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'I
Li ACOUSvTICAL RADIATION FROM PERIODICALLY STIFFENED MEMBRANE

EXCITED BY TURBULENT BOUNDARY LAYERj

by

r Yi Mason Chang

ABSTRACT

Characteristics of periodically stiffened membrane are
studied by using a string model loaded with equally-spaced mass

and rotary inertia. The acoustical radiation by periodically
stiffened membrane excited by a turbulent boundary layer is

estimated using a modal analysis on an individual bay of membrane
between stiffeners.

Two theoretical predictions of radiated sound power are

made using statistical energy methods. One is based upon
measured wall pressure data, the other upon measured vibratory

response of the membrane. Both agree well with direct
measurements of radiated sound power.
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NO!'INCLATURE

b Dimension of the cross section of stiffener
Cm,n Membrane wave speed for (m,n) mode

CO Acoustic wave velocity

f Frequency

k Wave vector in Z1 -direction11
k 3 Wave vector in X 3-direction

x 1 Spacing between stiffeners

Y 3 Transverse membrane dimension

m Membrane area density

N Number of stiffeners plus one (=10)

n s Frequency modal density

p Wall pressure

P Acoustic pressure radiated by membrane

TS Membrane tension

Uc Convection velocity

U OD Free stream velocity

Z Radiation impedance

ý(w) Wall pressure spectral density

Loss factor

p Fluid (air) density

7T Spectral density of radiated acoustic power

G Membrane area density

w Angular frequency



1. INTRODUCTION

M~uch work has been done on the vibratory response of

thi~n plates or membranes to a turbulent boundary layer pres-

sure excitation and the subsequent radiation of sound by

these plates or membranes. In the previous work, studies

have included only the response of, or radiation from, simple

structures. Actual structures may be a complex system of

plates forming a skin over a rib-like structure of beams.

In one limit, very rigid beamus divide the skin into a number

of adjacent bays: the response of such structures can be

umodeled by treating the response of each bay separately.

Generally, however, the beams are not infinitely rigid, and

we must consider the combined response of ribs and skins.I

To understand the response of such systems, in the present

study we investigate the response and radiation of a periodi-

cally stiffened membrane.j

The characteristics of the membrane and stiffeners sys- i
tem, are studied by using a one-dimensional string model car-

rying equally-spaced blocks having mass as well as rotary

inertia. The analysis used here is similar to that used byI

J. W. miles.1 The natural freq~uencies fall, in periodically-

spaced groups, the lower ends of which correspond, at high

frequency, with the natural frequencies of each of the string

segments between the blocks and with the blocks fixed as

rigid supports.

The radiated acoustic power from the periodically stif-

'ýened membrane excited by turbulent boundary layer is
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estimated using a modal analysis on an individual bay of

membrane between stiffeners. The contributions of Lyon and

Maidanik, 2Leehey, 3Davies, 4and many others, have provided

a broad fundamental theoretical basis upon which this part

of the study develops. The analysis is based on an expan-

sion of the transverse velocity field of the membrane bay in

terms of orthogonal characteristic functions. it is assumed

throughout the analysis that the response of the membrane at

any frequency is determined by the response of those modes

which are resonantly excited at, or near to, that frequency.

This assumption is justified for the cases of turbulent

boundary layer excited structures when the correlation

lenciths of the exciting field are small compared to the

panel dimension. Then, expressions for the acoustic power

radiated in narrow bands of frequencies can be obtained by

summing over those modes that have resonant frequencies with-

in the band by making use of the statistical energy analy-

sis (SEA) assumption of equal energy among the modes.

Corcos' 5 model of the wall-pressure correlation func-

tion is used to obtain the modal wall-pressure spectral den-I

sities. Values of the modal radiation coefficients for

plates have been calculated by Davies. His results are ap-

plied here to the cases of membranes.

II. CHARACTERISTICS OF PERIODICALLY-STIFFENED MEMBRANE

The equation of motion for a membrane can be writter- in

the form

h a h

~ ;Fin
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where T is membrane tension, G the area mass density of the
I,

membrane, h(x,z,t) the normal displacement of the membrane,

x-coordinate is in the longitudinal direction of membrane.

z-coordinate is in the lateral direction of membrane, and

is parallel with the axes of the stiffeners.

Note that, if we let h assume a form of h=X(x)Z(z)ei~t

where X and Z are respectively functions of x and z only

then we can easily decompose the equation of motion into two

uncoupled one-dimensional equations:

a_2_ 2

x;+ k1 X 0

az 2+ kZ =0
az

where k2 + k2  k2  /C 2 C2 =-t7 being the
1 3 , Ca - 4 -en

membrane wave speed.

