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ASSESSMENT OF SIMPLE JOINT TIME/RISK PREFERENCE FUNCTIONS

Stephen M. Barrager
Department of Engineering-Economic Systems
Sranford University

August, 1975

ABSTRACT
This article outlines a procedure for assessing a decision maker's

cardinal utility function U(xl,...,xi,...,xN) where x, 1is the payoff

i
in the ith period of an N-period future. The function U(x) captures
the decision maker's time preferences (his willingness to trade off pay-
offs between time periods) and his risk preferences (his attitude toward
risk taking). The procedure outlined uses a straightforward but little
known two-step method for assessing multiactribute utility. 1In the first
step the decision maker is asked to reveal time preferences by choosing
between sure payoff vectors. In the second step attitude toward uncer-
tainty is measured by encoding risk aversion on an appropriate single-
dimensional index. The two steps are combined mathematically to produce
the utility function.

A new preference parameter is introduced. The parameter, called
the coefficient of variation aversion, is a measure of how strongly an
individual feels about undesirable variations in payoff vectors. It is
shown tnat the coefficient of variation aversion exists and is strictly

positive if the ordinal preference function has an additive representa-

tion and preferences satisfy a reasonable set of axioms.
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The choice between available investment opportunities is an essen-
tial economic activity of virtually every individual, business, or gov-

ernment. The investment decision is complicated by two factor:: time

and uncercainty.

Future costs ard payoffs are often distribuced over a iong

enough period that the timing of events is a significant consideration.

Likewise, future costs and payoffs are uncertain. In general, when un-

certainties are involved, logical choice between investment alternatives

requires description of the decision maker's preferences for the timing

of payoffs and his attitude toward risk taking.
The ovtcome of an investment can usually be described as a vector

(%pseeen®is.o0yX)) where x. ic the payoff in the ith perind of an N
1 i N i P

period future. Par>ffs might be such quantities as individual consump-

tion expenditures, corporate dividend payments, or the benefits of a

govermment supported .esearch program. Under certaint:, preferences for

such outcomes can be described by an ordinal preference function V(x) .

This real-vzlued function exists so long as the decision maker can per-

form a transitive ordering of the vectors, can make trade-offs between
time periods, and always prefers more payoff to less in any time period
[5]. The ordinal (time) preference function has the property that if
51 is strictly preferred to _52 then V(§1) > V(§2) . (In the two-
period case the time preference. function can be represen

ted graphically
by indifference curves.)

If an ordinal i!me preference function exists and if in addition the

decision maker is ratiowal in the von Neumann-Morgenstern sense, then a car-

dinal utility functior u(x) exists [8]. This fuaction describes attitude

toward risk taking as well as time preference. It has the property that
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the preferred investment has the highest expected utility over all future
time periods. This function can be used to evaluate payoff propositions
that are uncertain as well as dynamic.

Given that a cardinal utility function exists, the practical problem
is to assess its mathematica®l forna. The function must be complex enough
to realistically describe preferences but at the same time simple enough
to be computable and be understood by mathematically unsophisticated
decision makers.

One assessment approach is to prejudge, based on qualitative cri-
teria, that indifference. curves or utility have the form of a kncwn ana-
lytical function with udju- ible parameters. A few well choser. questions
can then be used to estimate the parameter values. For example, in a
twc-period framework it might be assumed that an individual's curves are
described by straight lines. The straight lines could then be specified
uniquely by assessing only one parameter, the slope.

In the following development the parametric approach is extended to
assess & cardinal utility function that describes both time and risk
preference. The result is a method for constructing a cardinal utility
function u(xl,...,xi,...,xN) by assessing N + 2 parameters. N param-
eters specify the relative interperiod weighting of payoffs (the preferred
payoff pattern): .One parameter, the coefficient of varistion aversion,
is a measure of how strongly an individual feels about undesirable varia-
tiors in payoffs; the final parameter is the familiar coefficient of risk
aversion, a measure of attitude toward risk taking [7]. A more complete
description of preference can be obtained Ly assessing a coefficient of
variation aversion for each time period. ¥ 2:ver, for most applications
one coefficient probably provides an adequate detail.

-2-




A simple but fairly undiscovered two-stage process can be used to
construct u(x) [2,6]. 7The procedure consists of a deterministic time
preference assessment followed by an assessment of the risk aversion co-
efficient on an appropriately chosen, real-valued index. This approach
has the advantage that time preferences (the willingness to trade off
sure payoffs between time periods) and risk preierence (willingness to

face uncertainty) are assessed independently.

