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FOREWORD

. This report was prepared by the Acoustics Development Group, Aero-
! Acoustics Branch, Vehicle Dynamics Division, Air Force Flight Dynamics
Laboratory, Wright-Patterson Air Force Base, Ohio. The work described
herein was conducted as Air Force Systems Command's exploratory
{ development program. It establishes prediction methods for pressure
5 fluctuations in bonb bay cavities. This program was directel under
| Project 1471, "Aero-Acoustic Problems in Flight Vehicles,* Task 147102,
"Aero-Acoustics" and Work Unit 14710220 “Aero-Acoustic Environment of
1 Weapons Bays in Air Force Bomber Aircraft." Mr. D. L. Smith was the
l engineer in charge of tie work.

This report concludes the work on Work Unit 14710220 which covered
the period from September 1971 to April 1975.

This report was submitted for publication by the authors in March
| 1975,
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SECTION I
INTRODUCTION AND BACKGROUND

} Cavities, or rectangular cutouts, exposed to fluid flow can

produce an intense aero-acoustic environment. Past experience has

shown that severe fluctuating pressures exist in aircraft weapons
bays under certain flight conditions. The amplitude of the fluctu-
ating pressures can be sufficiently high to cause structural damage,
malfunction of equipment, and problems with store separation and
trajectories.

The aero-acoustic phenomena associated with pressure oscillations
excited by flow over open cavities have been studied during the past
twenty years by several investigators (See list of Ref). Consider-
able knowledze has been gained about the phenomena but due to the
complex nature of the .roblem, they are not completely understood.
Most of the past investigations have been concerned with under-
standing the phenomena and the underlying mechanisms which control
them. Several theoretical models describing flow induced cavity

oscillations have been proposed but generally they did not asree

with all aspects of the measured data. However, the Rossiter

(Ref 11) frequenty prediction model has been shown (Ref 3, 4, 12,
13, 14) to predict the modal frequencies with acceptable accuracy.
The models proposed to predict the amplitudes have not been so

‘ successful. For example, the model developed in Ref 9 resulted in

' a prediction scheme for Loth the ampliiudes and the modal frequencies.
The predictions for deep cavities (L/D<l) are straight forward and
easy to use and the results agree very well with the measured data.
However, the associated response calculations for shallow cavities
(L/D>1 which are most typical of weapons bays) require a substan-
tial analytical effort and the results differ significantly from

the measured data for various frequencies.

The models presented to da' & provide insight into the physical
} mechanisms but do not allow for reliable quantitative predictions.
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An ideal prediction method, be it empirical or theoretical, should
permit the estimation of both the modal frequenr“es and amplitudes
for cavities with various length-to-depth (L/D) ratios and for Mach
number and altitude variations. Also, it should account for vari-
ations in the amplitude within the cavity. An ewmpirical prediction
scheme was offered in Ref 4 which was derived from wind tunnel data.
This scheme fell far short of an ideal method because it was a worst
case prediction, i.e,, the user could only predict the worst case
expected for a given Mach number and altitude. No variation with
L/D ratio or longitudinal position in the cavity was accounted for.
In addition the scheme predicts the same level for each of the modal
frequencies. Two noteworthy contributions resulted from the investi-
gation. It was shown that the temperature in a cavity exposed to
free-stream flow approaches the free-stream stagnation temperature
instead of the free-stream static temperatures. The significance of
this result is in the estimation of the modal frequencies. Rossiter
(Ref 11) assumed the temperature in the cavity to approach the free-
stream static temperature in the derivation of his frequency pre-
diction equation. The error involved in assuming this becomes signi-
ficant at high Mach numbers. The flight data verify that the tempera-
ture in the cavity approaches the stagnation temperature and the
Rossiter equation modified to account for this change predicts the
measured modal frequencies very well. The second contribution in

Ref 4 was the determination of longitudinal mode shapes for the first
three modal frequencies. These mode shapes were assumed to be valid
for the flight test results and formed the bases for the longitudinal
mode shape equations.

A flight test program was established in the Air Force Flight
Dynamics Laboratory to verify and/or refine the worst case predictions
offered in Ref 4. Four cavity and one flat plate configurations were
flight tested. Figure 1 illustrates each of these configurations.

The cavities were mounted in a modified SUU-41 munition dispenser
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pod which is shown in Figure 2 along with a sketch of the standard
pod. Figure 3 is a picture of the modified pod with the L/D = &
cavity mounted in it. The pod was mounted on the triple ejection
rack (TER) of the left inboard pylon on a RF~4C aircraft. A schematic
of the aircraft with the pod mounted on it is shown in Figure 4. The
cavities were instrumented with nine microphones, one accelerometer,
one thermocouple, and three static pressure ports and the flat plate
was instrumented with one microrhone, one thermocouple, one static
pressure port and a pressure rake. The location of the instrumentation
is shown in Figures 5 and 6 with a typical microphone mounting also
shown in Figure 5. Data were obtained for constant pressure altitudes
of 3,000 ft, 20,000 ft, and 30,000 ft for Mach number ranges of 0.61
to 0.93, 0.61 to 1.30 and 0.61 to 1.3) respectively. More detailed
information about the cavities, instrumentation, test procedures
and data reduction are included in th: Appendix.

The measured data were correlated with the empirical wind
tunnel aszero-acoustic predictions. .An improved prediction method re-
sulted which accounted for Mach number and altitude effects and
longitudinal variation of amplitude for an L/D = 4 cavity. These

results were reported in Ref 12. Similar expressions were developed

for the L/D = S and L/D = 7 cavities and these results are offered
in Ref 14. Expressions were then derived which accounted for the

L/D effect and were valid for any L/D ratio in the range of 4 to 7

and Mach number in the range 0.6 to 1.3. These expressions were

documented in Ref 13. Typical results from these references are

included in Section II of this report. Data from the literature

were used to extend the range of applicacions of the prediction
equations to cavities with L/D ratios from 2 to 7 and for Mach
~umbers from 0.5 to 3.0,
11.

