(ye8rovay

N -,

i

T, N

Report No. 3126 Bolt Beranek and Newman Inc.

A MULTIPROCESSOR DESIGN
October 1975

W. B. Barker

D DC

OEC 16 1975

ISR Y
o D

The research reported in this document was sponsored by the
Advanced Research Projects Agency of the United States Depart-
ment of Defense under Contract Nos. DAHC15-69-C-0179,
F08606-73-C-0027, and F08606-75-C-0032.

The text of this report was submitted by the author as his
doctoral thesis at Harvard University.

DISTRIBUTION STATEMENT A

BApproved for public release;
Distribution Unlimited

Preface

This work has enjoyed the support of many people from
Harvard University and Bolt Beranek and Newman Inc. to whom

I would like to express my appreciation.

To Professor T.E. Cheatham, my thesis advisor, for his

advice and support.

To the other members of my thesis committee from Harvard,
Professor A.G. Oettinger, for his comments and suggestions,

and Professor U.0. Gagliardi.

To members emeriti of my thesis committee, Dr. D. Cohen and

Dr. T.A. Standish, for their help and direction.

To Mr. S.M. Ornstein, who served both on my thesis committe

and as manager of the BEBN Pluribus piroject, for his

assistance.

To Mr. F.E. Heart, Director of the BBN Computer Systems
Division, for his support over the years of my work on the

project as well as on this dissertation.

To Mr. W.R. Crowther, for his inspiring ideas and helpful

comments.

To Mr. D.C. Walden, for his support and helpful comments on

the dissertation.

To the other members of the Pluribus design crew.

L..-J—.l.—utm.n.:..t Y —————

Preface

To Mr. R.A. Brooks for his help in preparine this document. |

And most importantly to my wife, Janet, for her support,

understanding, ard assistance over the many years of this

effort.

This work was supported by the Advanced Research Projects
Agency of the Department of Defense under Contracts Ho.
DAHC15-69-C-0179, No. FO8606-73-C-0027, and No.

F08606-75-C-0032.

W"m—'w"nw—mur e anem i T e
; acha i,.____..-_‘q

‘-\.
. ki = 'l) _ s P A TSI Atasras. 1
s .‘ =
: | 1

| < 111

Table of Contents

* Introduction
A - What this Dissertation is About..

' 0 M2 re Y s el g caibaT

[0 A1 - Our T o e N s I e e |

0 A 2 - Fundamental REASONS..eetesessonssosoassssnssonsd

0 A2 a - Economical Powerful Computer......eeeeeeesees3

, 0 A2 b - Economical Reliable Computer......eeeeesssessd
0 B - How the Dissertation is Structured. b ame e eds s EAD

0 B 1 - Chapter I - Forms of Parallelism...eeoeessoosesl

0 B 2 - Chapter II - Interprocessor Interactions.......8

B89 2N - CORTLIORE . wsnhin h@es s vh s BRI T s e ols g d s P

0 B2b - Allocation of Tasks to ProcessorS..esassessssd

0B 2 c - Interactions for Reliability.....ceeeveeeess10

' 0 B 3 - Chapter III - Multiprocessor Architectures....11
al 0 B 4 - Chapter IV - Pluribus: A Real Live One........11
0 B S5 - Chapter V - CORMBLUBLOG s o0 o oaa's v5 mus sdss iion st VE

Chapter I Forms of Computational Parallelism
IUVA: = Control vs. Data ParalleliSm.eeeessvesesssoononesl
T® 1 = Data ParslleliSmis .o vbeip niias ool isse=snsdise
I A 1 a - Reasons for Data Parallelism.....ccooenessess?
I A1ai- To Reduce Complexity and Cost...ieevsensess3
r T £ 1 a id s T INCreass: Speed, i o oot ans sonsvamissnidd
| I A1Db - Limitations of Data Parallelism.....ceceee...b
| I A 2 - Control Parallelism...scoovscsassscsonsssssssanal
s I A 2 2 = PUPrPOS@S .« s ouciveasasssntsoasosssmssnnssssonssl {
. 2 e DEBlEn SLMPLIEIYY . ok sus e s sm 3wk e b6 e s
; Tk 2 8 il =Rl DI Wi ot o6 o 5 s is s b b.o e ot TER
1 Ik 2 & idi = SPO80. . o «upoows cnsshiiblns swessm vomie ot e 1D
; I, A 2 bl = History.....................................10
T4 2% % = T/0 CHANRBIE. « 545 cwscosgbaeeisinvossmuibat n
3 I A 2Dbii - Display ProCeSSOrS..sssesessstsnccnsosansll
3 | I A2b iii = CDC 66C0..vueeeonarasnssssnnssssnconaeeslll
i I8 20 iv - NASA s Triple 360.....cc00ennnonossnsnealll
I A2 Dbv - Dual Processor Time-3Sharing Systems.......15
I A2Dbvi=-C.mmpand BUEEIDERLS. o 714 o onfs bloies Dol Sl pLORIE
' I 4.2 ¢ = LiBHEREIONS. . o5 oonsnissossvmob@astaestsmasglll
) I A2 61« Relighility Limitations.«..ovesseesoneosslB
I A2 c ii - System Power Limitat iome. oiujos o sons uvel
Tk 3= Pipelining....................................24
I B - Parallelizing @ TasK...ovecoooonorsonsonsnessessll
I B 1 - Data Parallel ProgramsS.....cerecsesesssonasssesll
I B 2 - Control Parallel ProgramsS......oeeeeeeasssssssd
I B 22« Job Boundari€s...s s eavwssasnossosssiansosss3l
I B2 Db - Simultaneous Equivalent Executions..........32
I B2 c - Precomputation Down Decision Trees,. .. 105:33
Summary...35

Chapter II - interprocessor Interactions
TR = (CONCAKCHES 5 & o s o ateel shilare (o105 nils asiialio¥ai | o, a)s %0) elioio) @ (o*afo) (of6 (o0 o
II A 1 - Hardware ConflictsS.ivieesessssosscrsassnnnccsces
IT A 1 a - Why Not Synchronous?...ceeveeeceisconssncens
ITI A 1 ai - Efficiency.ieereccscsesssnorssoncscsscssssons

: Contents iv

Summar“V‘ooouuooouoo-ooouooooouoouoouuooouuoouuoooouoolgg

{ Bl bl 2 REMLABSTIE T v o s Bomsias oo vot s snpdtael s B

gl A L & il = BIDRABABAREET . o o oo c bt innamesoinsssdhsned

1) BTV W L s T T NS S PSR S, A |

II A1 bi - Can't Be Done Perfectly..veeeeeeeeeeeees10

II A1 b ii - Can Be Done Adequately.....eeveeeeneose.l2

Bl 2 = SOLCUWATE CONTLIBEE o 0m s o s6 s as oeiotssnsssssns

IT A 2 a - With Indivisible Test/Modlfy...............16

IT A2 b - Without Indivisible Test/Modify......evv...19

FE R @ b & » ROBMARRODEMG: 3 555 v 6 008 8w 6 0 6 0 v sensanlens’iosd

H & 2,/p il = Crowther s TEChREGUR -« vos o vavvisoriessl

S 3 = DEkays Dug To ComFrliot®meepi o e orsessnnecinsssll

2SR T T T e S SR W .)

IT & 2 b id - Queuneing Dedlays.. oo i occomonsesnnsossesall

IT A 2 b ii (a) - Low Utilization Extreme.....vveee...26

LE R & D di (B) & SRBuPRIEE0Mass o605 6 608 P 0w o s0s06sdssis O

l IT & 2 ¢ 1i (¢) = Bandwidth MatChinE .. cosvvrvonsscsss s

11 B = Tek ‘L) Tooatish RLEOIEHNE. %ot s e es buisconss T2

- Il B 1 = Fnterruption ALEorithmS. . oomeecossossensens 3

I BdsrtB M i 55" BN e i o 5 o ee 56 e 5 e B o B8 6 o6 e ke, ot 8 f L B

II B 1 b - Dedicated Processor:Device Relat10nsh1p....36

E | L & 0 8w PO o0 e ohe vy s W s as 4 4 5408 o b Bak b o o 4w BT

| L 1 = TRCEUTARETE o6 b ob b g o kie o wide 850 oo ohas ba s 00

IT B @ = Val untaey. ALEorE T e s oo bq s o o onsoh 55s o & oo sl

LI B3 v AAURAGREEE vl o bie v 685 s im0 b s 5 sorn ous oead BB

LB b = LACENCT BULTEPIME e s o oot o 550 506 055550 50ns B

LLB 2 & « ORer DisadvalBag®s.c 00w o b iames o sinisisdbb

Il C = Interactions For Reliability..e.ceveasveeeeesssbb

ILENE R Accuracy.....................................59

B 20 \BFRANEBLLIBY 0 i 506 5606 oemirs qmopn oo 8% 5 kb od 5000

Sl .23 v Bl EG 80005 Ll o rpi el blehe die io ¢ v d ba b Rie kY 46 w6l

B O &b = BeOOMAAGBY sas o v i 00 %% 56 5haes ook kb s ok he@s

5 BEBLE B3 = ProtRliom,ie s s sl BE% oo lohaotsr et s ok 65

- IT C2Db i (a) - Write Protection.vieeeeeeeeeeeeeeesss. b6

P | II C2b i (b) - Read and Execute Protection..........67

s I € 2 B i o) = COpRBILItInd. s [tioe s smsessoodnhesses@]

i; IS @b D8 & BRRUI. o 5ire 566 sp-ct e sEm b broanom o e o GI00

Il €.2 b 1] (&) = MeMOry PRPLEY. .o.s o onessemesmssssaea]l

;l II C2 b ii (b) - Communication Parity....eeeeeeseeeeT2

50, S0 0 o DA TR . o 559000 T4l o 6w 5 P e W S e Tl

¢ | | II C 2 b iii (a) - Diagnostic Programs.......ceeeeee..76

!l IT C 2 b iii (b) - Diagnostic Deactivation.....ev.....77

l' BEC- & @ = Obligr LiE8FAeRiamE. oot avev. soshoeuss bobd b9

; LF ©.2° 80 & AR TR o .o i moit s s BB 050 8 5 s £ 45510

, II C 2 ¢ ii - Processor to Processor Communication....83

, IT C 2 ¢ iii - Automatic Restarting and Reloading.....85

1 EEC 2 e 'iv =~ Duplicatlon of Eésentials®:. :ccvenovsansdl

i II C 2 d - Bandwidth Reduction on Failures............95
.
l

Chapter III - Architectures

] EE % & WG GENErRd AN D stk oo i’ s 3844 s %o nhls oot oand
E III A 1 - Private IO sl o 5o s B b s 6 6568 o o 0.5 % 0k b
E JIT. % 2 = PUGKIME & PPrOG@BBOr, . soveiniabossebssmsssss B

L S i i

\ Contents v
l III A 2 a - Weak or Powerful?.....cc00e.. I Slole OB o6 1D
III A 2 b - Price/Performance Evaluation.............. 19
III B - Some Specifiic Architectures............ 3 BRI 22
IITI B 1 - Interprocessor Buffers......... P50 Rl o o o 23
LEE B 2 = Tnterproecessor Clanmeldy 5o . s oo e o bus opoond el sdoe 25
EIL B 3 - CPofebAF Swidteh. ool ol pines soasds W) e 28
III B 4 - High Speed BuS.eeeeeenos B e
IIT B 5 -~ Lazy SuSaGN.sseeeseassn 50 C 0 Caa 040 DalhO 0o0, Cao AR C 37
ITI B 6 = Hi@rar@hiCalc. o oo o o oionoscmdbosss ol A1
SUMBALT . < & o c v e’ s mbmsoseebaassacns aenan kRt ... P . 46
Chapter IV - Pluribus - # Real Multiprocessor
IV A - Design Objectives...... S IR0t aflolold o alo o A3 g dlollc 8
TV RAT | BSE ASAEPn £ 2 1) 5. 08l shelloWE loas 5 0 3isas” 3 Jo & lms oY 0 DTN o¥5 o0 S
GV A 20 = MOdUI@ar. « o % e & 5% oo b P N Jo¥ NOTOPs =oT8T0 o B oft VoS Or A
IR S s Red i slollmm i Re P adad b an b ok BanEs Tapn st d b kg 6
IV B s The SysteMeys 566 60 55e s ke b e TS R Ta - .8
LV B s ArehiS@cEhre. .. aia. « 6 o o eom s T ...8
LV B 2 =" The LEC SUBL. .. s v ce oo o anoloie o snors o o s Ny .. 10
IV B 2 a - The Single BUS.viii i ittt teooeeononnns .10
IV B 2 b - The Bus Controller...ieeeeeeseeroneeeeen gt le NG
IV B 2 ¢ - The Processor....eeeeeeeas oo s e o & 6 3 SIOIE 21
IV B 3 -~ Bus CoUPlerssu s s 5550 us JO 0 Oy O O OrY Gloicho oft Fa 2
BN B 3 & & IntersBhs Commiihi@BEioM: cucnwe isiamassesss : G2
IVB 3 b - Ancillary TunctionsS...eeeeee.. % Lo s o Tor o5 [SO e B
IV B 3 b (1).- Address Mapoinp.. e S 3t aas 8) s S
Iv B 3 b (2) - Locks. o™ 0oL TN £, Sl A s A 8 .28
IV B 3 b (3) - Backward Bus Couplln Rt o s eVl CR AR 2
| IV B 4 - The Pseudo- Interrupt Dev1ce Sy s ey {0)
IV B 4 a - Characteristics. 700 o™ 6 Gl o hlo o T G S S0
| IV B 4 b - Use. S S s] S | e A e 1 e < 10110 .31
| IVB 4 ¢ - Where ahould They BeZ.ieiiierereeeeeeens L.
| IV C - Performance......eeeee.. Jpc M R — 36
LTI Bal @t - TP o s iys 9 5s 5 5 5[5 308 I3 S¢ 86 5 6 v @ 3 ENE B I GhE S S
LW € 2 = A3 atv OpLiMmiGing ComMpllBF. csshspssaamap ges ..o 42
SIMMAITT e 515 o o1) SHo Iop 2.1 3 lons o' 5 ARl A0 © ol e o W S EEEEEE 45
: Chapter V - Conclusion
VA T= Our TheSHsE N e Wk she teohdied o b BT o o o6 Tokeme o83 o G A
VA1 - A Cost- Effectlve Powerful Machlne O40L Ox 030 -2
V A2 - A Cost-Effective Reliable Machine..........v...5
V B - The Main Points..eeeeeeeees N o ™ a0 o cuni o Gt Tlohot 7
V C - How to Design a Multiprocessor..ceeeeee.. s o1 [oVe o]
Vi € 1 = Processer SCle@EioN s wns « sim e sseoms v os smwssiss |2
l Ve ,2 = How Mahily PR SECIMBTe o o oo 9r o0 e spok op b sre s oo 13
' V C 3 - How Many Memory and I/O Bugses° TALE D Y 1.
| VC4Y - The Commumication Medium, . ..opoeo0necesasssziss?d
V D - Considerations Which Make it WOrk ISR EG 17
V E - The Future. B (5ls, ool rbmistenie L% %o b b5 STrotr- o) 4W5) fouis fB) 5. emrerge 4o arls oL 19

e

Figure
Figure

Figure
Figure
Figure

Figure
Figure
Figure
Figure
1 Figure
Figure
Figure
Figure
Figure
Figure
: ' Figure

List of Figures

vi

II-1 Ar‘biter Energy Diaﬁ!l"am..............-......II—11

III-1 Memory Cos*s per Bit and

pe: Bit per Microsecond..........III=-10

III-2 Interprocessor Buffer.....c.ccees.
III-3 Interprocessor Channel.......ces
III-4 Interprocessor Channel

with DMA Arbitration.....
III-5 Distributed Crossbar Switch......
III-6 Centralized Crossbar Switch......
RKI=5/. SHEpISSIDE @@l TSI el e o oreliare (o) foe olfe) /s s Sxons
DEE=0 - RANY SUBPMY e ¢ 5 p b9t oa s dis s a i
Lil«=9 What 18 & PrOCessOr?,.vecwvecsesan
III-10 The Hierarchical Structure......
L SN O IMoORe: e Ve lllan: i axete slelsRensrs oo ol
IV-1 Prototype Pluribus Configuration..
IV-2 Pluribus Address SpaC€..:cesseeecs
IV-3 Cost and Performance Comparison...

o000 III-ZN
LI) III-27

.o II1I-29
2o 111w 30
v s 0 dd L =38
55« L4T=36
«..III-39
vas gl 1 w42
«..III-43
«oo . III-45
eeeeoIV= 9
caewe IN=2D

......Iv-u6

IV-Y4 Cost-Effectiveness ComparisonN....ceeeeceess IV=47

Table
Table

Table
Table
Table

g Y Tea—_—— "

vii

List of Tables

II-1 Latency Buffering Requirements.......e00es..1I=54
III-1 Memory Costs per Bit and

per Bit per Microsecond..........III-11
III-2 Processor Power Comparison Factors........III=22
IV-1 Weighted Average Instruction Times..........IV-43
IV-2 Cost/Performance CompariSoN....sceessssssessIV=U5

B o B .

T S S T T N M S g

viii

SYNOPSIS
This dissertation addresses the issues 1involved 1in the
design of a multiprocessor. In the dissertation, we explore
a wide range of design considerations, and arrive at
judgments of relative merit at each decision point. The
results of these decisions 1lead us to a particular
multiprocessor design. A real multiprocessor has been built
to this design, and its configuration and performance are
described. This system, the Pluribus, has many advantages
over other computer systems in cost-effectiveness,

reliability, modularity, and expansibility.

In the first chapter, we explore the distinction between
data parallel structures, which possess a single control
element driving multiple data elements, and control parallel
structures, in which a separate control element drives each
data elemcent., We observe that data parallelism is as old as
automatic computation, and that recent data parallel
"multiprocessors", such as ILLIAC Iv, are only
quantitatively different from old binary machines such as
the PDP-1. We then briefly investigate the issue of
programming a control parallel multiprocessor and conclude
that there are numerous straightforward techniques currently

usable, but that more work needs to be done in this field.

The second chapter deals with the interactions among the

processors of a control parallel nultiprocessor. We first

Synopsis ix

investigate the advantages of asynchronous structures as
compared with those multiprocessors which are driven from a
single centraiized clock. Reliability is improved through
independence from a single timing source. Efficiency is
improved through the ability of each processor to run at the
fastest rate possible for it at that instant. System
expansion is facilitated through independerce from timing

restrictions which are due to signal time-of-flight.

We then present a brief discussion of the loss of system
power due to queueing delays behind shared resources. We
introduce the concept of computational bandwidth matching as
a mechanism useful throughout the design of a

multiprocessor.

We next consider algorithms for assipning tasks to
processors, and point out disadvantages in various schemes
used in other multiprocessor designs. We present a novel
algorithm which permits processors to decide for themselves
when to accept a new task. Extremely high efficiency and
reliability are achieved through the use of a simple
priority-ordered self-locking hardware queue of pending
tasks, to which new entries can be added by either hardware

or software devices.

The second chapter concludes with a discussion of
interactions among processors intended to improve the system

availability. The relation between the redundancy inherent

B e

P gy e

.

———

Synopsis X

in a homogeneous control parallel multiprocessor and the
redundancy in classical Triple Modular Redundancy systems is
explored, along with techniques which can help identify,
locate, and promote survival from component failures. Among
these techniques, a novel parity scheme, capa'.e of
detecting address and data failures in either memory or
communication subsystems, is presented. The advantages and
difficulties in program controlled component testing and
deactivation are discussed, followed by some novel ways to
employ such techniques while protecting the facility from

abuse by failing processors.

In the fourth chapter, we consider issues relating to the
organization of components in a multiprocessor. We discuss
the advantages of coupling memories closely with individual
processors. We investigate characteristics of processors
desirable in a multiprocessor ehvironment, and reach the
conclusion that slower, 1less =2xpensive processors offer
advantages over faster, more expensive processors, because
of the diminished cost in processing power of the time lost

in intercommunication.

We then consider various structures which might be used for
interconnecting the processors and memories. Of these, the
novel distributed crosshar switch dominates the others
because of design simplicity, reliability, reparability,

expansibility, and modularity. All complete connectivity

communication schemes suffer in very large systems in that

e, R RN Y ., -

Synopsis xi

“o~ a given application, communication costs increase as the
square of the number of processors, A review of current
processors shows a tree structure prevalent 1in the
composition of the processor, and suggests that a design
appropriate to very large systems of hundreds of processors
should increase the depth of the tree rather than simply the

width at a given level.

In the fourth chapter, we describe the Pluribus in detail,
pointing out how the various design objectives described in
earlier chapters have been implemented. In places where the
organization of this system appears to limit its generality,
we describe some techniques which could Se used to alleviate
those restrictions, but were not used in the current
implementation because the particular application for which
this system was built did not require them. Although the
software to run on this system is not yet fully operational,
we present performance cvaluations and predictions based on
the currently operational store-and-forward inner loop code.
We also present a comparison of this system with various
other large computer systems on the basis of
price/performance on a scanning algorithm for wuse 1in an
optimizing compiler. This application was chosen because it
seened well matched to the Pluribus’ abilities;
nevertheless, the comparison is sufficiently striking to
lend credence to the thesis that a control parallel

multiprocessor is capable of high performance at low cost.

e —— T T e

INTRODUCTION

0O A - What this Dissertation is About

The subject of this dissertation is multiprocessors, by
which term we mean computing systems containing multiple
processing elements capable of performing operations

simultaneously.
O A 1 - Qur Thesis

Our thesis is that the combining of independent processing
elements when done properly, represents a very effective way
to construct both powerful and reliable computing machines.
We contend that this architecture produces a very pgeneral
computer. While there are applications for which such
machines are inferior to monolithic uniprocessors, we
maintain that such applications are extremely unusual. For
the large majority of computztional applications, a powerful
uniprocessor will bte more expensive and less reliable than a

properly designed multiprocessor of comparable power,

This dissertation is concerned primarily with the hardware
organization of multiprocessors; programming considerations
will be mentioned only briefly, at the end of the first
chapter. We will begin by examining various ways in which
multiprocessor's might he constructed. We will then narrow
our focus to succ?ssively more limited areas of particular

interest, to a point at which we will describe an

implementation of a multiprocessor architecture well suited

|

OQur Thesis 0=2

to a particular nroblem, given today’s technology. This
system 1is an asynchronous control parallel multiprocessor
with « distributed crossbar switch interconnection medium.
Throughout the discussion, we shall point out considerations
which c&n make the difference between success and failure in

designing a multiprocessor.

In this introduction, we will first explore the fundamental
reasons for the attractiveness of a multiprocessor
architecture, then £ive an outline of the way in which the

body of the dissertation addresses the subject.

0 A 2 - Fundamental Reasons

When a person encounters a problem too large or difficult
for him to solve alone, he typically engages the assistance
of other people, and the problem is attacked by the team,.
Each member of the team operates independently, in that he
observes, and acts on these observations, without a
continuous command stream from a superior. However, all
members of the team act together in trying to reach the
common goal, To achieve this constancy of purpose, they
must intercommunicate. The authority structure may be
hierarchiecal, consisting of leaders and workers, or it may
be republican, in that decisions are made by vote. The
authority structure nay even vary, depending on the sub ject.
An example is a democratic arrangement in which a vote is

taken to determine the overall goals and to choose the

.
T T,

}
- i‘“ e, = = i -
. R it e [i e L R o iy ;;:“
caaihdd i Bhh b e o] R T T TR P T TR g e T e e LT

R T T —

Fundamental Reasons 0-3

leader whose instructions will be obeyed in implementing
those goals until a future vote. The hierarchical structure
has advantages in efficiency, but disadvantages in
reliability, in that the leader may be mad. A republican
structure can provide reliability in that the system can
survive the death or madness of any individual, at a cost in
efficiency due to the time spent voting on every decision,
The democratic structure can produce an attractive balance,
as has been observed for some centuries in the political

area.

The same observations can be made about computer processors
tackling a job too big for a single processor. Because man
has been more successful at increasing the work capacity of
computers than of man himself, the tendency in designing a
system to'tackle a more difficult class of problems has been
to build a more powerful, faster machine. This has serious
disadvantages 1in cos3t and in reliability as compared to the
group structure which people tend to use. It is the intent
of this dissertation to point out ways 1in which
multiprocessors can be built practically, and to show the
advantages over more centralized schemes of comparable

power, both in cost and in reliability.

0O A2a- Economical Powerful Computer

Qur thesis is that multiprocessor architecture can provide

an economically effective means of constructing both

Economical Powerful Computer 0-4

powerful and reliable computing machines. We now consider
the fundamental reasons for this, first in terms of power,

then in terms of reliability.

The fundamental reason why a multiprocessor architecture can
provide a cost-advantageous means of constructing a powerful
computing system is that the cheapest processors tend to be
slow, and further, even when normalized for speed, the most
cost-effective processors are near the slow end of the
performance scale. In other words, as the power of a system
increases past some small value, the cost of the systen
increases faster than the power. This increase 1is very

dramatic in very powerful systems.

There are two primary reasons for using such
cost-ineffective equipment, both producing a need for
concentrations of computational power. The first is the
simple case where a particular Job requires more
computational power than can be had from the more
cost-effective machines, in order to process the reaquired
anount of data in the permissible amount of time. The
second is the desire to consolidate peripherals. If each
job is run on a system only powerful enough to support that
Job, there must be many systems to support many Jjobs. Each
of these systems needs peripherals, and thus the peripherals
need to be duplicated. The multiprocessor architecture
solves these problems by interconnecting cost-effective
processors to provide large computational power without the

dramatic increase in cost per unit of performance.

P NP | g m— R ———

PR R P ———

Economical Powerful Computer 0-5

In an ideal multiprocessor, the power of the system, as
compared to a uniprocessor, is multiplied by the number of
processors, while the system cost is increased by only the
same factor, yieldinu‘ a system of great power at a
price/performance ratio equal to the optimal value achieved

in the slow processor.

Naturally, a sacrifice must be made in the transition from
ideal to real. The processors will need to
intercommunicate. This implies an increase in system cost,
due to the cost of the intercommunication 1logic, and a
decrease 1in system performance, due to the time 1lost
communicating. Both of these detract from the optimal
price/performance characteristics. These costs need only be
proportional to the amount of interprocessor communication
required; for many applications, very nowerful
multiprocessor systems can be configured at costs very much
below those of commercially available wuniprocessors of

comparable performance.

0 A2Db - Economical Reliable Computer

We now turn to considerations of reliabil:ity. The
fundamental reason why a mnmultiprocessor architecture can
provide a cost-advantageous means of constructing a reliable
computing system is that the cost of the element which needs
to be duplicated in order to survive a single component

failure is much smaller than in a uniprocessor of comparable

IR R e e -

Economical Reliable Computer 0-6

power. Providing backup for a large scale uniprocessor
requires another equivalent large uniproce:sor, some means
for recognizing a failure, and some means of switching
operation from the primary machine to the backup in case of
failure. 1t is possible to design a multiprocessor system
such that remaining healthy processors can take over tasks
left undone by one or more failing processors. Thus, the
cost of the ability to survive at full computational power
despite any single processor failure is one additional
processor., The power of this processor is available to the

system until the failure, further reducing the cost of the

backup.

Similar arguments hold for system conponents other than
processors. Thus, a single segment of memory (or disk pack,
or tape drive, etc.) can back up a number of such devices in

the system, and be available for use until a failure occurs.,

0 B ~ How the Dissertation is Structured

In this dissertation we undertake an exploration of the
range of multiprocessors which might be constructed. In so
doing, we distinguish among various sorts of
multiprocessors. With each distinction comes a choice, and
we shall present arguments as to the relative merits of each
alternative. The end result of these choices is a specific

architecture. An operational implementatior of this

. architecture is described.

P — =

—

How the Dissertation is Structured 0=-7

There are five chapters in the dissertation. The first
talks about different forms of computational parallelism,
the second about interactions between the processors of a
multiprocessor. The third chapter discusses architectures
for multiprocessors, while in the fourth we describe in some
detail the Pluribus, a real implementation of a
nmultiprocessor. In the fifth chapter, we present our

conclusions. We now briefly preview each of the chapters.

0 B 1 - Chapter I - Forms of Parallelism

In the first chapter; we present a distinction between data
parallelism, which has pervaded the entire history of
automatic comrutation, and control parallelism, which is a
relative newcomer. In discussing this distinction, some of
+he sienificant machines typifying each type of parallelism
are mentioned. Data parallel machines range from early
adding machines, which add the separate digits
simultaneously, to ILLIAC IV [1], which does full 64 bit
arithmetic operations on 6U independent arguments
simultaneously. Control parallel machines range from the
earliest computers with programmable data channels to the
Pluribus homogenéous multiprocessor described in this
dissertation. Thus, the current ILLIAC IV is qualitatively

no more a multiprocessor than is a PDP-1.

A technique sometimes wused to achieve computational

parallelism is ‘"pipelining", in which separate processing

Y ppr—

B Wy ——

e o L s Aanmmm
5

D —— TSN I e e, wOTW

ey e

Chapter I - Forms of Parallelism n-8

elements are performing successive phases of a ccrprtation
simultaneously on successive sets of data, in an assembly
line fashion. Some systems employing this technique are
mentioned. @ A homogeneous control parallel architecture is

capable of, but not limited to, this mode of operation.

0 B 2 - Chapter II - Interprocessor Interactions

The second chapter deals with the interactions between the
processors of a .~ntrol parallel multiprocessor. We first
treat the prerequisites for such interaction, then turn to
some of the ways processors can interact to improve system

performance and reliability.

Until the processors interact, a multiprocessor is simply an
accumulation of independent computers, each unaware of the
others” existence. In order to take advantage of the
increased power and reliability available from the
nultiprocessor architecture, the processors must
intercommunicate. The nature of these communications then
determines both the power and the reliability of the system.
If the processors spend their time waiting for a resource
which can support only one processor, the system degrades to
a single processor equivalent; 1if they can productively run
concurrently, the processing power is multiplied by almost
the number of processors. If the failure of a single

processor takes the system down, the system reliability is

limited by the probability of all processors being up; if

Charter II - Interprocessor Interactions 0-9

healthy processcrs can continue to function despite failures
of other processors, and can take over the workload of
failing processors, the system reliability can approach the

probability of any processor being up.

0 B2a - Conflicts

The second chapter begins with a discussion of the
differences between synchronous and asynchronous control
parallel multiprocessors. The disadvantapes of synchronous

systems in reliability and in ripid constraints on size and

relative timing are balanced against delays duc to
arbitration of asynchronous requests. First, the unsolvable
problem of unambiguous arbitration of conflicting

asynchronous requests is presented, and practical although
imperfect solutions are described. The problem of software
conflict resolution is then mentioned, along with techniques

for solution with and without special hardware.

0 B2b - Allocation of Tasks to Processors

One problem fundamental to most multiprocessor systems which
requires interaction between processors is task allocation.
Given a multiprocessor system and a collection of tasks to
be done, how docs one allocate tasks to processors without
incurring very high overiead or dependency on a single
sophisticated accumulation of hardware? A novel approach is

presented, 1in which the processors decide when thev are

ready to change ‘tasks, thus avoiding high interruption

L N S R T g —

|

W ————— e T

Allocation of Tasks to Processors 0-10

overhead, while an inexpensive and easily duplicated
hardware device maintains a priority ordered queue of
pending tasks. Such a scheme may increase the processor
latency - that is, the time from a service request until the
request is serviced. An analysis of the buffering required
due to latency is presented. This analysis is new and quite
widely applicable to processors servicing fixed speed

devices.

0 B2 c - Interactions for Reliability

One primary advantage of control parallel multiprocessors is
their potential ability to survive failures without large
increases in systenm cost. This requires various
interactions between the processors. We thereiore present a
discussion of reliability considerations in multiprocessor
design. Classic techniques for configuring reliable systems
are mentioned, along with the homogeneous multiprocessor
approach of letting other processors take up the 1load of
failing processors, In order for this technique to be
useful, there must be <ome means for detecting the failure
of processors and other components, so that the failing
component may be amputated, permitting the remainder of the
system to function. Techniques for detecting failures are
discussed, including various forms of memory protection, a
novel kind of parity to check memories and communication
media, diagnostic techniques, and processor controlled

deactivation of system components, including itself or other

~*i=--ﬂ*h-—nm—mHhhuiﬁﬁﬁ=Ei----tun-a-::::s::u—-.a:n:-nﬂ.‘iﬁ
- . . - J— ’ - — e 1

R ... AR e
.

——

Interactions for Reliability 0-11

processors. The reduction in the computational throughput,
or bandwidth, brought on by component failure Jjs then

discussed.

0 B 3 - Chapter IIT - Multiprocessor Architectures

Having settled on a control parallel multiprocessor, we need
to consider the various ways in which such a system might be
configured. In the third chapter, we present a discussion
of multiprocessor architectures which might be employed. We
begin by considering two general architectural questions:
whether or not there should be "private" memory associated
with individual processors, and the considerations
influencing the selection of a processor, For a given
price/performance ratio, there are advantages in selecting a
less powerful processor, We then discuss a variety of
specific architectures. Some strong and weak points of
these architectures are pointed out, along with applications

in which they might be appropriate.

0 B 4 - Chapter IV -~ Pluribus: A Real Live One

Throughout the dissertation, we consider various alternative
ways in which a multiprocessor might be configured, pointing
out advantages and disadvantages of each. From these
considerations, the overall superior choice is selected,
These choices then specify a particular systen

configuration. A system based on the considerations

presented in this dissertation has been constructed in

Chapter IV - Pluribus: A Real Live One 0-12

prototype form by Bolt Beranek and Newman Inc. to serve as
a high bandwidth, highly reliable pacxet switching
processor. This system, called the "Pluribus", is an
asynchronous control parallel multiproceséor with a
distributed crossbar switch interconrection medium, and
local memory. This architecture was chosen as being
superior to alternatives at each choice pcint. The specific
implementations of many of the concepts aré described,
partly because they represent a feasibility proof, and
partly because they are exemplary of how these cd%cepts can

be embodied in practical hardware.

0 B5 - Chapter V - Conclusion

The fifth chapter presents our conclusions, The primary
conclusion drawn is that the homogeneous multiprocessor
architecture represents today’s most sensible and economical
method for building a powerful computer, in addition to
being a sensible and economical method for building a
reliable computer. The resultant machine can be both
powerful and reliable at 1less than the cost of either of

these objectives using classical techniques.

Having stated this conclusion, we review the methodology
utilized in the design of a multiprocessor system,
Following this is a summary of some techniques which make

such a system workable. We briefly mention arezs we feel

merit further investigation. A closing look to the future

R g a : ol ity

“""'_,

Chapter V - Conclusion ' 0-13

expresses our conviction that this method represents the
| most promising technique for the design of future medium-

and large scale computer systeus.

. L
= G

b|
e Bl e il g o

i —— o -

Chapter I
FORMS OF COMPUTATIONAL PARALLELISM
In this chapter we will discuss the various forms of
parallelism which have been used 1in the design of
computational systems. We will first present a distinction
between data parallelism and control parallelism. We
mention a few examples of each. We will also discuss the
technique of pipelining as a me thod of achieving
parallelism,. We then turn to a discussion of the problems
of applying the power of a nultiprocessor to a task,
including multiprocessor programming considerations. We
defend the position that a homogenecus control parallel
multiprocessor 1is a very general structure whicih can fill

almost all computational requirements.

I A - Control vs, Data Parallelism

We begin by presenting the distinction between data
parallelism and control parallelism. By data parallel
systems we mean system in which a single control element
drives a number of data elements simultaneously with a
single command. Thus, there is a single control stream. By
control parallel systems, We mean systems in which nultiple
independent control elements are processing independent
control streams simultaneously, with each control element

driving one or more data elements. This distinction is

crucial to the thesis that the multiprocessor provides a

sensible means of constructing both powerful and reliable

PR—

PRECZDING . PAGE BLANK-NOT FIILMED

S ———— . ERSSEES My g vy -

e T e ma o o e o e

Control vs, Data Parallelism I-2

computing machines, ir that the data parallel architecture
is a sensible powerful machine for only a limited class of
problems, and probably a less reliable machine than the
uniprocessor. The control parallel multiprocessor, however.
provides the flexibility to concentrate its power on a wider
range of problems, while permitting improved reliability due

to the ability of any given processor to back up any other.

I A1 - Data Paralle’ism

We have defined the term "Data Parallel" as referring to
processors containirg a single control element driving
multiple data elements simultaneously with a single command.
This definition subsumes computing machines from the
earliest adding machines which added different digits
simultaneously, through binary computers which do arithmetic
or logical operations on different bits simultaneously, to
large modern ccmputers such as ILLIAC IV, which does 64 bit

arithmetic operations on 64 different argunents

simultaneously.

I A1 a - RBeasons for Data Parallelism

We will now examine the reasons why this technique might be,
and has been, used. Primary amoig these reasons are design
simplicity, cost reduction, and operating speed. We will
review how these goals have been achieved through the use of

data parallelism ir the implementation of various computers,

and point out some of the limitations of these systems,

b - - b ok B o Ml

To Reduce Complexity and Cecst I-3

I A 1 ai - To Reduce Complexity and Cost

If an adding machine is to add the various digits of addends
sequentially, it must have the ability to transfer the
digits to and from a centralized adder. The mechanism to
accomplish those transfers 1is sometimes more complex than
simply replicating the adder once for each digit. Certainly
in design difficulty, the parallel adder wins, since it 1is
easier to duplicate already extant designs than to invent a
new design for a transfer mechanism. In the design of LSI
microprocessors, the expensive mask lavout operation can be
simplified through replicaticn, substantially reducing the

product cost.

