
1

'■■ "■"■," ■■.■■Ill I II ■ I'll I— III I p ■„

BOLT BERANEK 4j*-° NEWMAN IHC^

CONSULTING 0 E V E I O P M E N T X E S E A I C H

t

J © ;

I O!

l 00

E

t
I'

[
;:

i
i
c

o
<

BBN Report No, 3210 s/ November 1975

DISTRIBUTED COMPUTATION AND TENEX-RELATED ACTIVITIES

Quarterly Progress Report No. 4

1 August 1975 to 30 October 1975

fe^ G

The views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied
of the Defense Advanced Research Projects Agency or the United
States Government.

This research was supported
by ihe Defense Advanced
Research Projects Agency

Contract No. N00014-75-C-0773,

Distribution of this document
is unlimited. It may be
released to the Clearinghouse,
Department of Commerce tor
sale to the general public.

CAMIIIDGE N(W TOK CHICAGO I O $ A N G E I E S SAN flANCISCO

Öfe*ir-5™aiWHStet*-"=

^^

■ •

;:■■

■;-■'

\i':;

a
i
i
i
i
i
i

i

i
i
i
r
i
i

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE flFhan Data Entered)

2. GOVT ACCESSION NO

&

REPORT DOCUMENTATION PAGE

DISTRIBUTED COMPUTATION AND TENEi-

RELATED ACTIVITIES. g ^
7. AUTHOR*''.)

J. /Burchfiel,R.lThomas,T.Myer/R.jromlinson

9. PERFORMING ORGANIZATION NAME AND AODRESS

Bolt Beranek and Newman Inc.
50 Moulton Street y
Cambridge, Mass.—&2128_

11. CONTROLLING OFFICE NAME AND ADORES!

U. MONITORING AGENCY NAME « ADDRESV" dIUetont Item Controlling OffleaJ

 A
16. DISTRIBUTION ST*Tl

0 s %. I
MCftT Al» llll» IIIPUJIJ —~V

of this/document is

READ INSTRUCTIONS
BEFORE COMPLETING FORM .

S. RECIPIENT'S CATALOG NUMBER

S. TYPE OF REPORT a PERIOD COVERED

Quarterly Progress s
8/1/75 - 10/31/75
^PCRfTMMING ORG. REPORT NUMBER

IS. SECURITY CLASS, (el title report)

Unclassified
(Sa. OECLASSIFICATION/OOWNGRADING

SCHEDULE

Distribution of this/document is unlimited. It may be released
to the Clearinghouse, Department of Commerce for sale to the
general public.

17. DISTRIBUTION STATEMENT (ol trie ebettmet entered In Block 20. II dlllerent Iron Report)

f) n
j. LA

It/ tUBBI, tMBMT,f¥ MOTES =fc
..<SJ»J. ,,. 4 J-(i-^-^äj 7j

*F ¥ This research was supported by the Defense Advanced Research
Projects Agency under ARPA Order No. 2935.

I». KEY WORDS fConflnu» on rereree elde II neceeemry end Identity by Mock number)

distributed computation
distributed data bases
distributed file system
TENEX security

National Software Works
message processing
CINCPAC interactive test
RSEXEC

, 20. ABSTRACT (Continue on revotee elde II neceeemry end Identity by block number)

^This report describes continuing refinement of the TENEX RXEXEC
distributed file system which supports geography-independent
computing on a number of ARPANET TENEX sites. It describes BBN
efforts to integrate TENEX into the National Software Works
system. It also describes BBN efforts to upgrade existing
ARPANET message service to meet NAVY requirements for an
interactive message processing test at CINCPAC. .

\l-A

DO/, FORM
AM 71 1473 EDITION OF I NOV «I IS OBSOLETE

0* u

Unclass
SECURITY CLASSIFICATION

ified \
:ATION OF ThlS PAGE (When Dmtm Emoted)

M
/

,'/;

:-.-,.■>■-■., , - „ . Ammr |,| „j, ,^^ -.-.-.

."»fpuST-, ■

ü
SECURITY CLASSIFICATION OF THIS PAQEfWh« Dim Enfnd)

u
L
L
L
[

SECURITY CLASSIFICATION OF THIS PAOEfWtttn Dmm Bnli*4}

-■ ' ■- ' Jllll ■■.,.!■< .. ,
..Ä-4-. . ; , .. _—

^^^m^mw ■ ■ - ■'• - ■

.:*■

|

I-

1
1
I
I

BBN Report No. 3210 Bolt Beranek and Newman Inc,

TABLE OF CONTENTS

I. INTRODUCTION

II. DISTRIBUTED COMPUTATION

A. Maintenance of Distributed Data Bases . . ,
B. RSEXEC and Distributed File System

III. NATIONAL SOFTWARE WORKS

A. Extending the Encapsulation of TENEX Tools .
B. A Limited Capability File Package
C. Automatic Startup of NSW

IV. TENEX RELATED ACTIVITIES

A. Internet Protocol
B. Security
C. TENEX 1.34

1. RCTE
2. Measurements on TENEX CD230 Disk Driver
3. A Noteworthy Bug-fix
4. Improvements to the Network Lineprinter

Spooler
5. BCPL Compiler

V. COTCO ACTIVITIES

A. MAILSYS Development

1. Templates
2. Sequences
3. Other Extensions

B. Graphic Text Editor - Preliminary Design . .
C. Message Storage and Retrieval
D. System Security

1. Top Level MAILSYS
2. JSYS Trap Environment
3. Access Isolation Module (AIM)

E. Statistics
F. LDMX Interface
G. Mail Forwarding Improvement

Page

1

4

4
6

8

8
10
10

12

12
14
14

14
17
17

18
21

22

23

24
25
26

30
32
33

33
33
34

34
34
34

IM i

I
I
I
I
I
I
I
I
I
I

I. INTRODUCTION

During the last quarter our "Distributed Computation and TENEX

Related Activities" ARPA research has continued to make progress in

the areas of:

distributed computation

support for the National Software Works

internetwork protocols

TENEX extensions and improvements

message technology

Details of this work are included in the sections of this report

that follow.

