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1. INTRODUCTION 

Since the final solution of the classical central limit problem through 

the works of LeVy4 Lindeberg, and Feller, researcn on the convergence in distrü 

bution of suns of random variables has developed in two directions. Firstly 

the classical results have been extended to the random processes obtained by- 

interpolating the partial sins, Secondly,results have been obtained also for 

dependent sironanos. In this context perhaps the nost important dependence 

property is that of a martingale. 

The purpose of the present paper is to find conditions that are fleces 

sary &■*- sufficient for the functional central limit theorem for martingales. 

Unfortunately it is not possible to give as clearcut a solution to this prob- 

lem as in the classical situation with independent sviranands. One reason for 

this is that a number of different normalizations (or time-scales) all seem 

reasonable, but that they lead to different results. Another reason is that 

any array of random variables with finite means can be made a martingale differ- 

ence array by adding random variables that are zero except on a set of asympto- 

ticaUv negligible probability. This alteration would then not change the 

convergence or non-convergence of the distribution of the summation processes 

based on the array, so any sue : array could be re<^rded as a martingale differ- 

ence array, which would make the pre::.1*? \ of getting conditions for convergence 

to a Brownian motion rather meaningless. Hence one has to introduce some 

restriction to make the problem not only superficially a martingale problem. 

An appropriate restriction is given as Condition (1) of Section 2. Once this 

condition is introduced, our approach is very simple. We show that there is a 

,;naturalf? time-scale that makes the summation process converge in distribution, 



and then get conditions for convergence when using other time-scales by collar- 

ing these time-scales with .the natural one. 

•/e have not attempted to find necessary conditions for the convergence to 

normality of the one-dimensional distribution of a normalized martingale, and 

in fact it seens to oe difficult to find non-trivial conditions for this (cf. 

Dvoretsky (1972), Section 6). However, from a pedogogical point of view it 

may be preferable to get necessary conditions for the functional central limit 

theorem, since this avoids the extra assumption that the suramands are asympto- 

tically small. 

Successively weaker sufficient conditions for the central lij.iit theorem 

for martingales have been obtained by a number of authors. Early important 

results were proved by P. Levy (see e.g. his 1937 book; ref. [9]) and much of 

the subsequent work lias relied on methods developed by him. Billingsley (1961) 

and, independently      Ibragimov (1962),proved convergence to normality 

when the martingale differences are stationary, ergodic and v/ith finite variance 

Further weakening of the conditions were made by Dvoretsky (1972), Brown (1971), 

and Scott (1973). Drogin (1972) considered random time-scales and also got 

results on necessity. Our point of view is similar to that of Drogin. The 

most recent results known to the present author are those of McLeish (1974) and 

from the sequel it can be seen that his sufficient conditions are rather close 

to the necessary ones. 

The plan of this paper is as follows, in Section 2 the necessary notation 

is developed and the natural tine-scale is found. In Section 3 normalization 

by means of sums of squares and by means cf conditional variances are consiaerec1 

while in Section 4 the normalization is given by variances. Finally, Section 5 
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contains a cocment on a remaining problem. 

2. THE NATURAL TIME-SCALE. 

For n = 1,2,... let {X^ j)^    be a sequence of random variables on a 

probability space (^>Bn»
p
n)> 

let \ ±   be the sut-sigrsaalgebra of B  that 

is generated by 3^ xM"»\ i and lJUt Sn^ = E \ i # Furthermore let 

T
nCt); te[0,l] be stopping ti/nes of 0^ i}?=1 that are increasing and right 

continuous in t a.s. In the sequel we will without further cement assume 

that 

Tn(l) < « a.s., n>l. 

Then {snoTn(t): t€[0,l]}~ , is a sequence of random variables in D(0,1), the 

space of functions on [0,1] which are right-continuous and have left-hand 

limits. V/e let D(0,1) be endowed with the Skorokhod topology and let B be 

a Brownian motion on D(0,1). For brevity we abuse notation slightly and 

write Sol  for S 0t     and E.(0 for E(*||B .) when the expectation is 

taken of variables in the n'th row (EQ(«)
=
E(0). The object of this paper is 

to find conditions for S0T —+ B when {X .} is a martingale difference 
11 11, JL 

array (m.d.a.) i.e. when Ej^D^ ^)"0» i*2, n>l, so that the partial sums in 

each row form a martingale. 