Similarly, wusing the wedium- and large-scale integration
logic circuitry available today, 1logic operations may be
performed simultaneously on the various bits of data with
simple replicated 1logic, Performing those operations
sequentially requires transfer logic to and from a
centralized operation register. This 1logic may be more
complex than the replicated logic, producing a cost benefit

from the parallel mode of operation.

This savings from parallel operation is not universal. A
machine designed around shift register technology can be

built more inexpensively using sequential operations than

parallel. Another example of cost considerations favoring

sequential additions is the IBM 1620, whicl does additions

FT R L e oy m—

I T e F.

R ST g v _——

- P L TR

To Reduce Complexity and Cost I-4

in decimal by a table lookup. This table needs to contain
10°(2%N) entries in order to add N bit numbers in one
lookup. A table large enough to add full words
simultaneously would be enormously expensive; the 100 word

table to add digits is quite inexpensive.
I A1aii - To Increase Speed

The primary reason for the extensive use of parallelism in
the recent history of automatic‘computation is speed. If
operations can be simultaneously performed on a number of
essentially independent data, the delays involved in
transferring data and in waiting for the single operation
register can be eliminated. The overall operation time can
then be reduced to roughly the time necessary to perform
that operation on a single datum, rather than somewhat more
than the product of this time and the number of data to be

operated on.

This argument applies to most binary machines, in which
independent data bits are ANDed simultaneously, as well as
to ILLIAC IV, in which independent 64 bit numbers are

multiplied simultaneously.

Most binary machines, such as the PDP-1, operate
simultaneously on the various bits of a word. Thus, during
the execution of a PDP-1 AND instruction, 18 independent 1

bit data are multiplied by 18 other independent 1 bit data

to give 18 independent 1 bit results.

i

A

.

A

To Increase Speed I-5

A number of ‘multiprocessors’ have been built which simply
expand this same fundamental concept of a single instruction
interpreter driving a number of independent calculating
elements, but with 1larger and higher performance data
elements. ILLIAC IV 1is the present extreme of these
efforts. This machine contains an array of 64 arithmetic
elements, each 64 bits wide. These arithmetic "processors"
are capable of performing their operations at extremely high
speed, but since they are all under the control of a single
instruction stream, no two can be doing different operations
simultaneously. Thus, ILLIAC IV has a larger number of data
elements (64 instead of 18), each is wider (64 bits instead
of one), and substantially faster (200 ns instead of 10
nmicroseconds), but in that its parallelism is only 1in the
data, it 1is in some senses another uniprocessor, like the

pDP"1.

ILLIAC IV was intended to be a four-quadrant machine, each
quadrant having a separate control stream and 64 arithmetic
elements. However, due to the difficulties encountered 1in
attempting a device so close to the 1limit of the then
available technology, and other problems, only one quadrant
has been built. If more are built, ILLIAC IV will move from

a data parallel mactine, as 1is the PDP-1, to a control

parallel multiprocessor.

Limitations of Data Parallelisnm I-6

I A1b - Limitations of Data Parallelism

Few and far between are the programmers who have actually
written any substantial programs which utilize the fact that
a binary machine is capable of operating Simultaneously on
as many independent one-hit data as there are bits in its
accunmulator. There are applications in which this can be a
handy feature, particularly in computations involving
boolean matrices. Numerical matrices are generally much
more utilized in the world of programming, and for this
reason, an architecture such as ILLIAC s has a place in the
world. However, even those who have programmed parallel
boolean operations on a binary machine can attest to the
fact that much of the cost - both in programming time and in
execution time - typically goes to the non-matrix overhead
operations, and to setting up and tearing down the matrix.
This lesson may very well apply as experience is gained with

ILLIAC.

The basic limitation with this sort of architecture for a
powerful machine 1is that there is only one zontrol stream,
and thus there can never be two different operations
occurring simultaneously, although there can be different
executions of the same operation on independent data. For
most problems, the amount of time spent doing the e :act same
operation to many independent data is small. This is not

always true; weather prediction, consisting of analysis of

the forces on and motions of blocks of air, wants to perform

Limitations of Data Parallelism I-7

the same computation on many blocks of air at the same time,
Scme matrix computations will spend a lot of time doing the
same operations to independent data. However, this 1is the
only class of problems for which this sort of architecture
is sensible. ILLIAC IV will certainly alwavs be a wonderful
example of the extreme power which can be brought to bear on
a limited class of problems through the use of specialized

hardware.

I A 2 - Control Parallelism

We now turn our attention to multiprocessor systems which
utilize independent control streams. We believe that this
architecture produces a more general conputing machine,

capable of providing power and reliability at reasonable

cost.

We will discuss the reasons why control parallel
multiprocessors have been contemplated and constructed, and
will also review a small number of coatrol parallel machines
which have been contemplated, discussing the considerations
which led to their architecture, and how successful they

were at meeting these design objectives,
I A2 a - Purposes

The primary reasons for considering an independent control
stream multiprocessor are speed, reliability, and design
simplicity. We will begin our discussion with perhaps the

least intuitively obvious, design simplicity.

T e Raa— TSN TR

Design Simplicity I-8

I A2 ai- Design Simplicityv

Consider the problem of connecting a number o' terminals to
a reasonably powerful computer which is underutilized. The
most hardware-economical way to do this might be to bring
| the raw data lines into the machine, so that they could L=
1 sampled directly by the CPU to determine whether each 1line

| is in a zero or one state, and conversely driven to either a

——

! one or a zero by the CPU. The excess power of the processor 1
can then be wutilized to generate the timing information

necessary to drive and sample the lines at the appropriate

PR [

| times, and to convert characters to bit streams. This does
] place severe timing constraints on the processor and the
F programs 1t runs, since the processor must return to this

I/0 task at quite narrowly defined intervals, Thus,

although the system described might very well be the most

economical possible system in terms of hardware costs, the

complexity added in softwal=> constraints probably offsets ;

this, making such a solution impractical.

An alternative available from some manufacturers is to have
a separate processor, whose sole duty is to receive and 4
drive these lines, and communicate in complete,
timing-independent characters to the main processor. This
removes the complexity from the main system, while the q
system needed to run the small data line scanner processor

is small, since it runs a dedicated program, and its timing

constraints are entirely internal. Thus, a dual processor :

) e e e b e e B R e L

Design Simplicity I1-9

system with independent control streams is a simpler system
to build than a single processor system. This result is not
atypical for special-purpose real time processing on a

reasonably large system.
I A2 a ii - Reliability

A technique used to insure a high system availability (the
percentage of time the system is usable) is the active
backup. Here, another identical but entiﬁely independent
machine is running the same program, and being given the
same inputs, as the primary machine. In the <case of a
failu''e of the primary, control is switched to the backup,
which is already entirely up to date. This, then, is a case
of using a second CprU, which executes instructions

independently, for reliability.

In addition to backup machines such as that described above,
a number of multiprocessors have been built with the
explicit thought that in the case of a failure of one or
more processors, other processors would take the load,
leaving the system available [2,3,4,5,6]. One such is the
Pluribus [7] now under construction at Bolt Beranek and
Newman as a high performance node for the ARPANET. This
machine will be discussed in some detail in the later
portions of this dissertation; here we mention only that the
ipnitial design goal of high speed has become subsidiary to

the goal of increased availability.

T T T g ———wT TR T T e
bl L

Speed I-10
I A2 a iii - Speed

Perhaps the most obvious reason faor contemplating a
multiprocessor architecture of any sort 1is the increased
performance, in terms of speed of a given computation, or
equivalently computational throughput, which one hopes to
obtain from the multiplicity of processors, Ideally, one
would like to obtain from a system of N processors, N times
the power available from a single processor. 1In fact, there
are always overheads encountered, due to communication and
queueing delays, which reduce the actual power available to
somewhat 1less than this, the exact amount of the reduction

depending on the amount of inter-processor communication

required.

There have been many instances of multiple processors being
used to increase speed of computation. These include
inhomogeneous systems, such a3 program processors and I/0
controllers of all sorts, as well as homogeneous systems,
such as time-shared dual processor PDP-10"s. The Pluribus
is one of the latter, and increased throughput was the

original purpose in contemplating a multiprocessor for this

application.

I A2Db =~ History

Having mentioned the reasons why control parallel

multiprocessor architectures might be considered for a

machine design, we now review a few multiprocessor

T Tpa—— _...._u.u-x..-l.h:i. LJ

History I-11

configurations, and discuss the factors which favored tuis

architecture.

I A2pi- 1/0 Channels

As computational machinery increased in size, and "computer"
became "computer system", it was observed that a great deal
of a processor’s power was often utilized in simple I1/0
transfers. When a device had a word ready to transfer to
the memory (or was ready to accept a new word from menory),
it would send an attention signal to the processor. This
would force the processor into a section of dedicated code,
which would simply read a word from the device and store it
in memory (or read a word from memory and send it to the
device), and then increment the pointer to memory, and check

for buffer completion. Since 'the cost of hardware was

decreasing, this was a sensible simple task which could be

moved to hardware, increasing processor efficiency. Thus,
the I/0 channel came into being. At this stage, it was
hardly a processor, being only capavle of executing this one
hard-wired function. The channel would be activated by the
device’s request, and would interrupt the processor only on

completion or error.

This concept was then carried a step further, when it was
observed that the processor was still spending a
non-neglipgible amount of time servicing interrupts, and

setting the channel up with new buffers from a

W paa—

I/0 Channels I-12

pre-constructed buffer chain. This function was also moved
into hardware. In order to have commands ready for the
channel when it needed new buffer 1location, size, and
control information, the program processor simply places
these commands in appropriate locations in memory, and the
channel interprets them as needed. If we define a processor
as anything which interprets stored commands, the channel

has become a processor, and our system has become a

multiprocessor.

I A2bii - Display Processors

One of the peripheral devices often connected to digital
computing machinery is a refresh display. This is a device
which when given a command - either a simple X,Y coordinate
pair or perhaps a complex command - the device positions a
CRT Dbeam, and intensifies one or more points on the screen
for a very short interval. If a lasting image is desired
rather than a transitory flash, the points in the image must
be repeatedly illuminated. To avoid flickering, the image
should be refreshed at least 20 to 30 times per second.
This requires a tremendous command rate for any sort of a
complex image; if a processor is expected to feed the
commands to the display, it is probably asking toc much to
expect the processor to be able to do much of anything else.
This then is a job for a channel. If the varicus commands

are placed in memory, the channel can fetch them and feed

them to the display, leaving the processor free to compute.

s

2 L WEY i by = .

Ly,

mmmmmw—.—nﬂm__ b e L A
| ;

e

Display Processors 2o I-13

While it 1is possible to have a display with one fixed
command, such as X and Y coordinates in the two halvec of
each word, more efficient use of the program processor, the
memory, and the display/channel can be obtained by having a
nore complex command structure, As examples of the
efficiencies which can be achieved we mention the JUMP
command, which will allow the display to repeatedly refresh
itself without disturbing the program processor. Line and
character commands permit illumination of many points from a
single command, and therefore a single memory cycle,

Subroutine calling and returning commands perniit a more

‘efficient data structure, as well as simplifying the

programming problem for a large class of graphics

applications.

Myer and Sutherland [8] observed a "Wheel of Reincarnation",
as follows. The original view of a display as a simple
peripheral on a general purpose computer becones less
accurate as the display and its channel grow in complexity
until the display beccmes capable of interpreting commands
independently from the main processor. The architecture of
the display then resembles the architecture of the original
system - a programmable processor with a simple display unit

peripheral to it. This cycle can be repeated.

As soon in this development as the displav channel is
capable of interpreting commands, the system - the program

processor together with the display processor - becomes an

gr.

\l;‘ \

\
\

e i I b il e e
-

Display Processors I-14 7
independent control stream multiprocessor. Reasons for
going to this architecture are the speed and design
.simplification resultant from the separation of function, as
we have discussed.
I A2biii - CDC 6600
The CDC 6600 [9] represented perhaps the first successful '
effort to build a supercomputer. Following the channel
philosophy of unloading I/0 details to peripheral
processors, so as to permit the central processor to focus

H
entirely on the main computational problem, the 6600 has one
central processing unit (CP) connected to 10 peripheral !

processors (PP's). The PP’s are general and programmable,
and can execute conventional channel programs, or canh be
programmed for special purpose functions, fronm graphic
display generation to line protocol formatting and
interpretation. All 1I/0 to the CP is handled through the
PP’s. This independent control stream multiprocessor
achieves a high speed in the CP by removing this burden froq
it, and achieves a simplicity of design by permitting A {
dedication of a PP to a device or class of devices, and by

not requiring a single processor to handle all devices.

I A2biv - NASA s Triple 360

In all I the systems we have discussed so far in this
section, the purpose of going to a multiprocessor

architecture has been 1increased speed, and secondari.y,

NASAs Triple 360 I-15
design simplicity. Further, all have been inhomogeneous;
that 1is, the various processors have not been alike.
Homogeneous multiprocessor: have been used, but their
primary goal, until recently, has been increased
reliability. Throughout the space program, NASA has

depended very heavily on computational facilities to compute

a wide variety of parameters of each voyage, used in

determining timing and intensity of rocket thrusts

as well

as all manner of other flight control data. It is vital, in

terms of men’s 1lives and millions of dollars, that this

information be available, and further that it be correct. A

system was developed for a 360 to perform these functions
for the first manned space launches, Two additional
identical machines were kept as active backups. More
recently, as experience has shown that this degree of
redundancy 1is not necessary to achieve the necessary
reliability, the system has dropped to a single active
backup. This then is an example of an independent control

stream multiprocessor whose purpose is reliability.

ime-Sharing Syvstems

I A2bv - Dual Proce _sor

A number of independent control stream multiprocessors have

been built for time-sharing systems [10]. Both homogeneous

and inhomogeneous nultiprocessor systems have been

constructed. The typical system consists of two very

similar, 1if not identical, machines, either of which is

capable of executing most user The

jobs.

scheduler

E7

R e B

Dual Processor Time-Sharing Systems I-16

typically is run by only one, and allocates jobs and manages
storage for both g Thus, despite homogeneous, or nearly so,
hardware, the software is inhomogeneous. This means that a
crash of the "master" machine, namely that one which runs
the scnheduler, will crash the system. Hardware homogeneous
systems can be restarted, running the scheduler on the other

processors.

The primary purpose for going to a multiprocessor
timesharing system is speed. Neglecting overhead due to
communication, conflict resolution, and queueing, twice as
many processors can support more than twice as many users of
the same characteristics, since the random arrival times of
execution requests permit higher utilization with shorter
queues, given multiple load-sharing servers, each with a
given load factor, as contrasted with a single server with
the same load factor. However, higher availability can also
be achieved in such a system, since the system can remain
available to users, but at reduced speed despite failure of
a single processor. Generally, a restart may be necessary

to recover a crashed system.

I A2bvi - C,mmp and Pluribus

Recently, a number of efforts have been undertaken to apply
the multiprocessor concept by using a substantial number of

inexpénsive minicomputers to build an inexpensive

supercomputer. Exemplary among these are the

P N Y e W gy W g
B

e — e

C.mmp and Pluribus I=17

Carnegie-Mellon multiprocessor (C.mmp) [11] &and the BBN
Pluribus. In each of these, many miniprocessors are
connected to shared memory through a complete connectivity
awitehing arrangement, which allows any processor to access
any memory. Again, the initial primary design goal in each
was an increase in execution power. A reliability increase
is also possible; in the C.mmp, faulty processors or
memories can be manually cut out of the system. In the
Pluribus, this process is automatic, under program control.
Further, the Pluribus architecture permits any processor to
control any I/0 device, removing the requirement that a
given processor be up in order to operate a given device.
The details of how these and other goals are achieved in the

Plur:hus are given later in this dissertation.

In these systems, the attractive price/performance ratio of
the modern minicomputer is used to advantage in constructing
a very powerful computer. The resultant machine is capable
of providing all of the multiprocessor advantages we have
nentioned: speed, design simplicity, and reliability. The
design of such a system 1is the primary subject of this

dissertation.
I AZc - Limitations

We now explore the limitations of the control parallel
multiprocessor structure. This exploration will be divided

into two parts: first a brief description of the limitacions

g

Limitations I-18

of such an architecture as a means of achieving reliability,
followed by an investigation of the 1limitations of this

structure as a means of achieving increased power.

I A2 ci- Reliability Limitations

The term "Reliability" is vague, and subsumes a wide range
of different considerations. We might consider reliability
as a measure of the probability of the system being
available at any particular time, or "System Availability",
This measure 1is of general interest in that &« system being
down surely means loss of money and time for i%s users.
However, a discussion of reliability in these terms does not
belong in a section about the limitations of the control
parallel multiprocessor architecture, since the ability of
any processor to do any part of the job, and the lack of
dependence of the system on any individual component permits
a1 extraordinarily high system availability and is one of
this architecture’s fortes. Rather, to find the structure’s
reliability limitations, we will consider reliability as the
probability of a given computation being done correctly, or
one minus the probability that the result of any individual
computation will be 1lost or in error. This measure is of

interest in certain applications such as 1life support and

navigation systems.

The classic technique wused to decrease the probability of

error in any given computation is Triple Moduiar Redundancy

T g N R T Ry Ty —" it I O T W L ey MR R LR g ———

U DT W ——

g T N S —

i
i
|
]

Reliability Limitations I-19

(TMR). Here each computation is performed simultaneously on
three independent sets of hardware, and the results compared
on redundant polling logic which takes the majority result

as the answer.

The TMR structure is in fact a control parallel
multiprocessor, since the interpretation of commands is done
independently on the three processing elements. It is a
special-purpose structure, however, in that it 1is not
capable of providing increased power for problems where the
probability of correctness is not so crucial. The general
control parallel multiprocessor architecture does not
inherently provide any increase 1in the probability of
correctly performing a given computation, and in fact could
possibly lower that probability due to the interprocessor
communication hardware which 1is not useful because of the
very requirement of interprocessor independence. A machine
of this sort could certainly be programmed to perform a
computation simultaneously and independently on three
processors, and a small amount of additional hardware could
be added to assist im the polling function. In cases where
a machine might be asked to perform highly correct
computations at some times but was intended to be powerful
instead for other computations, the general control parallel
multiprocessor architecture might be sensible. Where a hieh
probability of correctness is the only motivation for

mulitprocessors, this structure is probably inappropriate.

System Power Limitations 1-20

I A2c ii - System Power Limitations

We now turn to an examination of the limitations imposed by
a control parallel multiprocessor architecture used as a
technique for increasing system power. We undertake this
analysis by first examining the reasons for desiring a
powerful computer, then considering which of these
objectives can and cannot be achieved in a control parallel

multiprocessor.

If a weak minicomputer can provide the most cost-effective
computation in terms of additions per dollar, why consider a
more powerful machine? We present four classes of answers,

These classes are not intew.ded to be mutually exclusive.

(a) = Increased throughput
If there is a need simply to process more data in
a day than the weak machine is capable of, a more
powerful system is required. An insurance company
which needs to process some given number of
claims, new policies, and actuarial data in each
day finds that the mini is incapable of handling
that number, and thus needs a more powerful
machine. This class of problem generally presents
no problem to the control parallel multiprocessor,
since individual processors can simultaneously

perform computations on independent data,

increasing the system throughput by a factor of

almost the number of processors.

System Power Limitations

(b) - Decreased Delay
There are several quite different reasons for the
general complaint about a computer that it takes
too 1long, and therefore is insufficiently

powerful. We will consider three such.

(1) - Queueing delays
Each day at 9:00 AM, 200 users submit their
batch jobs for the day. They complain that
on the average they must wait half a day for
their results. The multiprocessor can
answer this complaint by processing more

users in each unit of time.

(2) - Response Time
A new buffer of data may arrive every
millisecond. Loss of data is not
acceptable, so the machine must respond
within a millisecond to take the data. This
problem is treated in some detail in Chapter
II. It can generally be solved by adding

external data buffering.

(3) - Real Time Control
A computer 1is monitoring and controlling a
nuclear reactor. Data 1is available oﬁce
each second. If the appropriate control

response is not available within the next

- System Power Limitations I-22 -

second, an explosion may occur. It takes a
minicomputer 10 seconds to process one set
of data. This case differs from the simple
need to get more computation done each day
in that the execution time of each !
individual computation needs to be

;. diminished, and thus simply having separate
R processors working on separate problems does

1 not help.

' In this case, the applicability of the
| control parallel multiprocessor is dependent
on the divisibility of the required
l computation into simultaneously executable |
subcomputations. In the case of large ‘

matrix manipulations, this presents no

problem, In faect, in most any practical

computational problem, the isolation of

independenﬁly executable subproblems is

| straightforward. However, it is not always

possible. In cases where every computation

is dependent on the result of the previous

computation, this division is impossible.

It is difficult to divide the problem of

computing the Nth term of the Fibonocei

sequence,

P, - T Wl T e g o e

oy

System Power Limitations I-23

(d) -

For those problems with a real time
constraint which cannot be divided, the
control parallel multiprocessor is

inappropriate.

Increased Efficiency for Random Request Arrivals

Suppose that a time-sharing system is capable of
suprorting 20 users. Their computation requests
arrive randomly in time, The system sits idle
when no requests come in for a period of time. A
system twice as powerful could handle more than U0
users, because the 1increased numbers provide a
smoother distribution of arrivals, decreasing the
system idle time. The control parallel
multiprocessor 1is well suited to this task,

assigning processors to users as required.

Sharing of Peripherals

Multi-user systems can achieve economy with
respect to single-user systems in that expensive
peripheral equipment which is used infrequently by
any single user can be shared among many users,
decreasing the cost to each. Again, the control
parallel multiprocessor architecture provides this

benefit as well as any powerful uniprdcessor.

We conclude that the use of a control parallel

multiprocessor for the purpose of increasing system power is

il s ol

e Y

T R —

[p———— = W

i B

o e

TN SR e (e— Ay gy o NN DU e e e g e i . e & i Ay —

System Power Limitations I-24

appropriate in all cases except a situation which requires
rapid real time response on problems which are not divisible
into simultaneously executable subproblems. We argue that
this class of problems is negligibly small, and that
therefore this architecture 1is very general and widely

applicable.
I A 3 - Pipelining

Pipelining has been used at different 1levels in a wide
variety of computational machinery. It permits parallelism
in the simultaneous operation of separate pieces of hardware
on different phases of successive executions of a given
algorithm, A given computation moves from one piece of
hardware to the next as it goes through its successive
phases of execution. The sole purpose of such an
architecture is increased speed. We mention here a number

of applications in which this technique has been used:

(a) - A display system containing a display processor
and a program processor can be thought of as a
pipelined system to ccmpute and display a moving
picture, the program processor working on the
computation phase of a given execution while the

display processor works on the display phase of

the previous execution.

(b) = The Evans and Sutherland L.DS-1 carries this

concept farther, in that a PDP-10 is computing a

E—

Pipelining

(e) -

(¢) =

I-25

picture while the LDS-1 passes previous pictures
through its instruction interpreter, matrix

multiplier, clipper divider, and vector generator,

The 360-91 instruction interpreter is pipelined;
successive instructions are in successive phases

of interpretation in separate pieces of hardware.

The CDC-STAR computer’s arithmetic processor is
pipelined, providing a spectacularly high
throughput rate, by performing b4 Bit
multiplications at about 20 nanoseconds each. An
N by N bit multiplication is composed of N
conditional additions of one of the multiplicands
(appropriately shifted) into the running total.
In the Star, these N additions are performed on N
separate adders, the output of each presented to
the input of the next. While the i+1th adder is
performing the i+1th addition to the j+1th
multiplicands, the ith adder is performing the ith
addition to the jth multiplicands. While each
individual multiplication passes through N stages,
and is thereby (relatively) slow, the rate at
which multiplications can be done is very high.
This tradeoff between delay and throughput is to
many counterintuitive, but typifies many problems

in computation as well as traffic control and

other non-computational concerns,

W Sy e

|
|
|
|

Pipelining

€ =

| T

I-26

In the Pluribus, a given task 1is divided into
subtasks which run sequentially. For example, the
problem of taking in a packet of information,
deciding what tc do with it, and sending it out
another line, i3 divided into thesg three
essential phases. These three phases of e;ecution
may very well be in process for different packets
from the same line at the same time on different
processors. Thus, the system may take on a
pipeline-type configuration, in which different
packets are in different states of processing on
different proc~ssors at one time. The primary
difference between this and other pipelined
systems we have discussed is the flexibility.
While the Pluribus is capable of operating in this
mode, it 1is not restricted to it, whereas
classical pipelined systems are capable only of
pipelined operation, and are thereby restricted in
the range of problems they can handle.
Conventional pipelined systems tend to be liess
reliable than uniprocessors, because all of the
individual processors must be functional for the
system to be functional, whereas the homogeneous
multiprocessor can be more reliable than a

uniprocessor, as we have discussed. (A noteworthy

R TP N P e Ty e

Pipelining I-27

exception to the requirement that all elements be
up is the LDS-1, in which the matrix multiplier
can be removed from the pipe, and 1its function

moved into software, in the event of failure.)
IB - izin ask

The body of this dissertation concerns itself with hardware
configurations which permit parallel execution of
algorithms. We have not made mention of the serious problem
of how to construct a program to run on such an accumulation
of hardware so as to implement a given algorithm. We here
briefly mention this problem with the note that it is only
incidental to the subject of this dissertcotion. We take the
program presently Being written for the Pluribus as an
existence proof that such hardware can be programmed to
accomplish wuseful goals. in this section, we mention
various techniques which have been used to generate programs
for parallel hardware, without presenting any substantial

discussion of their relative merits.
I B 1~ Data Parall Progzram

Having built an assemblage of hardware such as ILLIAC IV,
one is left with the burdensome job of genrerating programs
to take advantage of 1its powerful structure. The fiirs

requirement is that the task to be done be doable in the way

that the hardware is fast at doing problems., It is probably

not sensible to code for ILLIAC a problem which would run as

i s a Lk, L ey R e e L s

P—— e DN G TR Wy W N e e

P N A ———

Data Parallel Programs I-28

fast on a PDP-8. This means that the problem be of a
certain type, such as a numerical matrix problem, and that
"the algorithm be sensibly constructed - minimizing
conditional branches, and so forth. As with any new
programmable hardware device, the first technique wused to
generate programs is the guy who sits down with a thorough
understanding of the hardware, its capabilities, and its
restrictions, as well as a thorough understanding of the
problem to be done and the ways it might fit with that
machine, and tries writing machine instructions until he has
an implementation which he believes best, for some

particular set of objectives and costs.

It has long been observed that programmers can get more work
done 1if they work in higher 1level languages. This
observation, as well as a desire for efficiency through
optimal matching of a program to the hardware on which it is
to run, 1leads to the pursuit of automatic program
parallelization algorithms, A substantial amount of work
has been done in this area [12]. The scope of this work is
to attempt to extract from a conventional program those
sequences of identical operations which can be fperformed
simultaneously on independent data, or in come homogeneous
fashion on interdependent data, such as in a me.rix
relaxation. The degree to which this sort of operation is
possible is not obvious, since the data interdependence may

come from the way the code is written, and not from the

fundamental task to be done.

e —

e S T T P 1 S Pate-rere T . {0 s ettt o\ .
!Fllul--:IH:: oy us ___~_~w~:1

R U .

Control Parallel Programs I-29

I B 2 - Control Parzlle]l] Programs '

The complaint might very well be levelled at any

multiprocessor architecture such as the Pluribus that it

T TINEETTEEN

will be impossible to construct practical programs for a
machine with such a complex control structure. Given that
the software represents the majority of the cost of most

computational facilities today, can such an architecture be

sensible?

We have four answers to this question.)

First, in some applications, such as the High Speed IMP !

application for which the Pluribus was originally developed,
the software, 1like the hardware, is built once, and then

falls back into an ongoing maintenance mode. In such

sedsSs b Y

applications, the cost of careful program design, to permit

e

advantage to be taken of the powerful hardware structure,

may be small compared to the hardware savings. This was

decided to be the case with the Pluribus. In these "special

purpose" applications, such an architecture is sensible.

Second, unlike data parallel multiprocessors, a match

P R, W AT e ——

between the structure of the end job to be done - the "user"
program - and the hardware architecture is not prerequisite

to the successful application of the hardware to the job. A

time-shared system could well be imagined which simply

allocated users one-to-one to processors, giving each user

no more power than he would have from a single machine, but

A o
— =S S

S

Control Parallel Programs I-30

able to support many users. Such a system could achieve
increased efficiency compared to a collection of inc :pendent
processors Jue to> load averaging and resource shariag. The
executive of such a system must be cognizant of the
architecture, but only in the scheduler. Thus, such a
system might be constructed without incurring large

increases in software costs, particularly in ongoing

software costs.

Third, this sort of architecture is new, and there has not
been much effort at writing programs for it. Even less
effort has gone into the automatic generstion of those
programs. Surely the fruits of such labors can make easier
and more economical the job of writing individual programs
which take advantage of the architecture. We believe this

to be a vitally useful area for research.

Fourth, we have designed and written some programs for a
control parallel multiprocessor. We have attempted to
structure programs in an application-independent fashion,
building a computational structure which imposes constraints
on the processes it controls, but handles interprocessor
communications and the trading of processes between
processors in a fashion ;nrelated to any particular task to
be done, and which is thereby useful for a variety of tasks.
We thus have some understanding of how it can be done, and
conclude that it is not all that difficult. We here present

some techniques for dividing an algorithm for execution on

an independent control stream multiprocessor.

——— e

Job Boundaries I-31

I B2 a - Job Boundaries

In an inhomogeneous multiprocessor, such as a data line
scanner front end for a time-shared system, there is very
little difficulty in breaking the problem up into pieces to
run on a multiprocessor. In fact, one of the significant
advantages of wusing a multiprocessor for such a system is
just that it permits independence between portions of the
overall job which are conceptually independent, that is it
rlaces a real boundary where a conceptual boundary natuvwrally
falls. In such a system, therefore, breaking the overall
problem into simultaneously executable code 1is not a

difficulty but a relief,.

While this may be an extreme, prpgramming a peneral problen
on a multiprocessor is not that different. If the program
can be divided into subtasks which run sequentially and with
relatively few interlocking references to shared data
structures, these subtasks can run in a pipeline fashion,
each activating the next. Thus, the multiple processors can
be simultaneously employed in various phases of different
executions of the algorithm. Care must be taken that those
references to shared data structures which reauire integrity
of the structure are interlocked, and the wutilization of
such locked resources mnust be 1low 1in order to prevent
inefficiencies due to waiting for them, but these are not

very difficult matters.

——— e R MY I e e ey 5

JE——

e e R

s e o s, i e .

Job Boundaries I-32

Further, there 1is no requirement that multiple processors
cannot simultaneously run the same code for successive input
data. 1In this way, the power of the multiple processors can
be brought to bear on a single device whose service requires
many times the processing power available from 1 single
processor. Alternatively, the various processors can at a
given timp be servicing different devines of the same or
different types using the same or different programs, If
the program is thought of as being event driven, as long as
references to shared resources are carefully interlocked,
service can be provided where it is needed at any instant,
without burdening the programmer with multiprocessor-related

constraints on an instruction-by-instruction basis.

This scheme increases the system throughput, as compared to
a single-processor system running the same program, tut does
not decrease the time taken to process a given datum. In
this sense, it is equivalent to the time-shared
multiprocessor which gives no user more than one processor.
While no individual datum receives speedier service, the
rate at which data can be serviced 1is increased, without

adding substantial complication to the coding process.

I B 2b - Simultaneous Equivalent Executions

There are other ways in whieh tasks may be divided for

simultaneous execution on processors with independent

control streams. One of these is simoly to have two or more

L —

Simultaneous Equivalent Executions I-33

processors executing exactly the same program independently.
This can be done for reliability, by having the processors
working on the same data; we have mentioned such systems.
It can also be done for speed, having the processors work on
independent data, thus processing twice as much data in a
given time, or halving the time taken to process two sets of

data.

I B 2 c - Precomputation Down Decision Trees

An interesting application of independent contrcl stream

multiprocessors is to look ahead of decision points, and

thus get a head start on the computation which will be

necessary, before the results of the decision are known.
For example, suppose a task consists of a computation and an
N-way test on the result, followed by N possible
computations, each comparable in execution time to the first
computation. The overall execution time of the task can be
cut almost in half by setting one processor on the initial
computation, and setting N other processors on the N
subsequent computations, selecting only the one computation
corresponding to the correct branch of the Jdecision as scon
as the first computation is complete and the decision known.
The secondary computations may reach decision points, and
the process of duplicating the process for all possible
decision outcomes can be repeated until all the processors

in the system are used.

MPEIR———e—nan g L U T TN R R AR Sy A e aepyg——ten —

L T e, -
S o T

e

Y s e i i s o i el SO "
Precomputation Down Decision Trees I-34

This scheme can reduce the execution time of a given program
by a factor of almost the number of levels there are in the
decision tree. Its cost in processors is the number of
nodes in the decision tree. To return to our example of a
single N-way decision, a factor of almost two can be gained
in execution time, at a cost of a factor of N+1 in

processors.

This precomputation application of control parallel
multiprocessors differs conceptually from those we have
discussed earlier, in that there is a substantial inherent
inefficiency in the use of computational power, since only
one of the second level computations will be useful, and
therefore N-1 processors are performing operations which do
not contribute to system throughput. 1In other applications
for control parallel multiprocessors we have discussed, the
inefficiencies have resulted only from the necessity for
inter-processor interactions, rather than from any inherent
design attributes. We can quantitatively compare the
results for this N-way precomputation problem to other
problems without inherent inefficiencies. The
multiprocessor doing precomputation is a factor of (N+1)/2
less pcowerful in terms of throughput, since only 2
processors, rather than N+1, are profitably employed. Where
speed is of utmost concern, this sort of inefficiency may be
acceptable; for most applications, the critical timing

constraints can be avoided in other ways, as we discuss

e

—

e aoln Jab A S ikl

Precomputation Down Decision Trees I-35

later, and the throughput/delay tradeoff can be more

sensibly made in favor of throughput.

Summary

This concludes cur discussion of the forms of computational
parallelism, We first considerec data parallel structures,
and concluded that while very prevalent, such architectures
are powerful for only a limited class of problems, and are
restricted in their reliability. We then turned to control
parallel structures, and concluded that such architectures
have the potential to provide economnical, reliable, and
powerful general purpose computing machinery. We next
considered pipelined structures, and concluded that although
they permit simple powerful designs for some problems,
reliability is again restricted. We observed that a reneral
control parallel nmultiprocessor 1is capable of, but not
restricted to, pipelined operation. We ended with a brief
discussion of the problem of programming a multiprocessor,
and concluded that this area is as yet largely unexplored,
and certainly worthy of extensive study, but does not
present extreme or insurmountable obstacles to the present

implementation and application of these architectures.

I T T T T g A__;ﬁé:ﬂm2ﬂmEi;au_hﬂﬁE&h‘m‘_-.___h“amu_______;l;ﬂﬂil

|
_;

R R S————

. e

s

I e L ——

=

i T . S gy

e

Chapter I1
INTERPROCESSOR INTERACTIONS
In the first Chapter, we discussed the various forms of
parallelism which might be wused in the design of a
multiprocessor. We spoke of data parallel structures, and
pointed out the limitations they imply. We spoke of control
parallel structures, and observed that they had the
potential to provide highly reliable powerful computing
machines at a reasonable price. We observed that the
problem of programming such a machine is an interesting
problem, but by no means insurmountable. We conclude that
the control parallel multiprocessor is the structure we wish

to investigate further,

In this chapter, we begin that investigation with an
analysis of the ways in which the various processors of a

multiprocessor might interact.

Until the processors interact, a multiprocessor is simply a
number of independent single-processor systems. It 1is the
nature of the interactions between the processors which
determines the characteristics of the multiprocessor. e fe
the processors spend their time waiting for each other, the
system degrades to a single processor equivalent; 1if they
can usefully run concurrently, the processing power is
multiplied by the number of processors. If the failure of a
single processor takes the systen down, the system

reliability is limited by the probability of all processors

PRECEDING . PAGE BLANK-NOT FIIMED @

|

T

Interprocessor Interactions I11-2

being up; if working processors can diagnose and heal or
amputate faulty processors and proceed with the job, the

system reliability can approach the probability of any

processor being up.

In this chapter we will discuss various interprocessor
intercommunication issues. This discussion will be divided
into three categories: Conflicts, Task Allocation, and

Interactions for Reliability.

In the area or conflicts, we will discuss the problems of
conflict resclution between competing hardware or software
mechenisms. The distinction between synchronous and
asynchronous architectures is discussed, with a brief review
of the advantages and disadvantages of each. We conclude
that asynchronous architectures are sufficiently attractive
in terms of flexibility to justify the use of practical
synchronizing hardware. We also conclude that hardware
mechanisms to permit rapid interlocking of software
processes, while not strictly necessary, are sufficiently
inexpensive and powerful to make them worthwhile. We
discuss the problem of queueing delays, without developing
rigorous mathematical models, and present th2 concept of
computational bandwidth and bandwidth matching as a

mechanism for configuring a practical multiprocessor.

In the area of Task Allocation, various algorithms for

allocating tasks among processors will be considered.

W EpEN———
y

e

Interprocessor Interactions II-3

Interruption strategies will be explored, and various
methods of deciding which of the various processors to
interrupt will be presented. The need for substantial
computational power to make this decision leads to a search
for a mechanism which will permit the power of the
processors to be applied to this problem, rather than
building more specialized hardware. This leads in turn to a
discussion of voluntary task allocation algorithms. 1In this
discussion, a novel alrsorithm is presented, baseu on an
inexpensive hardware task queue, which permits a very high
efficiency and a high degrec¢ of reliability at a low cost.
A discussion of the disasdvantages of voluntary task
allocation algorithms 1is then presented, including a quite
general discussion of the latency buffering requirements for

synchronous devices.