In the distributed computation area our work on data bases has

lead to the development of a new algorithm to coordinate multiple,

simultaneous updates to a distributed data base in a way that

guarantees both the internal consistency of each distributed data

base component and the mutual consistency of the collection of data

base components. In addition, the distributed file system supported

by RSEXEC has been significantly improved with the addition of the

turn or "wild" designator for file names. The "*" feature has been

integrated into the RSEXEC command language and is available to

programs that execute in the RSEXEC environment.

Much of our effort this quarter in support of the National

Software Works (NSW) Project has been to prepare for the initial

-—""--"- -^—-
 ■IliliMB

 *a

*■«■
 ' - ;--■.•-..--. -.----- ■ - ■■ . ;

demonstration of the NSW system which is scheduled for mid-November

at Gunter AFB. We have continued to work closely with Massachusetts

Computer Associates to insure that TENEX functions effectively in

the NSW system. Our NSW work is detailed in Section III.

As part of our TENEX related activities, we completed

implementation and initial checkout of the basic transmission

control program (TCP) for TENEX which implements the internetwork

protocol initially specified by Cerf and Kahn. During the checkout

phase, debugging sessions conducted with the TENEX TCP and one

implemented for a PDP-11 at Stanford by Cerf's group, uncovered

several deficiencies in the protocol itself. Revisions to the

protocol have corrected these problems.

For some time we have been using a simplified version of the

internetwork protocol to support the cross-network lineprinter

spooler for our TENEX hosts at BBN. Regular production use of this

protocol has uncovered two problems which adversely affect TENEX

performance. Both problems, which are described in detail in

Section IV.C.4, have been corrected this quarter.

In other TENEX activities related to the network, we have

completed implementation of the TELNET remote-controlled

transmission and echoing (RCTE) option which will be released with

version 1.3*1 of TENEX. Users who access TENEX through the ARPANET

from hosts that also implement RCTE should perceive a significant

improvement in the responsiveness of character echoing. In

addition, the network traffic required to support remote terminal

■ffiumrtif-'^ ---

;■■*-!-">■': ~ .v::.: q^f^s^^^;'" '-" ' "' '"' y ' ' ";" •"'•• ' ■ i j "■ iwsgammammmmmmrvamanmn

L.J

access to TENEX should be reduced significantly.

Our work In the COTCO message technology project has resulted

in the first release of a new, second generation MAILSYS (Version

2). This new MAILSYS represents a significant improvement over

version 1. It provides a more uniform and powerful set of message

processing primitives and incorporates a set of system defaults

carefully designed ♦"•o minimize the typing required to accomplish

common operations.

Li

L..i

In order to support the security requirements of the COTCO

project, we have begun the preliminary design for an access

isolation module for TENEX. This work is being done in cooperation

with a computer security group at MITRE which has had experience

with the application of similar techniques to a MULTICS installation

now operational in the Pentagon.

! i

I

L

iMtiiauMM 11 in -^•"■' -'-—

JB»^H22^^WHff?'WW9s ?!! "'- - ' —

II. DISTRIBUTED COMPUTATION

A. Maintenance of Distributed Data Bases

Our work on multiple copy, distributed data bases has resulted

in the development of an algorithm for maintaining such data bases

which we believe satisfies the following properties:

1, Distributed updating.
Updates to a redundantly maintained data
initiated through any of the data base sites.

base can be

Update Synchronization.
Races between conflicting, "concurrent" update requests are
resolved in a manner that maintains both the internal
consistency of each data base copy and mutual consistency of
the collection of data base copies.

Deadlock prevention.
The synchronization mechanism that resolves races does not
introduce the possibility of so called "deadly embrace" or
deadlock situations.

Robustness.
The data base maint
function effective
(network) and data
is robust with re
(temporary) inabili
communicate with
crashes) , and the 1
or more data bas
algorithm, we rejec
base managing proce
it to function effe
requires only pai
managing processes.

enance mechanism can
ly in the presence
base site (host) fail
spect to lost and dup
ty of data base man
one another (due t
oss of memory (state
e managing processes
ted any mechanism tha
sses to be up and ace
ctively. We sought
rwise interactions

recover from and
of communications

ures. The algorithm
licate messages, the
aging processes to
o network or host
information) by one

In developing the
t required all data
essible in order for

a mechanism chat
among the aata base

Provable correctness.
It is possible to prove (or at least make a strong
plausibility argument for) the correctness of the mechanism.

The following is a brief overview of the algorithm.

——

I

I

■

E
E
E
E
E
E
E
I
I

I
I
I
I
I
I
I

The data base copies are assumed to be accessible at each data

base site only through data base manager processes (DBMPs). To

initiate an update, an application process (AP) may submit an update

request to a DBM?. The collection of DBMPs then act cooperatively

to perform the requested update and notify the AP of its acceptance

or rejection. An AP process is free to resubmit a rejected request

for reconsideration by the DBMPs.

The DBMPs determine whether to accept a given update request by

voting on it. A request that receives a majority consensus from the

DBMPs will be accepted. A single dissenting vote is sufficient to

reject a request. The race resolution mechanism may require that a

request be rejected in order to maintain the consistency of the data

bases.

For example, consider a 3 DBMP system for a data base which

includes the variables x(=1) and y(=2). Suppose that two

application processes, AP1 and AP2, concurrently request the updates

x:=y and y:=x, respectively, by initiating the requests at DBMP1 AND

DBMP3. After the two updates are completed, one would expect x and

y to be equal, although one could not predict whether their value

would be 1 or 2. If both requests were to be accepted, x and y

would not be equal. Hence, one of the requests must be rejected in

order to maintain the (internal) consistency of the data base.

Stated somewhat differently the update request that gets rejected

must be refused because it is based on information made obsolete by

the request that gets accepted. The AP whose request is rejected is

5.

