

505

DEC 15 1975

MISCELLANEOUS PAPER M-75-10

A TIONALE AND PLAN FOR FIELD DATA ACQUISITION REQUIRED FOR THE RATIONAL DESIGN AND EVALUATION OF SEISMIC AND ACOUSTIC CLASSIFYING SENSORS by Bob O. Bon Mobility and Environmental Systems Laboratory U.S. Army Engineer Waterway: Experiment Station P.O. Box 631, Vicksburg, Miss. 39180

Final Report

Present for Project Ahanager, Remotely Monitored Battlefield Sensor System, AMC Fort Monmouth, New Jersey 07703

Under Project IX764723DL73

	white Section 1
	Int Sector []
JURTIFICAT	
8107810.0	
BISTRIBU	
Diat.	AVAIL and/or SPECIAL
Dist.	AVAIL and/or SPECIAL
Diat.	AVALL BEST

開設に

(1)传统-41-+营护

it to the originator.

Destroy this report when no longer needed. Do not return

<u>Unclassified</u> SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) READ INSTRUCTIONS **REPORT DOCUMENTATION PAGE** BEFORE COMPLETING FORM 1. REPORT NUMBER 2. GOVT ACCESSION NO PIENT'S CATALOG NUMBER G Miscellaneous Paper M-75-10 TITLE (and Sublitie) TYPE OF REPORT & PERIOD COVERED RATIONALE AND PLAN FOR FIELD DATA ACQUISITION REQUIRED FOR THE PATIONAL DESIGN AND EVALUATION Final repert ... OF SEISMIC AND ACOUSTIC CLASSIFYING SENSORS . PERFORMING ORG. REPORT NUMBER ALLTSION 8. CONTRACT OR GRANT NUMBER(*) G. H. / Hilt Bob 0./Benn 9. PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS U. S. Army Engineer Waterways Experiment Station Mobility and Environmental Systems Laboratory Project 1X764723DL73 P. O. Box 631, Vicksburg, Miss. 39180 11. CONTROLLING OFFICE NAME AND ADDRESS 2. REPORT DATE Project Manager, Remotely Monitored November **9**75 Battlefield Sensor System, AMC Fort Monmouth, New Jersey 07703 148 14. MONITORING AGENCY NAME & ADDRESS(II different from (ontrolling Office) 15. SECURITY CLASS. (of this report) Unclassified 154. DECLASSIFICATION/DOWNGRADING 16. DISTRIBUTION STATEMEN Approved for public release; distribution unlimited. S-MP_M_75-10 ferent from Repo X-764723-DL-73 19. KEY WORDS (Continue on reverse side it necessary and 'tentify by block number) Acoustic waves Seismic waves Remote sensing Sensors Remotely monitored Target classification battlefield surveillance system olds M mecoseary and ideality by block number) ABSTRACT (Lentinue A major objective of the Project Manager, Remotely Monitored Battlefield Surveillance System (REMBASS), is the development of sensor systems capable of classifying targets. Existing classifier design procedures rely heavily on statistical techniques, such as multiple correlation analysis, which have been shown to be strong tools for this purpose. Seismic and acoustic signals are affected by a number of target and environmental variables, and since the REM-BASS sensors are intended to operate satisfactorily for a large variety of (Continued) DE FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 038 100

n an
Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
20. ABSTRACT (Continued).
 targets and terrains, it is recognized that an adequate design will require signature data base representative of the spectrum of conditions under which the system is to operate.
This report presents a plan for assembling a data base for the develop ment and testing of two types of seismic and acoustic classifying sensors: a sensor for classifying single targets, and a sensor for classifying single targets in a multiple-target environment. The plan also (a) defines the targets to be used in the data collection program, (b) defines the test site conditions to be used in the data collection program and develops a method for relating test site conditions to worldwide environments, (c) estallishes a method for assembling a data base of realistic background noise signatures and (d) specifies the test procedures for signature acquisition from the var ious target classes. The report includes maps showing predicted worldwide performance of seismic and acoustic sensors and the rationale behind their formulation.
· ·

en an an in the second second the second second

Ŋ

1

 \mathcal{M}

4

Unclassified SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) S. S. S. S. S.

「日本のない」のないで、「「「「「「」」」」

THE CONTENTS OF THIS REPORT ARE NOT TO BE USED FOR ADVERTISING, PUBLICATION, OR PROMOTIONAL PURPOSES. CITATION OF TRADE NAMES DOES NOT CONSTITUTE AN OFFICIAL EN-DORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL PRODUCTS.

1

as wattle en al la detter international a stability of the second stability of the

PREFACE

The work reported herein is a portion of a seismic research program conducted by the U. S. Army Engineer Waterways Experiment Station (WES) and sponsored by the Project Manager, Remotely Monitored Battlefield Surveillance System, U. S. Army Materiel Command, Fort Monmouth, New Jersey, under Project No. 1X764723DL73 entitled "Target Signature Data Base Study."

indel de la contrata de la contrata

The work was under the direct supervision of the Chief, Mobility and Environmental Systems Laboratory (MESL), Mr. W. G. Shockley, and the Chief, Environmental Systems Division (ESD), MESL, formerly Mr. W. E. Grabau and currently Mr. B. O. Benn, and under the joint supervision of the Chiefs of the Environmental Research and Environmental Characterization Branches, ESD, MESL, Messrs. J. R. Lundien and J. L. Decell, respectively. Personnel making significant contributions to the preparation of the report include Messrs. Decell, M. A. Zappi, P. A. Smith, M. M. Culpepper, L. E. Link, and Lundien. This report was compiled by Mr. Benn.

Director of WES during this work <u>and preparation</u> of the report was COL G. H. Hilt, CE. Technical Director was Mr. F. R. Brown.

Contract Manual March Statistics and the Statistics

CONTENTS

Ţ.

a Hinddor

M. W. Hickory M. Hales

·.•.

	Page
PREFACE	2
CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) AND METRIC	
(SI) TO U. S. CUSTOMARY UNITS OF MEASUREMENT	4
PART I: INTRODUCTION	5
Background	5
Purpose	7
Scope	/
PART II: TARGET SELECTION	9
U. S. Versus Foreign Vehicles	9
Selection of Foreign Vehicle Analogs	11
PART III: TEST SITE REQUIREMENTS	16
Terrain Factor Considerations	1.6
Test Site Recommendations	22
PART IV: BACKGROUND NOISE CONSIDERATIONS	24
Notes Sources	24
Man Study	25
A Method of Compiling the Noise Signature Data Base	26
	27
PART V: DATA COLLECTION PLAN	27
Single-Target Data Acquisition	28
Multiple-Target Signature Acquisition	22
Background Noise Signatures	29
REFERENCES	40
FIGURES 1-9	
TABLES 1-30	
PLATES 1 and 2	

Ċ

Elemental and the second s

CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) AND METRIC (SI) TC U. S. CUSTOMARY UNITS OF MEASUREMENT

Units of measurement used in this report can be converted as follows:

Multiply	By	To Obtain		
U. S. Customary to Metric (SI)				
feet	0.3048	uetres		
miles	1.6093	kilometres		
tons (short)	0.90718	metric tons		
Metric (S	51) to U. S. (Customary		
millimetres	0.0394	inches		
centimetres	0.3937	inches		
metres	3.2808	feet		
kilometres	0.6214	miles (U. S. statute)		
kilograms	2.2046	pounds (mass)		
newtons per metre	0.0685	pounds (force) per feet		
grams per cubic centimetre	0.0361	pounds (mass) per cubic inch		
centimetres per second	1.968	feet per minute		
metres per second	2.237	miles per hour		
kilometres per hour	0.6214	miles per hour		
kilogram-second-centimetre	0.0270	slugs-seconds-inches		

all bearing

e o name in the second of the second seco

531.7

and the state of the

. Astric

RATIONALE AND PLAN FOR FIELD DATA ACQUISITION REQUIRED FOR THE RATIONAL DESIGN AND EVALUATION OF SEISMIC AND ACOUSTIC CLASSIFYING SENSORS

PART I: INTRODUCTION

Background

1. A major objective of the Project Manager, Remotely Monitored Battlefield Sensor System (REMBASS), is the development of a seismic or an acoustic sensor (or both) that can classify (at the sensor) targets, i.e. discriminate among helicopters, fixed-wing aircraft, tracked vehicles, wheeled vehicles, walking men, and background noise, in worldwide environments. The approach almost universally taken to design logic for classifying sensors uses measured signals from targets of interest. From these signals, features that can be consistently associiated with a particular target are sought by means of mulciple correlation techniques. It has been documented that the correlation techniques are strong tools for evaluating and correlating the discriminating features of specific target classes; however, the dependence on empirical data restricts the applicability of the desired design.

2. Experience has shown that seismic and acoustic signals are affected by a number of target and environmental variables, which often result in an inability of the sensor to associate signals collected under one set of conditions directly with signals collected under other conditions.¹ However, REMBASS sensors are intended to work satisfactorily under a large variety of target and terrain conditions, and it is recognized that an adequate design will be forthcoming only if seismic and acoustic signals representative of those that would be generated in the real world are used in the design data bases. From a simplistic viewpoint, it can be argued that a solution to the design problem rests in generating a data base of sufficient size and statistical representativeness that would permit, with existing data analysis techniques, the isolation

5

Design and the second and the state of a second

of the features that are unaffected by the generation and propagation of the seismic and acoustic energy. More mature consideration of the large number of viriables involved brings the realization that literally thousands of empirical tests would be required to define the signature envelope for a given target class.² Still more tests would be required to establish that the synergistic effect of combining certain variables would not result in nearly identical signatures from two or more classes of targets.

3. In view of the problems associated with designing classifying sensors strictly on the basis of empirical data, it appears prudent to attempt to generate a design data base by using a balanced experimental and theoretical program. In this approach, well-controlled empirical tests are conducted in a spectrum of target and terrain conditions, thereby providing measured data for use as interpolation benchmarks. In the theoretical portion of the program, realistic simulation models are used to estimate how the signatures would vary (from benchmark to benchmark) if the various terrain and target factors were varied throughout the range of interest.

4. The simulation techniques required in a balanced theoretical and experimental program should be applied with the realization that there is no such thing as an "exact" theoretical description of a phenomenon, and, therefore, there would always be some uncertainty as to how representative of the total population of signatures a given signature is. In this report a systematic experimental program is proposed by the U. S. Army Engineer Waterways Experiment Station (WES) that is aimed at developing seismic and acoustic data bases of defined worldwide representativeness. The results of the program are intended to provide considerable signature data for use directly in the design of classifiers and also to verify simulation results so that as an adjunct an analytically generated data base can be used in the design process with confidence.

Purpose

5. The purpose of this report is to present a plan, and the rationale for its development, for assembling a data base for the development and testing of two types of seismic and acoustic classifying sensors:

- <u>a</u>. A sensor for use in a preliminary REMBASS. The sensor must be capable of classifying single targets in terrain and background noise conditions representative of worldwide conditions. This sensor is considered by REMBASS to be in engineering development.
- b. An advanced-development sensor that is capable of classifying single targets in a multiple-target environment.
 This sensor must also perform in worldwide environments.

Scope

6. The plan:

a bar a state of the state of the

- <u>a</u>. Defines the targets to be used in the data collection program.
- b. Defines the test site conditions to be used in the data collection program and develops a method of relating test site conditions to worldwide environments.
- <u>c</u>. Establishes a method of assembling a data base of realistic background noise signatures.
- d. Specifies the test procedures for signature acquisition from the various target classes.

7. The development of the plan required study of several factors that cause instability in seismic and acoustic signatures, i.e. target, terrain, and background noise factors that induce variations in the signatures. Part II of this report presents the rationale for selecting the targets to be used in the data collection program. Part III addresses the problems associated with signature variations induced by different terrain conditions. Included in this part of the report is a

terrain matrix, the elements of which form a realistic combination of the terrain factors that affect seismic and acoustic signatures. Also included is a description of the methods used to combine the terrain element data and published terrain maps into a prediction of how seismic and acoustic sensors would be expected to work worldwide. Part IV is devoted to the development of a theoretical and empirical scheme for establishing a background signature data base. Part V summarizes the data acquisition procedures and includes a list of the tests, test sites, and targets required to implement the plan.

anna an airtheath a daoine tha an tha an tha tha

8. It is emphasized that this report is to be used in conjunction with Reference 3, i.e., the test sites, instrumentation used, and target conditions should be documented in accordance with Reference 3. For this reason, details concerning these aspects of the data collection program are treated only briefly in this report.

PART II: TARGET SELECTION

SATING BELLED STREET STREET STREET STREET STREET STREET STREET

9. A major complication that affects the quality of the data base available for the design of classifying sensors is the fact that the largest portion of existing seismic and acoustic signature data has been collected from U. S. vehicles. Implicit in this practice is the assumption that signatures from foreign and domestic vehicles (in the same class) are very similar; however, data to demonstrate this are scarce or nonexistent. There are only a limited number of foreign vehicles available to the U. S. development agencies, and, therefore, any comprehensive signature data collection program for REMBASS will have to make extensive (although not exclusive) use of the U. S. vehicles. For this reason, it is necessary to compare U. S. and foreign vehicles on the basis of the seismic and acoustic signatures they phoduce. This part of the report presents a list of U. S. targets (and a rationale for selecting them) to be used in the REMBASS Engineering Development and Advanced Development programs.

U. S. Versus Foreign Vehicles

10. Since the vehicle parameters that control seismic an! acoustic signatures (i.e. those vehicle parameters listed in Table 1) have been identified,¹ it seems reasonable to assume that the parameters could be used as a basis for selecting U. S. vehicles that would yield signatures similar to several types of foreign vehicles. An extensive literature survey 4^{-29} was undertaken to identify U. S. and foreign military vehicles and to assemble the relevant information (that listed i. Table 1) on them. The following major problems emerged early in the study:

 <u>a</u>. A large number of vehicle types are identified, many of which are modifications of the basic type. For example, Reference 4 lists three types of 5-ton,* 6x6 cargo truck,

ll a aith haltan ta ban han bhlian Mira a shinadhan ra ai

^{*} A table of factors for converting U. S. customary units of measurement to metric (SI) units and metric (SI) to U. S. customary units is given on page 4.

i.e. M54, M54A1, and M54A2. The M54 cargo truck has a spark-ignition engine, the M54A1 has a diesel compressionignition engine, and the M54A2 has a multifuel compressionignition engine. The different ignition systems will cause subtle differences in the seismic and acoustic signatures and therefore all types must be listed. However, other vehicle types have such modifications as hard cab versus canvas top, which would not change the signature of the vehicle. It was decided to inventory and list all the pertinent data on all vehicle types, including all modifications.

- b. A large number of U. S. vehicle types are experimental or prototype vehicles. It was decided to include all these vehicles in the inventory because some running prototypes exist. It was felt that prototypes can possibly be used in a field program if they are the only U. S. vehicles that produce signatures similar to important foreign vehicles.
- <u>c</u>. Complete data (listed in Table 1) exist for only a few U. S. and foreign vehicles. A single source of useful (but not complete) data was not readily available at WES or at any one Department of Defense (DOD) office. Therefore, various publications had to be ordered from a number of different sources. All material had not been received at this writing (July 1975).

11. The vehicle types identified are listed in Tables 2-9 as follows:

ሞላክ1ላ	Vebtelo Class	Number of	
Table	venicie ciass	venicie Types Listed	
2	U. S. wheeled	273	
3	USSR wheeled	146	
4	U. S. tracked	110	
5	USSR tracked	79	
6	U. S. rotary-wing aircraft	36	

		Number or	
Table	Vehicle Class	Vehicle Types Listed	
7	USSR rotary-wing aircraft	13	
8	U. S. fixed-wing aircraft	104	
9	USSR fixed-wing aircraft	65	

Because of the large number of vehicles identified early in the study, the vehicle inventory does not include any vehicles manufactured prior to 1940 and also was restricted (with a few exceptions) to vehicles of U. S. and USSR manufacture.

Selection of Foreign Vehicle Analogs

Ground vehicles

Hand State and a the state of a s

12. The large number of individual models listed for each country necessitated the comparison of the vehicle parameters by classifying the vehicles according to categories of some of the vehicle parameters listed in Table 1. As stated in paragraph 10c, all the data required were not available and a much abbreviated list of parameters had to be used. For many wheeled vehicles the following important parameters were available: weight, number of wheels, tire size, suspension type, horsepower, fuel type, and coolant type. However, only weight, horsepower, and coolant type were consistently available for many of the tracked vehicles. Each U. S. and each foreign vehicle (where sufficient data were available 4-29) was classified or grouped (by computer) according to the parameter categories listed in Table 10. Table 11 summarizes the results of the classification for the wheeled and tracked vehicles and presents groupings of U. S. vehicle types that can be expected to yield signatures similar to groupings of foreign vehicle types. Table 11 shows two categories of foreign vehicles, "Desired Foreign" and "Other Foreign." The desired foreign vehicles were those vehicles identified in Tables 3 and 5 that met the following criteria:

- <u>a</u>. The vehicle had to (potentially*) exist in significant numbers in Warsaw Pact countries; or if the vehicle was of new design, production had to have been initiated or was likely to be initiated.
- b. All weight classes (light, medium, and heavy) had to be represented in each vehicle class.

All the foreign vehicles that met the criteria above are listed in Table 12. Those foreign vehicles that did not meet the criteria, but could be classified (data were available), are listed in Table 11 as "Other Foreign" vehicles.

Ë

i, v

. 2

4

ł.

a service a service of the service of the

13. In summary, the U. S. vehicles that should be used in the data collection program are those listed in Table 11 under the heading "Proposed U. S. Analog." It is emphasized that the listing does not always identify a specific U. S. vehicle as the proposed analog, but rather a group of U. S. vehicles. This specification was omitted deliberately to permit the final selection at the locality where the signature tests are run. The selection then can be rationally biased toward what is available at the test location.

14. Study of Tables 11 and 12 reveals that there is not a U.S. analog for all the desired foreign vehicles; i.e., no analogs were found for the following:

Wheeled	Tracked
T-111	Т54
T-13C	Т55
T-141	т62
OT-64	M70
ОТ-64	

Also no data are available for certain foreign vehicles; therefore, i. was impossible to determine whether or not there is a U. S. analog for the tracked M-1973 and M-1974. Based on the information summarized above, it appears prudent to:

* Data are not ava. lable to estimate the total number of vehicles of a given type. Estimates are made on the basis of TOE (Table of Organization and Equipment) allowances for the various military units.

a. Put highest priority on gathering data on those foreign vehicles that have no U. S. analogs.

- b. In all cases possible, collect signature data (concurrently) on the foreign vehicle and its U. S. analog to demonstrate that the U. S. analog actually generates a facsimile signature.
- <u>c</u>. Review and study existing DOD signature data to compare (where possible) signatures from U. S. analog vehicles and the corresponding foreign vehicles to demonstrate that the U. S analog actually generates a facsimile signature.
- d. Solicit from the Foreign Science Technology Center and other intelligence sources information on those vehicles identified as important but for which no descriptive data are available.

Aircraft

たというないたというないで、「ないないないない」というないでは、

ć

15. Criteria similar to those stated in paragraph 12 for ground vehicles were applied to the foreign aircraft (Tables 7 and 9) to arrive at a listing of foreign (exclusively USSR) aircraft from which signatures are desired (Table 13). It should be noted that data on the number of any identified aircraft were not available; therefore, the listing in Table 13 should be considered tentative. As much of the target data identified in Reference 3 (Table 1) as was available was assembled for each foreign aircraft listed in Table 13, and the values of these parameters were compared by computer with the corresponding values for the U. S. aircraft. This analysis resulted in identification of USSR aircraft that could be considered analogous to a given U. S. aircraft. The characteristics of the U. S. aircraft are listed in Table 14 along with the corresponding data for as many of the desired aircraft as applicable. The U. S. aircraft (extracted from Table 14) that can be considered analogous to the foreign aircraft and should be used in the data collection program are:

en er en en den heren er en merkeligt her heren er en heren h

Rotary-Wing	Fixed-Wing	
CH-46F	None available	
UH-IN		
TH-57A		
CH-3B		
HH-IK		

States and the second states and the

Study of Tables 13 and 14 reveals that a U. S. analog is not listed for every desired foreign aircraft, i.e., no analogs were "ound for the following aircraft:

Rotary-Wing	Fixed-Wing
M1-12 ·	Tu-22
M1-10	Tu-95
Mi-6	Tu-16
Mi-4	Be-12
	Yak-25
	M1G-25
`	MiG-21
	An-22
	11-76
	Tu-1 44

Also no data were available for certain foreign aircraft; therefore, it was impossible to determine whether there is a U. S. analog. These aircraft are:

Rotary-Wing	Fixed-Wing
Ka-15	Tu-22
Ka-22	Tu-95
Yak-24	' ſu-1 6
	Be-12
	Yak-25
	MiG-25
	MiG-21
	An-22
	I1- 76
	Tu-144

14

n and the second second second second with the second second second second with the second second second second

16. In summary, there appear to be few U. S. aircraft that can be assumed to generate seismic and acoustic signatures that would be facsimiles of signatures generated by USSR aircraft. It is emphasized that the results presented in paragraph 15 are based on incomplete data: therefore, the conclusions presented on the foreign aircraft from which signatures are desired (Table 13), as well as the list of foreign vehicle analogs (paragraph 15 and Table 14), should be considered tentative.

13

A REAL PROPERTY AND A CONTRACT OF A

tions the strict doct stores being a dis-

All the set of the set

PART III: TEST SITE REQUIREMENTS

1.00

17. It is desired that REMBASS work satisfactorily any place in the world. It is generally recognized that there will inevitably be conditions under which the terrain will constrain the operation of the system, but the goal is to develop a system that is as terrain insensitive as possible. Experience with classifying sensors has emphasized that their performance was closely related to the terrain conditions on which the design data base was generated; therefore, it is important to know where in the spectrum of world terrain a given test condition lies. From a statistical standpoint, testing in all terrain conditions that affect neismic and acoustic signatures appears impossible; so the ability to generalize, i.e. extrapolate or interpolate the signals collected at a site, is as important as the data collection effort itself. The test sites recommended for use have been selected on the assumption that the data could be generalized by analytical methods. The racionale for establishing the test site requirements is developed in the following paragraphs.

Verrain Factor Considerations

18. Seismic signatures are normally more sensitive than acoustic signatures to environmental conditions, but exceptions do occur. For example, wind has both a direct effect on acoustic signatures (i.e., it could carry the sound away from the sensor) and an indirect effect (i.e., it could cause noise as it flows around vegetation), and thereby could obscure the acoustic signals. Also, soft soil conditions can cause a vehicle target to work harder, thereby increasing the engine noise; but at the same time, the soft soil would tend to decrease tire or track and hull noise. Because of this sensitivity of seismic signatures, the test site selection criteria are based primarily on seismic considerations, but documentation of site conditions should include all the terrain data (specified in Reference 3) needed to extrapolate both seismic and acoustic signatures to other terrains.

sealed with the second second second data was a select the second second second second second second second se

'r 'r

19. The terrain factors that significantly influence the magnitude and frequency content of a generated seismic signal are:

- a. Ground surface rigidity (surface spring constant, N/m; and maximum deformation, m).
- b. Bulk properties (compression wave velocity, m/sec; shear wave velocity, m/sec; and bulk density, g/cm³).
- c. Depths to interfaces, m.

r

M. Fred Mc. as A Strate P. San And

- d. Surface roughness, rms elevation in cm (important only
- when it causes motion in the target mass; used primarily for vehicle targets and not walking-man targets).

These factors are discussed in the following paragraphs.

20. As a target moves along the ground surface, the material over which it moves will deform in a nonlinear manner. The amount of deformation can be estimated from load-deflection (plate-load) terms on the material.³⁰ The force the target applies to the ground with respect to time is related to these ground deformations, thus affecting the magnitude of the seismic signal generated by the target.

21. The properties of the various soil layers (i.e. compression wave velocity, shear wave velocity, bulk density, and thickness of each layer of material) affect to a great extent the coupling and propagation of the generated seismic signal. These parameters vary directly with the type of material present. Generally, a more rigid material will allow less coupling of the signal to the substratum, but will attenuate the signal to a lesser degree as it is propagated. Conversely, a softer material will allow more coupling of the signal energy, but will attenuate the propagated signal to a greater extent. In general, for a given surface soil condition, the shear wave velocity and depth of the first and second layers are good indicators of substratum rigidity and therefore, to a large extent, control the seismic responses from a given location. These factors used in conjunction with WES propagation models form the knystone for selecting the test site and relating the test results to worldwide conditions.

Terrain matrix

いたいないたいまたちとう

22. To approximate the spectrum of terrain conditions that affect the generation and propagation of seismic signals, the normal range of variation for each of the terrain factors (paragraph 19) was defined, and a terrain matrix, elements of which are realistic combinacions of terrain factors, was compiled (Table 15). It was recognized that a matrix could not be designed that would account for every possible variation in terrain conditions that is known to exist in the world. For this reason, the following guidelines were followed in developing the terrain matrix:

- <u>a</u>. All elements of the matrix should be composites of terrain features that could most likely be found in the real world. The matrix elements selected should represent those conditions that would be likely to occur a significant percentage of the time.
- b. The matrix should contain combinations of factors that would result in the "best-case" and "worst-case" performances, and also combination of factors that would result in performances for several intermediate cases. Thus, the matrix should span the ranges of values that are possible in the world environment.

The derived terrain matrix (Table 15) contains 70 terrain elements. From a technical standpoint, it would be desirable to test the vehicles in real-world conditions that correspond to all 70 terrain elements; but for practical reasons, signature data will have to be obtained from much fewer locations. For this reason it is important to establish the relative significance of each element, i.e. areal extent and the degree to which each element affects the seismic signal.

Seismic response

e en de la constance de la cons

23. From previous studies (paragraph 21 and Reference 40) at WES, it has been shown that the shear wave velocities of the surface and subsurface soils strongly influence the generation and propagation of seismic energy. This fact suggests that seismic responses could be displayed in terms of shear wave velocity and thereby provide a rations.

means of grouping or further generalizing the elements listed in Table As Figure 1 displays the shear velocities for the various terrain matrix elements, i.e. top-layer-material shear wave velocity versus foundationmaterial shear wave velocity, along with the general descriptions of the materials commonly found with the various shear wave velocities (a more complete description of each element is given in Table 15). Each of the crosses in Figure 1 represents several elements in which the layer thicknesses are different (e.g., top layer is 0.25, 1.5, or 4.0 m thick). The values of shear wave velocities shown are presented to span the range of values found in nature (excluding hard, c. spetent rock); therefore, note that the top-layer-material shear wave velocity ranges to about 1200 m/sec. Top and foundation layers can be found that exhibit the full range shown; however, velocities in surface layers greater than about 600 m/sec are relatively uncommon.

24. To generalize the relative seismic response from each matrix element, seismic signatures predicted for the PT76 (USSR light tank) at a range of 300 m were analyzed (Figure 2) in terms of the maximum signal amplitude; i.e., if the particle velocity span (maximum positive peak to negative peak) of the seismic signature was between 0 and 0.2 x 10^{-3} cm/sec, the matrix element was considered to have poor seismic response; if the particle velocity was between 0.2 and 0.5 x 10^{-3} cm/sec, the seismic response was considered fair; and if the particle velocity was 0.5 x 10^{-3} cm/sec or greater, the seismic response was considered good.

25. Large amounts of seismic signature data have been collected by WES and other DOD agencies at sites in the following locations:

	WES	Other DOD Agencies
Yuma, Arizona	Х	х
Vicksburg, Mississippi	Х	-
Fort Huachuca, Arizona	Х*	-
Panama Canal Zone	Х	Х

*Data collected in both wet and dry seasons.

	1150	Other DOD
	WES	Agencies
Fort Bragg, North Carolina	Х*	х
Eglin Air Force Base, Florida	Х	Х
Aberdeen Proving Ground, Maryland	х	X
Fort Wainwright, Alaska	х	-
Honeywell Proving Grounds, Minnesota	х	Х
Nellis Air Force Base, Nevada	Х	-
Fort Lewis, Washington	х	-
Puerto Rico	Х	-
West Germany	Х	-
Fort Carson, Colorado	Х	-
General Motors Proving Ground, Milford, Michigan	Х	Х
Fort Belvoir, Virgínia	Х	Х

* Data collected in both wet and dry seasons.

Figure 3 shows a plot of shear wave velocity for the top and foundation layers at all sites at which WES has collected data. Comparison of Figures 2 and 3 reveals that the bulk of the signature data have been collected at sites that have relatively good seismic responses. For this reason priority should be given to testing at sites that have relatively poor seismic responses, i.e. sites that have high shear wave velocities in their first and second layers.

Areal extent of the terrain elements

26. To arrive at an estimate of the relative occurrence of each of the terrain elements, they were correlated with published map information. As indicated in paragraph 19, the terrain factors in the matrix are quite specific; but the published information on the world's terrain conditions is normally thematic maps of physiography, agriculture (soil type and texture), lithology, etc. Correlation between the terrain matrix elements and the more general mapped data can be established in only a qualitative sense, and then only if several of the general terrain factors are combined and considered simultaneously.

• 27. The published maps were reviewed to determine (a) the types and quality of thematic maps available, (b) their scale and usefulness in meeting the required objectives, and (c) their immediate availability. Five thematic maps depicting regional associations of terrain characteristics (factor families) were selected: surface configuration, surface soil texture, subsurface lithology, state of ground (water table regimes), and vegetation (see Tables 16-20). These maps were regionally interpreted and adapted to provide the required input data for the compila-"tion (or superposition) of thematic maps of the world. A map scale of 1:50,000,000 was chosen as being the most compatible for the mapping task.

28. The five thematic maps were stacked manually to compile and produce a thematic factor complex map. This compilation process generated "unique" map units of the world that are characterized by an array of five separate terrain characteristics (factor families). A total of 1052 unique map units were thus identified (Plate 1). Table 21 is the legend for the factor complex map (Flate 1). The numbers in the legend under surface configuration, soils, lithology, etc., correspond to the category numbers identified in Tables 16-20. For example, map unit 1 (Table 21) is situated in a plain (Table 16, category 1), the soil is predominantly sand (Table 17, category 1), and the lithology is consolidated rock (Table 18, category 1), etc.

29. The terrain descriptions that identify the various terrain matrix elements (Table 15) were qualitatively correlated with the array of terrain characteristics obtained from the five thematic maps (Table 22). For example, terrain description 1.10 <u>could</u> exist in each terrain factor under which a 1 is entered in the first line of Table 22. A computer program was developed to associate the unique map units of the thematic factor complex map with all the possible terrain descriptions that could be associated with the various terrain matrix elements. Table 23 is a portion of the computer-generated key that identifies the terrain matrix element terrain description numbers associated with the unique map units of the thematic factor complex map.

30. On the basis of the shear wave velocity criteria shown in Figure 2, for both the surface and foundation materials, and the thick-ness of the surface layer, the terrain matrix elements were classified

into the seven categories of seismic response (Table 24). Using this classification scheme, each unique map unit of the thematic factor complex map, which had been previously correlated with the terrain matrix element terrain description numbers, was assigned to a category of seismic response, thus producing a world map that delineates areas of relative seismic response (Plate 2). It is emphasized that the map depicts the predominant seismic response of each area. Within each area delineated, the seismic response will vary because of local variation in terrain conditions that could not be identified at the mapping scale used. Study of Flate 2 illustrates two points:

- <u>a</u>. A significant portion of the world will exhibit fair to good seismic response (category 3); therefore, it can be assumed that seismic sensors can be designed to function adequately in a large portion of the land mass of the world.
- b. Figure 3 shows that relatively few tests have been conducted at sites that fall in category 3; therefore, additional signature data should be collected in these types of seismic-response areas. Also, significant portions of the world's land mass exhibit fair to poor seismic response, and extensive signature data should be collected in these areas also (categories 6 and 7).

Test Site Recommendations

31. In general, a spectrum of sites (based on their shear wave velocities) should be selected to span the range of variation found in nature. Because the bulk of available signature data has been collected in areas of relatively good seismic response, priority should be given to data collection at sites with top-layer shear wave velocities greater than about 400 m/sec. The foundation-material velocities should range from about 200 to 1600 m/sec. The sites should exhibit a variety of first-layer thicknesses. Since surface conditions affect seismic and acoustic signatures, tests should be conducted on a range of surface

22

A Stor Laboration of the State

New Sec.

conditions; i.e., tests should be conducted on both smooth roads (goodquality gravel or pavement) and cross-country, and one site should have soil soft enough to result in extensive rutting. More specifically, the following tabulation can be used as a general guide to selecting sites.