These results are also included in Section

The final prediction expressions summarized in Section ITI,
are a function of four variables; cavity L/D ratio, normalized cavity

longitudinal position (X/L), free-stream dynamic pressure (q), and
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free-siream Mach number M. With these four variables the equations
can account for all of the significant trends that were observed in
the flow induced cavity pressure oscillation phenomena.

Section 1V suamaricas the significant results of the entire
effort,
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SECTION 11
TEST RRSULTS

1. Boundary Layer Characteristics

In order to defins the flow conditions for which subsaquent
data were taken, boundary layer profiles were obtained for each alti-
tude and representative Mach numbers. A boundary layer profile rake,
thermocouple, and a static pressure transducer were mounted on the
flut plate covering the cavity as shown in Figure 6. The resulting
normalized velocity profiles are presented in Figure 7 aleng with
the conventional 1/7th power law for fully developed turbulent
boundary layers. The data indicate that the profiles existing at
the leading edge of the cavity agree rcasonably well with those for
fully developed turbulent flow. It should be mentioned that the
boundary layer that exists at the leading edge of the cavities was
not expected to be the same as that for the flat plate because of
upstream propagation of the fluctuating pressures generated in the
cavity. A microphone located upstream of the cavity (Figure 6)
enabled the fluctuating pressures in the boundary layer to be
msasured which revealed upstream propagation of the pressures gener-
ated in ~he cavity. Figure 8 presents boundary layer spectra from
the microphone located upstream of the cavity for the flat plate con-
figuration for various Mach numbers.

e data are presented normalized, i.e., referenced to the
free-stream dynamic pressure (q) instead of the standard ZOuNIm2
reference. Resuits ror only the 20,000 ft altitule are shown in the
figure. The peak that occurs at 400 Hz in the boundary layer spectra
is due to the aircraft power supply.

The normalized boundary layer noise is seen to decrease with
increasing Mach number as was axpected since it has been shown (Ref 6)
that the normalized boundary layer noise follows the expression:

- 1)
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with constants Cl and 02 depending upon the type of boundary layer.
The dynamic pressure (q) may be defined for air as 0.7 POM2 where PD
is the local static pressure and Equation 1 may then be written as:
c, P
p - 3 o

rms 1 (1.a)

M2 + C2

It 1s noted from Equation l.a that for a constant pressure altitude
the rms pressure will increase with an increase in Mach number.

The data shown in Figure 8 follow the trend given by
equation (1). However, this relation is for the overall rms pressure
and due to the instrumentation limitations the true overall level was
not obtained for all conditions. For the higher Mach numbers there
is significant energy at frequencies above 10 XHz which was beyond
the frequency limits of the instrumentation. The shape of the one-
third octave spectra in Figure 8 agree with the shape expected for
the turbulent boundary layer and do indicate that the peak in the
spectra increases with increasing Mach numbers.

One-third octave band spectra from the microphone located
ahead of the cavity for the flat plate and for the L/D = 5 cavity
configuration are presented in Figure 9 along with the data from a
microphone located in the front of the L/D = 5 cavity. The spectra
obtained from the microphone located at the front of the cavity are
seen to be very similar to that measured in the cavity indicating
that the cavity induced pressure oscillations are propagated up-
stream with little or no attenuation. This upstream propagation
t .s also noted for supersonic flight speeds indicating that the
propagation is occurring in the subsonic portion of the boundary

layer. Additional boundary layer data may be found in Ref 12 and
14,

2. Static Pressures
Static pressures were measured at three locations in the
cavity. Two pressur~ iransducers were located in the rear half of
the floor and one in the aft wall (see Figure 5). The data are

presented as the difference between the cavity static pressure Pc
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and the free-stream static pressure Pu,normnlized with the free-
stream static pressure. The data shown in ¥Figure 10 are typical of
that for the entire test. It is seen that the cavity static pressure
increases toward the rear of the cavity as earlier investigators (Ref

; 4, 9, and 11) observed. As the Mach number 1s increased the static

pressure increases reaching its maximum at the maximum speed. It must
be pointed out that one cannot extrapolate this observation very rar
bevond the range of the test because it was found in Ref 4 (for wind
tunnel tests) that the static pressure at the rear of the cavity starts
E to decrease around M = 2. This trend was also noted in Ref 9. The
static pressure results for the L/D = 7 with the ogive store mounted

in it were compared to the other results with no sigaificant variations
being observed.

3. Cavity Temperatures %

S ]

In the past, investigators have assumed the temperature in
the cavity to be nearly equal to the free-stream static temperature
as opposed to the free-stream stagnation temperature. Cavity tempera-

tures for wind tunnel tests were presented for the first time in Ref 4

and it was shown that the temperatures inside the cavity approach the
free-stream stagnation temperature.