~^r.-'. &S, "■> ■■■■,■.,-■■■■■■*".■■ ■ i ■ "- H /■■. ■■''"■■• '■'..VT.—V-.-. ■.-.-:■ . ■ . . -■ .^ ■ ■■:■■■ -■■ ^--^g

free to resubmit it. If, when it is resubmitted, ehe request is

based on current information, it can be accepted.

We are preparing a report that describes the algorithm in

detail. The report specifies the DBMP voting procedures and

includes a "proof" of the correctness of the algorithm.

B. RSEXEC and Distributed File System

During this quarter, the file name syntax for the RSEXEC

distributed file system was expanded to allow use of "*" as a "wild"

designator. The "*" designator can be used in file names within the

distributed file system environment in much the same way as it is

used within a single site TENEX environment. The difference, of

course, is that within the distributed file system environment "*"

has a multi-host scope. For example, the command

-DELETE (files) *.«

would cause all files in the user's (multi-host) composite directory

to be deleted; the command:

-NEED (files) A.» ».B ,
—(in component directory) [ISIC]<JONES>

would cause a copy of every file in the user's (multi-host)

composite directory w^th name A and every file with extension B to

be moved to the specified file directory.

The "*" feature has been integrated into the RSEXEC command

Mmmmm^m^tLutmaäimamimmtm:*, ■ ■ i ii^aS3C3CTErr.'.i.,. ■■ ^ .M i;

;•■

:;

language so that RSEXEC file system commands behave like the

corresponding single TENEX EXEC commands. For example, "*" is the

default value for name, extension and version fields in file name

arguments for the DIRECTORY and QFD commands. In addition, programs

executing within the RSEXEC environment can make use of "*" in file

names (via GTJFN, GNJFN, etc.). Thus, it is now possible to run

programs such as DELVER (which cleans up file directories by

deleting old versions of files) within the distributed file

environment.

C

E
i;

ii
i:

The latest version of RSEXEC which includes the "*" feature as

well as a number of other improvements has been running on the BBNA

system since raid-October. After we feel that it has been exercised

sufficiently, we will distribute it to all other TENEX sites as the

last "official" release of RSEXEC. We expect this will happen early

in January.

We presented a paper at the Fifth Symposium on Operating System

Principles on the TIP/RSEXEC system titled "An Operational System

for Computer Resource Sharing." The paper, which was prepared

jointly with the Computer Systems Division at BBN, will be published

in the symposium proceedings which will appear as a special issue of

the ACM SIGOPS Operating System Review.

III. NATIONAL SOFTWARE WORKS

The major emphasis of our National Software Works (NSW) project

activity for the past quarter was aimed toward a demonstration of

initial NSW system capabilities very early in the next quarter. In

oreparing for the demonstration and pursuing the general development

of tool bearing host (TBH) software, we have made significant

improvements in our encapsulator for TENEX tools and have designed

and implemented an initial version of a program to handle intra-host

file operations for TENEX. In addition, we have specified and begun

to implement mechanisms which would automatically create the NSW

environment in response to a network request. We have also met with

project members from Massachusetts Computer Associates in an effort

to develope an approach to the long term NSW communication needs.

A. Extending the Encapsulation of TENEX Tools

As noted in the previous QPR, our approach to utilizing TENEX

programs as NSW tools is through the trapping and translation of

TENEX system calls into calls meaningful in the NSW system. This

NSW encapsulation allows TENEX- programs to become NSW tools with

very little modification. We have substantially improved the

currently running version of the Encapsulator in number of areas.

The Encapsulator now provides simple editing capabilities to

the user during the collection of NSW file names on behalf of the

tool. To eliminate a Cc *se of lengthy delays throughout a tool

session, The Encapsulator has adopted a strategy whereby it waits

■ ' ■ ..■; ..gsgry^rs:

; mHnaw
" ■■ . ■■■ - ■-..'■■ '-'""— ■■..,.,.„.:„:;

until the end of the tool use to deliver any files to the Works

Manager. During the course of a tool session, the Encapsualtor

maintains those files which need to be delivered when the tool

terminates. A primary benefit of this approach occurs because one

file will often supercede a previous copy. When this happens, only

one version of a particular file need actually be delivered, the

others being temporary checkpoints created during the tool session.

When this type of file usage is prevalent, as it is with many text

editors, the encapsulation file delivery approach achieves

substantial savings. These savings are translated to the user in

terms of a more responsive tool.

A side effect of implementing this strategy is that we have

also had to implement a • ersion number mechanism to allow a user to

refer to one of a series of files he has asked to have saved using a

common name. The version numbers are in effect only for the

duration of the tool session, and can be used to specify a file

other than the appropriate default version for input or output.

Currently, only the highest version of a particular file is

permanently saved in the NSW file system when the tool terminates.

However, we plan to modify the Encapoulator to allow the user to

explicitely specify which versions he would like to keep.

Also during this quarter, the Encapsulator was modified to

adopt to the new interim intra-host communication facility (MSG)

adrpted in August. Using this facility, and in cooperation with NSW

project members from Massachusetts Computer Associates and Stanford

■a1« ■!

•Bmsmmwr- i <■ r'^mm*m
^mmmt^mm^^^H^mmww^fwm^'m^m^ifm:'

Research Institute, we have integrated the Encapsulator with the

Front End and the Works Manager. After much inter-organizational

debugging and testing, we have been able to run a TENEX text editor

under encapsulation in an actual, but simplified, NSW environment.

B. A Limited Capability File Package

We have designed and implemented a TENEX NSW file package which

on command from the Works Manager handles the intra-host file

movement and management functions necessary for the initial NSW

testing environment. The file package currently supports local file

copying and file deletion requests. We have integrated the use of

the file package with the Werks Manager file manipulation routines

using the intra-job MSG facility. Two concepts embodied in the file

package program are of special interest. The file package process

can operate on lists of files specified in a single request, along

with having the capability for reporting partial success. In

addition, it has the ability to generate a unique TENEX file name

when copying a file, thereby relieving the Works Manager from

concern with the syntax governing the TENEX file system.