Variation Aversion

We begin by assuming that the ordinal time preference function

V(x) exists and has an additive representation, i.e.,

N
V@ = ) v (x) (1

im]
where A is a functicn of x5 only. This is a restrictive assumption,
although far less restrictive than the frequently made assumption that
cardinal utility is additive. The behavioral implications of additivity
will be discussed later.

A special case, identical Vi will be used to explair. the concept
of variation aversion. The intuitive Insights afforded by this special
case are lost in a more general derivation. Equal A would be charac-
teristic of a decision maker that preferred uniform payoffs.

It seems reasonable that an individual will be indifferent between
a vector x with varying payoffs (xi ¢ xj for some i and j) and

some vector with uniform components A= (a,...,a,...,a) . If a is

.
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! very small, x will be preferred; if a 1is very large a will be pre-
ferred. For some intermediate value, &, & and x will be equally
desirable. & will be called the uniform equivalent of X . It satis-

fies the relation N

V@) = ) v = ) (2)
1ol

If the variation of the Y, about their average value X 1is small then

by a Taylor's saries expansion

N N
V@ ANV + ) VR - H 2 ) v@e - D2 o)
i=] i=l

where v' and v" are rispectively the first and second derivative

of v .

The term v(4) can be approximated by a first-order expansion as
v@d) ~ v(x) + v'(x) (@ - %) . (%)

By combining (3 and (4) via Relation (2), the following result is ob-

tained:
N
Ex%- U290 ) (g - DN ()
is]
where
v(x) = - v'(x)/vi(x) . (6)

The funcrion y will be called the coefficient of variat?!in aversion.

For a uniform preferred payoff pattern, the interpretation of the coef-

ficient of variation aversion is clear from Relation (6). 1f  is

-4
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positive it is twice the decrease in the uniform equivalent due to a

unit increase in the second moment of X about its average value (for
small second moments). Thus we postulate that v is a measure of how
strongly an individual feels about deviations in payoffs away from some
preferred pattern.

The function v has a form similar to the familiar coefficient of
risk aversion defined by Pratt {[7]. While there are strong parallels
between variation aversion and risk aversion, the latter concept has no
meaning in the deterministic time preference context under consideration.

Two important cuestions nave been left unanswered in the above devel-
opment. First, wha. are the behavioral implications of assuming that the
ordinal preference function has an additive representation (Equation 1)?
Second, what fundamental behavioral characteristics guarantee positive
variaticn aversion? Both of these questions will now be arswered.

In developing a mathematical description of an individual's pref-
erences, it is customary to assume that the preferences can be repre-
tznted by a set of three hinary relations defined over all payoff vectors
X . The three binary relations are:

(i) Strict Preference P .

X PEZ.’ if X, 1is strictly preferred to x

1 29 -

(ii) Indifference 1I .
X 152 , 1f X; 1is indifferent to X, .

(iii) Weak Preference R .

leﬁz , 1Lf l‘lpl‘z or x, I x

<%
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Assumptions related to the properties of preference relations are
stated as axioms. A set of five axioms guarantee that the time pref-
erence function has an additive representation and that variation aver-
sion is strictly positive. The first three axioms are quite standard
and can be found in most developments of preference theory [5]. The
fourth and fifth axioms are, perhaps, less casually accepted. The

axioms and their explai.ations follow:

Axiom 1: Weak Ordering. The relation R is transitive and con-

nected. R {is transitive if X Rl‘z and X, Rl‘3 imply X Rx it

33

is connected if x, Rx, and/or X, Rx) for all x, and X, ina

finite dimensional Euclidian space.

If the decision maker violates transitivity, for instance, if
x, Pl‘z 'y X Pl‘3 » and X4 PX, , then he can be turned into a “money
punp." That is, 1f he owns X, he «ill be willing to pay some small
amount to cxchange x, for X. . Once he has X5 he will pay some-

thing to exchange Xy for ¥, 5 likewise, with X, and X, . After

three voluntary payments the decision maker holds X the vector with

which he began. Thus, violation of transitivity implies a conscious

willingness to pay to accomplish nothing.

Axiom 2: Continuity. If X) Rx, and x, Rx, , then there is a ;'
real number )\ such that 0 < ) =1 and [)‘51 +(1 - k)53] Il‘z . This i
axiom captures the notion that indiviluals are willing to make trade offs.