Cavicy temperatures were measured in the flight test with
1 a thermocouple mounted near the center of the aft wall (see Figvre 5).
The results for the L/D = 7 with store configuration are shown in
Figure 11, along with wind tunnel results from Ref 4. It can be seen
that the wind tunnel data show a trend for the cavity temperature to
approach the stagnation temperature with increasing Mach number. At

{ the lower Mach numbers the flight data fall well above the wind tunmel

3 results but at supersonic speeds the data agree quite well. The reason
: for high recovery factors at the lower speeds is believed to be due

to the flight profiles. The sequency of recording data was generally
from the lowest altitude to the highest, thus the cavity walls would be

at a temperature above the stagnation temperature each time the aircraft
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changed altitude. It is believed that this temperature excess is
the cause of the higher recovery fectors at the lower Mach numbers.
Figure 12 shows two consecutive runs at an altitude of 20,000 ft
displaying a reduction in recovery factors for the second set of
temperature measurements. This tends to substantiate the above
explanation since the second temperature measurements are for the
same flight conditions at a later time and the cavity wall tempera-
ture was lower due to the increased soak time. The reduction in
recovery factors for the second set indicates that the measured
temperature is affected by the duration of time the aircraft is at
the same altitude,

Due to anumalies in the temperature measurements, accept-
able data were obtained for only two test configurations, L/D = 7
with store and L/D = 5, Since data for only these two confligurations
were obtained it was not possible to determine the effect that the
L/D ratio or store had on the cavity temperatures. Hovever, it can
be concluded that the temperature in a cavity exposed to free-stream
flow approaches the free-stream stagnation tempcrature as was found
in the wind tunnel tests of Ref 4.

4, Vibration Levels

The vibration levels were measured by an accelerometer
mounted on the floor of the cavity at 3/4 of the cavity length from
the leading edge (see Figure 5). Data were recorded continuously by
the same instrumentation as that used with the microphones and one-
third octave band analyses were performed for various test conditions.
A typical spectrum for each test configuration is shown in Figure 13.
A significant reduction in the low frequencies is seen in the spectrum
for the store configuration.

The vibration sensitivity of the microphones used was low
enough that 1g of acceleration of the microphone would produce not
more than a 90 dB reading. Figure 14 shows the measured spectrum
for Microphone E (the nearest one to the accelerometer, see Figure 5)

along with the corresponding spectrum induced in a microphone due to
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the measured acceleration for an altitude of 3,000 ft and a Mach
number of 0.82, There is a 30 dB or more difference between the two
curves at all frequencies; therefore, it can be assumed that the vibra-
tion effact on the microphones was insignificant. It was also assumed
throughout the report that the acoustic energy input to the system from
the vibration of the walls was negligible.
S. Resonant Frequencies

Narrowband (2 Hz) frequency spectra were obtained from various
microphone locations to identify the discrete resonant frequencies in
the recorded data. Typical narrowband spectra are shown in Figures
15-17 for Microphone C at an altitude of 20,000 ft and Mach number of
1.30 for the three teat configurations. The predicted resonant fre-
quencies are depicted in the figures by dashed lines for the first three
modes. Note that the same frequencies were measured and predicted for
the three L/D configurations as they were all the same length. The non-
dimensional resonant frequencies or Strouhal numbers (S = fL/V) were
calculated for each observed resonant frequency f. The free-stream
velocity was calculated from the free-stream static temperature and
measured Mach number. Only those resonant frequency amplitudes that
were about 5 dB or more above the broadband level were used to calcu-
late the nondimensional frequencies. The calculated Strouhal numbers
for all three L/D ratios are presented in Figure 18 along with the data
from Ref 4 for L/D ratios of 4, 5.7, and 7. The solid curves represent
the modified Rossiter equation for the Str.uhal relation given by:

m -0.25

M
Bl 2,1/2 73 m=1,2,3 @
2 ’

S =

(1+

where K is the ratio of specific heats and M is the free-stream Mach
number. It is seen that the nondimenslonal resonant frequencies vary
only a small amount with the L/D ratio with the largest variation

cccurring for the lowest modal frequency. Variations in the ambient
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pressure (altitude) also had little effect as seen in the data in
Figure 18 which include all test altitudes. The addition of a store
did not affect the frequency as can also be seen in this figure. It
was observed in Ref 4 that the resonuant frequencies were relatively
insensitive to variations in these variables but they determine in an
unknown way the "occurrence" of the discrete frequencies.
The modified Rossiter formula, Equation (2), is seen in Figure
18 to be a good fit to the flight data and is thus recommended for
predicting the resonant frequencies for rectangular cavities.
6. Fluctuating Pressures
Fluctuating pressures were measured at the nine locations

shown in Figure 5 for all three test altitudes. The data were obtained
from microphones at these locations and were recorded continuously as
the aircraft slowly accelerated from the lowest to the highest Ma:h
nunber. The recorded data were analyzed at approximately every 0.1
Mach number using a two second sample time. For the frequencies of
interest this insures a good statistical representation of the data.
Throughout the report the fluctuating pressures are either presented
as sound pressure levels referenced to 20 uN/m2 or are normalized to
the free-stream dynamic pressure (q) and presented logarithmically.
The dynamic pressur=zs were computed from the free-stream Mach number
and free-stream static pressures. These are presented in Table 1

for each pressure altitude aund Mach number. 1In addition Table 1
inclndes the quantity required to convert the logarithmic normalized
fluctuating pressures to sound pressure levels, i.e., add the last
column of Table 1 to 20 log p/q to obtain the sound pressure level
referenced to 20 uN/mz.

