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ABSTRACT

Characteristics of periodically stiffened membrane are
studied by using a string model loaded with equally-spaced mass
and rotary inertia. The acoustical radiation by periodically
stiffened membrane excited by a turbulent boundary layer is
estimated using a modal analysis on an individual bay of membrane
between stiffeners.

Two theoretical predictions of radiated sound power are
made using statistical energy methods. One is based upon
measured wall pressure data, the other upon measured vibratory
response of the membrane. Both agree well with dirct
measurements of radiated sound power.
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I. INTRODUCTION

Much work has been done on the vibratory response of
thin plates or membranes to a turbulent boundary layer pres-
sure excitation and the subsequent radiation of sound by
these plates or membranes. In the previous work, studies
have included only the response of, or radiation from, simple
structures. Actual structures may be a complex system of
plates forming a skin over a rib-like structure of beams.

In one limit, very rigid beams divide the skin into a number
of adjacent bays: the response of such structures can be

modeled by treating the response of each bay separately.

- Generally, however, the beams are not infinitely rigid, and

we must consider the combined response of ribs and skins.

To understénd the response of such systems, in the present
study we investigate the response and radiation of a periodi-
cally stiffened membrane.

The characteristics of the membrane and stiffeners sys-
tem are studied by using a one-dinensional string model car-
rying equally-~spaced blocks having mass as well as rotary
inertia. The analysis used here is similar to that used by
J. W. Miles.l The natural frecuencies fall) in periodically-
spaced groups, the lower ends of which correspond, at high
frequency, with the natural frequencies of each of the string
segments between the blocks and with the blocks fixed as
rigid supports.

The radiated acoustic power from the periodically stif-

fened membrane excited by turbulent boundary layer is

e s e e T e st




estimated using a modal analysis on an individual bay of
membrane between stiffeners. The contributions of Lyon and
Maidanik,2 Leehey,3 Davies,4 and many others, have provided
a broad fundamental theoretical basis upon which this part
of the study develops. The analysis is based on an expan-
sion of the transverse velocity field of the membrane bay in
terms of orthogonal characteristic functions. It is assumed
throughout the analysis that the response of the membrane at
any frequency is determined by the response of those modes
which are resonantly excited at, or near to, that frequency.
This assumption is justified for the cases of turbulent
boundary layer excited structures when the correlation
lenaths of the exciting field are small compared to the
panel dimension. Then, expressions for the acoustic power
radiated in narrow bands of frequencies can be obtained by
summing over those modes that have resonant frequencies with-
in the band by making use of the statistical energy analy-
sis (SEA) assumption of equal energy among the modes.
Corcos's5 model of the wall-pressure correlation func-
tion is used to obtain the modal wall-pressure spectral den-

sities, Values of the modal radiation coefficients for

plates have been calculated by Davies.4 His results are ap-

Plied nere to the cases of membranes.

II. CHARACTERISTICS OF PERIODICALLY-STIFFENED MEMBRANE

The equation of motion for a membrane can be writter. in

the form
(32 , 8  h=¢ 2%n
3x2  az2 Tn 3¢2
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where gmis membrane tension, o the area mass density of the
membrane, h(x,z,t) the normal displacement of the membrane,
x-coordinate is in the longitudinal direction of membrane.
z-coordinate is in the lateral direction of membrane, and

{ ) is parallel with the axes of the stiffeners.

r ; Note that, if we let h assume a form of h==}'((x)z(z)e‘:“‘°t
where X and Z are respectively functions of x and z only
then we can easily decompose the equation of motion into two

& - uncoupled one-dimensional equations:

; 2

. 37X 2 _

:; 2

; 3%z 2, _
| —-zaz+k3z-o
; 2 _ .2

2 _ _ .2,.2 - .
where kl + k3 = k" = /Cm ' Cm IT;70 being the

membrane wave speed.

By tapering the ends of the stiffeners, and by knowing
that the levels of vibrations and rotations of the membrane

system are small, we can approximate the longitudinal charac=-

teristics of this system by that of a string, carrying equal-

ly-spaced blocks of mass and rotary inertia resting on elastic

foundation. For simplicity, the elastic foundation is repre-
sented by two springs, each of stiffness S/2, for each block as

shown in Figure 2.1. The equation of motion of the string is

2

[S54

- e Doee - we A E ; -
‘_J.‘-mm_.ﬂ-l,__m_mu.;ﬂ. o ) R ey i L SR S TS X

+ ki y = 0 (2-1-)

(o84

X

i sin

where we use y(x,t) as the displacement of the string.

In the formulation of the boundary value problem for this

periodical structure, we also find it convenient to introduce

S
g
i
!
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a dimensionless, local coordinate such that

y = 2,¥,(5) , n = 1,2,...,N (2.2a)
I

! _ X-dn 2 — _ .

? £ = T d < X £d +1 and d, = (n-1)(2,+b) (2.2b)

where N is the number of string segments separated by stif-
F feners, i.e., the number of stiffeners plus one, 21 is the

| spacing batween stiffeners. In addition, let

2 _ ,2,2
A o= klil (2.3)
Note the A is also a dimensionless eigenvalue parameter.

