCL-. t JVr C, a, I. G -'(U e 'CWe~ .< i t. fiCP

* .- ,1.11 C','cJjjt 1 '~. C ih.v,1Clico'ý. Of C.), 'lpe-
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ity. Since a Linear Sequential Circuit can be viewed as a linear

operator on a sequence space, a perfectly valid spectral theory for the

Linear Sequentia! Circuit may be formulated. The resulting spectral

theory parallels the steady state frequency domain theory for analog

circuits and thus may be used to formulate a fault analysis procedure for

Linear Sequential Circuits which closely parallpl the multifrequency

testing techniques for analog circuits.

The sequential circuits are defined over a finite field. Thestý

finite tields are denoted by GF(p) where p is a prime and its nth order

extension is denoted by GF(pn). A detailed review of finite fields and

an algorithm for generating elements of CF'Dh) is given i-, Appendix A.

All these extension fields lie in the algebraic closure13 of a finite

field.

in the Chapter ii, the :pectrai theory for Linear Sequential Cir-

cuits is formulated. For this purpose a Linear Sequential Circuit is

mathematically described by a pair of difference equations over a finite

field. Rather than interpreting this set cf equatiors as the tradition-

al initial value problem, it is interpreted as a central value problem

of finding two sided stat( a-4 output sequences. i.e., for the posi-

tive and negative values of time.

The delays used in the sequentia' circuit are interpreted as

predictors. i.e., The next d'ate vdlue of the sequential circuit is

the delayed pr'esnt statL of the sequential circuit. The correspondinrj

definition of the D-t-nsform is given in Apiperdix B.

The entire mathematics outlined in the previous section for the

analog case goes through if one interpre'ts the vectors; a, b, u and y;

as sequences taking their values in the finite field rdther than real
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valued functions and assumes that the entries in the L matrices take

a their value in the same finite field.

In the case of sequential circuits if one deals with D-transform

rather than laplace transform, equation (1.1) through equation (1.6) goes

through i.e.,

S(D) = f(Z(D)) = f((G)F(D)) = fD(G) (1.11)

where fD is a nonlinear function which is entirely determined by com-

ponent dynamics and the connections relating component parameter values

to the systems input and output. Here, the implication that fD is

known and non-faulty is that all faulLs occur in the scalers, G, with

nem-ry elements and connection good. In particular, this implies a

l.:ea. system fails linearly and hence one may include "stuck-on-zero",

"open" and "short circuit" faults but not "stuck-on-one" faults which

are nonlinear. "Stuck-on-one" faults are, however, included when a

Linear Seqjential Circuit is generalized to the case of affine circuits

which fail affinely. The latter generalization also permits a slight

3 generalization of the traditional Linear Sequential Circuit case by

allot;ing NOT gates and bias sources in addition to the usual Linear

Seqt~ential Circuit components.

Finally, the .nalog of exponential test functions for the case of

sequential circuits are the sequences, {ue}, of the form,

{ukeI = {ek} k

where e is an element of the algebraic closure of a finite field.

The input sequence {uk) = Iek} yields the equality,

Yk = S(e) e

for an appropriate initial state.

These exponential sequences "live" in an extension of the space on
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which the actual rircuit is defined and therefore can not be physically

implemented. This is precisely the same phenomena which occurs in

analog circuits where one must test with the real valued input Sin(wt)

to obtain information about the complex valued ej Therefore, in

Chapter II, a technique for computing S(e) directly f"-om the system

impulse response is derived.

Once S(e) is known, one can write the set of equations parallel to

those used for analog fault analysis for several e's in the algebraic

closure of a finite field. i.e.,

S(e 1 ) f (G)

e2 (Ir,2

e k ' -'

As in the analog case it may be possible to solve this set of

simultaneous equations even though no single equation has a unique

soluion. Thus it is possible to exploit the dynamics in a Linear Se-

quential Circuit in a similar manner to that used in the analog case, so

as to simplify the fault -fnlIvsis procedure.

In Chapter 1:, the required spectral theory is formulated and also

a technique for computing S(e) directly from the impulse response is

derived. In Chapter III, a formula for computing S(e) from the Linear

Sequential Circuit compronent parameters and the connection matrices is

obtained,. As such, one may test a circuit with an impulsive input,

compute S(e) therefrom and then compute the component pat ameter, by

inverting this latter formuld. This inversion process cdn be formulated

a,, the solution of a set of polynomial equations in several variables
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via the "term expansion algorithm"'14 which is described in Chapter III.

* A family of illustrative examples appears in Chapter IV and the general-

ization to affine circuits is presented in Chapter V.

I/

I;|
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CHAPTER II

SPECTRAL THEORY - LINEAR SEQUENTIAL CIRCUITS

2.1 "Two sided" Linear Sequential Circuits:

The characteristics of a Linear Sequential Circuit 15 (LSC) are

depicted in Figurt 2,1.

Input Comnbinatorial a Output> ~Network

Next State

Present State Storage

ElementsB]

Fioure 2.1: Block Diagram Representation of a Linear Sequential Circuit

Essentially, a Linear Sequential Circuit consists of storage ele-

ments and combinatorial luiic. An input sequence applied to an LSC

results in an output sequence, whose present value is a linear function

of the present input value and the present state. The present state in

turn is a linear function of past states and past inputs. Hence, a

Linear Sequential Circuit can be viewed as a linear operator on a

sequence space.

Mathematically, a "two sided" Linear Sequential Circuit over a

finite field is represented by a sýet of difference equations,

10
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x k+1 = Axk + BUk

Yk = CXk + JUk < .' k <- (2.1)

x =X
0 -I

Where the state sequeyice X, the output sequence Y and the input

sequence U are respectively s, m and r dimensional vectors over the

finite field. xk" Yk and uk are respectively the state, the output and

the input sequence values at time k for the LSC. The matrices A, B, C

and J are finite field valued and constant with dimensions consistent

with xk, Yk and u

£ •Traditionally one interprets equation (2.1) as an initial value

problem in which one desires to find "one-sided" sequences; xk and Yki

k > 0 satisfying equation (2.1) for a given sequence uk and initial

state, x = x. One in 3rpretes equation (2.1) as a central value prob-
U

lem wherein one seeks "two sided" sequences; xk and Yk' - < k <

satisfying (2.1) for a given sequence u k and central value xo = x.

Unlike the case for LSC's defined over "one sided" sequences, this

central value problem for difference equations (2.1) does not admit a

unique solution for all Y x. In this chapter, the theory of exist-U --

ence and uniqueness cf solutions to the central value problem is de-

veloped and a viable spectral theory for the difterence equations (2.1)

which closely parallels steady state frequency domain theory for con-

" Stinuous linear systems is formulated. Such a spectral theory provides

a way for determining faults in a Linear Sequential Circuit.

The existence and uniqueness of solutions to the homogeneous

* version of (2.1) which is,

L
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Xk+1 Axk

Yk CX k - < k < (2.2)

will now be presented in the first two lemmas. The existence and

uniqueness of solutions to (2.1) will then be established in the third

1 emima.

Lemma 1: Let A be a linear transformation on a vector space X,

then X has a "fittir~g decomposition'16 given by,
X~fo (® fl

X 0 f1

Where fo {zIAtz - 0, z c X, t > T for some T} and f = R(At)

R(At+)=. ..... .......... t>T.

Tk• subspaces fo ard f are respectively the "Fitting Null" and

the "Fitting !" components of X, Furthermore, the restriction of A to

f A : f0 *- f0  is nilpotent i.e., A 0 0 for some t, and the
00 0

restriction of A to -I' A1  : fl f, is invertible on fl"

16The proof of this lemma is given in the literature, but for corn-

pleteness and convenience is included here.

Proof:

Let x F R(A2 ), then x = A[Ay] for some y. Which implies that

x L R(A) and hence R(A 2) c R(A). It then follows that rank (A 2) <

rank (A). Similarly, one can inductively show that, R(A) DR(A2 ) .