By tapering the ends of the stiffeners, and by knowing

that the levels of vibrations and rotations of the membrane

system are small, we can approximate the longitudinal charac-

teristics of this system by that of a string, carrying equal-

ly-spaced blocks of mass and rotary inertia resting on elastic

foundation. For simplicity, the elastic foundation is repre-

sented by two springs, each of stiffness S/2, for each block as

shown in Figure 2.1. The equation of motion of the string is

L ~ y = 0 (2.1)

ax k

where we use y(x,t) as the displacement of the string.

In the formulation of the boundary value problem for this

periodical structure, we also find it convenient to introduce



-4- I

a dimensionless, local coordinate such that

y lyn n l,2,...,N (2.2a)

x-dn dn < X d +Z and d = (n-i) (Z 1+b) (2.2b)
S= I ' - -nn

where N is the number of string segments separated by stif-

feners, i.e., the number of stiffeners plus one, ki is the

spacing between stiffeners. In addition, let

X2 =2 42  (2.3)

1 1

Note the X is also a dimensionless eigenvalue parameter.

Now, Eq.(2.1) becomes

S2y2
S+ A y = 0 n = 1,2,...,N (2.4)

Let us study the equilibrium conditions associated with

block number (n-i). We assume that all angles are very small.

Equilibrium of force in vertical direction is thus

DYn(0) ( ____(1 1 SW2 M Y'() + 0' (2.5a)
( -- - 7 1 T 2- n- I Yn(0)

where M is the mass of one stiffener, T = TmR'3 1 and

n = 2,3,...,N.

Assuming 0 b very small, the equilibrium of momentum

with respect to the center of the block can be written in the

form

-T(b sin 0b+b cos 0 b ) + n-l(1)+T ( co1 sin
+T(-b si 0(bbcos (0b-b sin) 0b)I~

SSki aYn (0) •.

+T(-b sin 0b+b cos 0b) + - Yn (0)+T- .a& )(b cos eb+b sin hb)=I b

or

aY n 1 (I) y n(0) ,ayn(0}) ay 1 (')
-sin 0 bb + - sin b) sin 0-

S 1 sin 0 6b

- b sin (2197 + yn-l( 1 ) + Yn(0) T b-b
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where 2b is the dimension of the block. On the left-hand side

of the above equation, the third term is much smaller in magni-

tude than the first two terms, and, hence, is negligible.

Also, remember that 0 b is very small Now, the equation goes

over to

+ ayn-I(I) + ayn(o) Sb b =b-2b +T • ' -TOb = - n=23,.,

Since the forcing functions of the above differential equa-

tions,ayYn-i (I)/aý and 3yn (o)/D,have harmonic tirLe dependence

2of W, 0 b can be replaced by -w0 0 b. Also, note that
~r C) -= 2b 0

(0) - Yn-i(I) = b ; n = 2,3,...14. Thus, we have

2b Dy Yn-i (i) DY n (0)

-yn-l(1) + Yn(0) - 2 Yn--/Sb. + ,, (0) (2.5b)

n = 2#3,...,N

On the ends of the string, we have

yl(°) = 0 (2.5c)

YN(1) - 0 (2.5d)

The most general solution to Eq.(2.4) is

y() = An sin Xý + Bn cos X& ; n = 1,2,...,. (2.6)

Now, Eq. (2.5a) and Eq. (2.5b) give, respectively

c[Bn+An_1 sin X+Bn_1 cos X] = An - Anl cos X + Bn-1 sin X I
(2.7a)

ý[Bn-Ani sin A-Bn-1 cos ]= An +An- 1 cos B n- sinX

(2.7b)
where 2

=(S-MW )i
u = 2TX "

bA

n =2,3,...N

L _
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Eq. (2.7a) subtracted from (2.7b) gives

-(ca-B)Bn+[-(a+$) cos A+2 sinX ]Bn-1

(a+$) sin A + 2 cos X

(2.8a)

Eq. (2.7a) added to (2.7b) gives

(-)BnI+[(a+O) coB A+2a8 sin A]Bn
An (a+O) sin A + 2 cos A n n = 2,3,...,N

(2.8b)

Substitution of An and An-1 in the form of Eq. (2.8a) back

into Eq. (2.7a) gives

Bn+1 - 2ZBn + Bn_- = 0 ; n - 2,3.... (N-1) (2.9)

where
Z = (aa-I) sin X + (a+a" CoB X (2.9a)

0-a

The most general solution to Eq.(2.9) is given by

Bn A sin (nO) + B cos (nO) (2.10)

Z = Cos 0

where A and B arp. arbitrary constants. From Eqs. (2.5c),

(2.6), and (2.10), we get

B1 - A sin 0 + B cos 0 = 0 (2.10a)

