
AD-A018 801

SAMSO COMPUTER LANGUAGE AND SOFTWARE DEVELOPMENT
ENVIRONMENT REQUIREMENTS

E. D. Callender, et al

Aerospace Corporation

Prepared for:

Space and Missile Systems Organization

15 December 1975

DISTRIBUTED BY:

mi]
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

006063
REPORT SAMSO-TR-75-290

1

o
00 SAMSO Computer Language and Software
00 Development Environment Requirements
rH
o

E.D.CALLENDER.M.FELICIANO, and L .D.JENNINGS
Information Processing Divisio n
Engineering Science Operations

The Aerospace Corporation
El Segundo, Calif. 90245

15 December 1975

OA O
t Final Report v.-' r . V \ \

(f" -"u- \ > X \

APPROVED FOR PUBLIC RELEASE; \ Y \ V {J
DISTRIBUTION UNLIMITED \ W V

Prepared for
SPACE AND MISSILE SYSTEMS ORGANIZATION

AIR FORCE SYSTEMS COMMAND
Los Angeles Air Force Station

Los Angeles, Calif. 90045

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Conjmerw
S p r i m / V l d VA 22151

UNCLASSIFIED
•CCUNITV CLAStiriCATION OF THIS PAOC (Whmt Data Snlar««

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I NEPORT NUMRCN

SAMSO-TR-75-290
2. OOVT ACCESSION NO 1. RECIPIENT'S CATALOO NUMBER

4 TITLE fand Subdil«;

SAMSO Computer Language and Software
Development Environment Requirements

S. TYRE Or REPORT • PERIOD COVERED

Final Report
4-15-75 to 6-1-75

6. PERFORMING ORG. REPORT NUMBER

TR-0076(6112)-2
7. AUTHORr*;

E. D. Callender
M. Feliciano

L. D. Jennings

1. CONTRACT OR GRANT NUMBERf*;

F04701-75-C-0076

9 PERFORMING ORGANIZATION NAME AND ADDRESS

The Aerospace Corporation
El Segundo, California

10. PROGRAM ELEMENT, PROJECT, TASK
AREA • WORK UNIT NUMBERS

I. CONTROLLING OFFICE NAME AND ADDRESS
Space and Missile Systems Organization
Air Force Systems Command
Los Angeles, California 90045

12. REPORT DATE

15 December 1975
13. NUMBER OF PAGES

_ ^7
14 MONITORING AGENCY NAME A ADDRESS«/ifl//arwir /ram Centrelllnt Ollle») IS. SECURITY CLASS, (el thlt fport)

Unclassified

ISa. DECLASSIFYATION/DOWNGRADING
SCHEDULE

16 DISTRIBUTION STATEMENT roffAt« Raport;

Approved for public release; distribution unlimited

»7. DISTRIBUTION STATEMENT fo/Ma abtrrae« antararftn Slock 30, i/dfirarant froai RaporO 7* <C\\

r-' ,:'■:■' ■■■■

-rr«- 18. SUPPLEMENTARY NOTES

/• •■'■■' ■'

r 'u

19. KEY WORDS fConlJnua on ravaraa a/da // naeaaaary and Idtnllly by block number)

Computer Language
Software Development Environment
Language Constructs
Implementation Constructs

^r

20. ABSTRACT fConilnua on revert» tide II naeaaaary and identify by block number)

The purpose of this report is to identify the higher order language require-
ments and software development environment requirements for SAMSO
applications. This report is prepared in response to AFSC Program Direc-
tive E215-1-75-30 on Higher Order Language (HOL) Standardization for
Computer Resources in Systems. Three major sections constitute this
document: (1) functional requirements for SAMSO computer programs,
(2) higher order language constructs and software development environment

OD F0RM 1473
(FACSIMILCI

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE fHTian Del» Entered)

UNCLASSIFIED
MtCUglTV CLA»SiriCATION OF THIS PAOt(Wh*i Of Ent»f4)
I». KEY WORDS (Conllnumd)

Compiler
OperatiriR System
Software Testers
Software Qualifiers
Coding Standards
Coding Standard Enforcer

20 ABSTRACT rCon«/nu»d)

constructs necessary to support the functional requirements, and (3)
recommendations. It is technically feasible for the vast majority of
all computer programming for new SAMSO projects to be done in one
higher order language. If this technical feasibility is coupled with the
increasing cost of software development and maintenance, standardi-
zation on a single higher order language becomes highly desirable.
If cost savings in software development and maintenance are to be
realized, language standardization is only part of the issue. The other
main features that must be attacked and successfully resolved are the
creation of a standard software development environment and the
establishment of a program for the specifications, development, test,
and maintenance of this single higher order language and its associated
software development environment.

t •
UNCLASSIFIED

SECumTY CLASSIFICATION OP THI» PMl(*h*> Dalm Knltfd)

msjn« lor

Hill r
t i'ii!t-iii t-nnM- 'v i f;

D,> k • .. J ' . 611/:. .

fl

Approved by

L. Sashkin, Director
Data Processing

Subdivision
Information Processing Division
Engineering Science Operations

'ZnBtJz-
R.O. Bock, Group Director
Guidance and Computer Group

Directorate
Technology Division
Development Operations

Publication of this report does not constitute Air Force approval of the

report's findings or conclusions. It is published only for the exchange

and stimulation of ideas.

FT^A"« P. DYKE, Lt Col^ USAF
Cfoief, Coinputer Technology Division
Deputy for Technology

it*

PREFACE

This report was prepared for the Technology Division Guidance

and Computer program office of The Aerospace Corporation by members

of the Information Processing Division. The authors gratefully

acknowledge substantial contributions and helpful suggestions to this

report on the part of B, A. Corn, H. Hecht, D. J. Reifer and Major

C. S. Jund (SAMSO/DYAC).

CONTENTS

1. INTRODUCTION 5

2. SAMSO MISSION 7

3. SAMSO COMPUTER PROGRAM REQUIREMENTS 9

4. RECENT SAMSO EXPERIENCES USING HIGHER ORDER
LANGUAGE IN OPERATIONAL PROGRAMS 11

5. SAMSO SOFTWARE CONSTRUCT REQUIREMENTS 13

5. 1 Introduction 13

5.2 Language Constructs 14

5.2. 1 Program Elements 15

5.2.2 Data 16

5.2.3 Operators 19

5.2.4 Structure of Programs 19

5.2.5 Control Structures 21

5.2.6 Input-Output 23

5.2.7 The Need for Direct Code 23

5. 3 Implementation Constructs 24

5.3.1 Implementation for Any Compiler 24

5.3.2 Compile Time Environment 25

5. 3. 3 Run Time Environment 25

5.4 Compiler and Operating System Testers/
Qualifiers 26

5. 5 Coding Standard Enforcers . 26

5.6 Relationship Between Software Development
Environment Requirements and Software
Management Controls 27

6. SAMSO/AIR FORCE REQUIREMENTS FOR CONTROL
OF SOFTWARE DEVELOPMENT 29

■2-

CONTENTS (Continued)

7. RECOMMENDATIONS 31

8. POSTSCRIPT 35

APPENDICES:

A. SAMSO FUNCTIONAL REQUIREMENTS FOR
COMPUTER PROGRAMS 39

B. COMPILER WRITING TECHNOLOGY ASSESSMENT 43

C. OUTLINE OF PLAN FOR SOFTWARE DEVELOPMENT
REQUIREMENTS 55

FIGURES

B-I. A Compiler 45

B-2. Intermediate Language Standardization 51

C-l. Program Plan 57

TABLES

I. Data Types 18

II. Data Groups 18

III. Operators 20

IV. Structure of Programs 20

V. Control Statements 22

VI. Life Expectancy (Years) 36

1. INTRODUCTION

This report has been prepared at the request of the Computer

Directorate. Technology Division. It ascertains the SAMSO higher order

language and software development requirements. The need for this infor-

mation arose from AFSC Program directive E215-1-75-30 on Higher Order

Language (HOL) Standardization for Computer Resources in Systems, and from

a report of the Department of Defense working group on "Strawman HOL

Requirements. " The report is based on the authors1 background in the require-

ments of the various cited projects. The short time available for the prepara-

tion did not permit formal canvassing of SAMSO program offices.

Three principal sections are provided herein; (1) functional require-

ments for SAMSO computer programs, (2) higher order language constructs and

software development environment constructs necessary to support the

functional requirements, and (3) recommendations. Appendix A deals with a

detailed review of the SAMSO functional requirements for computer programs;

Appendix B concerns an assessment of compiler writing technology; Appendix C

provides an outline of a plan for specifying such a language and its associated

implementations.

