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Notation and Range of Parameters used in the Experiments 

symbol range of values units 

rotation speed ß 4-10 rad/sec 

perturbation frequency Ü) 6.308 rad/sec 

perturbation half amplitude 
of container 

e 3-6.5 degrees 

cylinder radius a 9.53 cm 

cylinder height 2c 19.01,38.02 cm 

cylinder aspect ratio 
a 1.99,3.98 

fluid density P 0.9966-0.9976 fem/cm3 

kinematic viscosity V .0086-.0095 cm2/sec 

sinusoidal disturbance 
pressure amplitude 

AP 1-3 mm water 

time scale T » 2C 

V 

60-200 seconds 

Ekman number E « 4fl? 
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1. Introduction 

The purpose of the experiments described In this report 
was to establish that axisymmetric inertial oscillations of a fluid 
in a cylindrical cavity could be excited by an axisymmetric perturba- 
tion of the container speed while the fluid was spinning up from rest. 
The success of these experiments would not only confirm the existence 
of inertial oscillations in a fluid during spin-up from rest but also 
that they could be excited by a time varying rotation speed of the 
container. Several axisymmetric modes of inertial oscillation have 
been excited in our experiments thus simultaneously confirming their 
existence and the method of excitation. 

Prior to this experimental study only those oscillations 
of a rotating fluid which exist when the fluid is rotating as a solid 
body had been examined. The study of inertial oscillations under these 
conditions dates back to Kelvin (1880) who calculated the eigen fre- 
quencies for a cylinder of fluid in solid body rotation. Bjerknes 
and others (1933) revived the study of these oscillations in their 
work in the fields of oceanography and meteorology. More recently 
some experiments were carried out by Fultz (1959) who succeeded in 
exciting some axisymmetric oscillations in a rotating cylinder of fluid 
by forcing a small disc to oscillate on the axis of rotation at a fre- 
quency equal to a selected eigen frequency of the cylinder. The most 
recent work on inertial oscillations of a fluid in solid body rotation 
has been carried out by Aldridge and Toomre (1969) and Aldridge (1972, 
1975). They excited axisymmetric inertial oscillations of a rotating 
fluid sphere by introducing a harmonic perturbation in the container 
rotation speed thus setting the fluid into oscillation by means of 
boundary layer pumping. The present study uses that method to excite 
inertial oscillations of the fluid in a cylinder during spin-up from 
rest. 

Although the experiments described in this report are con- 
cerned ;,itll ^.nertial oscillations they necessarily involved with the 
study of spin-up of the fluid in a cylinder from rest. Spin-up from 
rest is a strongly non linear process since the Rossby number is unity 
and it is only recently that this aspect of rotating fluids has been 
investigated in some detail. Experimental work by Watkins and Hussey 
(1973) and Weidman (1974) has extended the pioneering work of Wedemeyer 
(1964) in this field. We shall find it useful to refer to Wedemeyer's 
work because his model for spin-up from rest forms the basis of some 
recent analytical work by Lynn (1973) on inertial oscillations of liquid 
during spin-up from rest. Limitations of Wedemeyer's model discussed 
by Watkins and Hussey (1973) do not seriously concern us here because 
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our experiments appear to be within the limits established Hy these 
authors for the validity of the Wedemeyer model. 

Fundamental to the Wedemeyer model, and in fact to all 
studies of spin-up, is the concept of the so-called spin-up time scale. 
Greenspan and Howard (1963) established the details for the process 
of linear spin-up a term which is associated with small changes in 
the rotation speed of the container from an initial value. Unless the 
body of fluid is very long compared to its diameter the most important 
dynamical process in the adjustment in the fluid speed to the new con- 
tainer speed is the advection or" high angular momentum fluid towards 
the axis of rotation. This fluid replaces the fluid drawn into the 
boundary layers near the end walls of the container. It has been 
shown that the important time scale for the spin-up process - the so 
called spin-up time - is L/( vß)^ where L is a typical length 
parallel to the rotation axis, v is uhe kinematic viscosity and 
Q   is the rotation speed of the fluid. For the case of linear spin- 
up the length L is half the cylinder height since this is the typical 
distance ? f1uid parcel must travel in the spin-up process. In the 
case of spin-up from rest authors have chosen to use the total height 
of the cylinder for this length scale. Although this does not seem 
justified in view of the above remarks we point out that the fluid 
changes its rotation speed from zero to Q   during spin-up from rest 
the larger length scale can be taken to reflect some average value 
in Q   for the fluid during the spin-up process. 

The spin-up time scale is the geometric mean of two other 
time scales appropriate to the spin-up process. The short time taken 
to establish the boundary layers is I/o whiJe the long time taken for 
small irregularities in the fluid rotation to diffuse is L2/v , 
the so-called diffusion time. In the work described here we scale 
all of our measured times with the spin-up time scale L/(vfi)^ where 
L is the total height of the cylinder. 

MtfM 
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2.  Experimental procedure 

A cylindrical container, completely filled with water, 
is set into rotation at time t-0 about its axis of symmetry which 
is vertical. Superimposed on this rotation is a sinusoidal perturba- 
tion which continues all the while the cylinder is rotating. Thus 
the rotation of the container is specified as follows: 

n(t) = o t<0 

ft(t)    =   Ü  +      CO)   COSOJt t>0 

The amplitude of the perturbation, £0) , is specified by the half 
angular displacement, e , and the perturbation frequency, GO , while 
the mean rotation speed of the container Is ß . If the ratio of 
the perturbation frequency to the mean rotation speed to/fi coincides 
with one of the inertial oscillation frequencies of the cylinder then 
every particle will oscillate along a path determined by the eigen- 
function for that particular frequency ratio co/ft . The response 
of the fluid to this perturbation was observed visually by releasing 
dye from thin wires stretched between the ends of the cylinder from 
points along a diameter of the cylinder. Quantitative measurement 
of the fluid response was obtained by monitoring disturbance pressure 
differences between two points on the axis of rotation. These pressure 
differences were measured with a  "*erential type pressure transducer 
one port of which was connected b; «.nick walled tubing to a hypodermic 
needle located on the axis of rotation. The other port and the filling 
hole at the top of the cylinder were open to the atmosphere. 

