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SYNOPSIS 

This dissertation addresses the issues involved in the 

design of a multiprocessor. In the dissertation, we explore 

a wide range of design considerations, and arrive at 

judgments of relative merit at each decision point. The 

results of these decisions lead us to a particular 

multiprocessor design. A real multiprocessor has been built 

to this design, and its configuration and performance are 

described. This system, the Pluribus, has many advantages 

over other computer systems in cost-effectiveness, 

reliability, modularity, and expansibility. 

In the first chapter, we explore the distinction between 

data parallel structures, which possess a single control 

element driving multiple data elements, and control parallel 

structures, in which a separate control element drives each 

data element. We observe that data parallelism is as old as 

automatic computation, and that recent data parallel 

"multiprocessors", such as ILLIAC IV, are only 

Quantitatively different from old binary machines such as 

the PDP-1. We then briefly investigate the issue of 

programming a control parallel multiprocessor and conclude 

that there are numerous straightforward techniques currently 

usable, but that more work needs to be done in  this  field. 

The  second  chapter deals  with the interactions among the 

processors of a control parallel multiprocessor.   We  first 
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investigate the advantages of asynchronous structures as 

compared with those multiprocessors which are driven from a 

single centralized clock. Reliability -'s improved through 

independence from a single timing source. Efficiency is 

improved through the ability of each processor to run at the 

fastest rate possible for it at that instant. System 

expansion is facilitated through independence from timing 

restrictions which are due to signal time-of-flight. 

We then present a brief discussion of the loss of system 

power due to queueing delays behind shared resources. We 

introduce the concept of computational bandwidth matching as 

a mechanism useful throughout the design of a 

multiprocessor. 

We next consider algorithms for assigning tasks to 

processors, and point out disadvantages in various schemes 

used in other multiprocessor designs. We present a novel 

algorithm which permits processors to decide for themselves 

when to accept a new task. Extremely high efficiency and 

reliability are achieved through the use of a simple 

priority-ordered self-locking hardware oueue of pending 

tasks, to which new entries can be added by either hardware 

or software devices. 

The second chapter concludes with a d'scussion of 

interactions among processors intended to improve the system 

availability.   The relation between the redundancy inherent 
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in a homopeneous control parallel multiprocessor and the 

redundancy in classical Triple Modular Redundancy systems is 

explored, alone with techniques which can help identify, 

locate, and promote survival from component failures. Amonf 

these techniques, a novel parity scheme, oapa ^e of 

detecting address and data failures in either memory or 

communication subsystems, is presented. The advantages and 

difficulties in propram controlled component testinp and 

deactivation are discussed, followed by some novel ways to 

employ such techniques while protecting the facility from 

abuse  by   falling  processors. 

In the fourth chapter, we consider issues relating to the 

organization of components in a multiprocessor. We discuss 

the advantages of coupling memories closely with individual 

processors. We investigate characteristics of processors 

desirable in a multiprocessor environment, and reach the 

conclusion that slower, less axpensive processors offer 

advantages over faster, more expensive processors, because 

of the diminished cost in processing newer of the time lost 

in   intercommunication. 

We then consider various structures which mierht be used for 

interconnecting the processors and memories. Of these, the 

novel distributed crossbar switch dominates the others 

because of desicn simplicity, reliability, reparability, 

expansibility, and modularity. All complete connectivity 

communication     schemes     suffer   in  very   large   systems   in   that 
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"ü" a given application, communication costs increase as the 

square of the number of processors. A review of current 

processors shows a tree structure prevalent in the 

composition of the processor, and suggests that a desipn 

appropriate to very larpe systems of hundreds of processors 

should increase the depth of the tree rather than simply the 

width at a Riven level. 

In the fourth chapter, we describe the Pluribus  in  detail, 

pointing out how the various design objectives described in 

earlier chapters have been implemented.  In places where the 

organisation of this system appears to limit its generality, 

we describe some techniques which could be used to alleviate 

those  restrictions,  but were  not used  in  the  current 

implementation  because the particular application for which 

this system was built did not require  them.   Althoutrh  the 

software to run on this system is not yet fully operational, 

we  present performance evaluations and predictions based on 

the currently operational store-and-forward inner loop code. 

We also present a comparison of  this system  with  various 

other   large   computer  systems  on  the   basis  of 

price/performance on a •< anning algorithm  for  use  in  an 

optimizing compiler.  This application was chosen because it 

seemed   well  matched  to   the  Pluribus'   abilities; 

nevertheless, the comparison  is  sufficiently  striking to 

lend  credence  to  the  thesis  that  a  control  parallel 

multiprocessor is capable of high performance at  low  cost. 

1 
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INTRODUCTION 

0   A  -  What  this  Dissertation   is  About 

The subject of this dissertation is multiprocessors, by 

which term we mean computing systems containing multiple 

processing elements capable of performing operations 

simultaneously. 

0   A   1   -   Our  Thesis 

Our thesis is that the combining of independent processing 

elements when done properly, represents a very effective way 

to construct both powerful and reliable computing machines. 

We contend that this architecture produces a very general 

computer. While there are applications for which such 

machines are inferior to monolithic uniprocessors, we 

maintain that such applications are extremely unusual. For 

the large majority of comput?tional applications, a powerful 

uniprocessor will be more expensive and less reliable than a 

properly  designed multiprocessor  of comparable  power. 

This dissertation is concerned primarily with the hardware 

organization of multiprocessors; programming considerations 

will be mentioned only briefly, at the end of the first 

chapter. We will begin by examining various ways in which 

multiprocessoi-s might be constructed. We will then narrow 

our focus to successively more limited areas of particular 

interest, to a point at which we will describe an 

implementation    of a multiprocessor architecture  well   suited 
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to a particular problem, ^iven today's technology. This 

system is an asynchronous control parallel multiprocessor 

with c: distributed crossbar switch interconnection medium. 

Throughout the discussion, we shall point out considerations 

which can make the difference between success and failure in 

designinp a multiprocessor. 

In this introduction, we will first explore the fundamental 

reasons for the attractiveness of a multiprocessor 

architecture, then gly« an outline of the way in which the 

body of the dissertation addresses the subject. 

0 A 2 - Fundamental Reasons 

When a person encounters a problem too large or difficult 

for him to solve alone, he typically engages the assistance 

of other people, and the problem is attacked by the team. 

Each member of the team operates independently, in that he 

observes,  and  acts on  these  observations,   without  a 

continuous  command  stream  fr om  a superior.  However, all 

members of the team act together in trying to reach the 

common goal. To achieve this constancy of purpose, they 

must intercommunicate. The authority structure may be 

hierarchical, consisting of leaders and workers, or it may 

be republican, in that decisions are made by vote. The 

authority structure may even vary, depending on the subject. 

An example is a democratic arrangement in which a vote is 

taken to determine the  overall  goals  and to  choose  the 
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leader whose instructions will be obeyed in implementinp 

those goals until a future vote. The hierarchical structure 

has advantages in efficiency, bur, disadvantages in 

reliability, in that the leader may be mad. A republican 

structure can provide reliability in that the system can 

survive the death or madness of any individual, at a cost in 

efficiency due to the time spent voting on every decision. 

The democratic structure can produce an attractive balance, 

as has been observed for some centuries in the political 

area. 

The same observations can be made about comouter processors 

tackling a job too bier for a single processor. Because man 

has been more successful at increasing the work capacity of 

computers than of man himself, the tendency in designing a 

system to tackle a more difficult class of problems has been 

to build a more powerful, faster machine. This has serious 

disadvantages in coot and in reliability as compared to the 

group structure which people tend to use. It is the intent 

of this dissertation to point out ways in which 

multiprocessors can be built practically, and to show the 

advantages over more centralized schemes of comparable 

power, both in cost and in reliability. 

0 A 2 a - Economical Powerful Computer 

Our thesis is that multiprocessor architecture  can  provide 

an  economically  effective  means  of constructing  both 
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powerful and reliable computing machines. We now consider 

the fundamental reasons for this, first in terms of power, 

then in terms of reliability. 