Similarly, from Eqs.(2.5d), (2.6), and (2.8b), we have

(a-B)BNl+[(c+O) cos A+2a sin sin A +BN co A = 0

(a+O) sin X + cos A

or, after simplification,

(a-O)BN_ sin A + 2 BN (cos A+a sin M)(cos X+0 sin A) = 0

or,

A[(a-0) sin A sin(N-l)O+2 sin NO(cos A+a sin A)(cos X+O sin A)]

+B[(U-5) sin A co's(N-l)0+2 cos NO(cos X+a sin X)(cos A+$ sin A)]

=0 (2.10b)
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From Eqs. (2.10a) and (2.10b), we have

(c,-3) sin X sin(N-2)0+2(cos X+cx sin A)(cos A+O sin A)sin(N-1)0=0

(2.11)

From Eq.(2.10), we see Z = cos 0, where 0 is real when

IZI is equal or less than one, and 0 is imaginary when IZI

is greater than one. It is easy to see that when 0 is real,

we will be able to solve for eigenvalues from Eq.(2.11). If

0 is imaginary, say, 0 = iX, with X real, Eq.(2.11) becomes

(a-i)sin A sinh(N-2)X+2(cos A+a sin A) (cos X+i sin A)sinh'(N-l)X

=0 (2.llb)

A little calculation shows that, for large value of

X,(a-B) sin A is less than 2(cos X + a sin A) (cos A + ý sin A).

Besides, we know sinh(N-l)X is larger than sinh(N-2)X. Thus,

it is impossible to find a solution of A which makes Jzj>l

and, at the same time, satisfies Eq.(2.11b). So, we see the

resonant frequencies are permitted only within bands where

IZ.ll or 0 is real, as shown in Figure (2.2). Not..e that at

high frequency the asymptotic approximation of Z is

"Z - C X sin A, where C = IM/(M - I/b ) 2OX 1 b . A computer

analysis shows the resonant frequencies as listed in Table

2.1. Notice that in each frequency band there are ten reso-

nant modes. We applied Lagrangian energy method to the system

with a simplification that the strings are massless. We found

two natural frequency bands comparable to the first two bands

listed in Table 2.1, and that the first band involves mainly

the heaving and the second the rotating of the blocks. This

is a rather comforting check of the analysis we pursued. The

modal shape of higher frequency bands are characterized by

vibrating and rotating blocks linked b, string segments which

assume the modal shape of a string of length ki, whose



fundamental frequency coincides the lower frequency limit

of each band. Also notice that as frequency increases the

bandwidth of each group of modes decreases.

Table 2.1

String Modal Resonant Frequencies (Hz), Determined by
Eq. (2.11)

Band 1: 222 225 231 241 253 267 282 295 306 313
Band 2: 840 846 862 886 917 952 989 1026 1057 1079
Band 3: 1525 1547 1577 1610 1645 1677 1704 1725 1738 1740
Band 4: 2999 3006 3016 3030 3044 3058 3071 3081 3087 3090
Band 5: 4485 4489 4496 4504 4513 4522 4531 4537 4541 4543

Now we return to the two-dimensional membrane. The

modes of the membrane are those of the above-analyzed string

coupled with those of a string of length X31 the width of

the membrane, i.e., (k ,k 3 ) where kl 1 k 3 are respectively

wave vectors of the abovementioned string systems. This is

best shown iln Figure (2.3). Note that k2 = k12 + k2 = W20/T,3I
and that f = 2wkC Cm, where Cm =i-- is independent of fre-

quency, i.e., f varies linearly with k. Since in k-space

the distance from origin to mode '•k 3 ) is just k, we can

easily transform modes from t-space to frequency domain.

First. we use a circle centering at the origin to pass the

mode concerned in two-dimensional k-space and cross the

k-scale at k which, aft',r multi.plied by 2 TCmD is just the
p

resonant frequency of that mode (Figure 2.3).

III. THE RADIATED POWER

A high frequency, the stiffeners on the membrane act

as rigid barriers. This explains whl the i-space picture of

the membrane-stiffeners system looks much like that of an

individual membrane bay.

C.i
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In evaluating the radiated power of this system, we

made two assumptions:

1. The radiation contributions from different

membrane units are statistically uncorrelated.

2. Each membrane unit radiates as if it were

mounted in an infinite rigid baffle.

These two assumptions need discussion. The first one

is justified because the exciting wall-pressure field is not

correlated between bays (cf. Section V).

Now let us consider the following case: A membrane is

excited on one side by a pressure field, P, and is mounted

in an array of membranes of the same size. The acoustic

power radiated into the other side of the membrane includes

the direct contribution, <p 2>, from the excited membrane plus

the back reaction, <p2'--, from the rest of the membranes ex-

cited by p. Let 0 rad be the radiation coefficient, and Z the

total damping, i.e., both mechanical and radiation, of the

membrane. If v is the velocity field of the membrane, then

<v2> r <P2>/IZ12 Also, we know <p2 >/pc _. d 0 v2>

where TT rad is the acoustic power radiated directly from the

membrane. Thus, <p2 > • <p2> PCOrad/IZI2" In general,

<p2> << <P2>. The same argument leads us to the conclusion

that <p2> << <p2> And this justifies assumption 2 stated

above.