The inertial oscillation frequency or eigenfrequency for 
a particular mode of oscillation depends not only on the geometry of 
the cylinder but also on the fraction of fluid which is spun up. 
Figure 1 illustrates schematically how this time dependence of eigen- 
frequency was established in the experiments. The vertical axis cor- 
responds to the amplitude of the fluid response measured in terms of 
the dimensionless pressure coefficient Cp ■ jApl/peo/a2 where Ap 
in the zero to peak sinusoidal (at frequency w ) disturbance pressure 
and p is the fluid density. The horizontal axis to the right is 
the adjustable frequency ratio fi/w of the container. We display 
the frequency ratio in this manner because in the experiments this 
ratio was selected by choosing a particular value of mean rotation 
speed Ü   while the perturbation frequency GO was held fixed.  The 
vertical bar in the Cp - A/GO plane represents the inviscid response 
of a particular eigen oscillation at resonance. There are of course 
an infinite number of these modes and each one is broadened in reality 
by viscosity. Only one mode is shown here for clarity. The third axis 
corresponds to a measure of the time since the container was switched 
on, scaled in terms of the spin-up time T = 2c/(vft)Js where 2c is 
the cylinder height. We choose the exponential function of this time 
variable because this form is characteristic of the spin-up process 

la^Minn     -—***——  
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Figure 1. Schematic showing inviscid disturbance pressure response for 
spin-up from rest. Disturbance pressure coefficient, Cp ,    0 
has a resonant amplitude for various values of frequency ratio — 
at time t slnc.2 spin-up was begun. Time is scaled in terms 
of the spin-up time, T . 
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-t/T 
as used in the Wedemeyer model and Lynn's analysis. When e   ■ 0 
the fluid rotates as a sol*d body except for the perturbation. Thus 
the Cp - H/u plane corresponds to the ultimate state of tht fluid 
rotation. Values of e_t'T between one and zero correspond to the 
transient period which is of central interest in our experiments. The 
curve in the r"wT _ Q/U piane 0f figure 1 represents the change in 
eigenfrequency with time while the fluid is spinning up from rest. 
This curve 1a  a schematic for the calculations of Lynn for the change 
in eigenfrequency with time. It is the purpose of our experiments to 
measure this time dependence and compare the experimental observations 
with Lynn's calculations. 

Also shown in figure 1 is a schematic of the amplitude 
change of disturbance pressure with time as depicted by the vertical 
bars extending from the trace of the eigenfrequency-time curve in the 
e-t'T - ß/ü) plane. In the case of a real fluid some viscous broaden- 
ing in frequency would exist for all time. No predictions for the 
change in response amplitude with time are included in Lynn's work. 

A typical experimental run is shown by the line parallel 
to the e-t'T axis. Since Q/w was fixed for each run, we can 
associate the run with a point moving from left to right along this 
line with the passage of time since the container was switched on. 
When this point intersects the curve of eigenfrequency fi/w with 
time expressed as e-t'T ,  a maximum in the sinusoidal disturbance 
pressure will be observed. If the fluid were inviscid no response 
would be observed until this point of intersection was reached. In 
fact the finite viscosity of the fluid produces a build up of the 
pressure before this point as well as a decay afterwards to a level 
appropriate to the ultimate disturbance pressure response. As 
mentioned earlier the finite viscosity also broadens the steady state 
response so that rather than depicting this response by a vertical 
line as shown in the Cp - ft/a) plane we should show a reduction in 
amplitude (Cp) with ß/ü) values on both sides of the vertical line. 

The change in eigenfrequency Q/r   with time during the 
spin-up period is found by measui^ng the time from the point at whic\ 
the container is switched on to the peak disturbance pressure response 
for each of several values of fl/ui for the container. This measure- 
ment of time is made from a chart record of the disturbance pressure 
for the entire period from container switch-on until the peak distur- 
bance pressure is obtained. For values of ft/to for the container 
speed only slightly greater than Q/u for a particular eigen mode of 
the cylinder in the steady state (t ■+ °°) both the time until maximum 
disturbance pressure is reached and the amplitude of the disturbance 
pressure will be greatest. The time from container switch-on until 
disturbance pressure maximum and the amplitude of this disturbance 
pressure difference both decrease with greater values of ^ (for the 
container) relative to the steady state value of ü/m    for the mode 
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being studied. Ultimately disturbance pressure differences will become 
too small to detect when ^ for the container is very much greater than 
£j for the mode being studied. 

3. Theoretical background 

The main purpose of this study is to compare ovr experimental 
results with predictions by Y. M. Lynn (1973) on the change in inertial 
oscillation frequencies with time for a cylinder of fluid during spin- 
up from rest. For completeness in this comparison we summarize some 
of the pertinent points of Lynn's analysis. In particular we =>re 
concerned with the assumptions inherent in Lynn's work since these 
will be important in any comparison between experiment and theory. 

Spin-up of the fluid from rest is assumed to be given by a 
model due to Wedemeyer (1964). In this model boundary layers form at 
the container walls within a few revolutions after the con'liner is set 
rotating. These layers are responsible for a secondary flc * which 
removes non-rotating fluid from the interior in order to spin it up. 
This spun-up fluid is subsequently returned to the interior. Fluid 
which has been spun-up is convected across the interior until the 
fluid which had been at rest is completely removed and replaced. An 
analytical description of this process begins by assuming that the 
fluid can be divided mtc two regions, a boundary layer in which viscous 
effects are important and an essentially inviscid interior. The velocity 
field in the interior consists of a primary circulation and a secondary 
circulation which is O(E^) where 

«to7 

is the Ekman number. At this point we note that it 
follows from the equations of motion that to this order the velocity 
field is independent of the direction parallel to the axis of rotation. 
This statement is confirmed by experimental observations by Greenspan 
(1968) and others. It is in effect a statement of the Proudman-Taylor 
theorem which says that for slow, steady, inviscid adjustments of the 
velocity field, both the velocity and pressure are independent of 
height to all orders. 