ţ

Same in

han sunder 22 dalkan dar allerti - <u>Araa baar dar dar dar dar dar baker a</u> saara

Condi- tion	Top-Layer Shear Wave Velocity m/sec	Material Shear Wave Velocity m/sec	First- Layer Thick- ness m	Site Surface	Prior- ity
1	> 500	300	>2.0	Cross-country	2
2	>400	>400	N/A	Smooth road	1
3	>400	>400	N/A	Cross-country	2
4	>400	>600	<0.5	Cross-country	2
5	> 400	>600	<0.5	Smooth road	1
6	>400	>600	>1.0	Cross-country or smooth road	2
7	>700	>1000	<0.5	Cross-country	2
8	> 700	>1000	>1.0	Cross-country or smooth road	1
9	< 200	≥200-<600	<0.5	Smooth road	2
10	< 200	>600	>0.5	Smooth road	3
11	< 200	>600	>1.0	Smooth road	3
12	>400	>600	<0.25	Smooth road	2
13	<200	>600	>1.75	Smooth road	2
14	<200	< 600	>1.0	Smooth, soft surface (ex-	- 1

32. Other factors that must be considered in the selection include:

- a. Ease of access to the site.
- b. Vehicle logistic and security support.
- <u>c</u>. Weather conditions; for example, testing in Alaska in the winter would not be cost-effective.
- d. Background noise, cultural and natural.

No site will be optimum with respect to site and support conditions, and the selection should be biased toward the site conditions and priorities listed in paragraph 31. Also, specific sites used for collection of design data should be situated where the background noise is relatively quiet. Sites meeting almost all the criteria listed above can be found on government property at Yakima Firing Center, Yakima, Washington; Fort Hood, Texas; and test areas available at the WES, Vicksburg, Mississippi.

PART IV: BACKGROUND NOISE CONSIDERATIONS

33. One major complication in designing classifying sensors is the impossibility of incorporating a sufficient number of realistic background noise signatures into the design data base. A sensor must be designed to operate at any arbitrary point where the background noise is the result of a combination of various noise sources. The noise source will often be transitory (storms, highway and air traffic), but can be permanent (pumping stations, stream noise, etc.). Furthermore, the distance from the noise source will affect the resultant noise signature.

34. To attempt the collection of a sufficient number of background signatures that would constitute a statistically representative sample of the total population of background signatures is probably foolhardy. It appears much more feasible to collect data from a number of independent noise sources and combine them analytically by using seismic- and acoustic-signal propagation, models.

35. Figure 4 shows the five major steps required to develop a realistic background noise design data base: (a) catalog background noise sources, (b) obtain signatures from the various sources, (c) determine interrelation of sources, (d) compile a matrix of sources and their corresponding distances from arbitrary points in the world environments, and (e) superimpose signatures from sources by using WES propagation models. The following paragraphs discuss these steps in more detail.

Noise Sources

36. Independent noise sources are grouped into two categories: cultural and natural. Cultural background noises are those nontarget noises that are the result of man's presence or activities. Natural background noises are those nontarget noises that are the result of nature's activities. Table 25 is a tentative list of noise sources that are considered to be sufficiently independent (or unique) to yield representative signatures. The field data collection program should be directed toward measuring signatures from these sources. Measurement

duration should include at least one 24-hr cycle.

Map Study

37. In any geographic location of the world, at any selected point on the ground, at least one and probably more of the cultural noise sources listed in Table 25 will be encountered. In some large geographic areas, such as countries or segments of countries, there will be a certain mix of cultural sources that could be expected to occur at any given location. This may be due to such factors as the overall level of development, long-term cultural history, or primary commercial products (industrial, agricultural, etc.). One factor that would certainly affect the mix would be the proximity to the point source selected. That is, the larger the area (around a selected point) considered, the greater the probability that a large number of background noises will be encountered. Thus, to determine the probable mix to be encountered, the sampling points for a given geographic area must be not only randomly selected, but also sufficient in quantity to ensure a statistical representation within some desired confidence limits. In the case of a particular interest, the purely random aspects might be partially abandoned in the form of influencing the sampling locations so that they are representative of the range in variation of the contributing factors. For instance, in considering seismic signatures, such factors as soils, geology, vegetation, slope, etc., play a part in contributing to the resulting signature. Thus, it is desirable to select areas (on the basis of an analysis of the combination of these factors) that are representative of the range of variations existing. This was accomplished in West Germany. Figure 5 shows the locations of the 1:50,000 quadrangle areas that are deemed to be most representative of the range of variations that exist in the terrain factors mentioned above.

38. Within each 1:50,000 quadrangle selected for study the noise sources had to be sampled. The following paragraphs describe the procedures by giving an example using the Fulda quadrangle northeast of

Frankfurt. The geographic boundaries defining the quadrangle were used as the limits of consideration, and a random number generator was used to select 20 points within the sample quadrangle boundaries (see Figure 6). Each of these 20 points was plotted on the quadrangle and used as a reference in determining the mix of background noise sources that was encountered at various distance classes from the randomly selected points, i.e. 0-0.5, 0.5-1.0, and 1.0-2.0 km (see Figure 7). For each distance class, an inventory of the cultural background noise sources was made. The method lescribed above was applied universally to all 20 points (Universal Transverse Mercator Grid coordinates are listed in Table 26), which resulted in the inventory of noise sources listed in Table 27. This inventory shows the types and numbers of background noise sources encountered as a function of the distance from the sampling point. The numeric codes for the types of b. __cound noise sources are identified in Table 25.

State State

Ministration Contractor Contractor

A Method of Compiling the Noise Signature Data Base

39. A terrain matrix element can be associated with each sampling point, thereby providing the necessary terrain data for using the WES propagation models to make a realistic composite signature for each sampling point. The composite signature is produced by associating each noise source identified (Table 25) with a random distance selected within the various distance ranges (0-0.5, 0.5-1.0, and 1.0-2.0 km), from the point at which the signature is desired. Then for each noise source identified, a measured signal (a facsimile of the noise source identified) is input to the propagation models and a new signal is c. lculated for the proper range. Once calculations are made for all the measured signals (i.e., these signals are propagated to the desired point), the signals are summed to make a composite background noise signal that is directly related to the real-world environment. The " immediate objective that emerges for the field sampling program is the collection of the background noise signatures for the noise sources listed in Table 25.

PART V: DATA COLLECTION PLAN

and the second second

والمراجعة والمراجع

40. As stated earlier, state-of-the-art techniques for correlating target signature features with the various vehicle classes require a signature data base representative of the total signature population. A rigorous definition of an adequate data base cannot be made at this time (July 1975) because information is not available to define the expected signature variation from a given vehicle type (i.e. the M113 type or the M151 type) nor the signature variation from a given vehicle class. Table 1 identifies the target variables, i.e. components of the ground (wheeled and tracked) and air (rotary-wing and fixed-wir.g) vehicles that are known to affect seismic and acoustic signatures to some degree. Table 1 contains a sufficient number of variables to suggest that there can be a great de/l of signature variation within a given target class. Furthermore, som' signature variations within a target type can be expected because of differences in manufacturer and because of the normal variations in mechanical performance caused by changes in parc tolerances with age (wear).

41. The design data base should have signatures that span the range of signature variations not only as a function of the various types of vehicles within a class, but also as a function of the environment within which the signature is generated. Data to define the signal variation associated with a target type and class should be generated with single targets. These data are intended to provide the required data for REMBASS engineering development, i.e. for the simpler singletarget classifiers. For a classifier capable of performing in a multiple-target environment (advanced-development classifiers), data must be generated to permit definition of the information extractable (about a single target) from signatures made up of two or more targets.

42. This part of the report describes a series of tests that will yield data critical to the definition of the seismic and acoustic signal variations within a target type and target class. Also, a plan is presented for the collection of seismic and acoustic response data

27

from multiple targets such that an information extraction threshold (concerning a single vehicle) can be defined. Further, data collection from background noise sources (Table 25) is described.

Single-Target Data Acquisition

Signature variations from cargets of a single type

With deal word to search a state of the second state of the

43. Signature data collection programs are often conducted using only one vehicle to represent a vehicle type. Often, as in the case of foreign vehicles, only one vehicle is available; furthermore, excessive costs preclude use of more than one target type if U. S. vehicles are used. The danger exists, however, that a specific vehicle could have a discrepancy that generates a signature feature that could bias the design of the logic of a classifying sensor. During the production of a specific type of vehicle, production controls ensure that the component parts meet certain specifications. During assembly, these parts are connected, again within certain tolerances, into a working mechanical system.

44. The performance of this assembled system must also meet certain specified criteria, and it is probable that only slight signature variations will result from vehicle to vehicle, especially when the measurement being used considers the synergistic effect of the many slight variations, i.e., variations in one component may tend to compensate for variations in another. Certain vehicle components may tend to wear unevenly; therefore, old vehicles may produce more erratic or significantly different signatures than new ones.

45. To rigorously ascertain the signature variations for all the vehicle types of interest would be extremely costly and time-consuming. Some data, however, are badly needed to demonstrate that signatures from a single vehicle are representative of signatures from that vehicle type. The following paragraphs present a plan for determining signature variations in a specific target type. A set of tests to be conducted, in which lignatures are measured under controlled conditions, will be

described, and the data necessary for characterizing the target and terrain conditions will be specified. Targets

46. The tests will be restricted to types of vehicles within two target classes: wheeled and tracked vehicles. Based on the comparisons according to probable seismic and acoustic signatures (Table 11), and the resulting targets defined for use in the data collection program, the tests will use an M35Al wheeled vehicle and an M113 Armored Personnel Carrier tracked vehicle. The data to be collected and the test conditions specified will apply to both vehicles.

47. Three vehicles of each type should be selected at random from a large pool (more than 20) of vehicles whose overall condition is determined to be "reasonably representative of live conditions," e.g. have been readied for unit training by normal maintenance procedures. The selection of these vehicles, from those available for use at the test site, should be accomplished with a minimum of bias.

48. Once the vehicles have been selected, they should be inspected for major deficiencies such as a bad muffler, etc. If such deficiencies exist, the vehicle should be rejected and another vehicle selected. The vehicle data listed in Table 1 should be compiled for each vehicle type to provide data for predicting seismic and acoustic signatures. In addition, the overall condition of each test vehicle should be documented so that variations in signal characteristics can be related to variations in vehicle conditions. At one test site it would be desirable to obtain signatures from a vehicle (if a multifuel vehicle is available) using both diesel oil and gasoline to provide a basis for comparing the signatures of significance as related to fuel.

Test site conditions and layout

49. No special test site condition is specified for these tests. Therefore, any of the 14 terrain conditions recommended in paragraph 31 would be satisfactory. However, the tests should be repeated in at least two different areas, e.g. Yakima Firing Center, Fort Hood, or Mississippi (total of 12 vehicles, six from each class).

50. The general layout for these tests is shown in Figure 8.

29

le de la section de la contraction de la contraction

Three test conditions will be required: (a) a paved road; (b) a crosscountry condition, i.e., characterized by soil covered with some type of low vegetation; and (c) an obstacle course that is level except for an obstacle, wider than the vehicle, placed at the closest point of approach to the sensor and perpendicular to the direction of travel. The obstacle should have a semicircular cross section whose height (radius) is 20 cm and base (diameter) is 40 cm. Each of these test conditions should be situated in the same environmental setting.

51. The constant-speed section (see Figure 8) of each test lane will vary in length depending upon the terrain conditions and target being tested. This distance will be the result of a field decision subsequent to determination of the seismic response characteristics of the site. In the past, this distance has varied from less than 500 to about 2000 m for the M35A1 and the M113. The acceleration and deceleration sections of the course should be at least 100 m long, but for the faster test speeds, more than 100 m may be needed for the acceleration lane.

Conduct of tests

52. Each vehicle should be run at two constant speeds through the smooth paved-road course--10 km/hr and convoy speed. The vehicle should be accelerated and decelerated gradually up to and from the desired constant velocity. For the cross-country test course, the tests should be conducted in the same manner except for speeds. For this course, each vehicle should be run at 7.5 and 30 km/hr. For the obstacle course, each vehicle should be run at constant speeds of 5 and 12 km/hr. An event mark should be placed on the signature recording to indicate entrance into and exit from the constant speed zone, and at each 50-m interval throughout the test course. Recordings of seismic and acoustic signatures should be initiated in the acceleration lane and be continued until the vehicle comes to a stop in the deceleration lane.

Signature variations from targets of a single class

นี้ และกลาง และและส่วนและกลางและและไม่มีการการการกิจัสถายที่ได้หน้ามีการการสำคัญการกิจการการการการการการการการ

53. As stated in paragraph 41, data to define the signature variations associated with a target class should be generated with

single targets. These variations result from differences in the vehicle types within the class in addition to differences resulting from travel mode of the target, site conditions, and range from target to sensor. Targets of interest for this data collection effort are: wheeled ground vehicles, tracked ground vehicles, rotary-wing aircraft, fixed-wing aircraft, men, and backgrounds. The U. S. ground vehicles selected as most desirable are listed in Table 11, and the desired aircraft are listed in Table 14 (note that no U. S. fixed-wing aircraft have been identified as analogous to Warsaw Pact aircraft). Walking-man targets, though not addressed in detail thus far in this report, are required and data should be collected from both single-map and squad targets (i.e. one, three, and seven men). Site req irements are recommended in paragraph 31. The following paragraphs discuss the test method and course layout for each target class.

1.1.1

k

自然にたい。

Sa transferi (1996) a dill'Angel (1997) (1997) (1997) (1997) (1997)

54. <u>Ground vehicles</u>. The test method and layout should be identical to those described in paragraph 52 and shown in Figure 8, respectively. Duplicate tests should be run for each vehicle referred to in paragraph 13 on both improved road, cross-country, and obstacle sites on as many of the test (terrain) conditions listed in paragraph 31 as possible. The wheeled vehicle data acquisition should be conducted first, starting with the lightest vehicle and proceeding to the heavlest. The tracked vehicle data acquisition should follow in a similar manner. This sequence will minimize the influence of previous vehicle runs (i.e. on the geometry of the test path) on the on-going tests and eliminate the wheeled vehicle reaction to track pad imprints in the ground. This is especially important on cross-country sites; in very soft soils separate test lanes should be selected for wheeled and tracked vehicles.

55. <u>Aircraft</u>. Signatures from aircraft are less sensitive to terrain conditions but are affected more by atmospheric conditions than are signatures from ground vehicles. In addition, aircraft travel mode affects the resulting signature appreciably. The test layout for acquisition of aircraft signatures should consist of positioning a single triaxis geophone in the ground at some convenient position and burying a second triaxis geophone near the first and covering it with a

31

No. Carlos

sufficient acoustical barrier to prevent direct coupling of acoustic waves to the geophone. The acoustical barrier should consist of a thickness (empirically determined) of sound-absorbing material such as fiberglass insulation. Both geophones should be positioned so that the axis of one of the horizontal geophones is oriented in the direction of the aircraft approach path for the tests. In addition to the geophones, an acoustic transducer should be located near the geophones to record the acoustic signatures of the targets. The aircraft test path should begin at a distance of 2 km from ground zero and proceed beyond ground zero for the same distance. .. should be noted that the test layout above can be aphriced by simply adding an acoustically protected triaxis geophone to the triaxis geophone-acoustic sensor array shown in Figure 8 (i.e. the array closest to the vehicle test path) and recording only the outputs from these three sensors. The aircraft test path would then parallel the vehicle test path and the vehicle test path could be used as a navigation aid by the aircraft pilots.

56. Duplicate tests should be run with the aircraft specified in Table 28. It is noteworthy that only rotary-wing aircraft are specified by name in this list. Fixed-wing aircraft (approximately three) should be included as they are determined to be applicable to the data-collection effort.

57. The travel modes for each aircraft should consist of horizontal flight at speeds one-half the normal cruising speed and at the normal cruising speed, at two heights above the ground of 150 to 750 m. In addition, signatures should be acquired for the aircraft descending from 750 m to approximately 50 m and ascending back to 750 m. The descent should begin at a position along the aircraft test path approximately 0.5 km from ground zero and terminate at ground zero. The ascent should begin at ground zero and be completed at a distance of 0.5 km from ground zero. The descent and ascent tests can be conducted as a single overpass; no touchdown is necessary.

58. The tests described above should be conducted in as many of the different subsurface conditions in paragraph 31 as possible so that the effect of terrain conditions can be completely evaluated. The
atmospheric conditions cannot be easily specified prior to testing, but should be thoroughly documented at the time the test is conducted. Walking-man target

59. The layout for acquisition of signatures from walking-man targets should be identical to that shown in Figure 8, except that only the response of the triaxis geophone and the acoustic sensor closest to the travel path should be recorded. The targets should consist of one, three, and seven men and the travel modes should include normal route walk and march step (marching in unison). Two walk paths should be used, the first emphasizing low signal levels having a closest point of approach (CPA) of 15 m and the second having a JPA of 5 m from the triaxis geophone. Each target should start at a position/100 m from the CPA point and proceed beyond the CPA 100 m on both walk paths. When a road is available, one walk path should be identical to the vehicle test paths on the road, and the other should parallel the road in natural terrain. The tests should be conducted in as many of the 14 conditions listed in paragraph 31 as possible.

Summary

60. Table 28 summarizes the targets, site conditions, and travel modes needed for the definition of the variations within target types and classes. A total of 1420 test runs are identified with 740 considered essential, 544 considered second priority, and 136 considered third priority. The first column (Table 28) shows that none of the target types for fixed-wing aircraft are listed. Further study is needed to define the U. S. aircraft that should be used in the data acquisition program.

Multiple-Target Signature Acquisition

61. An advanced-development (AD) sensor must be capable of classifying single targets in a multiple-target environment and in worldwide terrain environments. Data must be collected in these environments so that specifications for the design of AD sensors can be prepared. Unfortunately, multiple targets present special problems in an AD data collection program because the ranges of each vehicle to the sensor are restricted by the dynamic limits of recording system. If the recording limits are set so that a primary vehicle produces slightly below the maximum recordable signal, all secondary targets must be restricted in range so that the total combined signal level from all targets remains below the maximum. Thus, the choice in signal level dictates the nearest range at which secondary targets can approach the sensor. Also, a lower limit in signal amplitude is established by the noise level inherent in the recording process. A secondary target whose range increases to the point at which its signal falls below the noise level of the recorder does not produce usable information.

62. In summary, the combined signal strengths from all targets in a multiple-target data collection program must be restricted to the dynamic range of the recording system (i.e. above the noise level and below the recording saturation limit). For good analog recording systems, this dynamic range is restricted to approximately 30-40 dB, and for good digital recording systems, the dynamic range is restricted to approximately 50-60 dB. The dynamic range of the recorder can be shifted up or down to accommodate nearly all primary target requirements, but once it is set, the dynamic range then restricts the recordable signal level (and thus the range from target to sensor) of all secondary targets.

63. In the following paragraphs, a procedure is described in which the dynamic range of the recording system can be used to specify the ranges of both primary and secondary targets. Range relations

64. The variation in the seismic signal from a target as it travels along a given path is the result of a complex interaction of the target with the ground surface. Both the signal amplitude and frequency change as a function of range even if the ground parameters remain constant and the vehicle continues at the same speed. Data summarized from tests on good sites (Fort Bragg, North Carolina), poor sites (Fort Wainwright, Alaska), and computer study results suggest that an inversesquare relation can be used to estimate the relative sensor-to-target

ranges for the primary and secondary targets for the ranges of interest to REMBASS for both good and poor seismic sites. Thus, if the range (R) from target to sensor doubles, the signal amplitude is reduced approximately by a factor of four (for ground targets).

Target relations

and and a state of the second of the second states of the second states

このでは、「「ない」のないで、「ない」の

65. If only multiple targets of the same type were of interest, the $1/R^2$ relation could be used to set relations so that the dynamic range is not exceeded. Since targets of mixed types should be tested, a guide has been prepared to indicate relative amplitude between targets. In the tabulation below, the target seismic-signal amplitudes are normalized to the footstep-signal amplitudes (at the same range):

	Normalized Amplitude
Footstep	• 1
Light wheeled vehicle (M	10
Heavy wheeled vehicle (M	35) 20
Light tracked vehicle (M	113) 100
Heavy tracked vehicle (M	50A1) 150

66. The differences in signal amplitude shown in the tabulation above must be compensated for by a difference in range between the primary and secondary targets. Thus, if equal signal amplitudes are desired for a heavy tracked vehicle and a light wheeled vehicle for example, the heavy tracked vehicle must be run at a longer target-tosensor range than the light wheeled vehicle. The approximate range can be established by the $1/R^2$ relation as shown in the tabulation below.

Range for Secondary Target Amplitude to Equal Primary Target Amplitude

		Primary Tan	get at Range R ₁	from Sensor	
	Footstap	Light Wheeled M151	Medium Wheelod M35	Light Tracked M113	lleavy Tracked <u>H60</u>
Footstep	$R_2 \sim R_1$	$R_2 = R_1 / \sqrt{10}$	$R_2 = R_1 / \sqrt{20}$	$R_2 = R_1 / 10$	$R_2 = R_1 / \sqrt{150}$
Light Wheeled (M151)	$R_2 = \sqrt{10} R_1$	$R_{2} = R_{1}$	$R_2 = R_1/\sqrt{2}$	$R_2 = R_1 / \sqrt{10}$	$R_2 = R_1 / \sqrt{15}$
Medium Wheeled (MJS)	$R_2 = \sqrt{20} R_1$	$R_2 = \sqrt{2} R_1$	$R_2 - R_1$	$R_2 = \sqrt{0.2} R_1$	$R_2 = \sqrt{2715} R$
Light Tracked (N113)	$R_2 = 10 R_1$	$R_2 - \sqrt{10} R_1$	$R_2 = \sqrt{5} R_1$	$R_2 - R_1$	$R_2 = R_1 / \sqrt{1.5}$
Heavy Tracked (M60)	$R_2 = \sqrt{150} R_1$	P ₂ - 15 R ₁	R ₂ - √7.5 R ₁	$R_2 = \sqrt{1.5} R_1$	R ₂ = R ₁
	Fontstep Light Wheeled (M151) Medium Wheeled (M155) Light Tracked (M113) Heavy Tracked (M60)	Footstep Footstep $R_2 = R_1$ Light Wheeled (M151) Medium Wheeled (M35) Light Tracked (M113) R_2 = 10 R_1 Heavy Tracked (M60) $R_2 = \sqrt{150} R_1$	Fontutep $R_2 = R_1$ $R_2 = R_1/\sqrt{10}$ Light Wheeled $R_2 = \sqrt{10} R_1$ $R_2 = R_1/\sqrt{10}$ Light Wheeled $R_2 = \sqrt{10} R_1$ $R_2 = R_1$ (M151) $R_2 = \sqrt{20} R_1$ $R_2 = \sqrt{2} R_1$ (M155) $R_2 = 10 R_1$ $R_2 = \sqrt{2} R_1$ Light Tracked $R_2 = 10 R_1$ $R_2 = \sqrt{10} R_1$ Heavy Tracked $R_2 = \sqrt{150} R_1$ $R_2 = \sqrt{15} R_1$	Primary Target at Range R_1 Light Uncoled Medium Wheeled Missi Footstep Missi Missi Medium Missied Missi Footstep $R_2 = R_1$ $R_2 = R_1/\sqrt{10}$ $R_2 = R_1/\sqrt{20}$ Light Wheeled (Missi) $R_2 = \sqrt{10} R_1$ $R_2 = R_1/\sqrt{10}$ $R_2 = R_1/\sqrt{20}$ Light Wheeled (Missi) $R_2 = \sqrt{10} R_1$ $R_2 = R_1$ $R_2 = R_1/\sqrt{2}$ Medium Wheeled (Missi) $R_2 = \sqrt{20} R_1$ $R_2 = \sqrt{2} R_1$ $R_2 = R_1/\sqrt{2}$ Light Tracked (Missi) $R_2 = 10 R_1$ $R_2 = \sqrt{10} R_1$ $R_2 = \sqrt{5} R_1$ Heavy Tracked (M60) $R_2 = \sqrt{150} R_1$ $P_2 = \sqrt{15} R_1$ $R_2 = \sqrt{7.5} R_1$	Primary Target at Range R ₁ from Sensor Light Wheeled Medium Light Tracked Footstep R ₂ = R ₁ R ₂ = R ₁ /./10 R ₂ = R ₁ /./20 R ₂ = R ₁ /10 Light Wheeled M13 M13 M113 Footstep R ₂ = R ₁ R ₂ = R ₁ /./10 R ₂ = R ₁ /./20 R ₂ = R ₁ /10 Light Wheeled (M151) R ₂ = ./10 R ₁ R ₂ = .R ₁ R ₂ = .R ₁ /./2 R ₂ = .R ₁ /./10 Medium Wheeled (M151) R ₂ = ./20 R ₁

Multiple-target test program

AN AGE AND A

and the second second

and the she has a the she has a straight for the second straight and the

67. Multiple-target signals are desirable as part of the AD design data bank because the unique combination of signal levels that can result from such tests may not be amenable to single-target processing techniques. Targets of interest for this data collection effort are: wheeled ground vehicles, tracked ground vehicles, men, rotary-wing aircraft, and fixed-wing aircraft. Three vehicles in each vehicle target class and one man should be used in the test program as summarized in Table 29. The site requirements, target travel modes, target combinations, and test iterations for the program are listed in Table 30. The site requirements were selected from those test conditions listed in paragraph 21.

68. The following paragraphs briefly discuss the site layout and additional details of the test program. It is felt that the magnitude of the test program outlined is in the proper order; however, some deviations from the test plan are expected as the test program progresses because some of the data specified will become obviously redurdant. Also, omissions will surface as the data are analyzed.

69. <u>Test layout</u>. The general test layout for multiple targets is shown in Figure 9. For each test two targets should be used, a primary target and a secondary target. As can be seen from Table 29, in part of the tests the primary and secondary vehicles can be the same type of vehicle (e.g. two Mil3 vehicles), but for most of the tests they should be different and represent all combinations of the listed targets. Note that during the conduct of a test, both high-level signals and low-level signals will be recorded at the same time depending on the ranges from targets to sensor and the type of target involved. An alternate walk path (path 2 for the walking-man target) is shown in Figure 9 and should be used as a substitute for the primary target path on the test lane when a high-signal-level condition for footsteps is desired. The gain of (ach recording channel should be set so that the primary target signal falls at approximately half of the dynamic range of each sensor channel. The secondary target signal will vary about this reference for all

secondary target ranges (even though some channels will be saturated for part of the run). The target and range relations listed in paragraph 66 can be used as a guide in selecting secondary target positions which will permit the collection of secondary target signals within the dynamic range of the recording system.

の語言に見ていたが、「ない」のないで、「ない」のないで、「ない」のないで、「ない」ので、「ない」のないで、「ない」のないで、「ない」のないで、「ない」のないで、「ない」のないで、「ない」のないで、「ない」のない

His & an an in the second line of the line of the second for a first his a distance

70. Ground vehicles. All ground vehicle paths include an acceleration section, a constant-speed section, and a deceleration section, as shown in Figure 9. For the primary target and the secondary target, each of the three sections should be at least 100 m long (for some speeds the acceleration and deceleration sections will have to be longer than 100 m). All accelerations and decelerations for each test should be synchronized as closely as possible so that the vehicles enter and leave the constant-speed sections together. Signal recording should be initiated at the beginning of the acceleration period and continue through to the end of the deceleration period. The constant-speed section for the primary vehicle should be centered about the zero CPA point (i.e. +50 m on either side of the zero marker), and the constantspeed section for the secondary vehicle should start at the 50-, 200-, 500-, 1000-, and 2000-m stakes on the test lane (i.e. D = 50, 200, 500, and 2000 m in Figure 9). Ground vehicle speeds for the tests are shown in Table 30. One exception to these guidelines is that for the test in which the primary and secondary vehicles are the same and the secondary target test range is 50 m. In this case, the constant-speed section should be extended until the combined signal amplitudes decrease to the noise level of the recording system. Secondary target signal amplitudes should remain within the dynamic range of the recorder (once set for the primary target). Any secondary target ranges that produce signal amplitudes larger than that from the primary target (i.e. for both the highsignal-level and low-signal-level conditions) should be elimidated; any secondary target ranges that produce signal amplitudes below the noise level of the recorder (i.e. for both the high-signal-level and lowsignal-level conditions) should also be eliminated. These ranges can be estimated from relations discussed in paragraphs 64 and 65 and verified in the field by setting the dynamic range for the primary vehicle and

37

and the stand of the second stand and the second stand stand as the second stand stand stand stand stand stand

monitoring the signal levels from the secondary vehicle as it moves from CPA out to the maximum range.

71. <u>Walking-man target</u>. The paths for the walking-man target can be much shorter than those specified for the vehicle targets, but should take approximately the same travel time. For example, a vehicle traveling over a 100-m section at a constant speed of 10 km/hr and a man walking a 40-m section will require approximately the same travel time. Also, since the walking man can quickly repeat the primary target path (for both the high- and low-signal-level conditions) by merely reversing his direction of travel, the secondary target can continue its travel over the complete secondary path at a constant speed without stopping.

72. <u>Aircraft</u>. Because of the much higher travel speeds of aircraft than of ground targets and because of the difficulty in controlling aircraft position precisely, aircraft should be tested as secondary targets only for all aircraft-vehicle target combinations. Any ground target tested with an aircraft target should be considered the primary target and be positioned in the primary target constant-speed section during the test. Each test should consist of a single pass of the aircraft at a constant speed and altitude as the ground target travels over its primary target path at a constant speed. Aircraft speeds and altitudes should be as shown in Table 30; they are identical to those for the single-target tests (Table 28).

73. Multiple aircraft tests should be conducted in the same manner as for ground target tests when the primary and secondary targets are the same (see paragraph 70). The aircraft should be synchronized so that they pass the CPA at different altitudes at the same time going in opposite directions. The recording should be continued until the combined signal level decreases to the recording noise level for both the 40-m and 500-m sensors.

74. <u>Summary</u>. Table 30 summarizes the multiple-target test program. A total of 2952 test runs are identified and made up of various combinations of targets (fourth column of Table 30 and the target type and target combination matrix shown in Table 29), site conditions, and target travel modes.

Background Noise Signitures

ì

派の肥富

「日本のないたい」

長い

たちやし 時代の時間の うぼう いっとうとう ひんかい しゅうしん かいしゅう

日本に読

いたいいないないであっていたい

Part And International

Statistics of the

essaine Martin and an and a start of the second and the second second second second second second second second

75. Background noise signatures should be collected: (a) on an opportunity basis during the conduct of the previously described tests or enroute to these test areas, or (b) using a small sensor and recorder package at specific isolated noise sources. Signatures should be obtained for all cultural noise sources listed in Table 25 and as many of the natural sources as possible. The sensor systems used should include one triaxis geophone and an acoustic sensor located at ranges of 50, 200, and 1000 m from the noise source. The terrain conditions at each noise measurement area should be described according to the procedures outlined in Reference 3. Noise should be measured for a continuous 10-min segment of each hour of a period of 24 continuous hours. An effort should be made to obtain noise data in more than one terrain condition (perhaps two) from as many of the sources as possible.

REFERENCES

- Benn, B. O., "The Design of Experiments for the Evaluation of Materiel Performance in Worldwide Environments," presented at Twentieth Conference on the Design of Experiments in Army Research, Development and Testing, 23-25 Oct 1974, Fort Belvoir, Va.
- 2. Benn, B. O., "The Design of Terrain-Insensitive Seismic Surveillance Sensors," <u>The Fifth Annual Pittsburgh Modeling and Simulation</u> Conference, 24-26 Apr 1974, Pittsburgh, Pa.
- Benn, B. O. and Smith, P. A., "A Guide for Collecting Scismic, Acoustic, and Magnetic Data for Multiple Uses," Miscellaneous Paper M-75-2, Jan 1975, U. S. Army Engineer Waterways Experiment Station, GE, Vicksburg, Miss.
- Headquarters, Department of the Army, "Ordance Corps Equipment Data Sheets," TM 9-500, Sep 1962, U. S. Government Printing Office, Washington, D. C.
- Headquarters, Department of the Army, "Army Adopted/Other Items Selected for Authorization/List of Reportable Item," SB 700-20, Dec 1974, U. S. Government Printing Office. Washington, D. C.
- 6. U. S. Army Tank-Automotive Command, "Military Standards Characteristice, Vehicle Data Sheets," Aug 1967, U. S. Government Printing Office, Washington, D. C.
- Rula, A. A., Nuttall, C. J., Jr., and Dugoff, H., "Vehicle Mobility Assessment for Project WHEELS Study Group," Technical Report M-73-1, Apr 1975, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 8. U. S. Army Foreign Science and Technology Center, "Foreign Materiel Catalog, FOMCAT," Vol 22, TB 381-5-22, U. S. Government Printing Office, Washington, D. C.
- 9. Headquarters, U. S. Air Force, "Concise Handbook," FTD-HT-23-504-74, 4 Feb 1974, U. S. Government Printing Office, Washington, D. C.
- 10. U. S. Army Foreign Science and Technology Center, "Concise Automobile Manual," FSTC-HT-23-1330-72, AD 748872, 14 Aug 1972, U. S. Government Printing Office, Washington, D. C.
- 11. Anonymous, "Specifications," Aviation Week and Space Technology, Vol 98, No. 12, 19 Mar 1973, pp 113-169.