Now, Eq.(2.1) becomes

azyn 2

-—r+ A yn=0 n=l,2,...,N (204)
9§

Let us study the equilibrium conditions associated with

block number (n-1).

We assume that all angles are very small,

Equilibrium of force in vertical direction is thus

ay (0) oy (l) £ 2 e \
n n-1 _ 1 s-w M
36 T g = g T |¥n-1 (1) * v, (0] (2.5a)

where M is the mass of one stiffener, T = Tmi3, and

n=2,3,...,N.

Assuming Cb very small, the equilibrium of momentun

with respect to the center of the block can be written in the

form

3¥p-q (1)

Se
: 1 - .
T(b sin Ob+b cos Ob) 4-(7—.n_1(1)+T 13 )(b cO& Ob b sin O

b !

sS4 ay.. (0) “ 1
+T(~b sin Ob+b cos Ob) + e'flyn<0)+T__23f")(b cos Gb+b sin Gb)=IOb ;
or ' 3
dy__, (1) 3y_(0) ay_(0) 3y . (1) ":

n-1 . n : . n n-1 i
( 3T - s1in Ob) + (—3—£—— - sin Ob) + sin Ob( 100 14 ) i
1

St o Iéb |
- 33 sin 0 (TI +y, (1) + yn(O)) = b

DT UL T SRR
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where 2b is the dimension of the block. On the left-hand side
of the ébove equation, the third term is much smaller in magni-
tude than the first two terms, and, hence, is negligible.

Also, remember ' that Ob is very small Now, the equation goes

over to
oy (1)  3y_(0) -

Since the forcing functions of the above differential egua-
tions,ayn_l(l)/BE and ayn(o)/aﬁ,have harmonic tine dependence

of w, Gb can be replaced by -mzob. Also, note that

yn(o) - yn_l(l) = %%Ob ; n=2,3,...N. Thus, we have

dy, _4 (1) 3y, (0)
~Yp-1 (1) + y,(0) = zg naé + gg ) : (2.5b)

Iw™ Sb
(2-gp—7)

1 n=2,3,...,N

On the ends of the string, we have
-'yl(O) =0 (2.5c)
yN(l) = 0 (2.54)
The most general solution to Eq. (2.4) is
yn(g) = An sin Af + Bn cos A{ ; n=1,2,...,L (2.6)
Now, Eq.{2.5a) and Eq. (2.5b) give, respectively
a[B +A _, sin A+B,_; cos A] =A =~ A _, cos A ¢+ B .1 sin A

{(2.7a)

B[B,-A,_; sin A-B _, cos A] =A_+ A .y Cos A - B _, 8in A

(2.7b)
where 2
{S=Mw )ll
S} )
2
sb - Iw
5 = (1457 - /)%y
bA
n= 2,3,...,N

e i st

i ke  e laalle
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Eq. (2.7a) subtracted from (2.7b) gives

=(a=B)B +[~(a+B) cos A+2 sin) ]B__,

An'l N {a+B) 81in A + 2 cos A s h=2,3,...,N
(2.8a)
Eq. (2.7a) added to (2.7b) gives
(a=B)B__.+[(a+B) cos A+2aB sin A]B
A = n-1 n..-33 N
h (a+B) sin X + 2 cos A ; 13,000,
(2.8b)

Substitution of A  and A,_, in the form of Eq.(2.8a) back

1l
into Eq. (2.7a) gives

Bi4g ~22B, + B, _; =0 ;n=2,3,...(N-]) (2.9)
where
7 = {08=1) sinsia+ (a+8, cos A (2.9a)
The most general solution to Eq.(2.9) is given by
B, = A sin (n@) + B cos (no) (2.10)
Z = cos O
where A and B arr. arbitrary constants. From Egs. (2.5c),
(2.6), and (2.10), we get
B, = A 8in O + B cos 0 = 0 (2.10a)

Similarly, from kgs.(2.5d4), (2.6), and (2.8b), we have

(a=B)By_,+[(a+B) cos A+2aB sin A]By
{a¥BY 8in X ¥ 2 cos X sin A +By cos A =0

or, after simplification,

(a-B)By_, 8in X + 2B (cos A+a sin i) (cos A+B sin ) = 0O
or,
Al (a=B) s8in A 8in(N-1)0+2 sin NO(cos A+a sin A) (cos A+£ sin A)]
+B[ (a-B) sin A cos(N-1)0+2 cos NO(cos A+a sin A) (cos A+8 sin 1)}

=0 (2.10b)




From Egs.(2.10a) and (2.10b), we have
(a-B) sin A sin(N-2)0+2(cos A+0 sin A) (cos A+B sin A)sin(N-1)0=0

(2.11)
From Eq.(2.10), we see Z = cos O, where O is real when

|z] is equal or less than one, and O is imaginary when |[Z|

ie greater than one. It is easy to see that when 0 is real,

we will be able to solve for eigenvalues from Eq.(2.11l). If

0 is imaginary, say, O = iX, with X real, Eq.(2.11) becomes

(a=B)Ysin A sinh(N-2)X+2(cos A+a sin )A) (cos A+B sin A)sinhi(N-1)X
=0 (2.11b)

A little calculation shows that, for large value of

A, (a=-B) sin A is less than 2(cos A + o sin A)(cos A + B sin A).

