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SECTION I 

INTRODUCTION 

Knowledge of the position of boundary layer 

transition on surfacesat large angles to a high speed flow 

is of vital importance in the design of re-entry vehicle 

heat protection systems. Two current design applications are 

the following. The NASA Space Shuttle is planned to re-enter 

the atmosphere at the high angles of attack required to 

achieve maximum CL. This manoeuvre is used to keep heating 

rates low by allowing deceleration to occur in the less 

dense atmospheres present at high altitudes. The prediction 

of the position of transition on the high incidence 

undersurfaces of the vehicle will affect the selection of the 

re-usable thermal protection systems planned. In design of 

ablation nose tips of re-entry vehicles, local heat transfer 

rates in the stagnation region, and hence local surface 

shape and nose recession rates are expected to be drastically 

changed by the location of boundary layer transition. 

So far prediction of transition using analytical 

means has defied scientists, ( see for example Hef,   1 ) and 

hence correlations of existing data are generally used. The 

main problem of transition prediction is that many 

parameters affect the phenomenon (e.g. Mach number, unit 

Reynolds number, wall temperatures, pressure gradient, free 

stream disturbances, wall roughness, flow history) and 

difficulty is found in isolating their respective effects 

on transition location. 

One, strongly pursued analytical method of predicting 

trends of transition behaviour is by employing the assumption 

that the transition point occurs at a certain level of 



amplification of two dimensional disturbances after the 

critical Reynolds number of stability is achieved. Typical 

calculations of the stability of the compressible laminar 

boundary layer are given by Mack (Ref. 2) and an appropriate 

transition criterion is that given by Smith and Gamberoni 

(Ref. 3). 

The main uncertainty of this approach is associated 

with the early change of the flow behaviour in the transition 

region from that assumed in parallel flow stability  to a 

strongly non-linear three dimensional flow which is difficult 

to predict analytically (HefJO.However, the NASA Transition 

Study Group is carrying out extensive fundamental studies to 

prove the efficacy of this approach (Hef. 5).  One of their 

chief concerns is the verification of the usefulness of wind 

tunnel generated data,providing an uncertainty due to 

disturbances in the test environment. Generalised correlations 

of data have met with no more success (Ref. l) , and many 

anomalies still exist. Examples are : the unexpected 

existence of unit Reynolds number effects; trend reversals 

due to wall cooling and the very low transition Reynolds 

numbers met on blunt bodies, detected and of relevance to 

this present study. These findings indicate that great 

caution has to be taken when applying general correlations 

of data and since this empirical approach has to be used 

by designers before the phenomena is more better understood, 

that correlations with more limited ranges of applications 

should be generated and applied. 

The most used non-dimensional parameter to define 

the location of transition in these empirical approaches 

is the Reynolds number based on the distance from the flow 

stagnation point to a stated position in the transition 

region (e.g. beginning, mid-point, end as defined by the 



measurement used to locate transition). This parameter is 

inappropriate to apply to correlations associated with 

vehicle shapes with blunt bodies since it is usually difficult 

to define the stagnation point, and furthermore the boundary 

layer has often developed in changing flow conditions. Another 

parameter which is frequently used for correlations is a 

Reynolds number based on local flow conditions and a length 

scaled on a local characteristic boundary layer thickness, 

assumed to have grown laminarly up to that point. The 

momentum thickness , 6, is often selected since this is 

usually known from the integral boundary layer solutions 

required to calculate the skin friction over complicated 

shapes. Another parameter is the displacement thickness 
3 often known    on vehicles in high Mach number flows 

where boundary layer interaction is important. For application 

to the present study of transition over surfaces at high 

angles to high speed flow then the Peynolds number based 

on the momentum thickness, Re., is considered to be the most 
ü 

appropriate. 

Data generated in the low Mach number high static 

temperature flows typical of that obtained over blunt bodies 

in high speed flow have shown the striking feature that 

transition occurs at a very low Reynolds number. This is 

unexpected since the boundary layers are developing under 

cold wall and also often under favourable pressure gradient 

conditions, two cases for which boundary layer stability 

theory would indicate the existence of prolonged regions 

of laminar boundary layers. It is this unexpected feature 

that led to   studies of heat-sink type protection systems, 

considered earlier from such stability theory considerations 

to have optimum design features, to be rejected (Ref. 6). 