SAMSO requires the capability to obtain high quality computer pro-

grams at reasonable cost for a wide variety of space and missile programs.

Once obtained, these computer programs must be maintained and an upgrade

of functional requirements often imposes a requirement for modifications in

the supporting software. Costs to support such software cycles exist in an

environment where there has been a dramatic shift in the relative cost of

computer hardware and software. The shift has been from hardware costs

being dominant to software costs being dominant. Also, Air Force programs

are increasing in functional complexity and usually rely on a rapidly changing

technology. These changes have made the production of software an extremely

important and costly activity. One step that can be taken to ease the spiraling

costs is to standardize, where possible, on a higher order language and

associated software development environment. This report is a review of the

requirements in connection with such a standardization.

•

2. SAMSO MISSION

SAMSO encompasses seven major System Program Offices (SPO's),

the Space and Missile Test and Evaluation Center (SAMTEC), and the Air

Force Satellite Control Facility (AFSCF). Each of these deputy organiza-

tions uses software in several of the following categories:

Operational Flight Programs

Range Safety and Control

Communications

Command and Control

Simulation and Training

Automatic Test Equipment

Support software for each of the above categories

This list of categories should not be considered exhaustive. It is included

to display the diversity of applications presently employing software as a

major systems component. SAMSO's diverse applications range from

operational flight programs for small, militarized computers (e.g., Minute-

man) to large-scale command and control (e.g., AFSCF). Appendix A con-

tains a breakout of the functional requirements for computer programs.

However, to assist in determining the impact of such functional require-

ments upon computer language requirements, a classification scheme that

reflects the computer hardware and software constraints found in practice is

used. This classification schenne, used below, is different than the one used

in Appendix A to determine functional categories.

In terms of language requirements, the software usage can be

classified into:

• Flight Programs

• Real-Time Responsive Programs

• Other Ground Programs

-7-

Later comments nre orpanized on the basis of this classification. It is

characteristic of the SAMSC) mission that computer programs are developed,

frequently independently tested, and usually maintained by contractor

organizations, drawing personnel from tht general software labor pool.

As a consequence, language features that ire at variance with commercially

used programming practices may constitute a handicap.

-8-

3. SAMSO COMPUTER PROGRAM REQUIREMENTS

To analyze computer language requirements, software programs

will be placed into one of the following three categories: (1) on-board flight

programs, (2) real-time responsive software support programs, and (3) non-

real-time programs. Programming of the first type is characterized by an

environment of limited size, high reliability requirements, and possible

hostile or system degrading effects. Usually the amount of computer storage

and processing capability is extremely limited. A very reliable software

system is required since software malfunctions may result in mission

degradation or failure. Also environmental factors such as nuclear effects

that may cause hardware and software malfuncvions must be taken into

account.

The remaining two categories of programs assume that the hardware

system is on the ground and is under the physical control of friendly per-

sonnel. Usually the hardware resources are sized such that if efficient use

is made of them, the necessary task can be accomplished in the desired

period of time. Real-time responsive computer software systems include

such things as real-time ground support, ground computations for radio

control guidance schemes, real-time range safety work, and certain por-

tions of data reduction activities where the data obtained from an analog

source must be suitably processed in real-time to prevent it from being lost.

4. RECENT SAMSO EXPERIENCES USING HIGHER ORDER
LANGUAGE IN OPERATIONAL PROGRAMS

SAMSO has had over 10 years of experience in the use of higher

order languages in operational programs. One of the first large operational

systems to use a higher order language was the AFSCF. They have found

JOVIAL (J4) to be a very useful language. JOVIAL (J3B) and FORTRAN

will be used in the Small Processing Station Program for the Defense Support

Program. The Global Positioning Satellite Program has decreed that all

computer programs will be written in FORTRAN. For many years various

portions of support and automatic test and evaluation software have been

written in FORTRAN for a number of different operational programs.

SAMSO and The Aerospace Corporation have been actively involved

for the past 5 years in the development and application of a major software

system designed to facilitate the production of compilers of higher order

programming languages for the minicomputers used in space, missile, and

avionics systems. The compilers developed for these real-time processors

must satisfy stringent requirements for the production of executable code

that is highly efficient both in memory utilization and in execution speed.

The methodology must also be cost-effective to use, since the wide variety

of digital processors available for weapons systems applications requires a

multiplicity of compilers.

The basic system, Space Programming Language Implementation

Tool (SPLIT), was used successfully to develop compilers that accept the

source language, Space Programming Language, and generate executable

code for the Honeywell DDP-516 and RCA SCP-234 computers. The first was

used to implement the flight program and ground laboratory support software

required for the Space Precision Attitude Reference System; the second to

implement the flight program for the Defense Meteorological Satellite. Each

compiler was produced in 10 man-months and delivered in 5 calendar months

11

~i!tm*mi*tim*rmmmi» mmmmr ■*,*f*iimamm*i**mm*mMt><>«*rv«t?m™}mrwmmummmm^

which demonstrated the effectiveness of the methodology in meeting all

efficiency goals in a cost-effective manner.

Following completion of thnse programs, Aerospace began a 2-year

program sponsored by the SAMSO Deputy for Technology to improve and enhance

the basic system. Because no standaiu programming language currently

exists for the general class of real-time computational systems, SAMSO/

Aerospace felt it was important that the system be enhanced and expanded to

readily accept any of the various languages now in use for such systems. It

was also deemed necessary to improve the operational efficiency of the

system to minimize the cost of its use.

12

-

5. SAMSO SOFTWARE CONSTRUCT REQUIREMENTS

5. 1 INTRODUCTION

The intent of this sertion is to briefly delineate the language con-

structs and software development environment constructs that are necessary

to support SAMSO software development activities. The intent is to provide

a set of language constructs that will support a stable, well defined environ-

ment for most applications (note'^ost'^s opposed to'^ll"). Emphasis will be

on Mh ibility; that is, sacrifices of clarity and ease of use will not be made in

the name ol efficiency. However, such conflicts are deemed to be rare.

There should be an axiomatic definition of the syntax of the language

in the sense that a formal grammar for it should exist. The grammar should

be context free and it should not contain extraneous elements. In the termi-

nology of the Backus-Naur form, it should not contain useless productions.

The syntax should be unambiguous and it should be provable that this is the

case. Also, the syntax should be consistent. Moreover, the constructs of

the language should be free of ad hoc restrictions. The semantics of the

language should be determinable fronn the description. A reasonable interpre

tation of a construct should be the only interpretation for that construct.

There should not be a facility that allows extension of the syntax. The syn-

tax should be based on conventional forms. Spaces should be used as token

separators and a delimiter should be used to sepaiate or terminate state-

ments. The key words should be short and mnemonic.

As the syntax and semantics for such a language are being prepared,

the following goals should be kept in mind. The language should support the

notion of self-documentation at the code module level. This does not mean

In the remainder of this report, when the term "the language" is used, it
refers to the higher order programming language under discussion as the
main topic of this report.

13.

that any coding which is done will automatically be self-documenting, but

rather that with good coding discipline, self-documentation can be achieved.

Another goal is that it should be relatively easy to train knowledgeable

programmers in the use of the language constructs and software development

environment constructs. To propeily interpret this goal it should be re-

membered that the language is being designed for use by personnel experi-

enced in the development of highly complex software projects. To achieve

these goals and produce implementations that will result in efficient execu-

tion-time code requires a delicate balance between the demands of the users,

the current software technology, and the resourcefulness of compiler and

system writers.

Of equal importance to the set of language specifications is the set

of specifications that define the software development environment. Here,

too, the specifications are designed to cover most applications. Special

features will not be included for rare case? and the specifications will be

based upon software practices that are well within the state of the art. In

the specifications for both language and software development environments

there are features which reflect the stringent requirements for verification

and validation of software that is to be used in operational SAMSO programs.

For example, all data elements must be explicitly declared and initialized.

The initialization may be to a default value or done explicitly by the coder.