The fundamental reason why a multiprocessor architecture car. 

provide a cost-advantageous means of constructing a nowerful 

computing system is that the cheapest processors tend to be 

slow, and further, even when normalised for speed, the most 

cost-effective processors are near the slow end of the 

performance scale. In other words, as the power of a system 

increases past some small value, the cost of the system 

increases faster than the power. This increase is very 

dramatic in very powerful systems. 

There are two primary reasons for using such 

cost-ineffective equipment, both producing a need for 

concentrations of computational power. The first is the 

simple case where a particular job requires more 

computational power than can be had from the more 

cost-effective machines, in order to process the reouired 

amount of data in the permissible amount of time. The 

second is the desire to consolidate peripherals. If each 

job is run on a system only powerful enough to support that 

job, there must be many systems to support many jobs. Each 

of these systems needs peripherals, and thus the peripherals 

need to be duplicated. The multiprocessor architecture 

solves these problems by interconnecting cost-effective 

processors to provide large computational power without the 

dramatic increase in cost per unit of performance. 
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In an ideal multiprocessor, the power of the system, as 

compared to a uniprocessor, is multiplied by the number of 

processors, while the system cost is increased by only the 

same factor, yieldinr a system of great power at a 

price/performance ratio equal to the optimal value achieved 

in the slow processor. 

Naturally, a sacrifice must be trade in the transition from 

ideal to real. The processors will need to 

intercommunicate. This implies an increase in system cost, 

due to the cost of the intercommunication logic, and a 

decrease in system performance, due to the time lost 

communicating. Both of these detract from the optimal 

price/performance characteristics. These costs need only be 

proportional to the amount of interprocessor communication 

required; for many applications, very powerful 

multiprocessor systems can be configured bt costs very much 

below those of commercially available uniprocessors of 

comparable performance. 

0 A 2 b - Economical Reliable Computer 

We now turn to considerations of reliability. The 

fundamental reason why a multiprocessor architecture  can 

provide a cost-advantageous means of constructincr a reliable 

computing system is that the cost of the element which needs 

to be duplicated in order to survive a single component 

failure is much smaller than in a uniprocessor of comparable 
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power. Providing backup for a large scale uniprocessor 

requit-es another equivalent large uniproce-son, some means 

for recognizing a failure, and some means of switching 

operation from the primary machine to the backup in case of 

failure. It is possible to design a multiprocessor system 

such that remaining healthy processors can take over tasks 

left undone by one or more failing processors. Thus, the 

cost of the ability to survive at full computational power 

despite any single processor failure is one additional 

processor. The power of this processor is available to the 

system until the failure, further reducing the cost of the 

backup. 

Similar arguments hold for system components other than 

processors. Thus, a single segment of memory (or disk pack, 

or tape drive, etc.) can back up a number of such devices in 

the system, and be available for use until a failure occurs. 

0 B - How the Dissertation is Structured 

In this dissertation we undertake an exploration of the 

range of multiprocessors which might be constructed. In so 

doing, we distinguish among various sorts of 

multiprocessors. With each distinction comes a choice, and 

we shall present arguments as to the relative merits of each 

alternative. The end result of these choices is a specific 

architecture. An operational implementatior of this 

architecture is described. 
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There are five chapters in the dissertation. The first 

talks about different forms of computational parallelism, 

the second about interactions between the processors of a 

multiprocessor. The third chapter discusses architectures 

for multiprocessors, while in the fourth we describe in some 

detail the Pluribus, a real implementation of a 

multiprocessor. In the fifth chapter, we present our 

conclusions.  We now briefly preview each of  the  chapters. 

GDI- Chapter I - Forms of Parallelism 

In the first chapter, we present a distinction between data 

parallelism, which has pervaded the entire history of 

automatic computation, and control parallelism, which is a 

relative newcomer. In discussinp: this distinction, some of 

ehe significant machines typifyinp each type of parallelism 

are mentioned. Data parallel machines range from early 

adding machines, whicn add the separate digits 

simultaneously, to ILLIAC IV [1], which does full 64 bit 

arithmetic operations on 64 independent arguments 

simultaneously. Control parallel machines range from the 

earliest computers with programmable data channels to the 

Pluribus homogeneous multiprocessor described in this 

dissertation. Thus, the current ILLIAC IV is qualitatively 

no more a multiprocessor than is a PDP-1 . 

A technique  sometimes  used  to  achieve   computational 

parallelism  is  "pipelining",  in which separate processing 

—   
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elements are performinp; successive phases of a cunp.'tation 

simultaneously on successive sets of data, in an assembly 

line fashion. Some systems employing this technique are 

mentioned. A homogeneous control parallel architecture is 

capable of, but not limited to, this mode of operation. 

0 B 2 - Chapter II - Interprocessor Interactions 

The second chapter deals with the interactions between the 

processors of a ^ntrol parallel multiprocessor. We first 

treat the prerequisites for such interaction, then turn to 

some of the ways processors can interact to improve system 

performance and reliability. 

Until the processors interact, a multiprocessor is simply an 

accumulation of independent computers, each unaware of the 

others' existence. In order to take advantage of the 

increased power and reliability available from the 

multiprocessor architecture, the processors must 

intercommunicate. The nature of these communications then 

determines both the power and the reliability of the system. 

If the processors spend their time waiting for a resource 

which can support only one processor, the system degrades to 

a single processor equivalent; if they can productively run 

concurrently, the processing power is multiplied by almost 

the number of processors. If the failure of a single 

processor takes the system down, the system reliability is 

limited  by  the  probability of all processors being up; if 
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healthy processors can continue to function despite failures 

of other processors, and can take over the workload of 

failing processors, the system reliability can approach the 

probability of any processor beinr up. 

0 B 2 a - Conflicts 

The second chapter begins with a discussion of the 

differences between synchronous and asynchronous control 

parallel multiprocessors. The disadvantages of synchronous 

systems in reliability and in plprid constraints on size and 

relative timing are balanced against delays due to 

arbitration of asynchronous requests. First, the unsolvable 

problem of unambiguous arbitration of conflicting 

asynchronous requests is presented, and practical although 

imperfect solutions are described. The problem of software 

conflict resolution is then mentioned, along with techniaues 

for solution with and without special hardware. 

0  B  2  b  -  Allocation of Tasks to Processors 

One problem fundamental to most multiprocessor systems which 

requires interaction between processors is task allocation. 

Given a multiprocessor system and a collection of tasks to 

be done, how does one allocate tasks to processors without 

incurring very high over'iead or dependency on a single 

sophisticated accumulation of hardware? A novel approach is 

presented, in which the processors decide when thev are 

ready to  change  tasks,  thus  avoiding  high  interruption 

■■■-■-- ■■■- ■--^■- ^ 
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overhead, while an inexpensive and easily duplicated 

hardware device maintains a priority ordered queue of 

pending tasks. Such a scheme may increase the processor 

latency - that is, the time from a service request until the 

request is serviced. An analysis of the buffering required 

due to latency is presented. This analysis is new and quite 

widely applicable to processors servicing fixed speed 

devices. 

0 B 2 c - Interactions for Reliability 

One nrimary advantage of control parallel multiprocessors is 

their potential ability to survive  failures without  large 

increases  in   system  cost.    This  requires   various 

interactions between the processors.  We thereiore present a 

discussion of reliability considerations  in  multiprocessor 

design.  Classic techniques for configuring reliable systems 

are mentioned,  along  with  the homogeneous multiprocessor 

approach of letting other processors take  up  the  load  of 

failing processors.   In  order  for  this  technique to be 

useful, there must be some means for detecting  the  failure 

of  processors  and  other  components,  so that the failing 

component may be amputated, permitting the remainder of  the 

system  to  function.  Techniques for detecting failures are 

discussed, including various forms of memory  protection,  a 

novel kind  of  parity  to check memories and communication 

media,  diagnostic  techniques,  and  processor   controlled 

deactivation of system components, including itself or other 
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processors. The reduction in the computational throughput, 

or bandwidth, brought on by component failure :s then 

discussed. 