Transition occurred at Reynolds numbers sometimes even 

vm 



below the critical Reynolds numbers. This and other 

anomalous transitional behaviour has led Morkovin (Pef. 1) 

to consider that there are several different paths leading 

from laminar to turbulent flows. 

Transition data in the conditions of interest have 

rarely been published in the literature. Facilities with the 

capability to generate low Mach number at high static 

temperatures are selectively few. Some data has been generated 

in free flight experiments, such as described by Murphy and 

Hubesin (Ref. €)   however difficulties lie in defining the 

conditions under which the experiments were carried ovt. 

Shock tube flows also are capable of generating representative 

conditions (e.g. as in tests described by Hartunian et al, 

(Ref. 7)however some difficulty lies in interpreting the 

results from the unsteady boundary layers thus generated. 

Recent tests in the VKI Longshot facility, sr)ecifically 

designed for simulating re-entry flows (Ref.8)  , have 

shown that laminar, transitional and turbulent flows can be 

generated on surfaces at hi(»h angles of attack (Ref. 9) 

in which typically the local Mach number is 1.5 at static 

temperatures of over 2U00oK. 

The present series of tests were planned to 

examine the behaviour of the transition point on blunt 

body shapes under changing conditions of Mach numbers 

Reynolds number, surface roughness and model shape. Comparisons 

with simple correlation methods of these results, and those 

from earlier tests in this series (Ref. 9, 10),  are made 

with a view to applying such correlations to the results of 

a larger program on heat transfer over ablation nose-shapes 

ongoing at VKI. 



SECTION II 

EXPERIMENTAL PROCEDURE 

1.  MODELS AND THEIR INSTRUMENTATION. 

Two steel biconic models, supplied by Avco, with 

50° half angle forebodies, 8° half angle after bodies and 

7 in base diameter as sketched in Fig 1  were used in this 

test series. One model had a smooth surface, the other ^ad 

the forebody surface uniformly roughened using a metal 

spraying technique to a mean height of O.OOU in. Each model 

could be fitted with either a pointed nose or a spherical 

nose with 0.75 in radius. The smooth surfaced models are 

designated model A and C for the sharp and blunt configurations. 

The equivalent designation for the rough model configurations 

are F and G.    A photograph of models A and G is shown 

in Fig. 2. A sharp nosed model with O.OUO in machined 

roughness on the forebody and used in earlier tests (Ref. 10) 

is also referred to in the test. It is designated Model B. 

Nine (or ten in the case of the blunt configurations) 

heat transfer gauges were mounted axially along and flush with 

the model surface beginning at or near the geometric stagnation 

point as shown in Fig. 1.  Eight pressure taps were 

similarly spaced along the surface but at l80o around the 

model from the heat transfer gauges. 

Pressures were measured using Hidyne variable 

reluctance pressure transducers. Their description, mounting 

end calibration is described in Ref.10 . The heat sensors 

consist of 0.125 in diameter copper discs bonded to 

insulated holders. Chromel-Alumel thermocouples with 

diameters of 0.001 in. were welded to the backface of the 

discs. Thü heat sensors mounted in the rough models usually 

differed from thosemounted on the smooth models by the 
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FIG.  1     SCHEMATIC    OF   BICONIC    MODELS 



FIG. 2    PHOTOGRAPH   OF MODELS    A    and G 

FIG 3    TYPICAL   SCHLIEREN    PHOTOGRAPHS  OF THE 
FLOW   OVER   MODELS   A and  G 



disc   thickness   being   approximately   0.008   in. thick   instead 
of  0,001*  in.thick   (   the  latter  are  described   in Ref.   10 ) 
and  furthermore  roughened  to approximately the  same extent 
as   the model  surface.   The   exposed  surface of  the  insulating 
holder was  also  roughened.   The  heat gauges vere  calibrated 
in the AEDC radiant  heat   flow  calibration  facility  before 
mounting over  a heat   flux   range  from 20  to 80  Btu/ft2Bec. 
Th^  calibration   constants   are   presented   in Table   1   . 

further details   about the  instrumentation,   signal 
recording  and  data  reduction  are  given   in Ref.    10 . 