Figure 19 presents overall fluctuating pressure levels as a
function of Mach number for each of the cavity configurations testied.
Data are presented from the front of the cavities for altitudes of
3000 and 20,000 fect. From these data it is seen that the overall
fluctuating prcssure levels in the cavities, for constant altitude,

increase with increasing Mach number throughout the subsonic flight
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TABLE I PRESSURE REFERENCE DATA

ALTITUDE | MACH | STATIC DYNAMIC P
NR  |PRESSURE | PRESSURE  |-20 LOG ( §2£9
P q, -
Kft >
(psia) (psia) (dB)

30 0.61 4.37 1.12 172
20 6.76 1.73 175

3 13.17 3.37 181
30 0.71 4.37 1.56 174
20 6.76 2.41 178

3 13.17 4.69 184
30 0.82 4.37 2.06 177
20 6.76 3.19 181

3 13.17 6.21 186
30 0.93 4.37 2.66 179
20 6.76 4.11 183

3 13.17 2.01 189
30 1.05 4.37 3.35 181
20 6.76 5.19 185

3 13.17 10.11 191
30 1.17 4.37 4.18 183
20 6.76 6.47 187

3 13.17 12.60 193
30 1.30 4.37 5.17 185
20 6.76 8.00 189
3 13.17 15.58 194
29
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regime. However, the data from the shallow cavities (L/D = 5-7) show
that at a somewhat higher Mach number a maximum pressure level is
reached beyond which there is a decrease in level., The Mach numbers
that correspond to the maximum overall level appear to be a function
of the L/D ratio of the cavity. The Mach number that results in a
maximum overall level for the L/D = 7 cavity is near 1.1 and near
1.2 for the L/D = 5 cavity. No maximum level was observed up to
Mach 1.3 for the L/D = 4 cavity. However, it is expected that if the
F-4 aircraft could have achieved a higher Mach number a maximum level
would have been measured for the L/D = 4 cavity. The overall levels
presented in Figure 19 are representative of all the data observed.
except that the spread between the data at each altitude differs for
the different positions along the ¢ wity, This results in a lack of
free-stream dynamic pressure scaling at certain longitudinal cavity
locations. This lack of scaling will be discussed in greater detail
below when the mode shapes are presented.

One-third octave band spectra from the front of each of the
three cavities are presented in Figures 20-22 for the thiee pressure

altitudes. The resonant peaks are very evident for the deepest cavity,

L/D = 4, and are much less pronounced for the shallowest cavity,

L/D = 7. These data are typical of the results from the other locations

in the cavity except, as was also noted in the overall levelrs, the

spread between the curves varies with cavity longitudinal position,

One-third octave band spectra from all microphone locations are presented

in Ref 12 and 14.

It was shown in Ref 4 that the longitudinal variation of the
rasonant pressure amplitudes could be described as ordered modes.
Suggested shapes for the first three modea, as determined from the wind
tunnel data, are presented in Figure 23. In order to determine if the
flight data followed the same mode shapes the amplitudes for the first
three resonant frequencies are summarized in Figure 24 for the L/D =4
cavity. The levels are referenced to q and include results from all
three altitudes (for a Mach number of 0.8). The data from the 20,000
ft altitude for a Mach number of 1.3 are presented to show that
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essentially the same mode shape exists at the higher airspeeds.
Failure of the data to scale with q is quite evidlent at the rear of
the cavity (X/L = 1). The only longitudinal cavity locations that
scale well with q are X/L = 0.0 and ¥/L = 0.5. An adequate explana-
tion as to why the other locations do not scale is not readily appar-
ent. Thus the conclusion in Ref 4 that the fluctuating pressures
scale with free-stream dynamic pressure, as determined from wind
tunnel data, does not appear to be valid for all positions in the
cavity.

In Ref 12 longitudinal mode shape equations were developed in
the form of ramped sinusoidal functions for the L/D = 4 cavity from
data obtained at an altitude of 3,000 ft. In Ref 14 the same upproach
was used to develop mode shape equations for the L/D = 5 and 7 cavity

data. The form of the equation used for each L/D ratio was

20 log (Pm/q) = 20 log (P,/q)

X/L X/L =1

3)

- (A1 + A2 X/L + A, |cos an X/L|)

3

m=1, 2,3

where: 20 log (Pm/q) are the one-third octave band level of the

rms sound pressures nzihalized with q for the modal frequencies at non-
dimensional locations in the cavity, 20 log (Pm/q)X/L - ] are the one-
third octave band level of the rms sound pressures normalized with q
for the mode frequencies at the rear of the cavity, Al' A2, A3 and a
are empirical constants determined with the measured data from each
cavity. It was fcund for these L/D ratios that the only variations
were in the empirical constants Al and A2 which define the increase in
level from the front to the rear of the cavity. The increase in level
from the front to the rear of the cavity was different for each cavity

L/D ratio. Figure 15 shows this increase for the mode 2 frequency as
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| : a function of the L/D ratio. The increase was nearly 8 dB for the

? L/D = & cavity and 17 dB for the L/D = 7. Modes 1 and 3 displayed

| ' similar increases in level from the front to the rear of the cavities.
: A final mode shape equation accounting for the increase in level from

| the front to the rear of the cavity was determined to be:

20 log (Py/q) = 20 log (P, max/q)

X/L
-10 [1 - feos o, W/ + (0.33 LD-0.6)1-X/L)] (@)
m=1l, 2,3
| whare:
% 20 log (Pm/q)x,L = -~e-third octave band level of the

i rms sound pressures normalized with q
20 log (P, max/q) = one-third octave band level of the rms sound
pressures from the rear of the cavity normalized with q

X/L = normalized longitudinal cavity locations

01 - 3‘5
' \‘2 - 6-3
ay = 10.0
i

Figures 26~28 compare calculated mode shapes from equation (4) to the

S,

measured data at Mach 0,82 from all these cavities for modes 1, 2, and
3. The agreement is seen to be very good.