In the area of Interactions for Reliability, we briefly
mention the 1iaiits oflreliability in a multiprocessor, and
point out that the observed reliability will depend on
numerous engineeriny considerations in the design of the
system. We then examine a number of these considerations.
We conclude with a discussion of the reduction of

computational bandwidth on component failure.

L. .

el ol

e T W WU T ¢ e T e T R W N ey T e "
> -—— = - o = =

Conflicts II-4
IT A - Conflicts

In this section, we will discuss the problems which arise
out of different hardware or software devices simultaneously
desiring access to a common shared resource. Mechanisms
must be provided to unambiguocusly resolve these conflicts in
order for the system to function usefully. We will divide
this discussion into three parts. 1In the first, we will
consider conflicts between hardware devices. The second
will deal with conflicting software devices. In the third,

we will briefly discuss the delays introduced by conflicts.

In the area of hardware conflict resolution, we wiil first
consider the distinction between synchronous and
asynchronous multiprocessors, and observe that the desigu
simplicity which makes the synchronous architecture appear
attractive 1is outweighed by the constraints it imposes on
system timing, reliability, and expansibility. We will tnen
consider how arbitration logic can be constructed to resolve
the conflicts inevitable 1in an asynchronous system. We
observe that while it is impossible to implement circuitry
which performs such arbitration in any finite time without a
probability of ambiguity, practical circuits with acceptably

low failure rates are straightforward.

In our discussion of software conflicts, we will make

mention of mechanisms which can be used to implement

B
B
E
E
E

o b iR

T T T T

Conflicts I1-5

software interlocks, with and without the assistance of
hardware capable of an uninterruptible test/modify sequence.
We conclude that such hardware is worthwhile in a
multiprocessor because of the efficienc} it permits at a low

cost.

In our discussion of the delays introduced by conflicts, we
will consider two components: the multiprocessor overhead,
which is incurred whether or not the desired device was
busy, and the queueing delay, which results from awaiting
completion of service to other competing devices. Nc¢ formal
analysis of the aqueueing delays will be presented, but a
discussion in terms of the "bandwidth" of various devices
will be presented from which practical approximations of
sufficient accuracy for the design and evaluation of a

multiprocessor may be derived.

ITI A 1 - Hardware Conflicts

As has been stated, it 1is the interaction between the
processors which to a large extent determines the nature of
a multiprocessor. 1In order to interact, the processors nust
intercommunicate. In this subsection, we consider the

fundamental hardware primitives of this communication.

Interprocessor communication implies multiple access to a

shared communication resource. In order to permit

_J-FJT":"'-—“"‘I-:‘F .

Hardware Conflicts II-6

meaningful communication, there must be a mechanism for
unambiguously resolving conflicting simultaneous requests
for this resource. Even in so simple a communication
discipline as a simplex register which one processor can
read and one processor can write, a synchronizing mechanism
must exist to prevent simultanéous reading and writing, or
the data read may be a meaningless combination of new and
old data, and further cannot be relied on even to remain
constant in the internals of the machine which read it, as

we shall discuss later.

These difficulties in intercommunication lead to a desire

for a global synchronizing mechanism, i.e., a synchronous

architecture, We will first consider the distinction
between synchronous and asynchronous multiprocessor
architectures, and conclude that considerations of

efficiency, reliability, and expansibility militate against
the synchronous design. We then turn our attention to the
problem of unambiguously resolving arbitrarily timed
conflicting requests for a shared resource. This problem is

inherent in an asynchronous structure.

IT A 1 a - Why Not Synchronous?

A multiprocessor can be constructed either synchronously or

asynchronously. In a synchronous system, all processors and

devices are driven by a single central system clock. All

Why Not Synchronous? II1-7

events happen at clock time, after which there is a settling
time to permit all transitions to propagate throughout the
logic, whereupon the next clock pulse occurs. This sort of
system has the advantage of being conceptually simple,
permitting knowledge at design time of the relative timing
of all events. Unfortunately, there are several
disadvantages of such an architecture, in terms of

efficiency, reliability, and expansibility.

IT A1 ai- Efficiency

A synchronous multiprocessor suffers inefficiency because
all operations are constrained to take the same amount of
time. Thus a processor completing a fast operation must
wait until a slow operation could have been completed, since
some other processor mig.¢ have been using that time
interval to do a slow operation. This inefficiency can be
minimized by reducing the interval between clock pulses, and
making different operations take different numbers of clock
ticks. In this case, a cost is paid in time and hardware
complexity to determine which phase of a given operation is
to be performed on a given clock pulse. Thus, whether the
inefficiency comes in idle processors or in slow and costly

phase determining hardware, a synchronous multiprocessor

architecture will pay a price in efficiency.

—

. e &
ST Lo 2o -

s n e o am e o L el o, e o e A ——_—

Reliability II-8

II A 1 a ii - Reliability

A synchronous multiprocessor by definition depends on a
single central clock to provide the synchronizing pulses to
all of the processors. This clock then is crucial to the
functioning of the multiprocessor, and if it stops, the
entire machine stops. Certainly isolation can be built into
the central clock 1logic so that no individual processor
failure can cause the clock to appear stopped to any other
processor, but central clock failures are more difficult to
protect against. Note that it is not adequate for each
processor to have its own clock as backup to the central
clock; there must be an intercommunication path so that all
processors agree on when clock pulses happen. This
intercommunication medium is then as crucial as was the

original clock.

The clock can be duplicated, and separate clock signals can
be run %o all of the processors, with rules such as "Believe
clock A as long as it is running. If it fails, believe
clock B". It is in general impossible, however, to get the
various processors to agree on whether clock A 1is running,

particularly if it starts running at the wrong speed.

Thus, a synchronous multiprocessor architecture suffers
unreliability due to the difficulty in providing a

believable reliable central clock for synchronization.

Expansibility I1-9 -5

IT A 1 a iii - Expansibility

! The fixed timing requirements on a synchronous architecture
impose difficulties on system expansion. Given that the
time for a signal to propagate from one side of a system to
another is typically comparable to or in excess of the time
to perform a logic computation, addition of new logic which
expands the physical size of the system requires careful
reconsideration of the system timing, and may regqguJire
slowing the central clock. This makes it difficult and
expencive in terms of design time and system power to expand

: 1
a synchronous multiprocessor. |

IT A1 b - Arbitration

[
In an asynchronous system, each device - processor, I1/0 ?
|
interface, etc. - runs on its own internal timing, at the

fastest speed appropriate to it at the time. While this

architecture alleviates the problems discussed above in

efficiency, reliability, and expansibility, it introduces

Ry W I A e R

new problems due to the lack of knowledge of the relative
timing of requests on the shared resources. Since the
devices are asynchronous, their timing relationships are
| probabilistic. The probability of receiving two requests
L with any given timing relationship, to within epsgilon, 1=

{
l* then proportional to epsilon. This presents a particular

problem in the design of the hardware to arbitrate between

1
.{ Arbitration II-10 ,1

requests, since there 1is always some time relationship of
inputs to any hardware device which will result in an

ambiguous output.

T T e e —

We will first consider the reasons why an arbiter cannot be

designed which does not have a finite probability of giving
- an ambiguous result after any finite length of time, then
;. observe that practical circuits which perform arbitration
witn an acceptably low rate of ambiguous results can be

implemented with ease.

ITI A 1 bi- Can’'t Be Done Perfectly

A detailed understanding of the failure of any particular
arbitration circuit requires a thorough understanding of the

static and dynamic analog characteristics of the components

&
i e e S o

. involved. In an effort to give some intuitive understanding

4 of the reason for the impossibility of unambiguous

resolution, we now present a circuit-independent argument.

Decision-makers are positive feedback devices. That 1is to

say, once a decision-maker has decided one way, it tries to

Y P R T N W TN RNy T

to stick with that decision. The fact that it has begun to

change its mind encourages it to quickly change to the other
decision. The state of any such bistable positive-feedback
device can be represented as a point on an energy curve such

as that in Figure II-1.

it e e - e B i w Lma SIS TN et W DR T T T B LR Y e & & T ree————

I Wy gy a———

- s ——

Can’t Be Done Perfectly I1I-11

Unstable
Equilibrium

Ty

Stable
Equilibria

Figure II-1

Arbiter Energy Diagram

Once in either of the energy wells, small amounts of input
energy are ignored; the device remains in the well. Once
sufficient energy is applied to force the device up over the
crest of the hill, however, the device will rapidly drive

itself down into the other energy well.

In any such curve, there must be a zero-derivative point at
the top of the hill. This is guaranteed by the fact that
there is a point between the two wells which is higher than
either of the two wells, which is necessary for the device

to have two stable states.

The ambiguity arises when the input provides Jjust enough

energy to drive the device to the exact top of the energy

curve, but no more.

Can’t Be Done Perfectly II-12 l 3

While the probability of hitting the exact wunstable
equilibrium point is zero, if a point very near that point
is hit, it will take a long time to fall, one way or the
, other. This time increases as the distance from the

equilibrium point decreases, and would be infinite if the

equilibrium point were hit exactly.

- ITI A1 b ii - Can Be Done Adeguately

Having pointed out the impossibility of building an arbiter
which does not have a finite probability of being ambiguous
after any finite time, we now consider how to build

practical arbiters.

We observed that the time taken by an arbiter to transition
to a well-defined state in one of the energy wells will
3 increase as the distance of the initial operating point from
? the unstable equilibrium point decreases, The arbitrary
! nature of the timing relationships of asynchronous requests
* makes the probability of hitting a given region of the
operating curve proportional to the width of the region. In
srder for an arbiter to still be ambiguous after a length of

time, it must have initially been within a region near the

equilibrium point. As the time increases, the width of the
region decreases, and thus the probability of being within

that region decreases, By waiting a 1long time after

applying inputs to an arbiter before examining the output,

Can Be Done Adequately II-13

therefore, one can make the probability of an ambiguous
result very small. From an acceptably 1low failure rate
specification, one can derive the length of time which one
must allow for arbiter settling to achieve that failure
rate. Such a derivation is straightforward from simple

considerations which we will now outline.

The timing of the resolution of requests 1is determined by
the shape of the energy curve. Since we are interestéd in
the performance when the device spends a.significant amount
of time 1in. an unstable state, we can assure that there is
very little driving force on the device over the period of
interest, and thus that the first derivative of the energy
curve is zero. Furthermore, since the first derivative is
very small over only a very small portion of the energy
curve, we can assume that we are interested in only a very
small portion off the curve, and therefore that the
derivatives higher than the second can be ignored. The
second derivative, while not known, cannot be neglected, as
that would predict a finite 2zone of equilibriunm, a

characteristic one seeks to avoid in designing arbiters.

We can thus characterize the energy curve over the area of
interest as a parabola, E=-k¥X*¥2 for some positive k. For
such a curve, the probability of being within a region

defined as ambiguous can be shown to be:

Can Be Done Adequately II-14
P = exp(-t/T)

Where t 1is the time waited and T is a time constant
characteristic of the device. Computation of T from
theoretical grounds is most difficult. Empirical

measurement is straightforward.

Given this equation for the probability of failure and an
empirical measurement of the time constant T, one can easily
find a value for t, the waiting time, which will produce an
acceptably 1low failure rate. In practice 1in today’s
technology, a delay of one to several hundred nanoseconds

can produce failure rates of one per century to millenium.

In an asynchronous system, arbiter beliability and delay can
be improved by permitting the arbiter to announce its
decision when it observes that it is no longer ambiguous.
Thus, by adding logic to measure whether or not the state is
near the equilibrium point, one can postpone any action
based on the result of the arbitration Just long enough to

get an unambiguous result.

I A 2 =.S6e n ct

Having described some hardware primitives for resolving
simultaneous wusage requests, we briefly describe the
software primitives required to permit processes to share

resources without permitting ambiguous states. Each of the

B by Sldll G e

e ——

Software Conflicts II-15

schemes described assumes the existence of hardware capable
of giving unambiguous outputs wunder all circumstances.
Thus, each of these schemes 1is subject to the same
probability of error as the hardware scheme used to

approximate this unattainable desideratum.

Much has been written about the wuse of interlocking
mechanisms from a program point of view [13]. We will not
treat this problem here other than to point out the
necessity of different processes, whether running on one or
several processors, being able to interlock shared
resources, so as to permit only one owner at any given time.
Our concern here will be with the question of how such

interlocks can be implemented.

A lock must have the property that once it has been observed
as unlocked by one process, it must then appear locked to
all other processes until such time as it 1is expliecitly
unlocked by the original process. This device can then be

used to resolve ownership conflicts as follows:

a processor reads the state of the lock, and at the same
time 1locks it. If it was already locked, the processor
either rereads it, locking it each time, until it reads
"unlocked", or, 1if desired, the processor can abandon that
process and choose another wuntil such time as the lock

becomes unlocked. When the lock is read as unlocked, the

processor, having locked it, now owns whatever resource the

R

W g e—
g

il

N el S

F o

S i i

-

Software Conflicts I1-16

lock was locking, secure .in the knowledge that no
undesirable competitors also own it. When the processor has
finished with the locked resource, it rewrites the 1lock as

unlocked, permitting some other processor access to the

resource,

We now briefly consider how such locks may be implemented
with or without hardware capable of an indivisible
test/modify sequence, While such hardware is not

indispensable, the efficiency gained Justifies the small

hardware cost.

II A 2 a - With Indivisible Test/Modify

Classical implementations of interlocks have utilized an
uninterruptible hardware sequence &hich both tests and
modifies the state of a location in memory. Often, a
Read/Modify/Write memory cycle is used, in which in a single
memory cycle, the contents of a 1location are fetched,
updated, and rewritten., For example, a multiprocessor
PDP-10 can implement an interlock using the AOSE (Add One
and Skip if Equal to zero) instruction as follows:

AOSF LOCK ; Increment the lock and test

JRST .-1 ;y Continue checking until unlocked
; Now use the locked resource

SETOM LOCK ; Unlock (Set to =1)

S e e e e i ey e e L
3 S S5 - _ - Bl hoe. by
-,

With Indivisible Test/Modify II-17

In this example, a valuc of -1 means unlocked, and any other
value means locked. If LOCK contained a -1, the AOSE will
bring it to =zero and ‘thercfore skip. If it contained
anything else, the proccssor will loop here, incrementing it
until some other processor unlocks it. Since it would take
more than three days for this loop to count a zero valuc

around to zero again, we can ncelect that source of multiple

ownership.

The test/modify sequencc need only be indivisible by another
process which might be compcting for the same rcsource,
Thus, in a DDP-516, the IMA (Interchange Memory and
Accunulator) instruction uses different memory cycles to
fetch the o0ld contents of memory and rcwrite the new
contents. Nevertheless, this instruction can be used to
interlock processes at different interrupt levels, since
interrupts can only occur at the end of an instruction, not
in betwcen the cycles of an instruction. Therefore the
multi-cycle IMA is indivisible in terms of interrupting

processes.

In a multiprocessor environment, interlocking is of crucial
importance, and ‘typically must be done frequently.
Efficiency is therefore of utmost concern. An efficient and

very useable interlock mechanism can be implemented by

simply using a destructive readout from memory, that is, the

A e——

4 e

e i i

e

TP T an——

With Indivisible Test/Modify I1-18

act of reading the contents from memory destroys the
contents, leaving zero or some other ..ominal value behind,
In core memory systems this may be very straightforward to
implement, since core is inherently a cestructive readout
device, which is made nondestructive only by adding an
automatic rewrite cycle to each read cycle, Simply
disabling this rewrite provides an inexpensive and efficient
locking mechanism. In cases where because of parity or
other practical considerations elimination of the rewrite
cycle is not feasible, simply zeroing the data before

rewriting can give the same effect.

The attractiveness of this particular 1locking mechanism
arises from the fact that the lock datum can itself be the
locked resource. For example, one can imagine there being a
shared list of available memory space. A processor desiring
Ssome memory would read the lock location corresponding to
this resource., If the result is zero, the resource is
currently locked, and the processor rereads it until a
non-zero result is obtained. This result is then a pointer
to the first available space. The act of obtaining this
information then 1locks the resource so that no other
processor will attempt to c¢laim the same space., After
reserving the space it needs, the processor computes the new
pointer to the first available space, and rewrites it into
the lock location. This simultaneously updates the

allocation information and unlocks the resource to permit

access to others.

T ———— L ———— 5 (A——————

Sl S

With Indivisible Test/Modify II-19

The efficiency in this scheme comes about from the fact that
the locking and wunlocking is made part of the normal
activity of obtaining and updating the locked information.
The only overhead paid as compared to the same actions
without interlocking is the test for zero, and, necessarily,
any waitineg while the resource is utilized by others. The

cost of this efficiency is simply that of the destructive

read, described above,

IT A2 b - Without Indivisible Test/Modify

It 1is possible to implement interlocks without an
uninterruptible test/modify sequence, We now present two
algorithms for doing so, again assuming the existence of
unambiguous hardware arbitration. These are of intérest as
demonstrations of the non-necessity of indivisible
test/modify sequences, and may have practical value in
multiprocessor situations in which the processors are almost
independent, intercommunicating only most infrequently, so
that the efficiency c¢f such communication is unimportant.
In general,.the high efficiency and 1low cost of hardware
implementations of interlocks make these algorithms

irrelevant.

B

by

Round-Robin II-20

II A2Db i - Round-Robin

The essence of a lock is that no two processors can read
from it a value which gives both of them permission to use
the resource. Usually, as described above, this is
accomplished by having one state of the lock mean "locked"

to all processors, and another mean "unlockea" to all

processors. However, it can also be accomplished by having:

a different state mean "unlocked" to each processor. Thus,
an interlock might be implemented by having a "permission"
location in shared memory. One device, either hardware or
software, has responsibility to set this 1location on
alternate units of time to 0 and to consecutive integers,
modulo the number of processors. Thus, in a four-processor
system, this.location would, on successive units of time,

contain 0,1,0,2,0,3,0,4 repeated every 8 units of time.

When a processor wishes to access any lock, it must wait for
its processor number to appear in this location. It may
then read, test, and rewrite any locks under the control of
that one permission 1location, but it must be done in less
than one unit of time. In this way, it knows that it alone
has access to these 1locks, and thus that any resource it
locks, it owns uniquely. The dead times (when permission is
zero) assure that even if a processor gets permission at the
very end of its interval, it will have finished before any

other processor can get permission.

Crosdther’s Technique =X

II A 2 b ii - Crowther’s Technique

Another technique which can te used to implement locks
without using indivisible test/modify sequences, nroposed hy
W. Crowther, is as follows: define a conventionnal memory
location to be a lock. If the location contains a zero, the
lock is defined as unlocked. Any processor may read this
location, and if it is zero, will then rewrite its processor
number into .it, on a later memory cyvcle, The processor will
now wait long enough to allow any processors to rewrite
their processor numbers if they have read the lock between
the time this processor read it and the time this processor
rewrote his processor number., This processor now réereads
the location, and, if it finds its processor nunmber therein,
it owns the resource, and proceeds. Othervise, it goes back
to wait for the lock to become zero once again. Thus,
though nultiple processors may find -he lock initially zero,
only one will pgain access to the resource, Any processor
which reads the lock after the first processor has rewritten

its processor nunber will find the lock non-zero, and wait,

II A 3 - Delays Due To Conflicts

We have now examined hardware and software primitives for
unambifuous inter-processor communication. We havs seen in

each case that practical implementations are available, but

imply slowdowns, and thereby reductions in the computational

" i

R N [T I R T e e e e ey
d e e i . E

Delays Due To Conflicts I1-22

power of the system. In this subsection, we will consider
the effect of these slowdowns on computational power. We
will break our discussion into two parts, first considering
the penalty paid in computational power for handling the
possibility of conflicts, then turning to a brief discussion
of the queueing delays encountered when conflicts actually

occur.

IT A2bi - Qverhead

In this subsection, we will derive a measure of the slowdown
of a program from the overhead required to run in a
multiprocessor environment, without considering slowdowns
from conflicts. We will measure this slowdown as a ratio R
of the time to execute a uniprocessor version of the program
to the time taken to execute the program in a multiprocessor
environment. Thus, 1if the processors were entirely
independent, no changes would be necessary, and R would be
1« An R of 1/N in an N procecsor system would mean that the
overhrad involved in running that program on nat system
would a*t 1least offset any power increase cbtained from the

multiprocessor.

Clearly, R depends both on the program being run and on the
hardware running it. Thus, one cannot ascribe to a hardware
configuration a specifiec R, wvalid for all programs,

However, one can characterize the R of a system for a class

_\ " ‘

R A W e T

s bl

.

T e crmmpratestrer

Sl T T S m———re s e o = B

Overhead II-23

of programs with certain characteristics. We now examine

what those characteristics are,

Assuning that the only change involved 1in translating a
uniprocassor program for multiprocessor operation is the
addition of locking instruections, the amount of extra time
that will be spent executing a given piece of code is the
number of references that code makes to shared resources
times the amount of delay added to each of these by the
hardware arbitration delay and communication time, plus the
number of lock/unlock sequences which must be performed by
that code times the time taken to perform one of these.
Call the time to execute the code on a uniprocessor Tu, the
time added to each access to a shared resource Ts, the
nunber of such references in the code Ns, the time taken to
execute a lock/unlock sequence Tl, and the number of such
sequences 1in the code {l1, then for that particular pisce of

code running on that hardware.
R=Tu/(Tu+Ts*¥Ns+T1*N1),

Of these parameters, Tu, Ns, and Nl are characteristics of
the program, whereas Ts and Tl are characteristics of the
hardware. HNote that at this point we don’t care whether the
lock references ro to one or many different locks; when we

consider the effects of actual confliets, this will be of

critical importance, &

e

gu wh T T ET——_———

e Y, A . . "y —

Overhead II-24

As an example, consider a program piece which runs in
225 microseconds on a uniprocessor, which makes 50
references to shared resources, each of which is
slowed by 500 nancseconds, and which does 5
lock/unlock sequences, each of which takes 10

microseconds; then R=225/(225+50%.5+5%10)=.75 .

It should be noted that this equation does not make clear
the effect on R of Ts, since the lock/unlock sequence
usually contains references to shared resources. If we call
the number of such references in one lock/unlock sequence
Ls, and the time of the lock/unlock sequence if these were

to local memory To, then

=}
n

Tu/(Tu+Ts*Ns+N1¥ (To+Ls¥*Ts))

Tu/(Tu+Ts* (Ns+N1¥Ls)+To#*N1).

II A2 b ii - Queueing Delays

Having considered the slowdown a program incurs due to
running in a multiprocessor environment, we now turn our
attention to the delays incurred because of waiting for
another process which currently owns a needed resource. We
will not derive formal mathematical models of the delays
involved, although such models for multiple users competing

for a single resource are well known [14].

In fact, the queueing situation in a real multiprocessor is

much more complex than this simple model. The difficulty of

Gape e - S T

PR TR WMy AN AL L o W o ey T e el

TN Y T e STy v
- LY

PO e o . s N e L.

Queueing Delays T1=2

o

mathematically modeling such complex systems lies outside
the realm of this thesis, Imarine a multinrocessor
including four processors, two on each of two shared busses,
competing for two different software structures contained in
the same or separate memories. First, the processors must
compete for ownership of the processor bus. Then the
winners may compete for the shared memory bus. The winners
of this competition may then find the software resource
locked, and have to go back to the first level competition.
The losers of the carlier competitions m#v find the software
resource free by the time they finally gain access. In
addition to the difficulty which this range of possible
combinations briags to the analysis, the inapplicabilitv of
a random arrival time model to the timing of processors
executing small repetitious hardware or program functions
makes general mathematical analysis even more intractable.,
Accordingly, we will not attempt such an analysis in this

dissertation.

The extreme conditions of 1low and high utilization of a
given resource are more tractable, We will briefly present
an analysis methodolory which will permit approximate
evaluation of tpe queueing delays expected in a practical
multiprocessor. In so doiar, we will introduce the concept

of the bandwidth of a device, and the rule of bandwidth

matchine as a technique for achieving cost-effectiveness.

T e e e

L g T .
P :

e,

’
e ——————————— I ST

Low Utilization Extreme 11-26

IT A2bii (a) - Low Utilization Extreme

In the situation where multiple users are competing for a
given resource which is busy a very small fraction of the
time, a simple analysis which neglects the impacts of
multiple collisions can be used. In a system of N
processors, each of which keeps a resource cusy for a
duration of mean B out of each interval of mean I, the
probability that a given request from any processor will

find the device busy is given by:
P=(N=-1)%*B/I

If the device 1is found busy, then, neglecting multiple
collisions, the average duration of the wait for the device
will be B/2. The average waiting time out of each interval

I is therefore
B/2%(N-1)%B/1

Since this delay is incurred each interval I, the fraction

of the machine spent waiting is

(B/2*(n-1)%B/1)/1
= (N=1)/2%(B/1)%*#*2

If we call the total fraction of the time the device is used

U, then

B gy W gL ey,

Low Utilization Extreme IT=27
U=N*(B/I)

and the slowdown reduces to
(N=1) /(2% %%)%k #D

As we have stated before, this approximation only holds when

U is much less than 1.

II A 2 b ii (b) - Saturation

We have discussed a model which applies when the utilization
U 1is much 1less than 1. Another interesting and
straightforward case 1is when U=z1, i.e. when the device is
always busy. Whether or not complete saturation will ever
occur, and therefore whether or not U will ever truly equal
1, depends on the distributions of service times and
computational periods between service requests. If these
distributions are entirely random, then a U of 1 can never
be obtained. For fixed service times and fixed computation
intervals between requests, saturation is easy to achieve

and understand. The model we present here assumes

saturation.

We define another utilization parameter U’ as being the
utilization the processors would try to achieve in the
absence of conflicts. To achievea U of 1, U’ must be

greater than or equal to 1. By this definition,

i

=

A A e e ™

Saturation 11-28
U'=(B/I)*N

If the length of a service cycle is B, the number of service
cycles per unit of time in saturation 1is 1/B. If the
interval in which one service cycle is requested is I, then
each of these 1/B service cycles results in a time I of
useful computation, so that the amount of time spent doing
useful computation per unit of time is I/B. The amount of
computation time available per unit of time in an N
processor system in ‘the absence of conflicts is N. Thus,

the time lost due to conflicts is
N-1/B

Since this time is divided among N processors, the time each
processor spends waiting per unit of time, and thus the

fraction of the machine lost because of conflicts, is

(N-I/B)/N
1-1/(N*B)

1-1/U°

II A 2 ¢ ii (e¢) - Bandwidth Matching

In developing these extreme case models, we have referred to
the utilization, i.e., the fraction of the time which a

resource is in use. This leads us to a more general notion
of matching the usage of each resource to its capacity, in

order to achieve efficiency. To do this, we introduce the

g IEmmss R e] BEETTRY D TTMNEST W T | pR e . e

Bandwidth Matching I11-29

concept of computational bandwidth, in an effort to

understand how this matching can be easily done.

One major reason for considering a multiprocessor
architecture is to achieve an increase in the computational
power available, as compared to economically sensible
uniprocessor systems. We now consider briefly what is meant

by the term computational power.

We define the "power" of a computing system as the rate at
which it processes data, or more precisely, the amount of
data it can process in a unit of time. We then need to
define what we mean by processing data. We can measure the
amount of data involved, by counting the bits which need to
be taken in. Exactly which bits concern us, and exactly
what it takes to process them, is application-dependent.
One measure of system power is simply the memory cvcle time,
the time required for a memory to present a requested word
and prepare for a new request. This is indeed a crude
measure of system power, since the time taken to perform any
operation may he very different from this number. However,
the number of bits in a word divided by the cycle time of
the memory does give the maximum rate at which information
can be extracted from that memory, a crucial characteristic

of the menory.

»

.
-8
8,
]

-,

Bandwidth Matching I1-30

Another metric which has been used to measure the power of
computing systems is the rate at which instructions can be
exeéuted. Measureq in KIPS (kilo-instructions per second),
this gives some meaéure of the amount of processing a system
can do 1in a unit of time. While this does not measure the
ability of the system to perform the needed computation in a
given time, it does, when divided into the average number of
bits 1in an instruction, yield the rate at which the

processor requires data as instructions.

An accurate measure of the ability of a system to perform a
given task is simply the data rate at which that system can
absorb the data to be processed. This then is the system
input data rate. Its measurement depends not only on the
system and the job to be done but also on the specific

program written to perform that job on that system.

We have spoken about a number of different system
characteristics in terms of the rate at which they process
or provide data. Comparisons of these numbers are useful,
and for this reason we define the term "bandwidth", as used
in this dissertation, to mean a data rate, 1in bits per
second. Thus, the bandwidth of a memory is the maximum
number of bits which can be stored into or retrieved from
that memory in a second, the bandwidth required by a
processor of its supply of instructions is the number of

bits of instruction the processor processes in a second, and

the system bandwidth is the number of input bits the system

Bandwidth Matching I1-31

can process in a second. This system bandwidth is then our

measure of the computational power of the system.

| The concept cf bandwidth as defined above is generally
| useful. One can easily understand that a memory bandwidth
1 at least equal to the processor s instruction bandwidth is
needed to supply the processor with instructions unless a
slowdown is to be incurred. Interleaved memory banks permit

parallel operation of memories, and the individual memory

bandwidths can be added to get the memory system bandwidth,

We can now define the bandwidth of any given resource as the

number of bits per second it can handle, and the bandwidth
requirement of any user of that resource in terms of the
number of bits per second that it requires. Our utilization
factor U 1is then equal to the fraction of the bandwidth of

the resource which is utilized.

By comparing the total bandwidth requirement on a resource,

namely the bandwidth required by each user times the number

of users, to the bandwidth available from that resource, we
can determine the number of copies of that resource we nust
supply to support that number of users. For example, the
memory bandwidth required by a processor times the number of
processors divided by the bandwidth available from a single

memory will egive us the number of independent memory units

required for the system.

T e

e AT PR e
.
s 9 §

R len i B o B Lho o B e b a o e B oa b e R
. e - 11 !:E‘ p— F
- . -

Bandwidth Matching IT-32

In fact, the queueing delays can get to be large if the
system {s designed on the assumption of utilizing the entire
bandwidth available from a given resource. In practical
terms, a wutilization of Ffifty to 2ighty percent yields a
suitable compromise between wasted user bandwidth and wasted

server bandwidth.

IT B - Task Allocation Algorithms

In the first section of this chapter, we discussed the
fundamentals of interprocessor interaction, the mechanisms
by which such interactions can take piace, and some
implications for system configuration of these interactions,
In this section, we 1look in some detail at one specific
interaction: the problem of allocating tasks ‘amoqg the
various processors. This problem is central to the system

power and reliability.

We will consider various possible anproaches to this
problem, and explore the advantages and shortcomings of
each., We will break the discussion into two sections, first
considering interruption algorithms, then move on to novel,
efficient voluntary algorithms. In the following and final

section of the chapter, we will deal with other reliability

issues.

Task Allocation Algorithms TI-33

One approach to the task allocation problem is to pive one
processor the duty of assigning tasks to other processors.
This processor must then have the ability to interrupt and
give commands to all other processors. If this ability is
given in an inhomogeneous fashion, that is if the "king”
processor 1is king by nature of special hardware
configuration, the system reliability is impaired, ir that a
failure of this one processor takes the system down. This
situation can be somewhat improved upon in terms of system
availability by manually interchanging processors in the
event of a failure. In many situations, however, the delay
and high probability of incorrect action inherent in human

intervention makes this dependence unacceptable.

This "king" scheme of task allocation can be implemented on
a hardware homogeneous systéh by giving to all processors
the "king" hardware, permitting any to act as "king for a
day", and leaving to the software the problem of selecting
the current task allocator. There are problems in such a
scheme, however. One area needful of attention is the
impact on reliability of tne "malicious" processor, that is,
a processor which fails in such a wa& as to believe it is
king, and thus interruéts and assigns useless or harmful
tasks to healthy processors. While this sort of failure may
be unlikely, the effect on the system 1s sufficiently
disastrous to necessitate considering schemes feor protection

against 1it. This sort of protection can be achieved by

-t

P

- e R ——
R TR Wy v ——

-

Task Allocation Algorithms II-34

requiring that some hard-to-compute password be given before
a given processor’s task assignment hardware can be
activated, and perhaps requiring a cooperative effort of a
number of healthy processors to e2lect a new king and compute

this password. However, as the election hardware becomes

.more complex, it becomes less reliable, and a failure here

can take the system down. It also becomes more expensive,

decreasing the computational power available from a system

of a given cost.

Some of these problems can be avoided by having the
processors decide for themselves what tasks to do. Some
advanteges and disadvantages of such voluntary algorithms

will be discussed after we consider various interruption

algorithms.

II B 1 - Interruption Algorithms

Given that tasks are to be assigned to processors by
interrupting the processor and starting it on the new task,
there arises éhe question of how to decide what tasks should
be.run, and on which processors. A number cf schemes are
possible, with different advantages and disadvantages in
terms of hardware cost, reliability, and efficiency. We

discuss a few here.

i Lot = =Y R

Blind I1-35

IT B 1a - Blind

One possib.lity is to have a central task allocator which
simply dispatches tasks in a blind fashion, for instance
successive tasks might be assigned to processors in turn, so
that each processor in an N-processor system would receive
every Nth task. Alternatively, tasks could be assigned to

processors entirely at randon.

A principal advantage of a blind interruption scheme would
be the simplicity of the hardware required., The reliatility
penalty paid by having a single central task allocator could
be overcome by duplicating this logic. The apparent fault
of taking no account of the relative priorities of tasks can
be overcome by putting that duty in the software, so that on
an interrupt, the program might decide whether to start on a

rew task or continue with the old.

The principal disadvantage of this scheme is that it permits
one processor to become overburdened while others sit idle,
if there is a significant disparity in the time required to
execute the different tasks. Even this might be overcome by
permitting a 'prooessor to set a flag asking for help in a
common memory, and, if another processor should become idle,
one or more tasks might be passed to it through the common

memory. Clearly, any such scheme has significant overhead

associated with it, and perhaps also implies degradation 1in

system reliability. However, if all tasks took the same

Blind II-36

time, this sort of inefficiency would not be encountered,

and a blind interruption scheme mipght be sensible,

II B 1 b - Dedicated Processor:Device Relationship

Another scheme for allocating tasks to processors is to tie
all devices which might spawn tasks to specific processors,
and decree that any task a device spawns must be executed by
the processor to which it is tied. The principal advantages
of such a scheme are simplicity, both conceptually and in
hardware. Peorle are quite accustomed to having devices
interrupt their associated processor, and hardware can be

economically purchased to do this,

The disadvantages are in efficiency and reliability. If one
device tends to generate most of the tasks, either generally
or locally in time, the processor to which it is tied may be
very busy while others sit idle. As with the blind scheme
discussed above, this may be overcome by handing taska off
to other processcrs through common memory, again paying
penalties 1in overhead. This process passing can be brought

more in line with the overall scheme of fixed

Processor:Device relationship, and also made less expensive

in overhead, by adding pseudo-devices, which connect between
processors, and permit one processor to interrupt another
when it wishes to hand off a process. However, in the case
of some high speed devices, the simple task of servicing the

device s interrupts and setting up new transfers may take

e I R

Dedicated Processor:Device Relationship II-37

more computational power than is available from the single
processor to which it is connected, in which case the scheme

does not work.

This scheme pays a price in reliability if it 1is essential
to keep certain devices alive 1in the case of processor
failure, since each device is tied to a single processor,
This can be avoided by designing the interfaces to be
parallelizeable, that is, so that a single device can
connect to multiple interfaces. In this case, the
interfaces would be tied to different processors, and only
one would be active at any one time. If the processor to
which that one was tied appeared down to the system, the
svstem would select another to continue communication.
There remain potential problems of multiple processors
believing themselves healthy and in control of the device at
any given time; the hardware can be designed to minimize the
likelihood of this, All of these considerations are
irrelevant if there are no devices of crucial importarnce,
and it 1is felt that the loss of all deviceé tied to any

individual processor is not disastrous.
II B 1e - Priority

A scheme which allows somewhat greater efficiency is to give
the tasks a hardware priority ordering. Thus, the problem

of deciding which process to execute next is removed from

the software, which works on whatever tasks it 1is given.

- e

Priority II-38

Further, as new tasks arrive, the ones which get the
speediest attention are the highest priority runnable tasks.
This could be implemented by having hardware registers in
the ‘nterruption losic which remember the priority levels of
the tasks which the processors are working on, and, if a
task of higher priority than the 1lowest priority task
presently active should arrive, interrupting the processor

working at the lowest priority 1level, and giving it the

task.

This scheme 1is appealing, in that it seems to leave all
processors doing what one would want them to do, at very
little penalty in overhead. However, it does have some
severe implications in hardware cost and complcxity, and in

reliability.

The first observation about this scheme 1is that it is
inadequate to have a single priority 1level register per
processor; there must somewhere be a stack of priority
levels of processes stacked in each processor, since upon
completion of a task, a processor would return to the task
which it was doing when interrupted, and it is the priority
level of this task which the interruption 1logic must

consider. Further, it 1is necessary that the processors

inform the interruption logic when they complete tasks, so

that the priority 1level can be changed. Since this

communication is necessary anyway, it would be reasonable

for the processor to keep the priority level stack, and have

Priority II-39

the interruption logic inform the processor of the priority

level of the task on which it is to start working, at the
time it is given an interrupt. The processor can then
inform the interruption logic, at the time it finishes a
task and resumes an old one, of the priority level of the

task it is now working on.