In this case payoff in one time period is being traded for payoff in

another.

R —
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Axiom 3: iJonsatiety or Greed. TIf Xy 2 Yy and strict inequality

holds for at least one component of X , then xPy . This axiom

s
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requires simply that the individual always prefers more payoff to less

in any time period.

Together the weak ordering, continuity, and noncatiety axioms

guarantee the existence of a continuous, real-valued deterministic time

function V(x) with the property that V(}l) > V(gz) if and cnly if

X, Rx, . The function V(x) is unique only to a monotonically increas-

ing transformation. For a proof of this fact and further discussion, see

Luce and Suppes

! Axiom 4: Decreasing Margina) Rates of Substitution. This axiom

is satisfied if, for any two time periods i and J , the increase in

xj required to compensate for a loss Axi decreases as X increases,

or, when V 1is differentiable

2
X

3
-—:.,_1 >0 <
ax
1 [V(x)=constant
This axiom states mathematically the belief that as total payoff in any
time period i increases, the individual becomes less and less sensi-

tive to small changes Axi .

Axiom 5: Deterministic Independence. All factors of the payoff

vector x are deterministically independent. Deterministic independence
1s defined by Debreu [ 3 ] as follows: Let I be any subset of
n=(l,...,N) , and for every i €¢I let a, represent a constant pay-
oft in period 1 . If the preference ordering of x conditional on

(x1 - ai)ieI is invariant for all levels of (ai)ieI then the n fac-

tors of x are said to be independent.

For n = 2 | this means that if X = (a,xz) is preferred to

2 P




Y= (a,yz) for some a , then (a,xz) is preferred to (a,yz) for all
a , and likewise for x = (x].a) and y = (yl,a) . Basically, indepen-

dence implies that an iudividual can make consisten: value judgments

about payoffs in any subset of future years when the levels of the pay-
offs in all other yeirs are held fixed. And further, these value Jjudg-
ments do not depend on the particular fixed levels.

Although there are doubtless special instances in which prefer-
ences violate the independence axiom, in general it seems to be a rea-
sonable proposition. It certainly sufficer as a first approximation to
a more detailed preference description.

The independence axiom, together with the assumption that at least
two components of x affect choices, guarantees that an additive repre-
sentative of the ordinal preference function exists (see Debreu [3],
Definition 4 and Theorem 3; also Luce and Suppes [5]). The additive
representation of the preference function is unique to a positive linesr
transformation. Notice also that an additive preference function implies
deterministic independence.

A theorem can now be stated relating the preference axioms and the
variation aversion coefficient. The theorem stipulates that positive

variation aversion is guaranteed if and only if the five axioms are satis-

fied.
Theorem
Given a preference relation satisfying the axioms of
(1) weak ordering (transitivity and connectedness),
(2) continuity, and

(3) nonsatiety,
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then the relation satisfies the axioms of

(4) decreasing marginal rates of substitution, and

(5) deterministic independen:e
if, and only if,

(a) V;J =0, forall i and j, i# j, and

-V 'Y =
() ViV = v(e)) >0, forall i,
where
2
| = "
v BV/BCi and Vij = 3 V/aciacj :
(See the appendix for a proof of this theorem.)

The quantity vi(xi) appearing in the theorem is called the coef-

ficient of variation aversion with respect to X, . We will continue to

make the simplifying ascumption that all v, are identical.

Families of Time Preference Functions

The theovem of the last section guarantees that a ferily of pref-

erence functions is uniquely determined for any set of strictly positive

yit ' 2 =
coefficients vi(xi) . If vii/vi - vi(xi) » then by the rules of in
tegration and the additivity property

N

= - dx
\ .[Vi(xi) i
V@ -, Ie dx, . (7
i=l
We will investigate two particularly interesting families of prefer-
)

ence functions. For the first family, v(xi) is a constant and fcr the

second, v(xi) is inversely proportional to X, -
If the coefficient of variation is a positive constant y = Vo o

then by Equation (7)

’ T
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V@ =- ) aje °F (8)
j=]

where the ai's arve also positive constants. Four sets of indifference
curves are shown ir Fig. 1. The curves correspond to a, =a,, and
¥ B .001L , .005 , .01 , and .05 . The graphs demonstrate that small
valuves of e correspond to flat, nearly linear preferences and that

as v, gets larger the difference curves become more and more sharply
bent along the line X =%y .

