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LINEAR STATISTICAL REGRESSION AND FUNCTIONAL RELATIONS 

SUMMARY 

An appro ich to linear least squares or regression with 
errors of measurement in either one or both variables is 
covered, giving a computationally convenient procedure for 
all of the appropriate statistical significance tests or 
tests of hypotheses concerning the true unknown parameters 
and the fitted line. The problem of meaningful physical 
functional relations is also discussed,showing the relation 
to and a comparison with usual least squares. Pertinent ex¬ 
amples illustrating various applications of the theory are 
also given. 
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I. INTRODUCTION 

A rather frequent and important problem in research and 
development is that of finding an appropriate relationship, 
or best fit, between variables of interest, i.e. fitting 
equations to data, and testing any hypotheses concerning the 
physical values or the relation of the parameters studied.In 
addition, and as usual, we would like to summarize experi¬ 
mental data in the form of an equation, and be able to pre¬ 
dict future or expected occurrences from our fitted or "em¬ 
pirical" law. Indeed, in many problems it is now of some 
importance to be able to place confidence bounds on the 
various physical parameters which can be estimated or in¬ 
ferred from the data we have developed in an experiment. 

Needless to say, thi'* is more of an involved problem 
than appears on the surface, because errors of measurement 
are made in all determinations of values of the variables in 
an experiment, and in many cases we also run into the 
problem of random or unaccounted-for variations in addition 
to the physical laws (or functional relations) we seek to 
sort out of the "noise". Of course, we might say that we 
would really like to establish a law or enduring relation¬ 
ship between variables or parameters of interest, which is 
free of measurement error or other variations of extraneous 
interest. In addition, it also becomes of importance to 
know just how precise or accurate our final prediction is, 
since it might be desirable to conduct more experiments, de¬ 
pending on our subsequent uses of the fitted equation. A 
general, but simple and enduring law makes a very definite 
contribution to science and technology. 

We should remark initially and keep in mind that the 
practice of transforming variables to linear functions or 
relations, as is often done in the physical sciences or in 
engineering, i. e. attempts toward "linearizing the data", 
is an excellent one indeed, as we will see, for it helps to 
establish relationships between complex quantities and sim¬ 
plifies much of the resulting analysis. Furthermore, it is 
usually not difficult to transfer statistical or physical 
statements about the transformed data back to equivalent 
ones about the original variables. Fcr this reason, we 
will cover the case of linear least squares or linear re¬ 
gression in appropriate depth and take into account func¬ 
tional or "structural" relations of the variables involved. 
We will, therefore, start with the case of linear re¬ 
gression between an independent variable which is assumed 
to be free of (measurement) error and the dependent varia- 

•FRBCSDUC PAGE BLANK-NOT 

1 

m 



ble which is measured or found with error of ’ 
and later proceed to more complex cases. H is highly de 
sirable in this connection to distinguish between , 
ed" or "fixed" variables, random variables (variates) and 
errors of measurement which may be either random or system¬ 

atic in character. 

TT ITNEAR LEAST SQUARES OR REGRESSION FOR A DEPENDENT 
VARIABLE (MEASURED WITH ERROR) AND AN INDEPENDENT 

VARIABLE (WITHOUT ERROR) 

In dealing with experimental data involving two 
bles X and y, for example, time and distance measuremen , 
muzzle velocity and range measurements, etc. , th^r® . 
near ro be a trend or some relation (linear or otherwise) 
between the plotted values of x and y. We will be 
here in estimating the relation between x and y, and judging 

statistically whither or not the î5r“^ if^r- 
significant one. The method we will use is generally refe 
ed to as the "Leasv Squares" technique, or i.e. the finding 
of the regression of y on x,although there are other methods 
of fitting a law between two or more variables, for example, 
the method of Maximum Likelihood, in the method Least 
Squares we assume a model or relation, i.e. ^in »q 
ic, etc., which involves certain unknown P;iram®£ers °r cf 
efficients, and fit the hypothesized curve to the two (or 
more)Variables in a manneV such that the sum of squares of 
residuals or deviations from the fitted curve is a minimum. 
The significance of the fitted curve will then be tested 
statistically, and confidence bounds placed on predictions. 

Our approach will consist of combining the physical and 
statistical points of 'iew, i. e., our models or assumptions 
will tak® into account both the functional or structura 
lation between true values of the variables and the sta- 
t is tical treatment of variates or errors of ^urem®nfts. 
their probability distribution. In the model of ^his 
section^ the independent variable is assumed to be free of 
error, with only the dependent variable subject to error. 

The Line - One Variable (y) Subject to Error 

Suppose we are dealing with two observabie variables, x 
and y, which are connected by an apparent linear gelation. 
Sunoose further that the variable y not only depends on x 
butPis also subject to random errors of measurement (i.e.,v, 
but is aiso suujc includes an error of measurement), 

íheíUrrVa "fUed"'oÍ lont“lîld triable which is free 
ef «loïs of measurement, or relatively free of errors as 
compared to the variable y. Over the interval of physical 
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interest it will be assumed that variability in the errors 
is essentially constant. The mean value o. y depends 

on the value of x considered and the variance of y, 

about the hypothesized linear relation is the 
value of x or is constant over the range of x considered. 

in order to illustrate our point clearly.we have select- 
ed a particular, yet simple example from the ASTM Manual on 
Fitting^traight Lines (1962). The observed ^ta were oh- 

• -j fnr calibration of a new methoc. (gravimetric 

termination) for estimating the .amoun^h°fdg^C^ö ^iven 
presence of large amounts of magnesium. The data are give 
in Table I for known amounts of CaO. 

Table I. Gravimetric Determination of Calcium in the 
lauxv* * • _„ ^ ^ Mo rrr\ A Q 1 lim 

X 

CaO Actually Present 
(mg) 

20.0 
22.5 
25.0 
28.5 
31.0 
33.5 
35.5 
37.0 
38.0 
40.0 

y 
CaO Found by New Method 

(mg) 

19.8 
22.8 
24.5 
27.3 
31.0 
35.0 
35.1 
37.1 
38.5 
39.0 

The basic reasons for selecting this particular example 

sUrTheVmoÄcaS S/ Ä 

ÏÂoSu H* 5sc:eaanUdrrhrtU«0rsho^ed lap ?hro4h th. 
originhfordthe a-sumption of linearity and good calibration. 

Sa^cc^a'hir 1 «riít-r^for^u^nro^M 
these questions in sufticient detail. 

wa should remark here that x and y are not random 
• ki«c The faO actually present, or x, has been purpose 

ly" vari ed* ovar the rangoso ?hat y ¿ill correspondingly vary 

but with random measurement error. 
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The observed values of x and y are: 

*1» Vi 

*i* V2 

Y< 

x , y n* 7n 

The linear model or assumption considered for the 
observed pairs (x^, y.) is 

xi = yi 

yi = a+^i+di - ni>di (i) 

We use the above notation to indicate that dt is an error in 

the measurement of y, and that x. is free of error as we can 
control or measure its true value ui in this case. (if x. 

contained error we would write it as x¿ * Wi+ei» where y. is 
the true value and e^ is an error of measurement in x.) The 
relation 

0 = a + ßy (2) 

is called the true (functional) relation between the parts 
of y and x we are interested in. It is also the true 
regression in our simple model. 

The errors, d^ have mean or expected value, E(di) » 0, 

and variance in the errors E[d,-E(di)]2 » oj » o2 or simply 

oz, the constant variance about the fitted regression line. 

Thus, the mean value of an observed y for a given value 

10 



of X is 

Efy) * E(o+ex+d) - a+ßx * a+ßw 

The variance of y about its population mean, o-ßx 

„♦eu, is E[y-a- ßxj2 - E(d?) - ^ - 0¾. i-«- the POP“!«101' 

"variance of residuals", or variance about the regression 

line. 

Of course, for a small sample of n observedpairs 
(x., y.), it will not be possible to estimate a and ß very 

precisely. Our fitted line will therefore be of the form 

y = a+bx 

where a and b are estimates of a and ß, respectively, and 
therefore subject to "error" or statistical variation. 

We estimate a and ß from a and b respectively by deter¬ 

mining a and b so that 

n 
* « l (yi-a-bxi)2 

i= 1 

CO 

is a minimum. 