After the appropriateness of these two assumptions, we

can consider each bay as an independent radiator, and fur-

ther approximate each radiator as a rectangular membrane

unit of length Xi in the direction of mean flow and of width
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9Z inserted in a rigid baffle. The acoustic radiation into
3

the side away from the flow is considered here. The analy-

sis given in this and the following two sections is a repeat

of Davies, 4 work on rectangular plates, and is bei:,- applied

to each bay of our membrane and stiffeners sys' high

frequency.

We choose Cartesian Coordinates with xlX 3 in the direc-

tions of zi and 9X respectively, and x2 normal to the mem-

brane, but away from the flow side. The equation of motion

F for membrane displacement y(x,,t) driven by a wall pressure,

p6x,t), is

TV 2 y + ma + m 21 -pl,t) + P(x,x2=0 , (3.1)
at

where T is the tension of the membrane, m is the area den-

sity of the membrane, n = nIsI accounts for mechanical dam-

ping of the membrane through a linear dependence on velocity,

s is the loss factor, and P(X,x 2 ,t) is the acoustic pres-

sure generated by the motion of the membrane.

At the interface x2 = 0, the boundary condition is

;P_ = -IV (3.2)

where p is the fluid density, and v(x,t) = ay/3t. The dis-

placement y vanishes at the edge of the bay.

The transverse velocity field of the membrane can be

expanded in terms of orthogonal characteristic functions

(the in vacuo normal modes). The frequency Fourier trans-

form of membrane velocity is written

v(x,)= v(4,t)ei~ dt - v (W) 4mn(')
-0 m,n=l

~,



where m (X) (2/VAK) sin kmX1 sin knX3 . Here k=imz/21 ,

kn = nTr/ 3 , anu A = £ 13 is the area of the membrane unit.

The modal equation obtained from Eq. (3.1) has the form

(-T k 2 + iW2 mn sgn w-w 2m) vnw) =
inns mn
+ iWp mn(W) - iWP n(W) , (3.3)

where k = k2 + k2 and p and P are defined by
inn i n' min inn

P ~(w) = i P(X,W) ým (') dx,
A

P mn(W) = f P(x,W) 4 mn('X) dx
A

The wavenumber-frequency Fourier transforms of acoustic pres-

sure and membrane velocity are connected by using Eq. 43.2),

together with the wave equation for the acoustic medium.

Thus,

P(k::: 2 ,w) = Z(i,w) v (i,w) exp[ix2 (kk2) (3.4)

where i is the wavenumber vector on the membrane, Z(i,w) is

the radiation impedance defined by

Z(ý,W) = PCo (1 - k 2 /k 2 )-1/2

0 0 0

where k and k w/C, C being the wave velocity in

the acoustic medium.

Now P (,) can be written in the formrnu

P(12 Z(kw) S ( S) * {i) di
(27T) 2qp f0M1(3.5)

where Stun (k) = f mn (x)e dA

and the asterisk denotes a complex conjugate.

Ve consider here a system where the response is prima-

rily due to resonant modes and are thus interested in the

value of Pmn only at the resonant frequency of the (m,n)
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modes. If the resonant frequencies are widely separated in

frequency, (m,n) is the only effective term in the summation.

P ((o) thus can be approximated by one term
Mn

Pmn() pCo vmn(w)(om +iXmn)

wa.th
a• . 1 ... xz 12,WJjmn(i)J d (3.6)

Mn + Mn (2•T) 2
PO00

With this• approximation, the modal velocity is given in

terms of the modal wall pressure pn by the equation

Vrwi(W) Y (W) P (W) , (3.7)

From Eq. (3.3), Y• is obtained,

iw((-Tk -W2 m-WPoCoXm) + i(w 2ins sgn W+AP C omn,

(3.81

It is shown in Section II that 'the virtual mass term invol-

ving Xn is. in general, negligible for acoustically slow

modes if the acoustic n•dium is air. A

The wavenuiber-frequency transform of acoustic )?ressur-e

can now be written in the form 0

P(k,x 2 ,j) = Z(Pw) M Yn(w)Pn(w)Sm (i)exp[ix 2 (k 2 -k 2 ) 1 /2]

in, n0

And P(x,x 2 ,w) can be obtained from the inverse transform.

Thus, the spectral density of the power-radiated ir(w), is

written

7r(w) = f E[P(X,o,w) v*(X.,w)] dx , (3.9)
A

where it is understood that the real part of the integral is

taken as the acoustic radiation.