5.2 LANGUAGE CONSTRUCTS

This section contains an outline of language constructs necessary to

support SAMSO computer programming. By intent, this section is not a set

of specifications for language constructs; it is merely a listing of those

constructs which are deemed necessary with sufficient descriptive material

such that a language designer could determine the intent of the requester if

he were to prepare the detailed specifications for such a language. Con-

structs for such a programming language should cover the following seven

areas:

-14-

Program Elements

Data

Operators

Structure of Programs

Control Structures

Input/Output

Direct Code

The extent of the constructs in any particular area determine the ease with

which an application may be implemented. If a particular construct is not

available, the programmer can affect its usage by additional programming or,

if necessary, by relying on code written in assembly or machine language.

5. 2, 1 Program Elements

The two basic ingredients from which programs are created are

an alphabetic set and basic program elements. The alphabet of the language

should be specified with rules that will allow for an unambiguous implemen-

tation of the alphabet in a 64-character set. The basic elements of the

language are built from the alphabet and constitute the primitives from which

the syutax is established. Ra^ic elements include identifiers, key words,

statement delimiters, and separators. These elements are used in the con-

struction of simple statements and groups of statements making up a block of

program statements. The basic elements of the language should be specified

unambiguously and it should be possible to construct an efficient program to

recognize the basic elements used in a source program. This can be

achieved, for example, by defining the primitives as an extended regular

expression over the alphabet. Sufficient flexibility and richness of the primi-

tives should exist to allow for naturalness and ease of use. For example,

it is essential that alphanumeric characters of a reasonably large number be

allowed for labels such that meaningful names can be used.

-15-

5.2.2 Data

The construrts necessary to allow the programmer to handle a wide

variety of data fall into five classifications: (1) data type, (2) aggregation of

data elements, (3) initialization of data elements, (4) scope of data, and (5)

data storage allocation (and storage'control).

Data may exist as either constants or variables. The constructs in

the language must be able to handle the following:

N ume r i c

Integer

Fixed Point

Floating Point

Logical

Boolean

Textual

Character

Bit

Location

Pointers

Numeric elements will be provided with multiple precisioning. The language

constructs will not provide the capability for new data types. Table I com-

pares the requirements for various data types versus types of computer

programs.

To aid in verification and validation all data elements must be

explicitly declared both with respect to type and initial value. The initial

value is determined at compile time. Further, it is felt that there does

exist a requirement to have a "RESET" capability for reinitialization of data

during execution time, for example, to support the operating systems that

must be written for the special purpose flight computers.

To support the ability to manipulate a large amount of data (with a

few statements), it is necessary to be able to aggregate data elements in

• 16-

MMM ■W«»?WWKI«lW'«~»«,WJ'^l«itl!W»JWW!l^^

meaningful ways. The constructs mast support the notions of (1) a scalar,

that is, a single data element, (2) an array of data elements which consists

of a homogeneous set of data elements each of which can be referenced by

using the array name and a subscript, and (3) some form of aggregation of

a nonhomogeneous set of data elements (see Table II). An example of this

latter type is a table which is a set of arrays where the individual arrays can

be different in size and type. Although it is clearly possible to have the

constructs for a number of other forms of data aggregation for SAMSO

applications, such constructs are not necessary for most of the required

applications and, hence, they should not be included in the required con-

structs for the language.

It is necessary to be able to initialize data. Constructs should be

available that will allow this initialization to be done at compile time and

during execution. The ability to do such initialization should support all

data types and all forms of data aggregation.

It is necessary to have constructs in the language that support the

declaration of the scope of a data element. The scope will be fixed at com-

pile time, that is, it is statically--not dynamically determined. TVe

language constructs will allow the scope of a data element to be restricted

to only those modules where it is intended to be used. However, the capa-

bility should exist to identify data within a particular scope that is exportable

to other scopes. This should include separately compiled scopes. There

should be a hierarchy for scopes that vary (under user control) from local

through global. In addition, there should be other scopes such as "inacces-

sible" which are under control of the compiler and operating system. An

example of the application of inaccessible data are the parameterization by

the compiler of data representations that are machine dependent; for example,

the number of bits in a character and the particular internal representation

for the externally uniform character set.

17.

Table I. Data Types

Flight
Heal T

Groun
ime
d

Other
Ground

N ume r i c

Integer X X X

Fixed Point X y X

Floating Point X X X

Multiple Precision X X X

Lopical

Boolean X X X

Textual

Character X X

Bit X X X

Location X X X

Pointers X X X

Table II. Data Groups

Real Time Other
Flight Ground Ground

Array

1 and 2 Dimensional X

n Dimensional X X

Table X X

18-

There should be constructs in the language that allow the user, if

he so wishes, to control data storage allocation. This includes the ability

for dynamic allocation and deallocation of storage areas. The specifications

must clearly establish the rules for static and dynamic scope of allocation.

Implicit storage allocation will be provided as the default option.

5.2.3 Operators

One of the major functions of a computer program is to appropriately

modify a set of data elements. Such modification is done through a variety of

operators. The order of evaluation of operators must be clear. The type

of operators that must be available at the data element level are arithmetic

and relational operators for both scalar and nonscalar data, logical operators

(and, or, not, exclusive or) and textual and string operators (concatenation,

substring and length). There must be a capability within the language to

handle fixed point arithmetic and the associated scale factors (see Table III).

Careful consideration needs to be given to type conversion operations. For

example, one needs to be able to automatically convert from fixed to floating

representation. Hovevc- type conversions, such as the following example,

often lead to implemented, ion ambiguities and should be avoided.

Example:

Real x, y;

String a;

Read (a);

x: = a + y;

(The above example is only given for the purpose of illustration. It is not

intended to imply specifications for the language.)

5.2.4 Structure of Programs

The experience of the past few years has indicated the wisdom of

providing language constructs that would support what is commonly called

structured programming. A more descriptive term is structured coding for

control of program flow. The fundamental construct here is the notion of a

19-

Table III. Operators

Flight
Real Time

Ground
Other

Ground

Arithmetic

Scalar

Nonscalar

Ke lational / Boolean

Textual/St rin^

X

X

X

X

X

X

X

X

X

X

X

Table IV. Structure of Programs

Block Structure

Main Program

Sub Program Types

Internal Procedures

In-Line Code

Subroutines

Reentrant

1 •! < • r ' i r s : ve

Built-in Functions and
User Defined Functions

Data Control Between
Sub - Programs

Control of Variable Storage

Flight
Real Ti

Grour
me
id

Other
Ground

X X X

X X X

X X X

X X X

X X X

X X X

X

X X X

X X X

X X X

■ 20.

block of code. The language should have the ability to indicate the

"BEGINNING" and "END" for any block of code. Further, every "END"

must match exactly one "BEGIN. "

The notion of blocks of code extends upward. The language should

allow programs to be structured into a hierarchy of subprogram types (see

Table IV). At the top of this hierarchy is a main program, followed by inde-

pendently compiled subroutines. Within a particular subroutine there are

different types of subroutine dependent subprograms. An example of these

are internal procedures and function statements. It is necessary to be able

to efficiently direct the control of program flow from one module to another.

In addition, it is necessary to have constructs within the language that allow

data to be shared across the boundaries of the hierarchal program structure.

Just as there is a hierarchy in program control structure, there should be a

hierarchy in the ability to share data. The notion of compool, global versus

local variable and additional constructs such as "application inaccessible"

need to be utilized.

5.2.5 Control Structures

There are four types of control structures. There are constructs

to support (1) transfers, (2) conditional structures, (3) iteration, and (4)

multi-tasking. It is mandatory that the language be able to support nesting

of different forms of control statements (see Table V). There must be

language constructs to support (1) conditional and unconditional transfers,

(2) events or interrupts and (3) switches. The best example of a construct

for transfer is the famous "GO TO. " The language construct for event or

interrupt will support a real-time clock and the notion of a real-time event.

The results of ail possible states will be explicitly stated for all control

structures. The existence of side effects is recognized and will be addressed

in the specifications. The types of constructs necessary to support a struc-

tured coding environment in the area of conditionals include the following

types of statements: (1) if, (2) if then else, (3) case (a generalized1^ then

else"statement). To support iteration there should be the following types of

-21.

Table V. Control Statements

Flight
Real Time
Ground

Other
Ground

Transfer

GO - TO

On Interrupt or Event

Switch

Conditional

If

If Then Else

Case

Iteration

Do

While

until

Multi-tasking

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X

X

X

X

X

X

X

-22

Statements: (1) do, (2) while, (3) until and (4) a mechanism to "escape" from

the middle of an iteration loop. To support multi-tasking or parallel pro-

cessing capabilities should be included for (1) creation, (2) activation, (3)

synchronization.and (4) termination of the processes.