Now 

14. 
3a 

- 2 I (y.-a-bx.) - - 2[ Ey^na-bZx^], 
i-1 1 

and we find also that 

14.--2 L (yi-a-bxi)xi»-2[Exi/i-aIxi-bZx|]. 
3d 

Equating ff and || to taro, we obtain the well-known Normal 

equations: 

na + (Exijb - lyi C4) 

(Zx.)a + (Zx?)b - zx^. 
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Solving for a and bf we find 

(ïyJ (Sx? )-(Ex.yi) (Ex.) 
a * Est. of a “ -r- 

Axx 

= y-bx or [Ey^-blx^] (5) 

Axy 
b = Est. of ß = j—2- (6) 

XX 

where Axx = nix? - (Ix^2 and Axy = nlxiyi - (lx.) (^¿3. 

These quantities are established for computational purposes, 
as they may be used free of rounding error and have ad¬ 
vantages which the reader will appreciate in what follows no 
doubt. 

The variance of residuals o2 * a2,or that is the variance of 

an individual deviation from the fitted line is estimated 
from 

sî= 52 * à (>va-bxi) 
7X 1*1 

Ly2 - aiyi - bix^ 

n- 2 
(7) 

The quantity, 

ñTñ’T')^ A - 
yy Axx i 

JÜL 
xy /i—Ã— 

AxxAyy 

(8) 

is called the product moment correlation coefficient. For 

very large samples, a2 = “ ay (1’P2)* where p2 is the 
X Y ^ 
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spectivêîy .“In/Sr.efcr/trë'unbîL^“» H, 

p.(a) and E(b) * ß, 

since Axx is a constant, E(Axy) - SAXX + E(Axd'> E^Axd^ 

and E(a) • E(ÿ . bi) - o * 6» - 6X * “• 

Under the assumptions, the following can also be proven-. 

,2 . E(b-ß)2 ■ r~ ad ‘ 
D XX XX 

(9) 

E(Ajd) = no2 Axx, 

[2 - E(a-a)2 * E(ÿ-bx-a)2 * ~ + 
nx2o2 

XX 

and 

a2 ïx2 
‘ A Axx 

(10) 

the expectation of the cross-product term vanishing. Final¬ 
ly! the expectation of (7) turns out to be 

E(S¿ ) “ °d “ °2‘ (11) 

«“•„•K ä'.% “Äh:;:: 
functions of the errors, d^. 

;! ’sr.í s-sr,:!.*“ s“‘“ 
- . , eínrp S2 - S2 is an estimate of o based distributed, and since a i 

on n-2 d.f., then for independence of the d^ and b and S, 

o>-o ^ 

sÆ 

(12) 



follows Student's "t" distribution with n-2 d.f. 
can be used for testing the hypothesis that 6-0, or that the 
true slope 6 equals any other constant value, B0, we may 

choose. Moreover, a confidence bound on the true unknown 

value of 6 m®'/ • ~ L«;*i..d from (12). 

The customary test of significance for the intercept, 
widely used in textbooks on statistics, is in a manner simi¬ 

lar to (12) given by 

(a-c.) 

s/ra; 
a-a (13) 

S/l/n+nX2 / ~K XX 

which follows Student's "t" distribution with n-2 d.f. 
under the null-hypothesis. Furthermore, a confidence bound 
is easily found on the true unknown intercept, a, from (13). 
The use of (13) in this connection, is quite proper if be¬ 
fore looking at the data we decide in advance to use £he i 
test for a hypothesized value of a in (13), or to place 

confidence bound on the true, unknown 1Pte^®pt ^+ßx 
proper if we intend to place confidence bounds on n0 a 6x0 

for a selected x( 

by a+bx 

for which case we would in (13) replace a 

However, if we make a by c+6x0 and x by (x0‘x)• 

multiple statements about the line 

many values of x, then t 

by picking 
) must be 

several or 
replaced by 

that all /2F (2, n-TT. Here, the probability is now > 1-y 

such statements are simultaneously correct. The reader is 

referred to Scheffe', Section 3.5 (1961). Thus, it a c°nr^ 
dence bound on a is one of many such statements, one should 

use 

(14) a - (S) /l/n+nf^I XX 

where F(2,n-2) follows the Fisher-Snedecor "F" distribution 

with 2 and n-2 degrees of freedom. 

If we pick some values of x, say x* (including x«0),and 
substitute these values of x - x* into the equation of the 

line i e V - a + bx*, then all confidence bounds 

desi«d may’be’foind from (14) by replacing a by a*bx*, the 

under the radical by .and proper selection of the 

percentage point of F, using Scheffe s theorem. 

To test the joint hypothesis that a “ ^ and 6 B ß0» we 
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use the F distribution with 2 and n-2 degrees of freedom, 

F(2,n-2) 

- ln(a-t.0)! ♦ 2ni(a-c.0)(b-60) ♦ (tx’) (b-60) !3/2S2. (15) 

A joint confidence region on a and 6 may be ^ f«m (15) 
by determining various pairs of o0 and 60 for whic 

gives the values of F not exceeding the selected confidence 

level F^(2, n-2). 

A confidence region on any number of future values of y 

for given values x = xo may be found from 

a+bx0 ♦/ZT^.n-TTCS) /l*l/n*n(x0-x)l/Axx, (lb) 

where we have simply added the variance of an individual. 

Example 

Using the data of Table I, we compute the following: 

n-10, Ex«311, Ex2 =10100, x»31.10, Sx«6.90, 

Ey»310.10, Zy2=10055.09, y*31.01, 5^-6.98, 

Ixy=10074.80, Axy=4306.90, Sxy'^xy/11111'1^ * 

b* Axy/Axx * 1-0065* a * ÿ - bx = .2922 

syx"(Ayy'AVA«)/n(n'2) ‘ -6729 and Syx ‘ 

6.92 

-4279 

4388.89 

.8209 

particularly interested in 

whether~the true slope of the line is 45 (tan 0 1 an 
As already indicated, we are 

sue a: :a: æ;., ; a ^ ^ 
t « (b-8)/S^/S/ñ = (1.0065-1.0000)/mïï/(.8209)/TÏÏ - .16, 

which is not statistically significant at the 95% level. To 
test whether a » 0, we compute 

t /2(11-2) - a/S(l/n + nx2/Axx)1/2- -.23, 

15 



which is not significant either. 

To make the joint test of hypothesis that J-O, ß - ^we 
use (15) and find that the observed F(2,n-2) - H2»?) 
which is not significant at the 95% level, conceding that 
the line is indeed a good fit to the data. [The observed r 
« _j a. 1 n n « i- 4 nrs 1 £ 1 n ar\ r & Ipvftl. SÍ11C6 F ^ 
the line is maeeu a £uuu --: 
does exceed the 90% significance level, since 

3.113. 

For any given level of CaO actually present, such as 

X » X* = 20^ or 40, say, the standard error 
for that value from the fitted line, y=a+bx=-.2922+1.0065x , 

is given by 

Svl/n+nU*-*)^ 
XX 

(17) 

TVmc if we take x* = 20, and substitute this value in the 
above equation o/the fiited line, we get its standard error 

Sy(predicted) = (.8209)/1/10+10(20-31.1)^4^ .51 mg. 

As already indicated, the confidence interval for a 
future (individual) observation on y, call it yo.correspond- 

_  T  £ a • • If* f \ ŸY1 

ing to a given true value of x - x0. say. may be found from ing LO a S-LVCll >-a tav. • O 

(16)* Thus, a 95% confidence bound on a new observed y for 

xQ = 20, is given by 

-. 2922 + 1.0065 (20)+tg75 (8) (.8209)/11/10 + 10 U0-3I.1)V427§ 

- 19.84 + 2.23 - 17.61 to 22.08 mg. 

fNote that the standard error for the single future observa- 
tion6is .97 as compared to value of .51 mg based on the same 

point of the line.) 