Besides, we know sinh(N-1)X is larger than sinh(N-2)X, Thus,

it is impossible to find a solution of A which makes |[z|>1

and, at the same time, satisfies Eq.(2.11lb). So, we see the

resonant frequencies are permitted only within bands where

|z2]<1 or 0 is real, as shown in Figure (2.2). Ncte that at

high frequency the asymptotic approximation of Z is

Z ~C A sin A, where ¢ = IM/(M - I/bz) 2oxlb2. A computer

analysis shows the resonant frequencies as listed in Table

2.1. Notice that in each frequency band there are ten reso-

nant modes. We applied Lagrangian enerqy method to the system
with a simplification that the strings are massless. We found

two natural frequency bands comparable to the first two bands

listed in Table 2.1, and that the first band involves mainly
the heaving and tne second the rotating of the blocks. This
is a rather comforting check of the analysis we pursued. The
modal shape of higher frequency bands are characterized by
vibrating and rotating blocks linked by string segments which

assume the modal shape of a string of length £;, whose

oty et i GEEa A G fras A Sk s e nh e A it £ T A kb i L e e s E e AAR s s L, i ok it ol ‘..J
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fundamental frequency coincides the lower frequency limit
of each band. Also notice that as frequency increases the
bandwidth of each group of modes decreases.

Table 2.1

String Modal Resonant Frequencies (Hz), Determined by
Eq. (2.11)

Band 1: 222 225 231 241 253 267 282 295 306 313
Band 2: 840 846 862 886 917 952 989 1026 1057 1079
Band 3: 1525 1547 1577 1610 1645 1677 1704 1725 1738 1740
Band 4: 2999 3006 3016 3030 3044 3058 3071 3081 3087 3090
Band 5: 4485 4489 4496 4504 4513 4522 4531 4537 4541 4543

Now we return to the two-dimensional membrane. The
modes of the membrane are those of the above-analyzed string
coupled with those of a string of length 23, the width of
the membrane, i.e., (kL,k3) where kl,k3 are respectively
wave vectors of the abovementioned string systems. This is
best shown in Figure (2.3). Note that k2 = ki + kg = mzo/T,
and that f = 2wkC , where C = [f/0 is independent of fre-
quency, i.e., f varies linearly with k. Since in k-space
the distance from origin to mode (kl,k3) is just k, we can
easily transform modes from ﬁ—space to frequency domain.
First, we use a circle centering at the origin to pass the
mode concerned in two-dimensionai f—space and cross the

k~scale at kp which, afi>*r multiplied by 2ncm, is just the

resonant frequency of that mode (Figure 2.3).

11I. THE RADIATED POWER

A high frequency, che stiffeners on the membrane act
as rigid barriers, This explains why the f—space picture of
the membrane-stiffeners system looks much like that of an

individual membrane bay.




§= g In evaluating the radiated power of this system, ve

T TR

made two assumptions:

1. The radiation contributions from different
f‘ membrane units are statistically uncorrelated.
f 2. Each membrane unit radiates as if it were
mounted in ar infinite rigid baffle.
These two assumptions need discussion. The first one
; § is justified because the exciting wall-pressure field is not
3 correlated between bays (cf. Section V).
’ | Now let us consider the following case: A membrane is
excited on one side by a pressure field,'P, and is mounted

in an array of membranes of the same size. The acoustic

power radiated into the other side of the menbrane includes

; the direct contribution, <p2>, from the excited membrane plus

the back reaction, <p;k, from the rest of the membranes ex-

9 cited by p. Let o be the radiation coefficient, and Z the

rad
total damping, i.e., both mechanical and radiation, of the

membrane, If v is the velocity field of the membrane, then

2 2 2 2 2
<ve> v <P“>/|2|“. Also, we know <p“>/pc " Trad "~ %%aq <V °

rad is the acoustic power radiated directly from the
2 2

membrane. ‘Thus, <p“> v <p“> pcorad/lzlz. In general,

<p2> << <P2>, The same argument leads us to the conclusion

that <p§> << <p2>. And this justifies assumption 2 stated

where 7

above,

After the appropriateness of these two assumptions, we

can consider each bay as an independent radiator, and fur-
ther approximate each radiator as a rectangular membrane

unit of length 21 in the direction of mean flow and of width

B LR e s vaname s nt il berds Nay Ladhlins 4 i P 3 . il i e e X i g v M S e e s
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é: 2, insertied in a rigid baffle. The acoustic radiation into

%‘ the side away from the flow is considered here. The analy-

‘ sis given in this and the following two sections is a repeat
i of Davies'4 work on rectangular plates, and is beir7 applied
é to each bay of our membrane and stiffeners sys’ . high

] frequency.