R(A3) ._ ...... D R(Ar) and rank (Ar) r rank (Arl) r1 .......

rank (A2 ) < rank (A). Note that as r gets larger, rank (Ar) will r-v,,r-

tually remain constant since it is bounded from below by zero. Thus

there exists an r such that
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rank (A) =rank (A =....... .. or

4. R.(Ar) = R(ArI) =. . . ...... = f

Define s = {zjA z O, z E X1 (2.3A)

Then e {zlAz 0 = A2 z = A[Bl]}, so one has s, c_ similarly one

can inductively show that a I 2 C 3 ...... ... Then there exists

s for which the null space defined by equation (2.3A) will attain some

constant value. It follows that ss = 65+1 - . ..... = f

t

•'Let t = max(r,s). Then fo = et and flI = R(At)

Any x c X can be written as x = (x - Aty) + Aty, Aty C f1 for some

y c X. We also know that Atx = A2 ty i.e., At(x - Aty) - 0 which

implies (x - AtA) ' f. Hence we have x z f ",.

Let z c for( fl" Then z = Atw for w c X, since Atw ff0, Atw = 0

implying z = 0 f o n fl, thus X =fo0 fl'

Since f1 = R(Ar) = R(Ar÷l) =."..... = . . A, hence A is surjective

in f1 " Since fo = 6+" At = 0 in f then A is an isomorphism on f1  i.e.,

3• A f, - fl is invertible on f

Lemma 2: (Homogeneous Case)

(a) The Equation xk+1 = Axkl - < k < m, x. (2.3)

defined over a finite field hds a solution if and only if xO = x C f

In this case the solution is unique, takes its values in fI for all k

and is given by x k = A k -. < k < ®. (2.41

(b) The Equation Xk+l Ax yk = Cxk' - < k < (2.5)

x defined over a finite field has a solution if and only if x

in this case the solution is unique, takes its values in C(f1 ) for aNl k

and is given by Yk = CAlkx, - k < •. (2.6)
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Proof:

(a) The equation Xk-i = Axk, - < k < can also be written in

the fonii, xk A T Xk-T F R(AT) E f1  (2.7)

The condition that x c f follows from the fact that in any solution

xx can be written in the form,

X = A x E RAT f
0- AXT EA f 1

kThe claim is xk = A1 x, x1 = x C fI (recall that the inverse of A

exists), - k < is a solution to (2.3). lo prove this show that

(2.4) satisfies (2.3).

Axk A AkX

A AI kx (A can be repiaced by A

A] since A1I k X:f]

-X k+1

Uniqueness of the solution can be proven by contradiction. Let

there be two solutions xk f and Xk c fl" Such that xol xo 2 2 x.

Thn e ae =A-k -k
Then we havex A x A k, - < k < - which yields

Xk Xk

(b) The condition x c fI follows as in (a). The converse can be

proved by constructing y . Multiplying both sides of equation (2.4' by

C, one obtains

Cx k = CAkX x C (fl) since A1 k x fk (2.8)

but comparing equations (2.t) and (2.8), one obtains that
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Yk = CAlk- F C(fl)-

Uniqueness follows from the uniqueness of AIkx.

The following examples illustrate Lemma 2:

Example 2.1:

Consider homogeneous LSC defined over GF(2) characterized by the

following set of equations.

(2.9)
X (k+l) 0 1X2k

16- L[i 11 Xi (2.10)

withx° x= [ .

Clearly xk = ] f Vk and 1y, I *k i.e., yk C(fl).

Now consider x0  1  which yields,

0 1 0 1 0 1X ..... 1 ' ! ' 1 ' 1 D 1 $1. ...... 1, i.e.,

Xk fl for all k and the output sequence. 'yk1 , with yo 1, is

ly.k .= ....... 1, 0, 1, 0. 1, 0 .......... .

"i.e., Yk C(fl) for- all k.

In the above example, note that the uniqueness of (ykl is solely

determined by the "central value" of the state, x = x.

In the followinq example, two distinct central values, x° = x,
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one in fl and the other not in fl are considered. It is then shown that

the solution exists for x c f but does not exist for x not in fl"

Example 2.2:

Consider a homogeneous LSC defined over GF(?) characterized by

Cl early,

R(A) = R(A2 ) = R(A3) .. . .. . . fl"

Consider

10

Then AI : fl .fl where A1  0 J
With central value x = J one obtains,

Xk 1 f for all k

Now let x = not in flV Then one obtains -k [ not in f1 .

Lemma 3: (Non Hlomooeneou, Cae)

Consider the -quations, xk+l ý Axk + Buk, - < k < , defined

over a finite field and let uk be a periodic sequence. Then there

exists x such that the equation has a periodic solution, {xk , with

-x .

Proof:

It is well known that when a finite state machine is driven by a

one-sided ultimately periodic input sequence, the output seQuence (ard
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therefore state sequence) produced by the machine exists for any ini-

17
ilk tial condition and is ultimately periodic.

Let {Uk), k = 0, 1, 2, .... be the "one-sided" ultimately

periodic input sequence constructed from a two sided periodic sequence

fukI via uk uk. k >_ . Let (Xk Ix . .... , x
kX 'k>0 , 1, 2 ' XNV XNT+i,

. . , XMT. (w........(here X is any initial state) be the

resultant "one-sided" ultimately periodic state sequence produced by

;Uk-. Without loss of generality one may assume that the values XNT,

XNT+l. XMT-i' M AN, constitute one period of the periodic

portion of 'Xkl where T is the period of ,U k. Next define a periodic

sequence ;Yk; which coincides with x kfor NT .k _ MT-i i.e., x X

where r is the unique integer r : k * (,(M-N)T and NT _ r - MT-i, q is

an integer %positive, zero or neoative:. it r,:ay he shown that the

sequence .. Xk sa*s'ics i , nonyo';o:vneok.,u enuation.

Case 1: (NT < r -

SubstitutinQ r = k U-,• n ttt e'iation Al = Axr Bu yields

Xk+l+q(MT-NT) Ax i.+....,) ÷ Ruk

Whici is A"

x1 Ax

Case 2: (r = MT-i)

Substituting r MT-I in the equation xr Axr + u r yields,

XMT A A Ml -I + ;IUMT l , ' sine UM, T UNT-I

one obtains,

x -,UNT NT-I rN1-I
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or Xk+I = Axk + Buk for k NT-I.

Finally note the uniqueness of a periodic portion of {XkI i.e.,

XNT' XNT+I ........ 1MT-I where T is the period of {Uk), implies
the uniqueness of {xk satisfying Xk+l = Axk + Buk* - o < k <

The following example illustrates Lemma 3:

Example 2.3:
2Consider an LSC defined over GF(2 ) and characterized by the set

of equations,

X 1 (ktl) 1oX ,. l
Si=+ uk (2.12)

X 2 0(k+ 0

_ ~ ~~Let {Uk = " , ,Io,, l .• . . .. . . .,

and, [

d-

which give

x X 1 2 X3 X4 x5 xf

ix11 0 1 14j 0 1 l+C:
10 1 Ct I , • 1 . .

Consider one periodic portion of (X k1 such tnat x3 xNT

Then , 1
; =X l , 0 l l*a

o k + 1 .1 I+$

where x 0]is the solution to equation (2.12).

2.2 Spectral Theory:

For an operator M on a vector space, one says that a scalar, •, is



19
said to be an eigenvalue if there exists a non-zero vector U such that

MU Z XU (2.13)

and one sayr that U is the corresponding eigeniector. Although this

definition is traditionally associated with real or complex matrices

A on a finite-dimensional space, the defining equality for eigenvectors

and eigenvalues also holds for arbitrar} operator on an abstract

vector space. In particular, one can use the above equality to define

-* the eigenvalues and eiaenvectorb of a single input - single output

LSC by viewing it as a linear operator on the infinite dimensional

vector space of "two-sided" sequences with values in GF(p). In this

the defining equality becomes,

Xk+l Ax f Bu
k k k (2.14)

WU{ Cxk + Juk

Here { Uk is an einenseauence taking its values in a finite field

and the eigen values in general, takes their value in the algebraic

closure of GF(D). This is easily ve-ified by observing that the eigen

values for a matrix, M1, over GF(p) are the zeros of Cie polynomial

det(1I-M). Althouq' the coetficients of this polynomial are ", GF(p),

these zeros of the Dolyrnnia :ay lie in its algebraic closure. The

aloebraic closure of d finite field plays essentially the same role for

an LSC delined over that field as complex numbers do for an analog

circuit defined over the real field. The minor problems arising due

to the use of the alcoebraic clDsure are discussed in the next sc.Zion.

