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1. INTRGDUCTICH

Since the final solution of the classical central limit problem through
the works of Lévy, Lindeberg, and Feller, researcnh on the convergence in distri -
bution of suns of randonm variables has developed in two directions. Firstly
the classical results have been extended to the random processes obtained by
internolating tiic partial sums. Secondly, results have been obtained also for
dependent sumanas. In this context perhans the nost irportant dependence
property is that of a martingale.

The purpose of the present paper is to find conditions that are feces-
sary and sufficient for the functional central limit theorem for martingales.
Unfortunately it is not possible to give as clearcat a solution to this prob-
len as in the classical situation wiin independent s'rmands. One reason for
this is that a number of different normalizations (or time-scales) all seem
reasonable, but that they lead to different results. Arother reason is that
any array of randon variables with finite means can be nade a martingale differ-
ence array by adding random variables that are zero cxcept on a set of asym:to-
cically negligible nrobability. This alteration would then not change the
convergence or non-convergence of the distribution of the sumation processes
based on the array, so any suc’. array could be regarded as a martingale differ-
ence array, which would make the orc'oa of gettin conditions for convergence
to a Brownian motion rather neaningless. Hence one has to introcuce some
restriction to make the problem not only superficially a martingale problem.
An aporopriate restriction is given as Condition (1) of Sectiorn 2. Once this
condition is introduced, our approach is very simple. We show that there is a

‘matural” time-scale that makes the sumation process converge in distribution,
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and then get couditions for convergence when using other time-scales by compar-
ing these time-scales with .the natural one.

e have not attempted to find necessary conditions for the convergence to
normality of the one-dimensional distribution of a normalized martingale, and
in fact it seems to oe difficult to find non-trivial conditions for this (cf.
Dvoretsky (1972), Section 6). However, from a vedogogical point of view it
rmay be vreferable to get necessary conditions for the functional central limit
theoren, since this avoids the extra assumption that the summands are asympto-
tically smali.

Successively weaker sufficient conditioiis for the central iinit theoren
for rartingales have been obtained by a number of authors. Early immortant
results were proved by P. Lévy (see e.g. his 1937 book; ref. [9]) and ruch of
the subsequent work has relied on methods develoned by him. Billingsley (19€1)
and, independently Ibragimov (1962),proved convergence to normality
waen the martingale differences are stationary, ergodic and with finite variance
Further weakening of the conditions were nade by iworetsky (1972), Brown (1971),
and Scott (1973). Drozin (1572) considered random tine-scales and also got
results on necessity. Our point of view is similar to taat of Drogin. The
most recent results known to the present auticr are those of Mcleish (1974) and
from the sequel it can be seen that his sufficient conditions are rather close
to the necessary ones.

The plan of this paner is as {ollous, in Section 2 the necessary notation
is develooed and the natural tine-scale is found. In Section 3 normalization
by reans of sums of squares and by means cf conditional variances are consicerec .

wiile in Section 4 the normalization is given by variances. Finally, Section 5
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contains a corment on a remaining problem.

2. THE MATURAL TIME-SCALE.

For n=1,2,... let {Xn i}?=l be a sequence of random variables on a

probability space (Qn,Bn,Pn), let 3 be tie sut-siomaalgebra of B_ that

n,i K n
is generated by xn,l""'xn,i and put S (X) = izl Xn,i . PFurthermore let
Tn(t); te[0,1] be stopping times of {Xn i}:=1 that are increasing and right
1

continuous in t a.s. In the sequel we will without further ccrment assume

that

Tn(l] <o a,s., nl,

]

n=1
space of functions on [0,1] which are right-continuous and have left-hand

Then {Sngrn(t): te (0,17} is a sequence of random variables in D(0,1), the
limits. Ve let D(0,1) be endowed with the Skorokhod topology and let B he
a Brownian motion on D(0,1). For brevity we abuse notation slightly and
write Set, for St and E;(v) for E(“liBn,i) when the expectation is
taken of variables in the n'th row (Eo(e)=E(~)). The object of this paper is
to find conditions for SeT d, B when {Xn i} is a martingale difference
array (m.d.a.) i.e. when Ei_l()\'n i)=0, i22, n21, so that the partial sums in
’
each row form a martingale.
However, as was noted in the intrcuuction, if the Xn i’s have finite
’

means then any array {¥, ;} can be made a m.d.a. by adding variables which
take large values, but with low probabilitics, in such a way that the asyrmtotic
distribution of ST, is not changed. For i>0 put