Since x is regarded as the "true" value,measured or de¬ 

termined without error, then of more Parîîc“^aï 0lnf" ^ 
might be confidence bounds on the true amount of CaO for 
given measurement by the (new) gravimetric f^od. Thus, 

may be found for the a priori y' from 

XX' (y’-a)/b + t /7(n-2) (S/b) /l/n+nL(y'-aJ/b-xWAj 
W Y/Z (18) 

* With /2F replaced by "t" for a particular a prior., vtlue of 0 

16 



For y' - 20.1, substitution in (18) gives a confidence 

bound on x of 

20.26 _+ 1.15 ■ 19.11 to 21.41, 

so that the probability statement for y' = 20.1 mg is 

Pr[19.11 mg £ True Ca0 i 21-41 = *95, 

, thnt we have used the fitted line 
In the above, noteJ.thatrnmnared to that of 

to improve on accuracy of P£edlctl°*¡;, ^ the error of 
a single determination etÎJgWpracticài problem involved, 
prediction is too large for^ï® ?^ct^aitSking more points 
(especianyhatlthe0ends°forPa fitted line), or conclude that 
a better measurement method is needed. 

Finally, concerning the example^ -^di^not^havej 

physical law or ^PothealsAí° „íes below we will neverthe- 
lesSt0considere ^iio^l'^iuoSt^s, or appropriate 
physical laws in our analyses. 

Suppose that indeed of fitting the line ^bx.^e 

had fitted y * a0 + (Hi"11)- t- e- i 
its mean. In this case, our Normal equations become 

na0 + CUXi - x)] b * ïyi 

[E(xi - x) ] a0 + [i(xi - x)2] b E(xi - k)yi 

Eut E(xi - x) = Exi - nx « 0 

Hence, 

na0 = EYi or aQ = ÍEyi » ÿ, 

E(x. - x)yi Axy a til 

b ‘ ECx, - nECXi - ¿)2 ^ 

Ex^i - xEyt 

I a 
n Axy* 

(19) 

(20) 

I 

as before (nc change). 



... '' ,"”W fll'PIIÍ'l Twrw^rwirrm ■ 

Note, however, that a * ao - bx 3 ÿ - bx, which agrees with 

the intercept a fitted from the equation y 3 a + bx as be¬ 
fore. The importance of this result is that by a sJmPje 
transformation of the independent variable (i. e. by choos¬ 
ing the origin of x at its mean value), we can always elim 
inate the constcnt term if desired. 

ZX^ 2 
The variance of the intercept a was found to be ^ °(jf 

XX 

The variance of aQ, however, turns out to be i o£, as ore 

might surmise as it is simply the variance of an average 

value. 

Transformation of Orignal Data^ 

In many problems the original variables x and y may be 
so large (or small) that it would be inconvenient to work 
with them. Hence, we may want to subtract some constant 
from one or both variables, or multiply or ¡Jivide the ori5 
inal numbers by some constant factor. Thus, suppose we 
transform the x^ and y^ as follows: 

u, c^ - h) vi = d^i ‘ ^ 

where c, d, h and k are selected constants 
Making these transformations, we find: 

(i) 

(ii) 

uv 

uu 

nluv - (zu)(zv) 3 c d A 

:2A. c<i'xx’ 
or A. XX 

xy 

Auu/c2 

or A xy Auv/C d 

(iii) Avv 3 d2 Ayy, or Ayy 3 Avy/d2 

(iv) Zui 3 czxi - nch ; lvi = dzyi - ndk 

Hence, 

and 

r1 
XX 

Auv c2 c Auv 
* Ã—’ Auu 

I[Zy. - bzx.] 3 ¿Z CSvi + ndk - ^ (^u. + nch)] 
n 7i 1 na 1 uu 
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1 - uv 
* 3 v ' zc 

Ü + k - 
I h Auv 

uu 
T— » 
Auu 

s2 
n(n-2)d2 

[A vv 

A2 
AUV T 
T -* * 
AUU 

j ^ 2 ^ m2 + 2 - Eu- + n h2. 
and Ex2 x 77 lni c i 

Therefore, using the above fo^ulae^»ay «orh with the 

transformed variables u > j variables x and y. In- 

deed^such*transformations afe often very convenient or 

necessary in regression analy-.es. 

Fr.a1 Spacing of the Independent Variable. 

In some problems it may be that the x's are equally 

spaced, i* e 
X. * 6 ^ • • • t 

X, - e, X2 - e * f. X3 - O * 2f.*i 

and xn * e + (n-l)f* 

„here f is the width of the uniform interval. In this case, 

it can be shown that 

n 
E X. ne . aíü^iif 

i-1 

Î X2 . ne2 . Zef-üto^-* f2 (2^-) (n)(2n-l) 

i-1 1 

'XX 
n2£2 (n2-1) 
TT 

and A xy 

n 
E 

i-1 
ly. Ë (2i-n-l) Yi. 

19 
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.. m 

n 
6 l (2i-n-l)yi 

Hence ; b * ~ * 
XX nf (n2 -1) 

l[Iy. . 6e-3fi;n-ll ‘E‘ (Zi-n-Dy^, 
n 

a . Itry.-Mx,: • frn - 

and 

S2 = ÍTt^TT [' yy ^xx 

iïTTT IV 

n 
3{ E (2i-n-1 )yi}' 

i»l___ 

n2 -1 

The above formulae give all the information required to 

find also the values of °2b. ta, tb, etc., as needed. 

,us "io “sg'srÄS Æ. 

..j'yÄÄ'SiÄi&sSssiil; 
for the.important case where b«h hejepend^^ ^ gere> 

knowledge of, or be able to e those of x, whether these 
the errors in y .«ei”??h «ch Stherfor wheïh.-r errors of 
measurements0”^1*!^ « fab^s depend on rhe magnitude^of 

of“interest*tha^can^'possibly ^ estimated 
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without rather severe assumptions on what is actually 
happening. The reader will appreciate this in 
however, it will be instructive to first return to the data 
of Table I and formula (1) to check upon our assumptions in 
the analysis of that data. In particular, we assumed that x, 
the amount of CaO actually present, was free of error . In 
this connection, suppose we now replace equations UJ Dy 

(21) 
xi wi + ei’ 

and y. * a + 3vij + d. 
71 li Hi + di‘ 

(22) 

In other words, x is now measured with (random) error, e, in 
addition to y having error d as before, so that our problem 
is to estiraste the Irue relation n - a » 6“.which is covered 
with noise, y is not a random variable here. 

In the above analysis, we considered that the errors e^ 

were zero, or quite inconsequential, and that the variance 
of erro” was ¿ero.i.e. - 0. For the observed *1 in (21). 

we have from the definitions of variances and covariances, 

that 

(23) = Z(xi-x)2/(n-l) * S2 + 2Sue + S 

Likewise, for the observed yi in (22), one obtains 

Sy * ß2Sj + 2ßSvd > s2, 
(24) 

and for the covariance between the observed x's and y s, we 

get 

xy 6SS + Syd + ßSve + Sde * 
(25) 

Now for the hypothesized or true linear ' 
we must be able to estimate a and 0 accurately from the 
data. The expected values of and S2 are o2 and 

pectively, i.e. the variances in errors ^^ea^r|ment)iî! °a 
y and x, and the quantity S2(-o2 also 
measure of the variation ovër the range of interest ot 
experiment. It is certainly important to know s^®t^8 

about the relative magnitudes of od, °e* an^ 

HHHK..... 
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information is in fact needed for best estimates of a and ß. 
Then finally, the problem is made more difficult because ot 
thencovariances, s" Sue and Sde. which could have non-zero 

expectations equal to o^, aye and ode, respectively,in some 

applications. Thus, we have the formidable problem of bemg 

perhaps interested in some eight parameters, a, ß, °e*Jy 

o,a and a, , and far too few conditions to estimate 

them from! By assuming that the errors are not correlated 
with each other or with the levels of the values taken ^ 
and have constant variance over the range, then the expecta¬ 
tions of all the covariance terms vanish, and we are 1 
“nS the expectations of (23), (24) and (25), which are 

o2 + a2, 
u e 

.2 
'y 

ß2a2 +a2, (26) 

and xy 
ßo; 

Nevertheless, even though a is absent from these three 
equations, we still have four unknowns,ß, o2, ae, oj. Thus, 

it is quite evident that some knowledge,even from past ex¬ 

perience of the relative sizes of the variances in errors,0¾ 

and o2, becomes rather critical indeed. If we know for the 

problem at hand that od = ae, then of course solutions are 

*r¥^i!TVeaíâ.rat:ryd?rcSndnI^dthJp^ly5iSf?íethoíefaíí 

problems of estimation. 