C. Automatic Startup of NSW

In order to make it easier for a user to start the initially

configured NSW system, we have begun to specify and implement

modules which provide for the automatic setup of the NSW environment

in response to a network request. At the current time, in order to

10

Mtummmm.u -i~" —'-" ■-'■

(. —

!

f
I

_i

u

! r-1

1 „i

enter the NSW system, a user must first invoke his local host

Telnet, try to connect to a site which maintains the NSW system, log

into that site, ask that system to run the NSW, and finally log into

the NSW. Our proposal would allow a user to give the "NSW" command

to his local host, which in cooperation with software running at an

NSW site would bring the user directly to the point of logging into

the NSW. We have specified the modifications necessary to existing

NSW components to adequately implement the automatic NSW setup.

These include having MSG recognize the conditions under which it

should terminate to indicate the end of the NSW session, and a Works

Manager timeout for monitoring the successful login to NSW.

Additionally, we are adapting the previously implemented PCP

dispatcher (a piece of code made obsolete by the change in NSW

communication protocols) to serve as the background process which

listens for NSW requests on a selected ARPANET host socket. The

dispatcher will be programmed to respond to an ARPANET Initial

Connection Protocol (ICP) sequence to this socket by creating a new

job logged in to TENEX which automatically begins execution of the

NSW software. We anticipate a completed implementation early in the

next quarter.

1

1 !
! L

i

li

.*— -.. -

"'■■ I »^■■^'rq^wwy'ynrviw^ \>*m „■;■ ^. m-

IV. TENEX RELATED ACTIVITIES

Internet Protocol

The basic Transmission Control Program [Kahn _ Cerf,

International Network Working Group Memorandum No. 39] has been

implemented and debugged. Extensive metering and internal

statistics gathering facilities have been included. These have

proved invaluable in both packet throughput measurements and in

finding bottlenecks in the TCP code.

I

The TENEX TCP has been tested by communicating with the TCP at

Stanford University Digital Systems Laboratory. During these

sessions several deficiencies in the protocol were discovered. In

particular, the protocol for closing a connection (the FIN control

function) was inadequate. This issue has been resolved in meetings

between Stanford and BBN. The TENEX TCP now uses the revised

version of the protocol.

One of the main features of the TCP is its ability to

periodically resynchronize connections in order to guarantee that

the sequence numbers used in packets will never conflict with any

which might be in use in packets or their duplicates which could be

reverberating in the network. This has been thoroughly tested and

demonstrated to work if each end of the connection independently

resynchronizes, and if both ends simultaneously resynchronize.

12

■WillII II II

m^imm^immtF^wmwmm**^* ■ ' ~~r" ~ ■ ~ -~mimf*imni.m!-'*~m.','K'*r™m*, HI. ■ I. »■»"HMyJimMUMWHI

Several auxiliary programs have been written which use the

Internet Protocol. ECHO is a simple program which echos messages

sent to it. TTLSRV is a simple TCP Telnet server which allows

logging into BBNA from a remote site using the Internet Protocol.

TTLUSR is the user companion to TTLSRV — it is allows terminal

communications with a TCP at a remote site which is running TTLSRV.

TCPTST is a test program which opens a TCP connection to

itself. One process in the program servers to send Internet letters

over the connection which are received by another process. In

manual mode these letters are simply lines of text typed on the

terminal (very similar to an echo program). In automatic mode the

letters are produced by the program. The receiving process checks

for errors in sequencing and data in automatic mode.

GATEWAY is a very simple gateway program which runs on BBNB.

Operationally, GATEWAY forwards internet packets received on ARPANET

link 155 onto link 158 and vice versa. This permits experimenters

to view link 155 as "ARPANET A" and link 158 as "ARPANET B"

(Internet numbers 12 and 13)- Two TCPs may be operated, one in each

logical network and messages destined for a host in the other

network are sent to the GATEWAY program for forwarding.

Current activity in the TCP is directed towards improving the

packet throughput which is currently only approximately 23 packets

per second. The largest increase in throughput was achieved by hand

coding only about a dozen routines and resulted in a 146 per cent

increase. It is expected that improvements in the basic TCP

13

•—■—-

'P^SWSPPS'f'PPSP^^

algorithms will result in a significant increase in the future.

B. Security

A preliminary study of the feasibility of implementing the

Access Isolation Mechanism into TENEX has begun. This is being done

in conjunction with a computer security group at MITRE corporation

which applied similar techniques to a MULTICS installation now

operational in the Pentagon. The meetings to date have resolved

most of the major design questions, leaving only a few difficult

issues to be resolved.

The current design is oriented towards implementing a

multi-level security system. A careful study of all TENEX system

calls has been done with the goal of identifying all storage

channels. Methods of eliminating these channels are being proposed.

In parallel a list of all covert channels is being prepared so that

the limits of the eventual system will be catalogued.

C. TENEX 1.3*1

1. RCTE

The code to implement the RCTE option of the new TELNET protocol

for TENEX has been completed. The RCTE option permits a

reduction in network traffic by deferring the transmission of

characters which will not cause the receiving user program to be

activated until a character which will cause the user program to

14

MW^..r^nw^Ww»~i...!nwr»Wy^i.»y,i ,l iMi>m WWIBPWWIlg __

' !■

! i i

E
I
I
I
I
I
I
*

I
I
I
I
I
£
I
I

be activated. A further reduction is achieved by minimizing the

flow of echo characters back to the user TELNET program. This

is done by having the server instruct the user TELNET to echo

the group of characters up through the next wakeup character.

By sending this command as the user program is about to read the

first character of that group, the echo is guaranteed to follow

any response to the preceding group of characters.

Significant problems with the RCTE protocol were encountered.

The handling of spontaneous output was specified in a way that

made the implementation extremely difficult to do correctly (if,

indeed, a correct implementation is possible). The solution

here was to completely isolate the control of input transmission

and echoing from the characters flowing in the output stream.