2.      TEST  FACILITY 

The  VKI   Longshot   facility was   used   exclusively 
for  this  program.   Longshot   differs   from   a  conventional   gun 
tunnel   ir  that   a  heavy   piston   is  uned  to   compress   the   nitrogen 
test  gas  to  very  high   pressure   ard  temperatures    (Ref.   8). 
Vhe   test  gas   is   then  trapped   in  a  reservoir  at   peak 
renditions  by   the  closing   of a   system  of  check   values.   The 
flow  conditions   decay  mono tonically  during   10  to  20 
milliseconds  running  time  as  the nitrogen trapped  in  the 
reservoir  flows   through the  6°   half angle  conical  nozzle 
into  the pre-evacuated  open   jet   test  chamber.   The maximum 
supply  conditions  used   in  these tests  are  approximately 
60,000  lb/in2   at   1900oK to   2350oK.   These  provide unit 
Reynolds  numbers  of 8.3  x   106   per foot  at  a Mach number 
of   16  and 3  x   106  at  M  ■   19.8.  Table  2   lists  the  four most 

used test  section conditions  at  the nozzle exit  achieved 
at  the  peak operation  achieved   at the beginning  of a  test. 
These  values  are  Slightly  revised  from  previous   values 
published due to  an  exhaustive   revision  of the   interpretation 



TABLE  I 

HEAT  TRAMBTER   SEWSOH  CALIBHATIOW COISTAITS 

(BTU/FTM   /   (MU/SEC) 

MODEL A C P 0 

Gauge  He     0 s 0.818* — 0.929 
1 0.818* 0.818* 1.911 1 .911 
2 0.890 0.890 1.796 1.796 

0.830 0.830 1.857 1.857 
0.818* 0.818* 1».012 U.012 

0.7U0 0.7U0 1.826 1.826 

0.818* 0.818* 1.7«»7 1.7U7 
0.730 0.730 1.950 1.950 

0.810 0.810 1.836 1 .636 

- - 1.778 1.778 

10 0.818* 0.616 2.196 2.196 

12 0.910 0.910 

" 
" 

unealibratcd gauges,  »Terage  value of O.816  for 
Model* A and C used. 



TABLE   2 

TYPICAL  LONGSHOT  TEST   SECTIOH   CONDITIONS 

T(MS) PO(PSI) TO(K) PITOT(PSI) 
MACH  NO P0P{PS1) TO   P{K) PF/PT 
P(PS1) T(K) WHO V(FT/SFC) 

QD(LB/FT«"2) Q{BTU) TT2R(K) CONDENSATION 

1. 0.000 0.550OOOF   05 0.190000F   Ol» 0.200000E 02 
15.990 0.79ß927F   05 0.2l*5702E  Ol» O.87296UE 07 

0.780727E-01 0.1«7126UE  02 0.7'»6250F-0U 0.73'«35'«E Ol« 
0.201217F   OI4 0.939885F   02 0.219290F  Ol« 0.U32018F 02 

2. 0.000 n.35OOO0E   05 0.202000F  Ol« 0.150999F 02 
15.'«70 O.SO^gSlE   05 0.2I»7216E  Oh O.U6505IE 07 

O.l«81«203P-O1 0.505C99F   02 O.USIIS^F-OU 0.73^132F Ol« 
0.n68ll«F   Ok 0.72151«8E   02 0.220516F   Ol« 0.1«08538F 02 

3. 0.000 0.590000E   05 0.235000F.   OU 0.800000E 01 
19.906 0.71657CE   05 0.303'«61«E  Ol« 0.313777F 07 

0.151«730E-O1 0.378117F   02 0. l81«330F-Ol« 0.818913F Ol« 
O.618078F  03 0.f68823E   02 0.265925F  Ol« 0.3fi85l*8F 02 

1«.                             0.000 0.37600nE   0? 0.232000E  Ol« 0.519999E 01 
19.178 0.3880U6F  05 0.286l90F  Ol« 0.20f;3f5F 07 

0.108387F-01 0.383805E   02 0.127209E-01« 0.79l«88lF Ol« 
O.U01877F  03 0.503513F  02 0.252000F   OU n.35l«101F 02 

Case   1 ,     M -   15,   High  Pe. nom 

Case   2,     M "15,   Low  Re. *       nom 

Case   3,     M «20,   Hifch   Re. nom 

Case   1*,     M ■   20,   Low  Re. nom 

See   text   for   nomenclature. 