2.2. FMC Corporation, "Vehicle Data," No. 377, 15 Jan 1964, FMC Corporation, Ordnance Division, San Jose, Calif. アのためのないです。

1

- Departments of the Army and the Air Force, "Military Vehicles (Ordnance Corps Responsibility)," TM 9-2800-1 and TO 19-75A-89, Feb 1953, U. S. Government Printing Office, Washington, D. C.
- Defense Intelligence Agency, "Soviet Armed Forces Medium Tank Battalion," AP-220-3-20-70-INT Sep 1970, U. S. Government Printing Office, Washington, D. C.
- U. S. Army Tank-Automotive Command, "Military Tire and Rim Data Book," 1958-1959, ORD MC-RM2, U. S. Government Printing Office, Washington, D. C.
- Bonvallet, G. L., "Test Results, U. S. Army Ground Vehicle Noise Studies, Yuma Proving Ground," Jan 1972, U. S. Army Tank Automotive Command, Warren, Mich.
- Firer, D. P., et al., "Ground Transport Vehicles (Currant and Projected) - Eurasian Communist Countries," ST-CS-07-280-74, Jan 1974, Foreign Science and Technology Center, Charlottesville, Va.
- 18. Foss, C. F., Jane's Pocket Book of Modern Tanks and Armored Fighting Vehicles, Macmillan, New York, 1967.
- 19. Green, W., The World Guide to Combat Planes, Vol I, Doubleday, Garden City, New York, 1967.
- 20. Hoffschmidt, E. J. and Lantum, W. H., IV, <u>Tank Data 2</u>, Vol II, Proving Grounds Series, WE, Old Greenwich, Conn., 1969.
- 21. Mayer, S. L., et al., "Weapons of the 1973 Israeli-Arab War," 1973, Marshall Cavendish USA Ltd.
- 22. Perrett, B., Fighting Vehicles of the Red Army, ARCO, New York, 1969.
- 23. Swanborough, F. G., <u>Combat Aircraft of the World</u>, Taplinger, New York, 1962.
- 24. , <u>Vertical Flight Aircraft of the World</u>, 3rd ed., Aero Publishers, Inc., Fallbrook, Calif., 1973.
- 25. Taylor, J. W. R., <u>Jane's All The World's Aircraft 1972-1973</u>, McGraw-Hill, New York, 1973.
- 26. <u>Jane's All The World's Aircraft 1973-1974</u>, McGraw-Hill, New York, 1974.

27. U. S. Army Europe and Seventh Army, "Weapons and Equipment East European Communist Armies," USAREUR PAM, No. 30-60-1, Part I, Vol III and IV, and Part II, Vol I, II, and III, 1973, APO, New York.

i.

かん トロッドン

- L

- Wilburn, D. K., Exhaust Configurations Used on Army Ground Vehicles," Technical Report No. 9916 (AD 485277), 2 Sep 1968, U. S. Army Tank-Automotive Command, Warren, Mich.
- 29. Yershov, B. V., et al., "The GAZ-66 Truck, Its Design and Technical Servicing," FSTC-HT-23-1519-72, Jan 1973, Foreign Science and Technology Center, Charlottesville, Va.
- 30. Lundien, J. R., "Terrain Constraints on the Design, Testing, and Deployment of the Gator Mine," (in "reparation), U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 31. Encyclopedia Britannica, Inc., <u>Encyclopedia Britannica</u>, Vol 21, Chicago, 1963.
- 32. 'Ohman, H. L., et al., "Potential Sand and Dust Control," Report ETL-SR-72-1, Aug 1972, U. S. Army Engineer Topographic Laboratories, Fort Belovir, Va.

- U. S. Department of Agriculture, <u>Soil Survey Manual</u>, USDA Handbook No. 18, 1951, Washington, D. C.
- 34. Snead, R. E., <u>Atlas of World Physical Features</u>, John Wiley, New York, 1972.
- 35. Oxford University Press, Inc., Oxford World Atlas, New York, 1973.
- 36. Eyre, S. R., <u>Vegetation and Soils</u>, 2d ed., Aldrine Publishing Co., Chicago, 1968.

เลรียน เสียง 2

Constant Constant and Constant a

ALC: SALE SHALL SH

PLANES-MERSON

<

NAMERAN AND STANDARD STAND STAND STAND STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD

and the second second in the second second

「日本の人」「日本の日本の日本の人」の「日本の人」の

1000

• • •

na and has a second a second be something to be the second to the base of the second state of the second second

te Al

<mark>al</mark> ese te men eta ana de travanta da la la constata da la constata da la constata da la constata da constata da c

Figure 6. Sample locations, Fulda quadrangle

.k

È

3

Figure 7. Sampling template for identifying a mix of background noise sources

น้ำแล้วไปให้สัมพัฒนากระสมปัจจุบันสาวารที่สาวมากลางสาวารที่สาวสาวสาวารที่สาวสาวกรณ์สาวกรณ์สาวารที่สาวสาวารที่สาว

Figure 9. Test layout for multiple-target test program (not to scale)

Table 1

Target Characteristics that Affect Vehicle Seismic

and Acoustic Signatures

Wheeled Ground-Contact Vehicles

Weight (empty)

Payload

Number of wheels

Tire size(s)

Number of tire lugs per wheel

Tire pressure

fread depth (average)

Ground-contact area

Number of teeth in the axle gear in the final drive differential

Final drive differential gear ratio

Engine rpm versus vehicle speed curves for all gears. Vehicle should be loaded and run on level terrain at speeds up to 60 km/hr

Engine model

in and the hash in the second state of the sec

(1) Horsepower

- (2) Number of cylinders
- (3) Number of cycles
- (4) Fuel type
- (5) Cooling type
- (6) Location of exhaust
- (7) Number of blades in cooling fan
- (8) Ratio of fan rpm to engine rpm

Suspension type, i.e. whether the vehicle has:

- (1) Independent suspension
- (2) No suspension, or any combination of independent and no suspension
- (3) Bogie, walking-beam, or any combination of independent, bogie, and walking-beam
- (4) Any combination of (1), (2), and (3)

March Mark 1 . Mark Sport Sport & Stars

(Continued)

(Sheet 1 of 4)

Table 1 (Continued)

Wheeled Ground-Contact Vehicles (Continued)

Weight (kg) of unsprung mass, i.e. the weight of each wheel assembly. For a solid-axle suspension, use one-half weight of each axle assembly; for no suspension, use zero weight

Longitudinal distance(s) (cm) of each wheel center from the center of gravity

Static tire deflection at normal (or noted) tire pressure at combat load Pitch inertia (kg-sec²-cm) of sprung mass about center of gravity

Longitudinal distance(s) (cm) of driver from center of gravity

For each suspension unit (wheel assembly), complete suspension spring force-deflection relations from rebound to full bump

Tracked Ground-Contact Vehicles

Weight (empty)

Payload

(語)というない たいやく しょうしん かい マール・ドローン たいしたい いろう

and a second

我自己的行行 古い酸化

「日本の時間の」と言語がないないで、「ないない」というないで、「ないない」というないで、

Track pitch

Track width

Truck condition, i.e., actual dimensions of track pads, number and location of broken shoes, etc.

Number of track pads on each side in contact with ground

Number of teeth on the track sprocket gear

Number of teeth in the axle gear in the final drive differential

Final drive differential gear ratio

Engine rpm versus vehicle speed curves for all gears. Vehicle should be loaded and run on level terrain at speeds up to 60 km/hr

Engine model

- (1) Horsepower
- (2) Number of cylinders
- (3) Number of cycles
- (4) Fuel type
- (5) Cooling type

(Continued)

(Sheet 2 of 4)

「「「「「「「」」」」

Table 1 (Continued)

	Tracked Ground-Contact Vehicles (Continued)
Engine model	(Continued)
(6) Numb	er of blades in the cooling fan
(7) Rati	o of fan rpm to engine rpm
Suspension t	ype, i.e. whether the vehicle has:
(1) Inde	pendent suspension
(2) No s susp	uspension, or any combination of independent and no ension
(3) Bogi and	e, walking-beam, or any combination of independent, bogie, walking-beam
(4) Any	combination of (1), (2), and (3)
Weight (kg) and one-ha	of unsprung mass, i.e., weight of the road wheel or bogic lf weight of the track
Longitudinal gravity	distance(s) (cm) of each wheel center from the center of
Pitch inerti	a (kg-sec ² -cm) of sprung mass about center of gravity
Longitudinal	distance(s) (cm) of driver from center of gravity
For each sus force-defl	pension unit (wheel assembly), complete suspension spring ection relations from rebound to full bump
For each sus both in jo	pension unit with damping, complete force-velocity relations unce and rebound
The length (beneath th	cm) along the leading portion of the track, measured from e leading road wheel to the foremost part of the track
The approach the leadin	angle (deg) (angle determined by a horizontal line beneath g road wheel and the leading force of the track)
Normal opera	ting track tension (static)
	1
	Rotary-Wing and Fixed Aircraft

Payload

Ľ.

 ϵ

Number of engines

(Continued)

for the contraction of the station of the station of the second station of the

(Sheet 3 of 4)

Table 1 (Concluded)

Rotary-Wing and Fixed Aircraft (Continued)

Engine specifications:

- (1) Type, i.e. turbine or piston engine
- (2) Model

- (3) Horsepower
- (4) Number of cylinders
- (5) Fuel type
- (6) Type of cooling
- (7) Exnaust configuration and location
- (8) Number of fan blades

(Sheet 4 of 4)

		Nomenclature of U. S. Wheeled Vehicles
1.	ML	33. M43E1
2.	MLAL	34. M43E2
3.	M6	35. M44
4.	M20	36. M44A1
5.	1126	37. M44A2
6.	M26A1	38. M44C
7.	M27	39. M45
8.	M27B1	40. M45A1
9.	M34	41. M45A2
10.	M35	42. M45A2G
11.	M35A1	43. M45C
12.	M35A2	44. M46
13.	M35A2C	45. M46A1C
14.	M36	46. M46A2C
15.	M36A1	47. M46C
15.	M36A2	48. M47
17.	M36C	49. M48
18.	M37	50. M48A2
19.	M37B1	51. M49
20.	M38	52. M49A1C
21.	M38A1	53. M49A2C
22.	M38A1C	54. M49C
23.	M38A1D	55. M50
24.	M39	56. M50A1
25.	M40	57. M50A2
26.	M40A2	58. M51
27.	M40A2C	59. M51A1
28.	M40C	60. M51A2
29.	M41	61. M52
30.	M42	62. M52A1
31.	M43	63. M52A2
32.	M43B1	64. M53

Table 2

. M. (Continued)

1

(Sheet 1 of 4)

Table 2 (Continued)

65.	M53B1	99.	M113A1
66.	M54	100.	M114
67.	M54A1	101.	M121
68.	M54A1C	102.	M123
69.	M54A2	103.	M123A1C
70.	M54A2C	104.	M123C
71.	M55	105.	M123D
72.	M55AL	106.	XM123E2
73.	M55A2	107.	M125
74.	M56	108.	M125A1
75.	M56B1	109.	XM125E1
76.	M56C	110.	M133
77.	M57	111.	M135
78.	M58	112.	M139
79.	N59	113.	M139C
80.	M60	114.	XM142
81.	M61	115.	XM145
82.	M61A2	116.	XM147E3
83.	M62	117.	M151
84.	M63	118.	M151A1
85.	M63A2	119.	M151A1C
86.	M63A2C	120.	M151A2
87.	M63C	121.	XM151
88.	M106	122.	XM151E1
89.	M107	123.	XM151E2
90.	M108	124.	XM157
91.	M109	125.	M170
92.	M109A1	126.	XM190
93.	M109A2	127.	XM191
94.	M109A3	128.	M201
95.	M109C	129.	M201B1
9ó.	M1090	130.	M207
97.	M110	131.	M207C
98.	м113	132.	XM207

ALC: NO

(Continued)

(Sheet 2 of 4)

いたいのである

入れた

. .

		_	
133.	M209	167.	M292A1
134.	M211	168.	M292A2
135.	M215	169.	M292A3
136.	M217	170.	M292A4
137.	M217C	171.	M292A5
138.	M220	172.	M328A1
139.	M220C	173.	M342
140.	M220D	174.	M342A2
141.	M221	175.	XM342
142.	M222	176.	M343A2
143.	M246	177.	XM357
144.	M246A1	178.	XM375
145.	M246A2	179.	XM376
146.	M249	180.	XM377
147.	XM249	181.	XM381
148.	M250	182.	XM384
149.	XM250	183.	XM401
150.	M274	184.	XM408
151.	M274A1	185.	XM410
152.	M274A2	186.	M422
153.	M274A3	187.	M422A1
154.	M274A5	188.	M425
155.	M275	189.	M426
156.	M275A1	190.	M427
157.	M275A2	191.	XM434E1
158.	XM282	192.	XM434E2
159.	XM282E2	193.	XM437
160.	XM282E3	194.	XM437E1
161.	M291A1	195.	XM437E2
162.	M291ALD	196.	XM438E2
163.	M291A2	197.	XM443
164.	M291A2C	198.	XM453E1
165.	M291A2D	199.	XM453E2
166.	M292	200.	XM453E3

(Continued)

See.

Table 2 (Continued)

(Sheet 3 of 4)

		Table 2 (Conc	luded)		
201.	XM512	235.	M618	269.	M820A2
202.	XM512E1	236.	M619	270.	M821
203.	XM512E2	237.	M621	271.	M825
204.	XM512E3	238.	M622	272.	M1185A3
205.	XM512E4	239.	M623	273.	V-100
206.	XM520	240.	M624		
207.	XM520E1	241.	M656		
208.	XM521	242.	XM656		
209.	XM523	243.	M708		
210.	XM523E2	244.	M708A1		
!11.	XM531	245.	M711		
212.	M535	246.	M715		
.13.	M543	247.	M718		
214.	M543A1	248.	M718A1		
215.	M543A2	249.	M724		
16.	M548	250.	M725		
17 .	M551	251.	M726		
18.	M553	252.	M746		
19.	XM554	253.	M748A1		
20.	M559	254.	M751A1		
21.	M561	255.	M757		
22.	XM561	256.	M764		
23.	M577	257.	XM791		
24.	M578	258.	M792		
25.	M602	259.	M813		
26.	M607	260.	M813A1		
27.	M609A1	261.	XM813		
28.	M610	262.	M814		
29.	M611	263.	M815		
30.	M611C	264.	M816		
31.	M613	265.	M817		
32.	M614	266.	M818		
33.	M616	267.	M819		
34.	M617	268.	M820		

(Sheet 4 of 4)

Haring and

120.00

Vehicle Code No.	Model No.
1	GAZ(UAZ)-69
2	GAZ-62
3	маг-205
4	KRAZ-214
5	ZIL-157 K
6	ZIL-583
7	GAZ-56
8	ZIL-164
9	MAZ-502
10	UAZ-450D
11	URAL-355M
12	ZIL-131
13	URAL-375
14	URAL-375D
15	KRAZ-222
16	KRAZ-219
17	KAZ-605
18	GAZ-66
19	MAZ-500A
20	UAZ-452D
21	GAZ-53F
22	MAZ-505
23	ZAZ-971
24	ZIL-135
25	MAZ-535A
26	MAZ-543
27	ZIL-E-167
28	MAZ-514
29	BELAZ-548
30	TZ-200
	(Continued)

🗮 monson henisaalliseneeristaanii saaniin mohittaaniin mohittaaniin mohittaaniin henisaan henisaaliin kantaaniin taasii halaan paaniin ta

Table 3

Nomenclature of USSR Wheeled Vehicles

(Sheet 1 of 5)

Vehicle Code No.	Model No.
31	ATS-8-200
32	ATSM-4-157
33	ATZ-3-157
34	ATZ-4-164
35	UAZ-469
36	ZAZ-969
37	ZIL-133
~ 38	BELAZ-540
39	MOAZ-522
40	UMZ-ZIL-151
41	MAZ-503
42	PSG-65/130
43	KRAZ-255B
44	PSG-160
45	GAZ~SAZ-53B
46	NAMI-076
47 ·	TZ-63
48	TZ-150
49	ATSM-4-150
50	ATZ-3-151
51	MZ-51
52	MZ-150
53	MI-964
54	ATZ-3.8-130
55	ATS-26-355M
56	MAZ-200V
57	GAZ-63P
58	KRAZ-221
59	GAZ-53P
60	ZIL-164AN
61	KAZ-606A
62	GAZ-51P
63	MAZ-537
(Continue)	4)

Table 3 (Continued)

(Sheet 2 of 5)

า ในไม่แนะประเทศสาราส์หนึ่งให้หน้าสาราวิจารีการการการการการสาราส์สาราส์ที่สาราส์หน

Secoli da Secola da Cal

「「ないない」

「「「「「「「」」」

Vehicle Code No.	Model No.
64	ZIL-133V
65	KRAZ-258
66	KAZ-608B
67	ZIL-137
68	ZIL-131V
69	MAZ-529
70	URAGAN-8
71	ZIL-157KV
72	ZIL-130V1
73	KAZ-608
74	MAZ-504
75	URAL-3778
76	URAL-375S
77	GAZ-93A
78	KAZ-600AV
79	ZIL-MMZ-585L,585M
80	ZIL-MMZ-555
81	11 AZ-503A
82	GAZ-53B
83	KRAZ-256B
84	MAZ-525
85	MAZ-530
86	BELAZ-548A
87	GAZ-69
88	GAZ-69A
89	GAZ-63
90	GAZ-63A
91	MAZ-501
92	ATS-51A
93	ATSPT-1.9
94	AVV-2
95	ATZ-2.2-51A
96	ATZ-3.8-53A

Table 3 (Continued)

ŕ

(Continued)

Annala Marine Care Carrier State State State State State State

1.4. 91

and the second stands of the second stands

(Sheet 3 of 5)

e Code No.	Model No.
97	ATSM-4-157K
98	ATS-1.9-51A
99	ATS-2.6-355M
100	ATS-2.6-53F
101	ATS-2.9-53F
102	ATS-4.2-53A
L03	ATS-4.2-130
104	MZ-51M
105	ATSPT-1.7
L06 [.]	ATSPT-1.9
107	ATSPT-2.8
108	ATSPT-5.6
109	AVTS-1.7
L10	AVV-2
111	S-9 56
112	GAZ-67B
113	GAZ-46
114	UAZ-450A
L15	UAZ-452A,452E
L16	KMAZ-5410
117	KMAZ-5510
118	KMAZ-53202
119	UAZ-4510
120	MAV (GAZ)-46
121	BAV-485
122	GAZ-51
123	ZIL-150
124	ZIL-151
125	ZIL-137
126	BTR-60P
27	BTR-152

Ċ

Table 3 (Continued)

(Continued)

(Sheet 4 of 5)

and the second se

ちゃうち ちんたいちょう

教会ない

- Carlos -

Vehicle Code No.	Model No.
128	BRDM SCOUT CAR
129	BRDM-2 SCOUT CAR
130	BM-14
131	BM-21
132	BRDM (SNAPPER)
133	BA 64
134	BTJ -40
135	BTR-152VI
136	BTR-60P
137	BRDM
[′] 138	MAZ-535
139	T-111
140	T-138
141	T-1141
142	ARS-12/14
143	DDA-53
144	KRAZ-255
145	от-64
146	OT-65

and the second secon

Table 3 (Concluded)

ľ

10

าะอาศัยสะดอนประกอบปลายังเป็นไห้หมายมากับประการสะสารให้แม่มีในปีที่มีมีการให้มีที่รูปที่ต่อมากการไปสารให้ทำให้ปร

(Sheet 5 of 5)

「「「「「「「「」」」」

Vehicle Code No.	Model No.	
1	т6	
2	T23	
3	T23E3	
4	T25	
5	T48	
6	T 74	
7	M3A3 (light)	
8	M3A3	
9	M3A2	
10	M3A3 (medium)	
11	M3A4	
12	M3A5	
13	M4 (full track)	
14	M8	
15	M10	
16	M48A1	
17	M56	
18	M60	
19	M103	
20	M2	
21	M3	
22	M4 (half track)	
23	LVT1	
24	LVT2	
25	LVTA2	
26	LVTAL	
27	LVTA4	
28	LVTA5	
29	M29	
30	M29C	
31	M76	
(Continued)		

and a manufacture of the state of the second s

المرتجة تشتريه

Ç

Nomenclature of U. S. Tracked Vehicles

Table 4

(Sheet 1 of 4)

1.44

Vehicle Code Nc.	Model No.	
32	M59	
33	M75	
34	T113E2, M113	
35	MK4, LVT4	
36	M51	
37	M74	
38	M88	
39	M41	
40	M41A1	
41	M41A2	
42	M41A3	
43	M47	
44	M48	
45	M48C	
46	M48A2	
47	M48A2C	
48	M5	
49	M5-A1	
50	M5-A2	
51	M5-A3	
52	M5-A4	
53	MK5, LVTA-5	
54	M24	
55	M4A1 (w/75-mm gun)	
56	M4A3 (w/75-mm gun)	
57	T41E1	
58	M4Al (w/76-mm gun)	
59	M4A3 (w/76-mm gun)	
60	M26	
61	M26A1	
62	M46	
63	M46A1	
	(Continued)	

on man in the State of the State of Sta

Mart Canton, marking the Company Martin Antonia Contraction and Contractions

Table 4 (Continued)

<

(Sheet 2 of 4)

Table 4 (Continued)		
Vehicle Code No.	Modal No.	
64	M4 (full track)	
65	M4A3 $(w/105-mm howitzer)$	
66	M45	
67	M8E2	
68	M4	
69	M4A1	
70	M4C	
71	M4AJ.C	
72	м6	
73	T18E1	
74	M32	
75	м39	
76	M2A1	
77	M16	
78	M15A1	
79	M19AL	
80	M18	
81	М36	
82	M36B1	
83	M36B2	
84	M7	
85	M7B1	
86	M37	
87	r106	
88	M40	
89	M41	
90	M43	
91	T46E1	
92	M3A1	
93	M4AL	
94	M21	
95	T16	

1.0

ίų.

Ŕ

nina in the Co

(Continued)

พระบรดกับราวสถาสถาสถาสกับการไปได้ แล้วและการได้ประวัฒนาการแรกการและการไปการการไปการแล้วการการไปการแล้วการการไปก

14 64

Vehicle Code No.	Model No.
96	M60A1
97	M48A3
98 ·	M551
99	M114A1
100	M113A1
101	LVTP-7
102	M42
103	M110
104	M55
105	M107
106	M109
107	M53
108	M44
109	M108
110	M52

Table 4 (Concluded)

(Sheet 4 of 4)

の一方である。

No. of Street, or Stre

でいた。
		_
Vehicle Code No.	Model No.	
1	T54, T55	
2	T-62	
3	BTR	
4	M-1967	
5	2SU-57/2	
6	ZSU-23/4	
7	BM-24	
8	BTU	
9	BAT/M	
10	MTU-54	
11	Mineclearing Tank	
12	K-61	
13	PTS/M	
14	GAZ-47	
15	GAZ-71	
16	K-61	
17	PTS	
18	GT-T	
19	V-1, VITYAZ	
20	AT-L	
21	AT-S	
22	ATS-59	
23	AT-T	
24	т-34	
25	T-54-T	
26	JSU-T-B	
27	JSU-TE	
28	т-54А	
29	JS-3	
30	T10-M	
31	PT76	
	(Continued)	

and the second second

Table	5
-------	---

Nomenclature of USSR Tracked Vehicles

の時間に開催した。

i.

r

1

(Sheet 1 of 3)

สะไปทร่าวมีของที่ที่สร้างการแก่สวดที่มีสร้างสีรายไปส่วนที่หวายที่สวามไปส่วนไปส่วนที่สาม

のないので、「ないない」というないで、

and the second second

Vehicle Code No.	Model No.
32	т54
33	SU-37
34	SU85
35	SU-100
36	JSU-122
37	JSU-152
38	T60
39	T70
40	KW11
41	JS-Z
42	ASU-57
43	ASU-85
44	ZSU-57-2
45	ZSU-23-4
46	BTR-50PK
47 ,	BTR-40
48	M1967
49	AT-P
50	GAS-47
51	T-80
52	PT-76
53	PT-85
54	T-34/76
55	T-34/85
56	T -44
57	T-54
58	T-55
59	T-62
60	T-100
61	KV
62	KV85
63 ·	JSI, II, III
(Cor	ntinued)

Table 5 (Continued)

(Sheet 2 of 3)

an and a second and a state of the second second

生命においていた。

Vehicle Code No.	Model No.
64	T-10
65	SU-76
66	SU-122
67	SU-152
68	BMP-76PB
69	V-1, VITYAZ
70	Carrier Penguin
71	Carrier Utility
72	GT-SM
73	GAZ-71
74	M-1970
75	OT-62B
76	M-70
77	M-1973
78	M-1974
79	0 T -62C

and the second

3

Table 5 (Concluded)

(Sheet 3 of 3)

date the second state of the second

and the

diasta in the local

A STATE OF

South States and States

Table 6)
---------	---

Ć

Vehicle Code No.	Model No.
1	UH-1F
2	нн-1к
3 .	UH-1L
4	UH-1H
5	UH1N
6	AH-1G
7	TH-1L
8	OH-13S
9	AH-1J
10	TH-13J
11	TH-57A
12	OH-58A
13	QH-50D
14	TH-55A
15	OH-6A
16	НИ-43В
17	HH-43F
18	UH-2C
19	HH-2D
20	SH-2D
21	HH-2C
22	SH-2F
23	CH-3B
24	SH-3D
25	CH-3E
26	HH-52A
27	CH-54A
28	CH-54B
29	CH-53A
30	НН-53С

Nomenclature of U. S. Rotary-Wing Aircraft

(Continued)

initional sector in the sector of the sector in the sector is the sector in the sector is t

ann head an dear the transmitted by some

. Martin & Controlling & Martin

Table 6	(Concluded)
---------	-------------

Vehicle Code No.	Model No.
31	CH-53D
32	RH-53D
33	CH-46F
34	CH-47C
35	CH-34C
36	OH-23D

¢

Second State Contraction and Contract States of States o

······································		······································
Code	Design: :ion	NATO Code Name
1	V-12(Mi-12)	Homer
2	Mi-10	Harke
3	Mi-8	Hip
4	Mi6	Hook
5	MI-4	Hound
6	Mi-2	Hoplite
7	Ka-26	Hoodlum
8	Ka-25K	Hormone
9	Ka~20	Harp
10	Ka-18	Hog
	Yak-24	
12	Ka-15	Hen
12	v=_72	
22	NG-22	

Table 7

Nomenclature of USSR Rotary-Wing Aircraft

ないたなかい

「「

Nomenclature of U.	S. Fixed-Wing Aircraft	
		_
Vehicle Code No.	Model No.	
1	АЗВ	
2	A-4F	
3	A-4M	
· 4	A-6A	
5	A-7D	
6	A-7E	
7	AV-8A	
8	A-37B	
9	A-10	
10	B-52F	
11	B-52G	
12	B-52H	
13	B-66D	
14	FB-111A	
15	B-1	
16	F-101B	
17	F-102A	
18	F-104C	
19	F-104G	
20	F-105D	
21	F-106A	
22	F-111F	
23	F-4J	
24	F-4E	
25	F-5A/B	
26	F-5E	
27	F-8J	
28	XFV-12A	
29	F-14A	
30	F-15A	
(Con	tinued)	

should have to strike the distribute a basis of the statistic tradition of the statistic statistic statistics a

Table 8

(Sheet 1 of 4)

As the most of the lot

and the line of the second stand and the second

1648

時間になって

7

÷.,

•	Table 8 (Conti	nued)
Vehicle Code No.	Mo	odel No.
31		P-530
32		YF-16
33		YF-17
34		WU/U-2
35		SR-71
36		RF-46
37		RA-5C
38		RB-57F
39		0-1G
40		0-2A
41		OV-1A
42		OV-10A
43		Y0-3A
44		P-2H
45		P-3C
. 46		S-2E
47		S-3A
48		E-1B
49		E-2B
50		E-3A
51		E-4A
52		C-121G
53		C-130B
54		C-130E
55		нс-130н
56		C-131E
57		KC-135A
58		VC-137C
59		C-140A
. 60		C-141A
61		C-1A
	(Continued)	

なるというでもあるのないというない

n sa kunan sebalah malak kunan manan kana kunan kunan kunan kunan kunan kunan kunan kunan kan kanan kunan kunan

:

(Sheet 2 of 4)

. La fali i subisti da constitui la falla falla falla de la fali de la falla de la falla de la falla de la falla

AND A DESTRUCTION

Vehicle Code No.	Model No.
.62	C2A
63	C-7A
64	C-8A
65	C-5À
66	VC-6B
. 67	C-9A
68	C-9B
69	T-2C
70	T-28D
71	T-29D
72	T-33A
73	т-34в
74	т-37в
75	T-38A
76	T-39A
77	T-41A
78	T-42A
79	TC-4C
80	T-43A
81	U-1A
82	U-3B
83	U-4B
84	U-5A
85	U-6A
86	U-7A
87	U-8D
. 83	U-8F
89	U-10D
90	U-11A
91	HU-16A/E
92	U-17A
	(Continued)

is and the stand

Table 8 (Continued)

(Sheet 3 of 4)

and the part of the state of the

Alexandra Alexandra Carlos

のないまである

Vehicle Code No.	Model No.	
93	U-21A	
94	U-21F	
95	AU-23A	
96	AU-24A	
97	ҮС-119 К	
98	AC-119K	
99	A-6E	
100	VC-11A	
101	X-24B	
102	YE-5	
103	U-9C	
104	U-21A	

Table 8 (Concluded)

ķ

	Nomenclature of USSR Fixed-Wing	Aircraft
Code	Designation	NATO Code Name
L	TU-22	Blinder
2	TU-?	Backfire
3	N-4	Bison
, -+	Tu-95	Bear
5	Tu-16	Badger
6	11-28	Beagle
7	Yak-28	Brewer
8	Be-10	Mallow
9	Be-12	Mail
10	Yak-?	Mandrake
11	Yak-25	Mangrove
12	MiG-25	Voxbat
13	MiG-25	
14	MiG-25	
15	MiG-23	Flogger
16	MiG-?	Faithless
17	MiG-?	Flipper
18	MiC-21	Fishbed G
19	MiG-21	Fishbed F/J/K
20	MiG-21	Fishbed D/H
、 21	MiG-21	Fishbed C
22	MiG-19	Farmer
23	ri1G-17	Fresco
24	Su-J.1	Flagon A
25	Su-?	Flagon B
26	Su-?	Fitter B
27	Su-7	Fitter
28	Su- 9	Fishpot
29	Tu-29 P	Fiddler
30	Yak-?	Freehand
31	Yak-23P	Firebar

٠.