Some important assumptions must now be made in order to 
proceed analytically. It is necessary to obtain a relationship between 
the primary azimuthal velocity and the secondary radial velocity in the 
inviscid interior. This relationship is obtained from boundary layer 
aualvfiis. Wedemeyer assumed that the boundary layer velocity field is 
steady, an assumption which does seem to be valid for small Rossby 
numbers. The validity of this assumption for Rossby numbers of order 

■ --■■"■ ■- «MMMMMtti i Baa rtaaM i MM - 



p^l^^i.^,lm^l^^ 

unity as In the case of spin-up from rest will limit the validity of 
the Wedemeyer model„ 

If we call ui the secondary interior radial velocity and 
v  the primary interior azimuthal velocity the relationship between 
these two velocities is found by Wedemeyer to be 

ux - -x E% (Qr  - VQ) 

where x * 0.866 is a constant. This form of the relationship was 
assumed by Wedemeyer by adopting a linear interpolation between the 
velocity ul  « -0.866 E^flr for the initial period after the container 
is turned on and the ultimate velocity ux 

m  0 when solid body rota- 
tion is achieved. Greenspan (1968) on the other hand obtains the same 
form as Wedemeyer but uses x E 1*0 based on an extrapolation from 
the case of linear spin-up for an arbitrary but axially symmetric con- 
tainer geometry. Rott and Lewellen (1966) use a value of x = !•! • 
Various authors including Watkins and Hussey (1973) and Lynn (1973) 
have adopted Wedemeyer's method but have used X = 1*0  instead of 
X - 0.866. We shall consider the effect of choice for this constant 
in our discussion of the experimental results. 

The primary azimuthal velocity field established from the 
above assumptions and used by Lynn as the unperturbed st?ce for his 
analysis is: 

v (r,t)  r - f2 
-2 «=  Y f < r < 1 a      rT -  - 

* 0 0 < r < f 

-VE^t 
where       f * e * with X ■ 1.0 • 

This expression describes a cylindrical velocity front 
which moves radially inward from the sidewall across the cylinder. 
The cylinder is divided into two regions: the outer region has 
azimuthal velocity which depends on radius according to the above 
relationship while the inner region contains the central core which 
is at rest. Lynn shows that the position of the velocity front can 
be regarded as stationary for the period of the fluid oscillation 
which is 0(4) because this time is short compared to the time 

i-. 
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scale 2c/(ftv)i   of movement of the front. Thu9 the quantity f which 
is the position of the velocity front is assumed constant in Lynn's 
perturbation analysis. 

Inertial oscillations for a cylinder of fluid with the 
velocity field described above are found from a set of perturbation 
equations by looking for solutions of the form 

cosKz e 
-i(u)t - m0) 

where z and t are the vertical coordinate scaled by the cylinder 
height and the time scaled by the rotation period respectively. The 
number of waves in the azimuthal direction 6 is given by m . The 
quantity K = -~  where k is the number of waves in the direction 
parallel to the rotation axis and the aspect ratio a is the ratio 
of the cylinder height to radius. 

For the case E s 0 (inviscid) and m = 0 (axially sym- 
metric) Lynn obtains solutions for perturbation velocity and pressure 
in each of the two regions separated by the inward moving velocity front, 
Equality of the perturbation velocity and pressure in each of the two 
regions at this front leads to a set of homogeneous linear equations 
for the amplitudes of these disturbances. The existence of a solution 
to these equations gives a relationship involving the dependence of the 
inertial oscillation frequency on time since the container was switched 
on. This latter equation is solved numerically. Lynn's numerical 
results will be presented later when we compare them with the experi- 
mental results. 

After several spin-up times since the container was switched 
on the time-dependent inertial oscillation frequencies should approach 
those found by Kelvin (1860) for a cylinder of fluid in solid body 
rotation. In this case 

k,i 

1 
2 

li + 1 
\h 

(1) 

where yi is the i  root of Ji(x) ■ 0 . We use the (k,i) pair to 
denote the axisymmetric inertial oscillations: k is the number of waves 
or ceils in the axial direction while i is the number of waves or 
cells in the radial direction. In our experiments k is always an 
even number because we excite only equatorially symmetric oscillations 
by our boundary layer pumping technique. Numerical values from the 
above relationship do agree with those from Lynn's analysis for t -> °» . 
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We now summarize the assumptions used in obtaining the 
dependence of eigenfrequency on time since the container was switched 
on: 

(1) the boundary layers are assumed tr> be steady in order to obtain 
the Wedemeyer velocity front solution required for spiu-up, 

(ii) the radially moving velocity front is assumed stationary in 
the calculation of the eigenfrequencies and 

(iii) the fluid is assumed inviscid (E ■ 0) for the eigenfrequency 
calculations. 

These assumptions will be discussed in our comparison of 
the analytically determined eigenfrequencies with those from experiment. 

4. Experimental results 

We begxn by presenting the quantitative experirat-tal results 
based on the disturbance pressure measurements described in section 2. 
Our first task was to establish to that the oscillations observed by 
disturbance pressure measurements are indeed the inertial oscillations 
we are seeking. Pressure differences between a point at the centre of 
the cylinder (a * 1.99) and a point on the axis at the top of the cylinder 
were measured at selected values of the ratio Q   , rotation speed divided 
by oscillation frequency, near an expected resonance value of this ratio. 
These measurements were carried out after the fluid had been spun up to 
the mean value of the rotation speed of the container, ti    . Displayed 
in figure 2 are the observed pressure differences expressed in terms 
of the dimensionless pressure coefficient  Cp ■ |Ap|/pew2az 

for each of several values near JJ = 0.7873 which is the inertial 
oscillation (2,1) for an inviscid fluid with k ■ 2 and i = 1 . 
Each of the points shown in the figure is an average of more than ten 
disturbance pressure measurements for a particular ratio rj . Clearly 
a resonance exists as shown by the maximum response near the predicted 
ratio — ■ 0.7873 . The amplitude of the container perturbation was 
e * 3.45° . We show later that this amplitude is small enough to render 
non-linear effect9 associated with the perturbation negligible for our 
experiments. 

Further evidence that we are indeed observing inertial 
oscillations in these experiments is provided by the corresponding dis- 
turbance pressure results near ji ■ 1.220 which is the (2,2) mode of 

W 
oscillation in our notation. These results are shown in figure 3 for 
e - 3,35° . 