10 



of  the   reservoir   temperature   measurements   as   described   in  a 

report   by   Backx   (Ref.    11).   The   following   nomenclature   is 

used   in   Table  2   :     measured   reservoir  pressure   PO   (psi); 

measured   reservoir  temperature,   TO   (0K);   measured   Pitot 

pressure,   PITOT   (psi);   calculated  Mach   nuirber   ,   MACK   KO; 

equivalent  perfect   pressure,   POP   (psi);   equivalent   perfect 

temperature,   TOP   (0K);   freestream  Reynolds   number   per   ft; 

RE/FT;   local   freestream   pressure  P,   (psi);   freestream 

temperature,   T   (0K);   freestream  density,   RHO   (slugs/ft3); 

stream   velocity,   V(ft/sec);   dynamic   pressure,   QD   (lb/ft2)j 

stagnation  point   heating   on   a   7   in. diameter   spherical   surface, 

0   (Btu/ft?sec);   true   stagnation  temperature,   TT2R   (CK); 

and  the  temperature   at   which   condensation  would   occur   at 

that   freestream     pressure   and   expansion   rate,   CONDENSATION 

(0K).   These  parameters   adequately   define   all   the   parameters 

necessary   for   application   to   predictive   procedures.   Care 

should   he   taken   in   that   the   accuracy  of  the   values   printed 
out   should  not   be   inferred   froir   the   six   significant   figures 

shown.   The  accuracy   is   controlled  by  the   accuracy   of  the 

measurements   inferred   in   Ref.    10. 

Resorvoir   pressures   and  temperatures   were  measured 

with   Kistler  quartz   piezo-electric   sensors   and   tungsten- 

rhenium thermocouples,   respectively.   Flow  visualisation 

photographs  were  taken  with e.r   18   in  diameter   Toepler 

schlieren   system   using   a   1   u   fec   duration   spark   to   illuminate 

the   flow. 

The   test   matrix   covered   in  this   test   series   is 

outlined   in   Table   3   .Other   tests   from  earlier   phases 

(Hefs.   9  and   10)   have   also  been  referred  to   in  the  discussion 

given   later. 

1 1 
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SECTION III 

RESULTS AND DISCliSSION. 

1.  SCHLItRi.;j STUDIES, 

Typical schlieren photORrnphs from the series are 

shown in  Fig. 3. Although the shock wave structure is shown 

very clearly in each photograph the boundary layer growth 

on the model is too small to he distinct. The schlieren 

method of detecting transition hence cannot be used. In 

some of the photographs, there are signs of waves in the shock 

layer which may be ascribed to the sound disturbances 

radiating from the turbulent boundary layer similar to that 

seen for example by Brinich  (Ref. 12). This observation 

however is not clear enough to be able to provide a 

transition detection technique. 

2,  PRESSURE MEASUREMENTS. 

Measurements of the peak values of pressure are 

tabulated in Table h   and their values, non-dimensionalised 

with respect to the dynamic pressure at the model nose, 

plotted in Fiß.l4.  General agreement with tangent cone 

theory is obtained, although considerable data scatter is 

found particularly in the rough surfaced model cases. This 

scatter is ascribed to the layer of roughness sprayed  onto 

the model in some cases distorting the geometry around the 

pressure taps. Because this scatter is caused by 

disturbances local to the pressure tap, and that results 

on smooth bodies have shown excellent agreement with 

tangent cone theory with little scatter, it is advised 

that for predicting heat transfer rates using similarity 

theories, such as that of Lees (Ref. 13), the theoretical 

pressure variation be used. 
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TABLE     U 

PRESaUR?  MEASUREMENTS   at   TIME  T   -  0   msecs   (lb/in2) 