The inefficiency in this scheme results from the fact that
once a processor has started a task, that processor must be
the one to finish it. Consider an extreme case of
inefficiency, in which all but one of the processors are
executing tasks of the highest possible priority, and the
remaining one is executing a task of the lowest priority.
Now, successive tasks of increasing priority become
runnable. Note that all of these find the same processor Lo
be interruptable and the lowest priority, and thus this one
processor gets assigned all of these tasks. Now the other
processors finish their high priority tasks, but no new
tasks are arriving. Thus, these processors sit idle while
the processor executinr the lower priority tasks continues
for a long time to finish its stack of tasks. This problenm
can again be overcome by handing partially executed tasks
among processors, but again, the associated overhead makes

such a solution likely to be impractical.

The reliability problems in this scheme stem from the
central and nen-trivial interruption logic. If this fails,

the entire system goes down. The amount of logic involved

e e ———

« a5 s r: “

Priority I1-40

is sufficient to make it expensive to duplicate, especially
when one considers the additional logic which is required to
permit the program to selectively enable and disable the
different copies, after sone believability check on the

commands to do so.
II B 1d - Intelligent

The efficiency problems discusseg above can be avoided by
adding more intelligence to the interruption hardware, if
some constraints are placed on the time to complete a task.
Specifically, if the interruption logic can know in advance
roughly how long a given task will take to complete, it can
then make a reasonable estimate of when the .various
processurs will be finished with their load, and can then
hold an interrupt request for a processor which is about to
be free, rather than burdening an already busy processor

which might be running a task of lower priority.

In this case, the interruption logic nmust keep track of the
specific tasks queued at each processor, and how much longer
each has to run. It must also have enough intelligence to
compute on the basis of this information which processor
each task should be assigned to. The amount of storage and
intelligence required implies quite powerful logic,
comparable in‘power to a programmable processor. In fact, a

programmable processor is probably the most serisible way ¢to

implement this function. For reliability, we wish to have

IR

o Sl W et e Sl

SIS LSRR S S SOy

Intelligent 1I-41

this function duplicated, so we now have two programmable
processors in the interruption logic. It is not clear that
two processors are adequate to handle the peak interruption
request rate, so still more processors might be needed, and
the number will surely increase with the number of

task-executing processors in the system.

Economy, comprehensibility, interchangeability, and
convenience dictate that these processors should bhe of the
same sort as the task-executing processors. Reliability and
adaptability arguments then suggest the following line of
reasoning:
If we nust give up some fraction o7 the processing
power of the system to the problem of task
allocztion, can we not divide this onus equally among
the pgocessors, letting each do its own share of this
problem, rather than having some few which do only
this, and can do nothing else, even when this problem
does not fully occupy them?

Indeed, the answer is yes, and a techniaque for so doing is

discussed in the next subsection.

II1 B 2 - Yoluntary Algorithms

W2 have discussed various interruption algorithms for task
allocation, and have pointed out some difficulties in each.
There are additional drawbacks which we have not discussed,

but which plague all interruption algorithms. Among these

Voluntary Algorithms II-42

is the overhead of saving the state of the task which was
being executed, and setting up to execute the new task, when
interrupted; then restoring the state to continue with the
old task once the new one has finished. This overhead can
be quite significant, since in general one does not know at
a particular time how much of the state of the machine 1is
important to the process which was being executed, and

therefore the entire state must be saved and later restored.

Another difficulty arises from the software locks discussed
in the previous section. A deadlock situation can arise if
a process has taken a 1lock and 1is in the midst of a
computation involving a locked resource when it is
interrupted by another task which also requires access to
that resource. Various solutions to this problem are
available; perhaps the simplest is just to have all
processors inhibit interrupts from before they lock a
resource until after they unlock it. Thus, the individual
processors declare themselves to be interruptable or not as

a function of the overhead implied by interrupting them.

This concept can be extended by making the processors
dec’are themselves uninterruptable at all times unless the

only aspects of the state of the machine which the task

requires are some small number of key words, such as just

the program counter. 1In this case, the interrupt service

need save only this small amount of information, decreasing

the associated overhead. Thus, the processors might run

¥ is .---ah-.".--u-ﬁ. G TN e —

Voluntary Algorithms II-43

most of the time uninterruptable, and only declare
themselves ready for a change of tasks at periodic intervals

convenient to themselves.

The concept can then be brought into 1line with the
desideratum mentioned earlier, that the task allocation
burden be distributed among the processors, by having the
processors, at such time as they consider themselves
interruptable, inquire of some pending task queue whether
there 1is some task pending of higher priority than the one
on which it is working, and if so, switch to the new task.
Since at this time there is very little infoﬁmation required
to record the state of the task which was being executed,
the processor can simply add that task to the pending task
queue, and another processor can then resume execution of

the task from that point.

Central to this scheme is the queue of pending tasks. Its
management can have great impact on'both system reliability
and overhead. If this queue is managed by the software as a
conventional locked resource, the resultant system slowdown
can be derived from the queueing models discussed earlier.
The amount of slowdown depends fundamentally on the
frequency with which processors enquire of it, and is
reduced by reducing this frequency. However, this reduction
also has the property of decreasing system responsiveness,
and as such 1is not always permissible. Selection of this

important system parametér is a trade-off between overhead

and responsiveness, between throughput and delay.

e e P e L LA

Voluntary Algorithms II-4Y4

The queue can be managed in hardware. It is desirable that
it have a priority strdcture, so that inquiring processors
can quickly be given the highest priority pending task. It
is also desirable that it be self-locking, that 1is to say \
the act of reading an entry from it should delete the entry,

I
so that a given task will be assigned to only one processor,
e without the need for an external software lock.

A piece of hardware to perform these functions has been
constructed, giving 127 priority levels in addition to all
{ required interface and control logic to connect directly to
a computer bus on a single 7x11 inch two-layer card, at a
| very low cost. This device is the central task allocation

mechanism used in the BBN Pluribus multiprocessor.

Reliability problems are once again encountered because a
single piece of hardware is responsible for a vital portion
of the task allocation problem, and if it fails the system
oes down., This problem can be avoided by having multiple

copies of this hardware, and letting the software use them

one first, unless it is down; if it 1is holding no tasks,

‘ either in a priority fashion (that is, always read number
| then read number two, unless it is down, etec.), or in an
|

equivalent fashion (such as read consecutive ones to get

|
| successive tasks). The hardware involved is sufficiently
1
| simple to Dbe quite reliable, as well as sufficiently

) inexpensive to make this degree of duplication economically

=

E sensible.

Voluntary Algorithms II-U45

I/0 devices can spawn tasks, and thus must be able to affect
the pending task queue. One method of doing this, which is
perfectly adequate for 1low speed devices, is to have the
processors periodically poll the devices, and, if there is a
task ready, the processor will add it to the queue, For
high speed devices, this would imply high overhead, as the
processors would have to spend a large portion of their time
polling to keep up with the device, and large delay, since
it might take a long time for a processor to get around to
polling a specific device. In this case, therefore, one
would want the devices to add entries to the queue directly.
This is another advantage of a hardware queue, with a simple
procedure for adding entries; a device without a great deal

of intelligence can simply send its pre-specified flag level

to the queue, and the entry will be made. In this sense,

the queue replaces a conventional interrupt system, thereby

earning the name of Pseudo Interrupt Device (PID).

We thus have an algorithm for task allocation which is based
on a voluntary decision by the processor that it is an
appropriate time to change tasks, rather than on an external
interruption of the processor’s control stream. We now
briefly mention a few advantages and disadvantages of such a

scheme.

%
3 Advantages ; II-46
ITI B 2 a - Advantages

(1)

(2)

Simple Hardware

As discussed above, the hardware required to
implement the voluntary scheme with a hardware queue
of pending tasks is straightforward, using today’s
TTL/MSI (Transistor-Transistor Logic, Medium Scale
Integration) technology. This device has been
constructed wusing for the basic priority flag system
16 8-bit addressable 1latch chips and 16 8-level
priority encoder chips. These 32 plus 37 other chips
needed to resolve priorities and decode addresses for
the latch chips, and to interface to the bus, and
generally appear as a memory location, have been
built onto a straightforward 2-layer printed circuit
card. This card costsl roughly $450, built and

debugged, in small quantity.

Decreased Task-Changing Overhead

As mentioned earlier, the amount of overhead
associated with changing tasks is decreased if the
processor initiates the change, since the processor
can choose to change at times when very 1little
information which would be lost by the change is
necessary to continue the previous task. If the
processor is interrupted by externzl logic at

arbitrary times, the interruption rcutine cannot in

Advantages I1-47

(3)

general know how much of the state of the machine
must be saved and restored to permit continuation of
the interrupted process, and thus must treat every
interrupt as a worst case, and save and restore any
state information which could conceivably be
required. The amount of overhead saved depends on
the frequency of ppssible task changes, and thus on
the choice of operating point in the throughput-delay
trade-off continuum. An unfortunate requirement 1in
this area can make this scheme have in fact higher

overhead than a conventional interrupt system, as

"discussed in the following section.

Easy to Think About

A very real problem in efficiently coding a complex
system 1is the area generally referred to as
"interrupt bugs". These come abou*t from a failure to
consider the implications of all possible sequences
of various interrupts occurring at any possible point
in the instruction stream. These bugs are difficult
to think about and very difficult to find, because
they often require a coincidence of multiple external
events and internal control states, and therefore
happen extremely infrequently, cannot be reproduced

on command, and leave very confusing traces.

While this problem is not solved by the voluntary

algorithm, it 1is simplified, since there are a very

e e ey

S T AR S TR e

3

P Y P — T g~ -

g

T
=

Advantages I1-48

limited number of points in the control stream where
task changing can take place, and one can choose them
to be at points where one is confident the program is
relatively invulnerable. In addition, if rules are
established regarding vulnerability, the overhead of
following t hem can be substantially diminished
because they need be followed only at those times

when task changing can occur,

(4, Intelligent, Reliable
This scheme gives the full power of the task
executing programmable processors to the problem of
task allocation, without dedicating a large amount of
specialized hardware to the problem. The task
allocation is distributed, giving greater
flexibility, in that a processor may decide what is
best for it, and reliability, in that the loss of any
single processor removes only the task allocation
facility for that processcr, while the only hardware
specizlized to the task allocation problem is
passive, in that it never initiates an action, and is

simple, reliable, and inexpensive.

II B 2b - Latency Buffering

This scheme does compare unfavorably with a system which is

driven by interrupts, if the interrupts are enabled most or

all of the time, in that the time to respond to a new

e

Latency Buffering 1I-49

high-priority task is greater. In fact, the longest time i*%
can take to respond to a new task c¢f the highest priority in
an interrupt-driven system is just the maximum length of
time for which interrupts are disabled; whereas for the
voluntary algorithm, it 1is the 1longest time between
task-changing points. As has been mentioned, prograns
cannot in general run all of the time with interrupts
enabled. Indeed, it is not obvious that the maximum or even
the typical time for which interrupts would be inhibited
would be less than the time between task-changineg points,
Thus, it may be the case that the voluntary scheme imposes
no increase in 1latency as compared to an interruption

scheme,

We now consider briefly the amount of 1latency and the
problems caused by it. We shall consider two areas in which
latency causes difficulties. The first of these 1is the
human interface: people quickly tire of waiting for
machines. The other is at the interface to devices whose
timing is not controlled by the computer, such as
comnmunication lines, magnetic tapes, and disks. In this
case, if the machine fails to respond sufficiently quickly
to a "data available"™ signal, the data may be 1lost or the
device might not be wuseable at anywhere near its full

bandwidth.,

The people problem generally does not become bothersome

until the delay is at least of the order of several tens of

Latency Buffering II-50

milliseconds. If the time between task-changing points is
significantly shorter than this, this problem vanishes. The
externally-timed device problem is not eliminated by this
sort of task-change interval, but does 1lend itself to

hardware solution more easily than do people. The problem

can be solved by adding per-device buffering sufficient to

handle whatever data may be received (or needed) between the
time of the first indication that the device is ready and
the worst case time for a processor to become ready to
process (or provide) the data. The exact amount of
buffering required depends on the device data rate and the
number of devices of the same, higher, or lower priority, as

well as the processor latency time.

We now derive the amount of device buffering required,
assuming there are D such similar devices, and no other
devices in the system, and assuming further that there are P
processors in the system. This is a worst-case situation
because if there are other devices in the system, there will
have to be enough additional processors to support not only
the high-priority pseudo-interrupt level processing of these
devices, bhut also the less time-critical task of processing
the information, If the pseudo-interrupt service for the
device under consideration is higher priority than this
"background" processing, there is more processing power
available to service the pseudo-interrupts at the level

under consideration due to the existence of higher priority

Latency Buffering I1I-51

devices. Thus, the worst-case buffering requirement occurs
if the device type under consideration is the only device

type in the system.

Call the (maximum) time between task-change points Tch
seconds. Assume that having been given a pseudo-interrupt

indicating that data 1is available (needed), some Td<Tch

later a processor will take (provide) the data. Call the
number of bits which are transferred before this action is
required N; call the device data rate R bits per second;
! call the total processor time taken to fully process these N
bits Tp seconds. Processor action is then required every
N/R seconds, and takes Tp seconds. Thus, to support one
such device, Tp/(N/R) =R¥®Tp/N processors are required; to
support D such devices requires D¥R¥Tp/N processors. Thus,
l P mnmust be at least D¥*R¥Tp/N, and 1in the worst case

1" P=D*R¥*Tp/N.

The worst case timing occurs if all o} the processors have
just passed task change points when all of the devices
{ request service. Call this time zero. 1In this case, the 1

first P devices requests will be recognized at time Tch,
; and their data will be taken (given) at time Tch+Td. The
next P devices’ requests will be recognized at time 2¥Tch,
and th2ir data transfer will occur at time 2%¥Tch+Td. There

will be a number of such groups of P transfers, the number

being equal to the first integer greater than or equal to

D/P, which from the above =N/(R*¥Tp). The i“th group will

-
T T R B I T A

Latency Buffering IT-52

suffer a delay of i*Tch+Td in getting its data transferred;
the last will suffer a delay of NGI(N/(R¥Tp))*Tch+Td, where
NGI(x) is the first integer greater than or equal to x.
Thus, NGI(x)=x+f, where 0<f<1, The equation for the delay

can thus be written as (N/(R*¥Tp)+f)*Tch+Td.

If this is the delay for which bits must be buffered, the
number of bits which must be buffered is R times this, or
N*Tch/Tp+R*(f*Tch+Td). A "safe" estimate of this is
N*Tch/Tp+2*¥R*Tch, since f<1 and Td<Tch, from the above. 1In

English, this can be stated as:

The worst case buffering requirement for a fixed data
rate device 1is the sum of two components, one
constant, and one proportional to the data rate. The
constant component may be computed from the number of
bits in a "batch", i.e., the number which arrive
before processor action is requested. The number of
bits in the «constant component of the buffering
requirement is a fraction of a batch, the value of
the fraction being the fraction of the time taken to
process a batch which one task-change interval
occupies. The component of the buffering requirement
which 1is proportional to 1line speed is twice the
number of bits which are transferred in one

task-change interval,

e o e

Latency Buffering TI-53

This discussion has assumed that the data either comes in
from the device, 1is processed by the program, and
disappears, or is created by the program and delivered to
the device. In fact, a more typical situation is that the
data comes from a device, is massaged by the program, and
then delivered to the same or another device. This can be
taken into consideration in the above analysis by assuming
that there are two processes, one which takes data from the
device and does half of the processing, and another which
then finishes the processing, and delivers the data to a
device. If we assume that the devices to which the data are
delivered are of the same priority as those from which they
come, the effect is simply to halve the processing time Tp
in the buffering computation. In this case, the number of

bits of buffering required is 2¥N¥Tch/Tp+2¥R¥Tch.

Note that by rearranging the priority levels of various
devices, we can decrease the buffering requirements. For
example, if all output devices were made lower priority than
all input devices, then the longer buffers would be required
only for the output devices, not for the input. Similarly,
if the various input devices are given a priority ordering,

the higher priority devices do not need as much buffering.

This 1latter arrangement is unattractive for reasons of

interchangeabhility, however.

We now give a simple numerical example of a device which

transfers 1000 bits before requiring processor action, cn a

Latency Buffering II-54

system in which task-change points ocrur every 300
microseconds, and a total of 900 microseconds oif processor
time is required to turn around a 1000 bit packet. Table
II-1 presents the amount of buffering required by this

device at data rates of 50 kilobaud, 250 kilobaud, and 1.3

megabaud.
b R Bits of Buffering
l = = 50 Kb 697
. 250 Kb 817
‘ 1.2 mb 1447
Table II-1

| Latency Buffering Requirements

It should be rnoted that these figures are worst case; the
probability of all devices simultaneously needing service is
, small if there are many devices, and the probability of all
processors being just past a task-change point is small if
there are many processors., If one is willing to accept a
small probability of losing data, these buffer sizes can be

significantiy reduced in some cases. However, buffering of

this sort is not difficult to obtain using today’s MOS

(Metal-Oxide-Silicon) technology. Device interfaces have

been designed and fabricated with on-card buffering of 512

- =

or 1024 data bits . for both input and output, using 4-bit

wide by 64-bit long asynchronous FIFOs, in 16 pin DIPs (Dual
A\

Inline Packages) (Fairchild 3341). '

"i‘-‘!'i‘-l-&r;l"-‘ﬁ"' Ty N S e— - . ; 1o
. —— " e 2

T o T AL TTTN TS Ty B T T e = e

(§ damnia ke oy

TR R Tt S £ Lt el — s -

Other Disadvantages II-55

II B 2 ¢ - Other Disadvantages

(1) High Overhead if Interrupts Infrequent

The time between task-change points, Tch, is a key |

| system parameter. As discussed above, 1if it is
chosen to be very long, the speed of response of the
system to new tasks 1is slow, requiring additional

latency buffering, and perhaps annoying people. If
it is chosen to be very short, on the other hand, the
overhead involved in checking for new tasks becomes

large, decreasing system throughput. If actual

interrupting conditions occur only very infrequently,
say on the order of seconds to minutes, one is forced
to choose between two unattractive alternatives. One
~hoice 1is very high overhead, 1if the task-change
interval 1is on the order of milliseconds or
microseconds, in which case almost all task-change
points would find no new tasks and therefore the

amount of overhead paid for each new task is high.

The other choice is to incur very large latency

delays 1if the task-change interval is made on the

order of seconds to minutes, resulting in very large
per-device latency buffering and very annoyed people.

In this sort of environment, an interrupt structure

is probably more appropriate.

Other Disadvantages I11-56
(2) Vulnerable - Requires Cooperative Processors

Another problem with this scheme is that it requires
that the processors cooperate, that they always
inquire whether there is a different task to do every
Teh. This presents a particular problem in ﬁhe case

of buggy code, which might loop, or if the code is

regarded as "user code", in which <case it can be
counted on to do any conceivable mischief. These
problems car be avoided by wusing true interrupts
solely to check the running code for obedience to the
Tch parameter. This could be done by having each
processor, each time it checks for a new task,
increment a count, which is tested and zeroed by a
periodic interrupt routine. If there have not been a

sufficient number of new-task checks, the running

program is declared buggy and unrunnable, and the

processor turns to other matters. This scheme

implies a small increase 1in overhead, both at

task-change check time, to increment the count, and

at the periodic interrupt time, to service the

interrupt. This overhead is generalily quite small.

ITI C - Interactions For Reliability

In this chapter, we are considering interactions between the

processors of a multiprocessor. 1in the first section, we

Interaccions For Reliability II-57

explored the fundamental prerequisites and mechanisms of
such interactions. in the second section, we studied a
particular class of interactions, namely those which deal
withh the problem of allocating tasks among the various
processors. In this third and final section, we will deal
with another class of interactions, namely those whose

objective is to increase the reliability of the system.

The term "Reliability" is used to signify different things
at different times by different people. We will begin by
considering the distinction between accuracy, a measure of
the reliability of a given computation, and availability, a
'measure of the probability that a system is useable at a
given time. Qur discussion of accuracy will be brief,
centering on Modular Redundancy, the technigue classically

used to achieve both accuracy and availability. We observe

that accuracy will be improved by our efforts to improve

availability, but by a smaller amount thkun that achievable

by Modular Redundancy.

We will then turn to methods for improving availability, our

primary concern. We will first consider the 1impact on

availability which system configuration can ﬁavé, by
calculating extreme limits of the availability. This range,
from terrible to virtual perfection, motivates a careful
examination of engineering considerations so as to favor the

more perfect end of the scale.

—— e e e

,'p‘k.

Interactions For Reliability I11-58

The first technique we consider for improving availabiliity
1 is redundancy. We note that the redundancy inherent in a
homogeneous multiprocessor diminishes the need for Triple

Modular Redundancy or other expensive schemes, but needs

e R ——-q-_--—-m-—-—-u—l-_"'?_'

techniques for error detection. We will consider a number
of appropriate techniques. We then consider other
3 interprocessor interactions to improve availability. We
; conclude with a brief discussion’ of the loss of
computational bandwidth suffered in the event of a failure,
and the cost of adequate extra computational power to permit

full bandwidth operation through component failures.

We now consider the difference between accuracy and

availability.

—

|- The difference between accuracy and availability can perhaps
best Dbe understood by example. Which is more "reliable", a :
computer which is down for only fifteen minutes each month, [
but which gives a wrong answer once each hour, or a computer {

E which 1is down at least half of each day, but which doesn’t

‘ give a wrong answer more than once per century? The answer

depends on the application. 1In general both numbers are of

interest, We will refer to "accuracy" as a measure of the

probability of a wrong answer, measured in computational

errors per unit of computation. We will refer to

"avallability"™ as the probability of a system being up,

being a dimensionless ratio of up time to total time.

- ; Wt o ety < S S e S i A L et .- W
Interactions For Reliability I1-59

|
We wil) now consider techniques for improving each of these

parameters in a multiprocessor. Our emphasis is on)
availability rather than accuracy primarily because in most t
applications the accuracy of technologically current
computiers is adequate, whereas the avallaoility of many
computers 1is unacceptable, and may be much worse in a

,- multiprocessor than in a uniprocessor,
| IT C 1 - Accuracy

Central among the techniques conventionally used to improve

both the accuracy and the availability of processors, and

! especially of multiprocessors, is modular redundancy with

spares. The central notion in this scheme is that every
s operation is performed simultaneously by three or more
equivalent parallel componeats, and that there is logic at
the output which polls these paths and reports the ma jority
result, This will detect all single component failures,

other than in the output itself, as well as giving an

indication of the failing path. Other comp~nents are

available as spares, and when a path is determined to be
failing, these components are substituted one by one for

those in the failing path, until the problem 1is corrected.

Modular Redundancy is useful for improving availability, as
we shall discuss in the next subsection. 1In the context of
b | accuracy, Moaular Redundancy is a wvitally important

,E technique in that no transient failure will go undetected.

B . ™

Accuracy II-60

In certain critical applications, such as life-support
systems, this 1is an overriding concern, éand Modular
Redundancy is the appropriate technique for achieving
acceptable accuracy. In most applications, however, the
demand on accuracy is less stringent, and anst
considerations outweigh the advantages of this technique.
Note that the cost of a trebly redundant system is more than

three times the cost of the same system without redundancy.

Modular Redundancy can be implemented in a homogeneo:s
multiprocessor architecture by reqﬁiring that three
different processors perform each computation and report
their results to specialized polling hardware before the
answer is given. Such an ar~hitecture has merit 1if the
accuracy requirement is high for only a fraction of the
total usage of the multiprocessor, and the increased power
available from the same system behaving in a non-redundant

fashion is desired at other times.

II C 2 - Availability

We now turn from considering how to ensure that an answer
the computer gives you is the right one to the question of

how to increase the 1likelihood that the computer is

available to answer at all. This issue is of vital concern,

in part because the availability of technologically current

processors is less than is desirable for some applications,

and in part because the availability of a poorly designed

L%
B W

- e

‘o

Availability I1-61

rmultiprocessor can be much worse than that of any of 1ts

components.

We will begin this subsection with a discussion of the
| 1imits of reliability which might apply to extremes of good
E and bad system design. We will then turn to redundancy as a
1 method for improving availability, pointing out that if
| mechanisms are incorporated into tne design to detect
failures, then redundancy levels far less than triple can
achieve very high availabilities at very small cost. We
will then consider other mechanisms for improving
availability, based on inter-processor communication and
{ control. We conclude with a brief discussion of the

reduction in computational bpandwidth due to component

failure.

ITI C 2 a - Limits

The availability of a system can be approximated by the |
product of the availabilities of various vital subsystems.
Thus, the probability of the system being available might be

! the product of the probability that the processor subsystem

DR s

is available and the memory subsystem is available and the

I/0 subsystem is available and the intercommunication

subsystem 1is available. Let us now consider the

- availability of a subsystem as a function of the

availability of its components and their configuration.

&
AR W PG e

Limits

Let:
S Be the subsystem availability
C Be the availability of a component of the subsystem

N Be the number of such components in the subsystem

If the system is configured such that all components are
required to be functioning in order for the subsystem to
function, then the probability of the subsystem being
available is the product of the availabilities of the

components, or:

S = C¥#N

An example of such a configuration would be a multiprocessor

in which the processors are specialized, and each must do

its own part of the overall task, and where further all cf

these parts must be done to process each datum.

If, on the other hand, the subsystem is configured so that
no component is vital, and any component can do the task of
any other, then the availability of the subsystem can

approach the probabhility of any comporent being available,

or:
S =1-(1-C) %%y

An example of such a configuration would be a homogeneous

multiprocessor,

Limits I11I-63

These two cases are worst and best, so that the actual
availability of a subsystem will fall somewhere in between.

Thus,

CH¥¥N < S < 1-(1-C)¥**N

Perhaps the significance of these 1limits can best be
understood with a numerical example. Suppose we consider
the availability of the processor subsystem of a twenty
processor multiprocessor, with an individual processor
availability of ninety percent. These limits would then
correspond to subsystem availabilities of .12 and 1-10%%-20,

This means that the configuration makes a difference between

this subsystem being up 12 percent of the time and being

sufficiently reliable that the probability of a single
failure in centuries is negligibly small. Clearly, there
are other factors which make this sort of reliability
unattainable. It is nevertheless the direction in which one

seeks to move.

We now examine some properties of multiprocessors and some
techniques which can be used in their design to encourage

such a move.

II C 2 b - Redun

We discussed earlier the use of Modular Redundancy as a
technique to improve accuracy. It is also a useful

technique to improve availability. If a system can continue

R e s it e Ly M a2 il
o - Bl AR e R i 4 4 ASumgapmenn - nae, —

*e Redundancy I1-64

normal, error-free operation with two of its three
processors functioning normally and the third dead, then no

single hardware failure will take the system down.

! We seek to ease the requirements on the redundant circuitry
because with TMR (Triple Modular Redundancy), the price of a
' system of a given performance is more than tripled, compared
(to that of a non-redundant system, since each component must
be tripled and polling hardware must be added. We now
consider methods of providing improved reliability in a
system of 1less than triple modular redundancy in which we

are willing to accept loss of data on failure.

By reducing the redundancy level from three to two, we can
still detect all instances of single component failure, |
although we cannot correct them. If we simply abandon the
computation and back up to a checkpoint in the event of a
discrepancy, we can achieve the same degree of availability
a:tt a trebly redundant system, with a system cost increase of
over 100%, rather than the 200% required for TMR. This can
be done only if it 1is possible to remove the failing
| component from the system so that it does not effect future
. computations, and if further all computations are either
checkpointed, so that they can be resumed from a previous

state, or can bhe abandoned in the event of failure.

| Even an overhead of >100% is undesirable. If there are

means available to detect errors without doubling the amount 8

-—
—

Redundancy I11-65

of computation involved, we can reduce this figure
substantially, thus improving the performance of 1 system of
a given cost. In the remainder of this subsection, we
consider means of detecting failures, and actions which can
be taken on the basis of this information to improve system

reliability.

II C2 b i - Protection

A variety of schemes have been proposed and implemented to
control the sorts of access various processors or processes
have to certain devices or locations or areas of memory.
Some of the earliest of these were done to prevent user code
from destroying system integrity in time-shared and other
multiprocessing uniprocessors. In these, the wuser is
permitted to execute "normal" arithmetic and similar
instructions, but is not permitted to execute I/0

instructions, since these are the system’s responsibility,

or to access the system’s private innards. Thus, there are

two modes of system operation: user mcde and privileged
mode. The hardware keeps track of which mode the system is
in at any time, and if a privileged instruction is _executed
in user mode, causes a trap to the system. This then
provides a method for user processes to coumunicate with the
system in a fashion controlled by the system. The user code
executes an illegal 1instruction, causing a trap to the
system, which then determines whether a legitimate action

was requested, and if so performs it,

Protection I11-66

The initial purpose of this scheme was to prevent malicious
or accidental damage to the system by user cnde and to
prevent unauthorized access by a user to information private
to another user or to the system. However, another
advantage of this and other protection schemes is that a
faulty program is likely to execute something illegal at
some point, and can then be flagged as faulty and stopped
before it causes excessive damage to those entities to which
it is entitled access. Programs always have bugs, and the
hardware on which they run always has bugs; a perfectly
proper program which has run for years and is part of the
system will sooner or later 1leap off to an incorrect
location and start executing totally meaningless
instructions. If the tightest possible restrictions are
placed on all possible code, not just user code, the
probability of a violation of some protection on any given
instruction becomes high, and thereby the probability of
doing damage before being stopped becomes low. This then is
an argument for making as large a fraction as possible of

the words which might appear in core illegal when executed

as instructions.
T3¢ 2.5 4 (a) = te Pr ction

Another form of protection used in many time-shared systems
is write protection, in which one declares 3illegal and

causes a trap on any instruction which attempts to store

into a protected area of memory. This is wuseful in many

o, T =

ErE AT

Write Protection I1I-67

situations to protect areas which are supposed to be only
read or executed from being accidentally or maliciously
overwritten, Thus, for example, multiple users can share
data bases in the confidence that no user will moaify them.
This technique applies to system code as well as to user
code, to protect from and to detect software and hardware

failures, as discussed above.

II C20b i (b) - Read and Execute Protection

These arguments lead to the concept of protecting not only
against unauthorized writing, but also against unauthorized
reading and executing of menory. This sort of protection

does not of itself prevent a program from destroying a thing

it shouldn’t, though it can be used to protect proprietary

code, for instance, which should be executable by the user
but not readable. Its utility in the context of the present
discussion is to detect that an unexpected situation has
arisen, such as a processor executing a table of data, and

thus to stop the processor before it does damace.

IIC 2b i (c) - Capabilities

We began with the idea of protecting an assumed fault-free
system from malicious or buggy user code by defining a user
mode, in which protection was in effect, and a privileved
mode, in which it was not. We extended this concept to
apply to unexpected actions which were not inherently

destructive, but indicated a failure, and were therefore

Capabilities I1I-68

useful to stop faulty processes before damage was done. We
wish to apply this concept to "system"” code as well as to
"user" code, in order to prevent hardware or software faults
from destroying the system. This is particularly important
in a multiprocessor, to preven’, a single failing processor
from destroying system resources needed by other processors.
To accomplish this sort of protection requires a more
complicated structure than is provided by a simple
user-mode/privileged-mode distinction. We in fact require a
technique which will permit dynamic granting and revocation
of privileges to read, write, or execute areas of memory, to
certain processes and not to others, and will further detect
any attempted violations of these privileges and stop the

offending process.

A technique which provides the ability to do these and more

is a "capability" system, proposed and implemented by

various groups over the last several years [15,16,4]. In

this scheme, a new entity, called a capability, 1is
introduced. It is a descriptor, which grants privileges;
the hardware verifies all references against the various
capabilities a process possesses at the time. System code,
as well as user c¢onde, runs under the restrictions of its

capabilities, and thus has only as much ability to destroy

as is necessary to accomplish its duty.

The question of how capabilities are created and granted is

fundamental to any capability-based system. The scheme

Capabilities 11-69

generally used 1is to have a very tiny and rarely-run piece
of code which possesses a capability-creation capability.
It is then this code’s responsibility to cr:ate and
distribute the capabilities irequired by other code. It 1is
claimed that this code can be made sufficiently small and
simple that it can be "thoroughly debugged", and that it
will be run a sufficiently small fraction of the time, that
the probab:lity of a hardware failure while executing it

will be small.

While this scheme for protection is very general, powerful,
and appealing, it does imply substantial overhead 1in terms
of hardware and, if it is to be wuseful, 1in terms of
software. The degree of protection can be selected at the
systcem programmer s choice, with a continuous trade-off in
effect between protection and overhead. At one extreme, one
could simply give all capabilities to all code. This would
yield no overhead at all, but also no protection. At the
other extreme, one could obtain instruction by instruction
only those capabilifies needed to execute the next
instruction. This might yield a substantial degree of
protection, but would imply enormous overhead, and thus an

jnefficient and expensive system.

In designing a system, one must consider carefully where 1in
the range of this trade-off it makes the best economic sense
to operate, and whether the degree of protection obtained is

sufficient to Jjustify the cost of a capabilities based

system in hardware as well as in software overhead.

e e

o
s

4 .
R e N N o il . e

S ——— ettt .

Parity TI=T0
II C2b ii - Parity

Since the early days of automatic digital computation,
consistency checks have been used to detect memory failures.
The most common such check is a single parity bit per word.
This bi% is usually defined to be the complement of the
modulo 2 sum of the bits in the word, and thus detects as
being in error any words which have one bit wrong, as well
as any words 1in which all bits, including the parity bit,

read as zero,

Parity consistency checks are useful in a multi-processor to
prevent the acceptance of faulty data as valid. If a
processor should read a memory location incorrectly, it
might execute an improper instruction (what should have been
a load might be turned into a store) or might get an
improper address to a store instruction. Both of these can
destroy vital shared software resources. In addition to
verifying memories, parity 1is a convenient technique in
multiprocessors for verifying the communication and
selection 1logic through which the processors communicate

with shared resources.

We now discués memory parity, and then some considerations

for communication verification parity.

P o S WP

2

Memory Parity

IIC2 b ii (a) - Memory Parity

There are a number of classic types of memory failures,

|

|

|

‘ including:
| 1) One data bit in error '
2) All data bits read as zero
3) All data bits read as one

4) One address bit wrong

Type 1 classically results from a bad sense amp, or from a

| marginal driver/core/sense amp combination. Types 2 and 3

result from bad address decoders, bad read or write drivers,

or bad inhibit drivers. Type 4 is typical of address

decoder failures.

Note that these failure modes relate to core memory systems.
It would appear, however, that semiconductor systems will
; typically fail in much the same ways. A single memory chip
failure will change only one bit in any word, since the
memory is organized as N words by 1 bit. This gives a type
1 error,. A catastrophic memory failure, such as supply
voltage failure, could presumably destroy the contents of
all memory chips, if not the chips themselves, This would
give a type 2 or type 3 error. A failure in the memory
driving logic could also give this sort of failure. Address

buffer/driver problems might give type 4 errors,

No single bit parity scheme can possibly detect both all

i, Laead

zeroes and all ones (Types 1 and 2) in a data word with an

even number of bits.

—

Memory Parity LI+=72

If, however, there are two parity bits, there are many
schemes which detect both of these classes of errors in
addition to detecting all single bit failures. One such
scheme is to write the opposite parity in the two bits; thus
01 and 10 would be the only legal combinations, and all

zeroes or all ones would clearly be detected.

Type U4 errors (one bit address failure) cannot be detected
by any deta parity scheme. They can be detected by
exclusive JRing the address parity with the data parity to
give the parity bit. If there are at least two
consecutively addressed bytes in each word of memory, and if
this address parity is generated for and stored with all
bytes of a word, and the parity of all bytes of a word are
checked on every read, all type 2 and type 3 errors will
also be detected, since the byte addresses will differ in
one bit (the 1least significant bit). This "Address Xor

Data" parity thus detects all errors of type 1, 2, 3, and 4.

IIC 2 b ii (b) - Communication Parity

The communication paths between processors aad memories can
be verified simply by generating and checking the parity at

the processor, and storing it in the memory in the same

* Single check bit schemes can be devised which detect both
of these. As an example, consider a check bit defined to be
the conventional odd parity bit except that it is zero if
the data is all ones. Such a scheme cannot also detect all
single bit failures, In the example given, any single bit

dropped from a word which is all ones would go undetected.

Communication Parity II-73

fashion as the data. If the AXD parity described above is
used, the address as well as the data paths can be checked.
This scheme does have the unfortunate property that if a
communication failure occurs on a write, the information
stored may be incorrect, or it may be stored in the wrong
place. This error will not be detected until it 1is read
back. While this will prevent computation errors which
might otherwise ensue from the use of the faulty data, it
does not prevent the original destruction. It also does not
identify the faulty component, since the retrieval of the
data may well be done by a different processor and data path
than that used to store it. Thus, a bad parity indication
implies a failure somewhere in the system at some time, but
not necessarily in the path used in the data fetch.
Further, a processor which has a hard failure in its data
storage path to a shared resource may store many incorrect

words without any indication of failure.

We can avoid these difficulties by checking the parity at
the memory before executing a write command, and inhibiting
the operation, returning an error indication, unless the
parity is correct. This need not slow the write operation
in many cases because core and many semiconductor memories
do not actually destroy the previous contents until w~ll

after the command is received.

.

Once the parity logic is added to the memory system, it can

also be used on read operations to distinguish between

Communication Parity II-74

memory failures and communication failures, giving the
system and the repairman a better idea of how to fix cor

avoid the problem.