? We choose Cartesian Coordinates with X] 9% in the direc-
b tions of &, and i, respectively, and Xy normal to the mem-
brane, but away from the flow sicde. The equation of motion
for membrane displacement y(§,t) driven by a wall pressure,

P(;‘ot) , is

2
2y + mg P+ m 2 = -p(X,0) + P(X,x,70,t) , (3.1)
3t

where T is the tension of the membrane, m is the area den-

sity of the membrane, B = n_|w| accounts for mechanical dam~

gl
ping of the membrane through a linear dependence on velocity,
Ng is the loss factor, and P(;,xz,t) is the acoustic pres-

i sure generated by the motion of the membrane.

At the interface Xy = 0, the boundary condition is

P
3x2

Qr

= -p

#<

’ (3.2)

where p is the fluid density, and v(§,t) = 9y/ot. The dis-

placement y vanishes at the edge of the bay.

The transverse velozity field of the membrane can be
expanded in terms of orthogonal characteristic functions

(the in vacuo normal modes). The frequency Fourier trans-

:?1
i
4
E]
]
i
]
H
1
:
i
1
;

form of membrane velocity is written

0o

vixw) = [T vix,t)e t = v (w) ¥ (%)
I m,§=1 mn (@) Yon

iwt a
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+> . .
where y__(x) = (2/VR) sin k.X; sin k x,. Here k_ = mn/%,,
kn = nn/£3, and A = 2123 is the area of the membrane unit.
The modal equation obtained from Eqg.(3.l1l) has the form

(-T kin + iwzmns sgn w—wzm) an(w) =
+ iwpmn(w) - inmn(w) ' (3.3)
where k;n = k; + kﬁ, and Pun and Pmn are defined by
Po(w) = [ p(x,w) y__(x) dx,
P (w) = £ P(x,w) y__(X) dx .

The wavenumber-frequency Fourier transforms of acoustic pres-
sure and membrane velocity are connected by using Eq. (3.2),
together with the wave equation for the acoustic medium.
Thus,

Pk.uy,0) = 2(K,0) v (K,u) explix, (k3-k%)1/2) (3.4)
where k is the wavenumber vector on the membrane, Z(ﬁ,w) is
the radiation impedance defined by

2(k,0) = p C (1 - k2/x2)71/2

where k = |§|, and ko = w/CO, Co being the wave velocity in
the acoustic medium.

Now Pmn(w) can be written in the form

- 1 w0 w > > - >
Ponlw) = 7 LVdw) [ [ 2k, s . (k) sk (k) dk ,
(em™ap = == (3.5)
> -> lE-; >
where 5 (k) = [ y_ (x)e dx

A
and the asterisk denotes a complex conjugate.
e consider here a system where the response is prima-
rily due to resonant modes and are thus interested in the

value of Pmn only at the resonant frequency of the (m,n)
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modes. If the resonant frequencies are widely separated in
frequency, (m,n) is the only effective term in the summation.
Pmn(w)'thus can be approximated by one term

?mn(m’ = P0C0 Vin (@) (Oppn * iXpy)
wxith ‘
o * Xy = ——g—— [ z(K,0) |5, (K)|? ak (3.6)
b @m®e o

With';his,gpyroximation, the modal velocity is given in

terms of the modal wall pressure Py, DY the equation

(SN

' Vm“(w)

n.

Ymn(w) pmn(w)‘ ’ (3.7)
From Eq. (3.3), Ymn is obtained, -

o I 2 _ , ., 2 .
Ymn(w) = lw{( Tkmn-w m wpocoxmn) + i(w mng sgn w+wp0C°omn,)

(3.8)
It is shown in Section I1I that the virtual mass term invol-

ving an is. in geaeral, negligible for acoustically slow
modes if the acoustic medium is air.
The wavenumber-~frequency transform of acoustic pressure

can now be written in the form

P(k,x,,0) = 2(K,0) [ ¥ _(wp_(w)s (K explix, (k2-k¥)/?)
m,n |

And P(i,xz,w) can be obtained from the inverse transform.

Thus, the spectral density of the power-radiated 7m(w), is

written

m(w) = [ E[P(x,0,w) v*(x,w)] dx
A

where it is understood that the real part of the integral is

’ (3.9)

taken as the acoustic radiation.

Substitute the expressions of panel velocity and acous-

tic pressure into Eq. (3.9) and we have the spectral density

e I R RS L

e ST i e L
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written in the form

© *> > >
T(w) = 5 Z(k,w)smn(k)sap(ﬁ)dk

(27) " m,n q,p ==

" Y > > * > >
X Yo (¥ @) [ ek, sp (Risy (kdk

where ¢(§,w) is the wavenumber-frequency transform of the

N P IER T

wall-pressure cross=-correlation.
Using Dyer's criteria,7 we can reduce the summations of
Eq.(1.10) to a single infinite summation. Essentially, it

is assumed that ¢(§,w) is constant in i. The cross terms

3 : in Eq.(3.10) thus vanish because of the orthogonality of the

v modes.

3 _ 2

: m(w) = p C, m%n ¢mn(w)lYmn(w)| opn (W) o (3.11)
é where

;« - 1l - P 2 >

- O (@) = Y [ ok, s (k) |© dak (3.12)

s the modal wall-pressure spectral density.