However, as was noted in the introduction, if the X -*s have finite 

means then any array {>' ■} can be made a m.d.a. by adding variables which 
n, l 

take large values, but with low probabilities, in such a way tliat the asymptotic 

distribution of S0T  is not changed. For i>0 put 

M.1 " ViI(,VÄ) and Vi = Xi_Xn,i- Conver2ence of the distribu- 

tion of SoT  to a 3rownian motion entails that the maximum of the sunrands 



tends to zero in probability and hence, with a probability tending to one, all 

the XjJ i , lsi:STn(l) are zero. Thus we are essentially concerned only with 

the distribution of the array {X^ .}, and if the problem is to be a martingale 

one VA^  .} has to be, at least asymptotically, a n.d.a. Formally this can be 

written as 

(1) wx      | I 8, ,(£ A\ ^0 as n~>. 
l^Tn(l) i=l * x n'x 

However, once this condition is assumed to hold there is no need to require 

that the original array, {X .}, is a m.d.a. and this will not be done unless 
n,i 

explicitly stated. Moreover, it is no restriction to assume that e.g. c-1 so 

that 

\i ' *MI(I Vi|£l) -nd 

Furthermore introduce 

Then \t   A $ 2 a.s. and {£ 4} is a m.d.a. Our first result is that the 

sum of squares of {?   •}   gives a natural time-scale for the summation pro- 

cess. To state the result we need the further notation i«L ■  max  X, A  . 

k 
THEOREM 1. Let xn(t) * inf{k; £ ?2   >t}^ te[0,l], and assume that (1) is 

d     1=l P satisfied. Then S0Tn ^ß if and only if i? =-* 0. 

A p 
PROOF, Fron S0Tn ^B it follows immediately that Hn —► 0, so only the 

p 
reverse implication remains to be proved. Assuming that II —► 0 it follows 



k k       p 
from (1) that   max  j I   X . - T r  | £* 0 and thus, putting 

•   lsk<T (1) i=l n'2  i-1^1'1 
K       n i 

s
n00 

= J ?n i » it is enou8n t0 Prove tnat SnoTn "~* B ^ since 

|^ J s 2 a.s. it follows from e.g. Theorem 1 of Drogin (1972) that 

SnoTn ~* B- PVe rai£ht as wel1 :nave used the results of [3], [11], or [10], the 

proof in IJcLeish (1974) perhaps being the easiest one. Furthermore, that proof 

can be somewhat sii.ylified in the present c:\se.) 0 

RE4ARK 2. It is easy to see that an equivalent tine-scale is given by 
k     2 

T ft) = inf{k, I   E. -.(C 4)>t} (c.f. Theorem 5 below). Furthermore it should n .=1 i-i -*n,i        (t) ^ 

be noted that for these time-scales J. -  C i -** t as n-**>, for tc[0,l]. 

The main tool for the rest of the par>er is Lenna 3 below which shows that 
k  2 

T (t) - inf{k: T L.  ->t} is not only a natural time-scale, but that it is n isl TI,I 

also in a certain sense minimal. 

LZMrtA 3. Let xn(t) be stopping times of {>L i)   that are increasing and 

rieht continuous in t a.s., and assume that (1) is satisfied. Then 

d        P Sot —► B if i- —* 0 an«! if furthermore 

Tn(t) 

(2) I     d , -- t as n~, tt[0,l]. )  £ . —*• t as n 
i-1  ^ 

Conversely, if SoT -^ B ;:;id if furthermore 

V« 2 
(3) limsui) E( J  fi .) < t, tcJO.l],* 

p 
then It   —♦ 0 and (2) holds, also .v!T convergence in probability is replaced by 

* Actually it is enough that (3) holds for t-1. 



convergence in the mean. 