Substitute the expressions of panel velocity and acous-

tic pressure into Eq. (3.9) and we have the spectral density

..........................
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written in the form

1 - I f• z(iz)Smn•)s* (S•)d7 ( W q
(2 q,) mn qp - qp

inn p -00nn q

where ý(d,w) is the wavenumber-frequency transform of the

wall-pressure cross-correlation.

7Using Dyer's criteria, we can reduce the summations of

Eq. (1.10) to a single infinite summation. Essentially, it

is assumed that 4(I,w.) is constant in k. The cross terms

in Eq. (3.10) thus vanish because of the orthogonality of the

modes.
(w) = oo mn()Yn()2mn(w) (w) 1 (3.11)

m,n

where

¢m(W) = S k)2 dt (3,12)
(2,T)

...s the modal wall-pressure spe.tral density.

Again, since we are treating a highly resonant system,

the radiated power in a n&rrow frequency band is dominated

by radiation from those membrane modes that have resonant

frequencies lying in the band. Eq. (3.11) can then be inte-

grated over the narrow band Aw centered on wo to givwo

w +Aw/2 2
1f(Wo)AW = PoCo a (wo)qm. O (W [YnA IYn (w)2 dw

0 n0m 0) f _w/1fn, n 0

wheie the summation now includes only those modes resonant

in the Aw band. The in-egral is r;',aluated by writing

S= W (l+Y) = Wo(l+Y), where Y << 1 for :requencies in themn 0

Aw band. Also, let us define nmn + (P C /w m )a a
loss 0 i0 bo p

loss factor including both mechanical and acoustic losses.
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Further, we assume nmn << < 1. Thus,

+Aw/2 (w)1 2  Aw/2w 02ay
I (Y 2 dw- 2 / W 0 I Y null
W0 Aw/2 0 2 ri UM

And now,

7Tr M P 0CaT rim n) mn w) (3.13)
2 m~ n " n

In the present experiment, it was only possible to mea-

sure total loss factors in 1/3-octave frequency bands. Thus,

it is reasonable to assume a constant n for the frequency

band. Also note that m/qn is proportional to the modal

energy. An assumption of statistical energy analysis (SEA)

is that the power flow from the membrane to the acoustic

mnediun can be estimated by treating the modal energies of

all modes in the frequency band as equal. Then /mn/Amn can

be taken outside the summation in Eq. (3.13) and the expres-

sion rewritten in the form

t r(M = Po C o0/2rlwm2) ns < mn><Omn> , (3.14)

where <...> represents an average value over resor,-in' mc!s

in the Aw band and n is the frequency mode density.• s

IV. MODAL RADIATION COEFFICIENTrS

Eq.(3.6) can be written in the form

16 ko I(k 1 )I 3 (k3 )

a k2- A 0 dk dk" (4.1amn(2mn 0 A o o (kO- -kI-

where

m
2 2[1-(-l) cos kl1 1)

I k 7 (1-k2/k 2)2 (42
km 1lm

and I has a similar form. The membrane studied in the3
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present report has a wave speed of about 1/3 the acoustic

speed in the air. Thus, the functions here are evaluated

only for acoustically slow modes; in fact, the restriction

kn > 2ko is imposed. Therefore, the integral for X. always

includes the point kI km , k 3 = kn. Then, both I and 13

can be approximated by delta functions (see Reference 6).

• 'Il = 6 t(ki-km)

The integration now yields x mn k 0/km. The vrtual mass

, .4 term in Eq. (3.8) is

2 'loco n 2M( o ) 1 2m(0.05)

where density of air, p0, is 1.29 Kg/m 3, surface density of

the membrane, m, is 0.292 Kg/m , and kmn is given its smallest

value in the experiment reported here, 80 1/m (at 1500 Hz).

The virtual mass term can thus be neglected.

Approximations to the modal radiation coefficients c mn

for various frequency regimes have been given by Maidanik

and Davies. The results are applied here to our cases.

First, consider cases where km > 2k0

(a) n=1or 2

Approximate results are: p
1 2k ko£3 sin(koX3 /2.4) sin ko 1-l - ' (o 1

sin k[ m/(24) + A2Z/2 k
-270 )m o 3 0

2 2 2 1/2
snko [Z /I(2. 4) 2 + Xl

2} 2

k[X /(2.4)? +X
3 3

-. - . .. -..
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1 32r 0o2 sin (ko£3 /1.7) sin kom 2 0.068) - kok /1.7 -
(2p) k 03

sin k [i2/(1.7)
2 + Y.21/2

+ ( -1) 0 3 1 (4.3)
ko [k2/(1.7) + 1

(b) kn < k (m,n>2), edge modes

1 8 2 ko 3  2 21

inn ( -�)�i- A - (1 - (- 1 )m :[ i (k - k2._/2(
(2n) k 144m

(c) k < k < 2k0 (m,n>2), transition region between

edge and corner modes

1 2Tr 1 + ko/k + 2 ko/kn (
m 2 A nn1 - k/k 2- 2

(2p) k A k2 kn (1 - kkokn)