In order to use Equation 4 for predicting the absclute sound
pressure levels in the cavity the maximum ievel for each mode frequency
must be known. Mode 2 was observed, in most cases, to have the highest
amplitude of the first three modes. In Ref 12 and 14 a second order
least squares curve fit was used to define the normalized mode 2 ampli-
tude as 8 function of Mach number and then sound pressure levels of
modes 1 and 3 were related to mode 2. This proved to be very acceptabdble
over the limited flight test Mach number range of 0.6 to 1.3; however,
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it could not be relied on to give valid results at Mach numbers above
or below that range. It was desired to obtain a prediction scheme

valid over a much larger speed range incorporating L/D effects.

It can be seen in the upper curve of Figure 25 that the mode
2 level was a function of L/D ratio and the prediction equation should
reflect this variation in the maximum mode 2 level. The slope of the
upper curve in Figure 25 was used to define the variation in the maxi-
mum mode 2 level with L/D ratio. This slope is 3.3. Since the normal-
ized levels tended to increase with subsonic Mach number and decrease
with supersonic Mach number, a function with thesa characteristica ig
required. Flight data were not available for the low subsonic and

; high supersonic speeds so wind tunnel data were used in conjunction

!
y
3
i
4

with the flight data to develop an expression for the normalized maxi-

mum mode 2 sound pressure level as a function of Mach number. This
expression is given by:

g i T

20 log (P, max/q) = 25 sech [2 M-1)] - 3.3 L/D - 27 (5)

where gech X = 2/ (e* + &™)

!

R S T W e AT T T

Figure 29 presents the flight data and wind tunnel data from Ref 4 and
. 11 alnang with the curve defining the normalized mode 2 level from

3 equation (5). The curve fits the flight data well but tends to deviate
from the wind tunnel results, It is desirable to verify the curve with
more data, at both low and high Mach numbers.

s T 51 A b
e

Equation 4 allows determination of the normalized mode 2 ampli-

ikt i

tude as a function of Mach number anc L/D ratio. Equations defining
modes 1 and 3 amplitudes still remain to be identified. These two modes ;
will be referenced to mode 2 and for simplicity only constant or linear !

varintions of Mach number or L/D ratio were considered. Figure 30 :

presents the one-third octave band levels from the rear of the cavity for
modes 1, 2, and 3 as a function of L/D ratio at a Mach number of 0.82.
Mode 1 is seen to be the lowest level for all L/D ratios and mode 3 is

3
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very close to mode 2 except at the lower L/D ratios. Mode 1 relative
to vode 2 has a nearly linear variation with L/D ratio for a Mach
number of 0.82,

Figures 31 through 33 present the Mach number effects on the
amplitudes of the three modal frequencies for each L/D ratio. As the
L/D retio increases from 4 to 7 the variation between mode levels de-
creases, This was anticipated because past data reveal that the mode
amplitudes tend to decrease with increasing L/D ratio. As seen in
Figure 33 fcr the L/D = 7 cavity, the amplitudes of the resonant peaks
clearly display a maxima, whereas, this was not the case for the L/D = 4
and L/D = 5 cavities (Figures 31 and 32). It was concluded from these
figures that the nearly linear variation (with L/D ratio) shown in
Figure 34 between the amplitudes of modes 1 and 2 was a good approxi-
mation over the entire Mach number range of the flight test. It was
also concluded that the Mach number effects on the variation between
the mode 2 and 3 amplitudeswere more significant than the L/D eifects
presented in Figure 30 and should be used in collapsing the data. It
still remains to be determined if these two approximations are good
for increased L/D ratios and Mach number ranges.

In Figure 34 the differences between amplitudes of modes 1
and 2 for L/D ratios from Z to 7 are plotted. The difference between

; the amplitudes of modes 1 and 2 were obtained by averaging results
over the respective Mach numter ranges indicated in the figure. Data

from several sources are included. The scatter appears fairly large

at the lower L/D values; however, considering the data cover Mach
numbers from 0.21 to 3.00, this data scatter is considered reasonable.
The line shown in this figure was obtained by a least squares fit. It
is the proposed prediction for the mode 1 amplitude and results in the
i following expression:

20 log (Pl max/q) = 20 log (p, max/q) + 1.5 L/D -13 (6)
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The flight data were weighted twice as heavy as the wind
tunnel data. Equation 6 allows an estimation of the maximum mode 1
one-third octave band amplitude. A similar expression is required
for the mode 3 amplitude.

Bacically the same approach was used to determine an expression
for the mode 3 amplitude. The differences between mode 2 and mode 3
amplitudes were obtained as a function of Mach number assuming no L/D
effect, It was previously noted from Figures 30-33 that the Mach
number had a larger effect than the L/D ratio on the difference
between the mode 2 and mode 3 amplitudes. The averages are shown in
Figure 35 as a function of Mach numbers which include flight and wind
tunnel daca. The flight data follow a linear variation with Mach
number and the wind tunnel data agree quite well. No data are shown
above Mach 1.5 since the mode 3 amplitudes were not sufficieuntly above
the broadband level to determine a difference. The recommended pre-
diction curve for the mode 3 amplitude is shown in the figure and
results in the following equation:

20 log (P3 max/q) = 20 log (P2 max/q) - 13 M+ 9 ¢h)

The equations presented thus far enable the estimation of the
resonant frequencies, one~third octave band sound pressure amplitude
for these frequencies and the longitudinal distribution of the ampli-
tudes. The determination of the complete aero-acoustic environment
in a cavity requires the broadband levels, as well as the narrow-
band levels., It was observed in Ref 4, 9, and 11 that the broadband
levels increase toward the rear of the cavity. The flight data
essentially displayed the same result. In general, this increase was
approximately 10 dB from the front to the rear of the cavity for a
L/D = 4 cavity, 13 dB for a L/D = 5 cavity and 17 dB for the L/D = 7
cavity. For prediction purposes linear variations were assumed.