1 - !t = - H : ] -
xn,i xn,il('xn,ilsc) and i = A xn,i . Convergence of the distribu

tion of SoTn t0 a 3rownian motion ent~ils that tie naximum of the sumnands




tends to zero in probability and hence, with a probability tending to one, all
the )S';’ i lsisrn(l) are zero. Thus we are essentially concerned only with
the distribution of the array D{‘I'l,i }, and if the problen is to be a martingale
one {}S'l,i} has to be, at least asymptotically, a m.d.a. Formally this can be
written as
(1) mx |} E; 10y i)| PL0 as nw.

lskS'tn(l) i=1 :
However, once this condition is assumed to hold there is no neced to require
that the original array, {xn,i}’ is a m.d.a. and this will not be done unless
explicitly stated. loreover, it is no restriction to assume that e.g. c=1 so

that
“ﬁ,i = X, 510X, ;1<) and

Rui T %, l0% 515D

Furthermore introduce

t,i % M7 By,

Then Ign ] €2 a.s. and {e, ;} 1s amd.a. Our first result is that the
»1 »1
sum of squares of U;n i} gives a natural time-scale for the summation pro-
2

cess. To state the result we nced the further notation &1 = max )\_) -
ISiSTn(l) ¢

K
THEOREN 1. Let t,(t) = inflk; } &2 >t}, te[0,1], and assure that (1) is

i=1

P
satisfied. Then S.rn 4, B if and onmiy if b= 0.

PROOF. Fron SoTn el B it follows irmediately that ”n 2. 0, so only the

reverse implication remains to be proved. Assuming that i'ln i 0 it follows
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K Kk
from (1) that  max | ] X .- T& .| %0 and thus, putting
e lskst () il MDogm

e R v d .
51 (%) izl En,i » it is enough to prove that S .1 —+ B and since

IE’n,il s 2 a.,s. it follows from e.g. Theoren 1 of Drogin (1972) that
S'et % B. (e might as well have uscd the results of [3], [11], or [10], the
proof in ikcLeish (1974) perhaps being the easiest one. Furthermore, that proof

can be sonewhat siiplified in the present cuse.) 0

REMARK 2. It is easy to see that an equivalent time-scale is given by

X
T (t) = inf{k, | E._ (E;rz1 >t} (c.f. Theorem 5 below). Furtlhermore it should
n jop 1 1'*n,i (0 !

£ .~ 1t as no, for te[0,1].

be noted that for these tire-scales ),y n,i

The main tool for the rest of the paner is Lerma 3 below which shows that
k
‘rq(t) = inf{k; ) Eﬁ i>t} is not only a natural time-scale, but that it is
) i=1
also in a certain sense minimal.

Lodma 3. Let 1,(t) be stopping times of {X, ;} that are increasing and
»

right continuous in t a.s., and assume that (1) is satisfied. Then

SoTné* B if ’:in E—+ 0 ant if furtherrore
Tn(t) )
(2) ) ES . -—t as we, te[0,1].
.~ n,1i
i=1
1
Conversely, if SoTn 2, oand i€ furthernore
T (t)
n 2
. X v - n ,
(3) lim su; E{ 1 F’n,.i) <t, tclb 1],%
o i=1

. P , . . . ca e
then i L 0 and (2) holds, also il convergeaxce in probability is replaced by

* Actualiy it is enough that (3) holds for t=1.




(e,

convergence in the rean.

PROOF. For the first part it is as in the previous proof sufficient to show

that Sr"o'rn 4, B, where (k) = 2 E‘n . This is easy to do by comparing

i=l
the time-scale T, of this lenma with the natural time-scale or Theorem 1
above. However, since S:lo‘l' n 51» B 1is also iuplied by Theovem 3.2 of ikLeish

(1574) we omit the details.