5. 2. 6 Input-Output

Input and output operations are requued for the computer to com-

municate. Such statements can be divided into two classes: declarative

statements that describe the file, the devices, and the data formats and

imperative statements that are used Lo effect the actual I/O operation and to

control the I/O device. The I/O language constructs for flight programs

can be relatively simple since the number of on-board devices is very

limited. However, for all ground applications the constructs must be

extremely broad to allow one to access the wide proliferation of available

devices and data formats. There should be the ability to dynamically assign

and reassign I/O devices. The types of permitted declarative statements

should support both formatted and unformatted record transmission. For

example, the requirement is almost nonexistent for formatted record trans-

mission within a flight program while it is in actual operation. However,

during program development, verification and validation, and auiomatic test

and evaluation of such a program, there exists a requirement for formatted

record transmission.

5.2.7 The Need for Direct Code

For any project which requires the use of a computer system of

limited capabilities it is most probable that there will be a requirement to

be able to write modules of code in machine lang aage (assembly language).

This requirement exists so that one can meet the demands of a very efficient

use of such a computer system. Experience with SAMSO projects in the past

indicate that for most applications the amount of such code should be under

15 percent of the total amount of code produced. However, it is often a very

crucial 5 to 10 percent of the t». k«il amount of code. In the past, this require-

ment has been satisfied by allowing the programmer to "step down" to

.23-

assembly language in the middle of a module of code written in a higher

order language. The requirement for this form of linkage was dictated by

the need for efficient execution time code. The linkage of code modules

written in a higher order language to those written in assembly language can

be made in other ways. Because of the need for clarity, transferability, and

maintainability in any Air Force standard language, there should be no

capability to "step down" within a module of code. This requirement for

linkage will be met in one of the following ways:

• Direct linking of two independently compiled or assembled
subroutines,

• The inclusion of open routines that are either a part of the
system library or a part of the user-defined library,

5.3 IMPLEMENTATION CONSTRUCTS

This section complements Section 5. 2 in that it contains an outline

of the requirements that should be reflected in any implementation of the

language constructs and supporting software environment. The section con-

tains material relative to (1) implementation philosophy for any particular

compiler, (2) the compile time environment, and (3) the run time environ-

ment. Again, the intent is to provide a stable and standard environment

based upon well developed software constructs.

5. 3. 1 Implementation for Any Compiler

Any compiler for the language must implement only the language

specified and may not expand on the language specifications. Further, any

implementation must implement the entire language; there will be no proper

subsets. However, taking into account the hardware limitations of some of

the small computers, a compiler for a particular machine need not run on

that machine, i.e., self-hosting is not required. Further, a particular

compiler may support the efficient use of only a portion of the language

features. In particular, in such a situation the compiler will produce warn-

ing messages to indicate when features of the language are being used that

result in inefficient code. When this feature is combined with "automated

.24-

coding standard enforcers, " the desired operational effect of language sub-

sets can be achieved in practice. The compiler should have the capability

of producing optimized code. For example, the compiler will evaluate con-

stant expressions at compile time. Depending upor the particular implemen-

tation, the facility may exist such that the user can determine whether speed

or memory ufilization ie to be optimized. To the maximum extent possible,

the compiler and the supporting software aids for any particular implemen-

tation will be written in the language.

5.3.2 Compile Time Environment

The language and compile time environment will support a number

of types of compiler directives. These include debugging facilities, code

modifications, and the ability to obtain statistical information about the be-

havior of the program. The dynamic debugging facilities will be given in

terms of the source language and will include commands to set and reset

break points, to set variables, and to return control to the user in the event

of a program error. The language will provide compile-time-executable

statements which will include (1) the ability to modify and/or augment sec-

tions of the code and (2) to generate code for run time checking of variables,

A uniform set of diagnostic messages will be described that will enable the

user to rapidly pinpoint the source of his syntactical error. Where feasible,

types of variables, expressions, and parameters will be checked for com-

patibility across separate modules of code.

5. 3. 3 Run Time Environment

The run time environment will support the debugging facilities

described above. In addition, when requested, it will support the range

checking features described in the compile time environment. Run time

errors will be reported in terms of the structure of the source program and
there will be a standard set of diagnostic messages. Parameters between

code modules will be checked at loading and must agree on type and size.

There will be a standard facility to describe and support the structure of a

program. This will include both the overlay of code and the overlay of data.

-25-

The user will be able to cause separately compiled modules of both program

and data to be inserted into his program. Further, such insertions of pro-

grams may be written in a different language. There will be a facility to

support both system and user libraries. There will be a standard method of

interfacing with the system, i.e., the job control language and associated

control statements. To facilitate the exchange of programs and data between

different computers, there will be a common data format for transferring

records between machines.

5.4 COMPILER AND OPERATING SYSTEM
TESTERS/QUALIFIERS

To ensure that the language and environment standards are followed

it is necessary to have a means of checking any particular implementation to

determine how closely it meets such standards. Since the experience of

software developers over the past 15 years indicates that such "certification"

is not easily achieved, it 'a necessary to have a series of software support

tools to aid in this qualilication process. Such tools include an extensive

set of test cases and supporting software aids. The test cases should fall

into one of the following three classes:

• Main-line cases that test the commonly encountered language
construct forms and operating system conditions. These
should include numerous small cases that test one or more
specific constructs of the language as well as some large
computer programs.

• Barely "legitimate" cases that probe the edge of the specifica-
tions for both the language and the software development
environment.

• Barely "illegal" cases that probe the edge of the specifications
ensuring that invalid inputs raise proper diagnostic messages.

5.5 CODING STANDARD ENFORCERS

Although higher order languages, structured programming,and other

comparable developments in software technology provide much assistance in

making individual pieces of coding intelligible, it is still very easy to create

•26.

confusing code. One technique to further add clarity to code and prevent

undesirable programming practices is the use of automated coding standard

enforcers. The function of such an enforcer is to prevent coding techniques

or particular language constructs from being used in a particular application.

Although the language constructs delineated in Section 5.2 provide support

for "structured programming, " they in no way create an environment in

which a programmer must produce structured code. If a particular project

office wishes to insist that the programs be written using structured coding

techniques, such enforcement should be done through the use of an automated

coding standard enforcer. Another requirement for such enforcers arises

when, because of hardware or other constraints, a program office decides

not to use certain features of the language. Using coding standard enforcers,

one can obtain the desirable effects of subsets of a language without sacri-

ficing transportability of code or other economies of a single standard

language.

5.6 RELATIONSHIP BETWEEN SOFTWARE DEVELOPMENT
ENVIRONMENT REQUIREMENTS AND SOFTWARE
MANAGEMENT CONTROLS

AFM 800-14 (Volume II) presents a description of the planning,

processes, and procedures used in the acquisition of computer hardware and

software to meet data processing requirements in systems procured by the

United States Air Force. Early in the development phase of the system

acquisition cycle, computer resource requirements are established. There

is a strong undertone in the reading of this manual (AFM 800-14) that a

well-stocked library of standard software tools exists. As of the date of

this report, this is not the case. This report is an effort to describe the

requirements for such standard software tools. Developed against such

requirements, these software support tools would then become members of

the library against which the management directives of AFM 800-14 can then

be followed.

■27-

6. SAMSO/AIR FORCE REQUIREMENTS FOR CONTROL OF
SOFTWARE DEVELOPMENT

The compiler and the associated support software tools necessary to

round out the software development environment are complex and sophisti-

cated computer programs. The thrust of the effort to standardize on a higher

order language and software development environment for SAMSO computer

programs is motivated by anticipated cost savings and reduction in elapsed

time necessary to implement a particular operational computer program.

If these two goals are to be achieved, it is necessary that not only standards

be established, but that these standards be enforced and that software support

tools be made available across the boundaries of SAMSO/Air Force opera-

tional programs. For example, if the methodology of compiler implementa-

tion is not carefully controlled, the compiler can introduce into the system

both semantic ambiguities in the interpretation of the higher order language

and a myriad of distinct, nonstandard mappings to the languages of the

various target machines, thereby defeating the purpose of a single higher

order language. Also, as indicated in Appendix B, SAMSO/Aeroapace has

developed a compiler writing technology that should be used in the implemen-

tation of any particular compiler. To achieve these goals it is necessary for

SAMSO to maintain control of all phases of the implementation and maintenance

of any particular compiler and its associated software development environ-

ment. This means that a group should be establuhed to act as a focal point

for such a development. The Air Force should own the proprietary rights for

the compiler writing system used to develop any particular compiler and

should be able to provide this system and any previously developed compiler

or other software support tool as Government Furnished Equipment to any

software contractor. To ensure that the standards for both language and

software development environment are met, this group would test and certify

any particular implementation. This group would also be the focal point for

all maintenance activities, for the receipt of trouble reports, the issuance of

quick fixes and periodic updates.