0 B 3 - Chanter III - Multiprocessor Architectures 

Having settled on a control parallel multiprocessor, we need 

to consider the various ways in which such a system might be 

configured. In the third chapter, we present a discussion 

of multiprocessor architectures which might be employed. We 

begin by considering two general architectural questions: 

whether or not there should be "private" memory associated 

with individual processors, and the considerations 

influencing the selection of a processor. For a given 

price/performance ratio, there are advantages in selecting a 

less powerful processor. V/e then discuss a variety of 

specific architectures. Some strong and weak points of 

these architectures are pointed out, along with applications 

in which they mipiht be appropriate. 

0 B 4 - Chapter IV - Pluribus: A Real Live One 

Throughout the dissertation, we consider various alternative 

ways in which a multiprocessor might be configured, pointing 

out advantages and disadvantages of each. From these 

considerations, the overall superior choice is selected. 

These choices then specify a particular system 

configuration. A system based on the considerations 

presented in  this dissertation has  been  constructed  in 
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prototype form by Bolt Beranek and Newman Inc. to serve as 

a high bandwidth, highly reliable packet switching 

processor. This system, called the "Pluribus", is an 

asynchronous control parallel multiprocessor with a 

distributed crossbar switch interconnection medium, and 

local memory. This architecture uus chosen as being 

superior to alternatives at each choice point. The specific 

implementations of many of the concepts are described, 

partly because they represent a feasibility proof, and 

partly because they are exemplary of how these concepts can 

be embodied in practical hardware. 

0 B 5 - Chapter V - Conclusion 

The fifth chaptet presents our conclusions. The primary 

conclusion drawn is that the homogeneous multiprocessor 

architecture represents today's most sensible and economical 

method for building a powerful computer, in addition to 

being a sensible and economical method for building a 

reliable computer. The resultant machine can be both 

powerful and reliable at less than the cost of either of 

these objectives using classical techniques. 

Having stated this conclusion, we review the methodology 

utilized in the design of a multiprocessor system. 

Following this is a summary of some techniques which make 

such a system workable. We briefly mention aret.s we feel 

merit further investigation.  A closing look to the  future 

-—» 
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expresses our conviction that this method represents the 

most promisinp technique for the desipn of future mediun- 

and   large   scale  computer   systems. 
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Chapter I 

FORMS OF COMPUTATIONAL PARALLELISM 

In this chapter we will discuss the various fornis of 

parrllelism which have been used in the design of 

computational systems. We will first present a distinction 

between data parallelism and control parallelism. We 

mention a few examples of each. We will also discuss the 

technique of pipelining as a method of achieving 

parallelism. We then turn to a discussion of the problems 

of applying the power of a multiprocessor to a task, 

including multiprocessor programming considerations. We 

defend the position that a homogeneous control parallel 

multiprocessor is a very general structure whic'r. can fill 

almost all computational requirements. 

I A - Control vs. Data Parallelism 

We bepin by presenting the distinction between data 

parallelism and control parallelism. By data parallel 

systems we mean system in which a single control element 

drives a number of data elements simultaneously with a 

single command. Thus, there is a single control stream. By 

control parallel systems, we mean systems in which multiple 

independent control elements are processing independent 

control streams simultaneously, with each control element 

driving one or more data elements. This distinction is 

crucial to the thesis that the multiprocessor provides a 

sensible means of constructing both powerful and reliable 

r 
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computinp machines, If that the data parallel architecture 

is a sensible powerful machine for only a limited class of 

problems, and probably a less reliable machine than the 

uniprocessor. The control parallel multiprocessor, however, 

provides the flexibility to concentrate its power on a wider 

range of problems, vhile permittinp improved reliability due 

to  the ability of any eciven processor to back up any other. 

I A 1 - Data Parallel ism 

We have defined the term "Data Parallel" as referrinp to 

processors containing a single control element driving 

multiple data elements simultaneously with a single command. 

This definition subsumes computing machines from the 

earliest adding machines which added different digits 

simultaneously, through binary computers which do arithmetic 

or logical operations on different bits simultaneously, to 

large modern computers such as ILLIAC IV, which does 64 bit 

arithmetic  operations  on   6H different   arguments 

simultaneously. 

I A 1 a - Reasons for Data Parallel! sm 

We will now examine the reasons why this technique might be, 

and has been, used. Primary among these reasons are design 

simplicity, cost reduction, and operating speed. We will 

review how these goals have been achieved through the use of 

data parallelism in the implementation of various computers, 

and point out some of the limitations of these systems. 
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I A 1 a i - To Reduce Complexity and Cost 

If an adding machine is to add the various digits of addends 

sequentially, it must have the ability to transfer the 

digits to and from a centralized adder. The mechanism to 

accomplish those transfers is sometimes more complex than 

simply replicating the adder once for each digit. Certainly 

in design difficulty, the parallel adder wins, since it is 

easier to duplicate already extant designs tnan to invent a 

new design for a transfer mechanism. In the design of LSI 

microprocessors, the expensive mask layout operation can be 

simplified through replication, substantially reducing the 

product cost. 

Similarly, usiig the medium- and large-scale integration 

logic circuitry available today, logic operations may be 

performed simultaneously on the various bits of data with 

simple replicated logic. Performing those operations 

sequentially requires transfer logic to and from a 

centralized operation register. This logic may be more 

complex than the replicated logic, producing a cost benefit 

from the parallel mode of operation. 

This savings from parallel operation is not universal. A 

machine designed around shift register technology can be 

built more inexpensively using sequential operations than 

parallel. Another example of cost considerations favoring 

sequential additions is the IBM 1620, whicl  does additions 
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in decimal by a table lookup. This table needs to contain 

10"(2*N) entries in order to add N bit numbers in one 

lookup. A table large enough to add full words 

simultaneously would be enormously expensive; the 100 word 

table to add digits is quite inexpensive. 

I A 1 a ii - To Increase Speed 

The primary reason for the extensive use of parallelism in 

the recent history of automatic computation is speed. If 

operations can be simultaneously performed on a number of 

essentially independent data, the delays involved in 

transferring data and in waiting for the single operation 

register can be eliminated. The overall operation time can 

then be reduced to roughly the time necessary to perform 

that operation on a single datum, rather than somewhat more 

than the product of this time and the number of data to be 

operated on. 

This argument applies to most binary machines, in which 

independent data bits are ANDed simultaneously, as well as 

to ILLIAC IV, in which independent 64 bit numbers are 

multiplied simultaneously. 

Most binary machines, such as the PDP-1, operate 

simultaneously on the various bits of a word. Thus, during 

the execution of a PDP-1 AND instruction, 18 independent 1 

bit data are multiplied by 18 other independent 1 bit data 

to give 18 independent 1 bit results. 



•\—, • m~ mg, ■ •--..■v. 

To Increase Speed 1-5 

A number of 'multiprocessors' have been built which simply 

expand this same fundamental concept of a single instruction 

interpreter driving a number of independent calculating 

elements, but with larger and higher performance data 

elements. ILLIAC IV is the present extreme of these 

efforts. This machine contains an array of 64 arithmetic 

elements, each 64 bits wide. These arithmetic "processors" 

are capable of performing their operations at extremely hifrh 

speed, but since they are all under the control of a single 

instruction stream, no two can be doing different operations 

simultaneously. Thus, ILLIAC IV has a larger number of data 

elements (64 instead of 18), each is wider (64 bits instead 

of one), and substantially faster (200 ns instead of 10 

microseconds), but in that its parallelism is only in the 

data, it is in some senses another uniprocessor, like the 

PDP--1 . 

ILLIAC IV was intended to be a four-quadrant machine, each 

quadrant having a separate control stream and 64 arithmetic 

elements. However, due to the difficulties encountered in 

attempting i device so close to the limit of the then 

available technology, and other problems, only one quadrant 

has been built. If more are built, ILLIAC IV will move from 

a data parallel macl"ine, as is the PDP-1, to a control 

parallel multiprocessor. 
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I A 1 b - Limitations of Data Parallelism 

Few and far between are the proRrammers who have actually 

written any substantial programs which utilize the fact that 

a binary machine is capable of operating simultaneously on 

as many independent one-Lit data as there are bits in its 

accumulator. There are applications in which this can be a 

handy feature, particularly in computations involvinr 

boolean matrices. Numerical matrices are generally much 

more utilized in the world of programming, and for this 

reason, an architecture such as ILLIAC's has a place in the 

world. However, even those who have programmed parallel 

boolean operations on a binary machine can attest to the 

fact that much of the cost - both in programming time and in 

execution time - typically goes to the non-matrix overhead 

operations, and to setting up and tearinp down the matrix. 