For the converse part we first note that i{ ) 0 again follows irmedi-

3

ately, and that we then also iave that S;]cTn g, B. Mext it has to be

1..(t)
proved that }. nl

(3), and by dividing both members by t it is seen that it suffices to

gi i b, t, te(0,1] (that (2) holds for t=0 follows fro™

show that

Tn(l) _
4) ): 5121,12*1 as oo,
k

iow the functional x(°) + 21 {\c( )-x (3= 1))2 is a.s. b-continuous and hence
1=

-

e o o lg . -
L e B)-ster () & 1 s@-3dh)’

as e,  Furthermere the latter sun has nean 1 and variance 2/k  so
2 {B[ ) - ( 11251 a5 tew. 7t follous taet it is possible to find &

scqvcnce n' =n'(n) of incegers with n'+» as wse such that
]

n .
(5) z 5ot QT)-.'-;'.,TQ(-l—‘-l—)}‘ 1 as e,

i=1
To sirmlify notavicn we will Tor e vest of the proof write t(i1) for 1 ({_11_,)
e

when dealing with variables frow the a'ta row,  1=im'  (v(0)=0). Acsin strpre.
sing the row index. 12t 1'(i) be the ninirm of t{1) and of inf(l>1(i-1).
v :

fooviboand demote tae event then
q P T
i=t{1-1)+1
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il

(i) = v'(), lsim', by A . Let Y = max - osup 8107, () -50T, —ﬁr“
1<ign' 1-1 . 1
noon
so that }\ﬁ c {Yn>1} and introduce the D(0,1) modulus of continuity
mn(cS) = inf max sup lsaorn(t)-s,'lorn(s)l, where the infinum is taken
{t;} O<isr t, ,st.sst, ‘

3 79 = o 1 -
over {t.} satisfying 0 tosty<a.<t =1, ty

t;.>% i=1,...,r. Then

Y. s 2mn(ﬁjl-) +  max lE’n,iI and since n'-= it follows from Theorem 15.2

! .
15151n(1)
of Billingsley (1968) that w (=) ¥+ C. As also  max g, 51 =0 we
n'n 1cisr (1) Mt
nave that n
(6) P(A;) S PH{Y>1}) + 0 as mwe,
7' (i)
Hence, nutting A £y x it follows fron (5) and (6) that
2 k=t(i-1)+1
n' .
2 P
M 121 Chi 1 as noe,
Since max. Icn i' < "{n vie have by the reasoning above that
lsisn'l ’

p ..
max |g. ] — 0 as mew. joreover, as % .| <2 forall n and i, it
1<ien n,l1 N, 1
follows ‘rom the definition of <'(i) that 1:AX Icn il <3

l<isn' v

g . > q . . . . .
For n fixed 15;_(}:)}, o] 8@ vartiigile, aw as 1'(1) 1is a stopping
4 o=

-]
tire aisc, {S"l(kAr‘(i)) }(:_1 is a rarcincale. Since | [S]'l(kf\t'(i)) -
S k=2

T, (1) T, ()72
- Sr’l({k-l}l\r'(i))]2 < 5_}::1 -’,i,k and since L(Zlil E‘r:,k) <w for n large

LR ) - . ~: [ . 0 . . .
cnoven vy (3), the martinrale {.‘pr'l(lil\'[‘(l)) b, ls scuare integrable for larnc
A
o . . ~ . q @« .
1. Then, by the optioaadl stupping theoren: {3‘1({'r(1-1)+k}u'(1)) c isa
. "k-.
scuare interrable martinsale and heice ean square convergent. Since

Lir 5 ({r(i-1) ke (1) - Sy (xGi-Dar' () = &

e ot ]