ţ

TATIS

a design of the

ないのない

ないたいでないでいたいであっていたいというという

ीर दिने

(Continued)

Sim Scieles

CodeDesignationNATO Code Name32An-26Coke33An-24VCoke34An-22Coka35An-14Clod36An-12Cub37An-10Cat38M-1539Be-30Cuff40I1-8641I1-62Classic43I1-62M200Classic44I1-18VCoot45I1-14Crate46I1-14NCrate47I1-12Coach48Tu-154ACareless50Tu-144Charger51Tu-134Crusty52Tu-134ACrusty53Tu-104ACaael A56Tu-104BCaael A57Yak-40Coding58Yak-40MCoding59Yak-33Martis61Yak-30Magnum62Yak-18764AN-10Janes	·		
32 An-26 Coke 33 An-24V Coke 34 An-22 Coka 35 An-14 Clod 36 An-12 Cub 37 An-10 Cat 38 M-15 39 Be-30 Cuff 40 I1-86 41 I1-76 Cadid 42 I1-62 Classic 43 I1-62M200 Classic 44 I1-14N Crate 46 I1-14N Crate 47 I1-12 Coach 48 Tu-154A Careless 50 Tu-144 Charger 51 Tu-134A Crusty 52 Tu-104A Camel A 53 Tu-104A Camel A 56 Tu-104B Cading 57 Yak-40 Coding 58 Yak-40M Coding 57 Yak-32 Martis 58 Yak-34 Ma	Code	Designation	NATO Code Name
33An-24VCoke34An-22Coke35An-14Clod36An-12Cub37An-10Cat38M-1539Be-30Cuff40II-8641II-76Candid42II-62Classic43II-62M200Classic44I1-18VCoot45I1-14Crate46I1-14MCrate47I1-12Coach48Tu-154ACareless50Tu-144Charger51Tu-134Crusty52Tu-134Crusty53Tu-104ACakel A56Tu-104BCamel B57Yak-40Coding58Yak-32Mantis61Yak-33Max62Yak-18764AN-10Janes	32	An-26	Coke
34 An-22 Coke 35 An-14 Clod 36 An-12 Cub 37 An-10 Cat 38 M-15 39 Be-30 Cuff 40 I1-86 41 I1-76 Candid 42 I1-62 Classic 43 I1-62M200 Classic 44 I1-18V Coot 45 I1-14 Crate 46 I1-14M Crate 47 I1-12 Coach 48 Tu-154A Careless 49 Tu-154A Careless 50 Tu-134 Crusty 51 Tu-134 Crusty 52 Tu-104A Camel A 55 Tu-104B Camel A 56 Tu-104B Camel A 56 Tu-104B Cadel B 57 Yak-40 Coding 58 Yak-32 Mantis 59 Yak-18T	33	An-24V	Coke
35 An-14 Clod 36 An-12 Cub 37 An-10 Cat 38 N-15 39 Be-30 Cuff 40 I1-86 41 I1-76 Candid 42 I1-62 Classic 43 I1-62M200 Classic 44 I1-18V Coot 45 I1-14 Crate 46 I1-14N Crate 47 I1-12 Coach 48 Tu-154 Careless 49 Tu-154 Careless 50 Tu-134 Crusty 51 Tu-134 Crusty 52 Tu-104A Camel A 53 Tu-104A Camel A 56 Tu-104B Cading 57 Yak-40 Coding 58 Yak-32 Mantis 51 Yak-30 Magnum 52 Yak-187 50 Yak-32 M	34	An-22	Coke
36 An-12 Cub 37 An-10 Cat 38 M-15 39 Be-30 Cuff 40 I1-86 41 I1-76 Candid 42 I1-62 Classic 43 I1-62M200 Classic 44 I1-18V Coot 45 I1-14 Crate 46 I1-14N Crate 47 I1-12 Coach 48 Tu-154 Careless 49 Tu-144 Charger 50 Tu-144 Crusty 51 Tu-134A Crusty 52 Tu-134A Crusty 53 Tu-144 Cleat 54 Tu-144 Cleat 55 Tu-144 Cookpot 54 Tu-144 Cleat 55 Tu-144 Cleat 56 Tu-144 Cleat 56 Tu-104A Camel A 56 Tu-104B Camel A 56	35	An-14	Clod
37An-10Cat38N-1539Be-30Cuff4011-864111-76Candid4211-62Classic4311-62M200Classic4411-18VCoot4511-14Crate4611-14MCrate4711-12Coach48Tu-154ACareless50Tu-144Charger51Tu-134ACrusty52Tu-134ACowpot54Tu-104ACamel A55Tu-104ACamel A56Tu-104BCamel B57Yak-40Coding58Yak-40MCoding59Yak-32Mantis61Yak-30Magnum62Yak-18764AN-10Janes	36	An-12	Cub
38 N-15 39 Be-30 Cuff 40 I1-86 41 I1-76 Candid 42 I1-62 Classic 43 I1-62M200 Classic 44 I1-18V Coot 45 I1-14 Crate 46 I1-14N Crate 47 I1-12 Coach 48 Tu-154 Careless 50 Tu-154A Charger 51 Tu-134 Crusty 52 Tu-134A Crusty 53 Tu-124 Cookpot 54 Tu-104A Camel A 55 Tu-104A Canel A 56 Tu-104B Cading 57 Yak-40 Coding 58 Yak-32 Mantis 59 Yak-32 Mantis 61 Yak-30 Magnum 62 Yak-187 64 AN-10 Janes	37	An-10	Cat
39 Be-30 Cuff 40 11-86 41 11-76 Candid 42 11-62 Classic 43 11-62M200 Classic 44 11-18V Coot 45 11-14 Crate 46 11-14M Crate 47 11-12 Coach 48 Tu-154 Careless 49 Tu-154A Careless 50 Tu-144 Charger 51 Tu-134 Crusty 52 Tu-134A Crusty 53 Tu-124 Cookpot 54 Tu-104A Charger 55 Tu-104A Cauel A 56 Tu-104B Cauel A 57 Yak-40 Coding 58 Yak-18T 30 Yak-32 Mantis 61 Yak-330 Magnum 62 Yak-187 64 AN-10 Janes	38	M-15	
4011-864111-76Candid4211-62Classic4311-62M200Classic4411-18VCoot4511-14MCrate4611-14MCrate4711-12Coach48Tu-154Careless49Tu-144Charger50Tu-144Charger51Tu-134Crusty52Tu-134ACrusty53Tu-144Cleat54Tu-104ACauel A55Tu-104ACauel A56Tu-104BCauel A57Yak-40Coding58Yak-32Mantis61Yak-18764AN-10Janes	39	Be-30	Cuff
41I1-76Candid42I1-62Classic43I1-62M200Classic44I1-18VCoot45I1-14Crate46I1-14MCrate47I1-12Coach48Tu-154Careless49Tu-144Charger50Tu-134Crusty52Tu-134ACrusty53Tu-124Cookpot54Tu-104ACamel A55Tu-104ACamel A56Tu-104BCading57Yak-40Coding58Yak-32Mantis61Yak-30Magnum62Yak-18764AN-10Janes	40	11- 86	
42 I1-62 Classic 43 I1-62M200 Classic 44 I1-18V Coot 45 I1-14 Crate 46 I1-14M Crate 47 I1-12 Coach 48 Tu-154 Careless 49 Tu-154A Careless 50 Tu-134 Crusty 51 Tu-134 Crusty 52 Tu-134A Crusty 53 Tu-144 Cleat 54 Tu-144 Cleat 55 Tu-144 Cookpot 54 Tu-144 Cleat 55 Tu-144 Cleat 54 Tu-144 Cleat 55 Tu-104A Cauel A 56 Tu-104B Cauel A 57 Yak-40 Coding 58 Yak-40M Coding 59 Yak-32 Mantis 61 Yak-30 Magnum 62 Yak-183 Max 63 Yak-183?	41	I1 -76	Candid
43I1-62M200Classic44I1-18VCoot45I1-14Crate46I1-14MCrate47I1-12Coach48Tu-154Careless49Tu-154ACareless50Tu-134ACharger51Tu-124Cookpot52Tu-134ACrusty53Tu-144Cleat54Tu-114Cleat55Tu-104ACauel A56Tu-104BCading57Yak-40Coding58Yak-18T60Yak-32Mantis61Yak-18AMaxu62Yak-18AMaxu63Yak-18Y64AN-10Janes	42	I1-62	Classic
44I1-18VCoot45I1-14Crate46I1-14MCrate47I1-12Coach48Tu-154Careless49Tu-154ACareless50Tu-134Charger51Tu-134ACrusty52Tu-134ACrusty53Tu-124Cookpot54Tu-104ACleat55Tu-104ACamel A56Tu-104BCamel B57Yak-40Coding58Yak-18T30Yak-32Mantis61Yak-18AMax62Yak-18AMax63Yak-18Y64AN-10Janes	43	11-62M200	Classic
45I1-14Crate46I1-14MCrate47I1-12Coach48Tu-154Careless49Tu-154ACareless50Tu-144Charger51Tu-134ACrusty52Tu-124Cookpot54Tu-104ACleat55Tu-104ACamel A56Tu-104BCamel A57Yak-40Coding58Yak-40MCoding59Yak-18T30Yak-32Mantis61Yak-18AMax62Yak-18AMax63Yak-18Y64AN-10Janes	44	I1-18V	Coot
46 11-14M Crate 47 11-12 Coach 48 Tu-154A Careless 49 Tu-154A Careless 50 Tu-144 Charger 51 Tu-134A Crusty 52 Tu-134A Cookpot 53 Tu-124 Cookpot 54 Tu-104A Cleat 55 Tu-104A Camel A 56 Tu-104B Cading 57 Yak-40 Coding 58 Yak-40M Coding 59 Yak-18T 30 Yak-32 Mantis 61 Yak-182 Magnum 62 Yak-182 64 AN-10 Janes	45	I1-14	Crate
47I1-12Coach48Tu-154Careless49Tu-154ACareless50Tu-144Charger51Tu-134Crusty52Tu-134ACrusty53Tu-114Cleat54Tu-104ACamel A55Tu-104BCading57Yak-40Coding58Yak-18T30Yak-32Mantis61Yak-183Max62Yak-18364AN-10Janes	46	11-14 M	Crate
48 Tu-154 Careless 49 Tu-154A Careless 50 Tu-144 Charger 51 Tu-134 Crusty 52 Tu-134A Crusty 53 Tu-124 Cookpot 54 Tu-114 Cleat 55 Tu-104A Camel A 56 Tu-104B Cading 57 Yak-40M Coding 58 Yak-40M Coding 59 Yak-18T 30 Yak-32 Mantis 61 Yak-18A Max 62 Yak-18A Max 63 Yak-18? 64 AN-10 Janes	47	11-12	Coach
49 Tu-154A Caraless 50 Tu-144 Charger 51 Tu-134 Crusty 52 Tu-134A Crusty 53 Tu-124 Cookpot 54 Tu-104A Cleat 55 Tu-104A Camel A 56 Tu-104B Cadel B 57 Yak-40 Coding 58 Yak-40M Coding 59 Yak-18T 30 Yak-32 Mantis 61 Yak-18A Magnum 62 Yak-18A Max 63 Yak-18? 64 AN-10 Janes	48	Tu-154	Careless
50 Tu-144 Charger 51 Tu-134A Crusty 52 Tu-134A Crusty 53 Tu-124 Cookpot 54 Tu-114 Cleat 55 Tu-104A Camel A 56 Tu-104B Cadel B 57 Yak-40 Coding 58 Yak-40M Coding 59 Yak-18T 30 Yak-32 Mantis 61 Yak-30 Magnum 62 Yak-18A Max 63 Yak-18? 64 AN-10 Janes	49	Tu-154A	Careless
51 Tu-134 Crusty 52 Tu-134A Crusty 53 Tu-124 Cookpot 54 Tu-114 Cleat 55 Tu-104A Camel A 56 Tu-104B Camel B 57 Yak-40 Coding 58 Yak-40M Coding 59 Yak-18T 30 Yak-32 Mantis 61 Yak-18A Max 62 Yak-18? 64 AN-10 Janes	50	Tu-144	Charger
52 Tu-134A Grusty 53 Tu-124 Gookpot 54 Tu-114 Cleat 55 Tu-104A Gamel A 56 Tu-104B Gamel B 57 Yak-40 Coding 58 Yak-40M Coding 59 Yak-18T 30 Yak-32 Mantis 61 Yak-18A Magnum 62 Yak-18A Max 63 Yak-18? 64 AN-10 Janes	51	Tu-134	Crusty
53 Tu-124 Cookpot 54 Tu-114 Cleat 55 Tu-104A Camel A 56 Tu-104B Camel B 57 Yak-40 Coding 58 Yak-40M Coding 59 Yak-18T 30 Yak-32 Mantis 61 Yak-30 Magnum 62 Yak-18X Max 63 Yak-18? 64 AN-10 Janes	52	Tu-134A	Crusty
54 Tu-114 Cleat 55 Tu-104Λ Camel A 56 Tu-104B Camel B 57 Yak-40 Coding 58 Yak-40M Coding 59 Yak-18T 30 Yak-32 Mantis 61 Yak-30 Magnum 62 Yak-18X Max 63 Yak-18? 64 ΛΝ-10 Janes	53	Tu-124	Cookpot
55 Tu-104Λ Camel A 56 Tu-104B Camel B 57 Yak-40 Coding 58 Yak-40M Coding 59 Yak-18T 30 Yak-32 Mantis 61 Yak-18A Max 62 Yak-18? 63 Yak-18? 64 ΛΝ-10 Janes	54	Tu-114	Cleat
56 Tu-104B Camel B 57 Yak-40 Coding 58 Yak-40M Coding 59 Yak-18T 30 Yak-32 Mantis 61 Yak-30 Magnum 62 Yak-18X 63 Yak-18Y 64 AN-10 Janes	55	$Tu-104\Lambda$	Camel A
57 Yak-40 Coding 58 Yak-40M Coding 59 Yak-18T 30 Yak-32 Mantis 61 Yak-30 Magnum 62 Yak-18X Max 63 Yak-18? 64 AN-10 Janes	56	Tu-104B	Camel B
58 Yak-40M Coding 59 Yak-18T 50 Yak-32 Mantis 61 Yak-30 Magnum 62 Yak-18A Max 63 Yak-18? 64 AN-10 Janes	57	Yak-40	Coding
59 Yak-18T 30 Yak-32 Mantis 61 Yak-30 Magnum 62 Yak-18A Max 63 Yak-18? 64 AN-10 Janes	58	Yak-40M	Coding
30 Yak-32 Mantis 61 Yak-30 Magnum 62 Yak-18A Max 63 Yak-18? 64 AN-10 Janes	59	Yak-18T	
61 Yak-30 Magnum 62 Yak-18A Max 63 Yak-18? 64 AN-10 Janes	<u>ن</u> 0	Yak-32	Mantis
62 Yak-18A Max 63 Yak-18? 64 AN-10 Janes	61	Yak-30	Magnum
63 Yak-18? 64 AN-10 Janes	62	Yak-18A	Max
64 AN-10 Janes	63	Yak-18?	
	64	AN-10	Janes
65 BE-30 Janes	65	BE-30	Janes

Table 9 (Concluded)

Ç

通知者

1

「日本のため」

Acres

. Al 2010 South Aller to Conduct the States of Constant States and Aller States and Aller States and Aller Stat

Table 10

Vehicle Parameter Codes

Wheeled Vehicles

ţ

Weight, kg

Class	Class Range
3	0-2 000
2	>2 000-4000
3	>40 00-5500
4	>5500-8000
5	>8000-10,000
6	>10.000

Number of Wheels Per Side

<u>Class</u>	No. of Wheels Per Side
1	2
2	3
3	4

<u>Tire Size</u>

<u>Class</u> 1

関係がにない

七間高重なな

特別の目的な時間の時代の見

j,

A11

Suspension

Class	Туре	
1	Semielliptical (IS)	
	Timken-Detroit #2034	
	Timken-Detroit SFD-375-A-1	
	Semielliptical; inverted	
	Hotchkies Drive; 10871261	
	Bogie Model SWD-321	
	Bogie Model SWD-322	
	Bogie Model GMC	
	Leaf springs	
	Bogie Model FWD (Spel)	
	Bogie Model SFD 4600	

(Continued)

M nonnerskie warden warde

(Sheet 1 of 3)

aélt tak

and the contract for a filling

Class	Туре
	Bogie Model Rockwell STD
	Bogie Model KENW BM 2150-1
2	Civil
3	Air shock absorbers, double acting
4	Torsion bar
5	Solid mount walking beam
6	No suspension
	Horsepower
<u>Class</u>	
1	All
	Fuel Type
<u>Class</u>	Type Fuel
1	Gasoline
2	Diesel
3	Multifuel
<u>c</u>	Coolant Type
Class	Type Cooling
1	Air
2	Liquid

(Continued)

(Sheet 2 of 3)

のない。

Sec. Sec.

J

P.

Table 10 (Concluded)

Tracked Vehicles

Weight, kg

Class	Class Range
1	0- -9999
2	10,000-19,999
3	20,000-29,999
4	30,000-39,999
5	>40,000

Horsepower

<u>Class</u>	Class Range
1	0-400
2	>400

L'AND

Fuel Type

<u>Class</u>	Type Fuel
1	Gasoline
2	Diesel
3	Multifuel

มสมบัตร เองประกันของเป็นไฟส์ อาจไฟกันประสุดิจตัว อย่างสามหรือไปได้ที่ <mark>ไม่สุดกระจำหนังการการใหญ่ไปสุดจากไฟ ไป</mark>สม

(Sheet 3 of 3)

のないのであってい

Table 11

32

いた。これにある。それになる。それに、これに、これに、これに、それに、これに、たいたい、これになった。これになった。これになった。これになった。1990年代の1990年代

.

Ċ

: . : :

Comparison of U. S. and Foreign Vehicles

11105
2
541
11
80
75
82
1,3
01.51
1,52
1,53
1,54
1,67
1,85
2,17
2,2(
2,31
л С
5. 0
3,03
3,03
3,20
3,47
3,86
., <mark>г</mark>

And the second second

(Sheet 1 of 6)

Duals considered as one wheel.

*

語言ではない

ゆきと記載

総合法第日の

U. S. besited Mailog Unset Foreign Real Interest Mailog Total Foreign Total Foreign <thtotal Foreign Total Foreign</thtotal 	Proposed				No. of	Wheels				£,, ○]	
Minelad (Continued) Minelad (Continued) GAT-53Y 2,950 6 2 7,50-20 Semielliptic 80 Gas GAT-93H 3,000 6 2 7,50-20 Semielliptic 80 Gas GAT-63H 3,300 4 2 10.00-18 70	U. S. Analog	Desired Foreign	Other Foreign	Weight kg	Total	rer Side	Tire Size	Suspension	power	Туре	Type
CAVE-537 2,950 6 2 8.25-20 Semielliptic 80 Gas Liquid GAVE-63A 3,440 4 2 7.000 6 2 7.50-20 70 </td <td></td> <td></td> <td></td> <td></td> <td>Wheeled</td> <td>(Contin</td> <td>ued)</td> <td></td> <td></td> <td></td> <td></td>					Wheeled	(Contin	ued)				
$ \begin{array}{cccccc} & & & & & & & & & & & & & & & & $			GAZ-53F	2,950	9	. ∾	8.25-20	Semielliptic	80	Gas	Liquid
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			GAZ-93A	3,000	Ś	2	7.50-20		20		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			GAZ-63	3,200	t,	ŝ	10.00-18		70		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			URAL-355M	3,360	9	Q	8.25-20		95		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			GAZ-63A	3,440	†	ଧ	10.00-18		70		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			GAZ-SAZ-53B	3,750	†	~	8.25-20		115		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			GAZ-53B	3,750	9	2	8.25-20		115		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			TZ-63	3,890	t,	~≀	9.75-18		70		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			KAZ-608	1,000	9	CJ	9.00-20		150		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			GAZ-51P	2,485	υī	m	7.50-20		70		
AVV-2 $7,50-20$ 70 $M46C$ $MV-2$ $2,900$ 6 2 $7,50-20$ 115 $M46C$ $MTZ-2.2-5LA$ $2,900$ 6 2 $7,50-20$ 116 $M35$ $5,570$ 10 3 $9,00-20$ 1146 $M19$ $M49$ $M49$ 10 3 $9,00-20$ 1146 $M49C$ $M55$ 10 3 $9,00-20$ 1146 $M35A1$ $6,118$ 10 3 $9,00-20$ 1146 $M49C$ $M49C$ $6,123$ 10 3 $9,00-20$ 1146 $M56$ $M56$ 10 3 $9,00-20$ 1146 $M217$ $M217$ 10 3 $9,00-20$ 1146 $M26A2$ $M264$ 10 3 $9,00-20$ 1146 $M217$ $M217$ 10 3 $9,00-20$ 1146 $M26A2$ $M264$ 10 3 $9,00-20$ 1146 $M26A2$ $M264$ 10 3 $9,00-20$ 1146			GAZ-62	2,570	ţ,	CJ	11.00-16		80		
M46C ATZ-2.2-51A 2,904 6 2 7.50-20 115 M211 5,570 10 3 9.00-20 146 M35A1 M35A1 6,078 10 3 9.00-20 146 M35A1 M35A1 M35A1 6,078 10 3 9.00-20 146 M36A M35A1 6,078 10 3 9.00-20 146 M36A M35A1 6,118 10 3 9.00-20 146 M36A M35A2 6,118 10 3 9.00-20 146 M36A M36A 3 9.00-20 146 146 M36A M217 5,504 10 3 9.00-20 146 M36A1 M36A1 M36A1 3 9.00-20 146 146 M36A2 6,564 10 3 9.00-20 146 146 M36A2 M36A1 3 9.00-20 146 146 146 146 146 146 146 146 146 146 146			AVV-2	2,900	ţ,	2	7.50-20		70		
M46C 5,570 10 3 9.00-20 146 M35A1 M35A1 M211 5,653 10 3 9.00-20 146 M35A1 M35A1 M35A1 M35A1 10 3 9.00-20 146 M49C M36 M36 10 3 9.00-20 146 M49C M36 M36 10 3 9.00-20 146 M36 M217 0 3 9.00-20 146 M217 M217 3 9.00-20 146 145 M36 M216 3 9.00-20 146 145 M217 M217 M216 3 9.00-20 145 M36 M216 M21 M216 10 3 9.00-20			ATZ-2.2-51A	2,904	9	N	7.50-20		115		
M211 M211 M211 M211 M211 M211 M214 M214	M46C			5,570	10	ቦገ	9.00-20		146		
M211 5,973 10 3 9.00-20 145 M35A1 M35A1 6,078 10 3 9.00-20 146 M35A1 M49 6,118 10 3 9.00-20 146 M49 M36 6,118 10 3 9.00-20 146 M49 M36 6,118 10 3 9.00-20 146 M36 M35A2C 6,123 10 3 9.00-20 146 M35A2C M35A2 6,126 10 3 9.00-20 146 M35A2C M35A2 M35A2 100 3 9.00-20 146 M35A1 M217 6,578 10 3 9.00-20 145 M217 M217 5,666 10 3 9.00-20 145 M215 M216 10 3 9.00-20 145 M215 M216 10 3 9.00-20 145 M36A1 6,626 10 3 9.00-20 145 M36A2 6,626 10 <td>M35</td> <td></td> <td></td> <td>5,653</td> <td>10</td> <td>m</td> <td>9.00-20</td> <td></td> <td>146</td> <td></td> <td></td>	M35			5,653	10	m	9.00-20		146		
M35A1 6,078 10 3 9.00-20 146 M49C M49C 10 3 9.00-20 146 M49C M49C 6,118 10 3 9.00-20 146 M36 M35A2 M35A2 10 3 9.00-20 146 M35A2 M35A2 0.020 10 3 9.00-20 146 M35A2 M35A2 0.022 146 146 146 M217 M59 0 3 9.00-20 146 M217 M517 10 3 9.00-20 146 M217 M217 0 9.00-20 146 145 M217 M217 3 9.00-20 146 145 M217 M215 10 3 9.00-20 145 M217 M216 10 3 9.00-20 146 M217 M215 10 3 9.00-20 145 M36A1 M36A2 3 9.00-20 145 145	MZII			5,973	IO	m	9.00-20		145		
M49 M49 M49C M49C M49C M49C M46 6,118 10 3 9.00-20 146 M35 6,123 10 3 9.00-20 146 M35 6,196 10 3 9.00-20 146 M35A2C 6,196 10 3 9.00-20 146 M35A2C 6,504 10 3 9.00-20 146 M217 6,504 10 3 9.00-20 145 M217 6,5504 10 3 9.00-20 145 M217 M217 6,558 10 3 9.00-20 145 M217 M216 10 3 9.00-20 145 145 M2642 10 3 9.00-20 145 145<	M35A1			6.078	10	m	9.00-20		146	<u> </u>	
M49C 0.118 10 3 9.00-20 146 M36 6,123 10 3 9.00-20 146 M35A2C 6,196 10 3 9.00-20 146 M59 6,504 10 3 9.00-20 146 M217 6,504 10 3 9.00-20 145 M217 6,558 10 3 9.00-20 145 M217 6,558 10 3 9.00-20 145 M217 6,626 10 3 9.00-20 145 M217 0.020 145 145 145 M26A1 6,626 10 3 9.00-20 146	0 TN			6,118	10	ო	9.00-20		146		
M36 M36 10 3 9.00-20 146 M35A2C 6,196 10 3 9.00-20 146 M59 6,372 10 3 9.00-20 146 M59 6,504 10 3 9.00-20 145 M217 6,504 10 3 9.00-20 145 M217 6,558 10 3 9.00-20 145 M217 6,558 10 3 9.00-20 145 M217 6,626 10 3 9.00-20 145 M217 6,626 10 3 9.00-20 145 M36A1 6,626 10 3 9.00-20 146	M49C			6,118	10	m	9.00-20		146		
M35A2C 6,196 10 3 9.00-20 146 M59 6,372 10 3 9.00-20 146 M517 6,504 10 3 9.00-20 145 M217 6,504 10 3 9.00-20 145 M217 6,558 10 3 9.00-20 145 M217 6,558 10 3 9.00-20 145 M217 6,626 10 3 9.00-20 145 M36A1 6,626 10 3 9.00-20 146	M36			6,123	IO	m	9.00-20		146		
MS9 6,372 10 9.00-20 146 MS17 6,504 10 3 9.00-20 145 M217 6,554 10 3 9.00-20 145 M217 6,558 10 3 9.00-20 145 M217 6,558 10 3 9.00-20 145 M217 6,626 10 3 9.00-20 146 M36A1 6,626 10 3 9.00-20 146	M35A2C			6,196	JO	m	9.00-20		146		
M217 6,504 10 3 9.00-20 145 M217c 6,558 10 3 9.00-20 145 M215 6,558 10 3 9.00-20 145 M215 6,558 10 3 9.00-20 145 M26A1 6,626 10 3 9.00-20 146 M36A2 6,626 10 3 9.00-20 146	M59			6,372	10	٦	9.00-20		146	<u> </u>	
M217c 6,504 10 3 9.00-20 145 M217c 6,558 10 3 9.00-20 145 M26A1 6,626 10 3 9.00-20 146 M36A2 6,626 10 3 9.00-20 146	MZIT			6,504	TO	ŝ	9.00-20		145		
M215 6,558 10 3 9.00-20 145 M36A1 6,626 10 3 9.00-20 146 M36A2 6,626 10 3 9.00-20 146	M217C			6.504	10	m	9.00-20		145		
M36A1 6,626 10 3 9.00-20 146 1 M36A2 6,626 10 3 9.00-20 146	NO15			6,558	IO	m	9.00-20		145		
M36A2 6,626 10 3 9.00-20 T 146 T T	M36A1			6,626	10	m	9.00-20		146		
	M36A2			6,626	10	m	9.00-20	*	146	-	•

¥,

No. In

(Sheet 2 of 6)

2011 Souther in the bound the good and the first the bound by

Ċ,

	Coclant	adkt		Liguid																						~~~		+
	Fuel	TYPE		Gas					•	Multi				+	Gas		<u> </u>		:									+
	Horse-	power		146	146	224	224	224	224	140	140	140	140	210	92	112	112	109 1	150	150	220	104	220	104	180	180	180	92
		ouspension		Semielliptic		•																						-
		Tre Size	ied)	<u>9</u> .00-20	9.00-20	11.00-20	14.00-20	11.00-20	11.00-20	9.00-20	9.00-20	9.00-20	9.00-20	11.00-20	8.25-20	12.00-18	12.00-18	12.00-18	12.00-20	12.00-20	9.00-20	12.00-18	9.00-20	12.00-18	21.00-28	14.00-20	14.00-20	8.25-20
Wheels	Per	Slae	(Contin	m	m	m	m	m	m	(۲)	Υ	ŝ	m	m	m	ŝ	m	m	m	m	m	m	ε	ŝ	m	m	m	ŕ
No. of	- - -	Total	Theeled	10	10	10	9	10	01	0 r	01	ΟŢ	10	JO	10	9	9	9	9	9	10	9	10	9	9	9	9	10
	Weight	КĜ	14	6,726	6,887	7,613	7,631	7,661	7,874	6,404	6, 404	6,633	6,633	7,720	5,580	5,700	5,800	6,135	6,460	6,225	6,200	6,250	6,350	6,700	6,800	6,830	7,500	7.625
	Other	Foreign																			ZIL-133	ATSM-4-157	ZIL-133V	ATZ-3-157	ZIL-E-167	URAL-377S	URAL-375S	17-211-151
	Desireā -	Foreign													ZII-151	ZIL-157KV	ZIL-157K	ARS-12/14	ZIL-131	ZIL-131V								
Proposeá	ц. s.	Anelog		M36C	M50	M40	M39	M40A2	T9W	M50Al	M50A2	M-SALC	M4 9A2C	MÉLAZ														

1. Andreast Managerinia

100.00

aleghillis : 3³

(Sheet 3 of 6)

(Continued)

Proposed			110:22+	No. of	Wheels			0 0 1 1 1 1	لم, لع ا	Coolant
C. J. Analog	Pestrea Foreign	ouner Foreign	Kg Kg	Total	Side	Tire Size	Suspension	power	Type	Type
				Wheled	(Contin	leà)				
		ATZ-3-151	6,700	10	m	8.25-20	Semielliptic	92	Gas	Liquid
ié 30			8,161	TO	m	12.00-20		224	-	
I63			8,263	IO	ŝ	11.00-20		224		
141			8,672	IO	m	14.00-20		724		
<u>п</u> 08			8,788	TO	m	9.00-20		146	•	
16342C			8,060	10	m	12.00-20		210	Multi	
52A2			8,092	0.1	m	11.00-20		210		.
163A2			8,123	10	m	11.00-20		210		
CT OA2C			8,640	TO	m	11.00-20		210		
th OC			8,686	10	ŝ	11.00-20		210		
54A2			8,915	JO	m	11.00-20		210		
813			9,736	10	m	11.00-20		250		
5142			9,942	10	m	11.00-20		210	*	
L.	BTR-152V1		8,119	9	m	12.00-18		0TT	Gas	
	BTR-152		8,368	Ś	m	12.00-18		110		
	URAL-375		8,400	6	ς (14.00-20		180		
		URAL-375D	8,400	9	ŝ	14.00-20		180	*	
		MAZ-514	8,700	IO	m	11.00-22		180	Diesel	
		KRAZ-258	9,680	IO	m	12.00-20		240	Diesel	
125			14,765	10	m	14.00-24		297	Gas	
	KRAZ-214		12,300	9	m	15.00-20		205	Diesel	
	KRAZ-255B		11,950	9	m	15.00-20		240		
	KRAZ-256B		11,400	10	m	12.00-20	*	215		
		NAMI-076	19,000	6	m		-	ļ		
		KRAZ-219	11,300	IO	m	12.00-20	Semielliptic	180		
		KRAZ-222	12,200	10	m	12.00-20	Semielliptic	180	•	*
-100			7,370	7†	2	No data	No data	191	Gas	No data
			•	(Con	tinued)					
									(Sheet	4 OI 0)

Y

With M. Hales 125

大学の語が少しの思想になった。

Ć

se- Fuel Coolant er Type Type) Diesel Liquid) Gas Liquid) Gas Liquid) Gas Liquid	o Gas Air 5 Gas Liquid) Gas/ diesel	9 Gas/	diesel	t Gas) Diesel Liquid	D No data	D No data	D No data	D Liquid		· · · · · · · · · · · · · · · · · · ·					
Hors Suspension powe		No data 100 Semielliptic 140 Semielliptic 80		Not used 160		300	500			58	13(28(58(540	300	30	58(540		1	
Tire Size	nued)	12.00-18 13.00-18 9.75-18		N/A																*	
No. of Wheels Per Total Side	Wheeled (Conti	ש מיט די בי	Tracked	Not used																	
Weight kg		5,535 6,930 4,808		3,467	5 , 500 3 , 350	15,276	10 . 670		10,600	10,069 10,069	0 548	10.000	10,000	14,500	15,000	16,390	14,000	14,000	14,000	12,500	
Other Foreign																				BMP-2	
sed 3. Desired 3. Foreign		0T-65 BRDM-2 BTR-1:0			ASII- 57				٩	796 IM	. гух		RMP-76PB	BTR-50PK	0T-62B	0T-62C	PT-76	ZSU23-4	ASU-85		
Propos U. S Analo				911W	M76	M551	51 LM		M132	JJCW											

1. maple

34

81.1

Table 11 (Concluded)

onthat the second

 $\langle \cdot \rangle$

Proposed II S	Decired	0+ 7 2 4 2 4	+ Y + F - 11	IIO. Of	Wheels			, Horse	[ອາເສ	Coolant
Analog	Foreign	Foreign	2 19 19 19 19	Intel	Side	Tire Size	Suspension	power	Type	Type
				Tracked	(Cantin	ueá)				
0017			21,274	lot u	seà	N/A	itte trea	240	Diesel	Liquid
515			27,324					105		
0111			25,740					1405 1	_	
ME 05			20,636					40万		
60 IN			23,082					405		•••
	eu-85		29,600					500	_, ·	
	ZSU-57-2		28,100				- <u>-</u>	520		
	50-100		31,600					005		
		N36B2	29,900					U L		*
XLBAIE2			45 , 760					750		£≛r
1100 1100			44,580					750		Air
	1-10		50,000					700		Liquid
		J3-2	46,300					650		Liquid
		JS-3	45 , 800					650		Liquid
		·	EO 000	+		-	-	ς ΥςΩ	+	Lionid

(Sheet 6 of 6)

のためであるとないの はないない とうかくないないないない いいち きんちかん ちょうちょう しょうしゅう

State of the state

Wheeled Vehicles	Tracked Vehicles
Trucks	APC
ZAZ-971	
ZIL-157K/157KV	M1967
JRAL-375	K61
JAZ/GAZ-69	M1 970
GAZ-66	BMP-76PB
JAZ-63	BTR-50PK
ZIL-1.30V1	OT-62B
ZTL-J.31/131V	OT-62C
ZIL -151	
ľ-111	Tanks
r-141	
I-138	PT-76
JAZ-450D	T54 or T55
ARS-12/14	т62
KRAZ-214/255/255B/256B	T10
	М7О
APC	•
	Weapons
BTR-152	
BTR-60P	ASU-57
BRDM-2	ASU-85
BTR-152V1	SU-85
BTR-40	SU-100
OT-65	ZSU-23-4
07-64	ZSU~57-2
	M1974
	M1 073

			Table	e 12			
Roreign	Ground	Vehicles	from	Which	Signatures	970	Destre

Ċ

eastration

Rotary-Wing	Fixed-Wing
Mi-8	Tu-22
Mi-2	Tu- 95
Ka-18	Tu-16
Ка-25К	Be-12
Ka-26	Yak-2 5
Mi-12	MiG-25
Mi-10	MiG-21
Mi-6	An-22
Mi-4	1-7 6
Ka-15	Tu-144
Ka-22	
Yak-24	

ŀ

Table 13 Foreign Aircraft from Which Signatures are Desired

an an dension of 2002) submitted in the distance of the distance of the second

のなどのないないである。

and the second second

the first in the start of the first

State of

		Compar	ison of U.	S. and Fo	reign Airc	raft			
Proposed U.S. Analog CH-46F	Desired Foreign Aircraft Mi-8	Proposed U.S. Analog UH-IN	Desired Foreign Aircraft <u>Mi-Z</u>	Proposed U. S. Analog TH-57A	Desired Foreign Aircraft Ka-18	Proposed U. S. Analog CH-3B	Desired Foreign Aircraft Ka-25K	Proposed U.S. Analog HR-IK	Desired Foreign Aircraft Ka-26
			Ro	tary-Wing					
6044	6,816	2517	2424	695		4393	4400	2349	2085
	4,000		800				2000	1759	1065

		T	ble	14		
Comparison	of	υ,	8.	and	Foreign	Aircraft

ade a la finista carra la marca da marchiter de la construcción de la construcción de la construcción de la con

Sec. No.