For the example (Table I), we f°un^h“rb * h.“06^“1' 
the estimate of 6 and that this value did "« ^part^ ign 
ficantly from unity. Thus, since i>r„ J • ^ w ^/__ _ , "Xy ” xy 
estimate o2 from the last equation of (26), i. e. from Sxy/b 

*47.85/1.0065 - 47.54, (or even from Sxy/1 - 47.85),and then 

a2 from the first of equations (26). We get ' °u 
P 
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47.54 - 47.54 “ O, so that the assumption that oe “ 0* 

or that X is "free of error” (except for possible ^libra¬ 
tion bias) certainly seems valid for the analysis of Table I 
data. We are therefore confident in treating x as free o 

error”, as we did. 

Next, in approaching the case of error in b°J;h 
bles, we proceed with a very important result dV® 
(1950), which has a profound effect on regression problems 
in the physical sciences. Berkson’s result states that if 
the independent variable x is "controlled” even though it is 
otherwise "measured with error", the ordinary 
estimate of the slope in (6), i. e. b * Axy/Axx,g 

biased estimate of ß for the linear fit, and a-y-bx is aiso 
an unbiased estimate of a. To appreciate r®sult, we 
first note that so far we have considered only the errors,di 

and ei, to be random variables which have zero means and 

variances and o^. 

possibility that the pi could be random variables, 

considered the 

for in 

the physical sciences there are so many cases. °* ^ 
where random sampling with respect to the y. is not carried 

out. That is to say, the %i are varied systematically over 

some particular range of interest in the ®xJh^ 
being the case, then the xA are brought to near fixed 

"controlled" levels by setting the dial of an instrument, 
presetting the time or distance measurement, etc., or aiming 
for a fixed or preset level which is measured as x^ Thus, 

from (21) we have as before that ei is a random variable but 
^ ^_I_oK/Mlt* Y. 

also that Mi has been in effect made to be random about Xj^ 

by controlling the x^ Hence, 14 * >4 - e., and upon 

substituting this in (22) we have 

yi » a + ßxi + (di - 6ei) 

But since the expectations of dt and ei are zero and xi is 

fixed or controlled, we have the problem of fitting yi 

ct+ßx. + a random error, which reduces to that of Section II, 

so that the ordinary least squares b becomes an unbiased, 
estimate of the true and unknown slope ß! This ¡jeans that 
due to the imposed method of sampling or tak^*a£bfltd*î®’ .£! 
have controlled the yt to narrow random ranges about the 
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lected or set which are brought to given levels, so that 

linear regression with error only in the dependent variable 
is still appropriate. Moreover, since the expectations_ of 
the errors are zero and that of b is equal to ß, then a-y-bx 
is an unbiased estimate of the intercept a. Berkson s Ci95uj 
result is therefore of great importance in wide tieids 01 
scientific investigation and experimentation,since relative- 

. _ _ r .. _«2 i - email /'nmr, a t n ly the variance in errors of x, or 0*, is small compared to 

the overall variance of the (made possible by controlling 

the x.), and the measured xi consequently average out over 

the imposed range to give an unbiased estimate of ß anyway. 
In summary, therefore, we are fortunate indeed for a wide 
class of problems where we can simply ignore the errors in 
the independent variable. (The author's experience in Army 
research and development is that controlling the independent 
variable is very widely practiced in curve fitting problems, 
and one rarely runs into the case where the y^ are random or 

statistical variates except in the narrow range about the 
controlled x^^ discussed above. Hence, the Berkson model has 

very wide application). Finally, as will be seen,we may 
estimate the values of the variances in errors of x and yr 

i. e. 0! and o‘ j,, the most critical problem being that of es 
'e d’ 

timating ß accurately. 

In view of the Berkson development, we will now give an 
example in penetration mechanics, the data for which we are 
indebted to Mr. Chester Grabarek of the Terminal Ballistics 
Laboratory, BRL. Furthermore, the data are not linear, but 
rather lie on the branch of a hyperbola, so that we will 
transform the variables to near linearity for analysis, and 
also attempt to illuminate our analysis with some physical 
meaning or functional relationship. 

The data are given in Table II, covering an experiment 
on striking velocities and residual velocities for a 27 gram 
penetrator fired at 1/2" armor plate. 

Striking velocities and residual velocities are plotted 
on Figure 1. For the higher striking and residual velocities 
at the upper part of the curve the slope should approach 
unity (angle of 45°), whereas it becomes infinite at the 
value of Vs for which VR « 0. For the higher striking ve¬ 

locities, all rounds penetrate the plate until the knee of 
the curve is reached, at which the chance of complete pene¬ 
tration varies from near 100% down to zero or near zero per 
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TABLE II. Striking Velocities, Residual Velocities and 
Residual Masses for 27 gram Projectiles Fired 

Against 1/2" Armor Plate 

Striking Residual 
Velocity Velocity 
(f/s) 
V« 

(f/s) 

VR 

Residual 
Mass 
(grams) 

MR 

V|/10‘ 

2487 
2508 
2611 
2631 
2680 
2732 
2735 
2718 
2646 
2707 
2846 
3023 
3051 
3331 
3579 
3971 
4274 

0 
0 
0 
0 

950 
1102 
1154 
1265 
1273 
1292 
1648 
2036 
2157 
2522 
2859 
3382 
3702 

0 
0 
0 
0 

14.267 .903 
16 572 1.214 
14.204 1.332 
12.527 1.600 
11.816 1.621 
12.276 1.669 
18.419 2.716 
18.894 4.145 
16.064 4.653 
17.970 6.360 
19.604 8.174 
19.627 11.438 
19.837 13.705 

6.185 
6.290 
6.817 
6.922 
7.182 
7.464 
7.480 
7.388 
7.001 
7.328 
8.100 
9.139 
9.309 

11.096 
12.809 
15.769 
18.267 

cent at the "limit" or "critical" striking velocity for 
which the residual or exit velocity is zero (i. e. partial 
penetration). In this particular problem, one is very much 
interested in fitting an appropriate curve or law so that 
confidence bounds can be placed on the limit or critical 
striking velocity (x intercept). Although one might be 
tempted to exclude the Vg for the four cases where V^ « 0, 

i. e. the partial penetrations, these are nevertheless valid 
points and will be included in our least-squares procedure 
below. 

A plot of the square of the residual velocities versus 
the square of the striking velocity (last two columns of 
Table II) indicates a nearly linear relationship. There¬ 
fore, we will analyze the transformed variables y - V|/106 



and X - V|/10*. Also,since the independent variable may for 

Âtî !r.rUineg "¿viïtiv T.r¿«;bi;áj 
seems natural to regard any function of the residual veloc 
ty, VR, as the dependent variable. 

For the transformed variables, x and y, we obtain 

n « 17, Ex - 154.546, Ex2 » 1598.068, Axx * 3282.690 

484.163, Ayy - 4686.950 
n » 17, Ey - 59.530, Ey2 ■ 

Exy * 770.092, Axy 3891.441 

\i - 1.185V2 - 7271000 
R 5 

b - A /A - 1.185, a « ÿ-bx - 3.502 - (1.185)9.091 
D xy' XX 

* -7.271 

A - ~ mm 9 9 

y ■ a + bx or 

When Vn -0, V. - 2477 f/s, the "limit" velocity. 

The variance of residuals is 

S* - CAxxAyy - Axy3/n(n-2)Axx - .290, or - .538. 

X 

95» confidence bounds on the true unknown '•limiting” x, i.e. 
for y ■ 0, are obtained from (18), where y « 0, o 

-a/b ♦ t ,,(n-2) Sv /b)Cl/n . n(-a/b - i)!/Axx)l/!. 