UL by definition, it
4




follows that

2 U)o,
8) “(Cn,i" bn,r(i-l)) " E[k=1(i-1)+1 En,k" Bn,r(i-l)]'
ni
In particular we have from (3) that E( ci i) <1+ 0(l). Together with (7)
n' o i=1
this shows that { § ;2 .} =1 is uniformly inteprablc (see e.p. Chung (1960)
i=1 q'l n"
Theoren 4.5.4).
(1) 2 n' o, 1’ (1) 2
Let 4 =7.1 - ¥ 0. andlet & = ) £ o -
n N E)n,k i=1 11:1 I3 i=1 1;=T(i'1)+1 Al,k

nl
- L Ci ; for n=1,2,... . Equation (8) and the inequality (at+?) <

i=1
Docnlh o "
< 2a”+2b” inply that
50 ' (i) T 2
Ef.‘r"z <2 z E{ E - 0 = 1B % {’fl 1” Bn T(i'1))}
i=] Ue=r(i-1)+1 7 ksr(i-1)+1 7 VT
r!
+2 § B -n e )¥= 58, | sa
- e ®n,i" °n,7(i-1) “17vz o Y
ni
. r 2 - g [ 2 n 4 < v 4 and g -
Jere h{()n,i E(Cn)ill Ul'lsf(i‘l))} < bgn,i so Sl < T 2 {;n,i , 4N S1rl

i=1

NORUCINE O )2 T gy
latly :{ Sﬂ,k | En,k" Snlr(i-l)}} i 3{. Z En,k}

i=r(i-1)+1 <=1(i-1)+1 =r(i-1)+1

3y a welllmwn martincale inecaclity (see Duriiwlder (1974), Theoren 5.2) taere

is a wmiversal ¢coastant ¢ such thot

T 5, Y T‘s(i) 4
d 2y el P o)
k=r(i-1)+1 /" er(ifner

=C §4 -
n i
r'&i)Aﬂ
(verember that £, converres almost surely o5 he and thvs,
kst(1-1)+1 *°
' (i)An
since En “l < 3, also corverses 10 the 4'tii rean.) ence

k=t(i-1)+1




9
t
2 L
Ed”<2(+)E | ¢ . <
i=1
2
< 2(1+c)E{ max ¢ . .} +0
lsisnt o1 121 n,i
n' 2
as m, since { J Z i}n=1 is uniformly integrable and sinee
i=1 ’ .
max 2. <9 and  mx 2.2 0. Thus d' 20, and combining this with
l<isn' ™ 1<i<n'

(6) we have that for arbitrary e>0

P({|d,]>e}) < P({|d_|>e}nA ) + P(A) <

< P({|d}|>€e}) + P(Aﬁ) + 0

as mw, By (7) this proves that (4) holds and thus that (2) is satisfied. It

s e Tt s

now only remains to be observed that (2) and (3) together give that

T (t)
Z;El Ei,i 1, t, also. 0

It should perhaps be noted that in the converse part or the lemma, the

condition (3) cannot be deleted entirely, not even if {Tn(t)} is non-randon.

o et m—_ e

3. RANDOM TIME-SCALES.

In Section 2 above it is shown that a natural time-scale 1s given by the
sums of the squares of the truncated and recentered sumrands. In this section

some ways of expressing this time-scale more directly in terms of the original

array {X ;} will be investigated. The first result shows when it is possiblc
-t
to normalize directly by sums of squares of the Xn i’S-
]

k

THEOREM 4. Let t_(t) = inf{k; § X
i=1 ' . P

satisfied. Then Set_ &> B if and only if both M 50 and -

2

i>t}’ te[0,1], and assume that (1) is

L
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7,(1)
(9) {1 o X3 2.0 as m

PROOF. By definition

2 - 2 ,2 Vi “2 [ 1 ] 1 ~ \]
Xoi= &g *EL O ) Ry 2 O DK R ().
p

Either by assumption, or else since S.,'rn —c—1-+ B we have that Mn — 0 and thus
T, (%)
121 X;{’ i -Il» 0. Furthermore, by considering rn( t)AN and letting Noo,
Fatou's lerma gives that
7, (%) , 1,(1)
E{ izl (X;lgi'Ei-l(}%,i))Ei l(xf'l i } E 12 ()gn i~i- l(xn )) i- I(X;x,i) .
7,1
E 21 n i 1 1(& ) <
7,(1)