15 
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Figure 2.  Disturbance pressure response (t •+ °°) for the (2,1) mode of the 
cylinder with aspect ratio ot«1.99. Amplitude perturbation 
e=3.25°. 
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A.« ■                         *                         ■                         * 
1*20     1-21     1-22     1-23 
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CO 

Figure 3. Disturbance pressure response (t •*■ ») for the (2,2) mode of the 
cylinder with aspect ratio a-1.99. Amplitude perturbation 
e-4.650. 
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We note that in figures 2 and 3 there is a small discrepancy 
between the observed and predicted frequency ratio M for the maximum 
value of Cp . The source of this error will be discussed in section 5. 
Our primary concern is that we have identified the observed pressure 
response with the inertial oscillations. 

The dependence of inertial oscillation frequency on time 
while the fluid is spinning up from rest was found by the procedures 
outlined in section 2. As explained in that section the container is 
switched on at time t * 0 and rotates as ft(t) = ß + ew coscot . 
Throughout the time that the fluid is being spun up disturbance 
pressure differences between two points on the rotation axis are recorded 
on chart paper. Displayed in figure 4 is a time history of the distur- 
bance pressure for each of a series of values ^   near the (2,2) mode 
for a perturbation amplitude 
a path in the 

e = 5.46e 

e"t/T - ß/w 

Each trace corresponds to 

-t/T 
plane shown by the line in figure 1 parallel to the e w/ * axis. The 
small arrow on the ii/^i   axis of figure 4 indicates the predicted value 
of g« 1.220 for an inviscid fluid oscillating in the (2,2) mode, after 
the container has been rotating for a sufficiently long period that the 
fluid is spun-up. 

For each run with JJ > 1.220 a taaximum in the disturbance 
pressure record is apparent, indicating that the (2,2) mode has been 
excited. For values of H > 1.220 the maximum value in disturbance CT 
pressure with time occurs sooner for greater values of a 

W Each of 
the traces has been truncated at about one spin-up time after peak dis- 
turbance pressure has been observed. Hence the locus of end points for 
the chart records sketches out the line of maxima in disturbance pressures. 
Following along this line we can see that the oscillation frequency u , 
scaled with rotation speed, a , increases as time since the container 
was switched on increases. We shall see shortly that this behaviour is 
consistent with Lynn's analysis. 

The measured disturbance pressures extend over several cycles 
of oscillation since the fluid has finite viscosity which results in 
frequency broadening of the resonance. This broadening in frequency is 
observed in the experimental runs because inertial oscillation frequency 
depends on the time since container switch on. In fact the change in 
the length of the disturbance pressure signals from one run to the next 
provides a qualitative measure of the time dependence of inertial 
oscillation frequency. Since the duration of the disturbance pressure 
^ignal gets longer for values of ^ near the predicted (t > °°) resonance 
TJ ■ 1.220, we know that what might be called the disturbance pressure 
surface must have its maximum values along a line neprly parallel to the 
e~t/T axis. Hence for very long times since the container is switched 
on the experiments show that the inertial oscillation frequency is almost 
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Figure 4. Time histories of disturbance pressue from container switch-on 
(t«0) for various values of rotation speed ti    scaled by oscilla- 
tion frequency ü> near the (2,2) mode. Amplitude perturbation 
e«5.46°; typical spin-up time scale T>70 seconds. 

19 

irfnm in 



•ftu~ 

independent of time. This too is consistent with Lynn's analysis. 

For the run shown at the bottom of figure 4 for jy <  1.220 
very little increase in disturbance pressure is observed over the back- 
ground noise. This result is consistent with the above remarks on both 
the qualitative dependence of inertial oscillation frequency on time and 
the viscous broadening of the resonance peak. Had the value of — for 
this run been sii^htJy larger but still less than 1.220 we would nave 
expected a monotonic increase in disturbance pressure because we would 
be cutting the disturbance pressure surface on its convex flank rather 
than its concave flank as was the case for all the other runs with 
JJ > 1.220. In fact a close inspection of figure 4 reveals a very small 
disturbance pressure signal with a monotonic increase over time since 
switch on. The small size of this pressure signal might at first seem 
surprising but reference to figure 3 shows that the bandwidth for the 
resonance is very narrow so that a rapid decrease in pressure response 
away from resonance is expected. 

A quantitative measure of the dependence of inertial oscil- 
lation frequency on  time since container switch-on is found from a direct 
measurement of time between switch-on and the peak response in disturbance 
pressure. Plotted in figure 5 for each of the runs shown in figure 4 
are these times, scaled by the spin-up time scale 

T = 
2c 

Jvfipi 

-t/T 
and expressed in terms of e     .A typical value for the spin-up 
time in these experiments is T = 70 seconds. For comparison with theory 
the dash-dot line in figure 5 is the calculated dependence of inertial 
oscillation frequency on time since the container was switched on. 
Agreement between experiment and theory is reasonable, although the 
tendency for I he experiments to show a larger shift in frequency than the 
theory at a fixed time since container switch on is noteworthy since this 
effect will be found to a  greater or lesser extent in all of the experi- 
ments, Expressed in the time domain this means that the experiments show 
the arrival in time of the (2,2) mode of oscillation to be later than 
predicted by Lynn's work. This statement follows obviously from figure 5 
if we remember that real time runs from top to bottom of the figure for 
a given choice of ~ . 

U) 

Shown in figure 6 is the maximum disturbance pressure ampli- 
tude for each of the runs of figure 4 plotted against the time since con- 
tainer switch-on in the units e -t/T The growth of the (2,2) mode 
can be obtained directly from figure 6 to be that e~* of the ultimate 
disturbance pressure difference is achieved after approximately 1%  spin 
up times sincu the apparatus is set rotating. Although this measurement 
of growth rate is an important one, it was not pursued in this fet of 
experiments for twu major reasons.  First, sinca it was not possible 
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"Igure 5. Time interval t from container switch-on until peak disturbance 
pressure from records of figure 4. Points show dependence of 
inertial oscillation frequency on time since switch-on for (2,2) mode 
in the cylinder a"1.99. The curve showing this same dependence is 
from Lynn (.1973). 
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Figure 6. Disturbance pressure coefficient from data of figure 4 showing 
growth of inertial oscillation over time since switch-on. Note 
that real time increases from right to left. 
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Figure 7. Points show dependence of inertial oscillation frequency on 
time since container switch-on for (2,1) mode (left)and (2,2) 
mode (right) in the cylinder ct«1.99. Curves are from Lynn 
(1973). 