We have discussed this communication verification in the
context of communication between processcrs and nuemories.
It can be used intact to verify communications between I/0
devices and memories, for the transfer of data, or between
processors and I/0 devices for command and control
information or data. In this context, however, efficiency
can be gained from the fact that I/0 devices are often
clustered on busses through which all communications with
these devices are <channelled; if one is willing to assume
that the communication between the devices and tneir busses
is reliable, a single parity generator/checker on a bus can

be used to handle parity computations for all devices on

that bus.
IT C 2 b 1ii - Diagnosis

e have mentioned some techniques for determining that some
component of the system has failed in some way. 1In addition
to these techniques, reasonableness checks can be perforned
on the various components of a system, or on the overall
system. As an example of a component reasonableness check,
the processors might be checked to see that each is

requesting new tasks at a reasonable rate. This would

detect a halted or 1looping machine, as well as a macnine

Diagnosis I7-75

which is doing nothing but requesting new tasks as fast as
it could. Such a check could be performed by having each
processor increment a count in a common table each time it
requests a new task. A periodic timeout routine could then
verify that each of these counts 1is within reasonable
bounds, and zero it. While this is by no means a foolproof
system, in that there 1is nothing to prevent a faulty
processor from storing reasonable numbers in its own entry
or unreasonable numbers in others’ entriés, it is not
difficult or expensive to implement, ' and can lead to an
indicatinsn of failure, and thus improve the system

reliability.

As an example of a system-wide reasonableness check, a
packet-switching communications processor might verify that
the number of incoming and outgoing packets are equal,
discounting those directed to itself. Again, while by no
means foolproof, such a scheme <can 1lead to improved

reliability through early detection of failure.

In both of these examples, the technique described 1is
somewhat application dependent, The ability to do
reasonableness and consistency checks depends fundamentally
on a detailed knowledge of what it is that the systenm does.
In general, one can only check that the known rules of
operation are being followed. In a time-shared systen

running user .~de, there might be very few rules, making

consistency checking difficult. It miecht be desirable to

[

Diagnosis II-75

impose rules for the express purpose of permitting
consistency checks. One could imagine user-defined
consistency check routines associated with individual user
programs, which might be forced to run on a different
processor from that which executed the checked routine,
whose explicit purpose was to verify the reasonableness of
the results of the computation. It would be desirable to
have high 1level 1languages able to automatically generate

these consistency check programs.

Having determined that there is a failure somewhere 1in the
system, we would 1like to 1localize it, preferably to an
individual failing device, and then stop using that device.
In this way, the remainder of the system can continue
operating without the errors which that device introduces.
We consider;two techniques for localization, one applicable
to "hard" failures, or those which occur repeatedly, the
other to "soft" failures, or those which occur infrequently
despite heavy utilization of the failing component. In many
ways, the "hard" failures are the easy ones to deal with,

since they show themselves under testing, while the

ephemeral "soft" failures are hard.

II C 2 b iii (a) - Diagnostic Programs

We can incorporate into the system programs whose duty it is

to exercise various components, 1look for failures, and

identify the failing component or components. This can be

. A i B, =

———— e

e e T L T —— N o el il

Diagnostic Programs =57

accomplished by knowing in advance what the result of a
| given sequence of actions should be. These programs can
then be run when there is some reason to believe that some

+ | component in the system 1is failing. They c¢an be run
successively on each of the processors and through each of
the available communication paths, as well as on each of the
common memories or other shared resources. 1In addition, I/0

devices can be checked.

{ Once these diagnostic programs are available in the system,
they can be run on an infrequent periodic basis, to detect
failures which nmight not have been detected by the

reasonableness checks, thus impro>ving the chances of finding

failures.,
IIC20b iii (b) - Diagnostic Deactivation

We have throughout this discussion assumed the ability to
remove from wuse a component which is failing. Manual
removal of failing components implies an extended down time

in the case of failures which make the system unuseable.

Removal can be made automatic, giving the program the
ability to selectively disable suspected failing components,
If this is to be done, one must face the issue of protection
of healthy processors and other components against
jw deactivation by unhealthy processors which believe
themselves healthy and the component unhealthy. We discuss

this issue briefly in the next subsection.

8
3

T T R W N Y B L Ml R N e g W e ey g ——-y b

Diagnostic Deactivation I11-78

If we assume that processors have a means of disabling
components, we have a powerful tool for diagnosis in the
form of diagnostic disabling of components. This technique
is particularly useful in the diagnosis of soft failures.
Errors can be detected in the system without specific
information as to the failing component. Examples of this
sort of error are parity errors on reading and system data
structure inconsistencies. When such an error is detected,
the first line of attack would be to run diagnostic programs
on each of the components whose failure :2ould have produced
the observed effect. I[f this fails to show errors, for the
first few times the error occurs, we wish to recover from
the ‘eft'ect of the error and to proceed with the job. While
some data may be lost in this process, the system will not

go down.

ta

For those errors which occur only once, this is a very
desirable approach. For those which occur repeatedly, we
would 1like vcome means of isolating the failing component.
Since we are interested in this only after repeated
failures, we have a decent measure of the expected time to
failure. Therefore, by deactivating possibly failing
components one by one until an error-free period of several

times the expected time to failure has elapsed, we can

isolate the failing component.

Diagnostic deactivation can of course be performed manually

if automatic deactivation is not available. As such, it is

Diagnostic Deactivation I1-79

a common techniqu. in debugging conventional systems, both

hardware and software,

IT C 2 ¢ - Other Interactions

In the previous subsection, we discussed redundancy as a
technique for improving availability. We considered various
techniques for detecting errors so as to permit a high

availability without a high level of redundancy.

In this subsection, we consider various other ways in which
processors can use shared resources to improve system
availability. We will discuss processor controlled
component deactivation, direct processor-to=-processor
communication, automatic restarting and reloading, and
duplication of essential components, whether hardware or

software.

IIC 2 c i - Deactivation

We have repeatedly mentioned the concept of deactivation of
suspected or known failing components, for diagnostic as
well as curative purposes. As has been mentioned, this
deactivation can be done either manually or automatically,
under program control. The worst drawback with manual
deactivation is the slowness and incorrectness of human
actions. If a failure takes a system down until such time
as a person notices 1it, observes it sufficiently to

determine which component to disable, and correctly disables

e e P ey s b e S Bt

Deactivation ‘ I1-80

that component, the system will be down for at least seconds
to minutes, and perhaps longer. This amount of dJdown time
may make the scheme unacceptable. Further, keeping a
sufficiently competent person available to do this
deactivation at a moment’s notice all the time the system is
up may be expensive, if not i~ ossible because of the

limited human attention span.

We are left with the option of giving the program the
ability to selectively disable any component of the system
it knows, or suspects, to be failing. The difficulty with
this is that programs also fail, and a program which has run
wild might one by one disable all or at least a critical

number of system components.

We must distinguish between the intelligently malicious
program and the runaway program which accidentally creates
random havoc. The very fact that we have decided to give
the program the power to decide when a component should be
deactivated implies that a malicious program, designed to
destroy the system, can deactivate anything which can be
deactivated if failing. 1If the system 1is to run "user"
ccde, in an environment in which a malicious user is a
possibility, the deactivation procedures must be possible

only ‘f the processor is in "exec" mode, rather than "user"

mode.

Deactivation I1-81

Protection against the runaway program is feasible by making
the deactivation procedure "difficult", in that it 1is
unlikely to occur during the execution of a random
instruction stream. A technique to provide such a difficult
procedure which is straightforward and inexgensive to
implement in hardware is to require that a password be given
by a processor to enable the deactivation hardware. This
password should be a "complex" pattern; ;11 zeroes and all
ones are undesirable since machines running wild often store
these patterns throughcut memory. Ideally, the password
should be a pattern which appears nowhere in memory and
never occurs in any of the processors’ active registers
during normal operation, since a common mode of processor

failure is to store an active register throughout memory.

The intent of these procedures is to minimize the likelihood
of an "expected" failure mode causing undesired
deactivation. Surely, however, there must be code somewhere
in the operational system whose effect, when executed, is to
compute and store the necessary password, and then
deactivate a failing component. This code must be present
if automatic deactivation is ever to occur. We must then
face the possibility of a failure causing the program to
leap into the middle of this code, thereby producing the
undesired deactivation. Some degree of protection against
such 1 failure can be afforded by clever coding of this

program, Y} that various consistency checks nmust be

Deactivation I1-82

performed before the damaging sequence can be performed.
For example, a processor might compute the password one bit
at a time from various internal flags which should be in a

known state at any time deactivation is legal.

It is possible to require agreement by two or more
processors that a component is failing before that component
can be deactivated. This can be accomplished in software,

by requiring that a processor be given half of the password

by another processor.

The objective of these techniques is to make it increasingly
unlikely that a failing processor will fail in such a way as
to deactivate working components. F - this protection a
penalty is paid in the execution time of a desired
deactivation. However, since component failures, and
therefore deactivations, are presumably infrequent, this
poses no significant difficulty. Increasing the 1level of
protection excessively may decrease the system reliability
by making it impossible to deactivate failing components
before the failing component destroys the computation which
is attempting to deactivate it, Thus, a scheme which
requires cooperative agreement between processors,
communicated by way of flags in shared memory, may fail if

the failing component is a processor which is writing zeroes

throughout memory, thus clearing the very flags necessary

for the deactivation. The detailed decision on the exact

degree of protection desired depends on a detailed

FouNrer e 2 - b Sl -
-4
1
;é Deactivation I11-83
understanding of the possible failure modes and their

probabilities, This information is never fully available,
and at design time is at best a crude guess. Thevefore the
! exact level of protection, embodied in the deactivation
computation vrocedure, should not be thought of as finished i
until extended periods of field operating time have

denionstrated that the system failure rate due to incorrect

deactivation, and that due to the failure of deactivation
| when required, are sufficiently well balanced that neither

causes an excessive degradation of system reliability.

II C 2 ¢ ii - Processor to Processor Communication

Processors differ from other components in a system in that
. a great deal of information is required to specify their

| state. Most apparent are certain control and status bits

e

traditionally referred to as the "Program Status Word". In
this category are bits which indicate whether the
processor’s interrupts are enabled, whether it is in user or
exec mode, whether overflow conditions exist, and so forth, t
Another bit which is sometimes included in the status word
is a run bit, which indicates that the processor 1is
currently running. In some cases, the processor can be
started and stopped by storing a one or zero into this bit. |

However this bit is accessed, it forms an important element |

of the state description of a processor,

it
g i;‘

Processor to Processor Communication I1-84

Other st-te information is contained in the processor’s
program counter, accumulators, and other active registers.
In architectures utilizing cache or other "local" memory,
private to a particular processor, this memory can be
considered a part of the processor, and as such its contents

are part of the state descriptor of the processor.

Because of the abundance of information required to define
the state of a processor, deactivating and reactivating
impose certain problems different from those encountered
with other components. Clearly, means are required to
simply halt and start the processor. Additionally, to
permit determination of the causes of failure of a
processor, it is desirable to access other state information
such as program counter, active registers, and local memory.
Any of these being incorrect can account for a processor
crash; examination may help to determine the reason for
failure, and thus permit more rapid repair. If the problem
was a software bug or a "soft" hardware failure, which
occurred only once, the ability to set any of the state
indicators to a correct value will enable healthy
processors, automatically or under human direction, to

correct the problem and restart the crashed processor.

This argument applies to whatever 'private" memory the
processor has which 1is not generally accessed by other

proccessors, as well as to the processor’s active registers.

We thus require a general processor-to-processor

Processor to Processor Communication II1-85

communica‘’ion path through which one processor may examine

or set another processor’s registers and memory. this is

particularly convenient in some of the modern single bus

machines, in which active registers and state indicators

respond in the same way as memory locations. We then can

provide a commur.ication path from processor to processor

similar to that provided from processor to memory. Since
the utilization of this path is very low, being used only in
case of processor failure, it can be a multiplexed path
through a central switch, rather than requiring a more
complete connectivity. Since this path does give any
processor the ability to halt or in other ways crash any
other processor, it should be subjected to the same
protection constraints discussed above under the general

topic of component deactivation.

II C 2 ¢ iii - Automatic Restarting and Reloading

Given a communication path over which a processor can halt,
examine, and restart another processor, we can survive a
large fraction of the ©processor crashes which occur,
particularly in the developmental and early operational
stages of a systen. The software bug which causes the
processor to 1loop, halt, or leap to an area of memory from
which it should not be executing code can now be survived,
and the processor, which was down, can be repaired. 1In
addition, a common mode of hardware failure throughout the

life of the system, the "soft" or transient failure, such as

e T e Irl'... P ST e e i

’

Automatic Restarting and Reloading 11-86

a bit Dbeing picked up in the program counter, can likewise |
| be survived, and the processor repaired. To do this, the
processors need to be able, on discovering another processor |
down, to record whatever state information mignt be useful
for a later diagnosis of the nature of the crash, so that
the hardware or software bug can be evenctually repaired, and
then simply restart the processor at a clean restart point

. ..

in either private or shared memory.

This procedure will fail if the code which that processor
will execute upon restarting has been destroyed, either by
hardware failure or by runaway software. 1In this case, it
is uesirable to have some mechanism for reloading the memory
with a fresh copy of the code, to prevent such a transient
failure from taking a processor or even a system down. The

simplest technique for preventing memory from being f

. destroyed is to make the memory Read-Only, so that there 1is
no way for software or transient hardware failures to
destroy it. The disadvantage of Read Only Memory (ROM) is
that software changes, inevitable during the early stages,
and virtually unavoidable throughout the operational life of
any sophisticatec system, imply significant and expensive
hardware changes, in that the ROM must be replaced with a

new ROM with the new program.

Another technique for survival of incorrect memory contents

is to provide a copy of the contents of memory somewhere in

e s

the syvstem and a mechanism*® for reloading a memory with

g
i
i
8

T R T = > x o s SRR e S S

e e T

MRSl SIS SN S S

Automatic Restarting and Reloading II-87

incorrect contents from this copy. In a software
homogeneous multiprocessor, in which all processors run the
same code, if this code is stored in private memory for each
processor, a copy 1is available in each of the surviving
processors, from which a faulty memory can be reloaded.
This may fail, however, if a software bug causes all of the
processors to destroy the contents of their private
memories. This also does not provide a copy of whatever
program or other vital information is stored in shared
memory. Therefore, while this scheme is a good start for
providing copies of the information in memory, some further

backup is still required.

A straightforward scheme for information backup is to have
some storage facility (which need not be high speed, since
its wuse 1is presumably infrequent) on which a copy of the
program or other information is kept, and which is rewritten
whenever a new version of the software 1is installed. The
problems of accidental overwriting by a runaway program can
.He overcome by using the same protection mechanisnms
discﬁssed under the topic of automatic deactivation, or
éven, perhaps, by human intervention in turning on a "write
.enable" switch, since new software is presumably installed

only at conveniently chosen times.

Another technique for reloading, applicable when there are
many systems in the field under the control of a central

office, is to reload the systems from the central office.

&

Automatic Restarting and Reloading I1-88

This may be accomplishcd over conventinnal communication
lines, if the systems ,are so interconnected, or over a
dial-up 1line. The réloading may be requested either by the
failing machine or by the central office. There are i

problems inherent in either source of requests.,]

If the responsibility for requesting a reload lies with the
failing system, there is a nroblem if the system is failing
sufficiently badly to be unable to request the reload. 1If
all of the processors are halted, where is the request to

come from? Simply disabling the halt instruction answers

this problem, but raises others, and does not solve the
problem of the 1looping machine, and others. Another

| approach is to add a "watchdog timer", a device to which the
3 program periodically reports its health. If this device '
i does not hear from the program in a predefined long time, it
: forces the suspect processor into an error recovery state,
which may include reloading. Such a device fails if the
program is healthy enough to inform the‘ti@er of its health,

but not healthy enough to carry out its duties.

! These problems are overcome by giving the initiative for
{
| reloading the system to an external observer, such as a

g

central office. This option has disadvantages in terms of ;

| response time, particularly if there is a human involved. I

It also has a fundamental problem in that there are now two

portions of a system entirely at odds with each other, each

of whose design objective is in Some sense to disable the

e, T ym—y

Automatic Restarting and Reloading I1-89

other. The first of these is the normal system fault
diagnosis and recovery procedures; the second is the reload

mechanism.

The primary duty of the fault recovery procedures 1is to
diagnose aspects of sysiem operation which are interfering
with, or causing damage to, normal system operation, and to
cdeactivate the guilty <component. A system which believes
itself to be operating normally and correctly sees a device
which is trying to reload it - meéning that it is trying to
alter the contents of memory - as being destructive to
normal system operation, and as such believes that its duty
is to disable that device, or in fact as much of the system
as 1is necessary to isolate itself from that device. This,
if successful, will destroy the ability of the reload
mechanism to reload, as well Aas removing normally
functioning components from the system. If, on the other
hand, this reload mechanism has some special ability to
prevent its being disconnected, this mechanism becomes a
systemic Achilles” heel, whereby any hardware or software
device which manages to look like the reload device achieves

invulnerability in its efforts to destroy the system.

These two considerations, failure survival and externally
activated reloading, are 1in direct conflict. T8Es 1 k8
unacceptable to give either absolute authority; a balance

must be achieved. This can be done by making the sequence

of events that the reload device must do an unlikely

Automatic Restarting and Reloading I11-90 3

Sequence to occur unintentionally. This approach is similar
to that taken in the case of compotient deactivation, where
again, a balance was required between granting abilities to
fault recovery procedures and “reventing their accidental

abuse by unhealthy processors. 1n the present case, the

reload device might be made somewhat higher speed than the

processors’ deactivation procedure, so that as intelligent

commands to

disable processors are received, they will

gradually win over the processors’ attempts to revitalize

each other, since they will occur more rapidly than the

processors’ commands. However, even if commands to disable

are accidentally gererated by the reload device, the
probability of a stream of them occurring at a sufficient
rate to disable a large fraction of the processors will be

negligibly small. Thus, whatever might have been

accidentally disabled will be brought back to life by the

remaining processors.

There are problems both with an internally motivated reload
| scheme and with an externally motivated reload scheme. The

two are not mutually exclusive; a practical multiprocessor

can profitably employ both simultaneously.

IT C 2 ¢ iv - Duplication of Essentials

In order to survive the failure of a component, either

’ hardware or software, there must be a backup for that g

component which can be substituted for the failing component

Duplication of Essentials II-91

in the event of failure. These backup components need not
sit idle until a failure; they can be used to improve syrstem
performance under normal operating conditions ir a
degradation to the system performance without them is

acceptable on failure.

A hardware homogeneous multiprocessor has a strong advantage

in this area, since homogeneity implies that the various
processors are equivalent, and thus each acts as a backup
for the others. In the case of a multiprocessor' which is
not hardware homogeneous, there must be at least one bhackup
for each type of processor. If there are I/0 devices which
rnust be kept operational through processor failure, a system

with a tixed processor/device relationship must have each

device connected to at least two processors.

There must in general be a backup for each type of component
which is essential to system operation, if we wish to
survive a failure in that component. In addition to
processors, this applies to memories and to I/0 devices,
Duplication of these 1is generally straightforward, and
affects system size and cost, but not fundamental design
concepts. Duplication of the task allocator is more
difficult, since it is in a position to decide what task 1is
to go to which processor. 1In an interruption-oriented task
allocation scheme, the problem is extremely difficult, since
the logic is forcing the processors to new tasks, and the

intelligence of the processors is therefore not available in

& 1 ol Wil il L o g e =Pt _\

U0 UURE SR U R Y R

Duplication of Essentials I1-92

determining the sensibility of the order. This can be
resolved by distributing the interruption logic, so that the
logic is closely associated w.th the processor it is to
interrupt, and further giving the processor the ability to
select which set of interruption logic will be active. If
the 1logic is then designed so that no central logic failure

can put the processors into loops so tight that they cannot

R detect the failure, single failures can be survived. The
overhead, in hardware, software, and design time, of such a
system is high: in addition to duplicating the complex
interruption logic, there must be selection logic at each
processor, all of which hardware is costly; the software to

] determine the reasonableness of an interrupt must run at a
high enough priority to prevent being shut out by erroneous i
interrupts from the failing hardware, taking substantial
amounts of program bandwidth; designing the interruption

b logic to be such that no central failure can cause S0 many

interrunts that the program cannot survive poses a difficult

design problem, which will be extremely hard to debug,
because not all possibie failures will occur during the

debugging phase. A simpler and perhaps less expensive

% scheme is to use Triple Modular Redundancy at the 1logic
component level for this aspect of the multiprocessor. This
technology is well understood, and given the complexity of

the program-controlled selection logic, it is not a great

. deal more expensive in hardware cost.
j [}

T =

Duplication of Essentials 11-93

The problem of dupiication of task allocation hardware is
much simplified in a voluntary task chanpe system, as
discussed earlier., In such a system, the processo~s inquire
as to the existence of new or higher priority tasks at their
own convenience, and thus can easily discover
inconsistencies before being given yet another new task. A
number of techniques are possible to permit usage of
multiple task allocators in a voluntary scheme. The
simplest of these 1is to have processors and other devices
which reference the allocator use the different allocators
in a round-robin sequence. This has the disadvantage that a
task of the highest priority cannot be assured of being
serviced before others of lower priority. If this causes
problems in the system responsiveness to high priority
tasks, the allocators can be used in a priority ordered
fashion, that 1is, all processors will first inquire of the
highest priority allocator, and only if that is empty will
they inquire of the next highest, and so on. Processors and
other devices needing to add entries to the allocator’s list
will choose which allocator on the basis of the priority of
the task being added. In the event of failure of an
allocator, the processors and devices will agree among
themselves on a new priority ordering of allocators, leaving

out the faulty one,

If there are no more kinds of tasks to be stored in the

allocators than can be stored in a single allocator, this

e—— 4\._.__—-]-—._,_1

| -+ St ~ -

Duplication of Essentials I1I-94

scheme reduces to simply having all processors and devices
agree on which allocator to use. However, if there are more
than that number of tasks possible, this scheme has the
disadvantage of implying increased operational overhead 1if
high priority tasks are infrequent, since processors will
always first check the highest priority allocator, which
will often be empty. It also implies larger overhead at the
time of failure, since the processors and devices must then
agree on a new allocator or a new ordering. These costs
must bhe weighed against the increased device buffering which
will be required due to the 1increased latency of a
round-robin scheme. Conceptual simplicity, an important

design consideration, favors the latter.

In addition to requiring a duplicate of all essential
hardware component types, failure recovery requires a
duplicate of all essential software. This may be on a slow
and difficult-to-access medium, as discussed in the prev ous
section, but rapid system recovery 1is made possiblie by
having a copy in a more readily accessible location. If a
multiprocessor is in fact software homogeneous, which is to
say all processors run the same program, bandwidth
considerations favor copies of the frequently run program in
memory private to each processor. In this case, a task
dropped by one processor because of a failure in the private
memory can be resumed by another processor executing the

code out of its private memory, unless the software failure

-

Duplication of Essentials 1I1-95

was such as to destroy information about the process it was

executing.

In addition to the software backup provided by duplicate
local memories, it is desirable to have a backup of the code
in common memory, preferably in another physical section of
common memory, so that if this information is destroyed
either by a transient hardware or software bug, or by a
physical memory going down, the system can continue to

operate without necessitating a time-consuming reload.

This code sitting in common memory, not being used for
extended periods of time, may become invalid because of
hardware or software failure. Such a failure would
ordinarily go undetected until the code was needed for error
recovery, at which time a reload would be necessitated, thus
nullifying the time advantage of having a local copy. This
possibility can be made extremely unlikely by having idle
processors periodically compute and verify checksums of
areas of core, and upon detecting an error, request a reload

before it is needed.

II C 2 d - Bandwidih Reduction on Failures

We have been considering how systems may be designed to have
a good chance of surviving component failures without
resorting to the difficulty and expense of TMR. The

objective has been to design a system with backup components

which can be wused in the event of failures to keep the

SRR

e

b ogdes = s i gt

Bandwidth Reduction on Failures II-96

system operational, but which are utilized before failure to
improve the performance of the system. This concept 1is
useful only 1if the system can be profitably used with
diminished performance characteristics, If, as is the case
in certain real-time applications, a certain amount of
computational bandwidth is required, and any additional is
wasted, while anything 1less 1is useless, then a reliable
system must have enough spares to keep sufficiently
operational through expected failures to support the
required computation, and these spares are not useful until
a failure ocecurs, Even in this case, however, the
techniques herein described require only one extra of each
component type to be able to survive any single component
failure, where TMR requires three tokens of each component

type, plus selection logic.

In the event of a component failure, the computational
bandwidth is reduced. The actual amount of the reduction
depends on many system parameters, including how heavily
that token was utilized, how many other tokens of the same
type are 1in the system, and how dependent other components
are on that token. Often, failures in one component will
make other components unuseable. For example, a memory
which is connected to a bus with other memories, and which
goes down in such a way as to force a bus data line to zero,

will take down all other memories whiéh must be accessed

through that bus. Ignoring this effect for a moment, the

TR R T P T

g

¥ —_y o, il by A

Bandwidth Reduction on Failures II1-97

effect on system bandwidth of a single component becoming
unuseable is to multiply the system bandwidth by a fraction
between one and the fraction of tckens of that component
type left running. The exact value of that fraction depends
on the utilization of the lost component and tne increased
queueing delays at the remaining tokens, The‘fraction will
not be less than (t-1)/t, for losing the t°th token, since
that is the amount the system bandwidth would be diminished
if all t were being utilized all of‘the time, and if the ¢t
were not fully utilized, the load which the failing unit was
carrying can to some -extent be taken up by the remaining

units, thus lessening the impact of the failure.

If a component failure causes other components to be
unavailable, their loss can be treated as successive losses
of different tokens of the same or different types, and the
overall effect 1is therefore to multiply the computational

bandwidth by a fraction between 1 and the product of the
fractions of the various component types which continue to

be operational.

A precise measurement of this degradation can be obtained by
analyzing, simulating, or measuring the performance of the

system with and without the failing component.

Summary 11-98

Summary

This concludes our discussion of the interactions among the
processors of a multiprocessor. We began this discussion by
considering the primitive interlocks necessary to permit
meaiiingful communication. We observ.d that while error
immune hardware arbiters cannot be built, circuits with an
acceptably low error rate are straightforward, although they
do impose a small bu% significant delay. We concluded
further that indivisihle test/modify sequences are
worthwhile but unnecessary, and that the selection of the
proper sequence can substantially improve system
performance. We briefly addressed the topic of queueing
delays for shared resources, and introduced the concept of

bandwidth matching.

In the second section, we considered the issue of assigning
tasks to processors., We considered a number of schemes
based on interruption, then turned to voluntary schemes. We
concluded that with an inexpensive hardware task queue, the
voluntary scheme can provide remarkable simplicity,

efficiency, flexibility, and reliability.

In the third section, we considered those interactions among
processors whose objective 1is the improvement of system
availability. We considered A variety of engineering

techniques which can be used to detect failing components,

and then turned to ways of organizing systems so as to

g4 i3
e ————— . -~

..
O, ey Y

Summary I1-99

utilize this and other information to permit the system to

survive component failures.

S S GLE SY SEOE LI L —

.
- L 4
W

3 4| PRECEDING.PiGR BLANK-NOT FILMED
Chapter III
ARCHITECTURES

In the first chapter, we discussed the distinction between

data parallel and control parallel multiprocessors, and
R | conéluded that control parallelism was the structure we
wished to investigate further. In the second chapter, we
discussed aspects of the interactions among the processors
of a control parallel multiprocessor, We explored the
difference between synchronous and asynchronous structures,
and concluded that the Fflexibility of the asynchronous
structure made it the one we wish to pursue. We considered
the problem of allocating tasks among processors, and
concluded that voluntary algorithms optimize efficiency,
reliability, and cost. We investigated various approaches
to improving the system availability, and concluded that
many techniques for identifying and surviving hardware
failures can be beneficiaily incorporated into the design of

a multiprocessor,

Ia this chapter, we will consider various architectures, or
system organizations, for contrcl parallel multiprocessors.
We will begin by discussing two general questions: whether
processors should possess "private" memory, and how to
select a processor. We then turn to an analysis of the
overall system structure, presenting various possible

arrangements, and pointing out the reasons for the

f weaknesses and strengths of each, In considering

4 organizations of systems with very many components, we come

TSR, e, S e PR

Architectures) III-2

to a view of current systems as being tree structured, and
observe that expansion to systems of this size must be done
by increasing the depth of the tree in order to avoid severe

penalties in efficiency.

In the next chapter, we will present a description of a
specific system, the BBN Pluribus, whose architecture is

based on the considerations presented in this chapter.

We now ¢turn to the general issues which must be resolved
before specific architectural organizations can be

meaningfully compared.

III A - Two General Issues

The first topic we will address is the question of whether
prccessors should have "private" memory, which other
processors do not ordinarily access. This question is
crucial because its answer has profound impact on the
bandwidth required of the communication medium, and
therefore on the sorts of structures appropriate for that
medium. We then turn to the problem- of selecting a
processor for application in the multiprocessor. The answer
again has a fundamental impact on the architecture to be
used, since the speed of the individual processors and the
number of processors determine the size and bandwidth

requirements of the interconnection medium.

Private Memory I11-3

IITI A 1 - Private Memory

In any multiprocessor there are, in addition to the
processors and some communication medium, I/0 devices and
memories. These latter may be tightly coupled to
processors, or to the communication medium, or may exist as
separate entities. An example of memories tightly coupled
to processors is the "private" memory which an individual
processor owns, An example of a memory which is tightly
counied to the communication medium is a syster. such as the
multiprocessor PDP-10, in which the processors
intercommunicate through a multi-port memory. An example of
a system in which memories exist as separate entities is the
BBN Pluribus, described in the next chapter, Similar

examples exist for I/0 devices.

We discussed the question of whether the I/0 devices should
be tightly coupled to processors in the second chapter,
while considering task allocation algorithms. We concluded
that reliability and efficiency are enhanced by avoiding
such a coupling. We now turn to the question of whether
there should be memory tightly coupled with individual
processors, Note that making such a coupling is not in
conflict with having additional memory which is not tightly
coupled; there are advantages to having both in a

multiprocessor. We will base our analysis of the private

memory issue on bandwidth considerations.

[

Private Memory I1I-4

To a first approximation, the number of processors required
to obtain a given factor 1increase 1in computational speed
over a single processor is simply the next greater integer
than that factor. Given that that number of processors 1is
required, and knowing to what extent a processor utilizes
the bandwidth of a memory, we can compute the number of
independently accessible memories of a given bandwidth
necessary to support those processors. For example, 1if
fifteen processors are needed, and each processcr uses a
memory 50% of the time, eight memories would be needed. In
fact, as discussed under the topic of queueing delays in the
previous chapter, the asynchronous nature of the processors
implies that excess bandwidth is useful in preventing large
waiting times, thus increasing system bandwidth. However,
the present computation provides a minimum, in that any
reduction below this level will surely prevent the

processors from running at their full speed.

In general, then, the number of independently accessible

memories can be computed as a function of the following

parameters:

Bm - The bandwidth of a single memory, as measured in
bits per second obtainable by a processor.

Bp - The memory bandwidth used by a processor, measured
in bits per second.

P - The number of processors.

s Mo Ry i 5
~

Private ilemory IT1I-5

If we call the number of independently accessible memories

required M, then we have:

M = P¥Bp/Bm

In this computation, Bm is the memory bandwidth as seen at
the processor, including any delays due to communication and

arbitration which are not overlapped with memory operation.

In a classic synchronous computer, the timing of the
processor and the memory is identical; at each point of each
cycle, both processor and memory are in well-defined states.
In this case, neither can get ahead of the other, and the
processor uses the full available memory bandwidth, that is,
Bm=Bp. Tn some of the newer asynchronous machines, the
processor requests and utilizes the memory only when it
needs it, so that Bp<Bm. If such a processor and memory are
to be used in a multiprocessor, there need not be as many
memories as processors. In the case of some of the new
microcomputers, the processor is very slow compared to the

speed of economically practical memories. In this case, a

single memory can support many processors. Using more
conventional processors, however, Bp/Bm is typically

slightly less than 1.

Given that there must be many memories in a system to
provide the needed bandwidth, we gain efficiency by

associating those memories closely with individual

processors or sets of processors, since the communication

Private Memory III-6

and arbitration delays which must be suffered in each
reference to common memory can be eliminated on those memory
references which need not be to shared resources. In this
way, We can increase the effective memory bandwidth,
decrease queueing delays, and perhaps reduce the number of

memories needed overall.

This technique is useful if the contents of the memories
involved are either private, 1in that only one processor
would ever care about them, or are read-only, so that they
would never change. Difficulties are introduced if it is

possible that one processor would want to change a word in

another processor’s "private" memory. Engineering solutions

to this problem are possible, but are generally complex and

expensive.

If the memories are to be read-only, a viable alternative to
having multiple "private" copies would be to have a single
copy of this information in a high-speed shared read-only
memory, since read-only memory is generally available at a
higher speed for comparable cost than read-write memory.
However, it 1is difficult to get the communication and
arbitration delays in referencing a common memory down to a
small enough value to make even a high speed memory through
these delays as fast as a conventional memory which need not
suffer them, In addition, the freezing of the software so
that it cannot be altered without an expensive hardware

change is very unattractive.

. p— — . ¥ ey
- o T — e e L s
Private Memory III-7

in a system which may be referencing a wide range of memory
locations with comparable probability, it is difficult to
know which locations should be in private memory. If all of
the contents of memory must be stored in each private
memory, the cost of these memories becomez very large. In
dedicatea system applications, it 1is often possible to
identify that portion of the code which the system will be
executing most of the time under the conditions of heavy
system usage. This code often represents a very small
portion of the total code in the system, and putting it in
private memory will make most of the memory references
during those times when system performance is critical be to
local rather than shared memory. 1In the application of a
particular packet-switching digital communications
processor, for example, it has been found that putting
approximately 2000 words of "hot" code in private memory
will make 75% of a processor’s references be local, the

remainder being divided between =shared memory and 1I/0

devices.

In a system designed to run "user" code, or other systems in
which the distribution of references is not known at design
time, it is more difficult to partition code between private
and shared memory. This problem can be handled by making
the local memory be a "cache" memory. This implies that the
local memory 1is initially empty, and is loaded with the

contents of accessed remote 1locations and also perhaps

ARSI BT e

TR R

Private Memory II1I-8

surrounding 1locations as the processor references them.
This technique takes advantage of the fact that programs
repeatedly reference the same location or block of
locations. When the processor again references a location
which is being stored in the cache, the cache returns the

contents, without referencing the shared memory.

This technique has the disadvantage that if another
processor modifies the contents in remote memory of a
location which another processor has copied in its cache,
the other processor must in some way be informed that its
copy of that location is no longer valid. Such logic can be
implemented, but is generally complex and expensive,.
Alternatively, one might decide that certain areas are
read-only, and that only these areas may be cached. If
writing into these areas is inhibited, this technique can
permit private cache memory to be implemented without the
complex logic mentioned above. Cache memories, which
require high-speed read-write memories as well as high-speed
associative memories for address comparison, remain
expensive; it 1is worth considerable effort to attempt to
specify the commonly referenced areas of memory at design

time, so as to permit the use of conventional memories as

private memories.

The question of whether or not to use local memories, and
the question of what sort of memory to use, both local and

private, remain simple questions of economics., In a system

okl

i N b i

ERPIITEE R NSRS L SRS

il L i

-

s

Private Memory ITI-9

with easily identifiable sections of read-only hot code,
this code can be stored in 1local private memories 'or in
common memory. If the common memory is fast enough to
support many processors, less memory will be needed overall
if the code 1is stored in common memory. The cost of the
needed memory will increase as the number of memories needed
increases, but will also vary as the speed of the memories
varies, the very highest bandwidth memories available being
generaly expensive. The cost of the memory system should no
longer be measured in cents per bit, since the number of
bits required will vary with the memory bandwidth. Instead,
the measure which is relevant is the cost per unit of memory
bandwidth, this bandwidth being obtainable either from
higher sceed memories or from more memories. Thus, 1in
selecting a memory for storage of hot code, the available
memories should be compared in terms of cents per bit per
microsecond, whereas for storage of infrequently executed
code, of which one copy is enough to support the bandwidth

requirements of all the processors, the relevant metric is

cents per bit.

Figure III-1 presents a comparison of various semiconductor
memory devices, compared in terms of cents per bit and also
cents per bit per microsecond. Table III-1 presents the
same data in tabular form. These are costs of the devices

only, and do not include the overhead of building them into

memory systems, Core memory has not been included because

Vs

Lo P Ay e B T e iy

PRSI TS AL SCU U

ITI-10

B Cents per Bit

® Cents per Bit per Microsecond

! 20T TTT L A
]
]
g 'IO__ =
1 . 2
]
5
= [] 2 3
Q
2
]
y o |®
b 1.0— . 3
- . 4
- 0@ . o
0.5 ®
0.2 L1111l Juazal 1 B
0.05 0.10 0.2 0.5 1.0 2.0
CYCLE TIME (MICROSECONDS)
Flegure III-1
Memory Costs per Bit and per Bit per Microsecond

Hee i T

Private Memory ITI-11

Figure III-1 plots the following data for INTEL and Texas
Instruments devices:

Mfr. Device Cents per Cents per Bit Cvele
Type Bit per Microsecond Time
’ INTEL 31014 14.0625 01.167187 .083
INTEL 317°6A 06.4453 00.599414 .093
INTEL 3106 05.6641 00.623046 .11
INTEL 3101 11.25 01.2375 11
INTEL 2105 03.9062 00.898438 .23
- INTEL 1103A 00.7617 00.46u4648 .61
INTEL 1103 00.7617 00.464648 .61
INTEL 2107 01.5625 02.390625 1.53
‘ INTEL 2102 016552 01.704932 1.03
| INTEL 1101A1 03.0469 03.138281 1.03
| INTEL 11014 02.5391 03.884766 1.53
T.I. TMS 4030 00.6433 00.321655 .50

The INTEL data are taken from the October 1973 INTEL data
catalog and from the July 1, 1973, INTEL Memory Components
and Microcomputer Systems price 1list., The T.I. data are
from a July 1973 Preliminary Specification Sheet and a
verbal quote, November 9, 1973.