(d) kn > 2k0 (m,n>2), corner modes

R2 sin k£k sin ko£
1 32ro (1 - ( 1 )m -1 n o3

" (21T) A k~k 2  o0 o3
m n

+ (-1) m+n o01 3 (4.6)
ko(k 2 + £2) 1/2

Similar expressions exist for km > 2k cases.
M 0

The average value of Eq.(4.6) can be taken as represen-

tative of the radiation coefficient for small values of

kottv and kh r, and is written

k 2
1 32"T 0 (4.7)Mn 2)2Ak-5-Tn

(2rr) k~kmn

Inspection of Figure (4.1) shows that this typical value is

valid approximately for all modes such that koZ 1 and ko£ 3 <

3r. The total average value of the radiation coefficients
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of the (corner) modes resonant in the Aw band is then ob-

tained, for ko£ 1 , ko£3 < 3r, as

IT• _ IT k
S2 2-k 32 o

k dOp 1 0 (9., + Z )(4.8)
PTi n p = -

p 3
For either or both of ko£1 or ko£3 > 3r, some modes con-

tribute as edge modes. The average value is then obtained as

•.. k2
= 3 2 k0  4 0

>n wA3+ AK (ki + 3)(4.9)

p P

V. MODAL WALL-PRESSURE SPECTRUM

Assuming Corcos's model for the wall-pressure correla-

tion function, iwr

l~ll l~31 i~1
€(rw) = € (w) exp il - c3U U

1 U c a3 Uc Uc

where U is the convection velocity, and has a value of
c

about 0.7U , and flw) is the frequency spectral density,

Blake 8 showed that a = 8 and a3 = 1.1, for the wind tunnel

where the experiments reported here were done.

The correlation length in the x1 -direction is a1Uc/w,

according to the above Corcos's model. For frequency range

higher than 1 kHz, and U. = 48 m/sec, a 1Uc/w is smaller than

X1, the longitudinal dimension of one membrane unit. This

justifies assumption 2 made in Section III. The radiation

contributions from different membrane units are statistically

uncorrelated.
4

It was shown by Davies that Eq. (3.12) can be rewritten

in the form,



-18-

p(w) 2ý (w) + 1 2lran) = () (k-W/U) 2 + (km+/U)2 + 2 k7 + 0
m c m IkwU nS k+ 3

(5.3)

where a= W/"lUc and a = w/c3U Thus, the total average
11C3 3 C

value of the modal wall-pressure spectral density over the

resonant modes in a 6%; band is then in the form

> 2 4r(w) k dO<mn> =7 o m

03~~ c 2 ([~21_ -l )]l+[+L21ycs02-

x (1 + a2 y2 sin2 0)-1 dO (5.4)

where y = U k /W = U /CP.

Since y < 0.1, the integral in Eq.(5.4) can be approxi-

mated as

4a U
2

<ým> (w) 3 c (5.5)
mnn2

VI. EXPERIMENTAL RESULTS

Experimental Apparatus

A 28-inch diameter mylar (polyethylene terephlatate)

bass drum head was uniformly tensioned on a bass drum frame.

The uniformity of the tension was determined by exciting

the circular mylar membrane acoustically from underneath

with pure tones at its resonant frequencies. The resultant

Chladni patterns were observed using a light dusting of fine

sand to identify nodes.

With uniform tension achieved, a backing plate of 3/4-

inch plywood was cemented to the lower surface of the mylar

membrane. This backing plate contained a plexiglass-edged,

...........................
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rectangular-shaped cutout which served to define the desired

membrane. Again, acoustic excitation and sand were used to

observe the Chladni patterns of the rectangular membrane.

It was from these observations that modal resonant frequen-

cy response could be correlated to specific modes.

Then we cemented nine a] .Atinum square bars periodically

spaced onto the lower suriace of the rectangular membrane.