RUN   N0 376 377 378 379 380 

TEST   CASE M"15 M-20 M-15 M»20 M»15 

Low  Re Low  Re Low  Re Low  Re High ^e 

WÜEL 1 G A f c 

Station   1 10.05 3.53 — . 18.59 

2 8.27 2.61. 10.U 1.91 16.6U 

3 10.20 3.10 11 .2 3.06 18.53 

U 12.82 3.06 9.7 3.1»« 15.73 

5 10.7U 3.bit - 3.69 16.19 

6 13.13 3.52 9.8 3.58 16.50 

T 8.69 2.76 10.5 2.83 17.27 

8 0.76 ■ 0.6U 0.22 1.025 

11* 

•...^- 



20 

Cp 

10 

O    Experimental  points 

 Tangent   cone theory 
20 

Run 376 Model G 
M« 15 5   Re/fts4.6x106 

i      ^      i i i     0 

-O- 
"73—<r 
Run 377 Model G 
Ms 19 2  Rem=21xl06 

3      t, 6     7 
J 1       i       i       i       i I 

20 

10 - 

0 
—§  o -o- 

Run 376   Model A 

Msl5-5 Re/ft.4.6x106 

1            1 1 L.  . 

20 

10 

2      3      4      5      6     7 
Station   N0 

O     O 

0 Run 379   Model  F 

M=19 2   Re/ft«21xl06 

■       ■ I I I 1 1 
3      6 

20 r 

Cp 

10 

6      7 3     6      5       6 
Station   N0 

Run 380    Model   C 

M>16    Re/ft = 8 7x106 

_i ■       ■       ■       ■       ■       ■ 
1       2      3       4       5      6      7 

Station   N0 

FIG 4    PRESSURE   DISTRIBUTIONS   ON  BICONIC   MODEL  FOREBOOY 

15 



3.  HEAT TRANSFER MEASUREMENTS. 

Measurements of the peak values of the heat transfer 

are tabulated in TaMe 5 and plotted in Figs. 5-9 against 

distance from the stagnation point, s.  Also shown in the 

plots is the Reynolds number based on the distance from the 

nose. Re , and the Reynolds number based on the momentum 

thickness. Re., of a laminar boundary layer growing from the 

nose.  These Reynolds numbers are calculated assuming the 

nose is pointed in all cases. The method of calculating 

Re  is described in Appendix C of Ref. 10. The momentum 

thickness is calculated assuming a simple Blasius profile 

type approach. 

The measurements are compared against the Eckert 

(Ref. 17) and Sommer -Short (Ref. 15) reference enthalpy 

methods found in earlier tests (Ref. 9) to predict wall 

laminar and turbulent heat transfer rates, respectively, on 

smooth bodies. Three  sets of data (from run numbers 351, 355 

and 356) obtained in this earlier test series are presented in 

Figs. 10 - 12 to illustrate this agreement and to show 

examples of fully laminar and fully turbulent flows not 

actually achieved in this test series. Another reason to 

illustrate these latter figures in this report is to compare 

the results with the theories modified from earlier test 

phases by making alterations to the assessed tunnel reservoir 

temperature as indicated by Backx (Ref. 11).  These latter 

figures illustrate that the Eckert theory slightly under- 

estimates laminar data and Sommer - Short   theory agrees 

with smooth wall turbulent data but underestimates the 

rough wall data by 35 f*   These conclusions are also 

generally to be found in the new data presented in Figs. 5-9 

within the scatter of the results and the interpretation of 

l< 



TABLE 5 

HEAT TRANSFER MEASUREMENTS, TIME T ■ 0 nsecs (BTU/ft2Bec) 

RUN N0 376 377 378 379 380 

TEST CASK M-15.5 M-19.2 M-15.5 M-19.2 M«l6 

Low Re Low Re Low Re Low Re High Re 

•10DFL a G A F C 

0 197 126 - - 238 

1 160 71» 201 101 190 

2 16« 60 117 6< 161 

3 

1« 

151* 

IOO
1

" 

51 

39 + 
113 

36* 

1*7 

30 + 
163 

51^ 

5 170 51 152 U3 202 

6 173 51 129 52 179 

7 158 US k* 50 12* 

8 e.a 5.0 13.? 5.3 13.2 

9 - - - k.l » 

10 6.1 M - U.6 * 

12 
■ 

" 7.5 — 8.8 

Rejected data due to suspect gauges. 