Synchronization of input and output then occurs directly by

virtue of the embedding of control information in the output

stream. This approach permits a simplified coding of both the

user TELNET and server TELNET.

A second problem was the handling of interrupt characters. The

RCTE protocol fails to provide an explicit mechanism for

interrupt characters thus necessitating the handling of

interrupt characters as program wakeup characters. Since

interrupt characters in TENEX are not actually handled as

program wakeup characters and, in fact, bypass the terminal

input buffer, a special provision had to be made to get the

15

— ■-- -
... i—. tfMttn

»■■—■Illllill, -^^■gTi^pi)^'RP*H>JiP<ffft> M»'^P

command sent back to the user TELNET to indicate that the

character stream should be echoed beyond the point where the

interrupt character was typed. The transmission must be

synchronized with the processing of the terminal input buffer so

that it will be sent at the proper time. This was achieved by

putting a marker in the input buffer at the point where the

interrupt character was. This marker is never given to the

user's program and must not be counted as an input character. A

new counter was installed indicating the number of such markers

in the input buffer and the SIBE JSYS was modified to indicate

"empty" only if the difference of the total characters in the

buffer and the number of markers in the buffer is greater than

0.

A third problem is handling the case where a new program clears

the input buffer. Since the buffer may contain various wakeup

characters and special markers, when the buffer is cleared, the

user TELNET and SERVER may get out of synch. It is infeasible

to scan the buffer and send a RCTE command for each such wakeup

character or special marker. Instead, a command is sent to the

user TELNET meaning "clear your input buffer and reset your

counters". This command is implemented by sending "WILL RCTE".

This is the reverse case from a normal RCTE (i.e. DO RCTE) and

thus cannot be confused with the normal use of the RCTE option.

This saves adding a new option.

16

Tl Tjf^"-" ""•"

«p -.^^^rv^^--" ■ p^p ::'; igw»»^?ip«EP£Hp^ tt^t/»)^JBWW}I^U*JjW!'.Pft>-WL'UP

I
I

It

I

\ H

I

i:

u:

t

2. Measurements on TENEX CD230 Disk Driver

During this quarter, an effort was undertaken and completed to

measure the delays incurred by a disk-transfer task during the

various stages of its existence. This effort was motivated by a

desire to determine the adequacy of the CD230 disks as a

swapping medium for a KA-10/TENEX system. This new facility

measures delays due to qu^jing, arm positioning, rotational

latency and actual transfer. The data is segregated by

direction of transfer (read/write). It is not possible at this

time to provide a definitive interpretation of the results

obtained to-date, as further experimentation is necessary and is

presently being conducted. The results of this work will be

reported at some future time.

3- A Noteworthy Dug-fix

For some time, the 1. 3^4 version of TENEX has been plagued by

very occasional instances of dreadful scrambling of the various

lists of buffers maintained by the network control program. The

situation defied explanation for a considerable period of time,

though attempts were made to solve the problem by all of BBN's

senior systems people. While we understood that we clearly were

faced with a low-probability race-condition, it resisted our

attempts to analyze it partly because of its infrequency, but

mostly due to the absence of usable clues in the post-mortem

17

■?■ I> " - I

dumps we collected We finally succeeded in locating the

problem after adopting the approach of installing successively

tighter consistency checks in the NCP, the checks being

suggested by inconsistencies observed in prior post-mortem

dumps. The error turned out to be a missing instruction in the

process-creation code which caused the NCP to receive spurious

wakeup signals. If the NCP happened to be waiting for the

network-buffer free-list to become available, the result would

be chaos.

4. Improvements to the Network Lineprinter Spooler

Two problems had shown up after regular production use of the

line printer spooler based on the Kahn-Cerf protocol (previously

reported). These were, first, the ability to cauae the IMP to

completely choke off all network traffic to and from a TENEX

host, and second, an excessive amount of CPU load running the

spooler.

The problem of choking off a TENEX's network interface occurred

as follows. The line printer protocol was based on a model of a

lossy network, with flow control provided by having a fixed

window size representing the amount of un-acknowledged data in

the net at any moment. Only that fixed amount of traffic would

be sent ahead, and it would be repeated at an infrequent

interval after timeouts. In practice, the receiving site (the

18

-*' '■"i ^BBHplPi^

m^m^xtm ~^*^-'^mv>*?^:'°^?mm^m mmm^^9^msm9m«^m^i

D
ii

U

i »~

9 •

Ü

i:
■

line printer) would block its IMP interface when it had no free

buffers for line printer information, and this caused overflows

in its IMP when further traffic arrived fcr the line printer.

This had been partially solved by reserving one network input

buffer for overflow, throwing away any messages received when

all other buffers were full. However, if the line printer

controller became unresponsive for any reason, it might not be

able to discard this overflow traffic. The IMP would mark the

host as down, and would return a Host Dead message to the

sending TENEX. The spooler in the TENEX would re-send the data

on a timeout basis. This timeout took no account of the Host

Dead replies. The IMP would then try to reply "Host Dead" to

each retransmitted message. However, the IMP system is unable

to generate these replies quickly enough to keep ahead of the

sending TENEX. Eventually the IMP blocks the TENEX interface

for periods of the order of half a minute. This period is of

the same order as the spooler's retransmission timeout, so the

situation snowballed and the entire network became blocked at

the TENEX port. This situation was corrected in a new version

of the spooler system by taking proper notice of Host Dead

replies from the IMP and by implementing a SLOW or FAST mode for

sending the data to the line printer. The system reverts to the

SLOW mode on any timeout or Host Dead message, and only uses the

FAST mode when data acknowledgements are returning promptly from

the line printer. This problem does, however, point out a

serious problem in the IMP: it should not be possible to

r . _ ' ' . ' ^H^^Q : ■^^^T^^^5m!i?iwwsIf!Bpp|p!|||p5|^i?S!

completely block off traffic to the network as a result of

sending traffic to one unresponsive host. This will be largely

solved by the IMP's non-blocking host-to-IMP protocol change.