Table III-1
, Memory Costs per Bit and per Bit per Microsecond

of the difficulty of comparing it precisely in these terms;
| however, its perfbrmance does not compare favorably by
either criterion with the more attractive semiconductor

B | devices.

Memory bandwidth can also be increased by interleaving, that

is, dividing 1logical memory into physical independently

; | accessible units on a word-by-word basis. This will reduce
' the fraction of any individual processor’s references which
‘ go to a particular physical memory, and increase, by a

factor equal to the number of memories interleaved, the

L oo - e it Bl B T gl A,

L e S
-

Private Memory ITI-12

bandwidth available from Aan area of logical memory. This
then can permit many processors to share a memory system
made up of memory modules each of which has a bandwidth
comparable to that needed by a single processor. As with
any memory sharing system, this necessarily slows all
references to the shared memory by the communication and
arbitration delays in accessing the shared resource. 1In
addition, it jeopardizes the system reliability, both in
that the code contained in that memory is not inherently
duplicated, and more importantly in that a physiccl memory
going down makes the entire area of logical memory space
which that unit covers unuseable., The size of this area
would be greater than the actual size of the failing unit by
a factor equal to the interleaving ratio, and thus to the

bandwidth increase.

From Figure III-1, then, we may pick the memory devices with
the lowest cost per bit or the 1lowest cost per bit per
second, of those presented. Interestingly enough the same
devices generally, and the same particular device, minimize
both costs. While this chart does not include various other
narareters relevant to the cost of memory system design and
consunption, such as number of components, power
consumption, ease of interface, etc., these parameters also
tend to favor the device which is the least expensive. Were

this not the case, the selection of the particular device to

use would have to be made on the basis of the total design

Private Memory III-13

and production cost of the system. That there should be an
obvious winner in this competition is not unusual, however,
and is due 1in part to the positive feedback in the market
place, in which a device which is well matched to the

current technology will tend to sell rapidly, making the

price low.

The decision to have or not have memories 1local to
processors 1is then based on the comparison between the
increment in system cost due to the increased amount of
storage required to replicate the hot code at each
processor, and the increment in system cost due to the
slowdown of précessors because of the communication and
arbitration delays if no 1local memories are used, This
latter cost can be evaluated by measuring the incremental
cost either of increasing the number of processors and other
elements sufficiently to offset the loss in computational
power, or of employing remote memories with faster response
times. In addition to these costs, the increased bandwidth
requirements on the communication medium imply an increased
cost here also, which must be added in considering the cost
of a system without local memories. The reliability issue
discussed above also weighs in this decision, and if tﬁa\
reliability implications _of interleaving are unacceptable,
the additional cost of high bandwidth memories, not always

the same as fast access memories, has to be added to the

no=-local-memory system cost.

&

R o e e L Y

Private ilemory III-14

We have so far treated the question of whether there 1is an
amount of read-only hot code sufficient to justify local
memories as having a simple binary answer. In fact, this is
also a contfnuously variable financial consideration
affecting the size of local memory needed. The assumption
made above is that the amount of memory required 1is no
greater than the physical unit into which a memory system
subdivides., If significantly more memory is required to
make a substantial fraction of the references be local,
private memory increases in cost while losing in advantage.
The cost increases because there must now be many copies of
enough code to fill a number of modules of memory, implying
many additional modules. Further, the fact that many
modules are required implies that no single one 1is very
heavily utilized, since references are distributed among the
various modules. Thus, the additional bandwidth provided by

local memories is not heavily utilized.

In general, if a significant fraction of the memory
references aré read-only references to a small amount of
logical memory space, private memories can improve the
performance of a system of a given cost by speeding memory

references, decrreasing dependence on communication and

arbitration delays, and increasing memory bandwidth and

reliability.

Picking a Processor

IITI A 2 - Picking a Processor

An issue of key importance in the design of a multiprocessor
is the selection of the particular processor to be used. In
essence, this operation consists of choosing the processor
| most cost effective for the application. To do this, one
1 must define objective standards for comparison of the
price/performance ratios of processors under consideration,
| Price/performance is a suitable metric for the comparison of
’ processors, since a given performance level can be obtained

| from many weak processors cr a few powerful ones.

We will now consider a method for selecting an appropriate
processor, We will first examine system design
considerations which favor more or less powerful processors
of a given price/performance ratio, then turn to evaluation {
k. of the price/performance ratio of individual candidate

processors.

III A 2 a - Weak or Powerful?

Selection of a processor cannot be made on the basis of
price/performance alone, because other aspects of the system
are affected by the number and speed of the processors used.
The size of the communication logic will increase as the
number of processors increases; however, the timing
considerations will be less critical, since a given delay
b 4 will represent a smaller fractional slowdown of a slower

machine, In fact, multiple small machines can be

Weak or Powerful? III-16

multiplexed over a limited number of communication channels
for communication with the shared resources. This will slow
the references because of the arbitration necessary 1in the

multiplexing, but the amount saved in communication cost can

more than make up for this.

In a system without 1local memories or the processors, a

processor with a weak instruction set suffers more from the
communication delay, since in general a weak instruction set
requires more instructions to be executed to get a job done,
This implies more memory references which must suffer the
communication delays if they are to be from common memory.
If, however, there are local memories on thz processors from
which instructions are fetched, we achieve a situation in
which the only references to shared memory are those
interprocessor communications essential to getting the job
done. The number of such references required per unit of
time 1is a function of the job which needs doing, and not of
the number or speed of the processors doing it. Thus, in a
system with local memory, which uses the communication paths
only for necessary communication, the number of references
per unit of time which must suffer the communication delay

is indeperdent of the speed, number, or cost of processors.

Given the above, we can compare the cost of the
communication delay as a function of <che number of

processors, for a given price/performance ratio, assuming

that only the essential references suffer the delay. Call

Weak nr Powerful? III-17

the number of essential common references per second C; call
the communication delay each suffers S seconds. If the
processor is idle while the communication occurs, then a
processor will be idle C*%S seconds per second as a result of
these references. (Note that if the processor is not idle,
but productively occupied while the communication occurs, no
penalty is paid for the communication delay. This i~ an
unusual case for the processors, memoriés, and communication
elements economically sensible today.) We thus conclude that
C*S seconds of processor time are lost each second due to
communication delays. Note that this number is ndependent
of the number of processors or their speed or cost. Thus,
C*S processors can be thought of as simply overcoming this
delay. The cost in terms of che system is then C¥*S times
the cost of a processor., Thus, the communication delay cost
is proportional to the cost of a given processor, and will
decrease as the cost per processor decreases and the number

of processors increases for a given price/performance ratio.

Considering processors of a given price performance ratio,
we can express the processing power needed in the system in
dollars. Call the cost of this power D. If there are P
processors in the system, the cost of each 1is D/P. Thus,

the cost in dollars of the communica’ion delay is C*¥S*D/P.

We can now compare this to the cost of the delay in a system
which utilizes N-way multiplexing to connect N times as many

processors to the same communication structure. Call the

|
1
i
b
L
g
,'.

T R BT —— - T L —

Weak or Powerful? III-18

additional delay introduced by multiplexing M. Since the
number of references which suffer the delay is unchanged,
and the multiplexing delay is simply added to the
commurication delay S, the cost of the communication delay
in this N*P processor system is C*(S+M)*D/(N*P). Comparing
this to the unmultiplexed cost C¥*S#*D/P,
C*(S+M)*D/(N*P) < CH*S*D/P

if and only if

(S+M)/N < S
or

(S+M)/S < N,
Thus, local multiplexing into the communication 1logic wins
as a technique for permitting the use of smaller cheaper
processors of a given price/performance ratio if, and only
if, the ratio by which the communication delay is increased
due to the multiplexing delay is 1less than the ratio‘ by

which the number of processors is increased.

This argument does not include the cost of the multiplexing
hardware, but only its delay. To be validly subJjected to
this comparison, processors would have to have the same
price/performance including the cost of the multiplexor. In
fact, the price performance of the tiniest processors
available today is less attractive than that of the somewhat
larger "mini’s". Nevertheless, this argument does show the
advantage to be gained from many small processors, despite
dramatic increases in the delay necessary for them to make

their essential interprocessor communication references.

g it —— = e g D PR W RS PG TR T
Weak or Powerful? III-19
]

We have now shown the benefit obtainable by replacing a
conventional processor by a nodule of tiny processors. The
overall system structure then takes on a hierarchical
appearance, with each element labelled a processor made up
of =sub-elements of structure similar to the overall
structure. We will explore this observation further in our

discussion of specific architectures.

IIT A 2 b - Price/Performance Evaluyation

We have repeatedly referred to the price/performance ratio
of a processor. This number is very application dependent: !
a processor with specialized flr.ting point hardware might
be much more attractive than a similar processor without
such hardware in a numerical anzlysis application, because
of improved performance. However, the same machines might
compare quite the other way in a control application in
which no complex computation is done, because of the
increased cost of the special hardware. We thus need a
benchmark to compare processors for our p ticular

application. Coding the entire problem for each processor

under consideration is likely to be exceedingly expensive.
We therefore seek a model of the program simple enough to
permit straightforward comparison, but sufficiently good in
modeling the application program to permit reasonable

accuracy in comparison.

Price/Performance Evaluation I1T-20

A model can be deduced from an implementation of the program
on a given processor by measuring instruction frequencies in
that portior. of the code which is run when the system is
operating at maximum load. A trivial program with
comparable instruction frequencies can be written. A
version of this program can then be prepared for each of the
nachines under consideration, and the speed of execution can

be compared.

As an example, the time-critical portion of a data
communication program which was written for a Honeywell
DDP-516 was observed to be made up of roughly 25% "Load
Accumulator" instructions, 25% "Store Accunulator"
instructions, 25% "Jump" instructions, the large majority of
which were to nearby locations, and the remaining 25%
roughly equally divided among ADD, SUBTRACT, EXCLUSIVE OR,
AND, and similar instructions. It was further observed that
roughly 25% of the instructions had constant operands, and
that roughly 50% were indexed. From this information, the
following model (written in PDP-10 code) of the program was

developed:

LOOP: MOVEI AC, CONST ;Load accumulator with a constant
ADD AC, T1(XR) ;Add an indexed table entry
MOVEM AC, T2(XR) ;Store accumulator

: indexed into another table
JRST LOOP ;Jump back tc the loop

This tiny program was then coded for each of the machines

under consideration, and the execution time computed.

re .- - s o RECp——

Price/Performance Evaluation II1I-21

The timing information from such a tiny program does not
really reflect the differences in instruction set power and
other machine features, such as multiple registers. To take
these into account in the evaluation, factors of merit can
be used to ultiply the execution time. Unfortunately,
these factors are again to some degree application
dependent, and there is no straightforward way of evaluating
them, Extreme accuracy is not required, since this is only
a crude comparison, and an intuitive guess 1is generally
adequate. These guesses can be checked to some extent as
more accurate information becomes available, and the crude

comparison can be reevaluated.

The factors used in comparing processors for the
communication program mentioned above are given in Table

III-2.

!

We now have a crude technique for comparison of various
processors of interest. From this, those processors which
are roughly suited to the application can be selected.
Larger sections of the time-critical code can then be
written for these processors, and a finer comparison
obtained. In addition, comparison of these results with the
crude results obtained above gives a means of evaluating the
accuracy of the tiny model program and the factors of merit.
If there is substantial disagreement between the observed

and expected effects of machine features, the factors can be

adjusted to reflect reality, and a somewhat more accurate

Price/Performance Evaluation ITI1I-22 |
|

Page Factor Word Factor 1Index Factor Accumu- Factor

Size Size Reg’s lators i

! 3 y 8 0 2 1 1

128 2 8 y 1 1 2 .8 h

256 1.2 12 %13 2 .9 y T

512 1 16 1 y .9 8 .6

4096 .9 32 .9 8 .9 16 .0

Where "Page Size" 1is the number of words that can be
' directly referenced, "Word Size" is the number of bits in a
) machine word, and the remaining two factors are the number
‘ of 1index registers and accumulators. The product of these
factors for a given processor multiplies the time taken to
execute the comparison program in each case to give the time
values which will be compared.

{

I

| Table III-2

| Processor Power Comparison Factors
|

comparisdh can be made of the broad field of machines, i
| perhaps revealing additional machines worthy of serious
consideration and substantial coding. In the case of the
gxample given, the factors produced estimates which agreed

with the more detailed resvlts to within a few percent.

IIT B -~ Some Specific Architectures

—— v —— e

In the preceding section, we explored two general
architectural questions. We first investigated the utility
of memory local to each processqr, and concluded that the
use of such memory, where possible, can provide substantial
benefits in system cost and performance. We then
{ contemplated the problem of selecting u processor, pointing

ﬁ out the advantages of weaker processors of a given

price/performance ratio, then exploring how we might compare

the performance of various processors.

Some Specific Architectures III-23

In this section, we will compare various structures which

might be used for interconnecting processors and memories to

form a multiprocessor, We will explore the strengths and
weaknesses of each, and point out applications for which

each might be appropriate.

III B 1 - Interprocessor Buffers

The first architecture we will consider consists of
essentially independent processors which share what 1is
essentially an I/0 device to each, through which they can
communicate. This scheme for two processors is a common
technique for applications in which one processor perforns
various functions such as I/0 control for another, but can
be used for 1load sharing if the required communication

bandwidth is small. Such an architecture is shown in Figure

III-2.

Such a scheme 1is very 1limited in the interprocessor
communicaticn bandwidth available due to the single buffer
involved and to the slow access routes to it. It |is
therefore useful only if the processors need to

intercommunicate only infrequently,.

A communications protocol is required to permit meaningful
communications through this awkward medium. A feature which
can be added to this structure to improve efficiency would

bYe an automatic 1lock, whereby the arbiter would remain

locked after honoring a request, so that new requests from

L % T AN TSy e -

3
=T
o
“ 4
—.
-
1 ﬂ-l
] ——— Ok b
| eed
)
| i
(- o
! drm—Fwe o
1 &
_ a
— i — — —— — S
TII IlJl' III’I J]
A\ 4 \ 3 a9
\ N N f (! 0
)
=t - i oo v O
&5 O
= (]
o%s} &
—
. s 1
)
1 =
4 —
W = = = =
|
14 mh

Interprocessor Buffers I1I-25

other processors can not be honored until the processor
which owns it explicitly releases it. It is further
desirable that the processor which owns the buffer at a
given time be able to selectively enable requests from other
processors, 80 that ¢two or more processors are able to

converse without concern that another will seize the buffer

for other uses.

Another feature which would make the scheme less expensive
in processor overhead would be to permit the processor which
has won the arbitration to interrupt other processors, as a
clue that the buffer contains something for them. This
relieves each processor of the onus of periodic polling to
determine if there 1is something for it, while permitting
more rapid response to a transfer request. Such an

interrupt system 1is drawn in Figure III-2 in dotted lines.

While each of these features makes the scheme faster and
cheaper 1in processor overhead, none is necessary, and each
increases the hardware cost. Nevertheless, the hardware
cost of such a scheme remains small, and for applications

requiring very low bandwidth interprocéssor communication,

such a scheme is sensible.

III B 2 - Int . ‘processor Channel

One technique for substantially improving the bandwidth

available from an I/0 device to a processor is to give the

device a Direct Memory Access channel to the processor’s

(RS NS S

Interprocessor Channel I111-26

memory. Applying this technique to the scheme described
above produces a system such as that shown in Fipure III-3.
Here, the individual processors contend for their local
memories on a cycle-by-cycle basis with the arbiter’s choice
of processors. In this way, a processor can examine and
alter another processor’s local memory, thus permittine a

much more rapid interchange.

There are two primary factors which limit the bandwidth of
this system. One is the slowness of the I/0 type data
transfers between the processors and the arbiter. This can
be improved if the communication tends to be in long blocks
by having the arbiter’s inputs be DMA type channels, rather
than 1/0 type transfers. This permits more rapid transfers
of blocks of informaticn, but implies larger overhead to set
up a short transfer, since beginning and ending addresses
need to be given to two channels, rather than simply
specifying a location and its contents. If the transfers
are not large contiguous blocks, such a channel-to-channel
scheme would be 1less efficient and more expensive than an
I/0-to=-channel transfer scheme, If large blocks are to be
transferred, the increased hardware cost can be justified by

increased efficiency and bandwidth,

Another technique which permits increased speed of access
becomes apparent from an examination of the new single-bus

machines, such as the PDP-11. Here the 1/0 devices and

)

memory locations are accessed in an identical fashion. In

e AR T~

TR

Figure III-3

Interprocessor Channel

« T U S S ————————S S

Interprocessor Channel II1-28

this case, 1I/0 type instructions 1look just like memory
reference instructions, and are no slower. This can make
the communication faster. In machines with dual bus
structures, the same effect can be achieved by connecting
the arbiter and communication 1logic on the processor’s
memory bus, instead of the I/0 bus. This poses some
difficulty, since the memory bus is generally more difficult
to access, both electrically and politically, and further
often imposes rigid timing constraints on the accessed

devices, which it believes to be known core memories.

The other ma jor limitation on the bandwidth of an
interprocessor channel arises from the necessity for all
interprocessor communication to go through the single
arbiter. To avoid this, one can incorporate the arbitration

function into the DMA on each memory, so that processors can

access each other’s memories contending only with other

processors trying to access the same memory at the same
time. Thus, multiple interprocessor communications can
occur simultaneously, increasing the bandwidth available. A
scheme which combines this arbitrating DMA approach with the
single bus concept mentioned earlier 1is shown in Figure

III-4,

III B 3 - Crossbar Switch

-

Figure III-5 shows a scheme which amounts to 1little more

than a vredrawing of Figure III-U4, recognizing that the

s srn b e, SN D T R

Interprocessor

Figure III-4

Channel With DMA Arbitration

’ o 4 i
Al s e L - A e e . : >
o - & S g

. ~ b B U ———) -_—

o,

[TI-30

! ARBITRATING
MULTIPLEXORS

xCZ|e—-

&
:
[
o
(0
A
\
xXC
Z

%9,

X
4

Figure II1-5

Distributed Crossbar Switch

R G

s Ty SN e O R S R e et e e e e N N T

Crossbar Switch III-31

access of a given processor to its memory is not
conceptua’ly different from the access gZiven to another
processor, so that tke scheme consists in essence of
multi-channelled memories, or memories with arbitrating
multiplexors on their inputs, completely connected to the
processors, This then forms a distributed crossbar switch,
through which any processor may access any memory. It does
imply that all of a processor’s references must suffer the
communication and arbitration delays. To overcome this,
local memories may be added to each processor, as discussed
in the preceding section. Such a configuration is drawn in

dotted lines on figure III-5.

There are various advantages to collecting the connection
and arbitration logic into one centralized crossbar switch,
as shown in Figure III-6. Here, each column of the switch
metrix represents the arbitrator of requests for a given
memory. The primary advantage of this centralization is the
decreasec in the number of cables and connectors. Whereas
the distributed crossbar switch requires P#*M cables, and
thus 2%P*¥M connectors to interconnect P processors and M
memories, the centralized switch requires only P+M cables
and thus 2%(P+M) connectors., Since bandwidth considerations
dictate that for a given application, the number of memories
required is proportional to the number of processors, the
cabling requirements in the distributed system will increase
as P*#%2 yhereas in the centralized system, the number of

cables will be proportional to P.

I l.ll
| | SR
1 X % X X
i =
]
i
T %
a a o e o o o
| 1 ! '
] [P P
P —l.l-.ll-" “llL.'ld- ﬂl' 'lm “II llm
' 1
1 = “ " = “ “ = [} | = i
Licisicad | R | L s=d | SN |

Figure II1I-6

Centralized Crossbar Swltch

Crossbar Switch III-33

The disadvantages of a centralized switch are 1in

reliability, expansibility, and modularity. Presumably, the

centralized switch is run off a single power supply, and has

a single cooling mechanism. A failure in either of these

brings down the switch and thus the entire system. The

reliability 1is also impaired by the fact that the

centralized logic makes it hard to debug a single failing

unit without taking down the entire switch, and thus the

system. This problem can be overcome by making the

individual interconnection poiats and arbitration devices

separable, so that one can wunplug a failing unit for
maintenance. This unfortunately also removes the primary
advantage of a centralized switch, namely the small number

of connectors.

The centralized switch also has disadvantages in
| expansibility. If this logic is built in a single enclosure i
i to a fixed size, a system which uses the full swilch becomes
(difficult to expand by one more processor or memory. By
| contrast, the distributed switch permits indefinite
expansion by simple extension of the bus to which the

, communication cables connect.

The other side of the expansibility argument is a modularity
argument: if the switch is of a constant size, and if it is
large enough to support a reacsonably powerful system, a

similar system with less stringent performance requirements,

which need not contain so many processors or memories, must

R o

e T ——————— e

Crossbar Switch IIT-34

nevertheless contain the physically large and expensive full

sized switch, This problem can be somewhat alleviated by

semi-automatic custom tailoring of the switch to the
individual application. This 1is more expensive than a
single design, and prohibits the growth of a small system

into a larger system as performance needs increase,

Thse disadvantages of the centralized crossbar switch make
thhe distributed organization shown in Figure 1I1I-5 dominate
the centralized arrangement. In fact, the flexibility,
simplicity of design, and high bandwidth of the distributed
crossbar switch cause it to dominate all other organizations
for systems of up to perhaps two dozen processors. The cost
of this interconnection medium increases as the square of
the number of processors, and for very large systems becomes

prohibitive.

III B 4 - High Speed Bus

A crossbar switch, whether distributed or centralized, must
have P*M nodes to interconnect P processors and M memories.
This is costly as P and M grow large. It implies many
components, much electrical power, and large size. This is
in general the limiting element in the size and therefore
computational fpower of a system which can be economically
constructed, since the ©processor éend menory costs will
increase 1linearly with system power, but the switch cost

will increase as its square. In a fourteen processor

e il T

L I i .

e,

A TR T T o e S SR TN —— it - — e — g T T

High Speed Bus ITI-35 .

Plur.bus which contains seven proccssor busses, two memory
busses, and two I/0 busses, the cost of the communication
l medium is close to half of the total systemcost, and would

dominate all other costs in a much larger system.

In an effort to limit the soaring communication costs, we
can regard the centralized crossbar switch as a black box
with P processor ports and M memory ports, and consider how |
to devise such a box for a minimum cost for large M and P.

An attractive answer is to use a bus structure, such as Lhat 1

diagrammed in Figure III-7. Here, processors place requests
on the bus, and memories respond. Since onlv one
transaction can be taking place on the bus at any time, this
scheme is essentially that of Figure III-3, the
inter-processor channel, given a single bus processor. As
such, it suffers the bandwidth limitations of that scheme.
The bandwidth can be increased by not requiring that the bus
be tied up during the entire memory access. This can be
accomplished by having a processor request an access, which

the appropriate memory instantly recognizes. The bus is

then immediately released. On a write, the data to be
2 written is transmitted and captured along with the address,
at which point the memory proceeds to do the write without
further disturbing the bus., On a read, the memory captures
the address to be read, executes the read, and upon
, retrieving the data requests a bus cycle to send the data

back to the requesting processor. Thus, the speed of the

Figure III-7

High Speed Bus

\oly

High Speed Bus III-37

bus is not tied to the speed of the memories or processors.

The advantage of such a scheme is that it permits the use of
a bus of much higher bandwidth than the memories connected
to it. This may not be a significant improvement, since the
technology economically available for construction of a
multi-port bus is comparable in speed to the economically
sensible memories. Further, an intermixing of technologies,
such as an ECL bus, MOS memories, and TTL processors,
generally produces electrical noise problems and interfacing
problems of sufficient difficulty as to make any such

solution expensive and probably not sensible.

III B 5 - Lazy Susan

There are two primary reasons why making the high speed bus
sufficiently high speed is difficult. These are the
arbitration delay necessary on each access, and the
electrical problems associated with connection of many
drivers and receivers to a single bus structure. In
general, the more devices there are connected together on a
single bus, the more capacitance there is tied to the bus,
and the less well defined its impedance. The capacitance
makes it difficult to change the levels rapidly, while the
inconstant impedance implies ringing, thch means that after

a cnange of state, the 1lines take a significant time to

settle into the new state. Both of these then slow the bus.

Lazy Susan ITI-38

The effects of the arbitration delay on the bus bandwidth,
as well as the problem of many devices tied to one bus, can
be eliminated by pipelining the bus. 1In this case, the bus
takes on a ring structure, and rotates synchronously. At
regular clock ticks, the contents of each cell are
transferred to the next. If a processor requires access to
a menory, it waits for an empty cell to come by and puts in
its address and control information, and, for write
requests, also the data. If the addressed memory is
available when the information comes by, it takes the
information and frees the cell. (If the memory is not
available, it does not even 1lcok at the bds; it will get the
information the next time ar0uné.) If the request was for a
read, the memory places the requested data in a cell when it
is available, and the waiting processor will capture it when
it comes by. Such a "Lazy Susan" arrangement is diagrammed

in Figure III-8.

In this arrangement, there is no point where an indefinite
number of devices connect. Each cell connects only to the
ce.l ahead and behind and to the processor or memory
associated with it. Further, there is no arbitration delay
in series with the bus cycle, since it is running
synchronously, and always knows there will be data for it
when it is ready. The processors and memories must wait a

synchronization time to assure that their requests are in

phase wi:h the bus clock, but this time appears as an

T

(e o]
1
H
H
H
)]
£y
=
&0
el
=]

Lazy Susan

Lazy Susan II1-40 1

increased delay, and not a decreased bandwidth. Additional
¢ processors and memories can be added by simply adding more
cells, so the switch cost increa: . linearly with the number

of processors.

- The disadvantages of this scheme are in reliability and
‘ perhaps delay and complexity. If there is a single 1azy
Susan, a failure of any cell takes down the entire system. |

1 This can be avoided by using multiple lazy Susans, letting

' the program decide which to use for a given request. They

‘ can be run synchronously with respect tc each other, so the.

; arbitration delays are not required at the memories.
However, with many 1lazy Susans, the number of connections

and components increases, making this not necessarily an
improvement over the crossbar switch. A trick which can be

| used to diminish the sensitivity to single failures 1is to
provide multiple .choices for the input to a given cell, the

{ choice being made by the program. Thus, a failing cell can
be bypassed, permitting the system to remain up. Such a i
cell-bypassing scheme is shown on Figure III-8 in dotted

lines.

fl i The lazy Susan concept permits very high communication .
‘ bandwidth, at a price in delay. This is characteristic of
pipeline schemes, The increased delay need not be very I

large, since the lazy Susan can be run synchronously and

|

i

i

logic (T.I. T4S153 multipiexors, TUS174 flip-flops) a shift !

4 ‘ very fast. With presently availaile Schottky-clamped TTL
L

X 3 &
- SN pire ol e 2 7N

Lazy Susan II1I-41

time around 30 nanoseconds could be achieved. This delay is
substantial but not overwhelming in a system of a dozen
nodes; the delay becomes very large in a system of many

dozens or hundreds of nodes.

III B 6 - Hierarchical

The architectures we have been describing in the 1last few
sections can be represented, as shown in Figure III-9-A, as
processors communicating through a complete connectivity
communication medium to memories., We call this collection
our processor, specifically our multiprocessor. If we
observe 1in detail the entities called processors in Figure
IT1I-9-A, we find that they are 1in fact composed of
processors and their 1local memories, as shown in Figure
IITI-9-B. Thus, the "processor" component of our
multiprocessor is in fact made up of processors, memories,
and a communication medium connecting them. If we examine
in yet greater detail the entity which at this level we call
a processor, we find that it in turn may be made up of a
microprocessor connected through a communication medium to a
micromemory, as shown in Figure III-9-C. This sort of
microprogrammed processor is an effective economical way of
fabricating processors today. The overall system, as shown

in Figure III-10, has a distinctive hierarchical tree

structure. This provides a suggestion for expansion.

i
g
E
¥
;

Figure III-9

What is a Processor?

I--;—_L- e =

i
™,
NP i

III-43

Figure III-10

The Hierarchical Structure

ra = - »*
————— = . —-—
b + H s o " J)

T

&l

i L el e =

=z]

Hierarchical III-44

There is no need for & microprocessor to access another
microprocessor’s micromemory. Similarly, there is no need
(other than on error conditions, as described earlier) for a
processor to access another processor’s local memory. If we
can divide the system into modules each of which contains
processors, memory, communication logic, and I/0 equipment,
and each of which handles the majority of its tasks
internally, without need for access to other modules, we can
extend the structure diagrammed in Figure III-10 by an
additional level, to give that shown in Figure III-11, 1in
which each module has access to the overall shared memory

for those few communications which must occur.

This structure may be extended by additional levels to the
extent to which the program complies with the sort of
modular structure described above. This hierarchical
structure imposes a communication delay which is the sum of
the delays at each level to cross multiple levels. However,
such references are presumably less and less likely as the
nunber of levels increases. A microprocessor gets words
from micromemory at a rate of perhaps 150 nanoseconds, while
the processor references its local memory at a rate of one
reference per 1.4 microseconds, and references shared memory
at a rate of one reference per 6 microseconds. Thus, the
delay added at each stage, while added to tnat from the

previous stages, has a decreased effect on program execution

time. However, substantial decreases in the size and cost

o S e el O s 5 i RS

— & e e S
- :
E III-45
!
C M ;
4
| &
{
1
| _;

i Figure III-11 ;
| One More Level
8

A T S —

R e 2 Gy

i

Hierarchical III-46

of the communiczation 1logic, as compared to complete
connectivity schemes, can be achieved, since there is no
need for each processor at a given level to be able to

communicate to other proceésors' memories at that level.

The structure can also be extended at a given level. We
have so far discussed organizations which have only one
microprocessor per micromemory, and only one processor per
local memory. There can be multiple processors connected to
a given memory at any level, provided the memory bandwidth
is sufficiently higher than the processor bandwidth
requirements that a given memory can support multiple
processors. This permits savings in system cost, due to the
reduction in the number of memories required to support a
given number of processors. A study of the effects of

multiple microprocessors sharing memories is given in [17].

Sunmary
This concludes our discussion of multiprocessor
architectures. We began the discussion by considering two

general architectural auestions. We contemplated the issue
of coupling a "private" memory with each processor, and
concluded that where feasible, such a memory can
substantially improve system cost, performance, and
reliability. We then addressed the problem of processor

selection, first observing that for a given

price/performance characteristic, benefits in speed and cost

SN Y

Summary III-47

derive from slower, 1less expensive processors, We then
described how the performance of a group of processors might
be compared in order to evaluate the price/performance

characteristics.

We then turned to a discussion of various architectures,
pointing out the strong and weak points of each. We
concluded that for systems of a few to a perhaps two dozen
processors, the distributed crossbar switech 1is the most
attractive, whereas for systems of many more processors, a
more hierarchical structure, containing nodules of

processors, is more appropriate.

L P e 4, snctililieti s TV

e . . et el . e

4,

@ | ' PRECEDING.PAGE BLANK-NOT FIIMED

‘ (" i - & ogt . b

=

Chapter 1V

‘ PLURIBUS - A REAL MULTIFROCESSOR

In the preceding chapters we have considered various aspects
of the design of multiprocessors. In the first chapter, we |
concluded that a homogeneous control parallel organization
] was advancageous. In the second, we determined that an
3 asynchronous design was feasible and attractive in terms of
e flexibility and reliability. We concluded further that

me thods to detect and survive component failures are

e ugT o oS ———

worthwhile to improve system availability. In the third
chapter, we reviewed various architectural issues and
concluded that a distributed crossbar switch organization,
with private memories and slow, inexpensive processors, was

the most desirable structure for a system with perhaps a

dozen processors.

> In this chapter, we will describe a multiprocessor built on
the basis of these conclusicns. This system, the BBN

Pluribus, is an asynchronous homogeneous control parallel

multiprocessor with a distributed crossbar switch
communication medium, incorporating private memories and

:. slow inexpensive SUE* processors.

We will first describe the objectives which motivated the
design of this system, reviewing botnh the initial goals and

additional considerations which arose as the design effort

% SUR is a trademark of the Lockheed Electronics
Corporation.

Pluribus - A Real Multiprocessor Iv-2

progressed. We willi then turn to a detailed description of
the system itself, discussing each of the ma jor system
components and their significant features. We will then

turn to an evaluation of this system as a powerful computer

aed R e B RN =

in terms of cost and performance. We will consider the
l Pluribus in two applications, First, we will examine its
1 performance in the High Speed IMP application for which it

was originally designed, to determine the fraction of the

computational power 1lost to communication and queueing
i delays, and thereby the effective power of the Pluribus in
{ this application. We will also describe the current state
of the failure survivability features of the Pluribus IMP.
We will then compare Pluribus performance with that of
several other large computer systems on a field secan

application considered a good model for an optimizing

compiler,

These evaluations are necessarily crude, since the Pluribus
is still under development, and real performance
| measurements cannot be obtained. We have attempted to make

} our estimates of the Pluribus conservative and our estimates

f of other systems generous. Even so, the price/performance

| characteristics of the Pluribus appear very substantially
superior to other computer systems. This, then, 1is the

demonstration of the validity of the thesis that a

means of building a powerful computer system.

|
| i
' ‘ multiprocessor organization can provide a cost-effective

Design Objectives IV-3

IV A - Design Objectives

The initial design objective of this project was to improve
the speed of the already existing ARPANET IMP [18,19]. As
the design proceeded,. the objective of speed took second
place to that of modularity, in particular the ability to
build small, inexpensive units out of the same technology.
More recently, the potential improvement in reliability has
become of increasingly central concern, until at present it
is the single most important objective of the project. This
shifting of emphasis over time has altered the schedule
substantially, but has made no major alterations in the
fundamental design of the system, nor in our expectation

that the system can meet all of these objectives.

We discuss these objectives below.

IV A 1 - Faster

The initial design objective was to build an IMP that would
be faster by a factor of ten than the present IMP, which was
built around a Honeywell DDP-516 minicomputer. The speed
improvement sought was a factor of ten in processing speed
over the 516, to produce an IMP which could handle roughly
7.5 megabits per second of throughput traffic, as compared

to the roughly .75 megabits then available from the 516.

The IMP’'s job is that of a communications processor.

Arriving messages must pass through an error control

=

. tw R TP Tpa——s R

e il ma o

Faster IV-4

‘\ algorithm, be inspected for such information as destination,
| and generally be rerouted out another communications li..e or
to a Host computer. Some messages, such as routing
| information messages, are generated and digested by the IMPs

themselves. The IMP must also concern itself with flow

control, message assembly and sequencing, performance and
| flow monitoring,; Host computer status, line and interface
| testing, and many other housekeeping functions. All of this
requires processing power proportional to the amount of data
to be handled per unit of time. In addition, memory is
required, both for program storage and for data buffering.
I/0 interfaces to communication lines and Host computers are
also required, with data paths to memory of sufficient

bandwidth to support the required data rates.

The requirement of a factor of ten increase in throughrut
over a 516 implies in this 4instance a processing power
increase of a factor of five over the 516 processor, because
in the 516 the DMC channel used for all I/0 transfers into
and out of memory requires four memory cycles for each data
word transferred. It was observed that the program required
‘ about eight memory cycles per word of data. Thus, half the

power of the machine was being spent on I/0., An

architecture which permits the processor(s) to run without

interference from the 1/0 is therefore inherently fastar by

a factor ¢f two.

LT

Faster IV-5

For reasons of the gut feelings of the people involved,
coupled with crude estimates of the delays to be added by
the communicaticn logic, queueing for shared resources, and
additional code complexity in a multiprocessor environment,
it was guessed that these inefficiencies would slow the
system by an overall factor of two. This then offset the
factor of two gained by removing 1/0 -~ processor conflicts,
and implied that the number of processors required would be
enough to produce a factor of ten in pure processing power
over a 516. Thus, our system should include ten 516
processors, or a proportionately larger number of slower

processors, or a proportionately smaller number of faster

processors,
IV A 2 - Mogular

As the very early system design proceeded, a comparison of
high speed uniprocessors using very simplistic instruction
sets with multiprocessors built from commercially obtainable
processors showed that for our application, the two
approaches were roughly comparable in terms of cost.
However, the multiprocessor approach has advantages 1in
reliability and in modularity. A machine built out of the
same system components with fewer processors, less
communication logic, ard less memory, could support the same
system, even to the c¢xtent of executing the identical

program, at a much reduced cost. This ability to build

small inexpensive systems which could then be expaaded in

Modular IV-6

the field as needs increased was the key consideration which
swung the choice toward the multiprocessor approach. The
processor which was chosen was at the time one of the very
smallest and least expensive processors commercially
available, which meant that a very small system - containing
only one processor and no communication logic - could be
; ouilt at a fraction of the cost of the 516 IMP, but could
| still run the program written for the high speed systenm,

thus saving a major reprc "ramming cost.
IV A 3 - Reliable

As the project progressed from system design through
component design and debugging and into hardware system
construction and debugging, the issue of reliability of the
resultant IMP became more and more important. As discussed
in ihe previous chapter, the detailed consideration given to
! the 1ssues of reliabiiity in the design of a multiprocessor
system can make the difference between a system whose
reliability 1is far worse than that of any uniprocessor and
| one whose reliability can, we hope, far exceed that

obtainable in a single processor.