教育に応

Wt, empty, kg	6044	6,816	2517	2424	695		4323	4400	2349	2085
Payload, kg		4,000		800				2000	1759	1065
No. rotors	2	l	1	l	1	2	l	2	1	2
No. engines	2	2	2	2	1	1	2 .	2	l	2
Horsepower	1400	1,500	900	437		-	1400	900	1400	325
Type engine	Turbine	Turbine	Turbine	Turbine	Turbine	~-	Turbine	Turbine	Turbine	Piston
Wt, gross, kg	9360 `	11,880	4725	3750	1305	1300	9225	7045	3825	2970
		ı								

				USSR			
	Mi-12	Mi-10	Mi-6	<u>Mi-4</u>	Ka-15	Ka-22	Yak-24
			Rotary-	Wing			
Wt, empty, kg		27,300	27,240				
Payload, kg	30,000	15,000	12,000	1,740			
No. rotors	2	1	1	1	2	2	2
No. engines	4	2	2	1	-		
Horsepower	6,500	5,500	5,500	1,700			
Type engine	Turbine	Turbine	Turbine	Piston			
Wu, gross, kg	103,950	43,113	42,170	38,220			15,874

						ISSR				
	1 Tu-22	<u>1</u> <u>Tu-95</u>	5 <u>Tu-16</u>	9 <u>Be-12</u>	11 <u>Yak-25</u>	12 <u>M10-25</u>	18 <u>M1G-21</u>	34 An-22	41 11-76	50 Tu-144
				Ē	ixed-Wing					
Wt, gross, kg	78,750	148,500	67,500	31,500	13,500	28,030	7650	225,000	159,300	177,750
No. engines	2	4	2	2	2	2	1	4	14	14
Thrust, kg	11,700		8,775		3,375		5400		11,385	17,361
llorsepower		12,000		4,000				15,000		

13

olisik lizhar samere

alatik

Siska Med and a star

Sugar Sugar

Table 15

.....

:

ورائد المحادث

Terrain Matrix

1.			c. Ko. Gualitative Terrain Descriptors	1.10 Recently cultivated (loosened) top soil overlying moist loam 1.20 Recently cultivated (loosened) top soil overlying slightly sandy or gravelly soft clay 1.30 Loose cohesionless top soil overlying dry sand 1.40 Organic saturated clay overlying slightly sandy or gravelly soft clay	 2.10 Recently cultivated (loosened) top soil overlying moist sandy or gravelly loam 2.20 Recently cultivated (loosened) top soil overlying medium clay 2.30 Loose cohesionless top soil overlying dry gravel 2.40 Organic saturated clay overlying medium clay 	3.10 Recently cultivated (loosened) top soil overlying heavy gravely clay (till) 3.20 Loose cohesionless top soil overlying moist medium gravel 3.30 Organic saturated clay overlying vet medium dense sand 3.40 Organic saturated clay overlying heavy gravelly clay (till)	<pre>6 4.10 Recently cultivated (loosened) top soil overlying dense soil with high water table 4.20 Organic saturated clay overlying frozen silty or clayey loam 4.30 Organic saturated clay overlying deuse soil with high water table</pre>	
11	First	Leyer	H DESS	0.25 4.0	0.25 1.5 4.0	0.25 4.0	0.29 4.0	(P
of Top Laye Matarial	TTTT 122 BU	;	Bulk Density c/cm3	1.60/1.70 1.60/1.70 1.60/1.70	1.60/2.00 1.60/2.00 1.60/2.00	1.60/2.05 1.60/2.05 1.60/2.05	1.60/1.80 1.60/1.80 1.60/1.80	(Continue
steristics soundation	HOTABATAO	Shear	Welocity Welocity	75/125 75/125 75/125	75/275 75/275 75/275	75/4:00 75/4:00	75/550 75/550 75/550	
Citarad		Compres-	sion Wave Velocity	150/300 150/300 150/300	150/680 150/680 150/680	150/1450 150/1450 150/1450	150/2000 150/2000 150/2000	
i of	111	Foughness	rms Elevation	5.08 5.08 5.08	5.08 5.08 5.08	5.08 5.08 5.08	5.08 5.08 5.08	
eristics	Y	Maximum	Spring Travel	0.1	0.1 0.1	0.1 0.1	1.0 1.0	
Charact	Rigidit		Spring Constant v/-	$\frac{1}{100}$	0.775 × 10 ⁷ 0.775 × 10 ⁷ 0.775 × 10 ⁷	0.775 × 10 ⁷ 0.775 × 10 ⁷ 0.775 × 10 ⁷	0.775 × 10 ⁷ 0.775 × 10 ⁷ 0.775 × 10 ⁷	
			Terrain Matrix	M N N	ov vi te	r- co o r	11 11	

(Sheet 1 of 7)

1

i

a to the Rids of

A THE REAL PROPERTY.

Ç

					Qualitative Terrain Descriptors	Recently cultivated (loosened) top soil overlying	hard clay Loose cohesionless top soil overlying dense sand	and gravel Loose cohesionless top soil overlying weathered	rock	organic saturated cirdy overlying tense sam and	Organic saturated clay overlying cemented soil Organic saturated clay overlying vesthered rock	Organic saturated clay overlying hard clay		Organic saturated clay overlying competent un-		Organic material (pear) overlying dense sand and	gravel	Organic meterial (reat) overstand resident of		Jense loam overlying weathered rock		Dry loose gravel Medium sand	Moist sandy or silty clay
					No.	5.10	5.20	5.30		0#**	5.5 8.8	2.70	_	(0.10)	_	(6.11	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	27.0			~	7.20	1.30
		First	Layer	Thick-	HI HI			0.25	1.5	ħ.0	_		0.25	т•5 • Т	00.4	0.25	1.5	0°†	0.25	1-5	0.4	10.0	
	of Top Layer	Acertal		Bulk	R/CB3			1.60/2.10	1.60/2.10	1.60/2.10			1.60/2.50	1.60/2.50	1.60/2.50	1.30/2.10	1.30/2.10	1.30/2.10	1.80/2.10	1.80/2.10	1.80/2.10	1.70	•
ain Matrix	teristics of	oundation	Shear	Wave	m/sec			75/750	75/750	75/750			15/1500	75/1500	75/1500	6 0/750	60/750	60/750	200/150	200/750	200/750	× X	
sed in Terr	Charac	2	Compres-	sion Wave	Welocity			150/2000	150/2000	150/2000			150/3500	150/3500	150/3500	200/2000	200/2000	200/2000	1+00/2000	400/2000	4:00/2000	655	
Factors /	٩		Roughness	SEL	Elevation cm			5.08	5.08	5.08			5.08	5.08	5.08	1.20	1.20	1.20	3.81	3.81	3.81	3.05	
Terrair	eristics	e Materia v	Maximu	Spring	Travel			0.1	0.1	1.0			1.0	0.1	0.1	0.26	0-50	0-50	60 .0	60.0	60 • 0	0.075	1
	Charact	Surfac		Spring	Constant N/m			0.775 × 10 ⁷	0.775 × 10 ⁷	0.775'× 10 ⁷			0.775 × 10 ⁷	0.775 × 10 ⁷	0.775 × 10 ⁷	0.36 × 10 ⁷	0.94 × 10 ⁶	0.94 × 10 ⁶	1.45 × 10 ¹	1.45×10^7	1.45 × 10 ⁷	101 ~ 22 0	** * ****
				Terrain	Matrix Element			ET	17	15	,		16	71	1.8	61	ଛ	ដ	ន	ស	5	X	0

(Sheet 2 of 7)

(Continued)

Constant of the second s

Ć

たな認識にの時間の下

	1					o. Qualitative Terrain Descriptors	.10 Dry loose gravel overlying moist medium gravel .20 Dry loose gravel overlying heavy gravelly clay	(tiil) .30 Medium sand overlying wet medium-leuse sand	.40 Medium sand overlying moist medium gravel 50 Medium sand availation beams meanedly of at (1411)		dense sand .70 Moist sandy or silty clay overlying heavy gravelly clay (till)	.10 Dry loose gravel overlying frozen silty or clayey loam	.20 Dry loose gravel overlying dense cohesionless soil with high water table	.30 Medium sand overlying frozen silty or clayey loam	.*•• Meulum samu overlying gense conceloniess soil VICA high water table	.50 Moist sandy or silty clay overlying frozen silty	or clayey loam .60 Moist sandy or silty clay overlying dense cohesionless soil with high water table
			41	الد بر	l va	× 	88	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ĵ	6	0	ة ة ~		ō.	Ď
	er		Firs	Thic	nes		ډ	0.2	1.5	0. .1			0	1.5	ю. т		
	of Tcp Lay	Material		Bulk	Density	R/CE		1.79/2.05	1.70/2.05	1.70/2.05			1.70/1.80	1.70/1.80	1.70/1.80		
rain Matri	cteristics	Foundation		Sh ear Wave	Velocity	<u>II sec</u>		260/400	260/400	260/400			260/550	260/550	260/550		
ised in Ter	Chara			Compres- sion Wave	Velocity	n'sec		655/1450	655/1450	655/1 ⁴ 50			655/2000	655/2000	655/2000		
n Factors	of	e.		kougnness ras	Elevation	6		3.05	3.05	3.05			3-05	3-05	3.05		
Terrai	ucteristics	ace Materi	ity .	Spring	Travel	н		0.075	0.075	0.075			0-075	0.075	0.075		
	Chars	Surf	Rigio	Spring	Constant	12/m		2.33 × 10 ⁷	2.33 × 10 ⁷	2.33 × 10 ⁷			2.33 × 10 ⁷	2.33 × 10 ⁷	2-33 × 10 ⁷		
				Ter. Jin	Matrix	Element		26	27	28			8	30	ц		

. .

adalaan Maximaan Maximaan Karada

(Continued)

(Sheet 3 of 7)

. . .

も来に

ĥ,

5

				Qualitative Terrain Descriptors	Dry loose gravel overlying dense sand and gravel Dry louse gravel overlying cemented soil Dry loose gravel overlying weathered rock Dry loose gravel overlying hard clay Medium sand overlying dense sard and gravel Medium sand overlying ventheret soil. Medium sand overlying vesthered rock Medium sand overlying hard clay Medium sand overlying hard clay Medium sand overlying hard clay Medium sand overlying hard clay Medium sand overlying hard clay	Moist sandy or silty clay overlying cemented soil Moist sandy or silty clay overlying veathered rock Moist sandy or silty clay overlying hard clay	Dry loose gravel rværlying poorly consolidated calcareous silt or clay (aarl) Dry loose gravel overlying sandy consolidated gravel (conglomerate) Medium sand overlying poorly consolidated cal- careous silt or clay (marl) Medium sand overlying sandy consolidated gravel (conglomerate) Moist sandy or silty clay overlying poorly con- solidated gravel (conglomerate) Moist sandy or silty clay overlying sandy con- solidated gravel (conglomerate)	Dry loose gravel overlying competent unveathered rock Medium sand overlying competent unveathered rock Moist sandy or silty clay overlying competent un- veethered rock	
				No.	10.10 10.20 10.30 10.40 10.60 10.60 10.80	10.91 10.92 10.93	11.10 11.30 11.50 11.50	12.10 12.20 12.30	
	7	First	Thick- ness	Ħ	0.25 1.50 4.00		0.25 1.50 4.00	0.25 1.50 {	(1
	of Top Layer Material		Bulk Density	g/cm ³	01.2/07.1 01.2/07.1		1.70/2.30 1.70/2.30 1.70/2.30	1.70/2.50 1.73/2.53 1.70/2.55	(Continued
ain Matrix	cteristics Coundation	Shear	Wave Velocity	m/sec	260/750 260/750 260/750		260/1100 260/1100 22/1100	260/1500 260/1500 260/1500	
sed in Terr	Charad	- verumoj	sion Wave Velocity	m/sec	655/2000 655/2000 655/2000		655/2750 655/2750 655/2750	655/3500 655/3500 655/3500	
n ractors U	of	Roughness	rms Elevation	빙	3.05 3.05 3.05		3.05 3.05 3.05	3.05 3.05 3.05	
lerrai	cteristics ace Materia	îty Marîmim	Spring Travel	Ħ	0.075 0.075 0.075		0.075 0.075 0.075	0.075 0.075 0.075	
	Chara	higid.	Spring Constant	<u>и/н</u>	2.33 × 10 ⁷ 2.33 × 10 ⁷ 2.33 × 10 ⁷		2.33 × 10 ⁷ 2.33 × 10 ⁷ 2.33 × 10 ⁷	2.33×10^{7} 2.33 × 10 ⁷ 2.33 × 10 ⁷ 2.53 × 10 ⁷	
			Terrein Matriz	Element	37 33 35		35 37	38 39 4:0	

(Sheet 4 of 7)

10.00

alf à Bha

\$

			Qualitative Terrain Descriptors	Wet medium dense sand Moist medium gr yel Heavy gravelly clay (till)	Wet medium dense sand overlying frozen silty or clayey loam Wet medium dense sand overlying dense cohesionless soil with high water table	Moist medium gravel overlying frozen slity of clayey loam	Moist medium graver overlying works and soil with high water table Heavy gravelly clay (till) overlying frozen silty	or ciayey loam Heavy gravelly clay (till) overlying dense cohesicnless soil with high water table	Wet medium dense sand overlying dense sand and	gravel Wet medium dense sand overlying cemented scil Wet medium dense sand overlying vesthered rock Wet medium dense sand overlying hari cley Meit medium gravel overlying dense sand and	gravel by Moist medium gravel overlying cemented soil voist medium gravel overlying veathered rock	Moist medium gravel overlying hard clay Heavy gravelly clay (till) overlying dense sand	and gravel Heavy gravelly clay (till) overlying cemented soil 2 Heavy gravelly clay (till) overlying vesthered	rock 3 Heavy gravelly clay (till) overlying herd clay	(Sheet 5 of 7)
			No.	(13.10 13.20 13.30	14.10 14.20	14.30	02.41	14.60	15.10	15.20 15.30 15.40		- 51 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 1	15.91	15.9	•
	r/ 7:	Layer	ness	10.0L		0.25	D. 4				0.25	0.4.0			ued)
	of Top Laye [aterial	;	burk Density g/cm ³	1.90		1.90/1.80	00.1/06.1 08.1/06.1				1.90/2.10 1.90/2.10	1.90/2.10			(Contin
is. Matrix	eristics of h	Shear	Wave Velocity m/sec	100		400/550	400/550 400/550				1,00/750	100/120			
anna ta	Character For	Compres-	sion Wave Velocity m/sec	1450		1450/2000	1450/2000 1450/2000				1450/2000	1450/2000			
	n ractors us of al	Roughness	ras Elevation cm	1.90		1.90	1.90 1.90				1.90	1.90 1.90			
	<u>Terral</u> eristics e Materi	y Maximun	Spring Travel m	0.05		0.05	0.05 J.05				0.05	0.05 0.05			
	Charact Surfac	Figidit	Spring Constant N/m	5.43 × 10 ⁷		5.43 × 10 ⁷	5.43×10^7 5.43×10^7				5.43 × 10 ⁷	5.43 × 10' 5.43 × 10 ⁷			
			Terrain Matrix El cent	I ¹		F2	тт гт				45	54 F1 F1			

and a present of a light of the light

ALLAND CONTRACTOR OF A CONTRACTOR

市民語言語

いないには見ていた。

ų.

「「「「「「「「「」」

たいたいでいたが

							Qualitative Terrain Descriptors	Wet medium sand overlying competent unveathered	rock	Moist medium gravel overlying competent urveathered rock	Heavy gravely clay (till) overlying competent unvestived rock	Frozen silty or clayey loam Dense cohesionless soil with high water table	Frozen silty or clayey loam overlying poorly con-	Frozen silty or clayer loam overlying sandy con-	solidated gravel (conglomerate)	Dense conesionless soil With high water table overlying sandy consolidated gravel (conglomerate)	Frozen silty or clayey loam overlying competent	unweathered rock Dense cohesionless soil with high water table	overlying unvesthered rock	Dense sand and gravel Cemented residual soil Hard clay Weathered rock
							No.	01.91		16.20	15.30	17.10 17.20	/18.10	18.20		05.01	01.01	10.20		20.10 20.30 20.40
	-		First	Layer	Thick-	ness	Ħ		0.25	1.50 <	1.00	10.0		0.25	1.50 <	h.00	0.25 (1.50	₽.00	10.0
	of Top Layer	faterial			Bulk	Density	g/cm ³		1.90/2.50	1.90/2.50	1.90/2.50	1.80		1.80/2.30	1.80/2.30	1.80/2.30	1.80/2.50	1.80/2.50	1.80/2.50	2.10
ain Matrix	teristics :	oundation !		Shear	Wave	Velocity	m/sec		400/1500	4:00/1500	1400/1500	550		250/1100	250/1100	00TT/0 <u>5</u> 5	550/1500	550/1500	550/1500	75C
sed in Terr	Charac	4		Compres-	sion Wave	Velocity	m/sec		1450/3500	1450/3500	1450/3500	2000		2000/2750	2000/2750	2000/2750	2000/3500	2000/3500	2000/3500	2000
n Factors U	of	81 .		Roughiess	SILLI	Elevation	B		1.90	1.90	1,90	2.54		2.54	2.54	2.54	2.54	2.54	2.54	3.81
Terraí	eristics	e Materi	y	Muximum	Spring	Travel	Ħ		0.05	0.05	0.05	0.025		0.025	0.025	0.025	0.025	0.025	0.027	0.03
	Charact	Surfac	Rigidit		Spring	Constant	<u>м/т</u>	٢	5.43 × 10'	5.43 × 10 ⁷	5.43 × 10 ⁷	10.85 × 10 ⁷		10.85×10^{7}	10.85×10^{T}	10.85 × 10 ⁷	10.85 × 10 ⁷	10.85 × 10 ⁷	10.85 × 10 ⁷	8.14 × 10 ⁷
					Terrain	Matrix	Element		49 1	6 1	50	Σ		52	53	Ţ.	55	56	57	58

r Missi siznek (Continued)

(Sheet 6 of 7)

Table 15 (Concluded)

1111

e adviced with a second of the Hickory desired with

• ,•

				Qualitative Terrain Descriptors	Dense sand and gravel overlying frozen silty or	Dense sand and gravel overlying dense cohesionless	soil with high water table Cemented soil overlying frozen silty or clayey		Cemented soil overlying dense consionless soil with high water table	Hard clay overlying frozen silty or clayey loam Hard clay overlying dense cohesionless soil with high water table	Dense sand and gravel overlying competent un-	veatnered rock Cemented residual soil overlying competent un-	weathered rock	Hard clay overlying competent unweathered rock Weathered rock overlying competent unweathered rock	Hard cemented clay (hardpan)	Boulder till Compact cobbly and bould ery material Moderately haid shale or sandstone	Competent slightly weathered rock	Solid or massive ice (Ice cap)	Ice overlying dense sand and gravel	Ice overlying vesthered rock		
	1			No.	01.12	21.20	21.30		21.40	21.50	(22.10	22.20		22.40	23.10	23.20 23.40 23.40	24.00	25.00	26.10	26.20		
	r/	First	Layer Thick-	Dess			0.25	1.50	h.00			0.25	1.50	¹⁴ .00	_	10.00	10.00	10.00	0.25	1.50 ¢	h.00	
	of Top Laye Material		Bulk	Density g/cm ³			2.10/1.80	2.10/1.80	2.10/1.80			2.10/2.50	2.10/2.50	2.10/2.50		2.00	2.40	1.00	1.0/2.10	1.0/2.10	1.0/2.10	
ain Matrix	teristics oundation		Shear Wave	Velocity #/sec			750/550	750/550	750/550			750/1500	750/1500	750/1500		006	1200	1900	1900/750	1900/750	1900/750	
sed in Terr	Charac		Compres- sion Wave	Velocity m/sec			2000/2000	2000/2000	2000/2000			2000/3500	2000/3500	2000/3500		5400	3200	3700	3700/2000	3700/2000	3700/2000	
Factors U	of J		Roughness rms	Elevation cm			3.81	3.81	3.81			3.81	3.81	3.81		3.18	4 . μ5	1.20	1.20	1.20	1.20	.:
Terrair	eristics e Materia	v	Maximum Spring	Travel			0.03	0.03	0.03			0.03	0.03	0.03		0.020	0.005*	0.005	0.005	0.005	0.005	pavement
	Charact Surfac	Rigidit	Sprinz	Constant N/m		t	8.14 × 10 ⁷	8.14 × 10 ¹	8.14 × 10 ⁷		ł	8.14 × 10 ¹	S.14 × 10	8.14 × 10 ⁷		12.40 × 10 ⁷	$1.8 \times 10^{10^{H}}$	1.8 × 10 ¹⁰	1.8 × 10 ¹⁰	1.8 × 10 ¹⁰	1.8 × 10 ^{-U}	surface; not a
			Terrain	Matrix Element			59	60	61			62	63	61		65	99	67	68	69	70	Rock E

r Varian Alexand Marson and

himdines data sella collection discontines and in sur

(Sheet 7 of 7)

1

Lubarkas

Table 16	ŝ
----------	---

and rate have been a sure of a los of

ためたいが、100mmのでは、100mmのでのである。 100mmのので、100mmので、100mmので、100mmので、100mmのので、100mmのので、100mmのので、100mmのので、100mmのので、100mmのので、100mmのので、100mmのので、100mm

			Slope
		Range	Areal Occurrence
	Category	. ,	
1.	Plains (generally level)	< 10	>90
		> 30	< 10
2.	Plains (Undulating or rolling)	< 10	50-90
		> 30	< 10
3.	Tablelands and plateaus**	< 10	50-90
		> 30	10-25
4.	Plains and hills or mountains complex †	< 10	50-90
		>30	10-25
5.	Hi 11s	< 10	< 50
		>30	10-50
6.	Mountains	< 10	< 25
		>30	>50

* Sampled from Peterence 31.

>* deather steped occur at higher elevations. Patter planet seem at lower elevations.

STORE STOR

Table	1	7
-------	---	---

Surface Soil Categories*

<u> </u>	Surface Soil Texture** (Upper 15 cm)	Range in Sand	n Composition Silt	on (2) [†] <u>Clay</u>
1.	Sand ⁺⁺	85-100	0-15	0-1 0
2.	Sand and loam			
3	Sand and clay			
4.	Sand and organic material			
5.	Sand and bare area			
6.	Loam	23-52	28-50	7-27
7.	Loam and silt			
8.	Loam and clay			
9.	Loam and organic material			
10.	Loam and bare area			
11.	Silt	0-20	80-100	0-12
12.	Silt and clay			
13.	Clay	0-45	0-40	40-100
14.	Clay and bare area			
15.	Organic material			
15.	Bare area‡			

法におきに

* Adapted from Reference 32.

があたからした。

** Where two scil categories are identified means that two textures or conditions are extensive in the area mapped; the second texture or condition is of equal or lesser areal extent than the first.

+ Adapted from Reference 33.

++ Includes particles coarser than sand (e.g. gravel).

+ Areas generally devoid of soil.

Subsurface Lithologic Categories*

	Rock Category	Rock Types
1.	Consolidated rock	Igneous and metamorphic rocks, well- consolidated sedimentary rocks, mixed or intermingled rock types
2.	Unconsolidated rock	Weakly consolidated or unconsolidated sedi- mentary rocks
3.	Alluvium	Restricted to detrital deposits of streams
4.	Ice cap	Frozen material plus ice blocks

* Adapted from Reference 34.

	Water-Table Regime	Description			
1.	Permafrost	Includes areas of continuous permafrost, where very little land is unfrozen; and areas of discontinuous permafrost, where scattered patches of unfrozen land occur			
ٺ .	High water table	High-water-table conditions can be ex- pected most of the year. Water table generally <5 m deep			
3.	Water Table fluctuates	Water-table conditions cannot be pre- dicted with any degree of accuracy			
4.	low water table .	Low-water-table conditions can be ex- pected most of the year. Water table generally >5 m deep			
5.	Rock a ice	Ice caps and rocky areas where water- table conditions are not considered significant			

Table 19 State-of-Ground Categories*

* Adapted from References 32 and 35...

			Average Plant			
	Category *		Height, m**	Coverage, %t		
1.	Needleleaf forest		15.0 - 35.0	75-100		
2.	Broadleaf forest		15.0 - 35.0	75-100		
3.	Mixed needleleaf and broadlea	15.0 - 35.0	75-100			
4.	Montane forest		2.0 - 10.0	50-100		
5.	Savanna	Woody: Nonwoody:	5.0 - 10.0 0.5 - 2.0	50-100 75-100		
6.	Forest and grassland	Woody: Nonwoody:	10.0 - 15.0 0.5 - 1.0	25-50 50-100		
7.	Woodland and scrubland		2.0 - 5.0	50-100		
8.	Tundra and alpine		0.1 - 2.0	50-100		
9.	Grassland		0.2 - 1.0	50-100		
10.	Semidesert scrub and desert		0.2 - 5.0	>0-50		
11.	Barren			-		
12.	2. Commercial grain and horticulture		0.5 - 2.0	50-100		
13.	. Commercial plantation		2.0 - 15.0	50-100		

	j	20			
Vegetation	Categories	with	Selected	Characteristics	

(infinite)

* Adapted from Reference 36.

alle and a second s

Ç

** Average height of plants in the main vegetation layer.

+ Area of ground covered by vegetation.
| Map
Unite | Surface Configuration | Solls | Lithology | State of Ground | 'Vegetation | Map
Unit | Surface Configuration | Soils | Lithology | State of Ground | Vegetation | Map
Unit | Surface Configuration | Soils | Lichology | State of Ground | Vegetation |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 31 \\ 13 \\ 22 \\ 33 \\ 34 \\ 35 \\ 15 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$ | | 103 01 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 <td>111111222222222333111112222222222222222</td> <td>E35 344441233444434434441111222333344444</td> <td>Contemporary Contemporary Conte</td> <td>54 55 59 60 12 34 55 59 60 62 63 64 56 67 89 71 73 74 57 77 78 79 80 82 83 84 856 87 88 88</td> <td></td> <td>CS O6 O6<</td> <td>JT 1111111111122222222222222222222222222</td> <td>35 22233333344445112222233333444444422</td> <td>334 05 09 10 23 5 10 <td< td=""><td>H H H 107 108 109 108 109 110 111 112 113 113 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141</td><td>"SS 11111111111111111111111111111111111</td><td>08 09 09<</td><td>HT 22222222222222333333111122322232223333</td><td>115 1122333334442223344113311112323333333</td><td>33A1 092 020 000 122 000 000 122 000 122 000 122 000 122 000 122 000 122 000 122 000</td></td<></td> | 111111222222222333111112222222222222222 | E35 344441233444434434441111222333344444 | Contemporary Conte | 54 55 59 60 12 34 55 59 60 62 63 64 56 67 89 71 73 74 57 77 78 79 80 82 83 84 856 87 88 88 | | CS O6 O6< | JT 1111111111122222222222222222222222222 | 35 22233333344445112222233333444444422 | 334 05 09 10 23 5 10 <td< td=""><td>H H H 107 108 109 108 109 110 111 112 113 113 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141</td><td>"SS 11111111111111111111111111111111111</td><td>08 09 09<</td><td>HT 22222222222222333333111122322232223333</td><td>115 1122333334442223344113311112323333333</td><td>33A1 092 020 000 122 000 000 122 000 122 000 122 000 122 000 122 000 122 000 122 000</td></td<> | H H H 107 108 109 108 109 110 111 112 113 113 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 | "SS 11111111111111111111111111111111111 | 08 09 09< | HT 22222222222222333333111122322232223333 | 115 1122333334442223344113311112323333333 | 33A1 092 020 000 122 000 000 122 000 122 000 122 000 122 000 122 000 122 000 122 000 |
| 36
37
38
39
40
41
42
43
445
445
445
450
51
52
51 | | 02
02
02
02
03
03
04
04
04
04
04
04
04
04
04
04
04
04
04 | 2
3
3
4
1
1
2
2
2
2
2
3
3
1
1 | 4
2
2
2
5
5
2
2
4
4
1
1
1
1
1
3
3
3
3
3
4
4 | 02
03
12
11
05
05
01
02
08
01
02
06
02
02
05
01
02
06
02
02
05
01
02 | 90
91
92
93
94
95
96
97
98
99
90
100
101
102
103
104 | | 06
06
06
06
07
07
07
07
07
08
08
08
08
08
08
08
08
08
08
08
08 | 33333112111111111111111111111111111111 | 223334444233333441 | 07
09
12
12
09
12
09
12
09
12
09
12
09
12
09
12
05
06
07
12
05
06 | 142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157 | | 13
13
13
13
13
13
13
13
13
13
13
13
13
1 | 1223 333321441111 | 3 4 2 2 2 3 3 4 2 2 5 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 12
02
12
13
09
12
13
09
12
13
09
12
13
09
12
13
09
12
02
13
09
12
02
13
09
12
02
13
09
12
02
13
09
12
02
13
09
12
02
13
09
12
02
13
09
12
02
13
09
12
02
13
09
12
02
13
09
12
02
13
09
12
02
13
09
12
02
13
09
12
13
09
12
13
09
12
13
09
12
13
09
12
13
09
12
13
09
12
13
09
12
13
09
12
13
09
12
13
09
12
13
09
12
13
09
12
13
09
12
13
00
12
11
11
11
11
11
11
11
11
11
11
11
11 |

Table 21

÷

•

Thematic Factor Complex Map Legend

(Continued)

en al tribut da barrier de

e shared

(Sheet 1 of 7)

人物が言葉文

.....