This lesson may very well apply as experience is gained with 

ILLIAC. 

The basic limitation with this sort of architecture for a 

powerful machine is that there is only one control stream, 

and thus there can never be two different operations 

occurring simultaneously, although there can bo different 

executions of the same operation on independent data. For 

most problems, the amount of time spent doing the L act same 

operation to many independent data is small. This is not 

always true; weather prediction, consisting of analysis of 

the forces on and motions of blocks of air, wants to perform 



.rv^. 

Limitations of Data Parallelism 1-1 

the same computation on many blocks of air at the same time. 

Some matrix computations will spend a lot of time doing the 

same operations to independent data. However, this is the 

only class of problems for which this sort of architecture 

is sensible. ILLIAC IV will certainly always be a wonderful 

example of the extreme power which can be broupht to be^r on 

a limited class of problems through the use of specialized 

hardware. 

I A 2 - Control Parallelism 

We now turn our attention to multiprocessor systems which 

utilize independent control streams. We believe that this 

architecture produces a more general computing machine, 

capable of providing power and reliability at reasonable 

cost. 

We will discuss the reasons why control parallel 

multiprocessors have been contemplated and constructed, and 

will also review a small number of control parallel machines 

which have been contemplated, discussing the considerations 

which led to their architecture, and how successful they 

were at meeting these design objectives. 

I A 2 a - Purposes 

The primary reasons for considering an independent control 

stream multiprocessor are speed, reliability, and design 

simplicity. We will begin our discussion with perhaps the 

least intuitively obvious, design simplicity. 

'-r"'-■"•'"','"- 
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I A 2 a i - Design Simplicity 

Consider the problem of connecting a number o' terminals to 

a reasonably powerful computer which is underutilized. The 

most hardware-economical way to do this might be to bring 

the raw data lines into the machine, so that they could b^ 

sampled directly by the CPU to determine whether each line 

is in a zero or one state, and conversely driven to either a 

one or a zero by the CPU. The excess power of the processor 

can then be utilized to generate tne timing information 

necessary to drive and sample the lines at the appropriate 

times, and to convert characters to bit streams. This does 

place severe timing constraints on the processor and the 

programs it runs, since the processor must return to this 

I/O task at quite narrowly defined intervals. Thus, 

although the system described might very well be the most 

economical possible system in terms of hardware costs, the 

complexity added in softwai ~t constraints probably offsetf. 

this, making such a solution impractical. 

An alternative available from some manufacturers is to have 

a separate processor, whose sole duty is to receive and 

drive these lines, and communicate in complete, 

timing-independent characters to the main processor. This 

removes the complexity from the main system, while the 

system needed to run the small data line scanner processor 

is small, since it runs a dedicated program, and its timing 

constraints are  entirely internal.  Thus, a dual processor 
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system with independent control streams is a simpler system 

to build than a single processor system. This result is not 

atypical for special-purpose real time processing on a 

reasonably large system. 

I A 2 a ii - Rpliability 

A technique used to insure a high system availability  (the 

percentage  of time  the  system  is usable) is the active 

backup.  Here, another identical  but entirely  independent 

mchine  is running  the  same program, and being Riven the 

same inputs, as the primary machine.   In  the  case  of a 

failu'3  of the primary, control is switched to the backup, 

which is already entirely up to date.  This, then, is a case 

of  using a  second  CPU,   which  executes   instructions 

independently, for reliability. 

In addition to backup machines such as that described above, 

a  number of multiprocessors  have been  built  with  the 

explicit thought that in the case of a  failure  of one  or 

more  processors,  other  processors would  take  the load, 

leaving the system available [2,3,4,5,6].  One such  is  the 

Pluribus  [7]  now  under  construction at Bolt Beranek and 

Newman as a hieh performance node  for  the  ARPANET.   This 

machine will  be  discussed  in  some  detail  in the later 

portions of this dissertation; here we mention only that the 

initial design goal of high speed has become  subsidiary  to 

the goal of increased availability. 
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I A 2 a iii - Speed 

Perhaps the most obvious reason for contcrnplatin* a 

multiprocessor architecture of any sort is the increased 

performance, in terms of speed of a given computation, or 

equivalently computational throughput, which one hopes to 

obtain from the multiplicity of processors. Ideally, one 

would like to obtain from a system of N processors, N times 

the power available from a single processor. In fact, there 

are always overheads encountered, due to communication and 

queueing delays, which reduce the actual power available to 

somewhat less than this, the exact amount of the reduction 

depending on the amount of inter-processor communication 

required. 

There have been many instances of multiple processors being 

used to increase speed of computation. These include 

inhomogeneous systems, such as program processors and I/O 

controllers of all sorts, as well as homogeneous systems, 

such as time-shared dual processor PDP-10's. The Pluribus 

is one of the latter, and increased throughput was the 

original purpose in contemplating a multiprocessor for this 

application. 

I A 2 b - Historv 

Having mentioned the reasons why control parallel 

multiprocessor architectures might be considered for a 

machine  design,  we  now review  a  few  multiprocessor 
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configurations,  and  discuss the factors which favored tnis 

architecture. 

I A 2 D i - I/O Channels 

As computational machinery increased in size, and "computer" 

became "computer system", it was observed that a great deal 

of a processor's power was often utilized in simple I/O 

transfers. When a device had a word ready to transfer to 

the memory (or was ready to accept a new word from me.iory), 

it would send an attention signal to the processor. This 

would force the processor into a section of dedicated code, 

which would simply read a word from the device and store it 

in memory (or read a word from memory and send it to the 

device), and then increment the pointer to memory, and check 

for buffer completion. Since the cost of hardware was 

decreasing, this was a sensible simple task which could be 

moved to hardware, increasing processor efficiency. Thus, 

the I/O channel came into being. At this stage, it was 

hardly a processor, being only capaole of executing this one 

hard-wired function. The channel would be activated by the 

device's request, and would interrupt the processor only on 

completion or error. 

This concept was then carried a step further, when it was 

observed that the processor was still spending a 

non-negligible amount of time servicing interrupts, and 

setting  the  channel  up  with  new  buffers  from a 
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pre-construoted buffer chain. This function was also moved 

into hardware. In order to have commands ready for the 

channel when it needed new buffer location, size, and 

control information, the program processor simply places 

these commands in appropriate locations in memory, and the 

channel interprets them as needed. If we define a processor 

as anything which interprets stored commands, the channel 

has become a processor, and our system has become a 

multiprocessor. 

I A 2 b ii - Display Processors 

One of the peripheral devices often connected to digital 

computing machinery is a refresh display. This is a device 

which when given a command - either a simple X,Y coordinate 

pair or perhaps a complex command - the device positions a 

CRT beam, and intensifies one or more points on the screen 

for a very short interval. If a lasting image is desired 

rather than a transitory flash, the points in the image must 

be repeatedly illuminated. To avoid flickering, the imaRe 

should be refreshed at least 20 to 30 times per second. 

This requires a tremendous command rate for any sort of a 

complex image; if a processor is expected to feed the 

commands to the display, it is probably asking toe much to 

expect the processor to be able to do much of anything else. 

This then is a job for a channel. If the various commands 

are placed in memory, the channel can fetch them and feed 

them to the display, leaving the processor free to compute. 
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While  it  is  possible  to  have  a  display with one'fixed 

command, such as X and Y coordinates in the  two  halves  of 

each  word, more efficient use of the program processor, the 

memory, and the display/channel can be obtained by having  a 

more   complex   command  structure.   As  examples  of  the 

efficiencies which can  be achieved  we  mention  the  JUMP 

command,  which will allow the display to repeatedly refresh 

itself without disturbing the program processor.   Line  and 

character commands permit illumination of many points from a 

single   command,  and  therefore  a  single memory  cycle. 