To avoid extreme local stresses due to the square shoulders

of the stiffeners, the bars are tapered at the end. Also to

allow heaving freedom of the bars on the membrane, there are

small g&ps between the bar-ends and the boundaries (plexi-

glass) of the membrane. The effects of these small gaps,

e.g., scattering of waves in the membrane, are not clear at

the moment. The membrane and stiffeners system had the

following characteristics (Figure 6.1):

1. Membrane dimensions: L1 = 54.5 cm, L3 = 11.5 cm

2. Thickness: 8.5 mils

3. Surface density: o = 0.292 Kg/mr2

4. Spacing of stiffeners: 4.59 cm

5. Stiffener dimensions: 10 cm x .933 cm x .933 cm

Before the rectangular membrane was stiffened, for an

(m,n) mode, its resonant frequency fm,n and the membrane

wave speed C m, are related by Morse. 9

f =1 . (C 2  n ()2
m,n 7 "m,n L

where C2,n = T/Ototal, and total = a + added mass. At high

frequencies, the modal added mass of a resonantly responding

mode becomes vanishingly small, hence the value of Cmn
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approaches asymptotically the in vacuo membratne wave speed,

Ci, which determines the membrane tension, T. Before stif-

fened by the aluminum bars, the C.i of this membrane was

137 rn/sec (Figure 6.2).

Precaution was taken to eliminate most vibration of the

backing plywood plate by attaching, with screws and cement,

additional damping sheet lead 1/4-inch thick onto the ply-

wood. The backed membrane, still held by the tensioning

frame, was flush-mounted in the wind tunnel test section,

forming the lower panel of the test section, with the .longi-

tudinal direction in the flow direction. The details of

membrane mounting and test section are shown in Figures

(6.3) and (6.4).

Total Damping of the Membrane and Stiffeners System

These measurements were performed in the following way.

We first imposed a D.C. voltage to a shaker which would

push upward against the membrane. Secondly, we fed the

shaker, in addition, an A.C. signal of 1/3 octave white

noise, but with the shaker tip in good contact with the mem-

brane. Finally, we shut off the shaker so its tip was clear

and away from the membrane and a fiberoptical displacement

gauge flowed by 1/3 octave filter, preamplifier ard graph

level recorder would observe and record thu decay rate. The

reverberation time, T R, is the time needed for the level of

a transient signal to decay 60 dB. Its relation with the

loss factor n~ is TR = 2.2/f nt where fis center frequency

of the 1/3 octave band.

The loss factor for the system is plotted in Figure 6.5.
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Displacement Measurements of Membrane

The turbulent boundary layer pressure fluctuations were

created by the mean flow in the wind tunnel at speeds of

32 rn/sec and 48 rn/sec. Again we used the fiberoptical dis-

placement gauge and graph level recorder to measure and

record the vibration levels at many different positions of

the membrane, in 1/3 octave bands. Finally, we averaged the

data for each of the 1/3 octave bands. These values are

shown in Figure 6.6.

Damping of Room

Standard techniques were employed in measuring the

reverberation time, in 1/3 octave bands, of the reverberant

chamber which housed the test section of the wind tunnel.

Experimental results are presented in Figure 6.5.

Sound Pressure Level Measurements

The volume of the reverberant chamber is 893 ft3

Again, standard techniques were used in these measurements.

With the wind tunnel running at 32 in/sec and at 48 m/sec,

three 1-inch B3 & K condenser microphones were used to mnea-

sure simultaneously the sound levels at different positions,

and these levels are averaged for each 1/3 octave band.

There is a minimum of 3 dB difference between the sound I
pressure level measured with the membrane system in place

and the background noise level measured with a sand-loaded

plywood box plugged onto the membrane system.

The measured and averaged sound pressure levels are

shown in Figure 6.7.
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VII. ESTIMATES ON RADIATED SOUND POWER LEVF-L

(a) Based on Displacement Measurements

In a 1/3 octave band, whose lower and upper limit-

ing frequencies are fl and f 2 respectively, the radiated.

sound power in watts is I
f2!

7 2 Rra V(f) df I
f ra

where Rrad p oCoAurad is the radiation resistance

A is the total vibrating area of the membrane

0 rad is the radiation coefficient

V(f) = (2irf) 2D(f) is the spectral density of velocity

and D(f) is the displacement spectral density

We measured D(f), and from previous analysis we computed

erad. From these data we obtained the radiated sound power

level.

PWL 120 + 10 logl 0  , dB re 10-12 watt

The results are shown in Figure 7.1.

(b" Based on Sound Pressure Level Measurements

For a highly reverberant room, the sound power

level is given by the following expression:

PWL = P+ 10 logl 0 V + 10 log1 0 D - 47.3

where V = 893 ft 3 is the volume of the room

D = 6 0/TR is the decay rate in dB/sec

SPL is the average sound pressure level in the room

The radiated sound power levels calculated by this

method are presented in Figure 7.1.

.....
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fc) Based on Wall Pressure Data

Wall pressure spectral density, 4(f), is readily

8available from Blake's report. These data are shown in

Figure 7.2. As shown in that figure, we approximated 4(f)

of different frequency regions and of different wind tunnel

speeds by several straight lines. The linear functions for

these lines are listed in Table 7.1.