現在がない

					(
	d						g						g				
	-ă						÷.						- H				
	ä						a la						ă				
	3			-1		1	H			-0			H			-	
	5			5			- 4			5			60			Ā	
	4			ě			J.			Ő			- <u>4</u>			õ	
	ä		~	ü	ក្ត		<u>ē</u>			ű	g		Ğ			3	đ
	0		- S	ų	H		0		្ន	4	ਜ		0		ß	***	3
	00		Å	0	5		S		្ព	0	ы Б		<u>ຍ</u>		2	ö	ų,
	. 13	ទា	ç	3	1	L	<u> </u>	٦ ا	2	2	10	<u>ц</u>	ë	5	<u>o</u>	9	ц,
÷ 5	4	- zi	1	3	2	67	ц,	4	9	S	e)	유년	H	- Fa	3	E	ដ
ž B	ŝ	š	1	St	Å	2 S	งี	š	3	รั	Ă	25	ស័	Š	3	ŝ	Å.
140	5	~	1	7	05	212			_		~~~	244			<u> </u>		
100	4	01	<u>,</u>	7	0.5	213	4	02	4	2	03	200	4	00	1	4	10
101	2	01	1	4	07	214	4	02	2	3	05	207	2	06	1	4	12
162	2	01	1	4	09	215	2	02	2	3	07	268	2	05	2	2	01
163	2	01	1	4	10	216	2	02	2	3	09	269	2	06	2	2	02
164	2	01	1	4	12	217	2	02	2	3	12	270	2	06	2	2	04
165	2	01	1	5	07	218	2	02	2	4	02	271	2	06	2	2	05
166	2	01	2	3	02	219	2	02	2	4	05	272	2	06	2	2	12
167	2	01	2	3	65	220	2	02	2	4	07	273	2	06	2	3	01
168	2	01	2	3	08	221	2	02	2	Ĺ	09	274	2	06	2	3	02
160	5	01	5	à	11	222		02	5	7	10	275	5	06	5	2	02
170	5	01	2	4	02	222	5	02	-	7	11	276	5	00	5	2	03
170	~	01	~	7	02	223	-	02	-	4	11	2/0	-	00	~	2	04
1/1	2	01	2	4	05	224	2	02	2	2	07	2//	- 2	06	Z	3	05
172	2	01	2	4	06	225	2	02	3	2	02	278	2	06	2	3	07
173	2	01	2	4	07	22.6	2	02	3	3	02	279	2	06	2	3	08
174	2	01	2	4	08	227	2	02	3	4	07	280	2	06	2	3	00
175	2	01	2	4	09	228	2	03	1	3	05	281	2	06	2	3	12
176	2	01	2	- 4	10	229	2	03	1	4	ე2	282	2	06	2	4	02
177	2	01	2	4	11	230	2	03	1	4	04	283	2	06	2	4	04
178	2	01	2	4	12	231	2	03	ĩ	4	05	284	2	06	2	Å	05
170	2	0.	2	Ś	09	232		03	ĩ	7	10	285	-	06	5	4	ã
190	2	<u>01</u>	5	Ę	11	221	5	03	5	7	05	205	2	0.0	5	7	07
100	4	01	2	2	05	235	-	03	2	7	10	200	ŝ	04	5	7	07
191	2	UL	2	4	05	234	4	03	4	4	10	20/	~	00	~		09
182	2	01	3	4	0/	235	2	04	1	Ť	01	288	2	00	4	4	10
183	2	01	3	4	08	236	2	04	1	3	02	289	2	06	2	4	12
184	2	01	3	4	09	237	2	04	2	1	01	290	2	06	3	2	02
185	2	01	3	4	10	238	2	04	2	1	02	291	2	06	3	2	12
186	2	01	3	4	11	239	、2	04	2	1	08	292	2	06	3	3	02
187	2	01	3	4	12	240	2	04	2	3	01	293	2	06	3	3	09
188	2	02	1	1	01	241	2	04	3	2	02	294	2	06	3	3	12
189	2	02	1.	1	02	242	2	05	1	4	09	295	2	06	3	3	13
190	2	02	1	1	08	243	2	05	1	4	10	296	2	06	3	Ä	12
191	2	02	1	2	02	244	2	05	5	2	ñ4	297	2	07	ĩ	1	02
102	5	02	ĩ	2	01	245	2	05	2	ā	05	298	- 2	07	ĩ	ĩ	00
102	2	N 2	- î	2	02	246	5	0.5	5	- 7	10	200	5	07	÷.	2	12
195	4	02	- 1	5	02	240	5	0,	÷	7	A1	200	5	07	-		14
194	4	02	1	2	03	24/	-	00	Ť	1 1	01	300	-	07		4	01
192	2	02	1	5	05	240	4	00	1	1	02	301	4	07	-	4	09
196	2	02	1	3	07	249	2	06	1	1	05	302	2	07	1	4	12
197	4	02	1	3	12	250	2	06	1	1	80	303	2	07	2	2	01
198	2	02	1	- 4	02	251	2	06	1	2	02	304	2	07	2	3	01
199	2	02	••	4	05	252	2	06	1	2	05	305	2	07	2	3	03
200	2	02	1	4	07	253	2	06	1	2	09	306	2	07	2	- 4	09
201	2	02	1	4	09	254	2	06	1	3	01	307	2	07	2	4	12
202	2	02	1	4	10	255	2	06	1	3	02	308	2	08	1	1	01
203	2	02	2	1	C1	256	2	06	ī	ñ	03	309	2	08	1	1	08
204	5	02	2	î	02	257	2	06	ĩ	วั	05	1 310	5	08	ĩ	ī	12
204	5	02	5	î	08	258	5	06	î	2	06	311	5	00	î	5	74
201	2	02	2	5	01	250	2	00 04	1	2	n 0	312	5	00	î	2	0.0
200	4	12	<u>۲</u>	2	02	2.59	2	00	1	ر د	10	212		00	1	ر د	01
207	2		4	4	02	200	2	00	1	2	14	313	4	00		د •	02
208	2	02	2	4	20	201	4	06	1	4	01	314	<u></u>	08		5	03
209	2	02	2	2	05	262	2	06	1	4	02	315	2	08	1	3	05
210	2	02	2	2	12	263	2	06	1	4	05	316	2	08	1	3	06
211	2	02	2	3	01	264	2	06	1	4	07	317	2	08	1	3	07
212	2	02	2	3	02	265	2	06	1	4	09	318	2	- 08	1	3	08

X.

(Continued)

(Sheet 2 of 7)

~.

(); }

Ê.

องนั้น มากกะ และสำหรับข้างก่องในสมให้แข่งประสิทธิศกับการก่อนี้ทางและสมไห้เป็นหลังได้

Mart. Unite	Sui Ince Configuration	Sotta	Ltchology	State of Ground	Veretion	May Und C	Surface Configuration	Soils	Lithology	State of Ground	Vezation	Map Unit	Surface Configuration	Soils	Lithology	State of Ground	Vegetation
$\begin{array}{c} \textbf{319} \\ \textbf{320} \\ \textbf{322} \\ \textbf{322} \\ \textbf{322} \\ \textbf{322} \\ \textbf{322} \\ \textbf{323} \\ \textbf{323} \\ \textbf{333} \\ \textbf{33445} \\ \textbf{34567} \\ \textbf{3353} \\ \textbf{35567} \\ \textbf{3567} \\ \textbf{35661} \\ \textbf{35667} \\ \textbf{35677} \\ \textbf{35667} \\ \textbf{35677} \\ \textbf{35777} \\ \textbf{357777} \\ \textbf{357777} \\ \textbf{35777} \\ \textbf{35777} \\ \textbf{35777} \\ \textbf{357777} \\ \textbf$	222222222222222222222222222222222222222	08 09 09 09 09 09	1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2	333444444441111222233333333334444422334411113511522332	09 12 13 01 02 07 09 10 12 10 00 12 00 12 00 09 12 00 09 12 00 09 12 00 09 12 00 09 12 00 09 12 00 09 12 00 09 12 00 09 12 00 09 12 00 09 12 00 09 12 00 09 12 00 09 12 00 09 12 00 09 12 00 09 12 00 09 12 00 00 00 12 00 00 12 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00	372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 399 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 419 420 421 422 422	222222222222222222222222222222222222222	11 12 13 13 13 13 13 13 13 13 13 13	1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 1 1 2 2 1 1 1 1	3323134422233334442233323344445445543543344444444	03 12 09 09 01 02 05 07 02 05 00 02 05 07 02 00 00 00 00 00 00 00 00 00 00 00 00	$\begin{array}{c} 425\\ 426\\ 427\\ 428\\ 429\\ 430\\ 431\\ 432\\ 433\\ 434\\ 435\\ 436\\ 437\\ 438\\ 439\\ 440\\ 444\\ 443\\ 444\\ 444\\ 444\\ 445\\ 444\\ 445\\ 446\\ 447\\ 448\\ 449\\ 455\\ 455\\ 455\\ 455\\ 455\\ 455\\ 455$	。	$\begin{array}{c} 02\\ 02\\ 02\\ 02\\ 02\\ 02\\ 03\\ 03\\ 04\\ 05\\ 06\\ 06\\ 06\\ 06\\ 06\\ 06\\ 06\\ 06\\ 06\\ 06$	1111121111112111111111111111111111222222	4444443443344111122333333344444444533333444444243334444	04 05 07 09 10 05 02 50 25 02 50 02 05 0 02 05 0 02 05 00 0 02 05 0 02 05 0 0 0 0
371	2	10	3	2	05	1 4.74	3	02	1	- 4	02	1 1.77	- 7	0.9	1		12

(Continued)

(Sheet 3 of 7)

-																	
Map Unite	Surface Configuration	Satts	Lichology	State of Ground	Vegetation	Map Unit	Surface Configuration	Soils	Lithology	State of Ground	Vegetation	Map Unit	Surface Contiguration	Soils	Lithology	State of Ground	Vegetation
Ima 7890123488345678890123456789011234567890012334567890012334565555555555555555555555555555555555	ms 3333333333333333333444444444444444444	08 03 08 09 09 10 11 13 13 13 13 13 15 01<	77 22211111121111111111111111222222223311	2;;] 3441151134344411333344444445333444444413	C3A 0270 0270 0880 122245 000	Solution Solution Solution Solution<	INS 444444444444444444444444444444444444	105 02 03 03 03 03 03 03 03 05 05 05 05 05 05 05 05 05 05 05 05 06	JFI 1122222222231111122211111111112222111111	etg 4433334444434444444433444444444444444	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ 10 \\ 12 \\ 02 \\ 05 \\ 12 \\ 04 \\ 05 \\ 10 \\ 02 \\ 04 \\ 07 \\ 10 \\ 02 \\ 04 \\ 07 \\ 10 \\ 05 \\ 07 \\ 10 \\ 05 \\ 00 \\ 10 \\ 05 \\ 00 \\ 10 \\ 05 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 00 \\ 10 \\ 00 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 10 \\ 00 \\ 00 \\ 10 \\ 00 \\ 00 \\ 00 \\ 00 \\ 10 \\ 00 \\ 00 \\ 00 \\ 10 \\ 0 \\ 0 \\ 0$	IED S84 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 6004 605 6006 607 6010 612 611 6112 612 616 617 618 619 620 621 621 622 623	1115 4444444444444444444444444444444444	100 06 08	III 11112222222222222222222222222222222	tts 4444223333344444444444422333334444442337	δgA 09 101 112 200 02 04 05 07 010 011 02 03 04 05 06 07 08 010 12 02 04 05 07 012 02 02 04 05 07 012 02 02 04 05 07 102 02 04 05 07 102 12 02 04 05 07 102 12 02 04 05 07 102 12 12 02 04 05 07 102 12 12 02 04 05 07 102 12 12 02 04 05 07 10 12 12 02 04 05 07 10 12 12 02 04 05 07 10 12 12 04 05 07 10 12 12 04 05 07 10
518 519 520 521 522 523 524 525	44444444444444444444444444444444444444	02 02 02 02 02 02 02 02 02 02 02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3 3 3 3 3 4 4 4	02 03 04 05 08 13 01 02 02	571 572 573 574 575 576 576 577 578 579	444444444444444444444444444444444444444	06 06 06 06 06 06 06	1 1 1 1 1 1 1	3 3 3 3 3 4 4 4	06 07 09 10 12 13 01 02 03	624 625 626 627 628 629 630 631 631	4 4 4 4 4 4 4 4 4 4	08 08 08 08 08 08 08 09	2 2 2 2 3 3 1 1	3 3 4 4 4 4 4 1 1	07 12 05 07 02 05 12 01
527 528 529 530	4 4 4 4	02 02 02 02	1 1 1 1	-4 -4 -4 -4	07 07 08 09	580 581 582 583	4 4 4 4	06 06 06 06	1 1 1 1	4444	04 05 07 03	633 634 635 636	4 4 4 4	09 05 10	1 1 1 1	2 3 1 3	02 01 01 01

(Continued)

Sugar Charles and some some is the second

ะพ.พ.ศ.

(Sheet 4 of 7)

× 4

Map Vat e	Surface Configuration	Soila	Litiology	State of Ground	Vegetation	Map Brite	Surface Configuration	Sotts	Lit thology	State of Stouid	Vegatation	Aan.	Unic	Surface Configuration	Solls	Lichology	state of Ground	Vegetation
637 639 641 642 644 644 644 644 644 644 644 644 644	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5	$\begin{array}{c} 1.0\\ 10\\ 10\\ 11\\ 11\\ 12\\ 13\\ 13\\ 13\\ 13\\ 13\\ 13\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15$	122231111333311111111122222211111111111	323332342233333333344443444411133333344444444	$\begin{array}{c} 08\\ 02\\ 12\\ 12\\ 09\\ 02\\ 12\\ 02\\ 12\\ 02\\ 02\\ 12\\ 02\\ 02\\ 02\\ 02\\ 02\\ 02\\ 02\\ 02\\ 02\\ 0$	690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 710 711 712 713 714 715 716 717 720 721 723 724 725 726 727 728 729 730 721 725 726 727 737 732 733 734 735 736 737 739 740 731 735	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{smallmatrix} 05 \\ 06 \\ 06 \\ 06 \\ 06 \\ 06 \\ 06 \\ 06 \\$	2111111111111111111111111122222331111111	4111111222333333333344444444444444443333342233333444444	$\begin{array}{c} 10\\ 01\\ 02\\ 03\\ 06\\ 09\\ 02\\ 05\\ 00\\ 03\\ 06\\ 00\\ 03\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00$		7445 7445 7551 7556 7561 7561 7561 7777 7777777777	2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	08 08 08 09 09 09 09 09 09 09 09 09 09 09 09 09	122221111111122211111222211111111111111	43334111234511333334133451333344444444555555134444455541	13236718128711823362581251812289157801121078011825790891701

(Continued)

Y

. Alte

. 1

where the second the second second state of the second second second second second second second second second

(Sheet 5 of 7)

たからうないのないないないないでしたい

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												1						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mat. Vist i	Surface Configuration	Solls	LILIOIOGY	Scate of Ground	Vegetation	Map Unic	Surface Configuration	Sofis	Lithology	State of Ground	Vegotation	Kap Unic	rface Configuration	sti	-1thology	Stare of Ground	Vegetation
	96 97 79 93 901 803 804 806 807 801 803 804 806 807 801 803 804 806 807 801 803 800 801 800 801 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 80	6 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	02 02 02 02 02 02 02 02 02 02 02 02 02 0	111111111111111111111111112222222222222	111112333333334444444444555511133334444444421333444444	$\begin{array}{c} 02\\ 05\\ 07\\ 08\\ 09\\ 04\\ 01\\ 02\\ 03\\ 06\\ 08\\ 12\\ 02\\ 04\\ 05\\ 06\\ 08\\ 12\\ 00\\ 05\\ 06\\ 07\\ 08\\ 00\\ 12\\ 07\\ 08\\ 02\\ 04\\ 05\\ 07\\ 09\\ 02\\ 04\\ 05\\ 07\\ 09\\ 02\\ 04\\ 05\\ 07\\ 09\\ 02\\ 04\\ 05\\ 07\\ 09\\ 02\\ 04\\ 05\\ 07\\ 09\\ 02\\ 04\\ 05\\ 07\\ 09\\ 02\\ 04\\ 05\\ 07\\ 09\\ 02\\ 04\\ 05\\ 07\\ 09\\ 02\\ 04\\ 05\\ 07\\ 09\\ 02\\ 04\\ 05\\ 07\\ 09\\ 02\\ 04\\ 05\\ 07\\ 09\\ 02\\ 04\\ 05\\ 07\\ 09\\ 02\\ 04\\ 05\\ 07\\ 09\\ 02\\ 04\\ 05\\ 07\\ 09\\ 02\\ 04\\ 05\\ 07\\ 09\\ 02\\ 04\\ 05\\ 07\\ 09\\ 02\\ 05\\ 07\\ 09\\ 02\\ 05\\ 07\\ 09\\ 02\\ 05\\ 07\\ 09\\ 02\\ 05\\ 07\\ 09\\ 02\\ 05\\ 07\\ 09\\ 02\\ 05\\ 07\\ 09\\ 02\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05$	849 850 851 852 853 854 855 856 857 858 860 861 862 866 866 867 868 871 874 875 876 877 876 877 876 877 882 883 884 885 885 877 876 877 876 877 885 885 877 876 877 876 877 885 885 885 885 877 876 877 876 877 876 877 876 877 876 877 876 877 876 877 876 877 876 877 876 877 876 877 876 885 885 885 885 885 885 885 88	6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 6 3 6 6 6 6	$\begin{array}{c} 04\\ 04\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05$	221 11111111111222111111111111111111111	1333333444444554511111222223333333333334444444444	08 01 04 05 09 11 01 04 05 07 10 12 04 10 12 04 10 12 04 10 12 04 07 08 01 02 06 07 08 09 10 12 04 05 07 08 09 11 04 05 08 09 11 04 05 08 09 11 04 05 08 09 11 04 05 07 10 12 04 05 07 10 12 04 05 07 10 12 04 05 07 10 12 04 05 07 10 12 04 05 07 10 12 04 05 07 10 12 04 05 07 10 12 04 05 07 10 12 04 05 07 10 12 04 05 07 10 12 04 05 07 10 12 04 05 07 10 12 04 05 07 08 09 11 02 06 07 08 09 10 12 04 05 07 08 09 10 12 04 05 07 08 09 10 12 04 05 07 08 09 10 12 04 05 07 08 09 10 12 04 05 07 08 09 10 12 00 07 00 07 00 0 0 0 0 0 0 0 0 0 0 0 0	902 903 904 905 906 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 943 944 945 944 945 944 945 950 952 953		$\begin{matrix} \textbf{L6} \\ \textbf{O6} \\ \textbf{O8} \\ $		2 4 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 2 2 2 2	05 12 01 02 05 08 09 12 01 02 03 05 06 07 09 12 02 03 05 06 07 10 12 02 07 10 12 02 07 10 12 02 07 10 12 02 07 10 12 02 07 10 12 07 10 12 07 10 12 07 10 12 07 10 12 07 10 12 07 10 12 07 10 12 07 10 12 07 10 12 07 10 12 07 10 12 07 10 12 07 10 12 07 10 12 01 07 09 12 01 07 09 12 01 07 09 12 01 07 09 12 01 07 09 12 01 07 09 12 01 07 09 12 01 07 09 12 01 07 09 12 01 07 09 12 01 07 01 01 01 01 01 01 01 01

(Continued)

ie unite

at the second states the test of the states the

and Strach white to

(Sheet 6 of 7)

in the state of th

an di katalan k

Table 21 (Concluded)

May Unde	Surface Configuration	Solis	Lithulogy	State of Ground	Vegetation	Man Unic	Surface Configuration	Sofis	Lithology	State of Ground	Vegetation	Map Unit	Surface Configuration	Soils	Lithology	State of Ground	Vegetation
955 956 957 958 960 961 962 963 966 965 966 967 968 967 973 974 975 977 978 977 978 977 978 979 981 985 987 988 982 983 985 988 989 990 991 992 993 994 995 998 999 995 997 998 999 997 1000 1001 1006 1007	660666666666666666666666666666666666666	08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 09 09 09 09 09 09 09 09 09 09 09 09 10 10 10 10 13 13 13 13	11111222222222222222333311111122222111111	4455522333333333444442234411223311133233333332233442123344	12 13 01 102 12 02 04 05 06 07 08 12 02 05 06 07 08 12 02 02 02 12 02 02 02 12 02 02 02 03 00 08 01 08 01 08 01 08 02 03 01 08 01 02 02 02 03 00 03 02 03 02 03 02 03 00 03 02 03 00 03 02 02 03 00 03 00 03 00 03 00 00 00 00 00 00	1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1044 1045 1044 1045 1046 1047 1052	**********************	133333344444555556666%%666666666666666666	1222223311:22111222111111111111111111222333444	4133342233331334131233444444444555555235245155	058120822224248122282818110257801121257781111111118811						

as a conductive conservation with the destruction of the star of the star with the start with the start with the

(Sheet 7 of 7)

wat will be mine the towers and

ូះ ភេទ ភេទ

ションの語言になったいというないでした

Table 22

Ç

Matrix Element Terrain Da rithtors Associated With Inematic Factors Used To Compile 'actor Complex Mar of the World

	2	Commercial Plantation	н	н	o	•	ч	н	0	ч.	ч	н	0	0	ы	0	ч	н	ч	÷
	2	Com, Grain 6 Νοτείσυλευτο	н	ч	Ģ	ч	н	ы	0	н	н	н	н	ч	н	ч	ň	ч	н	H
	3	Barren	0	0	н	٥	0	0	ы	•	0	•	0	0	0	9	0	0	ч	н
	ន	5 Desert Scrub 5 Devert	0	0	н	0	0	0	щ	•	0	н	0	Ö	ç	G	0	٥	ы	н
	6	bnalesar0	•	o	0	н	0	0	0	H	0	н	ы	H	o	7	н	٥	0	н
ø	80	anigiA AigiA	0	0	٥	0	0	0	0	0	¢	н	Ċ	0	0	0	0	o	н	ы
tatio	01	Serubland &	0	0	н	o	0	0	н	0	0	н	0	0	0	0	0	ø	ч	н
Vege	90	3 Jaerol Donleenvo	0	c	o	н	0	0	0	н	¢	-1	ы	Ч	0	н	н	0	o	o
	3	annava3	c	ç	0	0	0	0	c	0	0	н	Ċ	0	0	0	c	0	0	0
	94	Montane	0	o	0	0	0	•	0	0	0	н	•	с)	0	0	•	•	¢	•
	55	Mixed Fornet	0	•	0	ч	0	0	0	н	٩	н	ы	٦	0	ч	ы	c	0	•
	C2	Broadleaf Forest	0	J	٥	н	۰	0	0	н	0	н	н	н	0	м	н	0	c	0
	5	lsalaibaaN Porest	0	0	0	н	o	•	Ö	н	0	н	г	н	۰	н	н	•	0	•
	۳,	Rock of Ice	Ö	Q	0	0	o	٥	0	0	Ċ	0	•	0	0	0	0	0	S	•
tound	4	Low Water Table	0	н	ч	0	0	0	ч	0	0	0	0	•	0	0	0	н	-1	н
of C	e	Mater Table Badauseult	ы	ы	•	0	ч	н	۰	0	ы	н	0	0	o	0	0	ч	н	ч
State	5	High Water Table	1	н	0	н	ы	н	0	ы	ч	н	ы	ч	ч	Ċ	ы	0	•	0
		Permatrost	0 0	0	<u></u>	 G	с 0	0.0	<u> </u>		. <u>.</u>	<u>.</u>	2	-		<u>, 1</u>			0 0	ŝ.
ž	5	murvuiiA	н	н	- н	н	-	-	н	Ē	0	н	щ	0	н	н н	-	- н	н	с сэ
ttolog	М	Unconsolidated Bock	0	7	ы	ы	0	н	г	ы	н	н	н	٦	ч	н	н	н	н	-
E		Коск Соляоттая:са	٥	o	0	0	c	٩	0	0	Ċ	0	¢	0	ပ	ç	o	0	o	щ
	12	Bare Area	0	o	0	ئ	0	0	0	•	¢	ç	•	o	0	o	c	c	c	o
	ື່ມ	Material Material	0	ŝ	0	c	0	c	o	0	0	0	0	o	ø	0	•	0	r,	o
	71	Clay & Bare	Ċ	н	٥	١Ħ	•	н	•	ч	ы	ى	-1	н	+1	щ	н	Ч	0	0
Î	H L	נדשא אדור פרדשא	0		רי ה	ы ы	0		о -			о 1		-	н н			н н	0 1	2
13	H	2115	õ	د		0	5	0	-	5	0	H		0		0	0	0	-	н
ter.	3	Loam & Bare	ч	o	•	0	н	0	c	•	¢	0	0	0	н	0	0	0	o	o
re (u	60	Organic Matecial	н	0	0	0	ч	0	0	o	0	0	0	•	. 1	ю	0	0	¢	0
1110	88	Loan & Clay	ы	н	0	н	Ħ	н	0	н	н	0		н	н	ч	السو	ч	0	0
۲. و	01	aile à maoi	н	0	н	0	н	a	н	0	0	н	٥	0	+4	0	0	0	H	ы
ur fa	8	mao.l	н	o	0	0	н	0	0	0	Ċ	0	0	0	н	0	0	7	0	0
5	6	Sand & Bare	0	0	н	0	0	0	н	· `	0	ч	0	c	н	<i>с</i> .	0	¢	-1	
203	04	Sand 6 Organic Internet	0	0	ч	0	0	0	н	0	o	м	0	•	• 1	0	0	0	ч	н
	E0 2	Sand & Clay	0	н	н	н	0	н	н	ч	н	н	н	٣	н	٦	ч	ч	м	ы
	5	maol à bras	-	0		0	H	0	-	0	0		0	•		0	0	0	н	-
	18	puts	0	0		 	0	. <mark>م</mark>			0			0.0		<u> </u>		<u>.</u>	н 	
E		TTTH	0	н -	ਜ	Ċ	0	н	н	0	ч	 	0	0	ī	0	0			H
1.10.4.1	4	Plains & Hills or Mts Complex	н	н	-4	-4	1	ч	ч	ч	F-1		н		ы	ч	н	н	ы	н
، مدارز د	5	Tablalandr & Plateaus	н	н	ы	ы	н	ч	г	н	ч	. -	7		н	•-1	•-4	ы	г	ы
	17	Rolling Prains	ч	н	ы	н	н	ч	н	T	F	н	ч		н	н	ч	ч	ч	н
	1	[ava.]	-	н	ч	ч	н	+4	-4	ч	н		ч	н	н	ч	+1	F	ч	.4
	ł	Plaine No. 10.	0	2	ö	o	3	0	õ	9	2	20	õ	9	9	2	Q.	9	ខ្ល	8
		Terrain	I.I.	1.2	Г.1 Г.1	1.4	2.1	2.2	2.3	2.4	3.1	3.2	3.3	3.4	4.1	4.2	4.3	5.1	5.2	5.3

(Sheet 1 of 7)

(Continued)

	٦Ì	Plantation	÷	н		-	-	0	0	ы	~	0	0		0	0	-	-	-	.		
		141070mm00																				
	11	Horttenleure	н	н	ы	н	-	0	o	-	-	o	e1	-	0	0	н	-	н	-		
	-	1 01000 400	~	~	~	~	~	~	~		_	_	-	0	н	-	~	-	-	0		
	-		Ŭ	ŭ	•				Ŭ					-			•	-		-	į	2
	2	Desert Scrub	0	0	0	0	0	0	0	Ч	н	-	-1	0	-		Ч	-1	ч	0		5
	8	bnsizeard	ы	ы	H	ы		н	ы	ч	-	0	-1		0	•	н		-1	-		10 12
		eniqiA	~	~	~	~	~	_	_			-		-			ы.			_		Å.
	°	å asbnut	Ŭ	Ŭ	Č	0	0							••		.,						5
tio	5	bnaid, 1302	0	•	•	0	o	Ч	н	-	н	H	-	щ	-		н	H	н	-1		
C t a		nusteerin										1										
Veg	ŏ	Porest 6	н	н	H	нi	ы	-	н	н	-	C	¢	H.	•	•	H	-	٦	-		
	S	Annava2	0	o	0	Ċ	0	H.	7	H		0	0	н	•	•	2	-	c	H		
	2	Porest	~	~	~	~	~			~		_			~	~	~	_	~	~		
	۲ I	enstroff	0	Ŭ	Ŭ	Ŭ	0	-	-	-	-	-	• •		-	•	Ť	•	•	•		
1	8	Toresc Rixed	н	н	н	м	щ	н	н	н	н	0	0	-	0	0	н	H	-4	-		
		KOLGHC																				
	9	Taslbsord	н	н	н	н	н	ч	н	4	ч	S	0	н	0	0	~	н	ч	м		
	z	Porent		щ	ч	-			H	н	н	0	э	н	•	0	н	-1	н	-		
		lasisibes#	•••	•								1			_	_					•	
	n	Rock of Ice	0	ç	•	•	H	3	H	0	٦	0	0	0	Q	0	•	0	0	0		
ğ	-+	retaV Woll Table	0	¢	۰	o	0	н	-	н	~1		ч	D	0	н	0	0	H	0		
6		Fluctuates	~	~	-	~	-					C	اسر	ي.						-		
ef.	"	eidaT retaW	-	2	-	-	2	4	-1	4	-	۱			. •							
515	2	Table Table	н	н	н	н	н	F	н	н	н	0	н	н	н	0	н	ы	0	14		
š			0		a	0	0	0	ш	0		5	0		•		0	0	0	0		
		dwn aar		6				5	5	0	c		Ģ	5						<u>.</u>		
		TOTANTTY	H		0	ы	0	н	0	щ	0	'н	ا سو	н		•	н	ы	•	H		
68		KOCK					_		_		_	;									:	Ê.
EPG1	7	Unconsolidated	••	-	-1	м	Ģ	~	0	-	0	; -					-	-	-	-		Ę
H	[]	Rock	0	•	ы	0	н	0	н	0	н	0	•	0	0	0	0	0	0	•		ğ
	2	auto atte	ى	a	o	0	0	0	Ö	6	0	0	ò		ò	0	0		0	<mark>.</mark> -		÷
	H			•			-				-	ı_	_	_		_	_	_	_			
	ង	Organic	0	G	ø	0	0	-	H	0	J	•	0	0	0	o	0	0	0	сı С		
	12	CJAY & BATH	-	-	н	H	н	۰	0	0	o	o	0	щ	0	0	0	0	•			
0	n.	Ciel A	ч		-4	н	ы	0	¢	0	o	0	0	н	•	0	c	•	0	H		
5	11	צדדר פ כדשא	н		4	н	ы	G	0	0	o	0	S	-1	•	o	0	0	•	-		
1	Ħ.	2115	0	0	o	0	0	0	0	0	o	ŀo	0	0	•	0	n	0	•	ç		
Dei	9	Loam 6 Bare	0	o	0	0	o	0	J	H	н	۰!	o	0	0	o	0	0	0	o		
ġ]	MACATIAL														•						
1	ö	organic b	0	0	0	0	ى	ч	н	н	+1	ုဝ	¢	0	0	0	0	0	0	o		
12	83	LORM & CTWA	-1		н	-1	н	0	0	н		10	Ð	ч	0	0	o	0	0	н		
۲. ا	5	3115 9 0001	0	0	0	Ċ	0	¢	0	н	ы	! '0	0	o	0	0	0	0	•	0		
i.ac	90	maol	0	0	0	o	0	0	o	·	н	o	0	0	0	0	0	o	0	0		
5	35	0444 7 pues	0	0	o	0	o	0	ø	0	0	¦н	ы	o		н	н	ч	н	•		
1		Internation	t																			
ş	3	Organic	0	U	c	0	0	ы	# 1	0	o	H	•1	0	٦	н	••	н	ч	0		
	5		, 	ب ــر	-1	1	м	Ö	0	0	0	. –	ч		н	н	н	ы	н	н		
	12	WEOT " PLUS		0	0	0	0	0	0	- H	-	1	H	0	н	ч	ч		ы	0		
	H	pues	10	c	0	0	<u>د</u>	o	0	0	0	н	F	0	٦	ы	н		щ	٥		
	ر. مرا	surviunos	10	G	0	0	Ġ	н	-			1	н	ч	-	o	0	н	0	o	•	
Ę	.	WTT1W	10	ç	o	6	0		-	-			-1	ч	H	r-1	ò	ы	н	0		
÷	1	xuldmo' and yo	•			سر			ر مەر				ب ر		يە	ر.				ы		
,	4	attiff & antuit	r "	-	~	-		-1	-				71		1	1						
-	m	STecenna		+	ы	н	+1	н	•••			I ⊷1	H		н	н	н	et	ч	н		
ĉ		A shuafafda1	2. 																			
	2	antal	a		٦	щ	-1	-4		• ••	-	4	14	.4	н	-1	+1	н	н	-1		
1		Tavel	1		н		-1						-4	ч	н	ч	н	н	н			
	17	antat	1				_						~	~	-	-	~	~	~	~		
		Gerein No.	5.40	5.50	5.60	5.70	5.10	5.11		15		7.10	7.20	У.Х	3	.20	ы Ц		.s.	.6(