I 
23 

----—-—-"——'—'—— if—n   i 



fgiP4^]|^ isf^-ss^ä;. ■■ -wvr^-^s ■ T.r■ v:--.-*v«'-TTr-7'--?n--^^ ^ v^v^-vr""^-^ ~~ 

Zä^£A^':   MdMäsL— «*T*r- 

to adjust the acceleration of the container over the switch-on period, 
no measurements could be carried out to determine the effect of con- 
tainer acceleration on amplitude build up of the inertial oscillation. 
In our apparatus the spin-up period of the container was fixed by the 
feedback, control system, the torque capability of the drive motor and 
the moment of inertia of the rotating mass. Thus the switch-on was 
not perfectly impulsive as implied in section 1 but took approximately 
3 oscillations (about 3 seconds) to achieve the quasi-steady state, 
Q + ew ccswt. This point is discussed further in our proposal to 
extend the experiments described in this report. 

The second reason for not pursuing amplitude response was 
also a practical one. While our experiments were conducted with water 
as the working fluid our pressure transducer required an inert working 
fluid such as silicone oil. Small changes in surface tension at the 
oil-water interface due to impurities or for other reasons made con- 
sistent amplitude results difficult to achieve. The calibration of 
the pressure transducer, described in appendix I,provided a measure oi 
the repeatability of the amplitude of our disturbance pressure measure- 
ments. Only the results shown in figure 6 were deemed acceptable for 
presentation because of the above limitations. We note however that 
small changes in the amplitude of the pressure response from one experi- 
mental run to another which might preclude using the disturbance pressure 
amplitudes themselves will still give reliable information on the 
dependence of inertial oscillation frequency on time since concainer 
switch-on. 

The time from container switch-on until peak disturbance 
pressure for the (2,1) mode for e ■ 3.45° and again with a -  1.99 
is shown on the left side of figure 7. As in figure 5 for the (2,2) 
mode each point represents an experimental run for a fixed value of ^j 
near the expected resonance. Shown for comparison on the right side 
of figure 7 is a similar set of results for the (2,2) mode, again for 
the cylinder a * 1.99 but at a smaller perturbation amplitude e = 3.35° 
than for runs presented in figure 5. Immediately obvious from figure 7 
is the greater shift in frequency of the (2,2) mode relative to the (2,1) 
mode for a fixed time since switch-on. This difference between the (2,1) 
and (2,2) modes is even more pronounced in Lynn's analytical results shown 
by the dash-dot lines. Again the experiments indicate a greater shift 
in frequency than theory would predict and this discrepancy is even 
greater in the case for the (2,1) mode than for the (2,2) mode. A 
general statement which summarizes the results in figure 7 is that for 
a given axial structure (k • 2) agreement with theory is best for greater 
radial structure. 

A further set of experimental runs werJ made with the same 
cylinder (a = 1.99) to investigate the change in frequency with time 
since switch-on for the 4,2) mode. This mode was chosen since it has 
the same radial structure (i • 2) as the (2,2) mode but double the axial 
structure. In order to obtain a disturbance pressure response for the 
(4,2) mode it was necessary to raise the tip of the hypodermic needle, 
which served to communicate pressure changes to the transducer, to a point 

half way down to the centre of the cylinder from the top. This step is 
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Figure 8. Dependence of inertial oscillation frequency on time since 
container switch-on for (4,2) mode (closed circles) and (2,1) mode 
(stars) in the cylinder a=1.99. Probe tip is half way between the 
top and centre of the cylinder. Amplitude perturbation e=5.92°. 
Curves are from Lynn (1973). 
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obvious if ut rt^üll that since a mode with four cells in the axial 
direction will have opposing axial pressure gradients in each cell no 
net pressure difference will be observed when the measurement distance 
spans one pair of cells. We note also, I.owever, that modes with only 2 
cells in the axial direction will still be observed when the probe tip 
is raised to this new position but with only about half the amplitude 
as observed with the probe tip at the centre. Thus positioning the probe 
tip at the centre acts somewhat as a filter which discriminates against 
those modes with several cells in the axial direction and especially 
those modes having an even number of cells. This serves to explain in 
part why it is possible to make meaningful measurements on only a few 
modes of oscillation when in fact the spectrum of inertia! oscillations 
everywhere dense. Also limiting the number of modes observed is our 
method of excitation itself since our perturbation of the container rota- 
tion speed will only be coupled well to a few of the spatially simple 
modes of oscillation. 

Shown in figure 8 by the solid circles are the observed times 
t from container switch-on until peak disturbance pressure, again in terms 
of e_t'T , for the (4,2) mode in the cylinder a =  1.99 . Due to 
the proximity of the (4,2) mode to the (2,1) both these modes could be 
observed on some chart records. The stars in figure 8 indicate the 
"arrival" of the (2,1) mode. Although the amplitude e - 5.92° was 
almost double that for the previous experiments involving the (2,1) 
mode (figure 7) the disturbance pressure response was less than h of 
that expected even after taking into account the reduction due to the 
probe being raised. These difficulties led to a greater scatter in 
the results compared to previous experimental runs. The source of this 
reduction in amplitude is unknown. 

The dash-dot lines shown in figure 8 are Lynn's calculated 
frequency shifts for the (4,2) and (2,1) modes. We note that experi- 
mental results for the (4,2) mode fall below the line predicted but to 
a greater extent than in the case of the (2,2) mode (figure 7). Hence 
decreasing the axial structure, keeping the radial structure constant 
results in better agreement with theory. 

The experimental results presented in figures 7 and 8 can 
be summarized after the introduction of some terminology needed to describe 
the inertial oscillations. Recalling that a mode of inertial oscilla- 
tion is specified by the (k,i) index, we can describe the spatial struc- 
ture of the velocity stream function in terms of bounding nodal surfaces 
which will be rectangles in a plane containing the axis of rotation. 
The smallest rectangle without any interior nodal surfaces has been 
termed a cell. Such a cell has the ratio of its axial to radial dimen- 
sions of order —^ . Each mode of inertial oscillation has 2ki cells. 
Of the three modes (2,1), (2,2) and (4,2)studied in fibres 7 and 8, 
the (2,2) mode, which most closely agrees with theory in its frequency 
dependence on time since switch-on, has cells with the largest ratio 
of axial to radial dimensions. 
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Modes of oscillation which have relatively long (axial) 
and narrow (radial) cells occur at low frequencies, w , relative to 
the rotation speed. This statement follows directly from relation (1) 
given in section 3 since 

°Tor 

is also a measure of the axial to radial dimensions of a cell. 
Physically low frequency modes mean that most of the fluid movement 
is parallel to the axis of rotation as we would expect since the 
individual cells are tall and narrow. If we recall that the restoring 
force of inertial oscillations arises from the rotation, the lowest 
frequency modes are the ones which "feel" the rotation least. Hence 
from the experiments we have described so far it appears that Lynn's 
analysis has its best application for low frequency oscillations which 
have their motion predominantly parallel to the axis of rotation. 