-29-

RECOMMENDATIONS

Based upon the analysis given above, it is technically feasible lor

the vast majority of all computer programming for new SAMSO projects to

be done in a higher order language. When this technical feasibility is com-

bined with the increasing cost of software development and maintenance,

standardization on a single higher order language becomes highly desirable.

However, language standardization is only part of the issue, if cost savings

in software development and maintenance are to be realized. The other main

features that must be attacked and successfully resolved are the creation of

a standard software development environment and the establishment of a

program for the specifications, development, test, and maintenance of this

single higher order language and its associated software development environ-

ment. The above recommendation should not be construed to imply that all

programming can be done in a higher order language. As long as there are

hardware limitations that are manifested as restrictions in memory size and

instruction e.j-'cution time, there will be a need for code written in assembly

language. However, such modules of code should be written only in excep-

tional circumstances and should be organized as independent subroutines or

subprograms. Also, the interfaces between programs written in assembly

language and those written in a higher order language should be well defined

as a part of the software development environment.

The language specifications that are necessary within any higher

order language for SAMSO projects have been outlined above. Throughout

the SAMSO software community there is general agreement on the require-

ments for software constructs necessary for (1) data declaration, '2) data

grouping, (3) imperative instructions, (4) control statements, (5) program

structure, and (6) input/output. Problems often arise in language specifica-

tions when decisions are being made as to the degree of sophistication re-

quired. The language must be rich enough to handle a wide range of applica-

tions but should not be so expansive and general that it becomes hard to

31-

understand, implement, and use. The experience obtained through the use of

JOVIAL, FORTRAN, and SPL should be taken into account in the actual

specification process. The specifications should be a blend of sufficiently

rich constructs that support a broad spectrum of applications.

Of equal importance to the development of a set of specifications for

a higher order language is the development of a set of specifications for the

software development environment. Such things as debugging facilities,

overlay structure of progra n., and the control philosophy of the operating

system must be specifie ' and standardized, if indeed the economies of

language standardization are to be realized.

As a higher order lar.guage is being specified it is important to

realize that just as software for a flight or ground system has a life cycle,

a higher order language will also follow a similar pattern. The initial pre-

paration of specifications for such a higher order language is only the first

step in such a life cycle. If successful language standardization is to be

achieved, it is necessary that there be a 2- to 5-year specification, develop-

ment, test, and evaluation effort before the use of the higher order language

ran be mandated for all new SAMSO programs. Such a language should be

specified and the specifications reviewed by each SAMSO program office with

experience in software development. This should be followed by a pilot

implementation and use by a few SAMSO program offices so that the language

constructs and software development ervironment can be evaluated and

refined prior to final specifications. After the pilot program, standards,

and final specifications can be established and implementation can begin.

Two essential elements of this recommendation are the need for a

higher order programming language for new SAMSO projects and the need for

standardization in the software development environment. In addition, to

ensure the maintenance and implementation of these specifications across all

SAMSO programs, a group should be created with the responsibility for the

32.

implementation, development, verification, and certification of all language

processors and related software support tools that form the software develop-

ment environment. This group would also be the focal point for all mainten-

ance activities, for the receipt of trouble reports, the issuance of quick

fixes, and periodic updates.

•33-

8. POSTSCRIPT

Software is continuing to increase as an important subsystem com-

ponent of all large weapon systems. The costs to produce reliable software

are continuing to rise concurrently with a continuing increase in software

complexity. An estimate of the yearly expenditures on software by the Air

Force is $1.5 billion per year. It is reasonable to assume that $500 million

per year of this cost is for weapon system software. If the current trend

continues, by 1980 this weapon system software cost will be well over $700

million per year. On the average, 20 percent of the software costs of any

software project are for software support tools, such as language translators,

operatin{(systems, and library support. By using a single higher order

language and standardizing on the software development environment, this

20 percent cost estimate should be reduced to 5 to 10 percent. Other cost

savings should be achievable as secondary efforts. For example, (1) it will

not be necessary for a new project to specify a language with the resultant

slippages in the project schedule as design errors in the language specifica-

tion impact the application development, (2) standardization in the language

and software development environment will permit sharing of application

programs, and (3) once the single higher order language has been used for a

few years, programnier training costs will be substantially reduced.

Table Vi gives the yearly savings for weapon system software costs after the

standard has been established and the first implementation made. The mea-

sure of operational life expectancy begins with the first implementation of

the standard. For example, if work on the standard is assumed to have

begun immediately and took 5 years to design, pilot test, and establish, the

year 2000 must arrive before a life expectancy of 20 years can be reached.

A life expectancy for such a language of 20 to 40 years is not unreasonable.

After all, FORTRAN is 15 years old and going strong.

Information Processing/Data Automation, Implications of Air Force Com-
mand and Control Requirements in the ^(Fs (CCIP-85); "Highlights,"
Volume I, SAMSO/XRS-71-1 (Los Angeles, Calif. : SAMSO, Los Angeles
Air Force Station, April 1972) (Page 4).

-35-

Table VI. Life Expectancy (Years)

$
(Billion)
Savings

10 20 30

1.05 2.1 3.15

Unfortunately, one cannot wave a magic wand and achieve standardi-

zation and the resultant cost savings. However technically feasible and

desirable the goals of a single higher order language may be, the transition

period from the environment of today to a single higher order language en-

vironment is a lengthy and difficult one. For example, when this report

was reviewed by System Program Offices within SAMSO they emphasized

their present and future reliance on commercially supported languages.

Several advocated that any required DOD HOL features be developed as ex-

tensions of a commercially supported language, preferably FORTRAN. The

most significant arguments in favor of this position are (1) large investment

in proven programs and programming tools, (2) availability of trained per-

sonnel within SAMSO and particularly within contractor organizations, and

(3) the ability to directly use future software support developed by commer-

cial organizations and the likelihood that machines will be optimized with

regard to implementation of commercial languages.

On the other hand, several SAMSO organizations are heavily depen-

dent on JOVIAL J4 and 'would, of course, like to see any new language be as

compatible as possible with that dialect. These System Program Offices also

make use of the COMPOOL feature and will be in great difficulty if that is

not implemented in any new DOD language development.

Further, such standardization on a single higher order language

and associated software development environment will not eliminate many

of the difficulties of producing reliable software for complex weapon systems.

• 36.

Further, unless (1) the single higher order language is a good language in

which to program, (2) implementations are carefully certified and high

standards maintained, and (3) a single group is given responsibility for the

maintenance and extension of the language, the whole effort towards standar-

dization will be, at best, an expensive exercise in futility.

The following questions need to be answered before major steps are

taken along the road to standardization:

• Will the directive requiring use of a single higher order
language and its associated software development environment
have sufficient backing such that it will be followed in practice?

• Will the group responsible for the maintenance and extension
of fho language be motivated to establish an active user group
to encourage feedback from the users to the implementers and
maintainers ?

• Will there be time for specification, pilot implementation, and
initial shakedown of the new language before its use is made
mandatory ?

• Will the development program and continuing maintenance
program be adequately funded?

• How would the code written under this new higher order language
interface with that vast body of FORTRAN code currently used
and being extended under contractors for the Department of
I^efense ?

• The existence of a standard language and software development
environment for weapon systems will be much easier to accom-
plish and may result in defacto standardization of computer
hardware. Is such standardization desirable?

■ 37-

•

APPENDIX A. SAMSO FUNCTIONAL REQUIREMENTS FOR
COMPUTER PROGRAMS*

A. 1 INTRODUCTION

The purpose of this appendix is to provide a brief overview of the

SAMSO operational programs that require computer program support. This

overview is provided by listing the generic functions and by dividing such

functions into (1) mission planning and technology development, (2) mission

development and mission flight, and (3) mission support.

A. 2 FUNCTIONAL REQUIREMENTS

A. 2. 1 Mission Planning/Technology Development

The type of activity done under mission planning and technology

development is primarily oriented to research and development, determina-

tion of mission profiles, and a wide variety of different types of simulations.