Subroutine calling and  returninr  commands  permit  a  more 

'efficient   data  structure,  as  well  as  simplifying  the 

programming  problem  for  a   larse   class  of   Fraphics 

applications. 

Myer and Sutherland [8] observed a "Wheel of Reincarnation", 

as follows. The original view of a display as a simple 

peripheral on a general purpose computer becomes less 

accurate as the display and its channel grow in complexity 

until the display beccmes capable of interpreting commands 

independently from the main orocessor. The architecture of 

the display then resembles the architecture of the original 

system - a programmable processor with a simple display unit 

peripheral to it.  This cycle can be repeated. 

As soon in this development as the display channel is 

capable of interpreting commands, the system - the program 

processor  together with the display processor - becomes an 
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independent control stream multiprocessor. Reasons for 

going to this architecture are the speed and design 

simplification resultant from the separation of function, as 

we have discussed. 

I A 2 b iii - CDC 6600 

The CDC 6600 [9] represented perhaps the first successful 

effort to build a supercomputer. Following the channel 

philosophy of unloading I/O details to peripheral 

processors, so as to permit the central processor to focus 

entirely on the main computational problem, the 6600 has one 

central processing unit (CP) connected to 10 peripheral 

processors (PP's). The PP's are general and programmable, 

and can execute conventional channel programs, or can be 

programmed for special ourpose functions, from graphic 

display generation to line protocol formatting and 

interpretation. All I/O to the CP is handled through the 

PP s. This independent control stream multiprocessor 

achieves a high speed in the CP by removing this burden from 

it, and achieves a simplicity of design by permitting \ 

dedication of a PP to a device or class of devices, and by 

not requiring a single processor to handle all devices. 

I A 2 b iv - NASA's Triple ^60 

In all i[ the systems we have discussed so far in this 

section, the purpose of going to a multiprocessor 

architecture  has  been  increased  speed,  and secondarily. 
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desipn simplicity. Further, all have been inhomopeneous; 

that is, the various processors have not been alike. 

Homogeneous multiprocessor have been used, but their 

primary goal, until recently, has been increased 

reliability. Throughout the space program, NASA has 

depended very heavily on computational facilities to compute 

a wide variety of parameters of each voyape, used in 

determining timing and intensity of rocket thrusts as well 

as all manner of other flight control data. It is vital, in 

terms of men's lives and millions of dollars, that this 

information be available, and further that it be correct. A 

system was developed for a 360 to perform these functions 

for the first manned space launches. Two additional 

identical machines were kept as active backups. More 

recently, as experience has shown that this degree of 

redundancy is not necessary to achieve the necessary 

reliability, the system has dropped to a sinple active 

backup. This then is an example of an independent control 

stream multiprocessor whose purpose is reliability. 

I A 2 b v - Dual Proce sor Time-Sharing Svstems 

A number of independent control stream multiprocessors have 

been built for time-sharing systems [10]. Both homogeneous 

and inhomogeneous multiprocessor systems have been 

constructed. The typical system consists of two very 

similar, if not identical, machines, either of which is 

capable of executing  most  user jobs.   The   scheduler 

^ 
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typically is run by only one, and allocates jobs and manages 

storage for both ^ Thus, despite homogeneous, or nearly so, 

hardware, the software is inhomogeneous. This means that a 

crash of the "master" machine, namely that one which runs 

the scheduler, will crash the system. Hardware homogeneous 

systems can be restarted, running the scheduler on the other 

processors. 

The primary purpose for going to a multiprocessor 

timesnaring system is speed. Neglecting overhead due to 

communication, conflict resolution, and queueing, twice as 

many processors can supper* more than twice as many users of 

the same characteristics, since the random arrival times of 

execution requests permit higher utilization with shorter 

queues, given multiple load-sharing servers, each with a 

given load factor, as contrasted with a single server with 

the same load factor. However, higher availability can also 

be achieved in such a system, since the system can remain 

available to users, but at reduced speed despite failure of 

a single processor. Generally, a restart may be necessary 

to recover a crashed system. 

I A 2 b vi - C.mmp and Pluribus 

Recently, a number of efforts have been undertaken to apply 

the multiprocessor concept by using a substantial number of 

inexpensive minicomputers to build an inexpensive 

supercomputer.    Exemplary   among   these   are   the 
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Carnepie-Mellon multiprocessor (C.mmp) [11] snd the BBN 

IMuribus. In each of these, many miniprocessors are 

mtnnocted to shared memory through a complete connectivity 

switching arrangement, which allows any processor to access 

any memory. Arain, the initial primary deslpn poal in each 

was an increase in execution power. A reliability increase 

is also possible; in the C.mmp, faulty processors or 

memories can be manually cut out of the system. In the 

Pluribus, this process is automatic, under program control. 

Further, the Pluribus architecture permits any processor to 

control any I/O device, removing the requirement that a 

given processor be up in order to operate a given device. 

The details of how these and other goals are achieved in the 

Plur'^us are given later in this dissertation. 

In these systems, the attractive price/performance ratio of 

the modern minicomputer is used to advantage in constructing 

a very powerful computer. The resultant machine is capable 

of providing all of the multiprocessor advantages we have 

mentioned: speed, design simplicity, and reliability. The 

design of such a system is the primary subject of this 

dissertation. 

I A 1 c - Limitations 

We now explore the limitations of the control parallel 

multiprocessor structure. This exploration will be divided 

into two parts: first a brief description of the limitations 
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of such an architecture as a means of achieving reliability, 

followed by an investigation of the limitations of this 

structure as a means of achieving increased power. 

I A 2 c i - Reliability Limitations 

The term "Reliability" is va^ue, and subsumes a wide range 

of different considerations. We might consider reliability 

as a measure of the probability of the system being 

available at any particular time, or "System Availability". 

This measure is of general interest in that i system being 

down surely means loss of money and time for iti users. 

However, a discussion of reliability in these terms does not 

belong in a section about the limitations of the control 

parallel multiprocessor architecture, since the ability of 

any processor to do any part of the job, and the lack of 

dependence of the system on any individual component permits 

ai extraordinarily high system availability and is one of 

this architecture's fortes. Rather, to find the structure's 

reliability limitations, we will consider reliability as the 

probability of a given computation being done correctly, or 

one minus the probability that the result of any individual 

computation will be lost or in error. This measure is of 

interest in certain applications such as life support and 

navigation systems. 

The classic technique used to decrease the probability of 

error in any given computation is Triple Modular  Redundancy 
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second, an explosion may occur. It takes a 

minicomputer 10 seconds to process one set 

of data. This case differs from the simple 

need to get more computation done each day 

in that the execution time of each 

individual computation needs to be 

diminished, and thus simply having separate 

processors working on separate problems does 

not help. 

In this case, the applicability of the 

control parallel multiprocessor is dependent 

on the divisibility of the required 

computation into simultaneously executable 

subcomputations. In the case of large 

matrix manipulations, this presents no 

problem. In fact, in most any practical 

computational problem, the isolation of 

independently executable subproblems is 

straightforward. However, it is not always 

possible. In cases where every computation 

is dependent on the result of the previous 

computation, this division is impossible. 

It is difficult to divide the problem of 

computing the Nth term of the Fibonocci 

sequence. 
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For those problems with a real time 

constraint which cannot be divided, the 

control parallel multiprocessor is 

inappropriate. 

(c) - Increased Efficiency for Random Request Arrivals 

Suppose that a time-sharing system is capable of 

supporting 20 users. Their computation requests 

arrive randomly in time. The system sits idle 

when no requests come in for a period of time. A 

system twice as powerful could handle more than 40 

users, because the increased numbers provide a 

smoother distribution of arrivals, decreasing the 

system idle time. The control parallel 

multiprocessor is well suited to this task, 

assigning processors to users as required. 