For th' periodic input luki {ekI , k = 0, tl, ±2, ..... (2.15)

where e is an element of thc algebraic closure of the finite field

over which an '-SC is defined. re'fine a "transfer function" in the
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usual manner,

S(e) - ,1 + C (el-A)"1 B (2.16)

Here, Ste) is a rational function in e with coefficients in a

finite field, whose poles and zeros are well defined elements of the

algebraic closure of the finite field. For each e (except for the

poles of S(e)), the saquence ukl {e k}, - - k is an eigen

sequetce of the LSC with eigenvalue S(e). The eigenvalues of the LSC

are elements of the algebraic closure and the eigensequences take their

values in the algebraic closure just as eigenvalues and eigenfunctions,

for a system defined over the real field are complex. The fundamentally

important fact here is that the eigensequence is independent of the

LSC under study and hence is assured to be an eigensequence for a

faulty circuit even if the fault is unknown.

Theorem 1: Let an LSC be characterized by

k~l = Axk + Buk (2.1A)

< k <o
Yk CXk + Juk (2.1B)

over a finite field. Then for each e in the algebraic closure of the

finite field for which S(e) = J + C (le-A)-I B is defined, there

exists an initial condition x for (2.1) such that the sequence

{uk} = fekj, k = 0, ±l, 2 ....... is an eigensequence for the LSC

with this initial condition and eigenvalue is S(e).

Proof:

Since {u = {e 4k, k = 0, 41, +2 ..... ... is a periodic seq'.'nce,

the existence of a solution to (2.1) is guaranteed by Lemma 3. The

kexissence of an initial condition such that {uk} = {e k, k h 0, p1, e ,

is an eigen~equence with the etqenvalue 3(e) can be proven by
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substitution as follows:

The claim is that xk - (le-A)"l Bek (2.17)

is a unique solution to Xk+l = Axk + Buk, - - < k < (2.18)

with an input sequence iukI = 1ek., k = 0, ±1, ±2 ...... .. such that

x = (le-A)-I B. To show this, substitute (2.17) in (2.18)

Axk + Buk = A[(Ie-A)-I Be k] + Bek

= (le-A)- 1 Bek + 1

= Xk+l

Uniqueness of xk can :e shown be contradiction, let there be two solu-

tinns xkI and x," to equation (2.18) such that x - x 0. (le-A)-I B.

Then one obtains

' '- Eu

Subtracting (2.20) frow (2.19)

(Xk+ I - xk, A(x,. - xk 1) (2.21)

Let x " - x = Xk then (2.21) becomes,

x x x x -x" 0k-1 = A 0 0

Then from Lersta one (jets

x k 0

which implies,

X L ' X' I c

-1 kcThis shows x = (le-A)- Be is the dnique solution to equation (2. 5A)

such that xo x = (Ie-A)-1 B.

Substituting (2.17) into (2.16) yields
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Yk CXk + JUk

[C(Ie-A)Vl B + J] ek

= S(e) ek (2.22)

Uniqueness of Yk follows from the uniqueness of xk 4k._

The essence of Theorem 1 is that it allows one to interpret the

"transfer function" of an LSC as a function such as is done for contin-

uous time systems over the real field rather than as an abstract oper-

ator as is usually done for LSC's. Thus, it is a function which iden-

tifies an eigenvalue with its eiqenvector. In the case of multiple --

input -multiple output, the above arguments go "L.-ough with the matrix

S(e) = 0 + C(Ie-A)" 1 B interpreted as a matrix of eigenvalues.

Example 2.4:

Con;... r the sigle input-single output, I Linear Seq,,ntial Cir-

cuit shown in Figure 2.2 and described by the equations

X k+l xk + uk
<- k < O (2.23)

Yk k

defined over GF(2).

Figure 2.2: Figure for Example 2.4

Substituting the values of A, B, C, J, into (2.16) yields

S~)= !1 (2.24)S(e) -1+ e

Consider the extension field GF( 2 2 whose elements are (0, 1, •,
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a + 1 2 2) and let e o, then k. {uk} = {ek} k {t k, i.e. u% 1

and {ukl = I .... 1 I I + a, 1 1 , a 1 + ct, 1, C, 1 + a,

which produces an output sequence, yk S(e)ek S(a)a k i.e., {ykI =

.. . a 2  , a 2  1, a, 2, 1, ..... ). where y0 = a. Now

letting e = a + I, {uk1 {=a + Ik produces an output sequence {yki =
2 2 2 =2

{.... - ,c,1, Q , ., I a , a, l, ....... where yo =,

In the above example, the eigensequence (uk ) {ek 1 is sso-

ciated with an eigenvalue S(e) - This example sho-es that by

choosing different elements from the extension field of GF(2), differ-

ent output sequences are generated. Also note that in this case the

state and the output sequences will be the same.

2.3 Computing S(e) from the Impulse Response:

Using input signals taking their values in the algebraic closure

of a finite field presents two problems. First, one must be able to

do computation in the extension field and, second, one must actually

test the system with signals that take their values in the original

field since the physical system is not capable of accepting inputs from

the extension field. The first problem can be solved without much

difficulty since GF(pn; car! he represented as a field of mth degree

polynomials with coefficients in GF(p). 13 Here, addition is the usual

polynomial addition and multiplication is the usual polynomial multi-

plication modulo of the (m + 1)st order irreducible polynomial.

The second problem can be solved by simply measuring the impulse

response of the system and then computing the "exponential" response.

Since the goal here is to be able to find the relationship be-

tween tlie zero state impulse response; ihk , k - 0, and the matrix

transfer function S(e). one can assuk;ie that the input-output relation-
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ship of the LSC is characterized by a minimal (A, B, C, J) realization,

which characterizes the actual physical system under study. Since such

a realization is centrollable it can always be driven from the zero

state at time k = k to any desired state at time k = 0 by a sequence

of inputs b, k0  j c 0 provided k 0 < - 6 where 6 is the degree of

the LSC.

The relationship between the "exponential" response of a single

input - single output LSC and its zero state impulse response is

given by the following theorem. The results of this theorem can easily

be generalized for the case of multiple input - multiple output LSC's.

Theorem 2: Let {hk}, k > 0 be the zero state impulse response of a

single input - single output LSC and S(e) = J + C(Ie-A)fI B be its

transfer function. The "exponential response" S(e)ek to an input

k.
sequence iuki te I is given by,

k k-l k-i-I
S(e)e j hi+k b_ + j h e e k > 0 (2.25)j=1 i:-I-j i= l

The b .'s are (unknown) inputs that drive the system from the-3

zero state at time k = ko to x. x (possibly non-zero) at k 0.

Proof:

ek} k -1

Define {e k1  (2.26)

10) k -I
iO) k < -1

{e (2.27)

le k k >-1
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Then {ek le I + Ke k = 0, ±1, _2 ........... Let Yk be the

k
Sresponse of the LSC to fu I = {e 1. Let y k be the response of the LSC

due to fukI = {ek. Let Yk be the response of the LSC due to {uk} =

{•k.

It follows firectly from the defining equations for the minimal

realization of the LSC that

k k-! k-i--1
x= Akx + I A B e (2.29)

i=O

and

= , k-I k-i-I
"CA x + y CAi B e + J e k (2.30)

,No let bH , L,.n -j -1- 0 he a sequence of pIJts that urives the
-J 0

minimal realization from the zero state at time k = ko tox at time

k = 0. Such a sequence exists for a minimal realization if k -

where 6 is the dimension of the minimal realization.