PROOF. For the first part it is as in the previous proof sufficient to show 
■j k 

that S'oT 2+ 3, where S'(k) s J L, . . This is easy to do by comparing 
n n n    • ■* n,i 

the time-scale x  of this lewia with the natural time-scale of Theorem 1 

above. However, since S
!
0T ^ B is also implied by Theorem 3,2 of McLeish 

(1S74) we omit the details. 
p 

For the converse part we first note that r^ —► 0 again follows immedi- 

ately, and that we then also nave that S\9T   $+ B. Next it    has to be 
Tn(t)  -   p 

n n 

proved that J.",  C . ^ t, tc(0,l] (that (2) holds for t*0 follows fro^ 

O) i     and by dividing both members by t it is seen that it suffices to 

show that 

(4) I     C  . ^ 1 as n-*». 
i-1 m>1 

k        . 2 

Now the functional x(«) +   I   {x(i)-xfci)r is a.s. B-continuous and hence 
i-1  *   K 

as ft*». Purthennnre the latter sun has nenn 1 and variance 2/k so 

I   (B(r)-3(^r~)} —► 1 ^s k-w>. ::t folio*.;s that it is possible to find a 
i=l   K   K 

sequence n! ■ n* (n) of integers with nf-*» as n-*» such that 

n' 

To sirr*Iify notation w»j will   "or t'ij v<-:.t of the ;.roof write    T(I)    for   T  (~r) 

when dealin*» with variables fiw the n'tii row     1. im'     (>'(0)=0).    A^in «enprtv 

sin«: the row index,   lot   Tf(i;    be the niniP'.m or   T(I)    ,in:l of    inf{h>T(i-l); 

| J" r„  -!vi}    and i'.i.^ote the even'; t'r-: 
2«T(I-J.)*1 " 



T(i)=T'(i), lsi<n', by ^ . Let Yn = 
s f1' 

n'  m 

so that A£ c {Yn>l} and introduce the D(0,1J rrcdulus of continuity 

or (6) - inf max    sup   l^'oi^CtJ-S'oT^Cs) |, where the infinum is taken 
n    {t.} 0<i<r t.^st.s^  n n   n n 

over {t^   satisfying 0 * t0<tj<.. .<t .* 1, ti-til>6, i * l,...,r. Tlien 

Y„ * ^«(^r) +  nax  |L:| and since n1-*» it follows from Theorem 15.2 
n   nn   l*i*Tn(l) ^

,x 

of Billingsley (1968) that *ntf) -^ c- As also   max   |E • | ^ 0 we 
n n lsi<T(l)    ™'1 

Iiave that n 

(6) P(Ajj) <; P({Yn>l}) > 0   as   n^oo. 

T'fi) 
Hence, outtin^   c    . - ) £   v , it follows fron (5) and (6) that 

n>1     k=T(i-i)+l   n^ 

(7) I   d:^l   as   n-. 
i=l   n,i 

Since      nax    k    . | s Y    v/e have by the reasoning above that 
Isisn'    ^'l        n 

rrÄX     IC-» -51 —** 0   as   n-*».   Ibreover, as    [ r    .1  < 2    for all   n   and   i, it 
!<Un:        ' ' 

follows fron the definition of   x'fi)    that       rax    |c    • | ^ 3. 
Ki<n'     n'x 

For   n   fixed   {5'(fc)>* .    is a vartinfalc, and as   tT(i)    is a stopping 
* »     ~ °°   ( tir-e also, {3r

{ (kAi1 (i))}™       is a r.ar Jn<;alc.    Since     I     S'(kAT'(i))  - 
~v ks2 * 

- S;({k-l}AT'(i)))2 s ^     ^k   and since   E^     f^J < -   for   n   larfe 

enough by (3), the rartinrale   {^(^t1 (i))}*,„,    is scuiare integrable for lar*«- 

a. Then, by the optional sto;jpin-, theorem p'({r(i-l)^k}AT'(i)) IT, is a 

square interrable nartinhale and hence :.^ean square convergent. Since 

lir. r>n({T(i-l)^v}AT(i)) - 5»(T(i-l)AT'(i)) = r ; a.s. by definition, it 



r, fellows tJiat 

w      ^iVta-^^LXi^1^1-«)' 
n'  .2 In particular we have from (5) that ?J I   c ■) U+o(l), Together with (7) 

nv 2 i»l nA 

this shows that { J C ,) , is uaiffemly intertable (see e.g. Chun^ (1960) 
i=l  ' 