The exponential functional form has one sali»nt behavioral implica-
tion. Trat is, if an individual with this preference function is indif-
ferent betweean any two vectors E3 and 1:2 » then he will also be indif-
ferent between (1:1 + 4) and ch + A) where A 1is the vector
(d,...,2) . This is true because, for the exponential function,

VQ:I) - VQ:Z) implies that V’Q_:l +4) = V()_:Z +4) .
If the variation aversion is inversely proportional to paycff,

i.e., v, = 1/(oxi) , then by Equation (7)

N

V(x) = z aixi(l-(l/o)) for 1 <0<, (9)
iml
N

V(x) = 2 ailnxi for o= 1, and (19)
i=l

=

V(x) = - z aixi(l-(l/g)) for 0 <g<1.
im]

-10-
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Figure 1. Indifference curves

v = ,05

for constant variation aversion




All Hf the ai's are positive constants. The effect of changing ¢ is
illustrated by the four sets of indiffercnce curves in Fig. 2. The
curves correspond to a, =a,; and o =20, 2.5, 1.43 ,and 1. A
distinguishing feature of this family is that the curves get flatter
(more linear) as both X, and X, increase. This "flattening" of the
curves can be used to reflect a phenomenon that might be observed fre-
quently in actual preferences. That is, as an individual has higher
payoffs in all periodshis overall welfare is less sensitive to small
shifts between periods. It is also apparent in Fig. 2 that the rate at
which the indifference curves flatten as wealth increases can be varied
by adjusting o .

The condition v, = 1/$in) implies that the preferences are in-
variant under scaling, i.e., for Equations (2.9), (2.10), and (2.11)
V(§1) - V(}z) implies that V(§51) = V(Q§2) , where b 1is a positive
E constant.

Use of a particular functional form imposes tlie associated behav-
ioral characteristic on the decision moker's preferences. Which behav-
ioral implications are acceptable depends of course on the decision
maker and the situation.

Encoding

Enough information to specify a unique time preference function ]

from either of the above families can be obtaived by performing two en-

coding tasks. They are:

(1) Assessment of preferred payoff pattern.
To establish this pattern the individual is asked to distribute a

fixed total payoff over a given lifetime to reveal the payoff pattern he

-11-

prefers to all others. This distribution X can be called the preferred 1




Figure 2 Indifference curves for v = 1/ (oxy)




payoff pattern conditional on the total payoff leve. X , where

N
X= ) x . (12)

im]
This vector quantity will be denoted (ﬁ'X) . The preferred payoff pat-
tern can vary with total payoff. To illustrate, suppose x; represents
an individual's consumpticn expenditure in the ith year of a five-year
lifetime. If total income is large, say X = 200 thousand dollars, the
individual might prefer an increasing expenditure pattern, e.g., (x]200) =
(20,30,40,50,60) . 1f total income is very low, say 10 thousand dol-
lars, the simple desire to survive might prescribe a vaiform preferred
pattern, e.g., (£|10) = (2,2,2,2,2) . 1In a particular encoding situa-
tion X can be chosen to be consistent with the range of X over which
V(x) will be applied.

(2) Vvariation aversion assessment.

To assess variation aversion at a given payoff level, the individual
is asked to reveal the level of 4 for which he is indifferent between
the vector (il,...,ii,ii+1,...,£N|X) and (il,...,ii-A/Z,ﬁi+1+A,...,£N|x)
The quantity A will be shown to be approximately equal to the decision
maker's coefficient of variation aversion if X and 1 are properly
selected.

In performing these encoding tasks the individual reveals two
clearly identifiable aspects of his time preferences: first, the manner
in which he would like to distribute payoffs over all future periods or,
equivalently, the relative importance he places on payoffs in difterent
periods; second, his attitude towards deviations from his preferred

payoff pattern.

-12-




The preference function form appropriate for a particular decision-

making situation is a matter of analytical Judgment.

Important factors

to be considered include problem complexity and desired accuracy. 1€

the exponentia.. form of Fquation (3) is appropriate, the encoding can

Proceed as follows. The total number of parameters to be encoded is

N+1 (N weighting factors a, and t'ie variation aversion coefficient

0

V). The information needed to determine these values can be obtained

by assessing one preferred payoff pattern (X|X) at some appropriate

level ¢€ X , and 2esessing the variation tolerance coefficient at the

same level.