The second problem, excessive CPU usage, resulted from three

factors: desire to count pages of paper sent by the TENEX, an

unfortunate choice of data format through the network, and the

extra overhead of RFNM processing caused by the change described

above for properly handling control messages. The accounting of

pages required a check of each character for a formfeed. This

facility was removed. If it becomes desired again, it should be

placed in the minicomputer at the line printer, not in the

TENEX. The format of the data in the network messages had been

chosen for generality, not efficiency. The text was sent in

eight bit bytes as the PDP-11 wanted to see them, rather than as

the seven bit bytes which the PDP-10 normally stores them. This

conversion load was placed on the TENEX system, rather than on

the PDP-11 which can more easily spare the computation time.

This has now been changed so that the PDP-11 does this

conversion. These changes produced a reduction of more than

fifty percent in the computation load on the TENEX by the

spooler. The load added by the processing of RFNM messages has

not been removed at this time.

20

ydiifeMHl

,.,.,........,..
PSPjfBfWlWPispg^! PiRiramMM

L

£

t

I
I
I
I

5. BCPL Compiler

This quarter, we have continued our debugging of the new BCPL

compiler, and have released it to the active BCPL users for use

and comment. Several bugs were discovered this way, and have

been fixed. Currently, the compiler has compiled itself, the

current version of BDDT on system A, and the experimental

version of MAILSYS. All of these programs appear to be

functioning normally.

Als-~ this quarter, we were able to significantly decrease the

total amount of free storage needed for the tree, by returning

to free storage all tree nodes as they are simplified. This

enables the compiler to handle larger programs without running

out of storage space.

Initial figures indicate that code generated by the new compiler

is 20-25$ shorter and runs 15-30? faster than code compiled by

the previous version. These figures are based on several large

programs which were compiled by the new .ompiler but loaded with

the old BCPL library, so the savings may be somewhat larger than

this.

21

■ ii <iu:'u*t
= - mSSM HMybMMrfMM

V. COTCO ACTIVITIES

In the last Quarterly Progress Report, we discussed the

evolution of a new MAILSYS Version from the original "straw man"

system that was released in April 1975. The major work in the

current quarter has been to carry that design effort to completion

with the release of MAILSYS Version 2.1 in October, 1975. At this

writing, analysis and further refinement of the system is in

progress, and plans are complete for the release of Versions 2.2,

2.3> and 2.4 over the next few months.

Another aspect of our efforts has been the preliminary design

of new features and capabilities to be integrated into the system

during calendar 1976. During the last progress report we briefly

described the first of these efforts, namely, a smal1 scale tex:

editing facility intended for integration into the message writing

portion of MAILSYS, and intended mainly for printing terminal

application.

During the current quarter, we have completed two more such

initial design studies. The first concerns an alternative form of

the text editor intended specifically to take advantages of the

special features of display terminals. The second study attacks the

issue of message storage and retrieval and proposes a simple tree

structured indexing system to serve in lieu of today's dependence

upon the underlying Tenex file system.

22

"ii

I ?|R«5W?& ■MnWHM
.,.,,.-.,, ,.i:,r„.,.r ,.1:.^.,.r,.WFT,.

H

I

I
I
I
E
I
I

I
I
I
1
I

During this quarter we have also continue^ our work on system

security and the underlying message delivery system. We have

refined the MAILSYS statistics package and reporting program to

generate more meaningful output and correct certain errors. Work on

the LDMX - TENEX interface has continued, and a basic level of

implementation is nearing completion.

A. MAILSYS Development

During October 1975, we released MAILSYS Version 2.1 - the

first release of a new second generation MAILSYS design. That

system is now in use and under review and testing by members of the

project staff and other interested users within BBN, together with

NAVCOSSACT, NAVELEX, and ARPA personnel. Results of this review

process have suggested a number of refinements and lead to the

creation of a detailed plan for releases 2.2 2.3, and 2.4!

Three basic goals have motivated the development of MAILSYS

Version 2. First, as reported in the last QPR, we wished to respond

to the many findings that resulted from the human factors analysis

of Version 1. As previously reported, this resulted in a more

uniform and powerful set of message processing commands, together

with a unique system of defaults that minimizes the typing required

when common operations are to be performed.

Our second objective in this development was to produce a more

compact and efficient implementation. We have speeded up Tiany of

the key operations such as the parsing of a message file. We have

23

..JU.WI', .-. '■ i I ' Ill I

also recoded selected portions of the system in the interests of

greater modularity and compactness.

MAILSYS Version 1 provided a useful set of basic message

processing tools, but omitted numerous features that would extend

its power and convenience. Our third goal in developing Version 2

was to overcome certain of these omissions by provision of new

features. As we shall discuss later, we intend that this process

shall continue as we design subsequent versions of the system.

1. Templates

MAILSYS Version 1 provided a choice of two or three different

output formats for listing or printing messages. In Version 2

we have greatly extended the user's control over output format

through the mechanism of templates. A template is a user

created "map" that specifies what message fields are to be

printed in what order, whether or not chey are to be labeled,

where they are to appear on the page, and what (if any)

arbitrary text is to be included for format or labeling

purposes. The user is given the power to create, name, store,

 -1 .. — . _ «...-. — i _ c t T — «- — _£* u ■< « _ u H 2 _ _ T~ A-1*J.:4..:__ 4- i aiiu uac any iiumuci DI icmpiatco \J I uj.o unuiv-c. in QUUXI-AWU, i,llC

system supplies a number of standard templates for full and

summary style output.

Templates are created and named by the user through a series of

editing commands specialized to deal with this type of object.

24

"I •' • 1
■ ...-■- •- ■. ; f in':|';: in" ; IK'V' ' rV' '"'l-r'n'' I i " ';" \T'] '''"7 * """mlnn :'~:':

These commands add or remove lines or portions of a line, and

provide for displaying the -v^tially completed template.