This gives 

Pr(5.827 < xlimit < 6.451) - .95, 

and since V2/10‘ - x, we have for the original data that 

Pr(2414 f/s i Vlimit < 2540) - .95, 

:: s&æ Mra.n.ï: ^.rr„ ä”" ,“S 
single intercept. 

eboutníoJii.icrSoüirrofvrríSur^^ts^^th^riiírt^n 

t „(n-2) should be replaced by and the result- 

iig confidence bounds for Vlult would be 2396-2555 f/s. 
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The variance of residuals on the transformed scale is 

S2 - .290, but since VR ■ 1000/ÿ, we have dVR -500 y 1 2dy, 

and upon squaring and taking mean values we h*vo the vari¬ 
ance of residuals on the original scale of VR, which is 

o2 » (250000/y)a2 - (250000/3.502)(.290) - 20702 

VR yx 
or a . 144 f/s (for an individual value). 

At this stage, we might ask whether our 
being "free of error" is met, or nearly so. In this connec 

tion, we note from the last equation of (26) that oj -<>xy/ß» 

and hence that 

ó2 - Est. of o2 - A /n(n-l)b - 12.07. 
y V *7 

Now from the first of equations (26), we take 

,2 - Axx/n(n-D - % 
2 - 3282.69/(17)(16) - 12.07 

* 12 07 - 12.07 « 0, which gives us some confidence in our 
procedure. ZWe also’observeS from the t^nd equation of 
(26) that our observed estimate of turns out ¿ 

.28 or od - .53, which converted to the original scale of 

V is 141 f/s versus the 144 f/s above. 
R 

In fitting the equation V2 - 1.185 V2 - 7271000, we 

merely observed that the original data fall 
_r vivTiArhnia tvne of curve, and hence we could linean* 

if £a&iîïïr.»rre.M 
energy. In Table II, one notes that a third oj m|£® 
weicht of the projectiles wear away in the penetration 
process. Nevertheless, it might make c0*?ld;£*kle **ns* 
treat the ’’measured" residual energy as the 
bïe and the striking energy as the independent variable. We 

will actually take x - msV2/108 . 27V|/108 and y - mRV2/108, 
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m,, varying and given in Table II. A plot of these new x s 

and y's indicates a nearly linear relationship. Our key 

computations now become 

n = 17» Axx = 

b * .8806, a 

239.301, 

= -1.523 

yy 
or 

A » 210.721 
xy 187.103, 

y » -1.523 + .8806x. 

(m R 
16.314),we 

Using the average of the residual masses 

now obtain the equation 

V2 * -9335540 + 1.457 V| 
R 

Also S = .078, V (critical) = 2531, f/s, and 

yx 

Pr[2497 f/s <_ VgCcritical) i 2565 f/s] = .95 

Thus, by using the "physical" law the confidence^interval 

îhl Õne^asef on v| and (We ni« that this "law" does 

net fit as well as the other one at the^upper^endo^the 

^ihll^rVÇlso1^ that raising thea;rtsured:90re- 

sidual energy and the s^ri^.fhtlv better linear relation- 

this'woul^begin tole^ït fron physical consider- 

ations.) 

For the transformed data based -ftiking energy and 
"measured" residual energy, we have from (26) that 

.88, Ô2 = 0.00, and 
e =1“ 

.10, 

so that the assumptions still seem ^«¿“ently^alid. and 

«ken^fs10^-^«? T- ”î5540' Moreover' the Stand8rd 

lÄ V 
--i- •‘'Æ r „ ¢0 f/s, much 104o, and is approximately, 

less than the value of 141 f/s above for V| versus V|. 
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In summary, we have demonstrated the importance of try¬ 
ing to seek a physical relationship, transforming the origi- 
nal variables to near linearity for the regression analysis, 
and then being able to make statistical or probability 
statements about the original variables of interest. 

If we knew that the slope of the line is unity from 

?tySc^í'C^S1f?ratÍOrS,then there is no P°int in estimating 
slmnîifiij lCíiíy’ * «urse, the analysis thereby being 
simplified. Also, for more complex problems, one might well 
consider using various functions of the physical variables 

with only the error following 
no^all statisíirflTribUtl0n* I?deed* regression problems arf 
not all statistical, nor are they all physical,but rather it 

sulî ?nCw^inatl°\0f ?°th fields of which may re¬ sult m wider practical value and utility. 1 
We mentioned that proper estimation of the slope ß was 

that unbiased estimates are needed. PWith re- 
hpin Iv, thl- ?Jatter» equations (26) are of considerably more 
help than might at first be realized. To begin with íf 
°e - 0, we note using the first and third equations Í 

proper estimate of ß is 

ß Va XX 

as we established in (6). If „e is not zero but known, for 

indicates11?*.?48* 0r experience- then the first of (26) 

a I - a* 
e* 

?" unbiased estimate of ß may be found, lookine at 
the third equation of (26), from coxing at 

6 " Axy/CAxx ' n2oe]- (27) 

If od is known, then looking at the second and third 

equations of (26),we see that an estimate of ß is found from 

8 " CAyy ' H^d^xy (28) 

If both ad and are known, then from the first and 

second equations of (26), we obtain the estimate 
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ß = CAyy - n2o|]1/2/CAxx n2a2]1/2. 
e 

(29) 

The estimates (27), (28) and (29) are not maximum likelihood 
estimates, but they do enjoy the property of being con¬ 
sistent", i. e. for large samples, they tend in probability 
toward the true unknown parameter 6. 

Since we have seen the importance of estimating the 
slope accurately and that the method of estimating it de¬ 
pends on the values of the (often unknown) variances in 
errors of measurement, then continuing knowledge of the pre¬ 
cision of measurement of instruments, i. e. their capability 
in repeatability, reproducibility and also accuracy, becomes 
rather critical indeed. In fact, any worthwhile experiment 
could be planned and carried out more appropriately with 
such continuing knowledge of instrument precision capa¬ 
bility, as this would lead to improved analyses and predic¬ 
tions for the data taken. Moreover, we now see from the 
above that the matter of trying to find eyen some l^ear re¬ 
lationship between true values of the variables studied can 
get a bit complex or involved. 

We have not exhausted in our account here the methods 
of estimating the slope, ß. In fact, we should, mention in 
passing that for the linear relation and error in both vari¬ 
ates, grouping methods such as that of Wald-Bartlett (1949) 
might be used to advantage. Grouping methods were developed 
primarily for the case where the are random variables 

(discussed further later), but they may also be used for the 
case where they are varied systematically by the investiga¬ 
tor over particular ranges of interest. The Wald-Bartlett 
method for estimating ß involves dividing the data ordered 
in the x-direction into three approximately equal groups, 
computing the mean x's and y's of the two extreme groups, 
i. e. (xi, ÿi) and (x3, y3), and estimating the slope ß from 

ß a (ÿa - ÿi)/(xs - ¿i). (3°) 

(Of course, totals could be used in place of averages.) To 
illustrate for the measured energy versus striking energy 
fit, we will use the top five and bottom five points and 

compute for each point mRV|/10e and 27 V§/108. This results 

in the following estimate of slope: 
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.91, 

T* 
f?.72 + 2.24 + 1.60+1.14+n.70.fo. 1288 + 040 + 0 + 0) 

.93+4.26+^.46+2.99+2.1)1)-11.()^1.70+1^4+1.^ + 1.1.^) 

whPTeas from the linear least squares fit we obtained b 
88 indicating rather good agreement (altncugh it does dis- 

iîibuîe the e??oï to thl independent variable. indicating the 

extreme sensitivity involved here.) 

We will not discuss here the best methods of 

and the various ramifications ^nodoî^Bartlett (19491, 
refer the reader to papers of Wald (1940), Bartlett U* ,. 

Madansky (1959), and Neyman (1951). 

Vnr tWp case of error in both variables, we might 
finan? mention an estimate of 6 that seems intuitive on 
oractical grounds. This involves finding the slope by least 
squares from the linear regression of th® ''dependent ' 
b?e X and averaging this with the reciprocal of the slope 
obtained by finding the regression of x ajd y, since do 
contain erior. From the former, we have that b._ KJK 

and the latter that b 

xy' XX 

A /A . Using the preceding data, 
xy xy' yy 

we obtain 

b = 210.721/239.301 

= .8806 

and 
v 210.721 
bx = TïïnïïT 

y 
* 1.1262 

50 that5 .(.8806 . 1/1.1262)/2 - .8843 

Moran (1956) treats this type of estimate. 