Theorem 4.5.4). 
Tn(D 2    2

: 2       2'   **&       2 
n  K-l  *n,K  i=1 a:i       a  .^ k=T(i^1)+1 ^ 

.2  - „ ,     ._._,„ ,^ _, ... , .... ,2^2, " I ^ -j for n = 1,2,... . Equation (S) and the inequality (a^+b^) £ 
i=l  ' 

* 2a2+2b2 imply that 

*      i-l  ^k=T(i-l)+l ^'"     k=T(i-l)+l   ' V  n'TU AJ J 

+ 2 jx 
E<i' S<iH,TCH)»2- £1+S2 <s^ 

^re   E<i - B<il! ^jr(i-i))}2 * <i   «>   Sx s K ^ ^ . and sini- 

larly   ?{        J q v - H J        f,2 J| ßn    (M))}   < 2 T        £ J 
Mv?T(i-l)+l   a'*' ,'=T(i-l)+l  li'"     n'TU i; ' b*T(M)+l   T*

>AJ 

3v a welllciovn nartiirale inequality (;ee Liir:;holaer (1974), Theorem 3.2) there 

is a universal cOiistnnt   c    such thot 

«    i    c 4 ^; c:-      >    ^ ■ } 
W(i~!M *"J        t«T(i"l)*l  " *VJ 

- c ^c4 • . 
n. i 

T'(I)A:; 
(?e;:.enber t-ia^    )    r , converges ainost surclv es  r+« ana thus, 

k=i(i-iW  ' 
I  T'(i)A.,'      , 

since     Y   f ,  <: :>„ also converges in the 4'th r.*an.) nence 
'k'Tü-n+i ^ -v| 



7 ft   A 

s 2(l+c)E{ max c? 4 I d 4> * 0 
.1      ? .2 

n  « ,2 «,» n-*», since { \   c 4L-1 is uniformly integrable and si • I n,i n-i 
2 ?  P P 
£ . < 9 and  max '*  — n  T^« A% - 

Isisn1 n'x       Ki<n 

(6) we have that for arbitrary e>0 

as n-*», since i l   c ^/„-i is uniformly integrable and since • I n,i n-i 

max c 4 s 5 and  nax ^? • ^> 0. Thus d' £> 0, and combining this with 

P({|«y>e}) * P«|dn|>e}nAh) ♦ P(A£) * 

*P«|d£l>e}) + P(A£) +0 

as n-*=. By (7) this proves that (4) holds and thus that (2) is satisfied. It 

now raily remains to be observed that (2) and (3) together give that 

Ä(t) iiL *. ais°- D 

It should perhaps be noted that in the converse part 01 the lemma, the 

condition (3) cannot be deleted entirely, not even if {T (t)} is non-random. 

3. RANDOM TIME-SCALES. 

In Section 2 above it is shown that a natural time-scale is given by the 

sums of the squares of the truncated and recentered summands. In this section 

some ways of expressing this time-scale more directly in terms of the original 

array {XA i)   will be investigated. The first result shows when it is possible 
Ajl 

to normalize directly by sums of squares of the 1L  ^*s. 

k  2 
THEOREM 4. Let in(t) = inf{k; J x£ ^t}, tctO,!], and assume that (1) is 

i=l ' '**        p 
satisfied. Then Sptn ^ B if and only if both M^ -* 0 and fc ■ 
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Tn(D 

(9) I     4-1 W i) ^ 0   as   *~. 

PROOF.   By definition 

i,i - Zti 
+ Eli<v + *&+ ^i^i^i-E^i)). 

d P 
Either by assumption, or else since S0TL —► B we have that M —*■ 0 and thus 

rV«    P 2,i=1  Ij| A -> 0. Furthermore, by considering Tn(t)AN and letting N*», 

Fatou's lemma gives that 

tn(D 
5 E A Xn!i 4-1^ ä 

Tn(1)
  4 

-E    J   ^i i=l n>1 

r * 2 E  nax  XI2, -* 0 as n-**>, 
lsisTn(l) *'x 

where the last inequality holds since JV,   V  . < 1 and |XL  QJ ^ 1. 