<u>ند</u>ان

1 in Ba

Table 22 (Continued)

Service States of States

1

いたとうないというないで、シャンとないで

「「「「「「」」」」」

1	I																									
		2	Plantation Plantation	н	•	0	-1	-1		н	0	0	0	0	-	-	щ	-	-1	-1	-1	-	٥	0	4	
ļ			Horeteulente		_				_		_															
		7	Com. Grain 6	~	0	0	•	~4	0	-	0	•	0	o	-	-	-	-	-	-	~	~	•	•	м	5
ļ		#	Tes see	0	-	0	-	0	0	0	г		۲	-	٦	-	-	-	0	•	0	•	-	-	2	J0
		9	besett Desett Desett	0	¢	•	•	0	o	0	ч	н	٦	-	٦	ч	-	H	0	•	0	0	Ч	-	Ħ	t 3
		8	braises?D	-	0	0	н	н	-	H	•	0	0	0	н		-	-	-	-	-	-	0	0	-	hee
			eniqiA	н	-	H	-	н	ч	ч	ч		-		-	-	, -1	н	F		-	-	2	-	м	ຮ
	8		A AThnuT																							
	att	6	a braiboow	н	c	-	0	0	0	0	Ч	-	ч	: - 4	ч	-1	H	-	-	-	ч	m	2	-	H	
	520	5	PUC1655230	H	o	0	н	r-1	-	-	0	•	0	٥	ч	-	-	-	ч		-	-	0	0	H	
	2	5	TUUTATS	0	0	0	0	-	0	н	0	0	0	0	-		н	-	-	н	-	н	0		-	
		-	Torest	_	_	_	_	_	_	_	_	_	_	_										_		
		•	enatroM _i	•	0	0	0	•	•	٥	0	0	•	0	+	-	-	-	-	~	~	-	0	0	-	
		8	Poresc Mixed	-	c	•	ы	-	ы	ы	0	•	0	0	н	н	н	-	-	г	-	н	•	Q	-	
		2	70108		~	_					~	_	~	_			_					_	_	~	_	
		°	Treatest		Ű	0					0	0	Ŭ	0	н					-			č	Ű		
		ដ	Needlalaaf Yorest	ч	٥	•	н	-	٦	٦	•	0	0	0	٦	н	н	-	H	н	+	-	0	0	-	
		[m]	Rock of Ice	0	0	•	0	3	•	0	0	0	0	0	0	0	a	0	0	0	0	0	0	-	0	•••
	pup		aidaT	0	0	•	•	0	0	0	н	ы	н	н	н	н	н	н	0	0	0	0	н	н	-	
	Gro		TOTA DATA																							
	ц,	<u>ا ۳</u>	Water Table	-	Ĉ	0	c	0	0	o	-	-	ri -	0	н	-	~	н	Ч	-	H	-	-	0	-	
	1	2	<u>1</u> 9979 H780 M*2*6	н	0	н	۰	н	۰	н	0	0	۰	•	0	ø	0	0	н	0	н	0	0	•	•	
	ÿ		Permetrost	0	ы	•	н	0	н	0	0	0	0	0	0	0	Ģ	•	0	0	0	0	0	¢	0	
1		-	d#0 -01	0	0	0	0	ö	•	0	ò	0	0	0	0	0	0	0	0	0	0	0	•	•	0	
	5	-	CONTAINTY .	0	ч	ч	ч	M	н	-	H	ы	٥	н	٦	H	0	-	н	۲	0	н	0	0	•	
	bolo	~	Vaconsolldeted Rock	ы	-1	-	н	н	, -4	-1	н	-	н	н	н	н	~	H	Ħ	н	н	н	н	٥	н	କ
	H		Rock			.0	0	•	ç	0	0	0	H	•	0	•	м	0	0	0	н	•	•	н	o	Inue
1		5	betabiloano0	_		_	~	~		Ċ	ė		·						_	~			_	~	_	ouel -
5 Le		[MACHTAL	_	_	_	_		_	_	_	_		_	-	-	Ĩ	_		_	-	_	_	_		9
ا ۲		7	Orgenic	0	0	0	0	Č	Č	Ů	Ŭ	5	0	0	0	0	Ů	0	9	0	•	¢	Q	0	Ö	
		11	CISY & Bare	н	0	0	C	0	-	н	•	0	0	0	0	•	•	•	м	н	-	-H	0	0	0	
	8	2	CTWA	м	0	0	0	•		н	٥	0	0	0	0	0	0	0	۲	H	Ч	٦	0	0	0	
	ື່		2115 T CJ WA	н . п	0	0	0	0	-	H	0	2	0	-	0	•	°	0	-	-		-	0	•	•	
	per	3	Loan & Bare	0 0	0		0	0	0	0	0	5	0	0		0	0	0	0	0	5	5	0			
	3		Kattalah																							
	ure	8	Toam 6 Organic	0	0	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	
	E T	8	LOAD & CLAY	н	•	o	0	•	H	н	0	0	0	0	0	0	0	0	H	н	н	г	0	۰	0	
		6	sits a meal	0	0	o	0	c	0	•	0	0	0	0	¢	o	0	0	0	0	0	0	0	0	0	
	Lf.	8	maol	0	٥	•	6	۰	٥	0	0	0	0	0	¢	0	o	0	0	0	0	0	o	0	•	
	รัก	8	Sand & Bare	0	Ч	٦	M	ч	0	0	н	н	н	н	ч	н	٦	٦	0	¢	0	ç	۴	~1	H	
	5	*	Organic Literid	•	H	н	н	н	•	0	н	н	ч	-	-	н	н	н	0	0	0				ч	
		3	à bras																							
		20	Macu e braz	0						-	-	-	-		-	-		-		5					**	
		5	puws.	0	-	н	н	-	0		н	-	-		-	н	-		0	•			-	-	-4	
		10	eutesunoy	0	0	υ	ô	ō	0	0	н	н	н	ंन	н	н	ч	-	н	Ĥ	- -		H	н	 H	
	Ę	5	*TTTH	0	0	0	0	0	0	0	н	ч	щ	н	ч	н	н	ы	ч	н	-1			ч	щ	
		4	or Hes Complex	н	н	н	н	ч	-1	н	H	-	н	н	ч	н	н	н	н	н	н	-	н		щ	
	Eten		Platesus	_	.,	لبر	ر.	س ر		س.					ب		_					مہ	مہ ا			
	3		a st.naieidaT		- 4		-			-1	~		~	-	-	~	7	-	7	Ч	-	-1	1		-	
	ace.	2	antais antiioS	н		٦	٦	٦	н	н	-	н	۲	٦	ч	н	٦	н	-	-	-	-	н	~	-	
	Surt		1evel	н	н	н	r4	H	н	г	н	н	ы	н	-	н	H	-	-	н	-	-	н	-	н	
		1	vescription No.	ç	9	e	g	2	2	9	0	9	g	3	9	<u>ç</u>	p	9	ç	Ħ	N	5	a	0	9	
			Terrain		6.1	9.2	6	9.4	6	9.6	10.1	10.2	10.3	10.4	10.5	10.6	10.7	10.6	10.5	20.9	10.9	2.01	1.1	1	П	

出版加加的合金

iden Martin de Martin de La Constantina de Carlo de Carlo

ľ. ;

inaanta Anamaanaadhiillinneerskiintaaa Antoologistaatiifalaattiiradhii Alistiilaattiintaattiittiittiintaattiitt

Tareaterson Plantation 5 -----Hortteuteure 12 d nimit .mod H U9338g 0 0 0 8 0 0 0 0 0 ង 337 990 9 0 - - - 0 0 0 0 • 0 0 0 0 gere _ Scrub 8 bnsiesuri? ----..... -0 0 --н -eutety -----80 ------1 0 e wapung Veretation C6 07 08 puttonice H 0 0 0 o 000 y puntpoom puel seeso нонни o 00 ----A JESTOT 5 BURANAS 0 H o 0 0 0 0 0 0 0 0 Jaszo I 5 ------0 0 -4 0 ~ ~ Ċ, 0 agastron Destog 3 H O H -0 Paxth 189101 3 н н н о н н ٥ но ндд 0 Troadleaf 389203 님 ~ ----0 • 0 -- - ---اسم اس TABLELON OHHO FIN ZOCK OF ICS ö • 0 o 0 0 0 ō 0 ° 0 5 0 State of Ground 2 3 4 sidsT 0 o 00 0 000 0 0 TON RULES Fluctuates 000 0 0 MAter Table alder ou u o o u u u o o u o u o u u FASH HALFT o 0 0 нонон 0 0 'l-i Permates 0 000 deb abi o 6 0 14 Litchology 1 2 3 WITANTTY ROCK Uncousol. dated Continued XOOX ------0 0 DesabilozgoD 12 00 9 0 0 KACOULAL 11 15 0 0 0 0 0 0 OLEWITC STRE & AVID O H O O H O O CITA P BILL 0 0 Surface Texture (upper 15 cm) 05 06 07 08 09 10 11 12 13 оосонооносни стал 0 н 0 н 0 OOHOOHOOSTIF CIN н 00 0 0 --0 0 9 0 0 are a cocccccccccccccccccccc Terreriel 01.84010 0 9 2007 HOOHOOHHOOHOO 0 **0 0 0** H м 0 0 0 O O O O O O O I TOUR # STIE ο 0 0 0 . 0 0 0 0 0 0 0 0 0 0 era e c u u o u u sand é Barre ы 0 C +1 5011 04 farreral M 0184010 y purs 5 And Phase we have we state 6 Clark --3 meori a pues a o o a a o a a o a a a a o 0 -5 риез нооннонным 0 • autastroit - - - - - - онн Surface Configuration 0 o 0 ò o 0 0 0 0 0 0 or Hts Complex ----stitl a sutata enseisit Ruttion ----н survra 10401 antalq 11.45 Description No. Terrain

san di kanan kan panan manan kanan kana

の時代に

のでいたのである

(Sheet 4 of 7)

fable 22 (Continued)

	1	neitatinal?	-	o	0	o	c		-1	ч	-	ы	0	ч	0	н	9	•	-1	0	
	2	Hortteuleure	_	~	_	_	-				_		_		_		_	_		_	
		Com. Grain 6	2		2			-		-	-		Č.	-		-		.	-		
	0	Jassac 4	Š	_	_	2	_	_		<u> </u>	2	2	2	_	_	0	_	-	-	-	
	15			~	_		_						-	7		0	Õ		•	o	
	8	eniqiA	2				_]							_	-	-	-	-	-	
lon	0	Tundre &	0	-	-	Ч	П	Ч	н	н	-	-1	Ч	-	-	0	-	Ч	-	н	
etat	07	a brathoow	•	н	٦	٦	7	Н	-	н		0	ч	н	•	H	0	•	-	•	
C B	33	bnelseero	•••1	0	0		c	٦	ľ	H	-1	ы	0	ч	ч	1	-	٦		-	
	ŝ	ANANAR	0	•	0	0	0	0	0	0	0	c	0	¢	0	-	•	0	٦	•	
	5	Forest Forest	0	0	0	Ö	0	ч	-	ч	. .	o	0	-1	o	•	0	•	•	•	
	ខ	389703	н	0	0	0	6	н	-		-	ы		_	_	_		~		-	
	3	Forest		-	-	-	-					•	-	.,					- 1		
	0	Troadlent	Ч	o	0	0	0	н	н	н	н	н	0	н	н	-	н	н	н	н	
	ដ	Reedleleaf	н	0	٥	0	Q	٦	ч	4	н	ч	0	-	ч	-	ч	٦	н	٦	
_	'n	Roch or Ice	0,	0	0	o	0	¢	•	Ċ	c	ø	0	ч	0	0	0	-	ò	н	
LOUDA	4	Low Water Table	o	o	0	o	o	н	۲	-	щ	0	0	н	•	•	0	0	0	0	
ଓ କ୍ଷ	m	насет Таріе Річссилсея	0	Ö	ы	H	ч	н	ч	H	0	ы	ы	ы	0	0	0	0	o	•	
110	~	aldaT	н	F	ч		-	0	0	_	0	ы	ы	~	0		_	~		~	
ŝ		H18h Water			6			_	_	Š	~		~	Ĩ	_	_	_		_		
	+	Ice Cap	0	0	ĥ	6	0			0	0	0	ö		5			5	0	- -	
M	۳	suivuil.	н	н	н	o	ч	н	н	0	ы	ø	0	0	ч	н	۰	•	0	C)	
밀	7	Fock Fock	н	-1	н	щ	н	••	щ	н		¢	o	•	н	-	-1	0	0	0	
ž	-	Rock	C	0	0	•1	•	0	o	н	0	ы	ы	н	•	e	۰	ч	ч	-	
į	F	Bare Area	0	ø	ç	5	0	Ģ	G	0	0		ى	0	~				0		
	35	Tattagan M	0	Ö	0	0	0	0	0	0	0		0	0				0	0	0	
	14	CITA & Bree	0	0	Ģ	0	0	н	ч	п	н	0	0	-	0	0	0	0	0	0	
ล	ព	CI#X	0	0	o	0	0	н	~	ч	н	0	o	н	0	0	0	0	o	o	
ม่	ה ד	פדדר פ כזשא	0	0	ò	o	0	Ч	Ч	-	Ч	0	0	-	0	н	0	•	м	•	
Ы	101	Loam 6 Bara Alte	0	0	0	0	ວ ບ	0	0	د. د	0	0	0	0	о н		о п	0 H	-	о н	
3	6	Lat retail			_	_		_		_	_										
and a	°	A MAOJ	0	G	0	0	9	9	0	¢	C	0	0	9	-	•	Ч	Η	0	н	
Ĕ	7 08	YAID & MAOL	•	°	•	•	•	-			-	•	•	-	-	•	-	-	•	H	
5 E	0 90	TILS & MACI	0	0	с.	0	0	0	0	0	0	0	0	0	Ē		-	Г	0	н	
3	50	orad & base	н	н	ч	н	ы	0	0	0	0	-	2	0	0	H	٥	0	ы	0	
덿	•	Илсетіаї Оржаліс			_			_	~	_				_	_		_	_		_	
-	ა ო	9 puss	-	-	-	-	-	0	0	9	0	н	-	3	3	-	3	3	-	3	
	2	MEOL & DARS	н				-	-	-	-	-	Ч	-	-	0	-		0	-	•	
	a	pung	н	A	н н	H	н н	0	0	0	0		-	•	0	Ц	0	-	-	0	
Martine Martine <t< td=""><td>0</td><td>•</td><td>•</td><td></td></t<>		0	•	•																	
5 1	~	HITT#	0	ч	Ч	ы	٦	ri	ч	н	м	o	-1	H	0	0	0	0	o	0	
E L	•	ellin à antaly	н	н		• •	н	н	ч	-	-	н	ч	м	ч	ы	-	н	-	н	
	m	Tablelands & Plateaus	ы	ы	н	ы	н	н	н	н	ч	1	н	н	н	H	щ	м	ч	4	
e	~	guillog	F 4	~	ب		ч	-4	-			-4				_		بے		-	
5		Ieva. Inteld									•			-	-	-	-	-	-1	7	
s I	-	Plains	н р		п	-	1	1		-		-	-	н С	-	-	•	-	-	-	
		Destriction No.	5.4	5.5	5.60	5.7	5.80	5.9	5.91	5-92	5.9]	6.10	6.20	6.30	7.16	7.25	8.10	8.20	8.30	9.10	

ค่องการสาวเป็น โดยสาวที่สนับการสาวเห็นการสาวเห็น การสาวได้ได้สาวได้สาวได้สาวเรื่อง

ζ.

(Sheet 5 of 7)

and the second second second

Second States and States and

のないので、「ない」ので、

1

(Continued)

	=	Isloteneo Planteton	ч	0	o	-	0	-	-	•	-	٦	-	Ö	0	4	o	o	0	•	•	0	
	2	Com, Grain A Horticulture	ы	Q	o	0	Q	0	0	•	ç	с	0	0	•	0	J	•	•	0	0	0	
	님	uəliya	0	н	н	H	-+	-	-	+	н	н	0	н	٦	~	н	н	-	н	-	F	2
	្ឋ	* Desert	0	г	-	н	-	0	•	0	0	0	0	ч	н	н	н	ы	0	-	F	-	¥
	9	AUND2 474840	н	0		ы	0	н	-					~	~	~	~	~	_	~	~	~	ب ب
	8	suidia	~	_			_		_						Ĩ.		Ĩ.		Ū.	Ĩ.	Č.	Ĩ	i.
F	°	4 sabiuT	Ŭ					7	Ű	н	-	*1	-1		н	~	н	-	-		-	-	÷
etati	67	A braiboow	н	F	٦	-1	7	•	٦	o	-	o	ч	٦	-	۲	٦	ч	-	~	0	•	
, eg	S S	braisero; braisero;	н	0	н	ы	0	o	н	0	н	н	٦	o	0	0	0	0	o	0	٥	•	
	ទ	BURNARS	ы	Ö	ч	м	0	Ċ	0	0	н	0	н	0	0	м	6	0	0	•	o	•	
	đ	Lorest Bunnon	o	Ģ	н	ч	ø	G	ය	đ	0	0	0	0	0	-4	н	0	0	H	0	•	
		Torest																					
	°	bextii	н	0	-	н	٢,,	c	제	0	-	н	2	0	0	¢	0	0	•	0	۰	0	
	3	Forest Broadlest	м	0	بو		0	0	-	•	H	H	н	0	•	•	0	٩	0	0	•	φ	
	넝	35910 <u>7</u>	,,,,	0	H	н	0	•	н	o	н	щ	н	•	0	0	0	•	0	0	0	o	
	i Ivo	* Talban	ç,	0	0	0	0	0	0	e	0	6	6				 	0	C	, ,	_	 	
입		aldu?	_			_	Ĩ.	-	_	_	_		-					Ĩ	Č.		_	_	
Grou	1	Tetay Wol	5	-	-1	-	-	J	9	3	ę	J	0	-	-	н	Ч	7	1	н	•	9	
50	-	oldaT rotaW Rotantoulf	o	Ч	н	0	H	0	0	0	•	0	0	н	٦	0	0	0	•	0	•	•	
Stati	14	Tebla Tebla	ы	0	0	•	Q	•	н	•	н	o	ы	0	•	0	•	•	•	•	0	•	
-,		Permatrost	ø	0	•	0	•	н	c	-	•	н	0	0	•	0	0	0	0	o	0	0	
	4	480 801.	0	ò	0	0	0	0	•	0	0	o	o	0	0	0	0	0	o	0	0	0	-
A30	"	MULTUILA	¢	ч	0	н	0	н	н	щ	٦	ы	н	9	0	•	C	м	0	0	0	۰.	
ttho]	2	borabilogroad	0	н	н	-	н	м	н	2	Ч	г	H	0	0	•	o	м	÷.	H	•	0	Î
4	н	Kock	ы	0	0	0	н	~	-		_												7
		beref formed		-	-	-	•••	-	Ŷ	0	ò	ç	0	н	-	-	н	0	Ģ	0	-	••	1
	16	Bare Area	0	0	0		-		。 。	 •		0 0	0	0			н	•	0	0	- - -		- <u>J</u>
	15 16	Bare Area Bare Area	ວ ບ	0 0	0 0	0 0			0 0 0	0 .0 0	0 .0 0	0 0 0	000	1 0 0	0 0		0 1	000	0 0 0	0 0 0	0 1.1	н 0	- <u>9</u>
	14 15 16	Tay & Bara Nateriel Bara Area	000	0 0 0 0	0 0 I	1 0 6	1 0 1	0 0	0 0 0 0	1 0 0 ¹ 0	л ө о ['] о	0 0 0 T	1 0 0	0 0 0	1 0 0 1	1 0 0 1	τοτ	0 0 T	1.0 0 0	100	T 0 1	1 0 L	
0	13 14 15 16	Οίαγ Γίως 6 Βατα Βάτα Δτολ Βάτα Δτολ	0000	00000000000000000000000000000000000000	T T O O	1 1 0 6	0 1 0	000	0 0 0 0 0 0	1 1 0 0 ¹ 0	1 1 0 0 0 0	1 I O G O	1 1 0 0 0	0 0 0 0	1 1 0 0 1	г т с сј т	0 1 0 1	1 1 0 0 0	1 1.0 0 0	1 1 0 0	0 I 0 1 1	0 1 0 1	- <u>-</u>
5 cm)	12 13 14 15 16	SLIE & CLAY CLAY & BAEG Pictorial Baeg Acon	10000	0 0 0 0 0 0	1 1 1 0 0 ⁻	111060	0 1 0 1	0 0 0 0 0	0 0 0 0 0 0 0	11100 ¹ 0	11100 ⁰ 0		111000	0 0 0 0 0 0	1 1 0 0 1	1 1 1 6 0 1	0 0 1 0 1 1	0 0 1 I I	1 1 1 0 0 0 0	11100	0 0 1 0 1 [,] 1	0 0 1 0 1	
r 15 cm)	11 12 13 14 15 16	Bara Area Clay & Bara Clay & Bara Sile & Clay Sile Sile Sile	1100000	0 0 0 0 0 0 0	111100	0 1 1 1 0 6	0 0 0 1 0 1	0 0 0 0 0 0	0 0 0 0 0 0 0 0	111 I O OⁱO	111100 ⁰ 0	0 5 0 1 1 1 0	G I I I 0 0 0	0 0 0 0 0 0			0 0 0 1 0 1	0 0 1 1 1 0	1 1 1 1 0 0 0	1.111000	0 0 0 1 0 1 1	0 0 0 T 0 T	a -j)
wner 11 cm)	10 11 12 13 14 15 16	Bara & Bara Sile & Clay Clay & Bara Clay & Bara Diagante Di Diagante Di Diagante Di Diagante Diagante Diagante	C 1 1 C O C O		0 1 1 1 0 0	0011100	T 0 T 0 0 T	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	LILL L O O ⁱ O	1111 1 0 0 ⁰ 0	0 5 0 1 1 1 0 0	0011100	0 0 0 0 0 0 0 0			1000101	0 0 0 1 1 1 0 0	01111.000	0 1.1 1 0 0 0	1000101	1000101	(¢ m 2)
ure (unper 15 cm)	09 10 11 12 13 14 15 16	Dota 6 Dota 6 Dota 6 Dota 6 Dota 6 Dota 6 Dota 7 Dota 7 D	0 0 1 1 0 0 0 0	0 0 0 0 0 0 0 0	0 0 1 1 1 0 0	0 0 0 1 1 1 0 6	0 1 0 0 0 1 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	1 1111 1 0 0 ¹ 0	1 1 1 1 1 1 0 0 0 0	0 0 0 1 1 1 0 0	0 0 0 1 1 1 0 0	0 0 0 0 0 0 0 0	0 0 1 1 1 0 0 1	0 0 0 1 1 1 0 0 1	0 1 0 0 0 1 0 1 1	0 0 0 1 1 1 0 0	0 0 1 1 1 1 0 0	0 0 1.1 1 0 0	C TOOOT O	0 1 0 0 0 1 0 1	(com
exture (unper 15 cm)	08 09 10 11 12 13 14 15 16	Loam 6 Clay Drganic Drganic Silt 6 Clay Clay 6 Bara Silt 6 Clay Clay 6 Bara Clay 6 Bara Silt 6 Clay Silt 6 Clay Silt 6 Clay Silt 6 Clay Silt 6 Clay	0 0 0 1 1 0 0 0 0	0 0 0 0 0 0 0 0	1 0 0 1 1 1 0 0 ¹	1 0 0 0 1 1 1 0 6	0 0 1 0 0 0 1 0 1		, o o o o o o o o	1 1 1 1 1 1 0 0 ⁱ 0	1 1 1 1 1 1 0 0 0 0	1 0 0 0 1 1 0 0 0	1 0 0 0 1 1 1 0 0 0	0 0 0 0 0 0 0 0 0	1 0 0 1 1 1 0 0 1	1 0 0 0 1 1 1 0 0 1		T 0 0 0 1 1 1 0 0 0	1 0 0 1 1 1 1 0 0 0	1 0 0 1.1 1 1 0 0	0 0 1 0 0 0 1 0 1 1	0 0 1 0 0 0 1 0 1	(dan
te fexture (unser 15 cm)	07 38 09 IO II 12 13 14 15 16	Loam 6 Silt Loam 6 Clay Loam 6 Signic Silt 6 Clay Clay Clay Clay Clay Clay Silt 6 Clay Silt 6 Clay Sil	100010000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 0 0 1 1 1 0 0	0 1 0 0 0 1 1 1 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, o o o o o o o o o o o o o o o	11 1 1111 1 0 0 ¹ 0	11 1 1 1 1 1 0 0	0 1 0 0 0 1 1 0 3 0	0100011000	0 0 0 0 0 0 0 0 0 0	11 0 0 1 1 1 1 0 0 1	0 1 0 0 0 1 1 0 0 1	0 0 1 0 0 0 1 0 1 1	0 1 1 1 0 0 1 0 0	1 1 0 0 1 1 1 1 · 0 0 0	11 0 01.11100	0 0 0 1 0 0 0 1 0 1 1		(ć an
rface fexture (unser 15 cm)	06 07 38 09 10 11 12 13 14 15 16	Loam Loam 6 SLIC Loam 6 Clay Loam 6 Clay SLIC 6 Clay SLIC 6 Clay Clay Clay Clay Clay Clay Clay Clay	010 0 0110 0 00	0000 0 0000 0 000	0 1 1 0 0 1 T I 0 0 ¹	0010001000	0 0 0 1 0 0 1 0 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 ₁ 00111111100	LIL L LLLL L 0 0'0	001000100000000000000000000000000000000	00100010000	000 0 0 0 0 0 0 0 0	0 1 1 0 0 1 1 1 0 0 1	001 0 0011 1 6 6 1	0000 0 1000 1 0 1 1	0.011100010100	011 0 0111 1.0 0 0	5 1 1 0 0 1.1 1 1 0 0 0	0 0 0 0 1 0 0 0 1 0 1 1		(tan
[Surface Texture (unser 15 cm)	05 06 07 38 09 10 11 12 13 14 15 16	Sand & Bare Loam & Clay Loam & Clay Loam & Clay Drganic Drganic Silt & Clay Silt & Clay Silt & Clay Silt & Clay Clay Clay Clay & Barc Clay Silt & Clay Silt & Clay Silt & Clay Silt & Sarc	1010 0 0110 0 00	1000 0 0000 0 0 0	1011 0 0111 1 0 0 ¹	000100001000	1000 1000 101	1000 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1000 0 0000 0 0 0	0,00 T T T T T T T 0 0,0	LLLL L LLLL L 0 0 ¹ 0	0001 0 0011 1 0 0	000100010000	1000 0 0000 0 0 0 1	1011 0 0111 1 0 0 1		100010010101	0 0 0 1 1 1 0 0 0 1 0 0 0	1011 0 0111 1·0 0 0	1 2 1 1 0 0 1.1 1 1 0 0 0	TOOO G TOOO T O 1 ¹]	1000 0 1000 101	(tan
Soil Surface Texture (unser 15 cm)	04 05 06 07 08 09 10 11 12 13 14 15 16	band a Organic Sand 6 Mare Loam 6 Clay Loam 6 Clay Loam 6 Bare Silt 6 Clay Clay Silt 6 Clay Clay Silt 6 Clay Silt 6 Clay Si	1 1010 0 C11000	1 1000 0 0000 0 00 1 1	1 1011 0 0111 1 0 0 ¹	0 0 0 0 1 0 0 0 1 1 0 0	0 1000 0 1000 101	1 1000 0 0000 0 0	1 1000 0 0000 0 0 '0	0 ₁ 0 0 1 1 1 1 1 1 1 0 0 1 0	I IIII I LILLI 60 [°] 0	0 0 0 0 1 0 0 0 1 1 0 0 0	0 0001 0 0011 1 0 0	1 1000 0 0000 0 0 1	1 1011 0 0111 1 0 0 ¹ 1	0 0001 0 0011 1 0 0 1	0 1000 0 1000 10	0 0 0 1 1 1 0 0 1 0 1 0 0 0	1 1011 0 0111 1·0 0 G	1 1511 0 0 1.1 1 0 0 0	0 TOOO C TOOO T O I ^I J	0 1000 0 1000 1 0 1	(ća
Soil Surface Texture (unser 15 cm)	03 04 05 06 07 38 09 10 11 12 13 14 15 16	Sand & Clay Sand & Clay Degate Drgate	1 1 1010 0 0110 0 0 0	1 1 1000 0 0000 0 0 0 0 0 1			0 0 1000 0 1000 101	1 1 1000 0 0000 0 0 ⁰	1 1 1000 0 0000 0 0 [,] 0		1 1 1 1 1 1 1 1 1 1 1 0 0 ¹ 0	I 0 0 0 0 I 0 0 0 I I 0 3 0	1 0 0001 0 0011 1 0 0	1 1 1000 0 0000 0 0 1	1 1 1 0 1 1 0 0 1 1 1 0 0 1	1 0 0 0 0 1 0 0 0 1 1 0 0 1		0 0 0 1 1 0 0 0 1 0 0 0 1	1 1 1011 0 0111 1·0 0 G	r 1 1511 0 01.111 0 0	0 0 1 0 0 0 0 0 0 0 0 1 0 1 1	C T D D D D T D D D D D D D D D D D D D	(dan
Soil Surface Texture (unger 15 cm)	02 03 04 05 06 07 38 09 10 11 12 13 14 15 16	Sand & Loam Sand & Clay Sand & Clay Sand & Clay Loam & Sale Loam & Sale Sale & Sale Sale & Sale Sale & Sale Sale & Clay Usganic Sale & Clay Sale Sale & Sale Sale & Sale & Sale Sale & Sale & Sale Sale & Sale & Sale Sale & Sale	11 1 1010 0 C11C 0 C 0	11 1 1000 0 0000 0 000 0 0 0 0	1 1 1 1 0 1 1 0 0 1 1 1 0 0 ¹	01 0 0001 0 0011 1 0 6	000 1000 0 1000 101	11 1 1000 0 0000 0 0	11 1 1000 0 0000 0 0 [°]		11 1 1111 1 111 1 0 ¹ 0	0 1 0 0 0 0 1 0 0 0 1 1 0 3 0	01000100010001000	1 1 1 1 0 0 0 0 0 0 0 0 0 0 1	21 1 1011 0 0111 1 0 0 1	01 0 0001 0 0011 1 6 6 1	000 0 1000 0 1000 101	0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0	11 1 1011 0 0111 1·0 0 0	II 1 1511 0 01.111000	0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1	0 ¢ 0 1000 0 1000 101	(the
Soil Surface Texture (under 15 cm)	C1 02 C3 C4 05 06 07 38 09 10 11 12 13 14 15 16	Sand Sand & Loam Sand & Clay Sand & Clay Sand & Clay Dogm & Glay Loam & Glay Loam & Silt Dogm & Silt Silt & Clay Silt & Glay Silt & Silt Silt & Silt & Silt Silt & Silt & Silt Silt & Silt & Silt Silt & Silt & Silt & Silt Silt & Silt & Sil	111 1 1010 0 0110 0 0 0	111 1 1000 0 0000 0 0 0 0 0 0 0 0 0 0 0	111 1 1011 0 0111 0 0 ¹	001 0 0001 0 0011 1 0 6	000 0 1000 0 1000 1 0 1	111 1 1000 0 0000 0 0	111 1 1000 0 0000 0 0 [,]	0 <mark>0 0 1 1 1 1 1 1 1 1 0 0 1</mark> 0	III I IIII I IIII 0 ¹ 0	0 0 0 0 0 0 0 0 0 0 1 1 0 0 0	0010001000100010000	1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1	1 1 1 1 0 1 1 0 0 1 1 1 0 0 1	001 0 0001 0 00111 0 0 1	COOO 1000 0 1000 101	0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0	111 1 1011 0 0111 1·0 0 0	1 I I I I I I 0 0 I.I I 0 0 0	000 0 1000 0 1000 1 0 1 1	0000 0 1000 0 1000 1 0 1	ada)
Soil Surface Texture (unper 15 cm)	6 01 02 03 04 05 06 07 38 09 10 11 12 13 14 15 16	Mounteine Sand & Loam Sand & Loam Sand & Loam Sand & Clay Sand & Bare Desm & Clay Loam & Bare Dissand Sallt & Clay Sallt & Clay Sallt & Clay Meetial M	0 1 1 1 1 1 0 1 0 0 1 1 0 0 0 0	1111 1 1000 0 0000 C C C	TILL I TOLL 0 OILL 1 0 0	1001 0 0001 0 0011 1 0 6	10000 10000 0 1000 101	0'I I I I 0 0 0 0 0 0 0 0 0 0 0 0 0	0111 1 1000 0 0000 0 0 [,] 0	0 <mark>0 0 1 1 1 1 1 1 1 1 1 1 0 0 1</mark> 0	OILL L LLLL L LLLL L O O	0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0	0001 0 0001 0 0011 0 0		1111 1 1011 0 0111 1 0 0 1	1001 0 0001 0 00111 6 6 1	1 C O O O 1 O O O 1 O O I O I O	1001 0 00.01 0 0011 1 0 0	1111 1 1011 0 0111 1·0 0 0	1111 1 1511 0 0 1.11 1 0 0 0	1'000 0 1000 C 1000 I 0 1 ¹ 1	1 0 0 0 1 0 0 0 0 1 0 0 1 0 1	, (car
tion Soil Surface Texture (unger 15 cm)	5 6 C1 02 C3 C4 05 06 07 38 09 10 11 12 13 14 15 16	Bounceline brons Sand & Clay Sand & Clay Sand & Clay Sand & Bare Drganic Picentel Distric Silt & Clay Clay Clay & Bare Silt & Clay Clay Clay & Bare Silt & Clay Silt & Clay Silt & Silt Silt & Clay Silt & Silt Silt & Silt & Silt Silt & Silt & Silt Silt & Silt & Silt & Silt Silt & Silt &	00111 1 1010 0 0110 0 0	11111 1 1000 0 0000 0 0 0 0 0 0 0 0 0 0	ILLLI I 1011 0 0111 1 0 0	11001 0 0001 0 0011 1 0 6	1 1 C O O O O O O O O O O O O O O O O O	00,1 11 1 1000 0 0000 0 0	00111 1 1000 0 0000 0 0 0 ¹ 0	0 ¦0 0 I I I I I I I I I I I I 0 0 ¦ 0	O O I I I I I I I I I I I I O O O	000001 0 0001 0 0011 1 0 0 0	00001 0 0001 0 0011 1 0 0	IIIII I 1000 0 0000 0 0 000		11001 0 0001 0 0011 1 6 6 1	11000 0 1000 0 1000 1 0	11001 0 00 [.] 01 0 0011 1 0 0	11111 1 1011 0 0111 1·0 0 0	1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0	1 1'000 0 1000 C 1000 I 0 1 ¹ 1	1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1	
uration Soil Surface Texture (unser 15 cm)	4 5 6 C1 02 C3 C4 05 06 07 38 09 10 11 12 13 14 15 16	Planta & Milina Planta & Milina Planta & Milina Planta & Milina Planta & Ciny Sand & Dara Sand & Dara Drganic Drganic Drganic Planta & Mic Drganic Drganic Drganic Drganic Drganic Drganic Drganic Drganic Drganic Drganic Drganic Drganic Drganic Drganic Planta & Mic Drganic D	1 0 0 1 1 1 1 1 0 1 0 C 1 1 C 0 C 0	1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	LILLI LOLL 0 0 LLL 0 0		1 1 1 C O O O 1 C O O O I O O I O I O I O I	I 0 0, I I I 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 ₁ 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0	I COLLI L LLL L LLLL L CO ¹ O	1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 5 0	1 0 0 0 1 0 0 0 0 1 0 0 0 1 I 0 0 0	I I I I I I I 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1	1 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1	1 1 1 C O O O 1 O C O 1 O O I O I I	1 1 1 C 0 1 0 0 C 0 C 0 C 0 I I C 0 0	1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0	I I I I I I I I I I I 0 0 1.1 I 1 0 0 0	1 1 1 ,000 0 1000 6 1000 1 0 1 ₁ 1	1 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 1	, (ć a
unfieuration Soil Surface Texture (under 15 cm)	3 4 5 6 C1 02 C3 C4 05 06 07 38 09 10 11 12 13 14 15 16	Binterdus Placenus Place	1 1 0 0 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0	1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0	1 1 1 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0 6	1 1 1 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1	1 1 6 0'1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 6	1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 ¹ 0	1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 ¹ 0	1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0	1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0	1 I I I I I I I 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1	1 1 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1	1 1 1 1 C 0 0 0 1 0 0 0 1 0 0 1 0 1 1	1 1 1 1 C 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0	1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 [.] 0 0 0	1 1 1 1 1 1 1 1 1 1 0 0 1.1 1 1 0 0 0	1 1 1 1,000 0 1000 0 1000 1 1 1	1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1	, (den
re Configuration Soil Surface Texture (unser 15 cm)	Z 3 4 5 6 01 02 03 04 05 06 07 38 09 10 11 12 13 14 15 16	Rolling Tubleands 6 Fubleands 6 Fubleands 6 Fubleands 6 Fubleands 6 Fubleands Sand 6 Clay Sand 6 Clay Sand 6 Clay Sand 6 Clay Loam 6 Clay Suit 6 Clay Clay 6 Dare Stit 6 Clay Clay 6 Dare Stit 6 Clay Clay 6 Clay Suit 6 Clay	1 I 1 0 0 I I I I 0 I 0 0 0 1 1 0 0 0 0	1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	L 1 L L 1 L I I I I I O O I I O O O O O O O O O O		1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1	1 I I 60'III I 1000 0 0000 0 6	1 I I 0 0 1 1 I 1 0 0 0 0 0 0 0 0 0 0 0	0 ¦0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0	1 I I 0 0 I I I I I I I I I I I I O O O	1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0	1 I I 0 0 0 1 0 0 0 0 1 0 0 0 1 I 0 0 0	1 I I I I I I I I 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1	1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1	1 1 1 1 1 6 0 0 1 0 0 0 1 0 0 1 0 1 1	1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0	1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 · 0 0 0	1 I I I I I I I I I I I I 0 0 1.1 I 1 0 0 0	1 I I I ¹ 000 0 1000 0 1000 1 1	1 7 7 7 7 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1	, (den
urface Confferration Soil Surface Texture (under 15 cm)	Z 3 4 5 6 CL 02 C3 C4 05 06 07 38 09 10 11 12 13 14 15 16	Levol Jeroli Solling Tablelands 6 Tablelands 6 Tablelands 6 Tablelands 6 Tablelands Sand 6 Clay Sand 7 Sand	1 1 1 0 0 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0	1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	I I I I I I I I I I I I I I O O I I O O I I I O O	1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0 6	1 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0	1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	1 I I 00111 I 1000 0 0000 0 0 ¹	0 ¦0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1	1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0	1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0	1 I I 0 0 0 1 0 0 0 0 1 0 0 0 1 I 0 0 0	1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1	1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1	1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 1	1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0	1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 0 0 1.1 1 0 0 0	1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1		, (da
Surface Confidentation Soil Surface Texture (under 15 cm)	1 2 3 4 5 6 CL 02 C3 C4 05 06 07 38 09 10 11 12 13 14 15 16	Pinine Level Sulting Sulting Sulting Fulting Fulting Fulting Function Function Sund 5 Sund 6 Sund 6	01 1 1 1 00111 1 1010 0 0110 0 0	0 I I I I I I I I I 0 0 0 0 0 0 0 0 0 0	O I I I I I I I I I I I I O I I O O I I I O	0 1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0 6	0 1 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1	0 1 1 1 1 0 0,1 1 1 1 0 0 0 0 0 0 0 0 0	31 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0	0 ₁ 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 ₁ 0	0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0	0 0 1 1 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0	71 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0	1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1	1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1	1 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1	0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0) I I I I I I I I I I I I O I I O O I I I I O O G) I I I I I I I I I I I I I 0 0 1.1 I 0 0 0	1 I I I I I 0 0 0 1 0 0 0 1 0 0 1 1 1 1	7 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 1 0 1 1 1	- (da