TV LINEAR LEAST SQUARES WITH BOTH VARIABLES SUBJECT TO 
IV. linear ^ both VARIABles RANDOM 

in this case, the model of formulae (21) and (22) still 

aPPly’ b^dïminS(ÎSerefareinfomeC°pïoSÎemt °ïn ïhe pSysîcal 

priority?) ïhe llrllT. d^and e^are again considered to be 
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normally distributed with zero means and variances and oe 

as before. It is easy to see that man^of^the^formulas^ 

veloped in Section III still PP V (27), (28) and (29) 
randomly distr}butef: nInJa^ûrse it is very desirable for 
apply v,1th0Ut.alî^a^u°sical sciences that the variances in 
J??«saof°nmeasuremeStI oj and o*. be small compared to the 

variance in p or o¿ to guarantee sufficient precision of 

measurement. 

Although as mentioned we will Controlled 

into this particular case ' s*"ce C* physical sciences, we 

wil^nevertheless7establish a few principles of interest and 

record them here. 

To begin with, if o| and o’ are both known, then (29) 

becomes the maximum likelihood estimate of C'^lXod’esi?^ 
then equations (26) are thc basrc maxima both 
mates. We also see from (26) that it od ana e 

S-.t; •¡¿ur.i.u.'îrîh.W“’ •“ 
V A 2 T 1 / z 

(31) 
ß JJL 

1AVV t [(Ayv - 1AXX)^ AXA’y)-/’ 

2A. 

This estimate of B may be ^PPllCp b0 ^pïe^1?^6^ usePthe 

dd:C for1 strikin^energy energy above, 

and assume X*l, we have 

ß 

1.7 ^1-239.301^1187.103-239.1101)^4(210.721)^ 

same as the estimate from 
= .884, 

which is very nearly the 
(b +l/bx )/2 above. 

the caseChe re ^ the9y ,8 are5 random^var tables ^including1 group- 

ing methods for estimating ß et al. 
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For a case where the yi are random, and it is known 

that 6 = 1, Grubbs (1948) gives methods of est imating and o£ 

for two or more instruments which take simultaneous read¬ 
ings. 

V NON-LINEAR REGRESSION OR GENERALIZED LEAST SQUARES WITH 
ERROR IN BOTH VARIABLES 

We have covered only the problem of linear.le^t 
squares or regression so far along with some account of its 
relation to the use of physical laws. Our purpose has be 
to indicate a rather compact approach tJrougha^® tt0 
A type computations or functions in the analysis and to 

show that in practice it is usually or in many cases highly 
desirable to work with physical relations or Pa^am®îers, 
at all possible, since such models are more informative and 
are lasting. It is nevertheless clear that we cannot begin 
?o COV« sSch an involved and wide field of interest in any 
depth here. In fact, the important objective of findi- g the 
most appropriate use or combination of statistical methods 
lith models or laws in the physical sciences represents a 
field or area of interest that is undergoing continual de 
velopment. The best gains will likely result in 
the gap between the science of statistics on one ha^ 
the field of physical application on the other, ^-linear, 
opneralized least squares with error in both variaoies x 
therefore a wide-open field which depends critically on 
particular applications. However, once it has been J®cided 
to fit a hypothesized or developed model for the ParJ^cu!ar 
problem at hand, the scope of our account here will have to 
he limited to that of referring readers to the work ot 

Doming (1943), and especially "'O«.,«"1'1 a"?5)! 
ciirh as those of Britt and Luecke (1973), Celmins 
Chandler (1972) and similar treatments,for example. 
non-linear generalized treatment, iteration to the desired 
fit is generally required, and the moderncomputerisalmos 
a necessary or most convenient aid. It is for these reaso 
that our account is severely curtailed here. We believe it 
desirable! nevertheless, to cover in this report some ex- 
amoles of multiple linear regression, the parabola and the 
use of orthogonal polynomials for the case of equally sp 
values of the independent variable. 

™“n"KÄ ¡S.K“ “h. “XC 
Vol. 29, No. 2, 73 - 81. 
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VI. THE PLANE-ONE VARIABLE z (THE DEPENDENT VARIABLE) 
SUBJECT TO ERHÖR 

In this case, we seek the relation between a dependent 
variable (subject to error) and two independent variables, x 
and y, which are relatively free of error (or we seek the 
regression of z on x and y) by the method of least-squares. 
Also, from the physical standpoint, we are very much inte£' 
ested in whether the fitted plane is unbiased, i. e. can be 

regarded as representing the functional or ^truct|¿ra^,. 
tion between the true values of z, and x and y. We will as¬ 

sume that the measured values of x and y are both fre* 
error", whereas the observed values of z are subject to a 
(random) error of measurement. Thus, the functional re¬ 

lation may be represented by 

z « a + Ex + yy (32) 

The model or assumption considered for the observed 

values (xif y^ z^) is 

(a variable, free of error) 

y^ (a variable, free of error) 

2.-(0+ Ex. + yy^, (subject to error e. = N(0, op) 

We propose to fit the equation 

z = a + bx + cy 

to the observed data by determining a;. ^ ,an^cLe^-SauÍ[rÍs 
be estimates of a, E 5 y) by the method of^®a^nJqu^u! 
i. e. such that the sums of squares of the a aviations (o 
served minus fitted values) is a minimum. * - nave 

¢, « i (z. - a - bx. - cyp2, to be a minimum. (34) 

i-1 1 

Note that ¿ - a + b* + cÿ. Hence, since the Auy are not 

origin dependent and/.o simplify the agebra, we make this 

substitution in ¢, obtaining 
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i . £ Uz, - i) - b (X, - X) - c (Yi - ÿ))! which is to 
i-1 

be a minimum. 

II - - 2£(xi - i) ((zi - i) - b(x1 - i) - c (yi - 9)) ■ 0 

II - - 2£(yi - 9) UZ1 - i) - b (X1 - i)-c (Yi - Y)> ■ 0 

Solving for b, c and o, we get 

Axz Y ~.Ayf A;cy b - —~-T—r-r^ST 
Axx yy xy 

(35) 

Y Ar ' -Ag— AxxAyy xy 

a z - bx - cÿ - ‘ bïxi " cï>ri^ 

The variance of residuals will be given by 

(36) 

(37) 

¡2 - 1 
ÏT3 

? {(z. - z) - b (x. - x) - ctyj^ - y)>' 
i-1 

or 

Est of o" - S2 - {Azz ‘ b Axz ' c Ayz } 
(38) 

36 



Under the assumptions (32), it can be shown that the mean 
or exDected values of a, b and c are respectively a, B and 
Y. Hence, for the model assumed,the method of Least-Squares 
gives an unbiased estimate (with minimum variance) of the 
functional or structurai relation between the true values of 
z 2nd the (fixed - i.e. -free of error”) variates x and y if 

(32) is correct. 

Also, by methods indicated above for the line, it can 

be shown that 

Est of a 
n S2 [ExiLy? - (Ex.yi)2] 

a 
AxxAyy ' Axy 

(39) 

Est of n vi: 
Axx Ayy " Axy 

(40) 

and Est of a] 
n Axx S< 

Axx Ayy ' Axy 

(41) 

We now have all the information required to carry out the 
usual "Student's" t-tests to judge the hypotheses concerning 
whether the true parameters a, B and y can be regarde 
as being equal to zero or any selected constant values. 

For example, to test whether the true slope B, in the 
functional or structural relation z - a + Bx + yy» is eclua 
to zero, we us€ "Student's" t-test 

b-0 

ST 
b/ Axx Ayv ' Axy 

S/STT yy 

with n-3 degrees of freedom. 
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cironmi» The followiiis data give the Ballistic Limits ÇBL) HSr of armor plate when testea wixn c»xj.uci . . . f 470 

«S-yfcÆP!" • « ? I::y: 
gression equation of the Ballistic Limit (*.) 0 

ness (x) and BHN (y). 

z 
BL 

(f.s.) 

x 
Thickness 

(in) 

y 
BHN 

927 
978 
1028 
906 

1159 
1055 
1335 
1392 
1362 
1374 
1393 
1401 
1436 
1327 
950 
998 
1144 
1080 
1276 
1062 

.253 

.258 

.259 

.247 

.256 

.246 

.257 

.262 

.255 

.258 

.253 

.252 

.246 

.250 

.242 

.243 

.239 

.242 

.244 

.234 

317 
321 
341 
350 
352 
363 
365 
375 
373 
;91 
407 
426 
432 
469 
275 
302 
331 
355 
385 
426 

We have 

N » 20 

A - .022304 
XX 

A - 882,664 
yy 

A - 13,211,771 
zz 

A - 2.824 
xy 

A - 184.392 
xz 

A - 2,439,192 
yz * 

x - .2498 

ÿ * 367.8 

z ■ 1179.15 

To determine the coefficients 
have from (35), (36) and (37) 

a, b, c in z 
that 

a + bx ♦ cy, we 
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7920.534 K . Ay7Avv ' Avz Axr 155867902.08 
ayya - at " rwtM'm- 
Axx yy xy 

Ayy Avz " Axv Axz 53883.0154 _ -, 7Tain7 
c - a -”a2— "19678.9'6T~ 

Axx yy xy 

and a * z - bx - cÿ » - 1806.473. 