Hence for te [0,1] 

V«        Tn(t) 

p 
where r —* 0 as n-**>. Thus 

1-1 1_1 Tn(t) 

= l + 9 ^,tn(t) 
+ £ 4-lOh.P - rn • 

for some 0; 0*6*1. Since X^ T ft) s '£ £* 0 we have that J^  ^ A £* t 



11 

for all tc[0,l] if and only if (9) holds. Now 

V'c> „    Tn^  ? 

ik   ^>x i=l  n'x 

s t + o(l), 

so Lemma 3 is applicable and the theorem follows. 

As seen above, under weak conditions the sums of squares of the X .*s 

give the natural tine scale. This normalization has the further advantage that 

it is readily available and that it does not depend on the underlying proba« 

bility measure. However, in analogy with the case of independent summands it 

might also be interesting to normalize by the conditional variances (cf. Reinark 

2). This possibility was introduced by Levy, and is the random normalization 

that lias been most investigated. 

k      ? 
THEOREM 5. Let x_(t) = infflc; I   E. , QT -)>t} and assume that (1) is 

d P satisfied. Then S0Tn ^> B if and only if both 1^ ^0 and 

TJD-1 

(10) 
n 

2*   rvi      -\   J.  C    /"Yt'2 i\ j. - Z J,  <E1-1 <*k,0  * Ei-i «&» + rn £. 0 as n-~, 

where r„ - 1 - ^   E^ o£ ). 

.. L REtiARK 6. A simpler condition that together with H —* 0 inplies (10) is 

Ei=l  {Ei-l (>!n,i) + Ei-1 (:<n!i)} "^ °' If already the oriBinal array {Xn,i] 

is a n.d.a. then B?^ (X£ p = E?^ (^ p < Ei.1 (X^) so in that case (10) 

is equivalent to 
T„(t)-1 

«.2 
Tnft)-1 

(10') jj  Ei-1 0&> + rn - ° as *-• 
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.^ .. P Moreover, together with 1>^ —► 0 this also inplies (1). 

PROOF. We first prove that (1), (10), and Mß ^ 0 are sufficient to ensure 

S|Tn =+ B. By definition 

Ei-i <4) ■ Ei-i <P* Eli (V + Ei-i «&> 
and hence for t«[0,l] 

tn(t)-l tn(t)-l 

0»     £  Ei-1 <i) = t - (t -  £  B^CX^))- 

T„(t)-1 n 
2  m •*.*.£   rv»j2 Jx  

{Ei-l V + Ei-1 <i)}- 
P ,   , _. ,_,    A«"1 

J x P and It follows that if 1^ ^0 and (10) hold then J^   E.^ (^ i) £* t 
P P thus, since (1) and H ~» G together iitply that   max   |r . I •£-+■ 0, also 

rn(?) "«n«   ^ 
(12) I     E. ,  (£ .) i> t   as   in-. 

i=l     2 x    T^'1 

k     , 
Let the natural tüne-scale be   Tn(t) = inf{k:   I   j£ . > t} A Tn(l),   t«[0,l] 

• TAW    2 i21   l' and observe that   h_,     £    . s t +      max      C • ■=+ t.   Now 
l-i  Ti.i    Ui*tn(l)' ^'x 

J'(t) .7   T'(t) 
(13) i %-ti.i-h.Ko)} *BÄ<!.i* 

Hä^I^H as n~- 
ti(t) 

t«Ct) 
Since 4 ä  max  £; . £* 0, so also P( I     E. .(£?,) s t ♦«)+ 1 for 

lsi<T (1) ™'1 i-1  1_i ^ n 
any 6>0. Hence, conbining this with (12) we have, for e>0, that 
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13 
Tn« 2 W-* 

P(tn(t) * T'(t-e)) S P( ^   E^ (<(i) *     £     E..! (^.)) * 0   as   m». 