Table 22 (Continued)

			-,
1			
	,	1	
!	Commercial Commercial		
	O O O HOLETeute		1
	·····································	8	1
1		4	ļ
	6 bastass o o o		•
	a stearl antqia o o o		
			ł
			:
	Lorest w		
ļ			
	Stoadlaat		
	Stattattas		
	HON YOOK OF ICE N		
	Ton Mater		
	Mater Tabla un		
			ł
	C C H Ice Ceb		:
I			
	Diconsolitation of the state		
	Consolitation		
			1
:			
i			ł
i	000 8116 8 mm		.
	Mererater (1	1
	a a mol		
	CONTRACT CONTRACTOR		}
			1
	S Sand & Clark		
	S meory pars a a a		
		· · · · · · · · · · · · · · · · · · ·	
T Contraction of the second seco			
	A He P STARS CONDERN P		1
	Stateaus .		
	Sur 3 sbraieldaT		
	anter the state		
			1
	S S Description No.	1	
			1
			-
Į			

5.7

Table 23

ing ing Andre a berte a trade on were represented at Afrikanski kilon berefenski kanski verska kilon i strategi kanski Afrikanski

ł

.....

Printout of Thematic Map Legend and Corresponding Terrain Matrix Elements

	18 12.24 22.18 72.28		1×+2× 52+2× 62+2×	90	26 15.18 15.28 15.38 15.48 17.28 21.28		AE 18.78 18.85 11.39 28.26	78 10.68 11.30 20.20		.20 0.26 0.06 16.10 18.28 18.35 10.49 10 90.10 90 00 01 00 01 10	78 11.88 11.37 20.28	78 M.28 M.56 Ju.Je 10.24 10.40 10.40	.38 24.14 70.78 23.34		ji 19.24 10.46 18.54 19.44 19.84 20.18									10 //// ///// 15.70 15.30 15.40 17.20		18 14.28 15.18 15.28 15.38 15.43 17.28		.]] 1/.22 71.49 Ea ta ta ta ta da te ti ta ĝe se	* ****** ****** ****** **************	51 18.68 14.78 14.66 11.38 20.29	18 8.28 8.38 8.48 8.58 18.18 18.79	14 11.58 13.74 15.48 15.78 15.44 20.18		FF 11.38 76.24	RE 71.35 28.29 23.38		18 /.28 8.78 8.59 18.16 18.20 19.30	10 111401 10410 10411 10410 10400 40 10-10 10-01 10-10-00	10 14.20 [5.14 15.28 15.46 [7.28 21.70		10 14.28 15.18 15.28 15.48 17.28 21.28
	11.48 12		11 21 11	21.11 21	12.10 14		11.51 11	10.68 10	11.34 74		18.68 18	7.110 7	11.11.11	18. 4H 18	7.24 14	10,00				12.28						9.40 13			8.50 11	8.58 14	7.28 .	11.80 11		11.74 10	18,78 14 11,78 14						61 8¥*6
	11.20	12.21					1.51	e 10.58	0 14.90				0 1 u . H 0	8 14.58		11.68	0 10.10	12.20	8 12.23	11.45	0 14.10						:				1 0.13	11./6		11.61	91.19						E+•# #
s	21 37 18.7	74 11 .4		24 14 1	1.8.42		4.4 EC	39 8.4			2.8 82 2.8 82	3.6 5.2	1.01 10./	4.8 65	31 5.2	2.81 45	74 12.2	70 11.4	74 11.6	14 10.7	19 17.1	14 17.1				1.1 8.3	; ; ;			1.1	21 5.3	58 18.6		51 11-5			2 S #2				
TERAAM DESculetue	10.70 12. 5.JR 18.	5. 38 19.	, 14 18. 1	9.18 4.	J. 78 R.	21.41	J.78 B.		11.54 11.	1.39 7.			11.50 11.	3.78 8.	1.34 2.	5.24 7.	4.14 1B.	6.14 10.	6.14 18.	5.39 4.	0.38 14.	9.35 14.			12 02.12	3.24 6.	21.24 21.			1.28	3.28 5.	11.15 14.	20.24	6.13 B.	A.13 7.	6.13 16.	1.38 2.			71.40	3,74 4.
VEGETATION	5 r		2:		. •	•	~	~	s i		£			2	11	12			ŝ	\$	-	~ `	• •	c	•	2	•	n, •		• •	-			~	•	•	•	•	• •	ł	-
STATE OF GRUUND		•	• •	•	•~		-	-	4	Ŧ				n	-	•	-7	•	4	4	-			- •	•	Ň		~ •						4	•	•	•	•	r n	ŀ	•
L I ThØI 047	-			- ~		•	~	2	~ :	2		. ~		-,	-	ſ		-	-		~	~ 1	~ •	. •		~		~ 1			•			2	~	~	~	•	• •		۰
50115		-	-1 -		.		-	-	-	-	-	· _		-	-	ľ	~	•	~	N	~	~ 1		. •	4	~		N (••	. •	. N			~	•	~	~	•	~ ~	ł	~
SURFACE CONFICII+ PATION		-	-1 -		• ••	•	-	-	-	-	-			•	-	-	-			-				- •	•	-			- •	• •		•		-		-	-1	•			-
NAP UNIT	- ~	.	.	•	•		*	¢	2	11	12	: 2		:	1	16	11	: :	19	24	22	22				**		14	:		17	1		32	2	*	ŝ				# 10

٢

.

ien aller a

WARS &

Table 24

Seismic Response Ranking of the Terrain Matrix Elements

Predicted Selsmic Response - Class 14	T	2	٣	4	5	Ŷ	7
Terrain Descriptor Number	1.10-1.20-1.30-1.40-2.10-2.20-2.30-2.40 3.10-3.20-3.30-3.40-4.10-4.20-4.30-5.10 5.20-5.30-5.40-5.50-5.60-5.70-6.10-6.11 6.12	12.10-12.20-12.30	6.13-6.14-8.10-8.20-8.30-8.46-8.50-8.60 8.70-9.10-9.20-9.30-9.40-9.50-9.60-10.10 10.20-10.30-10.40-10.50-10.60-10.70-10.80-10.10 10.91-10.92-10.93-11.10-11.20-11.30-11.40-11.50 11.60	7.10-7.20-7.30-14.10-14.20-14.30-14.40-14.50 14.60	21.10-21.20-21.30-21.40-21.56-21.60	15.10-15.20-15.30-15.40-15.50-15.60-15.70-15.80 15.90-15.91-15.92-15.93-16.10-16.20-16.30-19.10 19.20	13.10-13.20-13.30-17.10-17.20-18.10-18.20-18.30 20.10-20.20-20.30-20.40-22.10-22.20-22.30-22.40 23.10-23.20-23.30-23.40-24.00-25.00-26.10-26.20

いるのである「ない」というないないないない

	Cultural		Natural
1.	Urban áreas	1N.	Rain
2.	Railroads	2N.	Sleet
3.	Airports	ЗМ.	Hail
4.	Marine traffic	4N.	Wind
5.	Interstate highways	5N.	Stream
6.	Principal highways	6N.	Rivers and wave action
7.	Secondary roads	7N.	Thunder and lightning
8.	Mines (underground and open pit)	8N.	Earth tremors
9.	Factories	9N.	Rock cracking
10.	Generating stations	10N.	Animal noise
11.	Agriculture operations	11N.	Dust storms and/or
12.	Construction operations		
13.	High-voltage transmission lines		
14.	Pipe lines		
15.	Lock or dan		
16.	Campsite		
17.	Wells		
18.	Windmills		
19.	Drawbridges		
20.	Impact areas		
21.	Cantonement areas		
22.	Schools and institutions		
23.	Logging activities		
24.	Pumping stations		

Tab	le	25
Tab	le	25

「「「「「「「「「」」」」」

Ş.

and the second states a

direct Constitution in the second

14121

調整に

. 7

NO BALLYNA

に行われた時になりたけである。

A BERNELLER BERNELLER

า เข้าเป็นการใช้เกิดรู้การไปการเรือกรับเป็นการเสดียมกันสายแนนสายการเสีย เสกัดประกอบสายเหล่านการเหลาสายการให้เรากา

Tal	ble	26
-----	-----	----

Military Grid Coordinates of Sampling Points

Map: Fulda

のためたいという

Series: M 745 No. L5524

Contra a distance interesting sections

Scale: 1:50,000

	<u>Military Grid</u>						
Sample No.	<u>x</u>	<u>y</u>					
1	4889	9466					
2	6488	8715					
3	6285	9669					
4	4982	9266					
5	6290	9380					
6	5654	9698					
7	6415	0355					
8	5536	0545					
9	5538	9114					
10	5631	9834					
11	5601	0189					
12	5384	9770					
13	4935	9103					
14	6539	9597					
15	6992	9527					
16	4845	9895					
17	4985	0432					
18	5486	0045					
19	5683	9820					
20	6888	0080					

			Distance from Sampling Point, km								
- 	0	- 0.5	0.5	- 1.0	1.0	- 2.0					
<u>Point</u>	<u>Typ</u> e	Number	Type	Number	Type	Number					
1	1	2	6	2	1	2					
	2	1	7	1.4	2	1					
	6	2	16	1	7	31					
	7	5	15	1	13	1					
	11	1	11	1	18	1					
	5N	5			16	1					
	6N	1			24	1					
	15	1			11	1					
					22	1					
 2	1	1	1	1	1	3					
-	7	5	6	1	7	28					
	11	ĩ	7	6	8	1					
	5N	1	8	1	11	1					
	<i>د</i>		11	1							
		<u> </u>		3	. <u> </u>	1					
3	7	6	11		7	23					
	11	1	5N	1	11	1					
	<u> </u>	1	211	-	13	1					
	5	*			17	1					
					18	1					
					5N	$\overline{2}$					
4	7	4	2	1	1	3					
	11	1	5	1	6	1					
	5N	2	6	2	7	29					
	15	1	13	1	16	1					
		-	15	4	18	1					
			6N	1	5N	5					
			11	1	6N	1					
			7	7	15	1					
			-		8	1					
		,		、	11	1					
		()	Continued)							
						(Sheet					

¥

and an interior description of the

และระ และร่งการแหน่ง แต่แต่ประทัศษที่ประทัศ การและที่ประเป็นให้มายที่ให้เป็นได้ได้เรียงไม่มีการเรียงไม่มายไม่เห

		1	fable	27			
Backgrcund	Noise	Sour	ces,	Number	of	Occurrences	2
and	Distar	nces	from	Samplin	ng	Points	

• •• ••••

ir I

٠,

ordiestate diasolar

Multiced States

	0		Distance	e from Sam	pling Point, km					
Sampling		- 0.5	<u> </u>	<u>- 1.0</u>		- 2.0				
5	<u>1ype</u> 7 11 5N	5 1 1	1 7 16 13 15 11	2 12 1 1 1 1 1	1ype 1 6 7 11	Number 2 1 43 1				
6	7 11 15	6 1 1	7 11 13 5N	11 1 1 1	1 7 11 15 17	2 38 1 1 1				
7	7 11 5N	5 1 1	7 11 17	11 1 1	1 2 7 16 11	4 1 39 1 1				
8	1 7 11 5N	1 7 1 1	7 11 5N	10 1 1	1 2 7 6N 18 11	2 1 21 1 1 1				
9	7 11	6 1	1 2 6 7 11 5N	1 1 16 1 2	1 7 15 24 5N 6N 11	3 45 26 1 7 2 1				
		(Continued	1)	16	1 (Sheet 2				

อดีสารกระโรสและสารกรไม้มาและสารกระสารสารกรีบสารกรีบสารกรณ์ให้สารกรีบสารกรณ์สารกระสารกระสารกระสารกระสารกระสารกร

of 5)

สารให้สารประสารที่สารได้เสียงได้เสี

語語がないためのないではないであるというというないである。

s'nasilisa

and the second second

			Distance	e from San	pling Po	oint, km
C	<u> </u>	- 0.5	0.5	- 1.0	1.0	- 2.0
Point	Type	Number	Type	Number	Type	Number
10	7 11	8 1	1 7	2 17	6 7 11	1 47
	5N	2	11 5N	1 3	13 17 5N 6N	1 1 4 1
11	1 7 11 5N 15	1 9 1 1	7 11 15 8	11 1 1	1 2 7 16 8 11 17 5N 6N	2 1 38 1 1 1 3 2
12	1 7 11 5N	1 6 1 2	7 11 13 5N	12 1 1 1	1 5 7 8 13 11 17 5N	4 1 38 1 1 1 8
13	1 7 5N 6N 18 11	1 6 1 1 1 1	6 7 16 11	1 14 1 1	1 7 11 15 16 13	2 54 1 3 2 1

(Continued)

un sinte managent est in complete entries and a characterization and the second second second second second sec

(Sheet 3 of 5)

Lever Marsh and

			Distanc	e from Sau	pling Po	oint, km
.	0 .	- 0.5	0.5	- 1.0	_1.0	- 2.0
Sampling Point	Type	Number	Туре	Number	Туре	Number
14	1	1	6	1	1	2
	7	6	7	14	7	54
	5N	1	16	1	15	3
	6 • •	_		_	11	1
	6N	1	11	1	16	2
	11	1			13	1
		ـــــــــــــــــــــــــــــــــــــ				
15	7	5	6	1	1	1
	11	· 1	7	15	6	ī
			11	1	•	-
	5N	1	17	1	7	29
		•	8	1	11	1
			5N	2	17	1
					15	1
					5N	6
16	1	1	7	10		
10	2	1	16	2	9	1
	6	1	5N	2	11	ĩ
	7	6	6N	2	15	ĩ
	16	1	9	1	17	1
			1.1	1	16	3
					5N	5
					7	40
17	5	1		1	1	
±/	6	1	7	15	2	1
	7	7	11	1	7	32
	5N	1	5N	1	11	1
	11	1			13	1
					5N	2
					9	1

Ę,

0

Table 27 (Continued)

(Continued)

and and a second of the second o

(Sheet 4 of 5)

	0 -	- 0.5	Distance	from Sam	pling Po	pint, km
Sampling Point	Туре	Number	<u>Type</u>	Number	 Type	Number
18	7 17 11 5N 6N	6 2 1 1 1	7 6 11	13 1 1	1 7 11 17 15 8 5N 6N 13	7 36 1 2 1 5 1 1
19	7 11	8 1	7 11 17 5N	8 1 1 2	1 6 7 13 11 17 5N	3 1 35 1 1 1 6
20	7 11 5N	7 1 1	7 11 5N	12 1 2	1 6 7 2 11 17 5N	1 40 1 1 2 5

drea all tax blades

a hat the contraction of the

「東京を訪られた」のである。

10.00

a desided to reach the shirt of the second

(Sheet 5 of 5)

Street and the second

Table 28

A CALL AND A CALL

いたのでのないないというというないないないないないないないです。

1

!

Summary of the Single Target Test Program

Engineering Development (ED) Tests

Remarks	Three vehicles are specified. One vehi- cle can be the same as used to determine signature variation with a target class (see above).	Smooth road, cross- country, and obstacle course is required at all locations for these tests.
Number t Runs íty 3	I	1
f Tes Prior	8	8
L of 1	JI	21
No. Itei tfoi	о Ч ц	и и и и и
Target Travel Mode	hin a Target Type 10/km/hr and con- voy speed on road 7.5 and 30.0 km/hi for cross-country 5.0 and 12.0 km/hi for obstacle	10 km/hr and c. u- voy speed on road 7.5 and 30.0 km/hr for cross-country 5.0 and 12.0 km/hr for obstacle
Prior- ity	ation Wit	
Terrain Site* Condition Code	vari es 3,8,13**	a 3,8,13**
Target Class	Wheeled vehicle type M35Al, three vehicl	Tracked vehicle type Mll3 three vehicles

y. Sinnas

and him where and the shall be all the shall be an a second

(Continued)

* Terrain site condition codes correspond to conditions identified in paragraph 31. ** Tests to be run on cross-country, smooth road, and obstacle course.

ч.

Machineko

white.

Table 28 (Concluded)

2555

2.2

Target Class	Terrain Site Condition Code	Prior- ity	Target Travel Mode	No. of Itera- tions	Total N of Test Priori	fumber Runs ty 3	Remarks
	Variat	ion Wit	hin a Target Class				
Wheeled wehicle type M170	2,5,8,14	1	10 km/hr and con-				Priority based on site
C/TH M35A1 M381	1,3,4,6,7,9, 12,13	7	voy speed for road sites. 7.5 and 30.0 km/hr	2	128 256	64	conditions.
.4622 M813 M125 VIOU	10.11	Ċ	for cross-country sites	I			
Tracked vehicle type							
M113 M60 M551	2,5,8,14 1,3,4,6,7,9,12,13 10,11	ном	Same as for wheeled vehicles.	2	48 96	54	Priority based on site conditions.
Rotary-wing aircraft CH46F			Altitude: 150 and	6	18u -	I	
CHIN TH57A	8,13,14		750 m; speeds: 0.5 and 1.0 crufsin	90			
СН 3В Ні: IK			speed horfzontal flight; decending and ascending.	ı			
Fixed-wing afrcraft							
Three types; to be determined.	8,13,14		Altitude 500 and 1500 m; speeds: 0.5 and 1.0 cruisin speed horizontal flight only.	8	- 21	ł	
Walking-man targets							
One man Three men Seven men	2,5,8,14 1,3,4,6,7,9,12,13 10.11	цим	Route and march step 5- and 15-m CPA walk marks	2	96 192	48 F	riority based on site onditions.

Table 29

Target Types and Targe: Combination Codes for Multiple-

Target Signature Acquisition

k

	· · ·		Primary Targe	ts	
Secondary Targets	Wheeled Vehicles <u>3 Types</u>	Tracked Vehicles 3 Types	Rotary-Wing Aircraft 3 Types	Fixed-Wing Aircraft 3 Types	Walking Man <u>l Man</u>
Wheeled vehicles (3 types)	1*	2	3	4	5
Tracked ventcles (3 types)		6	7	8	9
Rotary-wing aircraft (3 types)			10	11	12
Fixed-wing aircraft (3 types)				13	14

	Talget Types							
Wh ee led Vehicles	Tracked Vehicles	Rotary-Wing Aircraft	Fixed-Wing Aircraft					
M170	M113	UH IN						
M35A1	M551	TH57A	To be determined					
M125	M60A1	ннік						

* Numbers refer to target combination codes used in Table 30.

Continue because

a a contraine a contraction indexistic devices and the contraction of the second devices of the contraction of the contraction

Table 30

and the second se

Summary of the Multiple-Signature Acquisition Test Program

Advanced Development (AD) Tests

• }••!

Remzrks	Site surface can be cross-country or smooth road	Site surface can be cross-country or smoth road	Site surface can be cross-country or smooth road		Site surface can be cross-country or smooth roaú	
Tota []] Test <u>Runs</u>	108	108		432		
Iterations	7	7		8		
Target** Combinations	On .	σ		б,		
Target Travel Modes	Cross-country at 7.5 and 30 km/hr or Road at 10 km/hr and convoy speed	Cross-country at 7.5 and 30 km/hr or Road at 10 km/hr and convoy speed	Wheeled vehicles: Cross-country at 7.5 and 30 km/hr or Smooth road at 10 km/hr and convoy speed	Rotary-wing aircraft: Altitudes of 150, 750 m; speeds of 0.5 and 1.0 cruising speed, horizontal flight	Wheeled vehicles: Cross-country at 7.5 and 30 km/hr or Smooth road at 10 km/hr and convoy speed	(Continued)
Terrain Site Conditions Code*	5, 8, 13	5, 8, 13	5, 8, 13		5, 8, 13	
Targe•s (Coded from Matrix in Table 29)	Ч	2	m		4	

erester i distante

and the second state of th

anis biographic sectors and

and the second second

Table 30 (Continued)

Remarks	·	Site surface can be cross-country or smooth road		Site surface can be cross-country or smooth road	Site surface can be cross-country or smooth road	
Total Test Runs	432		144	108		
Iterations	8		7	7		
Target Combinations	6		ζ ή	σ		~
Target Travel Modes	Fixed-wing aircraft: Altitudes of 500 and 1506 m; speeds of 0.5 and 1.0 cruising speed, horizontal flight	Wheeled vehicles: Cross-country at 7.5 and 30 km/hr or Smooth road at 10 km/hr and convoy speed	Walking-man: One man, normal walk, march step; two walk paths (near, far)	Cross-country at 7.5 and 30 km/hr or E3ad at 10 km/hr and convoy speed	Tracked ventcle: Cross-country at 7.5 and 30 km/hr or Road at 10 km/hr and convoy speed	(Continued
Terrain Site Conditions Code		5, 8, 13		5, 8, 13	5, 8, 13	
Targets (Coded from Matrix in Table 29)		Ś		అ	7	

(Sheet 2 of 4)

Table 30 (Continued)

ŧ

	Remarks								(Sheet 3 of 4)
Total	Test. Runs	432	432		36		144		
	Iterations	7	2		2		Ν		
	Target Combinations	σ	6		ũ		ũ		
	larget Travel Modes	Rotary-Wing aircraft: Altitudes of 150, 750 m; speeds of 0.5, and 1.0 cruising speed, horiz- ontal flight	Tracked vehicles: Same as 6	Fixed-wing aircraft: Altitudes of 500, 1500 m; speeds cf 0.5, and 1.0 cruising speed, horizon- tal flight	Tracked vehicles: Same as 6	Walking-man: One man, normal route walk, one walk path (far)	Rotary-wing aircraft: Altitudes of 150, 750 r; speeds of 0.5 and 1.0 cruising speed, horiz- ortal flight	(Continued)	
Terr ai n Site	Conditions Code	5, 8, 13	5 , 8, 13		5, 8, 13		Ś		
Targets (Coded from	Table 29)	t.	œ		6		10		

n Norte

.

erner som utili and the state of an in the second state

NATIONAL AND AND AND

Emerikê anis

Table 30 (Concluded)

a statu

の語を利用した。

Ś

	Remarks							
The second se	Total Test. Kuns	288		72		144	72	2952
	Iterations	7		2		7	2	Total
	Target Combinations	6		£		σ	Э	
	Target Travel Modes	Rotary-wing aircraft: Same as 10	Fixed-Wing aircraft: Altitudes of 500, 1500 m; speeds of 0.5 and 1.0 cruising speed, horiz- ontal flight	Rotary-wing aircraft: Same as 10	Walking-man: Oue man, normal routc walk, one walk path (far)	Fixed-wing aircraft: Altitudes of 500, 1500 m; speeds of 0.5 and 1.0 cruising speed, horiz- ontal flight	Fixed-wing afroraft: Same as 13	Walking-man: One man, normal route walk, one welk path (far)
	Terrain Site Conditions Code	2		5, 8, 13		Ŋ	5, 8, 13	
	Targets (Coded from Matrix in Table 29)	11		12		13	14	

(Sheet 4 of 4)

AND LEVE LEVE

自動の語言で 以下

l

advillation and a constant

เมษะเหลือรับระเด้

omoteol istelati

sidente data

In accordance with ER 70-2-3, paragraph 6c(1)(b), dated 15 February 1973, a facsimile catalog card in Library of Congress format is reproduced below.

Benn, Bob O

いたので、「「「「「「」」」」

Rationale and plan for field data acquisition required for the rational design and evaluation of seismic and acoustic classifying sensors, by Bob O. Benn. Vicksburg, U. S. Army Engineer Waterways Experiment Station, 1975. 1 v. (various pagings) illus. 27 cm. (U. S. Waterways Experiment Station. Miscellaneous paper M-75-10) Prepared for Project Manager, Remotely Monitored Battlefield Sensor System, AMC, Fort Monmouth, New Jersey, under Project 1X764723DL73. Includes bibliography.

 Acoustic waves.
Remote sensing.
Remotely monitored battlefield surveillance system.
Seismic waves.
Sensors.
Target classification.
U. S. Army Materiel Command.
(Series: U. S. Waterways Experiment Station, Vicksburg, Miss.
Miscellaneous paper M-75-10) TA7.W34m no.M-75-10