The tentative regression equation is 

B.L. - -1806.473 + 7920.534 (Thickness) + 2.738 (BHN). The 
variance of residuals is 

s* " ZUTT) iAzz 
tA„„ - b Av_ - c xz ' yz 

5,07^31^01. 

14,919.21, 

and nS2 “ 298,384.2. Then 

^ nS2A XX 

Axx Ayy ■ Ax7 
.33819, oc - .58154, 

n S2 A, TL 
0h Axx Ayy ' Axy 

13,383,479.17, ob - 3658.344, 

and 

a 
n S2 {lx2Tv2 - U xyj ) . 873,756.2, o - 934.749 

* -Â X -k* a 
Axx Ayy xy 

Moreover, 

a_. -1806.473 . -1.933, 
a a a 

934.TTC 

7920.534 » 2 165 
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and t_ ■ —- * 
2.7^8102 
.581?T" 4.708. 

Now since t 05 - 2.11 for v • 17 d. f., the slope b is sig¬ 

nificantly different from zero at the 5% level. The coef¬ 

ficient of BHN is highly significant ip< * XÎÎistic 
adopt the equation given above for PTe<?lctin8.®®“J;st^ 
Limit from thickness and BHN under conditions similar to 

those of the test carried out. (In ?his. 
thicknesses appear to vary rando,nly-Besses 
Brinell hardness numbers to some extent. If 
had varied over a wide range, the slope b might have been 

highly significant.) 

The variance of a value of z predicted from 

(33) is given by 

^ + (X 
n 

¿) + (y - ÿ)2 °c + 2(x ' *Hy ' ÿ) 0 be* 

(42) 

Estimates of o|, aj and o£ are given by (39), (40) and (41), 

whereas an estimate of o^c is given by 

Est of cbc 
-n Axv 5 

AxxAyy’Axy 

(43) 

VII THE PARABOLA - ONE VARIABLE z (THE DEPENDENT VARIABLE) 
SUBJECT TO ERROR 

Here we desire to fit a second degree curve or parabola 
to the observed data, i.e. we assume that the functional re¬ 
lation between the dependent variable z and the independent 

variable x is of the form 

a + 8x + vx' (44) 

Aaain we oostulate that the independent variable x is "free 
of&error",Pwhereas the dependent variable z is measureJo. 
obtained iith error. Thus, the model considered for the ob- 

served values x^ is 
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X. * U. (free of error) 
(45) 

z_ s a +ßx. + Yx? + ei (contains error) 

We will fit the equation 

z * a+bx+cx2 

to the observed data by determining a, b and c (which will 

to go through 
the procedure of finding a, b and c so that 

d . ? (z.-a-bx-cx2)2 is a minimum, since the method of 
i-1 1 

.east Squares is very general and «n, as a mattar of 
act, replace y in equation (33) for the plane oy x 
:hus have in a straight-forward manner that 

AxzAx2x2 

AxxAx2x2 

Ax2zAxx2 
1. A»~T— 

Axxz 
(47) 

AxxAx2 z 
AxxAx2x2 

AxxzAxz 

z - bx - c - I (ZZi - blxi - cEx?} 

(48) 

(49) 



Est of 

Est of o£ 

n S2 {Zx2Zx 

Axx ^X2X2 

n ^ Ax2x 

AxxAx2x2' 

(51) 

(52) 

Est of o2 

n S2A. XX 

AxxAx2x2 

(53) 

The variance of a value of z predicted from the equation 

(46) is given by 

(x-x)2 o2 + (x2-!7)2 o2 + 2(x-x)(x2-77) obc 
(54) 

Estimates of o|, and oj are given by (50), (52) and (53) 

whereas an estimate of obc is given by 

-n A..-.2S2 

Est of a, 
XX 

AxxAx2x2 

(55) 
be 

Example. A test was conducted** to determine the effect of 

barrel~length on muzzle velocity for a caliber L? 8 
Rifle (Model 37 Remington). The observed data are given 

lîw and each average MV is based on 10 rounds. 

Barrel Length (in.) 
x 

28 
26 
24 
22 
20 
18 
16 
14 
12 
10 
8 
6 

Ave. Vel. (f/s) 
z 

1084 
1075 
1091 
1096 
1100 
1098 
1085 
1088 
1085 
1079 
1067 
1040 

•by W. 0. L. F. Moore - See APG Firing Record Mise. 017 
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We have 

n "12 

Ex - 204 

Ez " 12988 

Ex2 * 4040 

Ex3 * 88,128 

Ex4 » 2,042,720 

Exz - 221,540 

Ex2z* 4,392,064 

Ez2 - 14,060,306 

A ■ 6864 
XX 

A ■ 35528 
zz 

A » 8928 
xz 

Ax2x! - 8,191.040 

Ax2z - 233,248 

Axx2 - 233,376 

Using formulae (47) - (53), we find 

b » 10.6286, c " -.27435, a - 994.0115, S2 » 42.8464 

Ôb = 1.547, Sc » .0448, oa - 11.920 

Hence, 

t » JL. = 6.87 (p < .01) 
b ob 

t = 6.12 (p < .01) 
c 

t - 83.39 (p < .01) 
a 

Since a,b and c are highly significant values statistically, 

we adopt the equation 

MV - 994.01 ♦ 10.629 (BL) - .2744 (BL)2, 

where 

MV * Muzzle Velocity and BL ■ Barrel Length (in.) 
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Transformation of Oricinal Data. In view of the fact that it 
may be desirable to make linear tra^formations on the 
nrioinai variables (in order to reduce effectively the size 
of numbers in the calculations), the pertinent formulae giv¬ 
en below may prove of value. Suppose we change t g 
variables x and z as follows: 

ui * c(xi-h) vi » d(zi-k) 

where c, d, h and k are constants. Then, it 
that 

(56) 

can be shown 

Axx2 * h Auu2 + Q Auu 

= AU2U2 + ^ A””- 

. 1 » + 2h . 
Ax2z“ Au2v cïï auv 

(57) 

” c1* "U‘U‘ c3 "'UU' cz uu 
+ A.„(58) 

(59) 

We had previously shown that 

A * -x- A Axx cT uu 

VIII. THE REGRESSION OF A 
INDEPENDENT 

DEPENDENT VARIABLE (z) ON THREE 
VARIABLES (x, y and u) 

Here we use the model 

z . a + B(x.-x) + yiV^V) + 6(Ui-u) + ei 

and we will estimate z from the equation, 

z » a+b(x-x)+c(y-ÿ)+d(u-ü) * (a-bx-cÿ-dü) 

where a, b, c and d are to be determined by the Method of 
Least Squares. 