(d) - Sharing of Peripherals 

Multi-user systems can achieve economy with 

respect to single-user systems in that expensive 

peripheral equipment which is used infrequently by 

any single user can be shared among many users, 

decreasing the cost to each. Again, the control 

parallel multiprocessor architecture provides this 

benefit as well as any powerful uniprocessor. 

We  conclude   that   the  use  of  a  control  parallel 

multiprocessor for the purpose of increasing system power is 
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appropriate in all cases except a situation which requires 

rapid real time response on problems which are not divisible 

into simultaneously executable subprobleras. We argue that 

this class of problems is negligibly small, and that 

therefore this architecture is very general and widely 

applicable. 

I A 3 - Pipelining 

Pipelining has been used at different levels in a wide 

variety of computational machinery. It permits parallelism 

in the simultaneous operation of separate pieces of hardware 

on different phases of successive executions of a given 

algorithm. A given computation moves from one piece of 

hardware to the next as it goes through its successive 

phases of execution. The sole purpose of such an 

architecture is increased speed. We mention here a number 

of applications in which this technique has been used: 

(a) - A display system containing a  display  processor 

and a program processor can be thought of as a 

pipelined system to con;pute and display a moving 

picture, the program processor working on the 

computation phase of a given execution while the 

display processor works on the display phase of 

the previous execution. 

(b) - The Evans and Sutherland LDS-I  carries  this 

concept farther,  in that a PDP-10 is computing a 
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picture while the LDS-1 passes previous pictures 

through its instruction interpreter, matrix 

multiplier, clipper divider, and vector generator. 

(c) - The 360-91 instruction interpreter is pipelined; 

successive instructions are in successive phases 

of interpretation in separate pieces of hardware. 

(r.) - The CDC-STAR computer's arithmetic processor is 

pipelined, providing a spectacularly high 

throughput rate, by performing 64 bit 

multiplications at about 20 nanoseconds each. An 

N by N bit multiplication is co.nposed of N 

conditional additions of one of the multiplicands 

(appropriately shifted) into the running total. 

In the Star, these N additions are performed on N 

separate adders, the output of each presented to 

the input of the next. While the i+lth adder is 

performing the i+lth addition to the j+lth 

multiplicands, the ith adder is performing the ith 

addition to the jth multiplicands. While each 

individual multiplication passes through N stages, 

and is thereby (relatively) slow, the rate at 

which multiplications can be done is very high. 

This tradeoff between delay and throughput is to 

many counterintuitive, but typifies many problems 

in computation as well as traffic control and 

other non-computational concerns. 
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e - In the Pluribus, a given task is divided into 

sub tasks which run sequentially. For example, the 

problem of taking in a packet of information, 

deciding what tc do with it, and sending it out 

another line, is divided into these three 

essential phases. These three phases of execution 

may very well be in process for different packets 

from the same line at the same time on different 

processors. Thus, the system may take on a 

pipeline-type configuration, in which different 

packets are in different states of processing on 

different procrtisors at one time. The primary 

difference between this and other pipelined 

systems we have discussed is the flexibility. 

While the Pluribus is capable of operating in this 

mode, it is not restricted to it, whereas 

classical pipelined systems ?.re capable only of 

pipelined operation, and are thereby restricted in 

the range of problems they can handle. 

Conventional pipelined systems tend to be less 

reliable than uniprocessors, because all of the 

individual processors must be functional for the 

system to be functional, whereas the homogeneous 

multiprocessor can be more reliable than a 

uniprocessor, as we have discussed.  (A noteworthy 
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exception to the requirement that all elements be 

up is the LDS-1 , in which the matrix multiplier 

can be removed from the pipe, and its function 

moved into software, in the event of failure.) 

IB- Parallelizing a Task 

The body of this dissertation concerns itself with hardware 

configurations which permit parallel execution of 

algorithms. We have not made mention of the serious problem 

of how to construct a program to run on such an accumulation 

of hardware so as to implement a given algorithm. We here 

briefly mention this problem with the note that it is only 

incidental to the subject of this dissertrtion. We take the 

program presently being written for the Pluribus as an 

existence proof that such hardware can be programmed to 

accomplish useful goals. in this section, we mention 

various techniques which have been used to generate programs 

for parallel hardware, without presenting any substantial 

discussion of their relative merits. 

\ 

I B 1 - Data Parallel Programs 

having built an assemblage of hardware such as ILLIAC IV, 

one is left with the burdensome job of generating programs 

to take advantage of its powerful structure. The first 

reauirement is that the task to be done be doable in the way 

that the hardware is fast at doing problems. It is probably 

not sensible to code for ILLIAC a problem which would run as 
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fast on a PDP-8. This means that the problem be of a 

certain type, such as a numerical matrix problem, and that 

the algorithm be sensibly constructed - minimizing 

conditional branches, and so forth. As with any new 

programmable hardware device, the first technique used to 

generate programs is the guy who sits down with a thorough 

understanding of the hardware, its capabilities, and its 

restrictions, as well as a tho-ough understanding of the 

problem to be done and the ways it night fit with that 

machine, and tries writing machine instructions until he has 

an implementation which he believes best, for some 

particular set of objectives and costs. 

It has long been observed that programmers can get more work 

done if they work in higher level languages. This 

observation, as well as a desire for efficiency through 

optimal matching of a program to the hardware on which it is 

to run, leads to the pursuit of automatic program 

parallelization algorithms. A substantial amount of work 

has been done in this area [12]. The scope of this work is 

to attempt to extract from a conventional p-ogram those 

sequences of identical operations which can be performed 

simultaneously on independent data, or in jome homogeneous 

fashion on interdependent data, such as in a K^rlx 

relaxation. The degree to which this sort of operation is 

possible is not obvious, since the data interdependence may 

come from the way the code is written, and not from the 

fundamental task to be done. 
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I B 2 - Control Paralle] Programs 

The complaint might very well be levelled at any 

multiprocessor architecture such as the Pluribus that it 

will be impossible to construct practical programs for a 

machine with such a complex control structure. Given that 

the software represents the majority of the cost of most 

computational facilities today, can such an architecture be 

sensible? 

We have four answers to this question. 

First, in some applications, such as the High Speed IMP 

application for which the Pluribus was originally developed, 

the software, like the hardware, is built once, and then 

falls back into an ongoing maintenance mode. In such 

applications, the cost of careful program design, to permit 

advantage to be taken of the powerful hardware structure, 

may be small compared to the hardware savings. This was 

decided to be the case with the Pluribus. In these "special 

purpose" applications, such an architecture is sensible. 

Second, unlike data parallel multiprocessors, a natch 

between the structure of the end job to be done - the "user" 

program - and the hardware architecture is not prerequisite 

to the successful application of the hardware to the job. A 

time-shared system could well be imagined which simply 

allocated users one-to-one to processors, giving each user 

no more power than he would have from a single machine,  but 

„^  
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able to support many users. Such a system could achieve 

increased efficiency compared to a collection of independent 

processors due to load averaging and resource sharing. The 

executive of such a system must be cognizant of the 

architecture, but only in the scheduler. Thus, such a 

system might be constructed without incurring large 

increases in software costs, particularly in ongoing 

software costs. 

Third, this sort of architecture is new, and there has not 

been much effort at writing programs for it. Even less 

effort has gone into the automatic generation of those 

programs. Surely the fruits of such labors can make easier 

and more economical the job of writing individual programs 

which take advantage of the architecture. We believe this 

to be a vitally useful area for research. 

Fourth, we have designed and written some programs for a 

control parallel multiprocessor. We have attempted to 

structure programs in an application-independent fashion, 

building a computational structure which imposes constraints 

on the processes it controls, but handles interprocessor 

communications and the trading of processes between 

processors in a fashion unrelated to any particular task to 

be done, and which is thereby useful for a variety of tasks. 