Again, since we are treating a highly resonant system,

che radiated power in a narrow frequency band is dominated
by radiation from those membrane modes that have rrsonant
frequencies lying in the band. Eq.(3.11l) can then be inte-

grated over the narrow band Aw centered on Wy to give

wo+Aw/2l 2
Mugdbw = pCo b opnlwgdep,Sw) [7 4, Ygp@) [ de,
m,n wo= /2

where the summation now includes only those modes resonant

in the Aw band. The in-egral is r.raluated by writing

w = wmn(l+v) > mo(l¥Y), where Y << 1 for ’‘requencies in the }

Aw band., Also, let us define "on = s + (poco/womp)omn, a

loss factor including both mechanical and acoustic losses.

SN s et v S ek are T b st

4
K-
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Further, we assume N << Aw/ZwO << 1. ‘Thus,

w +Aw/2 aw/ 2w
/° lYmn(w)[2 dw = 2 f ° wolYmnlde = ul
wo-Aw/z 0 annwom
And now,
o (w)¢_(w)
m(w) = o Cq ——x ( UL LIRS . 177 (3.13)
© 9 2um mgn Tmn )

In the present experiment, it was only possible to mea-
sure total loss factors in 1l/3-octave frequency bands. Thus,

it is reasonable to assume a constant nmn for the frequency

band. Also note that 4>mn/nmn is proportional to the modal

energy. An assumption of statistical energy analysis (SEA)

is that the power flow from the membrane to the acoustic

medium can be estimated by treating the modal energies of

all modes in the frequency band as equal., Then rbmn/nnm can

be taken outside the summation in Eq. (3.13) and the expres-

sion rewritten in the form

; T(w) = pocoiﬂ/2nwm2) By <0pn><%mn” ¢ (3.14) g
? where <+++> represents an average value over resor.un . mcius é
;
g in the 4w band and n_ is the frequency mode density. ?
IVv. MODAL RADIATION COEFFICIENTS
Eq. (3.6) can be written in the form 3
16 k I,(k,)I_ (k,) g
. 0 ® e 1'1773Y3 \
o + iy = f f —-—?—7—7—17— dk,dk., ., (4.1 :
mn ™ OmM2 A6 o (Ki-ki-k)1/Z 13 i
o173 ;
{
where §
o™
1 = 2? 2{1-( 1; ;oz klzll ' (4.2)
km (l°k1/km)

and 13 has a similar form. The membrane studied in the

e e e
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present report has a wave speed of about 1/3 the acoustic

speed in the air. Thus, the functions here are evaluated

only for acoustically slow modes; in fact, the restriction

A AT, g TR e A L S e T

%s kmn > 2ko is imposed. Therefore, the integral for Xmn always
B % i = =
E includes the point k, = k_ , k3 k- Then, both I, and I,

. 3 can be approximated by delta functions (see Reference 6).

:: Z:': LETY

- Iy = =37 Slky-ky)

L

The integration now yields - ko/kmn' 7he virtual mass

term in Eq. (3.8) is

=
o g T
SR SRIC R

3 c p
. 2_,Po%o . 2 [} 1 2
- WIRGE Xgn) ¥ ORGE £ < wTm(0.05) .

mn

where density of air, Por is 1.29 Kg/m3, surface density of
the membrane, m, is 0.292 Kg/mz, and kmn is given its smallest
value in the experiment reported here, 80 1/m (at 1500 Hz).
The virtual mass term can thus be neglected.

L Approximations to the modal radiation coefficients Smn

for various frequency regimes have been given by Maidanik

and Davies. The results are applied here to our cases.

Codabes s aaom L Keraasict s aliiil

First, consider cases where km > 2ko.

(a) n=1or 2

& A
A aarthi .

. 2 2 2,1/2
sin k0[23/(2.4) + 11] )

Z 2 2.172
k [23/(2.4)7 + 491

{

Approximate results are: g t

%

. } 1 321 k023 (1 N 31n(k°23/2.4)- (—1)m sin kozl 3
mL " 52 A kinz Kory/e.4 ko Ty %
s

CoRmarate AR M

[ L JUUIUE NI E DI LR DI e
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' 2 . .
k £ 51n(k°23/1.7) n Sin koll

ma = o7 A T (0-068) (& - —poyy— - (LT g

sin k_[22/(1.7)2 + 1211/2
+ (=17 ) (4.3)
ky (£5/(1.1)% + 2]

(b) k_ < ko (m,n>2), edge modes

2 k %
o =i 8tlo3 Ly o - kDY) e

k
m

(c) ko < kn < 2ko (m,n>2), transition region between

edge and corner modes

X 1+ k /k 2k _/k
on = = ) %1 5 |l (=) * S (4.5)
(2p) k‘k o’*n" (@ - k</k%)
mn (o] n
(d) kn > 2ko (m,n>2), corner modes
kz sin k % sin k_2
- 1 321 o (1 - (-1)™ o’l _ (-1)" o 3
R oy e A k;ki Koty ko¥y
4 Sin K (zi - n§)1/2
+ (~1) S 17— (4.6)
ko (2] + £3)

Similar expressions exist for km > 2ko cases.
The average value of Eq.(4.6) can be taken as represen-
tative of the radiation coefficient for small values of

kozl and ko£3' and is written

k2
(2m) kmxn

Inspection of Figure (4.1) shows that this typical value is
valid approximately for all modes such that k°£1 and koz3 <