+   Low value may be due to poor gauge (see its calibration 

constant in Table l). 
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of the various boundary layer regimes. 

In appropriate cases, a straight line is drawn on the 

data  joining the data which appears to be in the laminar 

and turbulent regimes,in the location thought most appropriate 

from the position of the experimental points in the plot to 

describe the transitional heat transfer variation. In most 

cases the decision is difficult since the density of data 

points available is very low. Is is seen, however, that in 

most cases the transitional region apoears to have a similar, 

if not larger, extent as the laminar region. This straight 

line estimate of the heat transfer behaviour in the transition 

region a'ds the location of the beginning and end of transition, 

by the positions at which it bisects the laminar and turbulent 

data trends . 

k,     TRANSITION D£TECTION KKSULTS. 

The positions of t^e beginning and end of transition, 

using the method described in the last section, from 

Figs. 5-12 and from analysis of other tests from Refs. 9 and 

10 ..-« given in Table 6   to within the resolution of the 

gauge spacing (i.e. 0.5 in). The positions have been 

tabulated in order of decreasing Reynolds number and in 

type of models from rough surfaced to smooth and s^arp-nosed 

to blunt (i.e. models B,F,G,A and 6, model B beinr a model 

used in the test phase described in Ref. 10 with roughness 

elements .OUO   in.as introduced in Section 2.1 ). This order 

has been selected to illustrate the trend from configurations 

with the most likelihood of turbulent flow to those with the 

most likelihood of laminar flows. 
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TABLI 6 

POSITIOI OP TRAI8ITI0I, ^, OR $0° HALF ANGLE BIC0N1C 

MODEL PORIBOOY. 

M 16.2 15.5 19.8 19.3 

R.i at J 
■ a Uin) 5.I»«105 3.1K105 1.3«105 0.88«105 

R., at \ 

' Vinj 
600 l»66 295 2U9 

R./ 500 290 120 83 

T.-K 1750 16UO 2200 1900 

MODEL 

Rough 
Modal 
(B) * 

• •t<1.5in • 

! (Run 21b) ' 
- - 2.0<at<2.5 

(Run 213) 

Rough^ 
Sharp I 
(F) ) . •t<0.5 

* * 2.0<i <l»0 
t(371) 

Rough } 
Blunt \ 
(0) / 

Saooth 
Sharp 
(A) 

• (352,«-10o)I 

0.5<t*«1.5 
t(376) 

i.5<« <2.; 
t(378) 

- 2.0<ti<«»0 
t(377) 

0.5<i4.<1 .0 
t(353) 

l.0<i <1.5 
t(356) L20l.,«-0o 

.V3-5       1 
^Sb.a-O» 

209,«■-lO* 1 l206,«»10o 

1 207 ,«—10° 210,«-+10*J | 

|355,o-10o . 
(eroit flow) 1 

Saooth 
Blunt 
m j 

1 .0<i.<2.0 
t(380) 

I •t>3.5 
l28U,a-0o 

|285,«■♦IO0 

• >3.5    | 
t(28T) 

 1 
.286,«"-lO9 

Turbultnt flow over vhoxo aod«l 

Laainar flow over whole model 

+ For a roughuees 
height of O.OOU in. 
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It can be seen from Table 6 that the rough aharp- 

noned modelt appear to have turbulent flov over the whole 

surface ( or at least over the surface in which heat transfer 

rates can be measured) for the highest Reynolds numbers. All 

smooth models for the M   »20 cases (i.e. in which the 
nom 

lowest Reynolds numbers  are achieved) have entirely laminar 

flow over them. All other cases have present transitional 

flow. Summarising the trends, it is ueen that, as expected, 

surface roughness and increasing unit Reynolds number 

advances the transition point. Most generally, nose 

bluntness tends to retard the transition point. One 

exception to this is at the lowest Reynolds number case when 

bluntness on the rough surface model advances the transition 

point fRuns 377 and 379). Although tests were made on models 

at incidence, it is unfortunate that no information on the 

behaviour of transition on the windward, leeward or cross- 

flow surfaces with angle of attack could he  discerned since 

they were all either fully laminar or fully turbulent cases. 