By and large, the type of software development can be predominantly charac-

terized as programming in support of engineering tasks. For example, in

the development of a mission profile, it is necessary to do targeting and

range safety studies and generate the engineering details and parameters for

a flight program. Typical simulations include studies of the effectiveness of

a weapon system, analysis of sensor systems and their impact upon com-

mand control systems and engineering simulations of specific control sys-

tems for a particular missile. Technology developments require a broad

range of engineering support software. Structural analysis (matrix manipu-

lation) and fluid mechanics (solution of differential equations) codes are two

examples.

A. 2.2 Mission Development and Mission Flight

The software required to support mission development functions

must be subject to extremely thorough verification and validation. Although

This appendix was prepared by Major Carl Jund, SAMSC/DYAC.

-39-

this requirement is not explicitly delineated in any of the subsections below,

the reader should at all times keep in mind the need for very reliable soft-

ware. The following subsections represent most of the separable SAMSO

mission functions.

A.i.Z. 1 Prelaunch Checkout

The prelaunch and checkout function usually consists of the devel-

opment of verification runs that verify the operability of equipment and its

status. Sensors and actuators are exercised/calibrated to determine if the

operational limits have not been exceeded. A trial scenario including re-

larnetinji may be exernsed and equipment anomalies recorded. Considerable

input-output processing is necessary to support this function. This activity

also includes automatic; test and evaluation functions.

A. 2. Z. 2 Command and Control and Supporting Displays

The software functions necessary to support a command and control

application usually involve the transmittal and receipt of large amounts of

data at hiph data rates. Since the data must be made available to decision

makers if it is to be of any value, it is necessary to support command and

control systems with computer controlled graphic displays. Software for

such displays usually requires considerable array and character manipula-

tion activity. If the da!.?, must be transmitted over a nonsecure link, it may

be necessary to use cryptographic devices. Economical use of data trans-

mission capabilities almost always raquires encoding and decoding of infor-

mation. The functional requirements of a command and control system

demand that the system act in an asynchronous mode, and that it be able to

support interrupts received both from the decision makers and the external

world.

A. 2. 2. 3 Navigation, Guidance, and Control

Guidance and control of the vehicle involves calculations for deter-

mining vehicle attitude and thruster on and off times. Calculations made for

navigation determine and predict position and velocity vectors. These usually

-40-

involve matrix calculations, coordinate conversions in three dimensions,

and the solution of ordinary differential equations.

A. 2.2.4 Surveillance and Reconnaissance

The software functions necessary to support surveillance and

reconnaissance involve the receipt, storage, and transmission of large blocks

of data in a wide variety of data formats. Often it is necessary to do on-

board preliminary data processing to reduce the data volume. Surveillance

requires identification of targets and considerable decision making, data

analysis, and statistical evaluation. This task is largely one of primitive

pattern recognition. The reconnaissance task is similar to the task of

surveillance although more sensor information is being processed, stored,

and transmitted.

A. 2.2. 5 Weapon Delivery

The functional software task involved in weapon delivery requires

the real-time transfer and verification of critical parameters from the local

control center to the weapon computer. Considerable sophistication in the

software is required since the task must meet extremely strict security

requirements,

A. 2.2. 6 Space Payloads and Experiments

The functional software tasks required to support experiments in

space include command and control activities, data acquisition, reduction,

and transmission.

A. 2.2. 7 Man Rating

Man rating is a task of aiding the astronauts in the analysis and

monitoring of physical health and fitness. The functional software required

for this task supports the monitoring, data acquisition, data reduction, and

transmission activities. Because of the concept of man rating, the require-

ments for verification and validation of the software to ensure flight safety

requirements are extremely high.

-41

A. 2. 3 Mission Support

The software necessary to support this phase of an operational

program consists of simulation of vehicle, simulation of a flight computer,

and postflight data reduction and analysis.

A. 2. 3. 1 Vehicle Simulation

Vehicle simulation is a tool which is used to ensure that the vehicle

will perform as predicted during its flight. Such simulation requires a broad

range of software support tasks, such as the development of mathematical

relationships and models, data processing and processing of command and

control messages.

A. 2. 3. 2 Computer Simulation

As in vehicle simulation, simulation of an on-board flight computer

is a means of ensuring its performance. Usually this is done by an inter-

pretive simulation of the flight computer within a large general-purpose

computer. The software tasks required to support such a simulation are

extremely varied.

A. 2, 3, 3 Postflight Data Reduction and Analysis

Once a mission has been flown, it is necessary to reduce and

analyze the data obtained from the mission in order to determine how well

the objectives of the mission were achieved. The software tasks required

are data formatting, data manipulation, data structuring,and mathematical

modeling.

■42-

APPENDIX B. COMPILER WRITING TECHNOLOGY ASSESSMENT

The Air Force is interested in software systems which can facili-

tate the production of higher order programming language compilers for the

minicomputers used in space, missile,and avionics systems. "A higher

order language (HOL) is a relatively machine-independent computer language

which uses English words and statements where they are convenient, com-
2

bined with mathematical notation, to express algorithmic procedures. " A

compiler is the computer program that translates from the programmer's

HOL into the language which activates the digital logic of the computer. The

compilers developed for these real time processors must satisfy stringent

requirements for the production of executable code that is highly efficient

both in memory utilization and in execution speed. The methodology must

also be cost effective since the wide variety of digital processors available

for weapons systems applications requires a multiplicity of compilers.

Before assessing the technology, we must understand the problem.

Basic information about compilers and compiler wiiLing tools will be pre-

sented first, followed by an overview of the state of the art and a discussion

of the SAMSO experience within one particular system.

B. 1 COMPILERS

A compiler is a translator program that either transforms an HOL

program intn an assembly language form (i.e., mnemonics for machine

code) for subsequent assembly to machine language translation by the

assembler, or which transforms directly the HOL program into an equivalent

machine language program.

Compilers may be described as being interpretive or generative,

syntax directed, or nonsyntax directed. In interpretive type systems, the

'Christine M. Anderson, Aerospace Higher Order Language Processing,
Report No. AFAL-TR-73-151 {Wright Patterson Air Force Base, Ohio
45433, Air Force Avionics Laboratory (AFAC/AAM), June 1973],

-43-

»yntactic structure of each source language statement is determined and

immediately executed one at a time. No object code is generated. In gene-

rative compiler systems, the entire program is analyzed and object code is
2

generated for subsequent execution.

Syntax directed compilers make use of formal syntax descriptive

languages in parsing the source language statements. An example of such a

language is Backus Naur Form (BNF). Compilers written with the aid of

syntax descriptive languages foster relative ease in modification of the
2

grammar.

In contrast, nonsyntax directed compilers proceed in an ad hoc

fashion, attempting to recognize each statement type and structure as it

is encountered with no formal rules to follow. Language modification in
2

such systems is difficult.

The analysis phase, often referred to as the "front end" of a com-

piler, performs two functions: lexical and syntactic analysis. The lexical

analysis is the simplest part. The input to the compiler is a string of sym-

bols from an alphabet. The lexical analyzer must group together certain

characters into single syntactic entities, called tokens. What defines a

token is established by the specifications of the programming language. The

output of the lexical analyzer, a stream of tokens, is the input to the syntax

analyzer.

The syntax analyzer, often called a parser, matches the syntax

definition with the symbols of the program. It builds an internal form, per-

haps a tree structure, of the program after disassembling the structure of

the source program.

The semantic analyzer is called to check for semantic correctness

and to modify and expand the trees into a more complete form. Frequently,

at this point, information about the variables is processed. This includes

the building of a symbol table and allocation of data. A diagram of a com-

piler is shown in Figure B-l.

.44-

COMPILER

SOURCE
PROGRAM

(HOL)

LEXICAL ANALYSIS

I
SYNTAX ANALYSIS

I
SEMANTIC ANALYSIS

INTERMEDIATE
LANGUAGE

i
OPTIMIZATION

TABLES

SYMBOL

CONSTANT

OTHER

CODE GENERATION

}
OBJECT CODE

Figure B-l. A Compiler 1

-45.

Code optimization is the attempt to make object programs more

efficient, in the sense of faster running or more compact. The complexity

of the optimization process depends upon the source language and the desired

efficiency of the generated code. This phase is largely machine independent.

In practice, one must be content with code improvement, encompassing such

functions as: elimination of common subexpressions, removal of unneces-

sary inner loop computations, detection of statements that will never be

executed, and constant propagation.