Reference to relation (1) reveals that a further investi- 
gation of the above remarks on Lynn's analysis could be carried out by 
adjusting the cylinder aspect ratio, a . The relation (1) tells us that 
the height of the cell should be measured not simply by k but by 
K * M since in fact this is what determines the physical height of 
the a cell relative to its radial extent or width. 

For a cylinder a = 3.98 , twice the height of the previous 
cylinder, a series of experiments on the (2,1) mode, previously presented 
in figure 7, were carried out. The dependence of frequency on time 
since container switch on for the (2,1) mode is shown in figure 9. 
We note first that th i frequency ratio 5. for t -*• °° is of course 
larger than in the case for a = 1.99 because the particle motion is 
more predominantly parallel to the rotation axis the cylinder being 
taller, even though there are still 2 cells in the axial and 1 in the 
radial direction. 

Agreement between the experiments and theory shown by the 
dash-dot line from Lynn's work is much better than in the case of figure 
7 for a ■ 1.99 . This improvement in agreement with theory is just 
as anticipated on the basis cf our earlier generalize cms. 

The study of the (4,2) mode in the cyliu-er a ■ 1.99 
(figure 8) was repeated for the cylinder a = 3.98 . Shown in figure 10 
by the solid circles is the observed shift in frequency of the (4,2) 
mode as measured by the time until maximum disturbance pressure dif- 
ference from container switch-on. As in the previous experiment for 
the (2,1) mode (figure 9) the value of ^ for t ■+ » is greater for 
the container a *  3.98 than for a » 1.99 as would be expected from 
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Figure 9.  Dependence of inertial oscillation frequency on time since 

container switch-on for (2,1) mode in the cylinder aÄ3.98. 
Amplitude perturbation £=6.03°. Curve is from Lynn (1973), 
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Figure 10. Dependence of inertial oscillation frequency on time since 
container switch-on for (4,2) mode in the cylinder a=3.98. 
Probe tip is half way between the top and centre of the 
cylinder. Amplitude perturbation e=6.03°. Curve is from 
Lynn (1973). 
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relation  (l). Hence the oscillation frequency ü) is smaller rela- 
tive to Q   and ..e would anticipate better agreement with theory for 
a = 3.98 than for a « 1.99 . Such is the case as shown by the relatively 
small difference between the dash dot line from Lynn's work and our 
experimental points. 

The experiments with the taller cylinder (a ■ 3.98) thus bear 
out our earlier generalizations that the best agreement with theory occurs 
for the lowest inertial oscillation frequencies. In Lynn's notation, we 
have found that for small values of K - *£_. diff_rene.es are least between 
observed and predicted shifts of inertial eigenfrequencies dur.ng spin-up 
from rest. 

Combined in figure 11 are the experimental points for the 
(2,1) mode from figure 7 and figure 9 for the two different cylinders 
a = 1.99 (closed circles) and a = 3.98 (triangles). For both sets of 
points in this figure the abscissa has been scaled with the frequency 
ratio A; corresponding to t ->• « for direct comparison of the rela- 
tive  u shifts in eigenfrequency. Presented in this way the experi- 
ments show a very weak dependence on K = ~L   of the shift in eigen- 
frequency with time since container switch-on. Lynn's work, as shown 
by the dash dot line which serves to present both aspect ratios when 
scaled in the manner just mentioned for the experiments, bears out this 
weak dependence. The discrepancy between the experimental points and the 
line is less for the tall cylinder (a ■ 3 98) than for the short (a » 1.99) 
one as noted earlier and reflects our comment that agreement with theory 
is better for lower frequency modes (smaller to) relative to the rotation 
speed, ft . 

The generalizations given above with regard to agreement 
between experiment and Lynn's analytical work arot'e from experiments 
which were carried out at different amplitudes of perturbation, e . 
The dependence on perturbation amplitude of our observed changes in 
inertial oscillation frequency with time since container switch-on was 
studied for the (2,1) mode. Shown in figure 12 is the observed change 
in frequency of the (2,1) mode (a ■ 3.98) for each of several perturba- 
tion amplitudes in the range e ■ 3.18  to e ■ 6.46 Only that 
portion of the frequency change corresponding to the range 1.6 to 2.3 spin- 
up times from rest was studied in this detail for various perturbation 
amplitudes. No perturbation amplitude effects in the dependence of 
int-.rtial oscillation frequency on time since container switch-on are 
apparent in figure 12. Since the perturbation amplitudes covered in 
this experiment span the range of perturbation amplitudes of rbc previous 
experiments we conclude that departures of our experimental results from 
Lynn's analytical results are probably not due to perturbation amplitude 
effects. 
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Figure 11. Dependence of inertlal oscillation frequency (normalized in terms 
of frequency ratio ^ for t •*• °°) on time since switch-on for (2,1) 
mode in the cylinder a-1.99 (closed circles) and the cylinder 
ot*3.98 (triangles). Curve is from Lynn (1973). 
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Figure 12.  Dependence of inertial oscillation frequency on time since 
container switch-on for the (2,1) mode in the cylinder a*3.98 
.it various amplitudes e of container perturbation. 
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Inertial oscillations were identified in section 4 of this 
report by comparison of the frequency ratio § for maximum disturbance 
pressure response with the ratio predicted from inviscid linear theory. 
A small discrepancy, about 0.3% for the (2,1) mode (figure 2) and 0.4% 
for the (2,2) mode (figure 3), between experimental and theoretical 
values of fi was left unexplained. On the basis of linear theory we 
would expert that the greatest response in disturbance pressure to occur 
at a valu«. of ß „   which is smaller than that calculated from inviscid 
theory by an amount proportional to P . In our experiments this amounts 
to less than 0.1% so that although observed maximum in disturbance pres- 
sure occurs at a smaller value of g. than calculated from inviscid theory 
as expected, the actual shift is greater than expected. 