A primary reason for the added emphasis on the reliability

features of the proposed system was the unreliability of the

old style IMPs. A Averaging over-an 18 month period from June
]

{ 1972 throdugh November 1973, while the number of IMPs in the

ARPANET grew from 29 to 45, and the per node traffic rose

Reliable Iv-7

from just over one million to over three and a half million

packets per day, the average IMP down rate was 2.35%. This
‘ figure includes preventive maintenance, site power problems,
and all other causes. Of this, 1.56% was attributed to
hardware or software failure, There was no obvious
improvement or degradation in these figures despite the
substantial increases in network size ard traffic. The
‘ average of the months”® MTBFs was 397.3 hours, the average of
, the MTTRs was 5 hours 51 minutes., It is envisioned that the

new system will substantially improve bcth of these figures,
I in that a component failure should no longer imply a system

down, and in the case of system crashes, it should be
J possible to bring the system back wup in a smaller
configuration instantly, without first diagnosing the
precise cause of the failure. While a down rate of 1.56%
' blamed on combined hardware and software failures may seem
small at first blush, when considered as the system being

unexpectedly down for 22.5 minutes each day, it is abysmal.*

* IMP reliability has improved since th:se statistics. In
January 1974, a new effort to improve network reliability
was begun, including the assignment of the author to¢ this
problem. The statistics averaged over the nine months
August 1974 to April 1975 are as follows:

Down Time (All Causes) .89%
] Down Time (Hard/Soft Failure) .32% -
MTBF 510 Hours

Y - MTTR 1 Hour 34 minutes

ety W AN

The System Iv-8

IV B - The System

Given these three objectives - Speed, Modularity, and
Reliability - we now describe the multiprocessor system we
have designed to try to achieve them, The fundamental
arguments comparing various choices we made to other

possibilities were given in previous chapters.

IV B 1 - Architecture

The general architecture chosen was an asynchronous
multi-bus system, with separate similar busses supporting
processors, shared memory, and I/0 devices. The system is
designed around the Lockheed SUE computer, because it had
the most attractive price/performance ratio of any machine
available at the time of the selection, in addition to
having the most convenient interfacing arrangement. The
communication medium is a distributed crossbar switch, for
reasons of speed, modularity and reliability. The task
dispatching is done on a voluntary basis with a
hardware-managed priority ordered self-locking queue of

pending tasks.

» drawing of the prototype system which was built is given
in Figure 1IV-1. The large rectangular boxes represent
busses; the labeled subdivisions represent devices plugged
into those busses, the width of the subdivision being

proportional to the number of cards the device occupies, and

thus its physical width. The interconnecting 1lines

=i

Iv-9

uoTgeandtjuo) snqianid adLjojzodd
T-AI 9Jan3T4d

AN L ¥ atddns

.._ﬂ- |

L -~

_M

o o " " 1] o Alddns
AR RS

—— TR

3

§

i

>

DUl
WL

i

Architecture IV-10

represent Bus Coupler cables. The overall prototype system

occupies three six-foot high 19 inch equipment racks.
IV B 2 - The LE. SUE

The SUE 1is an inexpensive micro-programmed minicomputer
introduced by Lockheed Electronics Corporation in 1972. In
addition to the processor, the SUE line contains memories
and various I/0 interfaces as well as card guides, busses,
consoles, power supplies, and other components useful in
putting together a computer system. The acronym SUE stands
for System User Engineered, reflecting the design philosophy
that the system user can purchase those components necessary
tv the system he wishes to configure, and can then construct

the system by simply plugging together the components.

In this section, we describe the salient features of the SUE
wnich led to 1its selection as the basis for the Pluribus.
We begin by presenting a brief history of the ways in which
computer busses have developed, cbserving that the 3UE bus
structure represents an ideal basis for a system such as the
Pluribus. We will then describe the SUE’s Bus Controller,

and finally the SUE processor itself.

IV B 2 a - The Single Bus

In the earliest days of digital computation, peripheral
devices were connected to processors by simply cross-wiring

from the central input and output logic to the peripheral.

— ; . e S s Rl e

ity ot — - e e N R T I T e RN

The Single Bus IV-11

As the number of peripherals on a given processor increased,
it was observed that an increasing amocunt of centralized
logic needed to be given over to input mixers and output
buffer/drivers. This, combined with a desire to create a
uniform publishable specification for interconnection of a
given processor and a general periplieral, led to the
emergence of the I/0 bus, which was both electrically and
physically different from the majority of the logic in the
processor., Electrically, the bus is typically connected to
by high power drivers and very sensitive receivers, so that
an essentially arbitrary number of devices may be connected
to one bus. Physically, the bus is typically made up of
controlled impedance noise-immune wires, either coaxial or
twisted pair, to permit some degree of control over noise
and reflection characteristics. The bus can then typically
be daisy-chained through the various peripherals, and can be

physically quite long.

As large systems with many modules of memory started to
become common, it was realized that the bus concept could
profitably be applied to the problem of connection to
memory. This "memory bus" had certain characteristics which
differed from those of the I/0 bus, however. The first
noteworthy difference is the importance of the speed of
operation, A processor spends a small fraction of its time

executing I/0 instructions, so that slowing these by a few

microseconds, to reduce dependence on bus reflections, will

The Single Bus IV-12

have 1little effect on the overall system performance.

Slowing each memory cycle by a few microseconds, however,

would reduce the system power by a large factor. Therefore,
the memory bus must be made as fast as possible, and
preferably fast enough that the delay introduced is small

compared to the time taken by the memory system itself to

retrieve information.

A number of considerations simplified the achievement of
this goal. First, the memory bus was private. The
manufacturer considered himself to be the only one building
devices to connect to this bus, and therefore did not need
to be as careful in accepting sloppy signals. Second, since
the cost of a module of memory was substantially higher than

that of I/0 interfaces, proportionately more money could be

spent on the interface without having the interface cost
become too large a fraction of the module cost. Third,
since there were still fewer memory modules than I/0 devices
on typical systems, the cost of the memory interface had
less impact on the system cost. Finally, the few memory
modules could be physically located very close to the
processor, permitting a shorter bus. Thus, the typical

system was drawn with two busses connecting to a processor:

a slow, sloppy, and cheap I/0 Bus, and a high-speed,

close-tolerance, expensive Memory Bus.

GR1 Computer Corporaticn introduced a concept in computers

of having a single bus through which all devices

3 e |- e M [T Aty e ' x

B o iy €

;
|
|

|
|
|

The Single Bus IV-13

intercommunicate, with modules of different capabilities
which could be connected to this bus to form a system well
suited to a particular task without very expensive design
costs. This was a particularly timely development, since
the maturity of integrated circuit technology was making
electrically clean interfaces cheaper, while the advent of
tihe mini-computer was making the processing portion of a
computer less expensive. As a result, the busses and their
associated drivers and receivers were becoming a very
substantial fraction of the cost of a system. Further, the
limited power available from the instruction set of a mini
gives an incentive to eliminate special I/0 instructions,
permitting more wuseful instructions. In a single bus
system, communication to I/0 devices and memories 1is
accomplished in the same way, so that the same instructions
can do either, I1/0 commands are recognized by their
distinect set of addresses. Thus, for a multitude of

reasons, the single bus was a concept whose time had come.

The DEC PDP-11 was the first widely marketed machine with a
single bus. In this 1line, DEC offers a variety of
interface- and program-compatible machines spanning a wide
range of price and performance. The single bus, called the
UNIBUS, is daisy-chained through devices in the same fashion
as earlier busses had been. The bus 1is permitted to be
physically quite 1long. To allow for the worst-case delays

over this long cable, and because the interface

_____,A

T e

The Single Bus IV-14

specifications are not as tight as they might economically
be with today’s technology, the bus does introduce
substantial delays into memory cycles, The processor

controls access to the UNIBUS; peripherals may request and

obtain mast.ry of the bus throughh a handshake with the
processor. There is therefore a tight coupling between the

processor and the bus, and one may not generally have one ,

without the other.

The LEC SUE is another single bus machine, in many ways

similar to one of the 1less powerful PDP-11s, but having !

advantages the latter does not, In addition to being
] substantially 1less expensive, the SUE has a physically
2 linited bus with tighter interface specifications, and has
| separated the bus-controlling function from the processor,
permitting systems without one-to=-one processor:bus f

relationships.

The JUE bus, called the INFIBUS, is a 15 inch long printed
circuit card with 24 sockets mounted on it. 111 devices
plug into these sockets. The bus can be extended with a Bus
Extender, which consists of a card which plugs into the last
socket on the master bus, a card which plugs into the first 3
slot of a slave bus, and a cable which interconnects the

two. The slave bus is then logically an extension of the

first bus, but electrically is redriven, so that there are

] never more than 24 elecctrical loads on any bus line. The

bus extension introduces a delay in all communicaticns which

—— o . oA

The Single Bus IV-15

pass through the extender. Communications between master
and slave devices both on the master bus are unaffected by
the extension; communication between master and slave
devices both on the slave bus are slowed by the need to
communicate to the Bus Controller on the master bus;
communications between devices on the two busses are slowed
yet further by the need to pass data and control over the
extension. Even this delay is not large, however. At the

sacrifice of greater delays, busses can be multiply extended

to permit more interfaces.

The advantage of having a bus which is electrically never
more than 15 inches long and has no more than 24 loads is
that the maximum signal propagation time between devices ecan
be kept to a small controlled value, and thus the bus can
run at high speeds. The INFIBUS is capable of supporting
transfers between different masters and slaves at the rate

of 5 million words per second, or 200 ns per word.

In addition to the advantage of a tightly controlled high
speed bus, the SUE separates the functions of processor and
bus controller, The Bus Controller is a separate card which
is plugged into the first socket of each bus except for
extension busses, discussed above. This device has many
duties. It recognizes all vrequests for bus access, and
announces a decision time for the highest priority request
line active. At this time, each device must decide whether

it is requesting on that level. The Bus Controller then

[

b T o * il g e - i i

The Single Bus Iv-16

T g R —

times out all bus transactions, to prevent requests to
unresponsive or non-existent devices from hanging the bus up
permanently. In this system, the processor requests usage
of the bus just as any other device would, but on a special
l lower priority line. This separation of bus control and |
processor functions permits the construction of Dbusses
. without processors, supporting various non-processor master
devices and memory or other slave devices. This 1is
particularly convenient in a multiprocessor environment]
given a distributed crossbar switch communication

arrangement. Busses can be constructed supporting shared

memory and communication devices, but no processors. The
Bus Controller then arbitrates between requests from the
various communication devices, which then access the shared
memory directly. This structure 1is utilized in the

Pluribus.

In addition to permitting busses with no processors, the
separation of bus control from processor permits the
constriuction of busses with multiple processors., Since
processors contend for bus accesses in a fashion similar to
l other devices, multiple processors can contend for the bus. |
| This permits more efficient utiliiation of the bus
bandwidth, since a single processor cannot fully utilize a

bus, but more important, it permits more efficient wuse of

R T A o

the communication 1logic.. If a communication path 1is

established between a bus which supports processors and a

U8 | i W Bl il 2 B T e

T

The Single Bus IV-17

bus which supports shared memory, any number of processors
connected to the processor bus can use the same path; the
multiplexing is already taken care of by the Bus Controller.
This permits the use of smaller, slower, less expensive
processors without increasing the ccst of the communication
logic, which, as discussed in Chapter III, decreases the
cost of the processing power 1lost due to communication

delays. in the prototype Pluribus, each processor bus

supports two processors.

IV B 2 b - The Bus Controller

We have repeatedly mentioned the general problem of
arbitration between competing requests, and the fact that in
the ZIUE, this problem is handled by a separate device, the
Bus Controller. We now describe how it accomplishes this,
and how the INFIBUS is used. The technique seems well
suited to the problem of constructing a multiprocessor,
permitting a wuniform technique to be used for all of the
,arbitrations necessary in a system, The electrical and
physical standardization which is possible as a result
reduces the complexity of the system in terms cf
comprehersibility, reduces the number of devices which need
to be designed and stocked, and permits the combination of

logically distinet busses onto the same physical bus, where
bandwidth considerations permit, without the necessity of

modifying the design of the devices to be supported.

e — V! -

R

The Bus Controller Iv-18

There are six kinds of requests which can be made on the SUE

bus. They are, in order of decreasing priority, as follows:

1) Device Data Transfer requests. These are requests
from a non-processor device requesting mastery of
the bus to transfer data to a slave, without

involving a processor.

2-5) Interrupt requests at any of the four possible

priority-ordered levels.

6) Processor requests. These are the means whereby
processors request memory cycles for instructions

or data.

The Bus Controller monitors these six request lines
continuously. When a device wishes a cycle, it asserts one
of these lines, if the Bus Controller is permitting that
level of request at that time. Upon detecting a request,
the Bus Controller picks the highest 1level on which a
request 1is presently active, and disables further requests
at that level. DNDevices are no longer permitted to raise new

requests on that level, and their internal 1logic 1is then

allowed to :settle, deciding whether or not that device is

requesting. After waiting enough time to permit each of the

devices’ requesting logic to settle, the Bus Controller
sends out a precedence pulse. Unlike the other bus lines,

this signal is daisy-chained through each device. Devices

which cannot be bus masters simply pass the signal directly,

T - re —gifv’“-' LS S ST ot s S A A - = B |

U s scevaar st oy 2 AR S TR A 00 w0 - " G T T IR T SRR

st

The Bus Controller IV-19

while those which may request cycles use the pulse to
interrogate the request logic. If the device was requesting
! a cycle at the appropriate level, it captures the precedence
pulse, and sends back to the Bus Controller an acknowledging

signal. If the device concludes that this pulse could not

|

be for it, it passes the pulse to the next device, through a
single Schottky gate. Thus, the precedence pulse propagates
| very quickly from the Bus Controller to the requesting

device.

After a device has been selected in this manner to be master
of the bus on the following cycle, it may begin its data
transfer as soon as the previous cycle is finished. The
address, data, and control lines are connected in parallel
to all devices; any device can read or write these lines.

; If either of the two bus cycles - the select cycle,

described above, or the data cycle - should appear to the
Bus Controller to be taking an unreasonably long time, the
Bus Controller will abort the cycle and issue a special QUIT
signal, informing the devices involved of the failure, and

instructing them to abandon the transfer.

This Bus Controller then is used to resolve all electrical
conflicts in the Pluribus. On processor busses, it resolves
possible conflicts among processors, interruption requests,

and requests for data retrieval and storage for diagnosis |

and correction of failures. On shared memory busses, it

arbitrates among the requests from the various processors

g

R TR S

and I/0 devices for access to the shared memory.

: i =ty % e b i e el i s |t v F
3 * - ¥ - F

B i N)

The Bus Controller IV-20

We have spoken of busses which support processors and of

| busses which support shared memory. There is a third sort

' of bus in the Pluribus, which supports I/0 devices. These
I1/0 busses are physically and electrically the same sort of

SUE busses as the others; however I/0 devices are somewhat

different from either processors or memories, and share some |

of the characteristics of each, in terms of their required |

* — -
v +
e T T S R —

systemic connectivity. An I/0 device looks like a processor
to shared memory, in that it requests memory cycles through
the communication medium in the same way that processors do,

and thus need to have the same sort of access to the shared

i memory busses that processor busses do. On the other hand,
1/0 devices look like memories to processors, in that the
processor needs to be able to write command information to
the device and read status information from the device’s
4 control registers. In this way, processors need to be able
to access I/0 devices in the same way tnat they access
memories, implying that the same communication logic must
exist between processor busses and I/0 busses as exists
hetween processor busses and memory busses. Thus, the I/0
busses appear as both processor type busses and shared

memory type busses to the communication logic.

The Bus Controller is also used on I/0 busses to arbitrate

among the requests from the various devices which may be

requesting access to shared memory through the communication

i logic, as well as those from the communication logic, which

The Bus Controller IV-21

may be presenting a request from a processor to read or
write a device control register. Thus, this one device is
used throughout the system to resolve all electrical

L 4

conflicts,

IV B 2 ¢ - The Processor

The SUE processor 1is a slow (3.77 microseconds memory to
accumulator ADD) 1inexpensive ($597 1in 1972,% given a U40%
discount) microprogrammed machine with a very
attractive/price performance ratio. It is built on two 6.25
X 13.5 1inch cards, and can thus be duplicated on a single
bus without using up massive amounts of physical space. It
is generally microcode limited in its timing, and keeps the
bus busy substantially less than 50% of the time, so that
two processors on a single bus do not often conflict. Thus,
as described above, it is practical to put multiple
processors on a single bus, and as described in Chapter III,
this represents a substantial savings in the cost of the
processing power wasted due to communication delays, given
that the input multiplexing comes free with the separate Bus

Controller.

* The current price of a SUE processor is more difficult to
compute, because Lockheed’s current pricing algorithm is
based on systems, rather than components. The effective
price of a processor has increased since 1972, due in part
to additional complexity which has been added to fix
original bugs, and can be approximated as $1000 in 1975.

Bus Couplers Iv=-22
IV B 3 - S Couplers

As has been mentioned, the communication scheme used in the
Pluribus is a distributed crossbar switch, using the INFIBUS
arbitration to do the multiplexing at the memories. The
atomic communication unit of this switch is the Bus Coupler,
which consists of a card which plugs into a processor bus, a
card which plugs into a memory bus, and a cable which
connects the two. One of these devices is required between
each processor bus and each memory bus, and between each
processor bus and each I/0 bus. A similar device, whose
differences trem this Bus Coupler we will note, is also used
to connect each I/0 bus to each shared memory bus, Thus,
the total number of Bus Couplers of both types required to
interconnect a system with P processor busses, M shared
menory busses, and I I/0 busses is PEM+M¥I4P¥T, The
prototype Pluribus contains seven processor busses, and two

each memory busses and I/0 busses, and thus requires 32 Bus

Couplers.
IV B 3 a - Inter-B ommunication

The Bus Coupler’s primary duty is to receive requests at the
processor end, transmit them to the bus at the memory end,
and transfer the data in whichever direction is required,
To accomplish this, the BRus Coupler Processor end (BCP)
appears as a memory or other slave device to the processor.

When an address is recognized to be within the range to

&
13
[
I
3
13
4
B

- e S LU SR S U e = o dbe

.
P

Inter-Bus Communication IvV-23

which that coupler is set to respond, it will forward the
request down the cable to the Bus Coupler Memory end (BCM),
which then requests bus mastery for the next cycle. When it
is granted mastery of the bus, it then requests a memory
transfer at tne address which was specified by the
- processor. Thu:, the Bus Coupler appears as a memory to the
processor, and as a processor to the memory. Except for the
delay introduced by the commurication and additional
arbitration, the processor is unaware that the memory which
it referenced was not on its own bus. Since the processors
are asynchronous and do not depend on any specific memory

timing, the delay does not complicate the procedure involved

in referencing memory.

IV B 3 b - Ancillary Functions

Having presented the primary function of the Bus Coupler, we
now turn briefly to three ancillary functions, namely:
address mapping, locks, and backward bus coupling. While

none of these functions needs to be performed in exactly the

way described, all are necessary in some form in any

practical multiprocessor.

IV B 3 b (1) - Address Mapping

As with most 16 bit minicomputers, the total address space
directly accessible by a processor is extremely limited. To

permit multi-level indirect references or byte addressing,

one bit of any word used as an address is unavailable,

Address Mapping IV-24

leaving 15 bits of address, and thus permitting only 32K
words of memory addressable by a processor. This is
generally inadequate for large systems, which need space
both for program and for buffers. In the Pluribus IMP, 32K
words 1is more than enough space for local, private memory,
of which two to four thousand words are needed. However,
enough shared memory is required to support a wide variety
of infrequently used routines, as well as massive amounts of
buffer space to hold data for a Eound—trip time in a
high-speed satellite-linked network. Thus, some rnechanism
was needed to expand the amount of memory addressable by a
processor, The Bus Coupler was a logical place for address
mapping, expanding a portion of the processor’s 32K word
space to a much larger system address space. In particular,
the 32K words were logically divided into 8 segments of YK
words each. The middle four of these segmeris are mapped
into system address space by appending 7 high order bits to
the 12 remaining address bits to give a system address in
one of 128 4K word segments which make up a 512K word systen
address space. These seven map bits are specified by the
processor 1independently for each of 1its four mappable
segments, In the case of multiple processors on a single
processor bus, independent maps are kept for each processor

(up to four). A diagram of the Pluribus address spaces is

given in Figure IV-2,

sorvdg ssodppy snqranitd
2=-AI 8an3T4g

Te)
o
]
* o
—
| | =
1 syaisiozn|
JIOSNOO B
HOSS3O0¥)
b 0034
I T S
e | Q0T
oinv = o)
SOWOM M SNOTSNINIG 1T 2 r e,
(L0 S TS T e
AR NIAMD TNO0) O32IND003M 5IL0NID w | (937 (nag)
BI10N o/i o
u SN 'd0¥d
0003 ddae
m s -GS c _
...||;._ ~o034
| VR 2 Sactal [SOmW0m ¥ Savm ﬁ preees = DOO0E
1N3m93E HOSS300k|
" SOHOM 1404} IEvddvn
Lo = 1™ -
_ — _ o/l £ | ooesn -~ hossasoud
| ey Q0008
_ E08 | i 5 [ey
3 ANIMS35 u o
| | moonim | inae) Tiavadvn ﬂwnﬂﬂt‘
Je8 | 8n@ an | oo o
4 F cEcd | I " e L L 0083t
W f . = ouod (4 NG
. 5 wi osne _ 0002
| I8 oon3 !
' 0403 (4] J oe | AMOWIN
r — =+
3003141 0003 {4} h | | T P
WAL € SN\ LS a
Filedvie 003 L4 | ooun 4} |
, a3 [I0m 5118 1) 3TV SEIW00V ENE HOSSID0NG
YOOI (30w S8 i+6c) IDVAS SSIHOAY WALSAS
2 . §13ATT 2 sne a00id | [wea)
| Od 00T | oo 4] L o) 5
t 3LNN0D xm =1
_ = Rl 808 id
E £ VI O | o030 s
é avid Oid
i \ 2003 L4) o sna
4] [3nem 0] ooz) 0000141 _
:
W
J ,
) ¥
| |
L F¥ - =
' g
§ 'y . . S & J——— N —

Address Mapping IV-26

Thus, the Bus Coupler maps 4 UK word segments of each

processor’s address space independently into 4 of 128 4K

segments of system address space. Note that this function
is not required of a Bus Coupler which connects an I/0 bus
to a memory bus, since the various devices which might wish
to access shared memory must each keep track of the full 19
bit system address of the location it wishes to access. If
the mapping were included in this path, each device would
have to first access the appropriate map, set it up, and
then, without permitting another device to alter the setting
in the 1interim, make the required reference. This would
introduce substantial complication and overheads”
Alternatively, each device could have a separate map in the
Bus Coupler. This would mean that at design time, the
maximum number of devices supportable by a single Bus
Coupler would have to be specified. If the number is made
low, few devices can connect to a single Bus Coupler,
meaning that many /0 busses with separate Bus Couplers
would be needed in a system which 1is to support many
devices, making the system . pensive. However, 1if the
number 1is made high, the cost and size of having a great
deal of mapping hardware must be paid on every Bus Coupler,

again making the system expensive.

Both of these undesirable effects can be avoided by simply

eliminating the mapping function on those Bus Couplers which

conrect an I/0 bus to a memory bus. In the Pluribus, the

Address Mapping

mapping function
Bus Coupler. As
the BCP in this
the same fashion
know the full 19

to do so without

One other form

Iv-27

is associated with the processor end of the
a result, a different card, a BCI, replaces
application, and communicates to the BCM in
as a BCP, but permits devices which already
bit system address they wish to reference

mapping.

of mapping is provided by the Bus Coupler.

Since the number of status and control registers a given 1/0
’ device has is generally small, a substantial number of
' devices c¢an fit in a small amount of address space. In the
| Pluribus, just under 8K words of system space are dedicated
| to I/0 device control and status words. Each device has a
block 8 words long, so that this address space permits
almost 1024 devices to be connected to a Pluribus. This 8K
block is then referenced very frequently by the programs. |
Further, all programs reference the same 8K block. In fact,
ali references from a processor bus to an I/0 bus will refer

to this segment. Thus, the mapping from processcr address

space to I/0 address space is simple: any reference to the
appropriate area of the highest 8K words of processor
address space is automatically mapped into the corresponding
location in the highest 8K words of system space, on the I/0
bus. This is done by sticking four "1" bits onto the high
order end of the address. This process, known as "F

(hexadecimal F), is

) sticking" performed by all

processor-to-I/0-bus Bus Couplers, letting any processor l

refer to any I/0 address without setting maps.

= A e TV e Ry

Locks

IV B 3 b (2) - Locks

In Chapter II, we discussed the nproblem of synchronizing

software through the medium of an indivisible test-modify
sequence. Since the SUE processor available at tne time of
the Pluribus system design had no facility to perform this
function, and since the function relates primarily to
intercommunication of processors, rather than activities
internal to a single processor, this also seemed a sensible
function for the Bus Coupler to perform. As originally
envisioned, a lock reference would dc a destructive read to
a core memory, but would not then initiate a rewrite,
leaving the contents zero. A number of problems arose from
this implementation, including the problem that the
remaining word would have bad parity, and the fact that the
SUE memory was designed so that if a cycle was aborted in
this fashion, the memory would automatically do the rewrite
half cycle. However, the concept survived, and was
implemented using a Read-Modify-Write cycle, as follows.
Whenever a read reference is made by a processor through the
fourth mappable segment, the contents of that lccation are
fetched in the first half of a Read-Modify-Write cycle, and
returned to the requesting processor. The Bus Coupler then
zeroes the data lines, and initiates the rewrite portion of
the cycle, putiing a correct parity zero in the location.
This operation is indivisible, and thus forms a valid "Lock"

operation. As we discussed in the second chapter, this

ool L A s RS

Locks IV-29

destructive read locking operation permits very high
efficiency by using the datum contained in the lock location

as the locked resource itself.

IV B 3 b (3) - Backward Bus Coupling

In Chapter II, we discussed the examination and modification
of one processor’s registers and local memory by another as
a means of improving system availability. 1In this way, a
single transient failure need not remove a processor from
normal operation for an extended period. We now describe
how this sort of communication 1is accomplished in the

Pluribus.

4 facility is provided in the Bus Coupler to permit
communication in the reverse direction. This is a 1less
favored comnmunication path., Hardware is provided to detect
the deadlock condition of both busses simultaneously
requesting access to the other, and in this case, the
reverse request is aborted. The requesting device 1is then

frree to retry.

Since we wish to reference all addresses visible to any
processor on a given processor bus, we need a window of 4 X

32K words or 128K words, since a processor bus can support

up to 4 processors. This infrequently used facility does

not deserve to take up this much system address space. As a

result, mapping is done between an 8 word BBC window and the

128K word target space. Fourteen bits are required for this

transformation.

kT

Backward Bus Coupling IV-30

As we discussed in Chapter II, this facility is a dangerous
one, giving a processor the power to bring down the entire
system. For this reason, a password must be given to the
hardware befor¢ it will permit any references to be made in

the reverce direction.

IV B 4 - The Pseudo-Interrupt Device

In the second chapter we also discussed various techniques
for allocation of tasks among processors. We concluded that
there were substantial advantages in a voluntary task
allocation regimen, with assistance from a hardware device
for queue management and locking. The Pluribus
Pseudo-Interrupt Device (PID) is such a device. We now
point out some of its characteristics, and the reasons for

its placement on the I/0 bus in the Pluribus.

IV B 4 a - Characteristics

The PID appears to the program as a small block of memory.
Its fundamental property is that it holds the state of 128
priority ordered flags. When a seven bit number is vwritten
to the device, the flag at that priority level is set, to
indicate that there is something to be done at that level,.
When reail, the device returns the seven bit number
correspond. & to the highest priority flag which is set at
the time, then clears that flag. Thus, a processor may read
the device and get a pointer to a task which needs service,

with the knowledge that no other processor will be given the

same task.

k| bt s

S mg T

Characteristics IV-31

Because the early SUE processors would prefetch the contents
of a mwemory location before storinz into it, it was
desirable to have the storing and reading of flags be done
at different addresses, lest the setting of a new flag read
out, and thus clear, the previous highest priority flag.
When the "write" location is read, the value of the highest

priority set flag is returned, but the flag is not <cleared.

IV B 4 b - Use

As has been mentioned, the PID is used to allocate tasks
among processors. These tasks can be spawned by hardware or
software. An I1/0 device, on completing a transfer to or
from mem~ry, needs to notify some processor that it needs
service, to hand.e the data just transferred and to give the
device a new buffer to transfer. The devices do this by
storing their wunique identifying numbers into the PID on
completion. These numbers are selected by switch settings
on the device, and so can be easily changed. The setting of
the PID 13vels, as well as the simple chzunel functions of
address incrementing, end of block detection, and so forth,
are handled by a Direct Memory Access card (DMA), one of
which is associated with each device which communicates to

the memory in tnis fashion, and which is in effect a simple

full duplex channel.

In addition to these hardware generated tasks, the software

may gener=te tasks., This is done, for example, when a given

s

—

Use Iv-32

strip of code does not complete a task, and so needs to
place the task on the queue before checking for higher
priority tasks. It is also done when the execution of a
given task encounters a fork, a situation in which two
independent control paths are needed to carry on a
computation. At such a point, the processor can simply set
a PID lev-1l corresponding to one of the tasks, while working
on the other one itself. Thus, the "FORK" command consists
merely of a store to the PID. A third situation in which
the program might wish to write to the PID arises when the
program wishes to change the priority of the task it |is
executing. As an example of this sort of level shifting,
upon receipt of an input buffer, the IMP pe.forms various
tasks at a high priority level. As soon as it has finished
the urgent functions associzted with not 1losing data, the
prioriﬂy drops to a more leisurely level to examine the
packet and decide what to do with it. To accomplish this,
the lower priority PID 1level corresponding to these
computations would be set, whereupon the processor would
read the PID to determine the highest priority pending
computation. If there are no higher priority tasks pending,
the processor will reassume the processing of the packet at

lower priority.

Qur discussion of the utilization of the PID has been based
on the assumption of software homogeneity, that is, that any

processor can perform any task it might read from ﬁhe PID.

-
H

Use IV=-33

If this iv not the case, if there are specialist processors,
which run particular tasks well, the structure described is
not as suitable. If these special tasks are infrequent, the
problem can be handled by simply having a processor, on
acquisition of a task.for which it is not well suited, again
read the PID, in hopes of finding a more suitable, if lower
priority, task. This process can then be repeated, without
forgetting any of the values read, until an appropriate task
is found or the conclusion is reached that there is no such
task. At this point, the processor must put all those tasks
it rejected back on the queue by rewriting to the PID the

list of numbers it read.

This technique fails if it must be used frequently, because
of the large overhead associated with it. Very 1little
benefit would then be derived from the PID, and a software
managed queue would probably be more efficient. If this
sort of special task arises only infrequently, however, the

mechanism is practical.

In the event that this sort of specialization is a
fundamental precept of the system, which it is not in the
Pluribus IMP, a more sophisticated PID could be built. For
example, a number of 128 bit masks, corresponding to
different specializations, could be stored in the PID. Upon
requesting a level, the processor would then provide an

identifying code from which the PID would 1locate the

corresponding mask, and report back, and clear, the highest

syl e Selple il =i e b S S e

Use ' IV-34

oriority level allowed by that mask. The processors would
presumably be able to modify the masks at will, as
l specialties changed, or as they discovered themselves
underutilized, and thus willing to zccept tasks they would
perform less efficiently. Such a PID would probably be
substantially more complex than the one card 67 integrated
circuit PID which the Pliribus uses, but still need not be a

‘ substantial fraction of the system cost.
]

IV B 4 ¢ - Where Should They Be?

l A question remains as to the appropriate location for the
PIDs. Since they must be shared by the processors, they
must live on a shared bus, either an I/0 bus or a memory
bus. The advantage of an I/0 bus location 1is that the
processors can then reference them directly, as explained in
the address mapping discussion above. This is an advantage
because they must be referred to frequently by the |
processors, each time a task is to be stored or retrieved.
i ‘ The advantage of a memory bus 1location is that any 1I/0
device can then reference any PID. If the PIDs are on I/0
busses, devices can only reference the PID on their own bus,

since there is no communication path between the various I/0

—rree e

| busses. Thus, if a PID should fail, all devices on that I/0

bus become unuseable.

k| The counter-argument is that the PID is a simple device, and

substantially more reliable than power supplies or Bus

e ——— e e

Where Should They Be? IV-35

Controllers. If either of these devices should fail, all
I/0 devi~es on the bus would become unuseable. Further, if
any device on the bus should fail in such a way as to hold
one or more bus lines in one state, the bus, and thereby all
devices on it, becomes unuseable. If a given device 1is
critical, it must be duplicated in order to survive these
failures. Interfaces can be (and in the Pluribus IMP have
been) designed so that multiple interfaces can be connected
ir parallel to a given device, and a failure in one, or 1in
the communication path from the processors to that one, is
very unlikely to interfere with the operation of the other.
We expect PID failures to be of so much lower probability
than these other classes of failure, and no more drastic in
its implications, that the loss of all devices on an I/0 bus
because of a PID failure seems a small price to pay for

instant access from all processors.

An additional complication of having the PIDs on memory
busses 1is that the prccessors would then have to be able to
programmably set the address of the PID that each device
would try to reference, so that the PID referenced could be
changed on PID failure. This additional complication to the
logic of each device interface is a further argument against
having the devices able to access any PID. Since that is
the only advantage of having PIDs on memory busses, this is
a further argument for PIDs on I/0 busses. These

considerations led to the placement of PIDs on I/0 busses in

the Pluribus.

S] T LI . dom il

Performance IV-36
IV C - mance

In this section, we will evaluate how the Pluribus performs
as a powerful computer. We will first examine its
application as an IMP. We will analyze the
store-and-forward inner loop of the IMP code to determine
the expected slowdowns due to communication and arbitration
delays as well as those due to queueing delays. We will
also mention the present status of the failure recovery

facilities.

We then turn to an evaluation of the Pluribus at a job other
than the one for which it was originally designed. We will
study the behavior of the Pluribus doing optimizing
compiling of Fortran programs, as modeled by the lexical
scan programs studied by Solomon [20]. We compare the
Pluribus price and performance at this application to those

of various other large computer systems.

IVC 1 - As an_ IMP

We here present infermation about the Pluribus IMP
store-and-forward main-line code, derived from instruction

counts done by W.R. Crowther on May 16, 1975. From these
data and the queueing models derived in Chapter II, we will

derive the expected amount of computational powef lost due

to the multiprocessor environment.

As an IMP V=37

The total program time neglecting all communication and
queueing delays was 1427.42 microseconds. There vere 721
r¢ferences to local memory; all were reads. There were 174
reads and 60 writes to common memory. Six writes and 11
reads went to the I/O area. At present, the communication
and arpitration delays involved in going through a Bus
Coupler to a remote bus add one microsecond to each such
reference. The memory cycle time is 850 nanoseconds; memory
read access time is 480 ns; memory write access time is 280
nanoseconds. I/0 access times, both read and write, are

roughly 280 nanoseconds.

From these data we can compute that the total loop time,
taking into account the slowdown due to commun:.cation and
arbitration delays, is 1427 . 42+1TU+60+1146 = 1678.42
microsec~nds, so that the fraction of the computing power

lost due to communication and arbitration delays is 17.58%.

We cen further compute the utilization factors for each of
the hardware resources: the I/0 busses, the memory busses,
and the local processor bus. For the purposes of these
computations, we assume that the references are evenly
distributed between the two I/0 busses and between the two

memory busses.

In addition to the prccessors’ use of the I/0 and memory
busses, the I/0-to-memory .Jata transfer utilizes a portion

of the bus bandwidth, and thus increases the probability of

(ND
4 -

As an IMP 1v-38

a collision. 1In the case of the I/0 busses, each is used by
a processor 2.38 microseconds out of 1678.42, or .14%,
whereas the corresponding I/0 data transfers utilize each
bus 64%*(1+(.28+.48)/2)/2 = 44,16 microseconds, or 3%. We
can therefore neglect the processcr utilization in computing
the probability of a collision, and assume that the bus is
busy only because of the I/0, or 37% in a 14d-processor
system., The expected waiting time if a collision occurs is
1/2%(.26+.48)/2 = .19 microseconds, neglecting multiple
collisions. A processor therefore expects to see a delay of
.37%.19 = .07 microseconds on each of its 17 references to
1/0, producing a total waiting time of 1.20 microseconds out
of 1678.42, for a net slowdown of .07% waiting for 1I/0

busses.

The memory busses are used by a processor 60%,28+174% 48 =
100.32 microseconds out of each 1678.42, Each is therefore
used 50.16 microseconds or 3.0% by each processor. Since
there arce 14 processors, this usage amounts to U42%, which
gets added to the I/0 utilization of each bus of
64%(,28+.48)/2/2%14/1678.42 = 10%.

The probability of a collision is then .52, and the expected
resultiant delay, again neglecting multiple collisions, is
(,28%(17U+6L)+.48%(60+64))/(174+6L+60+64) = ,35 microseconds
producing 111 expected delay of .52%.35 = ,18 microseconds on
each of 234 references, for a total expected waiting time of

.18%234 = 43 microseconds out of 1678.42, or 2.5% lost

waiting for common memory.