37. The total average value of the radiation coefficients
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of the (corner) modes resonant in the Aw band is then ob-

tained, for kogl’ koz3 < 37, as

L L 2
= - k
I S ) N ) - 32 0
<o > = az;f L P Logy Ry A0 s g (0 4 2y) (4.8)
% T PP

For either or both cf k &, or k %, > 37, some modes con-

tribute as edge modes. The average value is then obtained as

32 ¥ 4 kg
<cmn> = ﬁ;i + -_EA—-}? (21 + 13) . (4.9)
p p

V. MODAL WALL~PRESSURE SPECTRUM

Assuming Corcos's model for the wall-pressure correla-

tion function,
|or, | lmr3l iwry

3 - - ’
aluc o‘3Uc Uc

$(X,w) = ¢(w) exp (-

where Uc is the convection velocity, and has a value of
about 0.7U_, and ¢(w) is the frequency spectral density,
Blake8 showed that a, = 8 and ay = 1.1, for the wind tunnel
where the experiments reported here were done,

The correlation length in the xl-direction is alUc/w,
according to the above Corcos's model. For frequency range
higher than 1 kHz, and U_ = 48 m/sec, aluc/w is smaller than
El, the longitudinal dimension of one membrane unit. This
justifies assumption 2 made in Section III. The radiation
contributions from different membrane units are statistically
uncorrelated.

It was shovwn bf Davies4 that Eq. (3.12) can be rewritten

in the form,
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By By By

2 7t p) ,2)( ) p)
(km-w/uc) + 61 (km+w/uc) + ﬁl kn + 63
(5.3)

-
-——
£
A
i

2¢ (w) (

where Bl = w/alUC and 83 = w/a3Uc. Thus, the total average
value of the modal wall-pressure spectral density over the
resonant modes in a A. Hand is then in the form

7
2
<¢mn> = F%; £ ¢mn(w) kde

2
4a.a., U
173 2 2 2,-1 2 2,=1
= ¢ (w) = 5% g"/ ([1+al(l-y cos 0)“] + [l+a] (1+y cos 0)°) )
x (1 + a§ Y2 sin® O)-l do (5.4)

where y = Uckp/w = Uc/cp'
Since y < 0.1, the integral in Eq. (5.4) can be approxi-

mated as

2
<¢>mn> = ¢ (w) __3_% (5.5)
alw

VI. EXPERIMENTAL RESULTS

Experimental Apparatus

A 28-inch diameter mylar (polyethylene terephlatate)
bass drum head was uniformly tensioned on a bass drum frame.
The uniformity of the tension was determined by exciting
the circular mylar membrane acoustically from underneath
with pure tones at its resonant frequencies. The resultant
Chladni patterns were observed using a light dusting of fine
sand to identify nodes.

With unifori tension achieved, a backing plate of 3/4-
inch plywood was cemented to the lower surface of the mylar

membrane. This backing plate contained a plexiglass-edged,

ikl Saman G el . Sl il A e ot sk e kit
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rectangular-shaped cutout which served to define the desired
membrané. Again, acoustic excitation and sand were used to
observe the Chladni patterns of the rectangular ﬁembrane.

It was from these observations that modal resonant frequen-
cy response could be correlated to specific modes.

Then we cemented nine al .uinum square bars periodically
spaced onto the lower suriface of the rectangular membrane.
To avoid extreme local stresses due to the square shoulders
of thegstiffeners, the bars are tapered at the end. Also to
allow heaving freedom of the bars on the membrane, there are
small gups between the bar-ends and the boundaries (plexi-
glass) of the membrane. The effects of these small gaps,
e.g., scattering of waves in the membrane, are not clear at
the moment. The membrane and stiffeners system had the
following characteristics (Figure 6.1):

1. Membrane dimensions: Ll = 54.5 cm, L3 = 11.5 cm

2. Thickness: 8.5 mils

3. Surface density: o = 0,292 Kg/m2

4, Spacing of stiffeners: 4,59 cm

5. Stiffener dimensions: 10 cm x .933 cm x .933 cm

Before the rectangular membrane was stiffened, for an
(m,n) mode, its resonant frequency fm,n and the membrane

wave speed Cm n are related by Morse.9
’

_ 1 m y2 n 2
fn =7 ° Cuyn (EI) + (f;) ’
2 - = i
where Cm,n = T/Ototal' and Ototal ¢ + added mass. At high

frequencies, the modal added mass of a resonantly responding

mode becomes vanishingly small, hence the value of Cm n
14
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approaches asymptotically the in vacuo membrane wave speed,
Ci' which determines the membrane tension, T. Before stif-

fened by the aluminum bars, the Ci of this membrane was
137 m/sec (Figure 6.2).

Precaution was taken to eliminate most vibration of the
backing plywood plate by attaching, with screws and cement,
additional damping sheet lead 1/4-inch thick onto the ply-
wood. The backed membrane, still held by the tensioning
frame, was flush-mounted in the wind tunnel test section,
forming the lower panel of the test section, with the longi-
tudinal direction in the flow direction. The details of
membrane mounting and test section are shown in Figures

(6.3) and (6.4).