2. Sequences

, i

As a first step toward a general indexing and retrieval

capability, we have created a new object known as a message

sequence. A message sequence is simply a named group of

messages collected together by the user for some particular

indexing purpose. A sequence might, for example, contain all

messages from some particular» correspondent, all messages

relevant to a certain technical topic, or all messages falling

between two dates. Message sequences are thus a named and

stored version of what the user can ente" "on the fly" as

arguments to commands such as PRINT or LIST. Sequences are

created by means of a series of special editing commands

(discussed below) and named at the time of creation. A named

sequence can be supplied as argument to any of the message

output commands instead of or in addition to the set of messages

specified by the user when the command is given. Note that a

message sequence is not actually a physical collection of

messages, but rather a collection of references into the

currently active message file. Thus, there can be any number of

concurrent sequences, reflecting the possibly numerous subsets

and partitions into which a user might wish to organize a

message file.

25

--A"---. B^-J
|" '""i^■■«■■■SSTSTSS ***tt mm lilMlin liii i -- ii -^a*^^^—■■■-^-j—'■■•^~"■

lllfl"lill""l'fllllHllWIWill'illll' iUI'll'lllnm [«■■■«■■«»■■■wn ■'«»^■»J.BJIIBJ^^^

As with templates, the user is provided with a set of commands

for constructing and editing sequences. These include the

ability to add messages to a sequence, to remove messages, to

logically intersect one sequence with another, to apply a filter

to a sequence, and to sort the messages in a sequence based on

any of several different possible sort keys derived from the

message header field. These latter include date, author,

subject, etc. Note that one can physically sort a message file

by creating a sequence that references all messages in the file,

sorting the sequence according to the criteria desired, and then

transfering all messages, in the sorted order to some output

file.

3. Other Extensions

We have also extended and improved the handling of two other

types of objects: filters, and the user profile. The commands

available for editing, applying, and displaying filters have

been considerably improved. The entire user profile has been

made accessible to the user as an object. The user can now

examine and change the contents of his profile in the same

manner as other objects such as templates or sequences. He can

specify that created objects such as templates or filters be

added to or removed from his permanent profile. He can alter

the various switch settings and other objects included in the

profile and examine their current values.

26

W> ii>.» i> .'■■ »■■■* ■".,» —^.»-.^ rtttiMnf-iirrii*«

,,. .,_ ,-,..,?-,-. „j.,-,....;^,.,,-,.-,-.-,::.. ;. -,v ■■ -■.,,-.,..,. -!>.^r:...';.l:W.":'.li*^'™

In order to provide uniformity within the system, any message

currently under creation by the user is itself regarded as an

object, known as the "draft message". The act of creating,

modifying, and displaying the current state of this draft

message is accomplished by a set of editing commands equivalent

to those that apply to the other objects.

This state of affairs is shown in Figure one which depicts the

current organization of the major processing tools in MAILSYS.

As shown, the major active objects are the draft message,

filters, message sequences, and templates. Each of these

objects is subject to processing by a collection of edit

commands. In addition, there is a collection of "top level"

object manipulation commands that perform functions such as

displaying an object, copying from one object into another,

deleting an object, and the like. Output from the currently

active message file is accomplished by a uniform collection of

transcription commands which accept message sequences and

templates as their major arguments. Message creation is

accomplished either by editing the draft message, or by prompted

input sequences such as SNDMSG and DD173.

27

i

aaate^aM in ■ niir

 ,.:........^:,>....,.,,..^.^.^^^.r^7r,_i,,1...._,

I

UJ
o

tK< ~ UJV)CO
xcow
HUJ-I
02E

X o
CO

UJCC

UJüjUJ

OQSV
(-OW

UJUJ

^ 21ÜZ1

tu >.

<</>■£>>-
UJ<20Q.
CCCCQxO

L

.

£
o
cc

uJ<tOcc
CCCCOXO OUiUitfu.

w

o
H

.

28
:

 HfWMIrtMHlfll II fl !

I ""■■■■' *■>■'". ■■--,"' ■'■ -•■■■'■ ■ ■ ■■■■

i:
<

i:
L

>
if)
_J

Ü-
O
LU

h
O

(Z

O
or

o o

UJ
CD

<Lffi£
_i>cn z
LJUJLÜ o
IZÜ

H
s. <
\ 1-
\ z
L LÜLÜ
r^ 22

Ij=>
/ i O
/ ZO

^
OQ

w

o
M
tu

I
at«

i: 29

—-*■*-■■ — •■— '"'■irin- ■ _ ii ^_ .-:_..;:._ _..-_ .. .,

 - - ^wfiffiegr^Sf _ j(^, . . .,fc;j«.».tii;,3a£.

■

Figure two shows the major processing functions and objects in

the control structure of MAILSYS. As indicated, there is a

collection of option and mode switches, and the user profile,

each of which is subject to creation and manipulation by means

of a series of edit functions.

B. Graphic Text Editor - Preliminary Design

Our last progress report described the design of a modest text

editing capability to be integrated into MAILSYS. As we discussed,

the desire for such an editor was motivated by concern over the

present non-integrated text editors that are available in MAILSYS.

We feel that the naive user will have trouble mastering the

"foreign" command language of these outside editors, and will be

further troubled by the mechanics and concept of transitioning to

and from a "lower fork".

The initial text editor design assumed a printing terminal,

since this represents the lowest common denominator of terminals

available over the ARPANET and since one of our mandates is to

provide network-wide message service.

ii. 3x30 appears, uowever, ma^ a growing numuer of dispxay

terminals are available on the ARPANET; and in addition,

participants in the Navy Irteractive Test will almost certainly make

use of this kind of terminal. For that reason, we have undertaken

an extension to the editor design that takes advantage of the unique

properties of CRT display terminals. These includes the visual

30

--*•-■—- - ■

v:^,.r.T.^,,.-„,^; ...^.^.,T7,.;
'•■^■■T»lT^.,Wm.,» -, ^ ■^^^m„Vlm!rr^w^l^m^g^m^

feedback that can be obtained through a moving cursor that can be

superimposed upon the displayed image oi the text itself; the

ability to carry out immediately and display to the user the impact

of operations such as insertions or deletions; the ability to

perform automatic incremental format control operations such as left

and right justification; and the ability to indicate position on a

page of text by pointing (or otherwise moving the cursor) rather

than by a typed-in command format.