.

S, —— s et

S iasinihii

As an IMP IV=-39

The probability of the local bus being busy is the sum of
the time spent doing local reads and writes plus the time
spent reading and writing common memory and I/0 plus the
communication delays on those references, divided by the
total program time, or:
(.28%(6+11460)+.48%(1744721)+1%(6+11460+174))/1678 .42 =.42
In the event of a collision, the expected delay would be
(.28%721+41.28%(6+11+174)+1.U8%60)/(721+46+114174460)/2 = .28
microseconds, so that the expected waiting time for a
processor would be .42%,28 = ,12 microseconds on each of its
972 bus uses, producing a total waiting time of 112

microseconds out of 1678.42, producing a 6.7% slowdown.

There are four software resources that this code locks which
are likely to be utilized by other processors. Two of these
are utilized 32 microseconds by each processor, the other
two 44 microseconds. In Chapter 1II, we derived the
following expression for the slowdown attributable to
collisions:

(N=1)/(2%N##2)ujuso
where N is the number of processors utilizing the resource,
and U 1is the total fraction of the time that resource is
utilized. This can also be expressed as

(N=1)/2%u%#2
where u is the utilization of the resource by a single
processor, Thus, in a 14 processor system, these resources

account for slowdowns of .24% and .45%, respectively.

‘m}wﬁﬁ

L Beom s T el L e —— e . - IR, IS

As an IMP IV-40

We are now in a position to accumulate all the different
slowdowns due to waiting into a single factor. This overall
loss due to queueing delay is then
1=(1-.0007)%(1-.025)%(1-.067)*#(1-.0024)*%2%(1-,00U45)**2
s .10

Tn other words, ten percent of each processor’'s time is
spent waiting for shared resources, so that the new program
time is 1678.42/.9 = 1870 microseconds. Comparing this to
the original program time in a uniprocessor of 1427.42
microseconds, we discover that the multiprocessor version
runs .76 times as fast. Thus, 24% of the computational
power is 1lost to the communication, arbitration, and
queueing delays of the multiprocessing environment, and our
14 processor system is 10.6 times as powerful as a single

SUE.

All of these calculations are approximate. Our models for
queueing for the I/0 busses, memory busses, and software
resources all neglected the possibility of multiple
collisions. This will surely increase the waiting time.
All of the calculations derived their utilization factors
from the unslowed program time. Including the time spent
queued will increase the total program time. Since the time
each device 1is utilized remains constant, this increase in
program t¢ime will decrease the fractional wutilization of

each device, and therefore decrease the probability of

collisions. This, then, will decrease the overall queueing

N

As an IMP IV-41

time. All of these considerations are swamped by the
inaccuracy in the assumption that a processor’s chance of
finding its local bus busy is simply the utilization of that
bus by the other processor on that bus. The arrival time
distribution for processor requests 1is far from random.
Processors tend to make a request, think for a certain
length of time, and then make another request. This permits
the two processors to phase-lock, so that each 1is thinking
while the other is requesting. To the extent this occurs,
the queueing time is decreased. This effect dominates the
other inaccuracies, making our total waiting time
computation be high, and our estimate of the power of the

system be conservatively low.

The Pluribus IMP also attempts to take advantage of the
reliability potential of the Pluribus in that it attempts to
survive component failures. The c¢ode to perform this
function 1is currently in a primitive form; much is not
written, more is undebugged. Nevertheless, with the code
that 1is already 1in existence it is possible to power down
any processor bus or most other busses, and have the system
survive. When power is reapplied to the bus, the components

on it are re-integrated into the system. We take this as

demonstration of the thesis that a multiprocessor is capable

of performing as a very cost-effective, reliable computer.

As an Optimizing Compiler

IV C 2 - As an Optimizing Compiler

In the preceding subsection, we examired the performance and
reliability characteristics of the Pluribus at the job it
was designed to do, the IMP job. In this subsection we will
examine Pluribus performance at a different job, that of an
optimizing compiler. This job was picked for study because
it appeared to be well matched to the Pluribus’
capabilities, in that it contained many portions which could
be executel in parallel, and in that it did not place hecavy
emphasis on arithmetic functions. We will compare the
Pluribus in this application to other large computer systems

in terms of price and performance.

The selection of this application for study, as well as the
techniques for the comparisons and most of the comparison
data itself, was done by C.R. Morgan in a series of BBN

internal memos in January and February of 1974, In these

memos he describes the structure of a five-pass optimizing

compiler for FORTRAN. He then estimates the amount of
memory required on a fourteen processor Pluribus to perform
this function as 80K words of shared memory and 112K words
of private memory, distributed 8K per processor. The cost
of the system he proposed, including disk and other 1I/0

gear, 1is $200,000, according to the May 1975 BBN Pluribus

commercial pricing.

-

PRI SN e

TR

As an Optimizing Compiler IV-43

Morgan then compared the power of the SUE processor to that
of various machines by computing the average instruct:ion
times weighted by the instruction frequencies for the field
scan problem given by Solomon. Morgan comments on this
computation, "For those instructions where number of bits
seemed critical, the SUE processor times have been changed
to reflect more than one instruction execution to handle the
correct number of bits. For arithmetic instructions used
for table lookups and other internal functions 16 bits have
been allowed to replace the 32 bit IBM word size. These

figures should be assumed to be highly approximate."

The weighted average instruction times he computes are given

MACHINE Average Instruction

DEC KA10 2.07 microseconds
IBM 360/65 1.72 microseconds
IBM 360/75 1.62 microseconds

IBM 3707158 0.76 microseconds
SUE 5.63 microseconds

Table 1IV-1
Weighted Average Instruction Times

in Table IV-1. To compute the Pluribus instruction time we
take the SUE instruction time, and divide by 14 for a 14
processor system. We must then take into account the
multiprocessor overhead. If we assume this to be the same

as the Pluribus IMP (we actually believe the overhead in

this application would be substantially lower), we compute

the Pluribus average instruction time as 5.63/14/.76 = 0.53

As an Optimizing Compiler Iv=-44

microseconds, making the Pluribus the most powerful of these

{ computer systems for this application.

We now turn to pricing these systems., We will derive these

prices on the basis of the purchase prices presented in the |
1975 GML Computer Review [21]. The pricing we use for the
DEC and IBM machines is simply the 1low end of the range
presented in Computer Review, and represents the minimal
configuration of that processor which is useful. These
figures are therefore undoubtedly low compared to the cost

of systems capable of performing the optimizing compiling |

function, We therefore feel that this comparison is quite
. conservative, giving the systems other than Pluribus the

benefit of every doubt.

y We can normalize the cost figures by the performance figures

by computing the number of average instructions one gets for
i each dollar on these machines. Assuming a 40 hour week,

there are 173.33 hours or 6.24 #*10%%11 picroseconds in a
| month. By dividing this number by the average instruction

time and by the monthly cost (assumed to be 2.5% of the
! purchase price of the system) of each machine, we get the
corresponding number of instructions per dollar. This {
} figure then provides the desired basis for cost/performance i
comparison. These comparisons are presented in tabular form
in Table IV-2, and in graphical form in Figures 1IV-3 and
Iv-4,

As an Optimizing Compiler

Machine Average Purchase Mega
Instruction Price Instructions

Time ($1000"s) per

(microseconds) Dollar
DEC KA10 2.07 350 34
IBM 360/65 1.72 T48 19
IBM 360/75 1.62 1075 14
IBM 370/158 0.76 1865 18
Pluribus 0.53 200 236

Table IV-2
Cost/Performance Comparison

These comparisons point up the fact that at this
application, the Pluribus is conservatively a factor of
three more cost-effective than any of the other large
computer systems we considered, and is a factor of ! more
powerful than the closest system to it in
cost-effectiveness. We take this as a demonstration of the
thesis that a multiprocessor is capable of performing as a

cost-effective powerful computer.

Summary

In this chapter we described the Pluribus, a control
parallel multiprocessor designed on the principles discussed

in earlier chapters. We began by describing the design

objectives, in speed, modularity, and reliability, to which

the Pluribus was designed, and how the emphasis shifted as
the design effort progressed. We then presented a detailed
description of the Pluribus system itself, describing the

SUE 1line, the Bus Coupler, and the Pseudo-Interrupt Device,

LoSTJaedWwo) S0oUBWIOJISd PU®B 13S0)

€-AI Sdandtd

(SANODJ3ISOUDIN) 3NIL NOILONYLSNI IOVHIAV
o'e Gl ol o)
| | | 1

®
snanNd
®
oLwx 234

®
G9/09¢ W8I

°
GL/09¢ N8I

(SNOIMTIN “) 301d 3SYHINUN

®
8G1/0.€ W8I

T B i

a,.
¥
|
5.

stk

IV-47

snalnNd

Sivi 030

uostaeduwo) SSaUSAT399JJH-3S0D

h—AIL 2JaNnITaI

S9/09¢ N8I 861/0.¢ N8I

GL/09¢€ W8l

61 81

vL

oS

oSt

0ge

dV1100 ¥3d SNOILONYLSNI V93N

Summary IV-48

and pres~nting the functions of each. We then turned to an

evaluation of the performance of the Pluribus, both in the

IMP application for which it was designed, and as an
optimizing compiler, We concluded from these evaluations
that, while final measurements are as yet 'navailable, data
already available demonstrates that the multiprocessor
overhead is not excessive (24% slowdown), and that the
design objectives in terms of reliability are achievable in
that the system can survive component failures. We
concluded further that the cost-effectiveness of the
Pluribus is conservatively 3 times greater than that of any
other large system, and 7 times that of a system approaching
its power. We thus have demonstrated the validity of the
thesis that a multiprocessor architecture represents a very
effective way to construct both powerful and reliable

computing machines.

Chapter V

CONCLUSION
In this chapter, we review the most prominent conclusions of
the dissertation. We begin by examining our original thesis
in the light of the conclusions we have reached, and point
out the ways in which we have demonstrateq the validity of
the thesis. Next, we will briefly review the ma jor
conclusions reached in each of the preceding four chapters.
We will then summarize the design process involved 1in
configuring a multiprocessor, then review some engineering
considerations which enhance the practicality of a
multiprocessor design. We close with a look to the future,
speculating on the impact that this sort of machine

organization will have on computers of the future.

V A - Qur Thesis

Qur thesis, as stated in the introduction, is that the
combining of independent processing elements, when done
properly, represents a vers effective way to construct both
powerful and reliable computing machines. Chapters I, II,
and III discussed methods of doing this combining properly.
Chapter IV described a system built using those methods, and

demonstrated the power, reliability, and cost-effectiveness

of the resultant machine.

We now review the fundamental reasons why the multiprocessor

architecture can provide cost-effectiveness in the design

first of powerful machines, then of reliable machines.

s T N B A B

A Cost-Effective Powerful Machine V-2

VA1~ A Cost=-Effective Powerful Machine

In the t~chnology of any given day, there will be some class
of processor power which will contain the most
cost-effective processors, Processors less powerful than
those in this class may be less expensive, but their power
diminishes more rapidly than their cost, and thus they are
less cost-effective. Such processors are generally designed
to minimize the investment required to obtain a minimal
amount of computation, and little attention is paid to the
power of the resultant system. An example of a processor of
this sort in the January 1974 market is the INTEL MCS-8
nmicrocomputer, a factor of perhaps 30 less powerful, and a

factor of 10 less costly than a SUE computer,

If we consider processors more powerful than those 1in the
optihum ~ost-effectiveness class, we find that more money is
being spent to buy irproved performance, but that the cost
is increcsing more rapidly than the performance. There are
several reasons for this cosﬂ increase. Pirst, sueh
processors are built from vefy high-speed expensive
technologies. These technologies are less widely utilized
than the less expernsive technologies, which increases their
cost further. A second reason for the high cost of these
processors is that they wutilize extremely sophisticated
techniques in the system architecture to maximize the amount
of internal paralleliration pogsible, These techniques

involve great amounts of this hig@ speed logic, both because

T W BM—— e T o . = o i S L g, T R Y N SO e

A Cost-Eftective Powerful Machine V-3

of the complexity of the logic involved and because of the
duplication of logic functions implied by the
parallelization., A third reason for the high cost of
high-speed processors is that in the technology available at
a given time, there is a limit imposed by gate delays and
transition times to the rate at which data can ©be moved.
This 1limit, combined with the limited number of bits which
can usefully be manipulated simultaneously in the majority
of computations, implies a hard limit on the speed available
from a r-al uniprocessor. Greater expenditures can move one
ever closer to this limit, but cannot pass it. Thus, the
gains in power diminish as the expenditures increase,

decreasing the cost-effectiveuess.

what then 1is the computer vuser who needs a powerful
processor to do? Particularly if his requirements exceed
the hard limit of the day’s technology? Perhaps nine women
cannot have a baby in one month, but s r~ely nine computers
should be able to do nine months” w rk in one month. If
those processors are all from the optimum cost-effectiveness
class, the cost should be increased by only the same factor
as the performance, yielding a system with identically
optimal, cost-effectiveness. Independence from the hard
limits of technology is achieved by simultaneously
performing independent operations on independent data, thus

increasing the number of bits which can be usefully

processed simultaneously. This, then is the unattainable

R TR E R g

i ‘.h e "< e AT S R L paina:

A Cost-Effective Powerful Machine V-4

goal of the multiprocessor: system power multiplied by the
number of processors without diminution of the optimal

cost-effectiveness of the processors.,

The cost-effectiveness of the processors will remain
undiminished only if they are not interconnected. If they
are to work cooperatively on a problem, they must be
interconnected into a multiprocessor. This
intercommunication increases the cost of the system, because
of the communication logic now required, and also decreases
the power »f the system, because of the time spent
intercommunicating. Thus, the cost-effectiveness is doubly
diminished. The extent of the diminution is directly
dependent on the amount of intercommunication required. If
such communication is infrequent, inexpensive logic can be

used, and very little time will be spent in communicating.

There remains the question of whether a multiprocessor can
be economically configured for an application which requires
extensive interprocessor communication. The Pluribus IMP
answers this question with a resounding yes. One of every
four processor references in this system is to a shared
resource. Even so, the system slowdown due to communication'
is only 24%, and the cost-effectiveness of the system is

many times that of any system of anywhere near comparable

power.

A Cost-effective Reliable Machine

VAZ2- A Cost-Effective Reliable Machine

Since the earliest days when it was observed that
computational hardware did not always do the right thing,

there has been interest in how to make computers more

reliable. The concept of Triple Modular Redundancy arose,

with the objective of making a machine which could survive
any component failure. While having the advantage that the
computation presently under way could continue undisturbed
in the face of a failure, this scheme has the disadvantage

that it more than trebtles the hardware cost.

The simple concept of backups - having a second machine
following the computation being performed by the first, and
ready to take over in the event of failure - permits a high
degree of availability at a cost of only somewhat more than
twice the hardware cost of a comparable simple system. This
method of availability improvement is dependent on the
ability to detect failures and on some mechanism to transfer
operation to the backup system. Without understanding
precisely how these functions are performed, we can see that
the existence of such functions increases the cost of the

systen.

The asynchronous homogeneous independent control stream
multiprocessor offers a different approach to the

reliability problem by permitting the load to shift from a

I v e P R
.

A Cost-effective Reliable Machine V-6

failing processor to working processors, 1in the event of
failure. We discussed a number of techniques useful in
determining that failures have occurred. The transfer can
be handled in a smooth automatic fashion. At a cost of only
a single additional processor, such a system can survive any
single processor failure. Further, the power of that
processor is available until a failure does occur. Thus,
the hardware cost 1is only incrementally more than that of
the minimum system needed to handle the job in the absence
of failure. This is typically much less than the cost of a

single uniprocessor capable of performing the same function.

We cannot give the same kind of measurements on system
reliability that we can on system cost and power for two
reasons. ¥irst, the error detection and recovery mechanisms
are primarily in software, and the development of this
software 1is not yet complete. Second, measurements on
reliability can only be carried out over a time period many
times greater than the mec¢an time to failure. Particularly
in a machine as reliable as we hope and expect the Pluribus
to be, it will take years from the time when the system is
finally declared complete before any believable availability
statistiecs c¢an be produced. Nevertheless, the current
system is @apable of withstanding total failure of almost
any of the system components, and is further capable of

resuming use of restored components., We take this as a

demonstration that the goals we have set are achievable. It

i

TS SR G, T s e W R, Wt

=

e e

A Cost-eff<sctive Reliable Machine V=17

is our hope that the Pluribus will, in effect, never go

down,
V B - The Main Points

In this section, we briefly review the main points discussed

in each of the preceding four chapters, and the conclusions

drawn.

The first chapter addressed the various forms of
multiprocessors which might be constructed. The distinction
between data parallel and control parallel systems was
considered. We observed that data parallelism is as old as
automatic computation, and that the parallelism in such
modern systems as ILLIAC IV differs from the parallelism
inherent in a PDP-1 only quantitatively. We observe that
large data paraliel systems are useful only for a narrow
class of applications in which there are many bits of data
which can be identically processed simultaneously. We then
observed that control parallel architectures do not suffer
from this limitation because different operations can be
performed on different bits at the same time. We argued
that this sort of structure was capable of fulfilling most

computational requirements,

We then examined pipelining as a technique ¢or achieving
parallelism, and observed that pipelined structures have

some but not all of the desirable charac‘eristics of the

homoszeneous control parallel multiprocesso:. We further

The Main Points V-8

observzd that the latter is capable of, but not limited to,

pipelined operation,

Chapter I closed with a consideration of the problems of

programning a multiprocessor. We concluded that this area

is very wortry of further study, but that there are no major

obstacles to prevent the instant construction of practical

multiprocessors.

We conclude from these considerations that the homogeneous
control parallel multiprocessor is the structure we wish to

investigate further.

In the second chapter, we considered the interactions among
the processors., This discussion was broken into three major
sections. The first addressed the fundamental hardware and
software synchronizing mechanisms reouired for meaningful
communication, We concluded that keeping the processors’
timing independent from one another implied delay to
resynchronize their conflicting requests, but that the
flexibility and modularity gained over synchronous systems
more than. offset this cost. We further concluded that while
hardware devices TIfor the implementation of software
interlocks are not strictly necessary, they are
straightforward to implement, and, particularly if a simple
destructive read is wused to implement the locks, they can
permit a remarkably high degree of efficiency in the

synchronization of conflicting program requests.

The Main Points V-9

In the second section of the second chapter, we considered
the problem of allocating tasks to processors. Aﬁter
cbserving the weaknesses of a variety of interruption
schemes, we presented a voluntary scheme which utilizes a
hardware managed task queue to achieve very high efficiency

and reliability at very low cost.

The third section of the second chapter was devoted to those
interactions among processors whose goal is the improvement
of system availability. We observed that a homogeneous
control parallel multiprocessor has inherent self-backup
capabilities, 1in that working processors can take over the
computationa’ load left by a dying processor. This ability

can only be utilized if there are means available to detect

1 failing components. We described a number of techniques for
:) doing so, and a variety of properties the system components
{ must have to permit advantage to be taken of these

techniques., We concluded that a practical multiprocessor
must employ tnese techniques if it 1is to achieve the

availability levels such an architecture is capable of.

X Architectural issues were taken up in the third chapter. We
first considered the question of whether processors should
possess private memories, and concluded that if the
P application permits the wutilization of such memories, a

tremendous benefit in the reduction of size and timing

constraints on the intercommunication medium derives from

their use. We also considered the process involved in

The Main Points V=10

selecting a processor for use in a multiprocessor.We

concluded that using slower processors of a given
l price/performance ratio reduces the cost of the processing
power lost to communication delays. We considered a
technique for comparing the cost-effectiveness of a number

of processors for a given application,.

k- We then discussed various ways one might interconnect the
] components of a multiprocessor. Of these, we observed the
advantages in expansibility, modularity, reliability, and

reparability of the distributed crossbar switch, and

concluded that this was the structure we wish to employ for
systems of up to one or two dozen processors., For very
large systems, we observed tiat the number of levels in the
tree structure of the system should be increased, to avoid

excessive communication costs.

Chapter IV contained a description of the Pluribus, a
multiprocessor designed on the principles presented in the
earlier chapters. We reviewed the goals which motivated the
design of the system, then presented a description of each
of the major system components, and explained the ways 1in
which the design principles had been implemented. We

concluded the chapter with an evaluation of the performance g

T . ——

of the system in the IMP job for which it was designed and
also as an optimizing compiler of FORTRAN., We presented the

multiprocessor overhead, a low 24%, and the observed failure

L’ ‘ survivability characteristics, that the system would survive

The Main Points V=11

the loss of almost any bus, and would resume use of the bus
upon its return. We took this as a demonstration of the
validity of the thesis that the combining of independent
processors provided a cost-effective way to build a reliable
computer. We compared the Pluribus’® cost and performance at
the . optimizing compiler job to that of several other large
computer systems, and concluded that the Pluribus 1is many
times more cost-effective than any of the others,
particularly as compared to those with speeds approximating
that of the Pluribus. We took this as a demonstration of
the validity of the thesis that the combining of independent

processors can provide a cost-effective way to construct a

powerful computer.

V C - How Design a Multiprocessor

In this section, we will describe a methodology to be used
in designing a multiprocessor consistent with the principles
laid out in the earlier chapters. The technique to be used
is bandwidth matching, by which we mean the selection of
component specifications and numbers such that the data rate
which each component is expected to handle is close to, but
somewhat 1less than, the maximum data rate it is capable of
handling. We illustrate this by describing the selection of

each of the major components in a multiprocessor.

b L i Gl s - an BN e PWE - Tup

Processor Selection V=12

V C 1 - Processor Selection

Given that the fundamental design concept of the
multiprocessor is to get together a number of
technologically current cost-effective processors to achieve
a zZiven computational power, a good basis for a comparison

of processors for a particular job is their

]

9 price/performance ratio on that job. This is not sufficient
information for a complete comparison of processors for a
Job, siace system cost and reliability vary substantially

with the number of processors in a system because of effects

other than processor cost, such as cost and complexity of
the communication medium. As the number of processors of a
given price/performance characteristic increases, the cost
of providing an additional processor for reliability
decreases, as does the cost of the processing power lost due
to the communication delays. The cost of the communication
logic 1increases, however, because of its increased size and
complexity. In a well-designed nmultiprocessor the net |

| effect of these considerations is small compared to the

! processor cost, and thus the price/performance ratio of an s
5 individual processor is the governing concern in selecting a
processor.,

The price/performance ratio of a processor may be determined

~ts

by coding the time-critical portions of the job to be done

= for that processor, and in this way determining the time

taken to process a given amount of data. The inverse of

Processor Selection V-13 '

: this quantity gives the amount of data which can be
processed per processor per unit of time, and is thus a
b_- measure of performance. The price/performance ratio is then
the ratio of the price of the processor to this quantity,
and is therefore proportional to the product of the cost and

|

I
J the execution time for the given amount of data. A
|'

. comparison of this quantity, in units of dollar
m: croseconds, for the various processors under

consideration, will provide a basis for selection of an

appropriate processor.

V C 2 - How Many Processors?

Having selected the processor, wWe wish to compute the number
of processors necessary for our system. This can be done
using the time to process a given number of bits, derived in
our price/performance comparisons, and the number of Dbits
the sysiem needs to be able to process in one unit of time.

The number of processors required is simply the product of

these two numbers, if we neglect the communication,
arbitraticn, and queueing delays inherent in the
multiprocessor architecture. The exact amount of these

delays is dependent on the amount of communication to shared
resources required, and the number and bandwidth of those
resources, Having coded the time-critical portion of the

system program, those references which are to shared

resources can be identified and counted. Given this

‘ information and the number of processors required, again

P S s

e Dl et W et S

How Many Processors? V=14

neglecting the communication and queueing delays, we can
compute the bandwidth requirements on each of the resources,
and whether or not multiple tokens of these resources are
appropriate.- Knowing how many tokens of each resource type
are available, the systemic queueing delays can be
calculated. We shall return briefly to this point after

considering other design parameters.

V C 3 - How Many Memory and I/0 Busses?

The bandwidth requirements on the common memory are made up
of two components: the processor utilization, which we have
just described, and the I/0 utilization. Knowing the amount
of information our system is designed to handle per unit of
time, we have the I/0 bandwidth required directly. The sum
of these two gives us the bandwidth required of the shared
memory, and in combination with the bandwidth available from
a single bank of memory, gives us the number of banks of
memory required. We can also computé the number of memory
busses which will be required to support these memories from
the memory bandwidth requirement and the bandwidth available

from an individual memory bus.

We can now derive the requirements on the I/0 bus or busses.
We computed the bandwidth of I/0 data transferred in our
memory bandwidth requirement calculation. From inspection
of the program, we can derive the 1I/0 bus bandwidth

requirements of processors referencing device control and

& i PR RET P EPT -

How Many Memory and I/0 Busses? V-15

status words and the PID. We can compute the bus bandwidth
utilized by devices setting PID flags from the frequency at
which such pseudo-interrupts occur. The sum of these three
! numbers gives the total I/0 bus bandwidth required. The
ratio of this number to the bandwidth available from a

single bus gives the number of I/0 busses required.

We have now computed the number of each sort of busses
required to provide the necessary bandwidth. Other
considerations may dictate a larger number of busses. In
particular, additional busses may be required if a
sufficient number of physical devices cannot be connected to
the given number of busses, or for reasons of vreliability.
In the prototype Pluribus IMP, bandwidth requirements
dictated two memory busses, each supporting two banks of
memory, and one I/0 bus., It was deemed adequate to be able
to continue cperation with une memory bus in the event of
failure of the other, but the potential loss of the entire
system due to a failure of the single I/0 bus was deemed

unsatisfactory. The resultant configuration contains two

memory busses and two I/0 busses,

VCU - The Communication Medium

We now know the fundamental characteristics required of the
communication logic; we know how many processor connections
; \ it must have, how many memory connections it must have, and

‘ how many 1I/0 connections it must have. Equally important,

——— USRS

The Communication Medium V-16

v
v

we know how much bandwidth will be required of tne overall
communication 1logic, as well as how much bandwiuth will be
required of each point-to-point connection. A communication
medium can then be designed to meet these specifications as
well as other system requirements, such as nodularity,
expansibility, and reliability. (The distributed crossbar
switch has numerous advantages in these areas, and seems a
very suitable arrangemnent for a small to mediun
multiprocessor system.) With the communication logic design
in mind, the communication delays can be evaluated. This
delay plus queueing delays can then be added to each of the
program s references to a shared resource. This time can
then be added to the basic program time to produce the true
program time. From this, we can compute how many additional

processors will be necessary to overcome the multiprocessor

slowdowns.

We have now refined our initial estimate of the number of
processors required by taking into account the delays
encountered. This will increase the number of processors,
but will not effect the bandwidth reguirements on other
system components, since the increase just offsets the
delays which we did not account for in our initial
estimates. Some reconsideration of the communication medium
may be called for because of the increase in the number of

processor connections required. However, since the

bandwidth requirements on this logic have not increased, a

The Communication Medium V=117

multiplexing arrangement may be appropriate to connect two
or more processors to a given connection point of the
communication logic. In the Pluribus IMP, two processors

connect to each processor part of the distributed crossbar

switceh.

V D - Considerations Which Make it Work

In this section we repeat some conclusions reached as to
engineering details which can substantially improve the

performance or reliability of a multiprocessor system,

1) A voluntary task allocation algorithm, particularly
with a hardware-managed pending task queue, can
improve homogeneous multiprocessor performance by
permitting low task-change overhead, without complex

and expensive special-purrose hardware.

2) Per-device da‘a buffering is an inexpensive technique
which can decrease system cost by relieving the
requirement that sufficient processing power be
available to service a large number of devices in a
small inter-block time. This can also relax the
requirement for frequent task-change points, and

thereby decrease overhead.

3) Reliability can be moved from the extreme of

requiring all components to be functional fcr the

-

system to be functional, in the direction of having a

Consicerations Which Make it Work V-18

functional system as long as there is one token of

] each type of component functioning. In order tc move

i in this direction, we need reasonableness checks on
i performance, to be able to detect failures, and
program-activated disabling switches. to be able to
remove failing components from the system. In order
to take advantage of these features, we need a
homogeneous system, so that remaining functional
components <can continue tasks once executed by now
failing components. Some reasonableness checks we

have proposed are:

a) Protection, anywhere from write-protection to

a full capabilities-based system.

b) Diagnostic programs incorporated into the
operational system, which run periodically and
on suspicion of failure, which detect and

localize failures.

c) AXD parity on all memories and all inter-bus

communications.

d) Checksums on memory. i

Some techniques proposed to recover a system after a

failure are:

¥ a) Inter-processor communication permitting any

|
processor to start, stop, examine, or load any |

=2 i

Considerations Which Make it Work V-19

other processor. This dangerous facility

requires a password-like protection scheme.

b) Amputation switches permitting the program to
I i remove failing components from the system. |

: [This also requires password protection.

T oy
—

c) Automatic restarting or reloading of an

| entirely smashed system from normally unused,

I but periodically tested, facilities. '
’ 4) The use of local memories, closely associated with
l
processors, can reduce communication as well as
i queueing delays, while at the same time reducing size

1 and complexity of the communication 1logic, thus

improving system price/performance ratio.
V E - The Future

Many of the key concepts and conclusions discussed in this
dissertation have been embodied in a practical

multiprocessor which is now operational. In terms of

price/performance, it is far superior to any system of
compa~able power. In terns of reliability, it is hoped that
once the software is mostly debugged, the system will be

able to survive any single component failure, and will 1in

effect never be down.

These considerations make this system the front-runner of

all the powerful computing machinery available today. The

{
|
|
|
E
|
|

e W AT R U TS R TT e vun

The Future : V=20

optimum cost-effectiveness class of processors- is
continually moving in th= direction of smaller, cheaper
processors with a higher cost-effectiveness than any
previous processors. Already, an entire processor is nuch
smaller than a single gate of a processor of comparable
power only a decade ago, and is not much more expensive than
that gate was. With the increasing sophistication available
from Large Scale Integration, and with the increasing speed
available from new LSI technologies such as Silicon On
Sapphire, the cost-effectiveness available from "micro"
computers will improve tremendously. These machines,
however, do not have the power to perform in the area of
super-computers that some manufacturers are attempting to
produce. The cost and complexity of these giants make them
impractical to build, infeasible to maintain, and impossible

to market.

The multi-processor techniques described in this
dissertation provide a method of utilizing the increasingly
cost-effective microcomputer technology in the increasingly
impenetrable field of super-computers. This becomes
feasible by virtue of the fact that the cost-effectiveness
remains comparable to the optimum available in the
technology of the day, while the performance and reliability
of the system are dramatically increased. Further, unlike
any previous super=-computers, no individual component needs

to sunport high bandwidth or to run at high speed. This

The Future V=21

permits the use of 1less expensive, more reliable, less
noise-sensitive, more easily debuggable components

throughout the system.

It is my belief that this macnine organization represents
the most promising technique for the design of medium and

large scale computer systems for the foreseeable future.

10

11

LTRSS,

References

G.H. Barnes, et al, "The ILLIAC IV Computer", IEEE
Trans. C-17, Vol. 8, pp. T46-757, August 1968

James S. Miller and Woodrow H. Vandever, Jr., "Design
I'eatures of an Aerospace Multiprocessor", Proceedings
of the International Workshop on Computer

Architecture, Grenoble, France, June 1973

J. Crompton, "Structure and Internal Communication of
a Telepnone Control System", Proceedings of the First
International Conference on Computer Commurications,
pp. 275-281, Washington, D.C., October 1972

D.C. Cosserat, "A Capability Oriented Multi-Processor
System for Real-Time Applications™, Proceedings of the
First International Conference on Computer
Communications, pp. 282-289, Washington, D.C., October
1972

K.J. Hamer-Hodges, "Fault Resistance and Recovery
within Systen 250", Proceedings of the First
International Conference on Computer Tommunications,
pp. 290-296, Washington, D.C., October 1972

Dr. C.S. Repton, "Reliability Assurance for System
250: A Reliable Real-Time Control System", Proceedings
of the First International Conference on Computer
Communications, pp. 297-305, Washington, D.C., October
1972 ‘

F.E. Heart, S.M. Ornstein, W.R. Crowther, and W.B.
Barker, "A New Minicomputer/Multiprocessor for the
ARPA Network", AFIPS Conference Proceedings, Vol. 42,
pp.529-537, 1973 NCC, June 1973

T.H. Myer and I.E. Sutherland, "On the Design of
Display Processors", CACM 11 6, pp. U410-414, 1968

J.E. Thornton, "Parallel Operation in the Control Data
6600", AFIPS Conference Proceedings, Vol. 26-2, pp.
33-40, 1964 FJCC

F.J. Corbato, and V.A. Vyssotsky, "Introduction and
Overview of the MULTICS System", AFIPS Conference
proceedings, Vol. 27-1, pp. 185-196, 1965 FJCC

W.A. Wulf and C.G. Bell, "C.mmp - A Multi-Mini
Processor", AFIPS Conference Proceedings, Vol. 41,
1972 FJCC

Proceedings of a Conference on Programming Languages
and Compilers for Parallel and Vector Machines, ACM
SIGPLAN Notices, Vol. 10, No. 3, March 1975, 21 Papers

E.W. Dijkstra, "Cooperating Sequential Processes",
Technological University, Eindhoven, The Netherlands,
1965. (Reprinted in Programming Languages, F. Genuys,
ed., Academic Press, New York, New York, 1968)

H. Ashcroft, "The Productivity of Several Machines
Under the Care of One Operator", Journal of the Royal
Statistical Society, Series B, Volume 12, No. 1, 1950,
pp.155=-151

J.B. Dennis and E,.,C. VanHorn, "Programming Semantics
for Multiprogrammed Computations™, CACM 9 3, pp.
143-155, March 1966

B.W. Lampson, Berkeleyv Computer Corporation, "Dynamic
Protection Structures", AFIPS Conference Proceedings,
Vol. 35, pp. 27-38, 1969 FJCC

J.E. Juliusszn and F.J. Mowle, "Multiple
Microprocessors with Common Main and Control
Memories", IEEE Transactions on Computers, Vol. C(C-22,
No. 11, November 1973, pp.999-1007

F.E. Heart, R.E. Kahn, S.M, Ornstein, W.R. Crowther,
and D.C. Walden, "The Interface Message Processor for
the ARPA Computer Network", AFIPS Conference
Proceedings, Vol. 36, June 1970, pp. 551-567; also in
Advances in Computer Communications, W.W. Chu (ed.),
Artech House Inc., 1974, pp. 300-316.

L.G. Roberts and B.D. Wessler, "Computer Network
Development to Achieve Resource Sharing", Proceedings
AFIPS 1970 SJCC, Vol. 36, pp. 543-549

M.B. Solomon, "Economies of Scale and the IBM
System/360", CACM June 1966, pp.435-4i40

Computer Review, GML Corporation, 1975, pp.26, 54, 56

UNCLASSIFIED - .
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) A L
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE . BEFORE COMPLETING FORM .
|. REPORT NUMIEi 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER

Y € (and Subtitle) —p
@ A MULTIPROCESSOR DESIGN , /
/5% | I
h‘g;uq‘n() : -
4 S: DﬁHElS—ﬁB-C--
MB./Earker ’ mm-?ﬂ-c-ﬂi?

9. PERFORMING ORGANIZATION NAME AND ADDRESS

. PROG LEMENT, PROJECT, TA
AREA 0 wonx UNIT NUMBERS

Bolt Beranek and Newman Inc. .- ARPA Order No. 2351:

50 Moulton Street . Program Element Codes

Cambridge, Massachusetts 02138 62301E, 62706E, 62708E ‘
11. CONTROLLING OFFICE NAME AND ADDRESS .

Advanced Research Projects Agency (

1400 Wilson Boulevard

Arlington, Virginia 22209

. MONITORING AGENCY NAME & ADDRESS(!! dtt‘arent from Controlling Office) 15. SECUMITY Cl

Range Measurements Laboratory 3
Building 981 Unclassified

Patrick A:F.B., Florida 32925 18a, DECL ASSIFICATION/ DOWNGRAOING
SCNELOULE

6. DISTRIBUTION STATEMENT (ol ihle Report)

Distribution Unlimited it
(/e } AREA Oreleis - 228

17. DISTRIBUTION STATEMENT (of the abstrart entered-tn-Bteek-06y-4i dillatent irom Report)

18. SUPPLEMENTARY NOTES

19. KEY WC RODS (Conttnue on reverse slde If necessary and identity by block number)

multiprocessor computer architecture
Pluribus fault tolerant computation
reliable computer multiprocessor design

parallel processor

. ABSTRACT (Continue on reverse etde If necessary and identtly by block number)
his report addresses the issues involved in the design of a multiprocessor.

The author explores a wide range of design considerations and arrives at
judgments of relative merit at each decision point; the results of these
decisions lead to a particular multiprocessor design. A real multiprocessor
has been built to this design, and its configuration and performance are
described. This system, the Pluribus, has many advantages over other
computer systems in cost-effectiveness, reliability, modularity, and

| expansibility.
DD , 5287 1473

R o Ll T UNCLASSTFIED
‘é 0 / 00 SECURITY CLASSIFICATION OF THIS PAGE (When Dare Enteted)

el D B B s C PRI R A — -
*

SRR TSRS

e 0 P

= e

s -
. A Nay Vv

UNCLASSIFIED
SICUNITY CLASSIFICATION OF THIS PAGE(When Deota Entered)

m

UNCLASSIFIED

SECUNITY CLASSIFICATION OF THIS PAGE(When Deote Entered)

L5