It follows that

X k =0
0

"x(k-l) Bbn

X-(k -2) = ABb-n + Bb(n- 1 )
x~ (k_)=ABb + Abb B !b •

x ( k - ) -n - n l ) -( n -2
0

x0 X- (k0-ko) [B AB . . . Ak0- 2 B Ako0-B] b_2 I

b ko](d



26

which gives

CAkx_= [CAkB CAk+IB CA k+k-2 cAk+koB] b_l

b-(ko-)

bk
o (2.31)

The values of the impulse response {hkl are given in terms of the LSC

Minir4l realization description by,

ho =J

h1 = CB

h = CAB

hk CAk-I , k > 0 (?.32)

Substituting (2.32) in (2.31) yields,
CAkx = [hk +! hk+2  . . . . . hk+k o-2 h k+k o-1 rb_1

b_2

b_ (k -1)

k o

I hi+k b j (2.331

Substituting (2.33) into (2.30) yields,

Yh+k b_ + k CAi Be k-i- + J ek
j--- i=I

Utilizing (2.32) yields,
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k-ik-kk 0 h b + k eki + h ek
S.l iO = o

ko0 k-1 k-i-1

Sh b_j + h +1 hie (2.34)
j=l .1l 1

From (2 2) the "exponential response" is given by

Yk = S(e)ek

Thus from (2.34). it follows that,

k k-I k-i-I
S(e)ek h b + h e

j+k J i+l
1= -i _

In • where the LSC is not in the zero state, the zero state

impulse res' se can be determined as follows: Observe the response

of the LSC due to an input sequence lu k' = {O1. When this response

becomes pariodi , apply an impulse sequence to the LSC. The zero

state impulse ..cponse is then given by the ditiference of two responses

i.e., responses obtained after and before the impulse sequence is

applied.

To apply Theorem 2, one observes that Equation (2.25) is linear

in all the unknowns (S(e) and the b_, ko <j < 0) hence by writing

the equation for v = 1, 2...... , ko+!. one may set up a k +1 by

k +1 matrix equation which may be solved for S(e) in terms of theo

measured values of hk , 0 < k < 2k0 +I. In the case of multiple input -

multiple output LSC's, S(e) is a matrix of eigenvalues and the impulse

response is also a matrix. The procedure for determining S(e) in the

single input - single output case can easily be qeneralized for deter-

* $ mining the impulse .esponse matrix and (in turn) the matrix S(e).

The following example illustrates Theorem 1.
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Example 2.5:

Consider the LSC defined in Ex&mple 2.3. The zero state impulse

response is given by

ho = 0. hI = h 2 =h 3  ..  . . . . . 1,

from Theorem I

k ko k-I k-i-IS(e)e = hj+l b j + 1hi+ ej=1 -

Let e = a GF(2 2  k0 .

For k = 1, S(,%)cx bl + 1 (2.35)

and for k = 2, S(a)a 2 = b I + a + 1 (2.36)

Solve (2.35) and (2.36) simultaneously, one obtains,

S(a) = a (2.37)

No let e = a = 1 + a C GF(2

for k 1, S(a2 )(021 = b l + 1 (2.38)

for k 2, S( 2)(a2)2 = b 1 + E2 + 1 (2.39)

Solving (2.38) and (2.39) simultaneously, one obtains, _J

s1() _ (2.40)

Equations, (2.37) and (2.40), could be verified by substituting the

corresponding value of e in equation (2.24).



CHAPTER III

V •FAULT ANALYSIS - LINEAR SEQUENTIAL CIRCUITS

3.1 Component Connection Model:

A Linear Sequential Circuit is usually characterized by an input-

C output state nmodel for the purpose of fault ar.lysis; wherein one

attempt- to collect input-output data to determine faulty components

withir the LSC. The fault analysis algorithm developed in this chapter

uspý the component connection which relates input-output behavior

directly to component parameters rather than the state.

The component connection model was first intuitively used by

Prasad and Traboth18 and has been used by several other investigators

in the area of fault analysis in analog circuits. 4,5,14

The primary reason in choosing the component connection model for

fault analysis is that it is so heavily algebraic that it unifies

various graphical and diagramatic connection theories and at the same

time smooths the transition from mathematical model to computer aloo-

ri thin.

In the sequel the digital version of the component connection

model is developed which is e2sentiaily the same as in the analog case

except for minor changes. The development is repeated here for the

sake of completeness and for demonstrating the interpretation of terms

used in the model for the digital case.

A mathematical interpretation of a system is: a mapping from a

set of inputs to a set of outputs i.e., an input-output relation.

Letting u and y represent systen input and output sequences, respec-

tively, with values in a finite field or its algebraic closure, we may

29
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abstractly denote a system by,

y = Su (3.1)

where S is the mapping (operator) representing the system. The s)stem,

S, is primarily determined by two factors: the component types, and

the ways the components are interconnected. In the case of an LSC, a

system consists of a fixed interconnection of several Linear Scquential

Circuits, each in turn which is a fixed interconnection of components

or devices. Components can be scalars, adders, delayors or linear

gates. The form of the algebraic connection model, known as the Coin-

ponent Connection Model, can be conceptually deduced f om Figure 3.1.

u COmponents y

Figure 3.1: System Representation

In Figure 3.1, u and y represent overall system inputs and outputs

(finite field valued sequences) while a and b are, respectively, com-

ponent input and output sequences over the same field.

By a "Component Connection Model" is meant a system model where-

in the components and connections are characterized by separate equa-

tions. In particular, one assumes that each component in a system is

characterized by the D-transform equation,

bi(D) = [(9i)fi(D)] ai(D) , = 1, 2, . n (3.2)
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where a1 (D) and b1 (D) are respectively the b-transforms of the input

and output sequences of the i th component. The dynamics of the ith

component are represented by ft(D) and the scalar constant, git is the

gain of the tth component. For the purpose of fault analysis. it is

assumed that the component dynamics, f 1 (D). do not change even after a

fault has occurr-ed and all failures manifest themselves as changes in

gi with memory elements and connections good. This guarantees that a

linear system fails linearly. Such a fault model includes the usual

"open" and "short circuit' faults and "stuck-on-zero" faults. "Stuck-

on-one" faults can not be included in a strictly linear theory since a

device which is "stuck-on-one" is nonlinear. "Stuck-on-one" faults are,

however, included in the generalization of the theory to Affing Sequen-

tial Circuits described in chapter V.

in a-ctu.- .Prac . .....*.enormlly .wrks wEths the n seLf aSte C IIL ,

equations like (3.2). No.ationally this m.ay be combined into the

single matrix equation,

b(D) = [(G)F(D)] a(D) (3.3)

where b(D)= Col. (bi(D))

a(D) = Col. (ai(D))

G = diag. (Gi)

F(D) = diag. (fi(D))

To obtain a mathematical model for the connections, redraw Fig.

3A as in Fig. 3.2 where the component& and connections are shown

separately. The connections may be viewed as a separate multiple

input - multiple output component.

4rI•I(••lr:•' '"II I ' Ir.. •"III '
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C Components b

u Connections y

Figure 3.2: Component Connection Model Representation

Since connection elements are linear and algebraic, and connections

can be characterized by linear algebraic constraints (Adders, scalers,

etc.) the connection model can be represented by the matrix equation.

a(D) 1 *Ll b(2Dj

L ----- (3.4)

y(D) _j 121 L2 L? UDJ

Entries in the L matrices take their values in the same finite field

over which the LSC under study is defined. For digital circuits the

L matrices are usually permutation matrices describing how the out-

puts of one component are connected to the inputs of another. In

Equation (3.4), u(D) and y(D) are respectively the D-transforms of the

externally accessible inputs and outputs of the LSC. The digital ver-

sior. of the component connection model is sufficiently general to in-

clude most LSC's, although it is n-t universal- Equation (3.4) has the

symbolic representation shown in Figure 3.3.

I-,, , , ,, • i i i " - i * • • ' ~
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b L1 opoet.21 +

L 1221

- Figure 3.3: Symbolic Representation of Lij Matrices

In the following example, Li3 , G and F(D) matrices are determined

for th'e ISC shown in Fig. 3.4.