We thus have some understanding of how it can be done, and 

conclude that it is not all that difficult. We here present 

some techniques for dividing an algorithm for execution on 

an independent control stream multiprocessor. 
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I B 2 a - Job Boundaries 

In an inhomogeneous multiprocessor, such as a data line 

scanner front end for a time-shared system, there is very 

little difficulty in breaking the problem up into pieces to 

run on a multiprocessor. In fact, one of the significant 

advantages of using a multiprocessor for such a system is 

just that it permits independence between portions of the 

overall job which are conceptually independent, that is it 

places a real boundary where a conceptual boundary natr-ally 

falls. In such a system, therefore, breaking the overall 

problem into simultaneously executable code is not a 

difficulty but a relief. 

While this may be an extreme, programming a general problem 

on a multiprocessor is not that different. If the program 

can be divided into subtasks which run sequentially and with 

relatively few interlocking references to shared data 

?tructures, these subtasks can run in a pipeline fashion, 

each activating the next. Thus, the multiple processors can 

be simultaneously employed in various phases of different 

executions of the algorithm. Care must be taken that those 

references to shared data structures which reauire integrity 

of the structure are interlocked, and the utilization of 

such locked resources must be low in order to prevent 

inefficiencies due to waiting for them, but these are not 

very difficult matters. 
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Further, there is no requirement that multiple processors 

cannot simultaneously run the same code for successive input 

data. In this way, the power of the multiole processors can 

be brought to bear on a single device whose service requires 

many times the processing power available from n single 

processor. Alternatively, the various processors can at a 

given time be servicing different devices of the same or 

different types using the same or different programs. If 

the program is thought of as being event driven, as long as 

references to shared resources are carefully interlocked, 

service can be provided where it is needed at any instant, 

without burdening the programmer with multiprocessor-related 

constraints on an instruction-by-instruction basis. 

This scheme increases the system throughput, as compared to 

a single-processor system running the same program, but does 

not decrease the time taken to process a given datum. In 

this sense, it is equivalent to the time-shared 

multiprocessor which gives no user more than one processor. 

While no individual datum receives speedier service, the 

rate at which data can be serviced is increased, without 

adding substantial complication to the coding process. 

1 B 2 b - Simultaneous Fquivalent Executions 

There are other ways in which tasks may be divided for 

simultaneous execution on processors with independent 

control streams.  One of these is simoly to have two or more 

______ 
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processors executing exactly the same program independently. 

This can be done for reliability, by having the processors 

working on the same data; we have mentioned such systems. 

It can also be done for speed, having the processors work on 

independent data, thus processing twice as much data in a 

given time, or halving the time taken to process two sets of 

data. 

I B 2 c - Precomputation Down Decision Trees 

An interesting application of independent control stream 

multiprocessors is to look ahead of decision points, and 

thus get a head start on the computation which will be 

necessary, before the results of the decision are known. 

For example, suppose a task consists of a computation and an 

N-way test on the result, followed by N possible 

computations, each comparable in execution time to the first 

computation. The overall execution time of the task can be 

cut almost in half by setting one processor on the initial 

computation, and setting N other processors on the N 

subsequent computations, selecting only the one computation 

corresponding to the correct branch of the jecision as soon 

as the first computation is complete and the decision known. 

The secondary computations may reach decision points, and 

the process of duplicating the process for all possible 

decision outcomes can be repeated until all the processors 

in the system are used. 
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This scheme can reduce the execution time of a given program 

by a factor of almost the number of levels there are in the 

decision tree. Its cost in processors is the number of 

nodes in the decision tree. To return to our example of a 

single N-way decision, a factor of almost two can be gained 

in execution time, at a cost of a factor of N+1 in 

processors. 

This precomputation application of control parallel 

multiprocessors differs conceptually from those we have 

discussed earlier, in that there is a substantial inherent 

inefficiency in the use of computational power, since only 

one of the second level computations will be useful, and 

therefore N-1 processors are performing operations which do 

not contribute to system throughput. In other applications 

for control parallel multiprocessors we have discussed, the 

inefficiencies have resulted only from the necessity for 

inter-processor interactions, rather than from any inherent 

design attributes. We can quantitatively compare the 

results for this N-way precomputation problem to other 

problems without inherent inefficiencies. The 

multiprocessor doing precomputation is a factor of (N+1)/2 

less powerful in terms of throughput, since only 2 

processors, rather than N+1, are profitably employed. Where 

speed is of utmost concern, this sort of inefficiency may be 

acceptable; for most applications, the critical timing 

constraints can be avoided in other ways,  as we discuss 

di 



j-«-ii'" [..^■J   i   »nmw -"^W^BSWWWI 

Frecomputation  Down   Decision   Trees 1-35 

later,   and  the  throufthput/delay  tradeoff  can  be  nore 

sensibly made in favor of throughput. 

Summary 

This concludes our discussion of the forms of computational 

parallelism. We first considered data parallel structures, 

and concluded that while very prevalent, such architectures 

are powerful for only a limited class of problems, and are 

restricted in their reliability. We then turned to control 

parallel structures, and concluded that such architectures 

have the potential to provide economical, reliable, and 

powerful general purpose computing machinery. We next 

considered pipelined structures, and concluded that although 

they permit simple powerful designs for some problems, 

reliability is again restricted. We observed that a treneral 

control parallel multiprocessor is capable of, but not 

restricted to, oipelined operation. We ended with a brief 

discussion of the problem of programming a multiprocessor, 

and concluded that this area is as yet largely unexplored, 

and certainly worthy of extensive study, but does not 

present extreme or insurmountable obstacles to the present 

implementation and application of these architectures. 
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Chapter II 

INTERPROCESSOR INTERACTIONS 

In  the  first  Chapter,  we  discussed the various forms of 

parallelism which  might  be  used  in  the  design  of   a 

multiprocessor.   We  spoke of data parallel structures, and 

pointed out the limitations they imply.  We spoke of control 

parallel  structures,  and  observed  that  they   had   the 

potential  to  provide  highly  reliable  powerful computing 

machines at  a  reasonable  price.   We  observed  that  the 

problem  of  programming  such  a  machine is an interesting 

problem, but by no means insurmountable.  We  conclude  that 

the control parallel multiprocessor is the structure we wish 

to investigate further. 

In this chapter, we besin that investigation with an 

analysis of the ways in which the various processors of a 

multiprocessor might interact. 

Until the processors interact, a multiprocessor is simply a 

number of independent single-processor systems. It is the 

nature of the interactions between the processors which 

determines the characteristics of the multiprocessor. If 

the processors spend their tine waiting for each other, the 

system degrades to a single processor equivalent; if they 

can usefully run concurrently, the processing power is 

multiplied by the number of processors. If the failure of a 

single processor takes the system down, the system 

reliability is limited by the probability of all processors 
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being up; if working processors can diagnose and heal or 

amputate faulty processors and proceed with the Job, the 

system reliability can approach the probability of any 

processor being up. 

In this chapter we will discuss various interprocessor 

intercommunication issues. This discussion will be divided 

into three categories: Conflicts, Task Allocation, and 

Interactions for Reliability. 

In the area of conflicts, we will discuss the proolems of 

conflict resolution between competing hardware or software 

mechrnisms. Tne distinction between synchronous and 

asynchronous architectures is discussed, with a brief review 

of the advantages and disadvantages of each. We conclude 

that asynchronous architectures are sufficiently attractive 

in terms of flexibility to justify the use of practical 

synchronizing hardware. We also conclude that hardware 

mechanisms to permit rapid interlocking of software 

processes, while not strictly necessary, are sufficiently 

inexpensive and powerful to make them worthwhile. We 

discuss the problem of queueing delays, without developing 

rigorous mathematical models, and present th« concept of 

computational bandwidth and bandwidth matching as a 

mechanism for configuring a oractical multiprocessor. 

In the area of Task Allocation, various algorithms for 

allocating tasks  among  processors will  be   considered. 
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Interruption strateRies will be explored, and various 

methods of deciding which of the various processors to 

interrupt will be presented. The need for substantial 

computational power to make this decision leads to a search 

for a mechanism which will permit the power of the 

processors to be applied to this problem, rather than 

building more specialized hardware. This leads in turn to a 

discussion of voluntary task allocation algorithms. In this 

discussion, a novel alrrorithm is presented, basec on an 

inexpensive hardware task queue, which permits a very high 

efficiency and a high degre- of reliability at a low cost. 