Figure 36 shows the longitudinal broadband variation for the L/D = 5
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cavity at a Mach number of 0.82 and an sltitude of 3000 feet. It 1is
apparent that the shape of the broadband spectrum remains fairly con-
stant over the entire cavity length. It also remains to be datermined
if the chape of the broadband spectrum varies with Mach number or L/D
ratio.

Figure 37 presents the normalized spectra from the front of
the L/D = 4 cavity for ssveral Mach numbers. The shape of the spectra
is seen to be essentially the same for the entire Mach number range of
the test. It can also be noted in this figure that the normalized
broadband levels increase with Mach number. Variation of the broad-
band spectra with L/D ratis is shown in Figure 38. It ic evident that
the shape 1s not a function of L/D ratio. Thus it was assumed that
the shape of the broadband spectrum did not vary significantly with
X/L, L/D or Mach number. However, the maximum broadband level was o
function of these three variables. The maximum normalized broadband
level was referenced to the maximum normalized mode 2 amplitude. The
first variable accounted for was the difference between the maximum
mode 2 amplitude and the maximum broadband level. Figure 38 indicates
differences in the mode 2 amplitude and the broadband levels of about
15 dB for L/D = 4, 11 dB for L/D = S and S dB for L/D =7, This re-
sulted in a linear relation between the mode 2 amplitude and the broad-
band level given by the following expression:

20 log (Pb max/q) = 20 log (Pz max/q) + 3.3 L/D - 28 (8.a)

where Pb max is the maximum one-third octave band rma broadband

pressure which occurs at the rear of the cavity, This expression does
not account for the longitudinal variation of the broadband level.

The longitudinal variations presented .arlier were 10 dB for the L/D = 4

cavity, 13 dB for the L/D = 5 cavity and 17 dB for the L/D = 7 cavity.
With these longitudinal variations the predictior equation becomes:

20 log (P, max/q) = 20 log (P, max/q)
(8.b)

+ 3.3 L/D - 28 + 3(1-L/D) (1-X/L)
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This expression still does not account for a Mach number effect., It
was observed, from Ref 4 that as Mach number increases the difference
between the maximum mode 2 amplitude and the maximum broadband level
decreases. An average difference, for the different L/D ratios, was
determined from the flight data and from the data in Ref 4. These
results are shown in Pigure 39. These data indicate that the differ-

ence between the maximum mode 2 peak and the maximum broadband level

linearly decreases from low Mach numbers and reaches zero near Mach 3.
With this effect considered the final form of the expression to
predict the maximum broadband level becomes:

20 log (Pb max/q) = 20 log (PZ max/q)

+[3.3 1/ - 28 + 3 a-L/D) A-x/W)] [1.2 - 0.aw] %

S5ince it has been shown that the general shape of the broad- %

band spectrum is fairly constant, a single spectrum shape is recommended
for prediction purposes. Figure 40 presents the recommended broadband
spectrum shape determined from the flight data. The levels are presented
normalized with q and as a function of Strouhal number based on free

stream velocity and the length of the cavity. Equation 8.c is used to

determine the maximum onc -third octave broadband level and then Figure
40 i1s used to determine the one~thir<d octave broadband levels for the

frequency range of interest.

7. Effect of Store Insertion ,

In order to determine the effect a store has on the fluctuating :

pressure environment in the cavity an ogive store was mounted in the
L/D = 7 configuration as shown in Figure 1. This configuration was
tesiced for the same flight conditions as the empty cavities and the
same data were obtained. Figures 41 and 42 illustrate the differ-
ences between the empty and store-containiang cenfigurations by com-

paring the spectra from the empty and the store containing cavities
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E' 20 log(P Max./q) = 20 log (P,max./q) + 13.3 L/D -28 + 3(1-L/D) 1-X/L)}[1.2-0.4u]
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for several Mach numbers. A major effect of store insertion is seen
to be a reduction in the amplitude of the low frequencies.

The reduction in low frequencies appears to decrease with
increased Mach number. The effect of the store on the resonant peaks
is difficult to distinguish at the Mach numbers which were flight
tested. These effects become more apparent at higher Mach numbers
(Figure 42) and generally result in a decrease of 3 - 4 dB in the
first three resonant peaks.

It was concluded in Ref 4 that the location of the store,
with regard to store-shear layer interaction, was the determining
factor as to the magnitude of reduction that would be realized. If
the store does not interact with the shear layer, little reduction
will occur. Also, it was observed that if the store is not wide
enough to effectively fill the cavity mouth area the undisturbed
portion of the shear layer is still capable of exciting cavity reso-
nances. The wind tunnel data of Ref 4 showed that one store (2 inches
wide in a 7 inch wide cavity opening) at Mach 0.8 resulted in only a
3 dB reduction in the peak fluctuating pressures while a two store
configuration resulted in approximately 16 dB reduction. The flight
tested store was 4 inches wide giving an area closure ratio between
the referenced one and two configurations. In general, for the flight
test Mach numbers the reduction in the level of the first three reso-
nant frequencies was between those fourd in Ref 4. However, sufficient
data are not available to generalize the effects of the store-~in-cavity
configuration. This can be clearly seen by careful examination of the
data presented in Figure 46 of Ref 4, considering both Mach number and
store effects. Thus, for prediction purposes, it is recommended that
the predictions for an empty configuration be applied to the cavity
with a store in it. This will tend to be a conservative eatimate
because, as shown in Figures 41 and 42, the amplitude at the lower

frequencies of interest is consistently lower for the store configuration.
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SECTION III
SUMMARY AND EVALUATION OF PREDICTION SCHEME

The prediction scheme presented in this report was empirically
developed and is based on flight data from Ref 12 and 14 and wind
tunnel data presented in the literature. The scheme is recommended

for application in the following parameter ranges:

o
A
>
S~
[ ol
A
[

The predictions that result will tend to be conservative at almost all #
flight conditions and cavity configurations as will be shown below.
The prediction scheme is summarized in the following steps.