It is suggested that further tests to examine these trends 

should be most fruitful. 

Because of the sparse amount of data presently 

available and also the crudeness of the momentum thickness 

calculation used it was decided to present the transition 

location results as Reynolds number ranges in which fully 

laminar or fully turbulent flow was always achieved in all 

configurations. Figs. 13 and 1U were thus devised to obtain 

preliminary ranges using the parameters Re  and Re .  The 
o      x 

influence of the freestream Mach number change in the tests 

on the flow on the model surface can be considered as 

affecting only the surface unit Reynolds number and to a 

small extent surface static temperature.  In Figures 13 

and lb curves of Re. (where 0 is the calculated laminar 
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value of the momentum thickness on the cone surface) and Re 

are plotted against distance from the nose of sharp nosed 

30°  half angle cones placed in each of the four basic Longshot 
test flows. The transition positions from Table 6 are then 

plotted on these curves. Such points enable estimates of 

the Reynolds number ranges of boundary layer flow regimes 

to be assessed. 

mod 

The results illustrate that for the smooth surfaced 

els, laminar flow is found to exist at Re. < 270 and 

Re  < 10s: whilst turbulent flow is found to exist at s 
Re. > 1»00 and Re  > 2.5 x 105 ( see Figs. 13a and 13b). ö s 
For the rough surface models laminar flow is found to exist 

for Re. < 170 and Re  < 1» * 1 o1* whilst turbulent flow is v s 
likely to exist at Ree > 300 and Re  > 105. ( see Figs. 13b 

snd Hb).  The range of Reynolds number based on the roughness 

height k ■ O.OOl* in. examined was 83 < Re  < 500. 

As is pointed out in the introduction, transition 

correlations should not be generalised to cover all possible 

situations, however it is suggested that the above criteria 

can be applied to cases of flows , simulating those encountered 

during re-entry, over surfaces at high angles of attack  and 

for the particular surface roughnesses tested. Further tests 

will enable further correlation parameters, (e.g. nose 

bluntness, surface roughness, model incidences, unit Reynolds 

number , etc)  to be included. 

It is interesting to compare with correlations used 

by designers of re-entry vehicles. An example, recommended 

for use for the NASA Space Shuttle by Helms (Ref. 1^) is : 

!*V>i    -    225 
Me 
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Since the surface Mach number on the models in the 

present tests is approximately 1.1«, (with a flow static 

temperature from 1750oK to 2?00oK), then the transition Reynolds 

number predicted by this correlation is 313«  This is seen 

to show excellent agreement with the test since it has almost 

exactly mid-way between the limits of transition given by the 

present smooth model tests. 
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SECTION IV 

CONCLUSIONS, 

Heat transfer measurements have been used to study 

the state of the boundary layer on pointed and blunt nosed , 

smooth and rough surfaced 50° - 8° biconic models at Mach 

numbers from 15 to 20. The flow on the forebody surface has 

a Mach number of 1*1 with static temperatures from 1750oK 

to 2200oK.  Eckert reference enthalpy theory underestimates 

laminar data by 10 %,   Sommer and Short reference enthalpy 

theory agrees with smooth wall turbulent data but under- 

estimates the rough wall data by 33 %•   The transition region, 

when present, is often of the same length as the laminar 

region itself. 

For smooth surface models laminar flow was always 

detected at Refl < 270 and Re  < 105, whilst turbulent flow 

was detected at Re, > 1+00 and He  > 2.5 « 105. For the 0.00U 
s 

mean element height rough surfaced models laminar flow was 

detected at Re. < 170 and Re  < 1» x i o1* whilst turbulent 
6 s , 

flow existed at Rea > 300 and Re  > 105. The range of 
o S 

Reynolds numbers baaed on a roughness height, k, of 0.00U 

in.examined was 83 < Re  < 500. The smooth sufaced model data 

agreed well with a transition criterion used for a similar 

flow range for application to the Space Shuttle. 

Further accumulation of data in future test series 

could enable a wider range of parameters to be incorporated 

in the crude correlation presented. 
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