All preferred payoff patterns (X]X) have the property

dx
| -. .
dx, | .
1|2
For the exponential form,
dx V/3x

a
dx, av7axj a, £

Combining (13) and (14) yields

31 e(xj-xi)v
a

®a1l forall { and j.

(13)

(14)

(15)

Relation (15) yields N - 1 independent equations in N + 1 unknowns.

Only two more independent equations are necessary in order to solve all

the unknowns. Task 2 reveals that some vector (ﬁl,...,ii'AIZ,ﬁ

1

+1+
...,i&) is indifferent to (il,...,ﬁ ,...,£1+1,...,£h) » or by Equa-

tion (8)




-()’c‘,,_-A/Z)v°

-81 e

im]

yields the required N + 1 incependent equations, which can be solved

for Yy and for all the ai's .

The process can be simplified somewhat if a, and x, are approxi-
mately equal to 3 and X4l ° respectively, in Equation (16). The
periods i and i 4+ 1, can be chosen so that this approximation is
valid. Equation (16) can then be written

-(X =A/2)y (X +8)v -2
e * C4e I T 0ag Lo (17)
Factoring, Equation (17) becomes
A\JO/Z -4y
e +e %a2, (18)
The exact solution of this relation is v .96/6 . Thus, if i is
properly selected the coefficient of variation aversion is approximately
equal to the reciprocal of the directly assessable value A .
This assessment procedure gives us some additional insight into

the meaning of variation aversion. The reciprocal of variation aver-

sion is approximately equal to the amount of the payoff from one period
that an individual would be willing to defer to a later period if the
rate of exchange were 100 percent ( A2 dollai. deferred yields A

dollars).

-14-
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In practice variation aversion may decrease as total payoff or
wealth increases. If an individual expects small paycffs in all periods,
A will probably be small, i.e., high variation aversion. As payoffs in
all periods increase, A will probably tend to increase (decreasing
variation aversion). Where this property is important it ca: be cap-
tured mathematically by using Equations (9) or (10) rather than the
exponential.

Elsewhere if. has been shown that variation aversion is an indirect
indicator of a decision maker's sensitivity to delays in the resolution
of future payoff uncertaini!es [1]. High variation aversion implies a
willingness to pay to avoid resolution delays. With early resolution,
saving or borrowing can be used to redistribute payoffs between time
periods, thus avoiding undesirable variations.

So far, a procedure has bzen outlinnd for encoding a simple ordinal
time preference functio., V(x) . This function is ordinal but not
necessarily cardinal. That is, the form of the function determines the
shape of indifference surfaces, but the absolute magnitude of V(x)
has no significance for describirg time preference.

The ordering implied by V(x) 1is preserved by any monotonically
increasing transformation. For the ordinal preference functions de-
scribed by Relations (8) through (11) the uniform equivalent 4 of any
payoff vector is a monotonically increasing transformation of V(x) .
For example, if preferences are described by Relation (10), then & is

determined by solving

N N
Zaix&m!-}:ai.lnxi (19)
im]l i=l




cr

4= eV(x) . (20)

Uniform equivalents are a cardinal muasure and they can be used to cou-
bFine time and risk preferences. We will discuss very briefly how this
might be accomplished.

Risk Preference

If a decision maker satisfies the von Neumann-Morgenstern axi-m
for lotteries with outcomes measured in uniform equivalents, then a
cardinal utility function u(d) exists [8]. This function has the
property that if u(ﬁl) is preferred to u(éz) then u(él) > u(ﬁz)

and the utility of any lottery equals the expected utility of its prizes.

u(d) captures tho decision maker's attitude toward uncertainty, i.e.,
his risk preference.

The coefficient of risk aversion r(y) 1is defined by the relation
r(y) = -u'"(y)/u'(y) where u" and u' are respectively the second
and first derivatives of u . If r(y) 1is known, then u(y) can be
uniquely determined by integration.