Example 3.1:

Consider the system defined over GF(2', 3s shown in Figure 3.4.

a bl

a2 D 2

S figure 3.4: Figure for Example 3.1

The L mratrices for the system described in Figure 3.5 are given by
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0 1 1 0 bllI 12

2 1 )0 0 u1

0 . 1:0 0 o SU2[Y J 0 1 Fa0il
Hb

2  L g2/j a2

[1 0 [/D 0 aLI-1

Simultaneous solution of equations (3.1), (3.3) and (3.4) yields a

complete description of the LSC input-output relationship of the form,

y(D) = [S(D)] u(D) (3.5)

= [L 2 2 + L2 1 (1-(G)F(D)LIY)-I(G)F(D)L 1 2]u(D) (3.6)

That is, the overall system operator is given in terms of the com-

porent dynamics, F(D), component parameters, G, and connections, Lij

by the equality,

S(D) = L22 + 1.21(I-(G)F(O)LII)- (G)F(D)L 1 2  (3.7)

S(D) is a matrix of rational functions in D with coefficients in

a finite field, whose poles and zeros are well defined elem.ents of the

algebraic closure of the finite field.

In view of the hypothesis that all tSC failures manifest them'.e&ves

as changes in G, with F(D) and Lij remaining constant, it is natural to

view Equation (3.7) as,
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S(D) fo(G) (3.8)

where fD is a nonlinear function even though S is a linear operator.

The function, fD, is entirely determined by the component dynamics and

the connections relating component parameter values to the system's

input and output. The function, fD' is called the connection function.5

Equation (3.8) is in just the right form for th.2 study of fault analysis

because faults are assumed to manifest themselves only As changes in G.

3.2 Fault Analysis:

The following theorem gives the relationship between S(e) which

may be computed from the zero state impulse response of the LSC and

S(D).

Theorem 3:

Given an LSC described by y(D) = S(D)u(D). Let {uk} = {e+k}. k = 0,

",_ .............. , where e is an elcment in the algebraic closure of a

finite field over which the LSC is defined. Then S(e) I D = e (3.9)

Proof:

Consider, first, the single input - single output case. In this

case S(D) is a rational function in D with well defined poles and zeros

that can be expressed as

+ ad + aD + --- +--- a D
1 2 n

S(D) = (3.10)
l b 2~D2  ++Or m1 + bI D + b +2--- + + -- + b m 0 ,

2 -
which implies

a°0 + a I 2D + a + a Dn n

y(D) = u (D)

S+ bID + b2 D2 + + b - -D

Equivalently,
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y(D)[l + bD + bD 2 + --- + bDM]= [a + aD + aD 2 + --- + anDn]u(D).1 2m0 1 2 n
(3.10A)

Since Dmy(D) - {Yk+m I and Dnu(D) = {Uk+m}, (3.10A) becomes,

{yk} + bl{yk+l} + + bm{yYk.n) ao{Uk} + al{Uk+l} + - + an{Uk+n}

(3.11)

Let uk {ek , k = 0, ±1, ±2,....

Then Yk = {ye + (3.12)

Substituting (3.12) into (3.11) yield,

{yek)[1 + bIe + b 2e2 + --- + bmem] = {e k[ao + ae + --- + anen]

0 1 2 n
or ao + ale+a 2 e2 +---.+ anen

lyk} = {u k}Sb~e
2 .. + em {k

1 + b1 e 2 + + bm

= S(e){uk}, where S(e) = S(D) I D = e (3.13)

The multiple input - multiple output result follows easily by applying

the above analysis over all possible input-output pairs with all inpLts

zero except the one corresponding to the pair in question.

Given the Theorem 3, Equation (3.6) may now be written as

S(e) = fe(G) = [L22 + L l(l-(G)F(e)Lll (G)F(e)LI2]. (3.14)

If (3.14) can be solved for G, the fault analysis of the Linear

Sequential Circuit is complete. Unfortunately, however, most LSC's

have more components than input-output equation, in which case (3.14)

represents a set of equations that has more unknowns than the number

of equations. However, this difficulty can be overcome by exploiting

the LSC dynamics. Indeed, this exploitation of the cir(uit dynamics is

the key to the spectral theoretic approach because it permits the
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number of externally accessible LSC terminals required for fault analy-

sis of an LSC to be reduced from that required for a combinatorial cir-

cult of similar complexity rather than increased as is the case with

traditional fault analysis techniques. To see this, note that Equa-

tion (3.14) is valid for any e in the algebraic closure of a finite

field over which the LSC is defined and that 'he resulting equations

are dependent on the choice of e. As such, mare equatiers can be creat-

ed without changing the number of unknowns by writing the set of simul-

taneous equations for different e's in the algebraic closure as,

S(e1) = e (G) [LL +L

S(e 2 ) = fe2 (G) = [L2 2 + .2 1 (l-(G)F(e 2 )Lll I(G)F(el 2 )L(21
)1 (3.15)

S(ek) = ek (G) = [L 2 2 + L21 (-(G)F(ek)LII0- (G)F(eV)L 1 2].

In the case of a combinatorial circuit f is independent of e.

hence the additional equations are not independent and do not simplify

the fault analysis process. In the case of a Linear Sequential Circuit,

Equations (3.15) will be independent and solvable for G ever, though a

single Equation (3.14) is not solvable.

With the above theory, one can bormulate the fault analysis algo-

rithm. The procedure consists of the following steps.

(i) Measure the zero state impulse response of an LSC under study.

(ii) Compute S(ei) from (2.25) for various elements el, e2, e3 .... el.

in the extension of the finite field over which the LSC under study is

f defined. The number of e's that one should choose depends on how many

component parameters are to be solved.



38
(iii) From S(eI), S(e 2 ) ..... , S(ek) calculated in Step (ii) and from

the known n-atrices Lij, write the simultaneous equations (3.15).

(lv) Solve the equations (3.15) for G.

In the next section, the algorithm for solving (3.15) is formulated.

3.3 Equation Solving:

A procedure is now given for solving the set of simultaneous

equations (3.15). This procedure is based on a "term expansion" algo-

rithm developed by Ransom for analog fault analysis.

Let T(D) ((G)F(D))- 1 . Equation (3.7) becomes,

S(D) L2 2 + L2 1 (T(D)-LI,)-ILI 2 , i = 1,2,...,k (3.16)

Next, perform the "term expansion" of the "inverse" in (3.16).

(T(D)-L 1 1 )1 = • adj.(T(D)-Lll)t where t denotes transposition, t =

tTfn•_~ ) 2,• 4 ( fln•_, ) dnntoc the matrix whose iit el ement

is the i jth cofactor of (T(D)-LII).

Taking the "vec" operation on both sides of (3.16) yields

vec(S) = vec(L2) + (Lt 1 G p (3.17)

ve(22) ( 12  (D 121 W7 Gpa

where 0 denotes the Kronecker matrix product. 1 9

In arriving at (3.17) one needs to use the formula vec(ABC) =

(CT 0 A)vec(B), the equalities A = V apa and vec adj.(T-L11 = GaPa

where V a is a row vector, Ga is a matrix and

I

TC

Pa=
TCn

T



Reproduced from 39est available 39y••
C. I

Here n is the dimension of T(D) and T" is a vector whose elements

are all product combinations of the diagonal elements of T taken i at a
time. That is, for an LSC with three q's, a =l, g1' 92' g3 glg 2,

3 9 g1g293] Here the element_ of V and G are constants in1g3' -a23' " 23 a

an extension of a finite field. An alcorithm for determining Va and Ga

i- given in reference and will not be reDeated.

One can write, Vd)a - " + r

G ara =G,,j 4 (3.18)

where p, V, G are o , V anrd G a respectiveiy, with their first elementd a a'

(cclumn) deleted. The first elerent (column) of Va and G are respec-a a-"and
tivcly, P an X..