N

A
3
k<
=i
[
7Y

A

2 E nax ‘(n—>0asn-m,
l<ist (1)

T,.(1)-1
where the last inequality holds since 2131 ‘Q:l i €1 and lx{"] . (1)| < 1.
» J n

Hence for te({0,1]
T (t) Tn(t)

7 o= L 2
izfl i igl (r’n,i * Ei-l(‘\;l,i)) YT

where T E, 0 6 TS G
Tn(t) 2 Tn(t) ) )
Jomat Ll B0 ) -

1=1 Tn(t)
_ 2 2 )
it t + 9 %,T (t) + izl Ei‘l(x‘ ) rn
2 LNO RPN
for some 6; 0s6sl. Since b (t) ﬁ—-+ 0 -we have that Z it
4 n 4
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for all te[0,1] if and only if (9) holds. Now

T,(0) 5 () 2
: s X4, .
. izl i fE 121 mi
st+o0().

so Lemma 3 is applicable and the theorem follows.

As seen above, under weak conditions the sums of squares of the Xn’i’s
give the natural time scale. This normalization has the further advantage that
it is readily available and that it does not depend on the underlying proba-
bility measure. However, in amalogy with the case of independent summands it
might also be interesting to normalize by the conditional variances (cf. Remark
2). This possibility was introduced by Lévy, and is the random normalization
that has been most investigated.

k
THEOREM 5. lLet t_(t) = inflk; } & , ()Si,i)>t} and asswne that (1) is

i=1

satisfied. Then Set_ »B if and only if both { %+ 0 and

T,.(1)-1

" 2 2 P
(10) .21 {Ei‘l (h;l i) + El'l ()q{ i)} + I‘n —_— 0 as n.m“

1= 4 ’
7,.(1)-1

where r_=1-7 n v Z

n =1 i1 G 9
REMARK 6. A sirpler condition that tcgether with rglfl-o implies (10) is

T .
n Z - : o L 2 .. ) \
i=1 {Ei_l (Aﬁ,i) + Ei-l (An,i)}-«+ 0. If already the original array {xn,i}

is and.a. then Fi X 9 = B 0 ) S ()gfi) so in that case (10)
is equivalent to

Tnft)-l ) n
(10') L By (%) ¢ B0 as e

i=1
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Moreover, together with FE.E* 0 this also implies (1).

PROOF. We first prove that (1), (10), and Mn 2+ 0 are sufficient to ensure

ser 44 B. By definition

2 2 2 . 2
Ej.p (q,5) = Bjop 66 30 * By (G 5) + By ()

and hence for te[0,1]

Tn(t)-l 1n(t)-1 .
an 1 B GIVESSNCE Lo B 0G)) -
T (t)-1
n 2 . - I2
©o B () By (TN

p T (t)-1 2 . P
It follows that if I{ — 0 and (10) hold then Ziél E;.p (6 ;) =t and

thus, since (1) and M k, (G together imply that max Ign i' 2» 0, also
n 1<ist (1) 2
tn(t) n

(12) TOE (& i)-3+ t as noe.
Let the natural time-scale be T/ (t) = inf{k: Z gﬁ ;> th a1 (1), t«[0,1]
= ’

T! 1 1
MO - 2 1
and obsetve that Z E g St £ ;= t. Now
? )

15151 (1)
T (t) T (t)
(13) E{ X (En i~i- l(En ))} < b 2 gn i®
T, (t)
< n{13122x(1)g§ i 21 gi,i} +0 as nw,
T (t)
Since 4 >  max gi " L 0, so also P( izl E; 4 (Eg,i) st+§) +1 for

151s1:n(1)

any &>0. Hence, corbining this with (12) we have, for >0, that
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'tn(t) ) 'rr'l(t-c)
P[Tn(t) < Tr'l(t'e)) s P izl E; 1 (En,i) s izl Ei 1 (grzx,i)) +0 as ipw,
In particular P(rr'l(t-e) < -rn(l)) +1 and thus
TI'X(t-e) 2 ®

=l Gy, e %0
Tn(t) T;x(t's)

14) P{ 3§ gii<t-Ze)SP[ 21 grzli<t-2€)+o(1)-»0
is1 ™ i= '

as nm, Furthermore
‘rn(t) Tn(t)-l

(15) E _21 g . =E _21 By () +0Q1) £t +o(1),
i= ’ i= ’

and since ¢>0 is arbitrary, it follows from (14) and (15) that
T.(t)
2121 Erzx i Pt for te[0,1] (cf. e.g. Lerma 2.11 of ikLeish (1974)), which

by Lemma 3 proves that S°T, & B.