Total Damping of the Membrane and Stiffeners System

These measurements were performed in the following way.
We first imposed a D.C. voltage to a shaker which would
push upward against the membrane. Secondly, we fed the
shaker, in addition, an A.C. signal of 1/3 octave white
noise, but with the shaker tip in good contact with the mem-
brane. Finally, we shut off the shaker so its tip was clear
and away from the membrane and a fiberoptical displacement
gauge flowed by 1/3 octave filter, preamplifier ard graph

level recorder would observe and record thce decay rate. The

reverberation time, TR' is the time needed for the level of

a transient signal to decay 60 dB. 1Its relation with the
loss factor ng is Tp = 2.2/f0nt where £  is center frequency

of the 1/3 octave band.

The loss factor for the system is plotted in Figure 6.5,

A egaf b A e A A A e ) ad by £, Rl 2 SR A 3. ks AL L T W L Ay
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Displacement Measurements of Membrane

The turbulent boundary layer pressure fluctuations were
created by the mean flow in the wind tunnel at speeds of
32 m/sec and 48 m/sec. Again we used the fiberoptical dis-
placement gauge and graph level recorder to measure and
record the vibration levels at many different positions of
the membrane, in 1/3 octave bands. Finally, we averaged the

data for each of the 1/3 octave bands. These values are

shown in Figure 6.6.

Damping of Room

Standard techniques were employed in measuring the
reverberation time, in 1/3 octave bands, of the reverberant
chamber which housed the test section of the wind tunnel,

Experimental results are presented in Figure 6.5,

Sound Pressure Level Measurements

The volume of the reverberant chamber is 893 ft3.
Again, standard techniques were used 1n these measurements.
with the wind tunnel running at 32 m/sec and at 48 m/sec, J
three l-inch B & K condenser microphones were used to mea-

sure simultaneously the sound levels at different positions,

and these levels are averaged for each 1/3 octave band.

There is a minimum of 3 dB difference between the sound ]

pressure level measured with the membrane system in place

B e

and the background noise level measured with a sand-loaded

plywood box plugged onto the membrane system.

1
The measured and averaged sound pressure levels are 1

shown in Figure 6.7,
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VII. ESTIMATES ON RADIATED SOUND POWER LEVEL

(a) Based on Displacement Measurements

In a 1/3 octave band, whose lower and upper limit-

ing frequencies are fl and f2 respectively, the radiated.

sound power in watts is

m=f2R_. V() af
£

1

rad

where Rrad = pocvorad is the radiation resistance
A is the total vibrating area of the membrane
Oraq 18 the radiation coefficient
V(f) = (2nf)2D(f) is the spectral density of velocity

and D(f) is the displacement spectral density
We measured D(f), and from previous analysis we computed

Orad® From these data we obtained the radiated sound power

level,

PWL = 120 + 10 log,y 7 , dB re 107 % watt

The results are shown in Figure 7.1.

(b’ Based on Sound Pressure Level Measurements

For a highly reverberant room, the sound power

level is given by the following expression:

PWL = SPL + 10 log V + 10 log D - 47.3
10 10

893 ft3 is the volume of the room

i A ¢ SN 5 AN

where V

D

60/TR is the decay rate in dB/sec

RS IV I~ S

SPL is the average sound pressure level in the room

The radiated sound power levels calculated by this

s R A Lt

method are presented in Figure 7.1.
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fc) Based on Wall Pressure Data

Wall pressure spectral density, ¢(f), is readily
available from Blake's report.8 These data are shown in
Figure 7.2. As showr in that figure, we approximated ¢ (f)
of different frequency regions and of different wind tunnel
speeds by several straight lines. The linear functions for
these lines are listed in Table 7.1.

By inserting ¢ (f) into Egq.(3.14) and integrating over a
1/3 octave band, we obtained the radiated sound power levels
as shown in Figure 7.1.
Table 7.1

Approximations for ¢(f), the Wall Pressure Spectral Density

m Hz* Hz*
Uw(ggg) £ < 2239 £ > 2239
_ -3 -6 _ -3 -7
32 ¢$(£)=.888x10 “-.229x10 "fJ¢(£)=.538x10 ~-,712x10 '£

5 2

a8 o (£)=.337x1072%-.105x107°¢ ¢ (£)=.104x10"

Notes: The unit for ¢ (f) is ng/mzsec3.

*2239Hz is the uppe. limit frequency of the 33rd 1/3
octave band centering at 2000 Hz.

VIII. DISCUSSION

We sampled the vibratory response at many different
positions on the periodically stiffened membrane. Figure
8.1 shows some typical examples. The samples show sharp and
clear frequency band-pass characteristics, as the analysis
in Section II pointed out.

We used tliree methods to estimate the radiated sound
power levels at two different wind tunnel speeds, 32 m/sec

and 48 m/sec. The first one was based on displacement mea-
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surements, the second one on sound pressure level measure-
ments, and the third one on wall pressure data. The experi-
mentation showed good agreement among these three estimates.