Step I Modal Frequencies

The modal, or resonant, frequencies are predicted quite well
with the modified Rossiter equation:

m - 0.25

M o (2)
- +1.75 m-1,2,3
a+ 5{1_ Wy 172 |

\'}
fm L

The equation can be used to predict modal frequencies for m as large as
desired, however, this prediction scheme only concerns itself with the

first three frequencies, f.e., m =1, 2 or 3.

Step I1 Normalized Modal Sound Pressure Amplitudes

The following expressions are used to determine the maximum |
normalized one-third octave band sound pressure amplitude of the first
three modal frequencies. The maximum value occurs at the rear of the

cavity for each frequency.
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20 log (P, max/q) = 25 sech [2(M-1)] -3.3 L/D - 27 (5)
20 log (P, max/q) = 20 log (P, max/q) + 1.5 L/D - 13 (6)
20 log (P, max/q) = 20 log (P, max/q) - 13 M+ 9 ¢))

For convenience to the user values of the '"sech" function are included

as Table 11.

Step I1I Longitudinal Distribution
The longitudinal sound pressure distribution for the first

three modes is determined by the following expressinn:

20 log (Pm/q) = 20 log (P max/q)
- 10 [1- |cosa  X/Ll + (0.33L/D -0.6) (1-X/L)] (4)

ay = 3.5 rad

X/L

ap = 6.3 rad
a3 = 10.0 rad

This expression describes the standing modes that were observed in the

cavities for flight and wind tunnel data.

Step IV Broadband Levels

The final step in the prediction scheme is to determine the
broadband levels. This is accomplished with the aid of Equation 8.c

20 log (Pb max/q) = 20 log (P2 max/q)
+ [3.3 L/D -28 + 3(1-L/D) (1-x/L)][1.2-0.4M]  (8.¢)

and Figure 40. Equation 8.c predicts the maximum normalized one-third
octave broadband level which is used to enter Figure 40 to determine
the entire broadband spectrum.

The spectra that result from the prediction scheme are normal-

ized with the free-stream dynamic pressure. It is usually desired to
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TABLE 1I

VALUES OF THE SECH FUNCTION

SECH x = 2/ (¢ + ¢ %)

x SECH x x SECH x |
0.0 1.000
0.1 | o0.99s 2.1 0.261
0.2 | 0.980 2.2 0.219
0.3 | 0.957 2.3 0.199
0.4 0.925 2.4 0.180
0.5 01887 2.5 0.163
0.6 | o0.864 2.6 0.148
0.7 0.797 2.7 0.134
0.8 | 0.748 2.8 0.121
0.9 0.698 2.9 0.110
1.0 0.648 3.0 0.099
1.1 | 0.59 3.1 0.090
1.2 | o.352 3.1 0.081
1.3 | o0.507 1.3 0.074
1.4 | o.46s 3.4 0.067
1.5 0.425 3.5 0.060
1.6 | 0.388 3.6 0.055
1.7 0.354 3.7 o.009 |
1.8 0.322 3.8 0.045
1.9 0.293 3.9 0.040
2.0 | o.266 4.0 o0 |
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reference the levels to the standard reference of ZOuN/nz. To do this
the value of

20 log (q/20x10°%)

must be added to the predicted levels. 7igure 43 has been included

to aimplify this task. Simply enter the figure with an altitude and

free-stream velocity and ruad the corresponding conversion value.
Levels resulting from the prediction scheme were compared to

measured data to determine the accuracy of the predictions. Figures

44-46 show a comparison of measured and predicted one-third octave

band spectra for each L/D ratio tested and various locations in the

cavity. The measured data are from the flight tests and from wind

tunnel tests presented in Ref 3 and 4., It is seen that the wind

tunnel data are generally above the flight data. This is very evident

in Figure 46. The predictions will thus tend to be below the wind

tunnel data because in the derivation of the equations the flight

data were weighted heavier than the wind tunnel data. In Figures

44 and 45 the predictions agree very well with both the flight and

wind tunnel data where the largest variation is about 7 dB. In

Figure 46 the predicted spectrum agrees fairly well with the

measured spectra with the exception of the wind tunnel mode 2

pressure amplitude, At this frequency the difference between the

wind twmnel data and predicted spectrum is nearly 14 dB while the

remainder of the spectrum is within about 7 dB of the predicted levels.
It was desired to determine how well the prediction scheme

would predict the measured data for the entire range of parameters.

This was accomplished by comparii.- the predictions to measured data

from eight references which included Mach numbers from 0.2 to 3.0 and

L/D ratios from 2 to 7. Levels for the first three modes from

various cavity locations were used. The results of the comparison are

presented in Figur: 47. 1Ideally, all of the points would fall on the

zero line or a few dB below the line. Positive data points indicate

that the prediction method under-predicted the levels while negative
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values indicate conservative predictions. Approximately 90% of the
points fall within + 10 d® of the predicted value. The prediction
scheme offered in Ref 4 results in levels as much as 30 dR above the
measured levels. Due to the wide range of data represented in the
figure, the agreement with the predictions is considered to be good.
Most of the flight data predictions are conservative while much of

the wind tunnel data are above the predicted levels. The wind tuannel
data were not weighted as heavily as the flight data in thz development
of the prediction method and thus is the primary reason for under-

predicting the wind tunnel tests results.
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SECTION 1V

SUMMARY AND RECOMMENDATTONS

The objecrive of flight tests reported in Ref 12 and 14 was to

developed with wind tunnel results in Ref 4,

; verify and/or refine, with flight data, the empirical prediction scheme
}
%
| trends were observed.