By inserting 4(f) into Eq. (3.14) and integrating over a

1/3 octave band, we obtained the radiated sound power levels

as shown in Figure 7.1.[ Table 7.1

Approximations for f(f), the Wall Pressure Spectral Densitz

S< 9 f > 2 2 3 9 HzmI

32 If(f)=.888x103. 229xl06 f (f)=.538x10-. 712xl07 f

48 If(f)=.337xl0 2 -. 05xlO5 f f 4(f)=.104x10

2 2 3Note: The unit for f(f) is Kg /m sec3.

"*2239Hz is the uppe." limit frequency of the 33rd 1/3
octave band centering at 2000 Hz.

VIII. DISCUSSION

We sampled the vibratory response at many different

positions on the periodically stiffened membrane. Figure

8.1 shows some typical examples. The samples show sharp and

clear frequency band-pass characteristics, as the analysis

in Section II pointed out.

We used three methods to estimate the radiated sound

power levels at two different wind tunnel speeds, 32 m/sec

and 48 m/sec. The first one was based on displacement mea-
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surements, the second one on sound pressure level measure-

ments, and the third one on wall pressure data. The experi-

mentation showed good agreement among these three estimates.

In Figure 8.1, the first peak at about 250 Hz is due to

the "heaving" modes or band #1, as predicted in Table 2.1.

The second peak near 450 Hz is due to the "pitching" modes

not covered by the analysis in Chapter II. This is easily

understood by modeling our system as rectangular bars each

resting nn two springs at the ends of the bar, as shown in

Figure 8.2. The ratio between the pitching and heaving reso-

nant frequencies is about V3, and that is the ratio between

the second and the first peaks, as discussed above.

We make the following study to see the reason why band

#2, from 840 Hz to 1079 Hz, listed in Table 2.1, does not ap-

pear in the displacement spectrums. First, remember that the

fundamental resonant frequency for a k x £k3 membrane unit is

1525 Hz, i.e., the lower frequency limit of band #3 (see Fig-

ure 2.3). Note that band #1 and band #2 are well below that

frequency. This means, in the string and block model, that

the strings between the blocks are nearly straight segments.

For zuch a system, the cutoff frequency, f0 , is associated with

0 = k I because, for A < Z1, there will be cancellation of ex-

citations. Secondly, note that heaving, hi 0.i - 0i_1 and

rolling, X 1 M + 0 i-l (see Figure 8.3). Also note that, for

high frequencies, the root mean squares of heaving and rolling,
h ) and r7 (w) are both proporrional to 0 i( + 10 _i(')'

since th.ý cross-correlation of 0. and 0i_l. TiT(w)-Tl(=) = 0,

which is true at least for A < k So we may conclude that
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heaving and rolling modes both have the same cutoff frequency.

Next, we know that, for a frozen convecting turbulence,

k = 27/X = 27f/U where Uc = .7U,. The larger value of U• is

48 m/sec in our experiments and k 4.6 cm. Thus, the cutoff

frequency is fo = 0.7 U./k1 = 700 Hz. Finally, it is quite

clear now that band #2, beyond the cutoff frequency, will not

be excited by the turbulent boundary layer, while band #2,

within the cutoff frequency, will be excited.

i!I

!,I
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Mode Frequency Wave speed
(N.0 N ) (Hz) C (/e)

7, 1 1053 130.7

9, 1 1291 133.3

11, 1 1.561 136.9

12 1 1680 336.8

13 1 1780 135.2

1, 3 1887 138.0
C (m/ ec) 14 2509 137.8

1• ], 4 3157 138.8

"1140 (1i3 1 )( , 5)

(12, 1

(7,, 1)

I'"130 (,l

I1K 2 K 3 Kj

Frequency (Hz)

Figure 6.2 Membrane modal wave speeds Cm,n
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11

Wind tunnel test section

II View port

Plexig2 ass ondary ernbra e and stiffeners system

Figure 6.3 Membrane wind tunnel mounting detail
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Figure 6.6 Displacement measurements of membrane excited

by turbulent boundary layer pressure fluctations.

"o", 13. 32 m/sec; "x", [J 48 m/sec.
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Figure 6.7 Averaged sound pressure level

"o",aU = 32 m/sec. "x", U = 48 m/sec.
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4d
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.104

m
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Frequency (Hz)

Figure 7.1 Radiated sound power level estimates.

"o", based on wall pressure data;

"x", based on displacement measurements;

"-"S, based on sound pressure level measurements.
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- 1

Heavir.g modal frequency, G = fT

W 
4

FIGURE 8.2 Ratio Between Pitching and Heaving
Resonant Frequencies for a Bar
Resting on Two Strings.

block #i

FIGURE 8.3 String and Block Model Excited Below
Foundamental Resonant Frequency of a
2. x Z3 Membrane Unit.
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