Conversely, suppose S°tT g—r B as mn»», Then B—» 0 and since (15)
! (1)
holds Lemna 3 is again applicable and thus, in particular, 2121 5121 i Lo 5l
b
Horeover, (13) then holds also if rr"(t) is replaced by rn(l) and it follows
) )

T
that ):;__}1 F‘i-l (Erzl,i) g 1 as o, which by (12) proves that (10) holds. [




4. WOH-TAIMGH TIHE-SCALES,

If the surmands are independent it is sufficient to consider deterministic
time scales, the most obvious one being given by the variances. In this section
we will treat non-random time-scales. First, in Theoren 6 below, we will
assume that the original array {)%x,i} is a m.d.a., and then a more general

case is treated in Theoren 8.

k
THEOREM 6. Let (X ;} bean.d.a., put t,(t) = inf(k; E ] X2 >t} and
y a i=1 ’

D
assume that (1) is satisfied. Then SoTn ‘-i» B if aid only if both Mn r—» 0

1
ATus

(16) I XTZI}iE»t as ww, te[0,1].

(16) together imply (1), so for sufficiency it is not necessary to assune that
(1) hLolds. A number of eauivalent sufficient conditions are given by Scott

(1973).

n
PROOF. It is easy to show that if I{ ~ 0 and (16) holds then the conditions

of the first nart of Lerma 3 are satisfied and hence SoT) % B. Fowever, sincc

thie result is welllmown we onit the details.
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5. A CCNCLUDTHG REMARK,

property come into nlay.

e have argueu that

Theorert 6 and, if it is assured that {){_1 i} is a n.d.a.,
P
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For the reverse irplication, assume that Sorn-é+ B. Then PQIEL-O and

moreover
Tn(t) Tn(t]-l )
; . < + 0(1) s
: izl Ehh izl RS
Tn(t)'l
ol
< E z }(n,i‘*o(l) <
=1
: <t +o0(l).
| Tn(t) 2 1
Hlence, fron the converse part of Lerma 3, Zi=1 En i t as nmww, te[0,1].
Now,
T (1)-1 ,(%) ) T,(t)-1 :
Ha 2 i " S ' 12
tzg - e .+0(2)+E SR O A s L (X0,
; 121 R E R i=1 1700 121 R K ! B2 05,07
Tn(t)-l ’ ’ .
v > a
so E i=1 1_1(nn’i) 85 oo,

Proceeding as in the proof of Theorem 4, it is enough to note that hence

2 o L@ 2
iy ) Lty &) @0 as

bt
also EJ._ < EY o (K .) s E( max
i=1 gn,1 i-1 Yn,i 1cist_ (1)
T (t) T (t)
n 2 n 2 P
me to conclude that Zi=1 i limg gn,i = 0, te[0,1], and thus that
(16) holds. a
| N
THEDREI 8. Let Tn(t) = inf{k; £ } £ i>t} and assume that (1) holds. Then
- i=1 ™
Set, S+ T if and only if ii ©» 0 and furticrrore
% T_(t)
i " 2 P
. 121 o t as =, tel0,1].
PROOF. Theorem 8 is just a special case of Lemna 3. 0

e condition (1) is neccded to make the martingale

iovever, the necessary and sufficient conditions of

of Theoren 5 imly
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that (1) holds. FHence one mignt hope to obtain the results of those theorems

without assuming (1). Sufficiency is of course obvious, but as regards neces-

sity the best the present author has thus far been able to do is to replace (1)

by the requirerent that (Mﬁ};l is uniformly integrable.
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