In Figure 8.1, the first peak at about 250 Hz is due to
the "heaving” modes or band #1, as predicted in Table 2.1.
Tﬁe second peak near 450 Hz is due to the "pitching" modes
not covered by the analysis in Chapter II. This is easily
understood by modeling our system as rectangular bars each
resting on two springs at the ends of the bar, as shown in
Figure 8.2, The ratio between the pitching and heaving reso-
nant frequencies is about v3, and that is the ratio between
the second and the first peaks, as discussed above.

We make the following study to see the reason why band
#2, from 840 Hz to 1079 Hz, listed in Table 2.1, does not ap-
pear in the displacement spectrums. First, remember that the
fundamental resonant frequency for a ll X 23 membrane unit is
1525 Hz, i.e., the lower frequency limit of band #3 (see Fig-
ure 2.3). Note that band #1 and band #2 are well below that
frequency. This means, in the string and block model, that
the strings between the blocks are nearly straight segments,
For cuch a system, the cutoff frequency, fo' is associated with
A= 21 because, for A < zl, there will be cancellation of ex-

(o]

citations. Secondly, note that heaving, h; = 0, - 0, ; and
rolling, Ai o« Oi + Oi-l (see Figure 8.3). Also note that, for

high frequencies, the root mean squares of heaving and rolling,

hz(w) and r{(w) are both proportional to Iei(w)l2 + {@i_i(w)Tf,

since th: cross-~ccrrelation of Oi and Gi-l' Oi(wfgg_l(w) =0,

which is true at least for A < 21. So we may conclude that

o b e o L esa N e e O S v i bk i
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heaving and rolling modes both have the same cutoff frequency.
Next, we know that, for a frozen convecting turbulence,

kK =2n/A = 21Tf/Uc where U, = .7U0,. The larger value of U is

48 m/sec in our experiments and Zl = 4,6 cm., Thus, the cutoff

frequency is fo = 0.7 Um/zl =~ 700 Hz. Finally, it is quite

clear now that band #2, beyond the cutoff frequency, will not

be excited by the turbulent boundary layer, while band #2,

within the cutoff frequency, will be excited.
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FFigure €.2 Membrane modal wave speeds Cm n (
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Figure 6.6 Displacement measurements of membrane excited
by turbulent boundary layer pressure fluctations.

"o, U, = 32 m/sec; "x", U, = 48 m/sec.
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Figure 7.1 Radiated sound power level estimates.
"o", based on wall pressure data;

"x", based on displacement measurements;

"_" hased on sound pressure level measurements.

iy e A e L A b S e St b tae i i

vy




*o9s/w g = *n ’,X, fo9s/u z¢ = *n ‘,o0, °-suorjertxoxdde zeaur]
s3T pue ‘(3) BDe A31suap Teaxlzoads oanssazd Trem 2°L {anbty
(zg) Aousanbaay 3
@ A S b 3 4 Xt b i i T .
T T T . i L
O .,
x OT X T - X . ,.
e —— €= N;OH 01 :
E
w‘, o ..m
3 k
] '

m‘ -
- X e :
3 -, 0T X ST ..A
W. 0T X g° | ]
|
: . . . ;
: 1N:oﬂ 0¢ h
. :
| DN (3,8

O8s_w/ by
Am z / : )




AT TR TS TR T Tmare W e Tr e e e = ¢ cmemeis o L s

‘y3pTM pueq 2zH 0T UT TdAdT juawaderdstg e1°g aanbrg

NPT,

(z4) Aousnbaxg
x v ai¢g i1z AT

falb iy

& k
; :
H i
L & g
k-

-

FERRT ey

‘19a81 judwaoe1dsig

-40-

(urnt 10°0 @1 dp)




L I ey, T T S TR v e e

yapta pueq zH QT UT T249T jusawaderdstqg q1°g @anbrg
: (z4) Aouanbsag
: iv b |
w. P 3 b R AT
w _ _ ' !
01-
o E
e K
- :
d ~
4
)
Q
o)
0 3 ;
3 d
o P
]
7 1
W 3 M
3 [] l‘.l E
4 —
< —_
m ) 1T & ”
3 15 ,
i
2 0 E
o E
~ :
oz =
3
4
M
.




e TN A = s Srmen g e mmepar e e

w U3IPTA pueq zH T ul T3a9] jusweserdstq o7 °g 2anbtd 3
( ;
b (zH) Aouenbaig : “
%P %€ qz A1 ,.

¢ ' ! I 7 ;

—
Tbeh denarald

o
~—
]

-2
: ™
1 1 1
& =4 ©
(urrl 10°0 91 dp) ‘12a91 3Juswaderdsiq

i e s S b ¥ St T

e e - A AT e e e A i e




e

-43-

h
t
4 #

- 2kb° -
Pitching modal frequency, & = —_—
41

. 2k
Heavir.g modal frequency, ' = Y
o |
"y = — =3 =1.73

41

FIGURE 8.2 Ratio Between Pitching and Heaving !
Resonant Frequencies for a Bar
Resting on Two Strings.

FIGURE 8.3 String and Block Model Excited Below
Foundamental Resonant Frequency of a

Ql-x 23 Membrane Unit.