In order to account for the few tenths of a percent in the 
difference between the calculated inviscid frequency ratio and the observed 
peak in disturbance pressure we refer back to relation (1). The only 
measurements required to obtain the predicted inviscid frequency ratio 
~ for any mode is the aspect ratio of the cylinder, a . From relation 
(1) we find that the fractional error in £ is related to the fractional 
error in a by a numerical factor which is 1.19 for the (2,1) mode and 
1.66 for the (2,2) mode. Since the ratio of these factor is about the 
same as the ratio of the observed discrepancies 0.3% for the (2,1) mode 
and 0.4% for the (2,2) mode we suggest that a small uncertainty in the 
container aspect ratio accounts for these discrepancies. 

The main purpose of our experiments has been to measure the 
eigenfrequencies of inertial oscillations while the fluid in a cylinder 
is spinning up from rest. The measured eigenfrequencies for the (2,1), 
(2,2) and (4,2) modes in the cylinder a - 1.99 and the (2,1) and (4,2) 
modes in the cylinder a » 3.98 compare favorably with those predicted 
by Lynn's analysis. We note, however, that all of our results were obtained 
after about one spin-up time from container switch-on because there was 
insufficient disturbance pressure before that point. Therefore we sug- 
gest that subsequent experiments be carried out at larger perturbation 
amplitudes, t   in order to increase the amplitude of disturbance pressures. 
No non-linear effects in the change in eigenfrequency with time since 
switch-on were observed with the amplitudes c in the experiments 
described in this report. Hence we suggest extending the curves such as 
those shown in figure 7 to larger values of e_t'T by increasing e . 

An alternative method of increasing the disturbance pressure 
differences is to incr ase the perturbation frequency, w . This is an 
attractive procedure since disturbance pressure is proportional to the 
perturbation frequency squared. Furthermore an increase in frequency 
u) requires an increase in rotation speed ß which reduces the Ekman 
number. Although it is unlikely that any of the departures of our present 
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experimental results from theory are due to finite Ekman number effects 
since the largest Ekman numbers in our experiments are about 5 x 10"6, 
even smaller Ekman numbers will make this statement more certain. 

The departures from Lynn's results of our experimental results 
on the change in eigenfrequency with time since switch-on have been sum- 
marized in section 4. We have stated that best agreement between experi- 
ment and theory occurs for the lowest frequency oscillations or put another 
way those modes which have particle motions predominantly parallel to 
the axis of rotation. It is noteworthy that agreement between experiment 
and theory depends critically on how the experimental results are scaled. 
In our case we have followed Lynn's scaling since we are comparing our 
results with his analysis. It is interesting to note that although Lynn 
chooses X = 1«0 (section 3) rather than X = 0.866 as originally used by 
Wedemeyer in his model, this constant does not appear to enter into sub- 
sequent analysis. Hence we might consider the effect of presenting our 
observed times until peak disturbance pressure as e~X^'^   with x = 0.886 
instead of x ~ 1»0 • This vjxxld  have the effect of raising all the 
experimental points upward in figures 5, 7, 8, 9, 10, 11, 12 by such an 
amount that the points for the (2,1) mode in figure 7 would fall almost 
directly on the line in that figure. Furthermore all the points would 
then lie above the line rather than below so that the inertial oscilla- 
tions would occur sooner in time than predicted or alternatively would 
show less shift in frequency than expected during the transient spin-up 
period. Such an interpretation would also be consistent with the experi- 
ments of Watkins and Hussey (1973) on spin-up from rest in a cylinder. 
They found that spin-up always occurred more rapidly than predicted by 
the Wedemeyer model. As mentioned in the introduction, however, the 
Ekman numbers in our experiments are sufficiently small that there should 
be only very minor departures from the spin-up predicted from Wedemeyer's 
analysis. 

The choice of X " 0.886 has further ramifications in the inter- 
pretation of our experimental results. Better agreement with theory would 
then occur for a lower order (small number of nodal surfaces), mode (2,1) 
while agreement with a more complex mode (2,2) would be worse. This 
interpretation is appealing until we consider the much more complex (4,2) 
mode (figure 8) which would agree very closely with theory were X = 0.886 
rather than 1.0. Hence a change in scaling of time, consistent with Lynn's 
analysis, appears to provide no net improvement in the interpretation of 
our experimental results. 

The choice of value for x is an important one which is appa- 
rently not determined in Lynn's analysis. The quantity f ■ e~Xt'T giving 
the position of the velocity front over time since switch-on could be 
found experimentally. Hence the constant x could be determined directly 
from experiments on spin-up from rest. We suggest therefore that experi- 
ments on impulsive spin-up should be undertaken to accomplish this. The 
apparatus used in the present experiments can be modified so that the 
container will be spun up within a fraction of a revolution in order to 
approximate impulsive spin-up from rest. 
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For the experiments described in this report the container 
achieved what was termed quasi-steady motion after about three revolu- 
tions. This means that some adjustment should be made for the non- 
impulsive nature of container rotation from rest. Even if we choose to 
ignore the first three revolutions in our measurement of time until maxi- 
mum disturbance pressure is reached this leads to at most 4% error in 
time measurement. A .though shorter times would have the effect of improv- 
ing the agreement with iheory in all the experiments, it is not obvious 
how to apply such a correction so that we present the results showing 
actual raw time measurements. Subsequent experiments involving the 
investigation of container acceleration will help to resolve this 
problem. 

The term quasi-steady used above with regard to the rotation 
of the container refers to the fact that the mean rotation speed of the 
container, ft, included in addition to the perturbation eo> coswt , 
a steady increase over the spin-up time of the fluid. This increase 
amounted to less than 3% over periods of several minutes. It is due to 
the feedback nature of the speed control (Appendix II) and comes about 
presumably because the moment of inertia of the rotating experiment is 
continually changing while the fluid spins up from rest. No corrections 
were applied for this slow steady acceleration of the container. 
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Appendix I 

Calibrations 

The frequency of oscillation, w , was controlled by a signal 
generator. A precise measurement of this irequency was obtained by con- 
necting the output of the signal generator to an electronic counter-timer. 
The frequency was constant to within ± .03% over the duration of several 
experimental runs. 