In particular   P(i^(t-e) < Tn(l)) ■* 1 
T^(t-e)   2     p 

and thus 

V«   2 #t-«) 
(14) P-(   I     C 4 < t - 2e) s P(     I      d i < t - 2c) ♦ o(l) * o 

i=l    ^'x i=l     ^'x 

as   it*».   Furthermore 
tn(t) rn(t)-l 

(15)      E   Jj   <i = E     4     Ei_i<i) +0(1) st ♦<,(!), 

and since   c>0   is arbitrary, it follows from (14) and (15) that 
T (t)    7     p 

^i=l     Si      l   for   ^f0'1^   (c£- e-ß- L^"3 2-n of i'fcLeish (1974)), which 

by Lemna 3 proves that S°x i- B. 

d P 
Conversely, suppose S°T —► B as n-**>. Then II —► 0 and since (15) 

Tn(1) 2  1 
holds Leinna 3 is again applicable and thus,in particular, L .  £ i —► 1. 

lbreover, (13) then holds also if T'(t) is replaced by T (1) and it follows 

rTnW     2  P n 
that Ji=1  EJ.J^ (q i) + 1 as n*»s which by (12) proves that (10) holds. [] 
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4. NOH-P.AiiXii TIM^-SCAl-Ey., 

I£ the suEmands are independent it is sufficient to consider deterministic 

time scales, the ioost obvious one being "iven by the variances. In this section 

we will treat non-randon time-scales. First, in Theorem 6 below, we will 

assune that the original array {X^ i> is a m.d.a.„ and then a more general 

case is treated in Theorem 8. 

k  2 
THEOREM 6. Let {^ .} be a n.d.a.; put tn(t) ■ inf{k; E [ ^ £>t} and 

d P 
assume that (1) is satisfied. Then 50T —* B if aad only if both H^ —► 0 

and 

tn(t) 

(16) I     f:^t as a-, tc[0,l]. 
i=l  n'1 

p 
REMARK 7. If {X .} is a m.d.a. and x (t) is as above, then II —* 0 and 

(16) together imply (1) 9  so for sufficiency it is not necessary to assune that 

(1) holds. A number of equivalent sufficient conditions are given by Scott 

(1973). 

n 
PROOF. It is easy to show tkrt if U  *-* 0 and (16) holds then the conditions 

of the first part of Lerra 3 are satisfied and hence Sot -+ B. However, since 

the result is weillmovm wo or.it the details. 
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d P 
For the reverse indication, assume that 5„T -* B. Then M —► 0 and 

moreover 

T°(t),    . '»T1,2 E  I  q i * E  I  ^ . * 0(1) s 
i=l  n>1     i=l  T1'1 

Tn(t)-1 

* B  I  xn i + 0(1) s 

i=l  n,x 

s t + 0(1). 

-Tn« .2  1 . 
Hence, fron the converse part of Lenraa 3, J. ,  E . —► t as n-*», te[0,l]. 

Now, 

'**    &    4i = E ii ^i+0C1)+E Ji   {Ei-l(V + Ei-i(Xn>» 
,l,(t)-l      2 50 EIi=i    w+o 

Proceeding as in the proof of Theorem 4, it is enough to note that hence 

als° E IA <i Ei-1 <W * \ ™*(1) 
Hi-1 <W % «n.iJ * ° as 

T (t)  2     T (t) 2      P 
n-H» to conclude that J/^  x£ i - J/^  Si0' tc[0,1], and thus that 

(16) holds. D 

THEOREM 3. Let T (t) - inf{k, E \   r  .>t} and assure that (1) holds. Then 

d P 
S0T -+E if and only if 11 —► 0 and furthermore 

Tr(t) 
r   2  P 
J I    . -> t as n-**>, tc[0,l]. 

i=l  n'x 

P3QQF. Theorem 8 is just a special case of Lema 3. 0 

5. A CONCLUDING REMARK. 

Tfe have argued that the condition (1) is neecod to make the nartingale 

property cone into play, iiowver, the necessary and sufficient conditions of 

Theoren 6 and, if it is assured that (I .} is a r.wd.a., of Theorem 5 in»>ly 
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that (1) holds.    Hence one night hope to obtain the results of those theorems 

without assuming (1).    Sufficiency is of course obvious, but as regards neces- 

sity the best the present author lias thus far been able to do is to replace (1) 

by the requirement that   OO—j   is uniformly integrable. 
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