Su5stituting (3.1r) into (3.17) yields,

L Vec(T-L)~lY~ 2 'T vc ' V - J KL 2 2 )

OP F- c(3.19)

Writing.. Ec'.tior 1.1, iur ,,rimr c, '.,l~uz• of ei, ur, can obtain
{ the oiin.t ¢•Ie e .r-.'d fOrh C.f ;-[ f Y,:;t3 ,;,out., L'],t~~

y(e-) - ..

which can be w't.en iacre compactly with the obvious notational defin-

itions as,

In general , 4 may have lirvqejrl_, dcpendent -:olumns (over ;r, cxten-

sic.C -ield containing a!] of t•,•,. Thnvw: e.") i.e., riCi + ... C +

' II I II I
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kCk ÷ --- :c*

k Ck + CM
Where c i , cj, ..... . cm are columns of *, and c, 01' .... are scal-

ers which may be elements of the extension field. Thus if cm is the

dependent column, delete cm from • and Rm from p. Add airm to row R,

aiR. to row R., etc.. Repeat this process until all linear dependen-

cies among the columns of • have been deleted. Denote the resulting

equations by ^= 5 (3.21)

Here 6 is a vector of the extension field elements, , has a left

inverse given by, L (tl t (3.22)

Hence, one can solve for p as, p -L (3.23)

which is a vector of elements in the extension field. Fin-illy, one

desires to compute the gi's from p. One can express ^ as p^ = p where

B is a known matrix of extension field elements. There is also an add-

Itional constraint that the gi's lie in GF(p), even though B and p are

composed of extension field elements. Since every extension field ele-

ment can be uniquely represented as a mth order polynomial in ai indeter-

minant a with coefficients in GF(p), 1 3 Equation (3.23) can be written

m m"[• c a = I L q rI]a r

y 0 [O 
r=O

where y and q are the coefficients of the polynomial.

Upon equating coefficients of like powers of a, one obtains a set

of simultaneous equations in GF(p) that are to be solved for the gi's.

These equations can be solved by any standard solution techniquos

in GF(p). In particular, in GF(2), one can set up a Boolean express-

ion, which after simplification, reduces to a list of all possible sets

of componcnt values consistent with the specified data.
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In the following chapter, several examples of LSC fault analysis 4

Sare considered in which the technique described above is used for solv-

ing the set of simultaneous equations arising in the fault analysis.

ai--

LIi



CHAPTER IV

FAMILY OF EXAMPLES

Example 4.1: Cunsider the LSC shown in Figure 4.1, defined over GF(2).

a4

U4

L -

Figure 4.1: A LSC for Example 4.1

Assume that the zero state impulse response for the LSC in
ligure 4.1 is measured and is given by, ho = 1, hI = 1, h2 = .....

It is desired to compute all possible values of the gains gl, g2'

g3, g4 which are compatible with the zero state impulse response data

given above.

Solution: The connection equations for this circuit are as follows.

1~ 42
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1 0 0 1 0 1 bI

a2 0 0 1 1 1 b2

a3 1 1 0 0 0 b3

a4  0 1 0 0 0 b4

y J 1 0 0 o u (4.1)

and,

0 92 0 0

[(G)F(D)] = 0 0 g 3 1D 0

0 0 0 g4 /D

[g1  0 0l F 0 0
r F

'"0 g2 0 0 0 1 0 0

0 0 I3 0 0 0 :ID 0

V 0 0 0 g4  0 0 0 I/D (4.2)

Substituting the matrices Lij, G and F(D).obtained from (4.1) and (4.2)

into (3.6) and then using the term. expansion algorithm, one obtains,

I -S(D) S(D) S_) 1 gI (D-D D D D -2'192I

.9 g2 g3

- g2 g4

glg3

= I glq 2g4

g1 g2g3g4  (4.3)

I!L
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Equation (4.3) is of the form,

Yp =

where zero entries in vi and in the corresponding rows of v are deleted.

The solution of the set of Equation (4.3) is carried out in (GF(2 3 )).2 3 e4 5 6

Choose the elements eIC. e2=0' 2 , e3 =n3 , e4 ' , e5sa 5 , e6=a 6 from

GF(2 3 ) where a Is an indeterminant. Use (2.25) to compute S(e1 ) for

I = 1, 2, 3, 4, 5, 6 from the zero state impulse response data. They

are given as in (4.4)

S(eI) = a

3S(e 2 ) = a

S(e 3 ) 23 6

S(e 4 ) C L

~u,... .4

S(e 6 ) =4 (4.4)

The set of simultaneous equations (4.3) are,

1 1 S(e 1 ) S(e 1 ) S(el) 1 S(el)

2__ F 21 1 (e,)
el e1I e I e1  e, I

g294  -

1 S(ed) S(e6 ) S(e 6 ) 1 S(e 6 )e g1 2 g3 4 I 6)

e6  e6 ei6  e 64e.5(4-5)

Substituting (4.4) into (4.5),
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Q41 1 4 4 a4 6  C3 gl 1 5
a5 6 3

a 1 a * g2 '

a 6 a6 C6 4 
23 g2g3 2

1 1 a2 2 2 a 3 *5 g2g4 0 6

1 1 3 3 L a3 2 a5 g193

Q5 s a 5 6 91 g2941 04

gL g (4.6)

(4.6) is of the form,

t In (4.6) the matrix, I, has only three linearly independent columns

and can be reduced to T by using the equalities,

C I C 2 C
c3 C 4 = c5

c3 + C6 = c7

where z is the ith column of T. The resulting equations are,
C U-i

a 4 6 05

1 5 3

a2 '3 g293 + g2 94 + glg 3 + g1g2 g3g4  6

a aa
a 3 02 g9g2g4 + glg 2 g3g4

S1 5i c a4

Q45.4

(4.)
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The equation (4,7) is of the form, 46

where, __g 1

g2 93 * g2 g4 + g1 g3 + 9lg2g3

g1g2g4 + glg 2g3g4

Or,

1 1 0 0 0 0 0 gl12

0 0 1 1 1 0 1g o

L 0 0 0 0 1 gg32

g2g4

I "1 3

glg2 g4

Now multiplying both sides of (4.7) by u,-. one obtains,

l+ g2  1] g

ygg3 + g2 94 + g9g3 + glg 2 g3 g41  I

glg 2g4 + [ag2g3g4 -0 (4.8)

Note that aJ coefficients are in GF(2). so the gi's can be solved for

directly by expanding the Boolean equation, where "+" in GF(2) is inter-

preted as an "EXCLUSIVE OR" operation in Boolean Algetra.

(g1+g2 ) (g2 g3 +g2g 4 +g9g 3+g1g 293Y4) (9 1g2g4 +g1g 2g 3g 4) 1 c.Q)
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Expanding (4.9) intr sum of products,

glg zg3g4  v g lgzg g l g g = 1 (4.10)

which yields three possible solutions consistent with the measured

impulse response. They are,

g = O' 92 = 1, 3 = 1, = 1.

gl = 1 , 92 - 0, g3= 1 , 94= .

gl = , 92 = 0, 93= 1 , 94 = C. (4.11)

Example 4.2 Consider the LSC shown in figure 4.2, defined over GF(2).

This circuit differs from that given in figure 4.1 in that

it has two delays in series with component 2.

U 9

• y

i b3 a 3

Figure 4.2&: A LSC for Example 4.2
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Assume that the measured zero state impulse response is

{ h} = f 1,1,0,1,0,0,1 1 ............

Solution Lij matrices are same as given in (4.1) and

0 a 0 ] 0 0 0

0 92 0 0 0 1/D0 0 0
[(G(D)] =0 0 LO0 0 I/D 0 -9 3  Ia o 1

0O 0 0 j 0 0 1/DJ (4.12)Sgj

Substituting the matrices Lij, G and F(D) obtained from (4.1), (4.12)

into (3.6) and then using the term expansion algorithm , one obtains

the set of equations,

[7)S S(D) 1 I r -1 ID)mFD D3  ) D 3  041F

g~g2g3  :

9129 39. -1
glg 3

glg 2 g4

-' -- ~(4.13)

(4.13) i. if the form,

where zero entries in W anc in corresponding rows of 0 are dl-eted.

Attempting to usc* the e's from GF(. ,I, one obtainr,
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3

S(e 1 ) = S(a) = a 3

2 6
S(e 2 ) = S(a ) = 6

3) 50
S(e 3 ) = S(C ) = a /0 i.e., undefined

S(e4 ) = S(Q )

eS(e5) = S(C5) = 03/0 i.e., undefined
S(e6) = S( C6) = 06/0 i.e., undefined

Note that e3 = C3, e5 = 5 e6 a are poles of S(e) and hence

these three elements can not be used to set up the set of simultaneous

equations (2.26). As such one can write three fault analysis equations

in GF(23) which are not sufficient to solve for the m.'s. However, S(e.)