From this effort many
The observations summarized below are based
primarily on the flight test results; however, wind tunnel results

were considered.

: 1.

The cavity resonant frequencies can be accurately predic.ed
by the modified Rossiter formula.
» 2. The amplitude prediction methods {- Ref 4 were conservative 1
1 in predicting both the resonant and broadband SPL observed in actual
flight tests. !
3. The equations presented herein are recommended for predicting 3
! more realistic SPLs for cavity L/D ratios in the range of 2 to 7 and ]
: a Mach number in the range of 0.5 to 3.0.
: 4. The longitudinal variation of the rms amplitude associated
; with each resonant frequency can be described as ordered modes. .
! 5. At the rear of the cavity the broadband spectrum for constant ]
! flight conditions is nearly the same for all cavity L/D ratios.

é 6. The maximum broadband levels increased toward the aft end
of the cavity.

7. Increasing the cavity L/D ratio reduces the amplitude of the

resonant {requencies.

It was revealed during the review of pertinent literature that

little data exist for rectangular cavities exposed to free-stream flow

for Mach numbers from 2.0 to 3.0. Verification of the current pre-

f diction method was limited in this Mach number range. It is thus

recommended that additional data (preferably flight data) be obtained ‘
for this speed range and the current prediction method be
with these additional data.

evaluated
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APPENDIX

Description of Test Configurations, Instrumentation,

Procedures, and Data Reduction

E 1. Test Configurations

Four cavity and one flat plate configuration were flight
tested. The cavities were 40 inches long, 9 inches wide and either
10 inches, 8 inches or 5.7 inches deep resulting in length-to-depth
! (L/D) ratios of 4, 5 and 7 respectively. They were constructed with
: 0.250 inch thick aluminum (6061-T6). The fourth configuration was

the L/D = 7 cavity with an ogive store symmetrically mounted in it.

A flat plate was fit securely over the cavity opening and flight
tested for the purpose of assessing the flow conditions for which sub-
sequent data were taken. Figure 1 illustrates each of the test con-
figurations.

The cavities were mounted in a modified SUU-41 munitions

dispenser pod. Sketches of a standard SUU-41 pod and a pod modified ]

e

to accommodate the cavities are shown in Figure 2, Figure 3 is a
picture of the modified pod with the L/D = 4 cavity mounted in it.
The pod was mounted on the triple ejection rack (TER) of the left
inboard pylon on a R¥-4C aircraft. A schematic of the aircraft with
the pod mounted on it is shown in Figure 4,
2. Instrumentation

The cavities were instrumented with nine microphones, one
accelerometer, a thermocouple and three static pressure ports. The
flat plate configuration was instrumented with a microphone, thermo-
couple, static pressure port, and a pressure rake. The location of
the instrumentation is shown iu Figures 5 and 6 with a typical micro-

nhone mounting also shown in Figure 5. The type and models of all

instrumentation are presented in Figure 48,

The overall system response for the Columbia Research Model
902H crystal accelerometer was flat within + 5 percent from 2 to
6000 Hz. The system response for the Gulton Model MVA 2100 micro-
phones was flat within 2 dB from 5 to 6000 Hz while the Gultou
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| Model MVA 2400 was flat within 2 dB from 2 to 6000 Hz. The system
tolerance for the Iron-Constantan thermocouple was + 4°F, The thermo-
E couple junction was mounted flush with the rear wall using epoxy
| which provided electrical isolation but not thermai isolation from
; the wall.

The accelerometer was calibrate}l in the laboratery using a
Bruel and Kjaer Type 1606 vibration preamplifier (+ 1 g calibrator).
The microphones were calibrated in the laboratory with a General
Radio Type 1552-B sound level calibrator. The medasurement system,
once installed in the aircraft, was calibrated with 2n insert voltage
to account for signal loss through the cables,
E 3. Test Procedures

The three altitudes at which the flight tests were flown are
3,000 ft, 20,000 ft, and 30,000 ft. The tests include flights for the
i Mach number ranges 0,61 to 0.93 for 3,000 ft and 0.61 to 1.30 for
20,000 ft, and 30,000 ft. Data were obtained at all Mach numbers
between the two extremes since the aircraft was slowly accelerated
frym the lowest to the highest Mach number (approximately 2 to 3
minutes) with data being recorded continuously. The majority of the
flights requ ring speeds in excess of M = 0.9 below 30,000 ft were
flown over lLake Huron with the remaining flights beiny flown over
Washington Court House, Ohio.

4. Data Reduction

All data were continuously recorded on two fourteen channel
tape recorders, The magnetic tapes recorded in-flight were played
back in the laboratory on a Honeywell 7400 record-reproduce system.
Overall time histories and one-third octave band analysis were per-
formed over the frequency range of 12.5 Hz to 10,000 Hz using a
General Radio 1926 mult{i-channel rms detector interfaced with a 2116
Hewlett-Parkard digital computer. The time histories were correlated
with the specific flight conditions which were recorded v a voice
channel .

For selected microphone and accelerometer data, na:rowband

(2 Hz) analyses were performed using a Hoaeywell 9300 po 'r «pectral
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density analyzer. The system linearity is + 0.5 dB for a discrete
frequency input. Narrowband anulyses were also obtained using a
Hewlett-Packard 5450 Fourier analyzer. The data reduction system

used is schematically shown in Figure 49.
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