The code generation phase or "back end" of a compiler is the actual

translator of the internal form into assembly or machine code. From a

compiler writer's viewpoint this portion is straightforward but time consum-

ing. This phase, unlike the others, is heavily machine-dependent. Such

considerations as the number of registers and I/O interface must be taken
2

into account.

The complexity of the language to be implemented impacts heavily

on this phase. For example, code generation for full FORTRAN costs about

25 percent of the total compiler cost. However, for a much larger language

like PL/1, code generation involves anywhere from 45 to 75 percent of the
2

total cost.

B. 2 COMPILER WRITING TOOLS

Much attention has been given in recent years to methods of auto-

mating the development of compilers. This research his produced a variety

of software systems referred to as metacompilers o: compiler-compilers.

Ideally, such a system should be capable of accepting a formal description

of a language and produce from it a set of tables for driving a skeleton com-

piler which is language independent. This ideal has been attained in part.

Automation of the front end has met with the greatest success because it is

more machine independent. More research is needed in both formalization

and automation of the optimization and code generation phases. Current

metacompiler systems provide useful tools, but only when in the hands of

experienced compiler writing professionals.

•46.

Basic to the understanding oi metacompilers is the concept of

metalanguage — a language used to describe another language. A metalanguage

can describe the syntax, semantics, or target machine characteristics in

terms which are general enough to define different languages on different

machines. "Experience shows that languages specifically designed for

compiler development approach 90 percent of the efficiency associated with

assembly language coded compilers. Expected advances in optimization

could make metalanguages standard tools for compiler production within the
«2 next few years. "

A metacompiler translates a metalanguage into code which can be

understood by the machine. Metacompilers can usually build part of the

compiler based on information supplied by the programmer's metalanguage

code.

In attempting to automate compiler writing, metacompiler design-

ers have been forced to isolate the distinct phases of the compiler, resulting

in a modular program design. Modularity facilitates modification. In sys-

tems such as SPLIT, one can re-metacompile portions of the compiler with-

out having to redefine all parts of the compiler.

Consider the following examples of frequently desired compiler

modifications, demonstrating the effect of modularization on compiler gene-

ration. First, let us define two more terms. Host refers to the computer

on which a compiler executes. Target refers to the computer for which

object code is being generated.

(1) Rehosting the metacompiler. Usually the generated compiler

will run only on the host machine. "Rehosting requires changing all portions
2 of the metacompiler that are host dependent. " Rehosting can be a large job

if many of the support routines are coded in a host dependent language.

(2) Changing the HOL. Suppose a certain compiler can translate

from language A to language B and it is desired to translate from language C

into language B. This modification requires receding the front end of the

-47.

existing compiler to allow for the syntax and semantics of the new language.

The code generation portion of the compiler may not require modification.

(3) Retargeting the compiler. This modification requires that

the code generator portion of the compiler be recoded to produce code which

will execute on a new target computer. The front end of the system remains

the same.

B. 3 STATE OF THE ART IN METACOMPILER TOOLS

Many companies and universities have developed significant com-

piler writing tools.

SPLIT

Space Programming Language Implementation Tool (SPLIT)
was developed by Systems Development Corporation (SDC).
It is a syntax directed metacompiler designed specifically
for the generation of SPL (Space Programming Language)
compilers. This system is owned by the Air Force and is
available to the public.

CWIC

A Compiler for Writing and Implementing Compilers
(CWIC), a forerunner of SPLIT, is an SDC proprietary
system of tools for constructing compilers, interpreters,
report generators, data base generators, and editors on
the IBM 360.

GENESIS

GENESIS is a proprietary compiler writing tool developed
by Computer Sciences Corporation (CSC). GENESIS
focuses primarily on the generation of the front end of the
compiler. It accepts as input the formalized description
of a programming language.

JOCIT

CSC developed this system under contract to RADC.
JOCIT (JOVIAL Compiler Implementation Tool) is designed
specifically for the JOVIAL dialect J3. JOCIT isolates
host and target machine dependencies to facilitate the re-
hosting and retargeting of J3 compilers.

-48.

XPL

This syatem was developed by university people from
University of California, University of Toronto, and
Stanford University. XPL features semiautomated front
end generation, accepting input in BNF metalanguage.
The XPL language is a dialect of PL/1 and runs on the
IBM 360.

• AED

The Automated Engineering Design (AED) system is a
software system used to build compilers, operating sys-
tems, computer graphics, data management systems, and
large application systems. It was developed by the MIT
Computer-Aided Design Project funded by the Air Force
Materials Laboratory. Public AED is being supported by
SofTech.

B.4 OTHER APPROACHES TO COMPILER WRITING

"In addition to providing special languages with which to write

compilers and attempting to automate the production of various portions of

the compiler, there are two other approaches to compiler writing that may
2

be used in conjunction with the first two techniques. "

The first approach is known as cross compiling and consists of

writing a compiler which will run on a host machine and which will generate

code to run on another machine. Univac has employed this technique a great

deal; for instance, in developing a compiler for the AM/UYK-7.

The other is development of a multi front and back end compiler

writing system. This approach features the concept of intermediate language

(IL) standardization across many source languages. This results in a high

degree of modularization which facilitates front and back end modification to
2

produce a variety of compilers.

Little work has been done in this area, primarily due to the fact

that the requirement for parameterized off-the-shelf compilers for target

machines is minimal in a commercial environment. Differences in archi-

tecture among avionic and space computers which are significant to compiler

-49-

optimization and code generation include: (1) log;,, '.hardwired versus read

only memory); (2) registers versus accumulators; (3) instruction format;
2

and (4) input/output interfaces. An example of intermediate language

standardization is shown in Figure B-2.

B. 5 SAMSO EXPERIENCE

The Aerospace Corporation, under funding from SAMSO, has been

actively involved for the past five years in the application of the Air Force-

owned SPLIT (Space Programming Language Implementation Tool) system to

facilitate the production of HOL compilers for avionics minicomputers.

The basic SPLIT system was used successfully to develop SPL

compilers that generate executable code for the Honeywell DDP-516 and RCA

SCP-234 computers. The first was used to implement the flight program

and ground laboratory support software required for the Space Precision

Attitude Reference System; the second to implement the flight program for

the Defense Meteorological Satellite. Each compiler was produced in 10

man months, delivered in five calendar months, and thereby demonstrated

the effectiveness of the methodology in meeting all efficiency goali in a

cost-effective manner.

Following completion of these programs. The Aerospace Corpora-

tion began a 2-year program sponsored by the Deputy for Technology of the

Space and Missile Systems Organization to improve and enhance the basic sys-

tem. Because no standard programming language currently exists for the

general class of real-time, computational systems. The Aerospace Corpora-

tion felt it was important that the system be enhanced and expanded to readily

accept any of the various languages now in use for such systems to minimize

the costs of its use. It was also decided to change the name of the system to

Compiler Writing System, to reflect more accurately its potential use in the

standardization both of programming languages and of their implementation.

These efforts led directly to the interest of the Langley Research

Center of the National Aeronautics and Space Administration that has resulted

in the transfer of the Compiler Writing System to Langley for their use in the

50-

ANALYZERS

HAL/S

CODE GENERATORS

SKC-2000

JOVIAL IL CDC 6600

SPL UNIVAC 1108

Figure B-2. Intermediate Language Standardization

-51-

production of compilers for a wide variety of flight computers. They esti-

mated the initial cost savings to the Government from the use of the Compiler

Writing System to be in excess of $750,000.

B.6 ASSESSMENT

Compiler writing systems have a substantial cost advantage over

traditional methods of compiler production. The advantages are over-

whelming if the establishment of a standard language and the desirability of

producing executable code for a variety of avionics and space computers for

various phases of mission requirements is assumed.

It is essential that the language specification must produce a con-

sistent, unambiguous, context-free grammar. If the language is defined in a

syntax-directed manner (that is, not dependent on the language but on how

the language is described), then the production oi the front end of a compiler

is straightforward. In fact, it is estimated that if one started with a
3

reasonable language specified in Backus-Naur Form with an LR(1) structure

assured, a syntax analyzer could be produced in a single man-month. Diffi-

culties with the front end are always due to inadequate or ambiguous speci-

fication of the grammar.

A compiler writing system helps in the development of the language

itself— and if so used, can be helpful in the verification and validation of both

the language design and of the compiler itself. The verification and valida-

tion advantage represents a significant gain not offered by any traditional

method.

There is virtually no penalty for using a compiler writing system.