As with time preference assessment, one approach for encoding risk
preference is to assume a functional form for r(d) based on qualitative
criteria. A few choices between appropriate lotteries can then be used
to estimate function parameters. For excmple, we might assume a deci-
sion maker is adverse to risk taking and risk attitude is independent of
& over an appropriate range. In this cac., r(d) can be approximated
by a positive constant Y, This in turn implies u(y) = -A e-'Yoa +B
where A and B are constants, A >0 . The value of v, most nearly

describing a decision maker's preferences can be estimated by asking

=16~




him to choose between keeping the lottery in Figure 3 and giving it away,
If & is adjusted until the decision maker is indifferent, then a rela-

tioa very similar to Equatica (18) is obtained, i.e

A ]

-y & Yo;é‘/z)
1/2 e +1/2 e -1 (21)
or
b 1/a . (22)

Joint Time/Risk Preferences

If 4 = T(V(x)) , where T is 2 monotonically increasing trans-

formation, then by substitution

(@) = u(TVEDY) = U(x) . (23)

U(x) 1is the desired cardinal utility for payoff vectors. It desciibes
the decision maker's preferences for the timing of payoffs as well as
his attitude toward risk taking.

Using the procedure described above, the functional form of U(x)
is uniquely determined by specifying two parameters: a coefficient of
variation aversion and a coefficient of risk aversion (with respect to
uniform equivalents). The func.ional forms of U(x) corresponding to
three pairs of v and r are summarized in Table 1. It is interesting
that in each case U(x) and V(x) have the same form when v and r
are equal which implies additive cardinal utility.

Uniform equivalents were used in the above development because of
their simple interpret: .on and mathematical convenience. The construc-
tion procedure outlined is applicable whenever cardinal utility can be
encoded as a function of a real-valued numeraire y and y(x) = T(V(x))
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Figure 3 Lottery for encoding risk aversion

Yy e,




N I

where T

is a monotonically increasing transformation [5]. Such a

transformation preserves the transitive ordering of the prizes

g
Summagz

]

! Variation aversion has been introduced as a measure of a derision

maker's attitude toward undesirable variations in future payoff streams.
This parameter has been used to generate simple additive functions tia:

might prove useful in describing time preferences.

A procedure was outlined for constructing a cardinal utility func-
tion which captures both the decision maker's time preferences and his

attitude toward risk taking. Simple, butr flexible, utility functions

can be specified uniquely by performing three encoding tasks. The

tasks are:

o 7|

(1) Assessment of a preferred payo<f pattern (ﬁlX). This vector

describes the way an individual desires to have payoffs

distributed over all future time periods.

(2) Assessment of a coefficient of varlation aversion.

(3) Assessment of a coefficient of risk aversion with respect to {

uniform payoffs,

The first two tasks are performed under the assumption of certainty.

Uncertainty is introduced in the last step. This encoding procedure

has the advantage that time and risk preference assessment are per-

formed ind:pendently and then combined mathematically.
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APPENDIX

Procf of Theorem

First, we will prove that (4) and (5) imply (a) and (b). By total

differentiation,
N vx)
@) = ) S 9 - (A.1)
kw1l

For V(x) and all X, constunt, k # i,j , the above relation becomes

N N
0 = dxi + x dxj 4 (A.2)

i 3

Rearranging (A.2)

31 -(AV)/(axi)

%, . m = -(V;_).'(V_;) . (A.3)

Differentiating (A.3) with rexpect to X, and applying the decreasing

marginal rates of substitution condition yields

2 ! n o _ ! "

3 X, . L4 Vii Vi Vii
2 2

3, v

1

>0 . (A.4)

Rearranging the right side of (A.4) yields

V||. V”-
it - FE>0. (A.5)
g Y%

By the independence axiom V}i = 0 , and then (A.5) becomes




ii .
- V_' - vi('xi) >0, (A.6)

proving sufficiency.

To prove necessity we start wiht conditioua (a) aid see that

"N .
V1J 0 (A.7)
implies that
' =
V1 f(xi) 5 (A.8)
which by integration yields
V(x) = g(xi) + h(xo""’xi-l’x1+1"'"xN-l) , (A.9)

where f£(.) , g(-) , and h(.) denote real-valued functions. Since

(A.9) is true for all i ,

N-1

V) = 2 vi(x) (A.10)
1=0

which proves additivity and therefore deterministic independence. To

prove nonincreasing marginal rates of substitution we rewrite (A.6 ) as
-—-—m—a—-v(x). (A.11)
1 ax S § :

Integrating snd rearranging (A.ll) yields

P A M AT

ax, > (A.12)

and therefore
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Efl - -.Xi = b= e-.vi(xi)dxf"f\)j(xj)dxj s
% - .

Differentisting (A.13) with respect to X produces the result we are

seeking, i.e.,

2
A%x -[ (x )dx+[\, (x.)ax
—3 =y e ) BTy (A.14)
Ax
i
This expression is always greater than zero if vi(xi) >0
Q.E.D,
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