4 1 4
is defined in GF(2 4 ). Tables of multiplication and addition for GF(2

15
are given in reference

Equation (2,25) can now be used to cumput3 I 'rufi teI

state impulse response data. These are given by,

S(eI) S(a) = 011

2 7"S(e2 ) S( a
(3) 6

S(e 3 ) = S (-I a

S(e4) = S(_,4) = a14

S e5) - S(aS) I

S(e 6 ) =S( 6) : 12

S(e 7) = S( 08) (4.14)

UpooI expanding (4.13) for each ei from GF(2 ) and substituting in (4.14)

and in (4.13), the set of simultaneous equations obtained are,
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13 8 8 10 12 7 -11
1 a a a a5 9 g1  a

i ll a a L C'. a9~
1 a1 aI 2  1 2  3 6 9  g6 a6

7 a2 a2 lO 3 13 ag14
1 a a a a ag 2g4  a

5 10 11 1 1 a 1  1 a glg 3  1

1 9 a9 a a6 gg 2g4  12

2 2 9 10 j 81 a a a a a aO gg 2 g3 g4 a

(4.15)

Equation (4.15) is of the form,

After deleting linearly dependent columns of j and then using the tech-

nique described in Example 4.1, one obtains,

n ,8n aa 4 1,n9

71 a 2
S9g 1g 2g 4  + 2 91g2g 3g4  0

Cl910 + a1 go13 + 917 9l2g3gJ4  14 (4.16)

Equation (4.16) yields a unique solution,

1, g2  1, g3  1, g4 = 0 (4.17)

One can check this solution by finding an impulse response of the

LSC in Figure 4.2 by using the values of gain in (4.15).

The important point here is that with the additional delays, the

internal component paramrnters can be determined exactly from the imtr :1.

response whereas without the lelay the best that one can do is to obtain

a list of three possible daults.



CHAPTER V

FAULT ANALYSIS - AFFINE SEQUENTIAL CIRCUITS

5.1 Introduction:

Mathematically, a "two-sided" Affine Sequential Circuit (ASC) over

a finite field is represented by a set of difference equations,

Xk+l = Axk + Duk9

Yk = CXk + JUk + Wk. k < k < (5.1)
X0 = X,

X0-

where {wk) is a sequence of constants over a finite field and wk is

some constant at time k. Other terms in (5.1) are as defined in Chap-
4-

ter II.

In cases where ASC's are not given in the form shown in (5.1), a

chariage uf vr- ......... rid soie iorifpulatiUris will yield the desired fo,,rm

(5.1). Hence, without loss of generality, (5.1) can be conside-red as a

standard form for the purpose of fault analysis in Affine Sequential
[ Circuits.

For Affire Sequential Circuits the present value of the output

depends riot only on the present input value and the present state (as is

the case with LSC's) but also on some constants defined over a finite

field. Since the mathematical representation of ASC's and LSC's only

differ by some constant value in the output equation, the existence and

uniqueness theory for the solution of (5.1) is similar to that discussed

in Chapter II for LSC's and will not be repeated here.

5.2 Component Connection Model:

Since Affine Sequential Circuits have affine components, each

component of an ASC is characterized by the D-transfer equation,

51
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bi(D) = [(gi)fi(D)] ai(D) + [qI(D)]• i 1,2,....,n (5.2)

where, a.(D) is the D-transform of the input sequence to the ith

component,
bi(D) is the D-transform of the ouput sequence to the ith

component,

fi(D) represents the dynamics of the ith component,

gi, a scalar of the underlying finite field, is the gain of the

linear part of ih component.

Let ni be a bias sequence added to the ith component. The D-trans-

form of this bias sequence, hi(D) is given by,

ni(DN D II

qi(D) is, then, a product of r.j(D) and whatever part of the com-

ponent dynamics the bias signal passes through.

For the purpose cf fault analysis, it is assumed that the component

dynamics fi(D) remain constant and all fauIts manifest themselves as

chanqes in 9i and n,. Such a fault model includes "stuck-or-one" faults

which are not included in the case of LSC's.

One may note that an ASC over GF(?) can be viewed in either of tWo

ways; first as an LSC in which a constant bias source is introduced and

secondly as an LSC into which NOT gate has been inserted. These two

viewpoints are equivalent since onp can construct a NOT oate with a

bias adder and conversely.

For notational simplicity, the n scalar equations, (5.4), can

comhined into a sinqle matrix equation,

b(D) ý [(G)F(D)] a(D) + [Q(fl)] (5.5)

. L_
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where b(D) column(b.(D)),

e.(D) = column(ai(D)),

G diag.(gi),

F(D) diag.(fi(D)),

Q(D) : diag.(qi(D)).

Example 5.1:

This example illustrates the formulation of Equation (5.5) for the

component shown in Figure 5.1.

Component

. i. b. I

a b

-~1 a.*+1 delay:

Figure 5.1: Figure for Example 5.1

Let G l

Then

(D) + ( ) 1.

As in the previous discussion of the component connection model,

the connection structure ot an Affine Sequential Circuit is described

bv the algebraic constraints,

L21 J L11 (5.6)
n (D)u f (1 L 2 (D)y

Simultaneous ",loluti(,n of (5.•, and (5.6) yields,
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y(D) L 122 + L21(" - (G)F(D) L,1Y1(G)F(D)112  u(D)

+ [ L21( - (G)F(D) LIl)1 (Q(D)) 1 (5.7)

Denote S(P) a [L2 2 + L21(1 - (G)F(D)Lll) 1 (G)F(D)LI2] and

T(D) = [L21(1 - (G)F(D)L)- I (O(D))] (5.8)

Then (5.7) becomes,

y(D) = S(D) u(D) + T(D) (5.9)

From (5.8) it is seen that the D-transform of a transfer function,

S(D), is the linear part of the ASC.

5.3 Fault Analysis:

rault analysis in Affine Sequential Circuits involves developing

techniques for determining G and n. The unknown, G, can be solved for

by considering the linear part of an Aftine Sequential Circuit.

If one can determine the impulse response of the linear part of an

ASC, Equation (3.15) may be set up for several e's in the algebraic

closure of a finite field anr. then can solve for the unknown gi's using

the algorithm described in Chapter I1l. The impulse r.2sponse of the

linear part of an ASC is drterrnined as follows.

Observe the response ct 'fie ASC due to an input sequence fUkI = 10).

V:hen this response becomes periodic, apply an impulse sequence to the

ASC under study. The impulse response of the linear part of an ASC is

then qiven by the difference of two responses i.e., response obtained

after and before the impulse sequence is applied.

After the 9i's are determined, it rPiemains to determine the ,'s

Taking the D-transform of Equation (5.1) and then comparing with

(5.9), one obtains,

-I
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W(D) = T(D) * (5.10)

where W(D) is the )-transform of the sequence (wk).

If iwk I can be determined from the measurement on an ASC, n can be

determined from (5.10). The sequence {WkI is determined from the

measur-ements on an ASC as follows:

Let an input sequence fuk} be an impulse sequence, then is follows

from (5.1) that

h' = CAkx + CAk-IB + Wk" k > 0 (5.10A)

where N is the impulse response of an Affine Sequential Circuit. Again

using the controllability criteria as discussed in Chapter I11, one can

write,
0CAx = •, CAk R (5.11)

where b jo ko 0 -j < 0 is a sequence of inputs that drives the minimal

f'ealization of an ASC from the zero state at time k = k to x at time
k = 0. Such a sequence exists for a minimal realization if k < -6,

0

Z where - is the dimension of fhe minimal realization. One has the

equality,

[CAkl B] hk (5.12)

3 where hk is the i',pulse response (at time k) of the linear part of an

ASC.
jC Substituting (5.11) and (5.12) into (5.10) yields,

k
0

h= - CAB b + h + w k > 0. (5.13)
j=l _-j k WkI 0

From (5.13) one can solve for wk (and b j). No attempt is made

here to develop any technique for solving wk from (5.13). Instead an
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assumption is made that x. x = 0 which simplifies the expression

(5.10), yielding

h =hk + Wk

or

wk = h - hk (5.14)

With the above theory, one can formulate the fault analysis algo-

rithm on ASC's. The procedure consists of the following steps:

(I) Solve for gi from the impulse response of the linear part of an

ASC and then use steps (i) through step (iv) given in Chapter III for

the purpose of fault analysis on LSC's;

(ii) Substitute the value of g;'s (obtained from step (i)) in T(D);

(iii) Measure the impulse response of the Affine Sequential Circuit and

using (5.14) obtain {Wki;

(iv) Obtain the D-transform of the sequence (wk) i.e., obtain W(D);

(v) Using equality (5.10), solve for n, since n is contained in TfD).