(60) 

+ bx+cy+du, 
(61) 
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Tf we let 

L‘è 

A A A 
XX xy xu 

A Â A 
yx yy yu 

AAA 
Äux uy uu 

then from the Method of Least Squares, we find straight - 

forwardly that 

a » -Iz. [The constant term of (61) is z-bx-cÿ-dü] 
“ n i 

1 
Lx 

Axz Axy Axu 

A A A 
yz y y xu 

Auz Auy Auu 

1 
IT 

Axx Axz Axu 

A^x Ayz Ayu 

AAA 
UX UZ UU 

d “ IT 

Axx Axy Axz 

A A A 
yx yy yz 

A A A 
Aux uy uz 

s2 ■ htW tA« • b A« 
c A ■ d A,,_} , yz uz 

S2 
Est of o' - T, 

Est of oj 
n S2 (Ayy ^uu ' Ayu^ 

Lx 

(65) 

(66) 

(67) 

(68) 

(69) 
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Est of o* - - 

and 

Est of aj 

n SJ ^Axx Auu 
- A2 ) Axir 

-rx 

n s" ^Axx Avv ' Axy^ 

(70) 

(71) 

[Note; If we wanted to fit the cubic z 
(x*-?) we could simply replace yand u 
respectively.3 

a+b(x-x)+c(x2-x*)+d- 
^ above by x. and x^ 

IX FITTING OF POLYNOMIALS FOR THECASH WKERE T™ OBSERYED 
VALUES OF THE INDEPENDENT VARIABLE ARE AT EQUALLY 

cD&rcn TNTFRVALS 

If we are interested in fitting a polynomial of the form 

-r (72) 
z ■ a + aix + a2X‘ 

o 
+ arx 

for the relation between the variables ' and the in‘ 
dependent variable x is equally spaced, 

Xi - e+(i-l)f; i“l» 2* •••» n » 

then the c?®Put^ionvvf°the Lufet"ofUoïthogonaînpoîynoSls. 

Following5Fisher^and^Yates' C1943) ^nslLr'polynoni.ls, de- 

fined as follows: 

>r Ctp b_ + ^t. + b7t Z1”! 
+ b t. 

r i 
(73) 

where i-1. 2, ...,n represents th.mmb.r s ^ 

constants «ebPe0d^e™‘iÍei. The varía¿i¿ t, will be a linear 

dependent*1 variables'0'**11 ShiS* 
error). Polynomials of the form (75) will be called ortho- 

gonal if 

£ pr Cti) • Ps (ti) 
i-1 r 

Our procedure will be to fit 

0 for r^s. (74) 
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h • Vo(ti’ * A-lP,lti) * AîM»!5*-" * Vr^i5 (75) 

by the method of Least Squares. Hence, ve determine A0> M, 

etc.e so that 

,: ? u.-vo^(76) 
i-l 

is a minimum. 

niifArpntiatina (76) with respect to AQ, Ai, Ar and set Differentiating v nd the Normai Equa¬ 
ting the derivatives equal to zero, we 
tions: 

A ? P^Cti) ♦ A, ?P0Cti)Pi Ct,) + 
0 i-i 0 1 i-l i-l' 

n 
... Ar I V'i’Vh’ * i1.! Po Zi 

1-1 

A0 ”, Po^i^'^i’ * A‘i'l P' (ti5 * C77) 
i-l 

.... A^tjPiCt^Pr Cti) * j^i^i 

; ? PoitiJP/ti) + A, I P>it1)Priti) ’ ••• 

.... ArjiP2r (ti) - W Zi 

note that the cross-product te'rms not on the principal di 

agonal are of the type 

? pr(ti) ps ‘'i5- where T**' 
i-l 
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A*s immediately, i. e. 
n 

1 V^i 
i«l _ 

1-1 

n 

Ai 
^-1 

? PÎ (tJ 
iu 1 

(78) 

and 

? Pr(ti) Zi 
i-1_ 

l P* (ti) 
i-1 

The problem then is to find the polynomials P/t^ which re¬ 

sult in orthogonality. This can he done if we put t. 

(X. - i)/f (where f is width of interval between the obser¬ 

vations, xt), and choose the Pr(tt) as follows: 

W 

PiUi) 

Ptdi) 

Pidi) 

- 1 - ^¿(in the attached tables^ 

- \iti ■ , 

- x2[t? - 

X» Ct? - ^21 til “ , 

(79) 

_ . . . r. h 3n2 -13 *2 . _3(n2-1)(^.-91]. 
P4(ti)-X4 Lti-Yi— Zi ?60 

etc. 48 



Mi 

The x's are constants which depend on the JVin£er 
points n and a« choson so that for values of ^ (which are 

oositive or negative integers or 0), the above polynomials 
in the brackets turn out to be whole numbers. The gener 

recurrence formulae for the 

Pr(ti) or ç; are 

çr+l* 1 1 r 

r¿ 
IT £ 

2-r2) 
TT ■r-1 

1 7 i r -, (80) 

where 

*; xr5r' 

Table XXIII, Orthogonal Polynomials, pp. 62 - 68, of 
the Fisher and Yates tables (1943) give the required 
values of the Orthogonal Polynomials Pr(t) ^r £r for 

1 2, ...,5 (i. e., through the fifth degree) and for 
the number of points, n, up through n * 52. The values of U 

and U are symmetrical about their middle values, and the 
M and Ç5 are also symmetrical except that the first half 
of the^sequences are the negatives of those in the last 
half For this reason, only half of the values (i.e., the 
uller ones) are tabulated for n > 9. The first two rows un¬ 
der each table give values of the sum of the squares of tr 

and the third or last row just below each table gives values 

of the A . 

It can be shown that an ordinary polynomial 

k 
aQ + aix + a2x' + V 

can always be expressed in terms of orthogonal polynomials 
for any specified set of values of x. For example, 

y « -35 + 59x - 21x2 + 2x3.when x-1, 2, 3, ...7 

can be written in the form 

y « 5 ♦ (-4+x) + 3 (12-Sx+x2) + 12(-6+yx'2*2 + ç x3) * 

where the polynomials in parentheses are orthogonal, as seen 
from the table below: 
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r-
1 «

v
i 

»
O
 T

í- 
L

O
 \0

 t-'- 

PlP 1*2 PlP l^J P2Pj 

(-4+x: (12-8X+X2) (-6+^ X) 

-2x2+ixs) 
6 

-3 
-2 
-1 
0 
1 
2 
3 

5 
0 

-3 
-4 
-3 
0 
5 

•1 
1 
1 
0 

-1 
-1 
1 

-15 
0 
3 
0 

-3 
0 

15 

3 
-2 
-1 
0 

-1 
-2 
3 

-5 
0 

-3 
0 
3 
0 
5 

Total 
T 

The above exhibits the required properties of the orthogon 

al polynomials. 

Example 

Using the data of Section VII for length of barrel of 
the caliber .22 Long Rifle versus average muzzle velocity,we 
arrange the computations as in the following 
values of Ç* are taken from Fisher and Yates Tables (1943), 

Page 62. r 

Barrel 
Length 
(in.) 

Sum 
of 

Velocities 
(f/s) 
s 
i 

Diff. 
of 

Vel. 
(f/s) 
d. 

i 
Í2 

18, 16 2183 
20, 14 2188 
22, 12 2181 
24, 10 2170 
26, 8 2142 
28, 6 2124 

13 
12 
11 
12 
8 

44 

1 
3 
5 
7 
9 

11 

-35 
-29 
-17 

1 
25 
55 

ti - Ç» - (xrx)/f - Cxi - 17)/2 ; k\ - Ait. 

-7 
-19 
-25 
-21 
- 3 
33 

d - AiCt* - (n2-1)/12] - 3[t?-143/12], 

etc., as in (79). 
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- 1082.33 

z - a + bd + cd + dd, where a - z - 1082.33 

b - zdüdi/572 - 744/572 = 1.3007 

c - ÍEÍiSi/12012 - - 4394/12012 - - .3658 

d = Eçiid./SMS » 582/5148 - .1131 

The analysis of variance table is as follows: 

Degrees of Sum of 
Source of Variation Freedom Squares 

Mean 
Square F Ratio 

Linear Regression 

Quadratic Regression 

Cubic Regression 

Residual Error 

Total 

1 

1 

1 

_8 

11 

967.72 967.72 

1,607.33 1,607.33 

65.80 65.80 

319.82 39.98 

24.21 

40.20 

1.65 

2,960.67 

Note that the sum of squares are found simply from 

(744)2/572 = 967.72, (-4394)2/12012 * 1607.33, etc. 

the original is 

1082.33 ♦ 1.3007(2)(x-17)/2 - .3658(3) 

[(x-17)2/4 - (143/12)] 

« 994 + 10.63X - .2744x2 as before. 

The advantageous use of orthogonal P0Jyn°:ni!iJ;®hí'g 
sauares curve fitting for numerous applied problems is 
thus clearly seen, especially along with significance e 

for the coefficients. 
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