In order to provide for such a display-oriented editor, we have

laid out a concise but complete set of commands and command actions.

Our view is that this graphic interface to the editing functions

would serve as an optional alternative to the more conventional

printing oriented editor. Both versions would be available under

switch control; those possessing display terminals would most likely

wish to switch in the display oriented version.

Naturally, the display techniques that would be so beneficial

to text editing would also have a positive impact on the general

command structure of MAILSYS. Our long range view is that two

complete human interface designs, one oriented toward printing

terminals, and one oriented toward display terminals should be

available under switch control. We have picked text editing as a

first step toward the general display oriented interface since this

function (we suspect) is most critically affected by the differences

between the two types of interface.

31

^^^^VJ-WÄ^^^^SW^^^^^"'"'''71'1""" '''
s^SBjPiseiS»?^ ■-' trvmxr ' -""«SWPWPSSSW Bf^ffwiWSSWPPiSB^W

C. Message Storage and Retrieval

In a third preliminary design effort, we have laid out a tree

structured indexing system that would provide a considerably more

powerful storage and retrieval capability than is presently

available, while at the same time, shielding the naive user from the

need for direct manipulation of the TENEX system file structure.

In this scheme, underlying manipulation of physical files would

be performed by the index system in a manner invisible to the user.

The design proposes a scheme for file management that would also

accomplish orderly archiving of old messages on a "flow through"

basis.

The design provides for a smooth transition from the present

notions of message sequences into the notion of a hierarchical

index. The total index takes the form of a tree with groups of

messages (or more accurately, groups of pointers to messages in the

database below) forming the leaves of the tree. These groups are

directly equivalent to today's message sequences, and the user would

have at his disposal the same tools for editing, displaying, and

sorting the contents of a message group. Whole message groups are

addressed by compound names that specify a path through the tree

required to access that particular leaf.

Integration with the present message delivery system is

achieved by having all new messages added to a permanent leaf of the

tree entitled "current". Another permanent category entitled "all"

 ,

.211mil-l V^-~L'^.. ■■■ ..'.V-^.! -.! :''r'"'""- --v-:V:.^:--r-..;■■ v:.- y-...;-; 3,.., .,., ,....,-, ;,.,.,.:: ,.,,.,!; E!SSänSBB3SB-BJii.Ä-si-M«aiÄ

1 L

provides a master sequence numbering facility.

D. System Security

In preparation for the CINCPAC Interactive Test, we have worked

closely with MITRE staff members on the problem of security. Work

is proceeding on three types of security systems.

1. Top level MAILSYS.

In this system, a class of users would be set up who would have

access to top-level MAILSYS only, and not to the full

programming and editing capability of TENEX. This requires that

some editing and file handling now done by TENEX must be

inserted into MAILSYS. We have determined a set of TENEX

commands that are candidates for inclusion in tcp-level MAILSYS

and are proceeding to implement them.

2. JSYS Trap Environment

The JSYS trap mechani3m for the TENEX operating system is being

used to implement a controlled environment for MAILSYS.

Commands given by the MAILSYS user will be automatically trapped

and analyzed to see whether the commands are permitted by the

User's security status.

jL
U

33

ILflt^^LillJhSIbJ^JLlUJJJl1. .*.*'"■ ._,* LlJS^L.

ilipi.Jl'1«!^»^»»^«,,^^^

L_ ,

3. Access Isolation Module (AIM)

As noted in Section IV.B, we have worked out the basis for the

development of an Access Isolation Module for a secure TENEX

system. The purpose of this module is to insure that TENEX code

is completely isolated from access by other users at the same or

other TENEX installations.

E. Statistics

The software package for gathering statistics on the operation

of MAILSYS has been completed during this quarter, and the programs

for collecting and reporting statistics on system performance have

been rewritten to correct errors.

F. LDMX Interface

We are continuing our collaboration with NAVCOSSACT to design

details of the protocols of the proposed LDMX TENEX interface. The

TENEX portion of these protocols has been 80 per cert designed and

50 per cent implemented.

1
J . Mail Forwarding Iiiijjrovemeni

I !

MAILER, the background process which sends mail to protected

mailboxes and to remote sites, was modified to speed delivery of

messages which go through an intermediate forwarding site. This

change also allows better acknowledgment in the case of mailing

34

«. v.
mamtfatifiF*-^ -1 11 an HI 11 -~-~

»'■WiMMBI^^

;-.-

I
I
I
I
I
I
I
E

failures. The earlier MAILER sent messages to the addressed site

and allowed the addressed site to take responsibility for forwarding

tnera. For example, a user of system BBNA might send a message to

SMITH at BBN. If SMITH'S mailbox was actually at BBND, MAILER would

send the message to BBN and then BBN's mailer would send it to BBND.

This resulted in a delay in delivery, and also an extra header line

in the delivered message reporting the intermediate transmission.

Similarly, in the same situation, if the mail was sent to just

"SMITH" rather than "SMITH0BBN", the mail would be sent to SMITH at

the local site before being forwarded to BBND. MAILER has now been

modified to check the forwarding data base before sending mail

locally, thus preventing the extra delivery if the mailbox is found

to be on another system. MAILER has also been modified to parse the

FTP reply which warns of forwarding, and to use the information in

that reply to send the message directly to the correct destination.

A side effect of these changes is that the originating site has

control of the message right up to the final delivery, so that it

can generate a correct failure response if the mailbox turns out to

be nonexistent after forwarding (an erroneous, but possible,

situation).

35

■ llll « ' |