5.4 Examples:

In this section two examples are presented. Both examples illus-

trate the fault analysis algorithm discussed in the section 5.3. The

second example also illustrates how stuck-on-one faults are modeled

using Affin- Sequential Circuits.

Example 5.2:

Consider the ASC shown in Figure 5.2 defined over GF(2).

uu + f

Fivure 5.2: Fiatire for Example 5.2
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Assume that the impulse response of the linear part of an ASC is

£ measured and is given by ho a 0, hI . 1, h2 * 1. h3 f 1, ......... The

impulse response of the Affine Sequential Circuit is measured and is

given by ho' - 0, h• - 0, 1 - 1, h1 - 01, ........ It is

desired to compute the values of g, and q, that are compatible with the

given data.

Solution:

The connection equations for this circuit are as follows:

[A. ---; ---- (5.15)

and

bl(D) = [gl/D] al(D) + (b_-r- [ (5.16)

U.. S(z) =o 4 1(1 - gj/D - ) 1)" gl/D * 1]

1 - gi/D)-I qlD (5.17)

DI
•. T(D) =(K-0 D[1 (I -gl1/0 " (11/0)]

0(1 - 1!Y)--) (5.18)

Calculating 9,:

8 4 2Choose an element e1 a from nGF(2 ) where a is an indeterminant.

Then use (2.25) to compite S(e 1 ) S(W) from the given impulse responsE

of the linear part of an ASC.

From (2 25) one obtains,

s(4)Q = b + I 'mq)

0 s()o2 - b_ +a + (5.20)
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Simultaneous solution of (5.19) and (5.20) yields,

s(u) ci . (5.21)

Since S(e 1 ) = S(D) D== (C), one can replace D by a in (5.17)

and obtain,
91)-1 91

s(u) = (1 - -- (5.22)
CL

Simultaneous solution of (5.21) and (5.22) yields

91 1.

Substitute g, 1 in (5.18) to obtain,

T(D) (I - U,•)•D--T

D 1
(D -

Dm
; (l+D)2

_ D (5.23)

I+D

Obtaining {Wk}:

from (5.14) one obtains,

= h0 h-o-- 0 0 0

W, h1 -h' 10 1

w h3 h - h3 1 - 10

SO, NWk 1 {0, 1, 0, 1 ...... . I, such that w. 0.

W(D) D{w 1'0-D 0 + ID-.I + O"- 2 # I"D-2 . .......

W({P) = D (5.24)
1+D
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solving for h:

Substitutinq (5.23) and (5.24) in (5.10), i.e.,

W(fD) =T(D)n1

o D
l I+D'

whicn yields n, n 1. (5.25)

It is interesting to note from Figure 5.2 that b, is exactly oppo-

site to aI which is a characteristic of the NOT gate. So ASC's also

permit modeling of NOT gate for the purpose of fault analysis.

Example 5.3:

Consider the ASC shown in Figure 5.2. Assume that the impulse
4.

-espcnse of th.ý linear part of the ASC is measured and is given by

0= , h I 0 , ,2 = 0 .......... The impulse response of the Affine

•.cquential Circuit is measured and is given by h0 = 0, hi hi 1,

S.•.......... It is desired to compute the values of and

that are compatible with the aiven data.
The connection equations are the sarle as those of the previous

e~ample. That is, they are given by (5-15), (5.16). (5.17) and (5.18).

Calculating q,:

Choose an elet, nt e, from GF(22). Use (2.25) and the impulse

resporse of the linear part of an ASC to compute S(a). This is oiven

Sy(,) .

Sinniltaneous solution of (5.26) and (5 22) yields g, - 0.

Suust;tute c G 0 in ,5.18) to obtain,

T (.1T
T(P' i n i (- %k

(l•:dining •
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h= h 0

0 ~0o

w1  h l I1

W2 -h2 - h= I

so, fwk 01,, 1, 1, 1, 1....1 such that W OK O

W(D) = Dtwk) =O'D0 + ID-1 + .D-2 + ID-3 +. .

1- (5.28)

Substltutln9 (5.27) and (5.28) in (5.10) yields nI - 1.

The above example is an illustration of a "stuck-on-one" fault.



CHAPTER VI

CONCLUSION

In this work, a spectral theory for Linear Sequential Circuits has

been formulated and tb.. component connection theory has been applied to

LSC's. From the spectral theory and the connection function of the com-

ponent connection theory, a fault analysis procedure for a Linear Sequen-

tial Circuit has been developed. This procedure parallels the multifre-

quency testing technique for fault analysis in analog circuits. It has

bee,, shown that it is uften easier to do fault analysis in sequential

circuits than in combinatorial circuits.

This fault analysis algorithm has been extended to include Affine

Seqiuential Circuits. The fault analysis procedure for Affine Sequential

Circuits has turned out to be no harder than fault analysis in LSC's

example that Affine Sequential Circuits can be used for modeling nonlin-

ear faults such as "stuck-on-one" faults. Affine Sequential Circuits

should cover a broad range of digital circuits hence an interesting area

for further research.

Not much work is done in the area of fault analysis in nonlinear

Z analog or digital circuits. Due to the finiteness of states of sequential

circuits, one may possibly generate fault analysis algorithms for nonlin-I ar seqtuential circuits. Such algorithrnis can then be generalized to in-

clude larce scale digital systems.
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APPENDIX A

GALOIS FIELD THEORY

Finite Fields A finite field 810 is a field with a finite num-

ber ef elemerts. These fields are known as Galois Fields in honor of

French mathematician who first investigated their properties.

Let I denote the integral domain of all integers and p be a prime

number. Consider the systemi I/(p), whose elements are,

05(0 + B ) ini
; ~T= (l+8 )

T= (p-I + BM )

where Bm = { blb=kp, pcl, k=0,1,2,3 ............

If a and c are elements of 1/(p), addition and multiplication

are given by,

a+L=a+c

a c a c

It is known that 1/(p) forms a finite field. This field is denoted

by GF(p). Fqr example, GF(2) has two elements. They are 0 and T. It's

addition and multiplication tables are given below

+ 0 T

-6 T
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"..,tension Fields : If E is a fiel, and F is a subf- 1e1d o f F

E is an extension of F. The relation of being an extension of F is

denoted by F E.

The followirin theorems characterize the properties of an extension

field. Their proofs are qiven in ,efernces

Theorem 1 : Each Galois field contains a uniPue sul.field with a

p-ire n'uber of ele!,:ents.

Theorem 2 : For every positive integer mi an' pt-,'.e u.u::-er p,

there exists an irreducible polynomial in GF(p) of degree m and thc-se

fields, denoted by GF(p ), have pm elements. GF(pm) is an finite

extensoun of F.

Kronecker T.-.eo-em : If f(x) is a polyncrial with coefficil-rts in

a field F, tI,crc e ts an -,.!.'sior E o" F Sisi t for - .-. •, in F,

f(x 0) 0.

T1he algorithw for genc-riatnrg el,:h.ents of GF(p m) is -rscribed helow:

Pick an i-rc',ucible prol1n(,:ial P(x) of dleý,ee m,. lrit-oi'uce , .

s yviho P . , and as ,:e S e ) 0 . Th.,r 0,l.......... -p wi I t of

p er'e-,iints of GF(p'1) su-h t00t

( ),

I-
It

I!



APPENDIX B

DEFINITION OF THE D-TRANSFORI,

Let I denote natural integers and G be the set of all sequences.

Let g : I .i*-GF(pý) for all g E G.

The '-transform of g9() Is defined in terms of formal power series

In indeteminant D denoted by D {g(1)).

D{g(I)l = 9 9(i) D--

= ... +...+...+D3g(-3) + D2 9(-2) + Dg(-i) + g(O) + 0- g(1)+

-2 -kD g(2) +...+...+D g(k) +..+...... .. ....
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