The measurement of time from container switch-on until peak 
disturbance pressure was obtained from a distance measurement on a con- 
stant »peed chart recorder. Speed of the chart paper was calibrated and 
checked by recording a sine wave of known frequency over a large number 
of cycles. The frequency of the sine wave was determined with the counter- 
timer as described above. 

The rotation speed of the container was monitored continuously 
by displaying the output of a tachometer, connected directly to the rota- 
ting system, on the electronic counter-timer. The counter-timer showed 
the number of pulses from the tachometer in a fixed time (10 sec.) period. 
This number was converted to a rotation speed by a direct measurement of 
rotation speed over a larger interval with a stopwatch. Further details 
of the speed control are given in Appendix II. 

Disturbance pressure measurements were made with a differential 
pressure transducer (NS LX3700D) of range ±1.5 psi. The output of this 
transducer, amplified and filtered (Krohn-Hite, low frequency cut off 
0.5 hertz, high frequency cut off 2.0 hertz), was displayed on a chart 
recorder (Techni-rite). In order to express the measured displacements 
on the chart recorder in terms of known pressure differences a calibra- 
tion input was applied to the transducer. A beaker of water was oscil- 
lated vertically at the working frequency, u> , so that a known change in 
pressure was applied to the transducer via the hypodermic needle and 
tubing. Displacements of the support for the beaker were measured with 
a strain-guage and converted to millimeters of water pressure. (The 
tip of the hypodermic was sufficiently near the surface that dynamic 
corrections were negligible.">    Shown in figure 13 are calibration data 
for two different probes used in our experiments. Probe 1 was used for 
the a - 1.99 container while probe 2 was used for the a - 3.98 con- 
tainer. The difference in response of the two probes is due mainly to 
the difference in position of the oil-water interface. Future experi- 
ments will use silicons oil throughout in order to avoid these surface 
tansion effects. 

The kinematic viscosity of the working fluid was measured 
using a Canon viscometer. Kinematic viscosity is found directly from 
a measurement of time for the fluid to move a known distance through 
precision capillary tube. 
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Fipurn 13. Amplitude calibration of Lx3700D pressure transducer. Ordinate 
gives measured displacement on chart record for a known 
change in pressure head given by the abscissa. Probe 1 was 
used for the cylinder a=1.99, probe 2 was used for cylinder 
a=3.98. 
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Appendix II 

Motor speed control (Figure 14) 

The operation of the motor control depends on the charac- 
teristic behaviour of an operational amplifier used in a closed loop 
configuration following the application of a voltage to its inputs. 
Specifically, such a device will drive whatever current is required 
through its load in order to generate sufficient feedback voltage, 
which is of opposite polarity to its input voltage, to drive its sum- 
ming poi.it (i.e. inverting input) back to the potential of its non- 
inverting input which is normally grounded. It is a condition of zero 
input voltage difference that such a device "desires" to maintain, and in 
the case of the RCA HC2000 device used here, this condition is closely 
approximated. The device has a maximum power dissipation of 60 watts 
if infinite heat sinking is provided. 

In order to cause the amplifier to regulate the motor's speed, 
we must provide it with a feedback voltage which is proportional to the 
motor's speed of rotation and opposite in sign to the applied input 
voltage. This is accomplished here by an optical shaft encoder attached 
to the axis of the rotating system. The pulses produced by this device 
are processed through essentially a frequency to voltage conversion. 
This voltage is then used as the amplifier feedback. 

We note here that even with a non-ideal amplifier (that is 
with non infinite gain), if the open-loop gain is high enough our sys- 
tem will be oscillatory, since the technometer feedback voltage will turn 
the amplifier off completely once the desired speed is attained and the 
system will exhibit a sawtooth shaped plot of motor speed against time. 
To smooth the systems response, the tachometer feedback is paralleled 
with a D.C. feedback path which reduces the gain from its open-loop 
value of three to four thousand to about twenty. An additional feed- 
back control is available through a D.C. level adjustment provided in 
series with the tachometer's output. With this control it is possible 
to raise the gain, thus increasing the quality of the system's response, 
until just below the point where inertial and frictional dampings are 
no longer sufficient to prevent oscillation. This is the ideal operating 
po' - of the present system. 

An RCA hybrid operational amplifier was chosen for its good 
approximation to a high power operational amplifier and reasonable cost. 
With adequate heat dissipation provided, it can deliver up to 7 amps 
with a bipolar output around 10 to 20 volts, depending on its power 
supply. In use here, it is provided with an input offset voltage nul- 
ling circuit and a frequency compensation network consisting of a 22 ohm 
resistor and 8 microhenry coil in parallel. It should be noted that 
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these devices must dissipate considerable power when the amplifier's out- 
put is made to slew at even a few hertz. 

A Theta optical shaft encoder was chosen as a rotation sensor 
for its large number of read events per revolution. It produces 250 
quasi-sinusoidal pulses per revolution of its input shaft. The tacho- 
meter electronics consist of a Fairchild model 9601 Integrated circuit 
u*>. ostable multivibrator which produces constant amplitude and constant 
(adjustable) duration pulses from the encoder output which is squared by 
crosscoupled nand gates in an MC846? integrated circuit. This pulse train 
has to have a *iuty cycle of less than 602 at the highest rotation speed 
used, or the pulses cease to be of the preset duration. Thus when the 
system is rotating slowly, tb«. duty cycle is around S to 10 percent. 
Integration is required to avrive at a smooth D.C. output from such an 
input. To ensure this, a series of three active integration stages was 
employed. The first includes a circuit for nulling the output voltage 
offset of the 9601. Before this integration,the one shot pulses are 
fed into a pulse frequency counter, which displays the turntable rota- 
tion speed (times 250) for the operator. The integrated output is split 
into two parts, each of which passes through a variable gain amplifier. 
One is adjusted to give an output voltage of approximately one volt per 
rev/sec of the system and is displayed on a digital voltmeter to provide 
a measure of the small rapid pace speed changes of the system. These 
cannot be seen on the pulse counter speed readout, because it has an 
integration time (while It counts up pulses) of the order of one second. 
The second part of the tachometer signal is fed through a similar adjustable 
gain amplifier which serves as the feedback adjustment previously men- 
tioned. Its output is then buffered and sent to the power amplifier. 
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