The development will not take longer and will probably take less time than the

usual brute force methods. If two programmers code from the same flow

diagrams, one in assembly language and one using metalanguage, the code

3
Alfred V. Aho and Jeffrey D. Ullman, The Theory of Parsing, Translation,
and Compiling, Vol. I ^'Parsing11, Vol. II:"Compiling,,(Englewood Cliffs, New
Jersey: Prentice Hall, 1972) (p. 371).

■ 52.

produced using the metalanguage will be better than 85 and close to 90 per-

cent as efficient, in terms of both speed and time, as the direct code.

Once a standard language is defined, what remains is the problem

of writing back ends for compilers for multiple target machines. The cost

for a compiler for a new avionics machine is then equal to the cost of the

back end alone. It is estimated that two people can produce a code generator

in 6 elapsed months, even allowing for the study of the target machine archi-

tecture and for system implementation problems. For similar architecture,

as in families of computers, modification to the back end will be minor and

cost will be minimal. The costs of development are strictly in the machine

dependent portions of the code.

Even greater advantages are to be gained if further modularization

and parameterization can be performed on the back end, particularly in the

isolation of all machine dependent portions. This process is similar to what

has already been accomplished for the front end analyzers.

One significant advantage of such systems is that as additional

compilers are produced, more cost savings are realized. Additional com-

pilers, because of retargeting or rehosting, always cost much less than the

original product.

Consideration should also be given to the influence of the system

on project management. First, in establishing one HOL, management has

complete control of the language. AH language-related development, the

most expensive area, need be done only once. Any improvements to the

front end made by any user can be easily shared with all users at other

installations because of the ease of generating code after having previously

rehosted the whole compiler tool. Also, subroutines in a library, or sup-

pi rt package, written in the HOL, or metalanguage, can be made available

'o any user. Certainly the implications to costs savings are clear in an

environment in which many contractors will be involved in all the ,ases of

mission analysis, test bed generation, ground and space software production,

and in verification and validation procedures.

-53-

APPENDIX C. OUTLINE OF PLAN FOR SOFTWARE
DEVELOPMENT REQUIREMENTS

C. 1 INTRODUCTION

This appendix presents a very brief outline of a program plan. The

purpose of this program would be for the development, implementation, test,

and maintenance of a higher order language and a software development

environment to support all SAMSO computer programming for SAMSO opera-

tional programs. The experience of knowledgeable personnel within

SAMSO/Aerospace indicates that such a language and the associated plan

could support all Air Force requirements for computer programming for

operational Air Force Programs. This occurs because the requirements

imposed on computer programming by SAMSO operational programs are

sufficiently broad. The plan is concerned with the steps necessary to pre-

pare specifications, continue development of compiler writing aids and other

software support tools, and to maintain an assemblage of such software

support tools. The requirements delineated in Section 6 of the above report

make if mandatory that the Air Force own the proprietary rights, not only

for any particular implementation of the language and software development

environment specifications, but also for the compiler writing system and

other support tools. This should be done to reduce the total costs that the

Air Force must pay in the development of software for its operational pro-

grams and should also be done to ensure that no one software contractor

obtains an unfair competitive position with respect to particular procure-

ments for individual implementation of the language and software develop-

ment specifications.

C.2 DEVELOPMENT PLAN

The development plan consists of two parallel and interacting acti-

vities. The first is the development of the specifications and associated

implementations. The second is the continuing support and extensions of

• 55-

the software technology that supports the implementation of particular com-

pilers and other software support tools. As indicated in Figure C-l, these

activities would be done in a parallel manner.

The first step that must be taken in the sequence of specification

preparation through implementation of a single higher order language is the

translation of the brief requirements delineated in the body of this report into

a set of preliminary specifications containing both the syntax and semantics

of the new language and execution environment. The group that is respon-

sible for these preliminary specifications should be composed of individuals

well versed in language development and particular applications of SAMSO

computer programs. Once the preliminary language specifications and

software development environment specifications have been prepared, it is

necessary that they be reviewed by different program offices within SAMSO

that have considerable software experience. In addition to this review before

final specifications are prepared, it is essential that there be a pilot imple-

mentation of the complete language and software development environment.

This should be done for at least two medium to large scale computation

systems that are widely used within the Air Force. The requirement for such

a pilot implementation stems from the experiences of personnel in the

development and implementation of higher order languages and operating

systems. Even when great care nas been takenwith the specification pre-

parat.i i, flaws, omissions and inconsistencies have always arisen in the

actual implementation. The cost impact, when viewed over the expected life

of such a single language, is in the billions of dollars. Hence, because of

the potential cost impact of such a set of specifications for both the language

and software development environment, it is essential that these flaws be

minimized. Once the pilot implementations are complete, there must be a

period of use and evaluation. Then preparation of the final version of the

specification can be accomplished and implemented.

As indicated in Figure C-l, the parallel activity that should be

undertaken to support the implementation and maintenance of any such higher

order language is the tool sharpening of the associated software technology.

-56-

i
8

PRELIMINARY
SPECIFICATION
PREPARATION

1
SPECIFICATION
REVIEW

T
PILOT
IMPLEMENTATION

USE OF PILOT
IMPLEMENTATION

I
SPECIFICATIONS
PREPARATION

TECHNOLOGY
DEVELOPMENT

USE OF COMPILER
WRITING SYSTEM AND
OTHER SOFTWARE TOOLS

TECHNOLOGY
DEVELOPMENT

CONTINUING
IMPLEMENTATIONS

MAINTENANCE AND
UPDATE

Figure C-l. Program Plan

-57-

WWWHWWPBWMIMI WH WWimxiM J .uTiri—i1111iuWHMIIMii i wa»!HMiMwnmr w* i • ■"" ' ■'■'•"

This tool sharpening is (1) an extension of the supporting software commonly

labeled compiler writing system and other related software tools, and (2) the

creation of a group of individuals that would provide technical support on a

continuing basis once the final specifications for the language and software

development environment have been prepared. SAMSO is in the process of

preparing a program management plan for the extension of an existing com-
4

piler writing system. The reader is referred to this plan for details of the

technical steps that should be taken to enhance the technology necessary to

support cost effective implementations of the language and software develop-

ment environment specifications.

The use of higher order languages for weapons systems software is

a relatively new activity in the Air Force and there is a corresponding lack of

organic capability to provide the technical expertise required to correctly

determine both language requirements and compiler implementation standards.

It is also unrealistic to expect that an individual System Program Office

would be able to locate and acquire personnel with the necessary software

expertise to work directly, and only, for that particular project. As a result,

System Program Offices have had to depend on contractors for this expertise

and have been unable to obtain support with sufficient objectivity.

A technical support group should be created that would provide

support to any Air Force System Program Office in the areas of requirements

analysis relating to soxtware, compiler procurement, including technical

direction o(contractor efforts, acceptance testing of delivered compilers

and associated software tools that support the software development environ-

ment, receipt of trouble reports, issuance of quick fixes and periodic updates.

This group would not be responsible for the specification preparation but

would advise those preparing the specifications on the interaction between

the compiler writing system, efficiencies of projected compilers and parti-

cular specifications of the language. They would be responsible for the

SAMSO/DYAC Program Management Plan, May 1975 (not available outside
SAMSO/DY AC)

58-

-

technical direction of the pilot implementation and would prepare a review of

both the specifications and pilot implementation. This review would be used

during the preparation of final specifications. Once the final specifications

have been prepared, this group then becomes the final arbitrator and judge

in terms of maintaining these specifications. The group would be the focal

point for all future implementations of the language and software development

environment. They would determine whether or not a particular implementa-

tion meets the specifications and, hence can be released for operational use.

They would also act as a clearing house for trouble reports, issuance of

quick fixes, and periodic updates.

C. 3 MAINTENANCE

Once final specifications have been prepared and standards estab-

lished, the activities become primarily maintenance and operation. The

technical support group that was created to support the development activities

should continue in existence to provide the focal point for the maintenance

and operation activities. The services that it would provide to any Air Force

System Program Office would be required on an on-going basis. As additional

weapon systems are procured that contain computers, there will be the

requirement for new implementations. There must, of course, be technical

direction of such contractor efforts, verification and certification of the

requesting compilers and other software support tools. With a software

system as large as this one (standards, specifications, and a large number

of implementations), there will undoubtedly be trouble reports and problems

that arise during normal use. This group will receive all such trouble re-

ports and will be responsible for the issuance of quick fixes and updates,

whether the work is being done within the group or done by software contrac-

tors.

•59-