A discussion of the disadvantages of voluntary task 

allocation algorithms is then presented, including a quite 

general discussion of the latency buffering requirements for 

synchronous devices. 

In the area of Interactions for Reliability, we briefly 

mention the 11 lits of reliability in a multiprocessor, and 

point out that the observed reliability will depend on 

numerous engineering considerations in the design of the 

system. We then examine a number of these considerations. 

We conclude with a discussion of the reduction of 

computational bandwidth on component failure. 
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II A - Conflicts 

In this section, we will discuss the problems which arise 

out of different hardware or software devices simultaneously 

desiring access to a common shared resource. Mechanisms 

must be provided to unambiguously resolve these conflicts in 

order for the system to function usefully. We will divide 

this discussion into three parts. In the first, we will 

consider conflicts between hardware devices. The second 

will deal with conflicting software devices. In the third, 

we will briefly discuss the delays introduced by conflicts. 

In the area of hardware conflict resolution, we will first 

consider the distinction between synchronous and 

asynchronous multiprocessors, and observe that the design 

simplicity which makes the synchronous architecture appear 

attractive is outweighed by the constraints it imposes on 

system timing, reliability, and expansibility. We will tnen 

consider how arbitration logic can ba constructed to resolve 

the conflicts inevitable in an asynchronous system. We 

observe that while it is impossible to implement circuitry 

which performs such arbi' ^ation in any finite time without a 

probability of ambiguity, practical circuits with acceptably 

low failure rates are straightforward. 

In our discussion of software conflicts, we will make 

mention  of mechanisms  which can be used  to  implement 
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meaningful communication, there must be a mechanism for 

unambiguously resolving ccnflicting simultaneous requests 

for this resource. Even in so simple a communication 

discipline as a simplex register which one processor can 

read and one processor can write, a synchronizing mechanism 

must exist to prevent simultaneous reading and writing, or 

the data read may be a meaningless combination of new and 

old data, and further cannot be relied on even to remain 

constant in the internals of the machine which read it, as 

we shall discuss later. 

These difficulties in intercommunication lead to a desire 

for a global synchronizing mechanism, i.e., a synchronous 

architecture. We will first consider the distinction 

between synchronous and asynchronous multiprocessor 

architectures, and conclude that considerations of 

efficiency, reliability, and expansibility militate against 

the synchronous design. We then turn our attention to the 

problem of unambiguously resolving arbitrarily timed 

conflicting requests for a shared resource. This problem is 

inherent in an asynchronous structure. 

II A 1 a - Whv Not Svnchronous? 

A multiprocessor can be constructed either synchronously or 

asynchronously. In a synchronous system, all processors and 

devices are driven by a single central system clock.  All 

________^-______^___^_^__^^ 
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events happen at clock time, after which there is a settlinp 

time to permit all transitions to propagate throughout the 

logic, whereupon the next clock pulse occurs. This sort of 

system has the advantage of being conceptually simple, 

permitting knowledge at design time of the relative timing 

of all events. Unfortunately, there are several 

disadvantages of such an architecture, in terms of 

efficiency, reliability, and expansibility. 

II A 1 a i - Efficiencv 

A synchronous .nultiprocessor suffers inefficiency because 

all operations are constrained to take the same amount of 

time. Thus a processor completing a fast operation must 

wait until a slow operation could have been completed, since 

some other processor migi.ö have been using that time 

interval to do a slow operation. This inefficiency can be 

minimized by reducing the interval between clock pulses, and 

making different operations take different numbers of clock 

ticks. In this case, a cost is paid in time and hardware 

complexity to determine which phase of a given operation is 

to be performed on a given clock pulse. Thus, whether the 

inefficiency comes in idle processors or in slow and costly 

phase determining hardware, a synchronous multiprocessor 

architecture will pay a price in efficiency. 
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II A 1 a ii - Reliability 

A synchronous multiprocessor by definition depends on a 

single central clock to provide the synchronizing pulses to 

all of the processors. This clock then is crucial to the 

functioning of the multiprocessor, and if it stops, the 

entire machine stops. Certainly isolation can be built into 

the central clock logic so that no individual processor 

failure can cause the clock to appear stopped to any other 

processor, but central clock failures are more difficult to 

protect against. Note that it is not adequate for each 

processor to have its own clock as backup to the central 

clock; there must be an intercommunication path so that all 

processors agree on when clock pulses happen. This 

intercommunication medium is then as crucial as was the 

original clock. 

The clock can be duplicated, and separate clock signals can 

be run to all of the processors, with rules such as "Believe 

clock A as long as it is running. If it fails, believe 

clock B". It is in general impossible, however, to get the 

various processors to agree on whether clock A is running, 

particularly if it starts running at the wrong speed. 

Thus, a synchronous multiprocessor architecture suffers 

unreliability due to the difficulty in providing a 

believable reliable central clock for synchronization. 

. ■■ • mmm—m 
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11 A 1 a iii - Expansibility 

The fixed timing requirements on a synchronous architecture 

impose difficulties on system expansion. Given that the 

time for a signal to propagate from one side of a system to 

another is typically comparable to or in exce.ss of the time 

to perform a logic computation, addition of new logic which 

expands the physical size of the system requires careful 

reconsideration of the system timing, and may reqjire 

slowing the central clock. This makes it difficult and 

expensive in terns of design time and system power to expand 

a synchronous multiprocessor. 

II A 1 b - Arbitration 

In an asynchronous system, each device - processor, I/O 

interface, etc. - runs on its own internal timing, at the 

fastest speed appropriate to it at the time. While this 

architecture alleviates the problems discussed above in 

efficiency, reliability, and expansibility, it introduces 

new problems due to the lack of knowledge of the relative 

timing of requests on the shared resources. Since the 

devices are asynchronous, their timing relationships are 

probabilistic. The probability of receiving two requests 

with any given timing relationship, to within epsilon, is 

then proportional to epsilon. This presents a particular 

problem in the design of the hardware to arbitrate  between 
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requests, since there is always some time relationship of 

inputs to any hardware device which will result in an 

ambiguous output. 

We will first consider the reasons why an arbiter cannot be 

designed which does not have a finite probability of giving 

an ambiguous result after any finite length of time, then 

observe that practical circuits which perform arbitration 

witn an acceptably low rate of ambiguous results can be 

implemented with ease. 

II A 1 b i - Can't Be Done Perfectlv 

A detailed understanding of the failure of any particular 

arbitration circuit requires a thorough understanding of the 

static and dynamic analog characteristics of the components 

involved. In an effort to give some intuitive understanding 

of the reason for the impossibility of unambiguous 

resolution,  we now present a circuit-independent argument. 

Decision-makers are positive feedback devices. That is to 

say, once a decision-maker has decided one way, it tries to 

to stick with that decision. The fact that it has begun to 

change its mind encourages it to quickly change to the other 

decision. The state of any such bistable positive-feedback 

device can be represented as a point on an energy curve such 

as that in Figure II-1. 
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Unstable 
Equilibrium 

Stable 
Equilibria 

Figure II-1 

Arbiter Energy Diagram 

Once in either of the energy wells, small amounts of input 

energy are ignored; the device remains in the well. Once 

sufficient energy is applied to force the device up over the 

crest of the hill, however, the device will rapidly drive 

itself down into the other energy well. 

In any such curve, there must be a zero-derivative point at 

the top of the hill. This is guaranteed by the fact that 

there is a point between the two wells which is higher than 

either of the two wells, which is necessary for the device 

to have two stable states. 

The ambiguity arises when the input provides just enough 

energy to drive the device to the exact top of the energy 

curve, but no more. 
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While the probability of hivting the exact unstable 

equilibrium point is zero, if a point very near that point 

is hit, it will take a long time to fall, one way or the 

other. This time increases as the distance from the 

equilibrium point decreases, and would be infinite if the 

equilibrium point were hit exactly. 

II A 1 b ii - Can Be Done Adequately 

Having pointed out the impossibility of building an arbiter 

which does not have a finite probability of being ambiguous 

after any finite time, we now consider how to build 

practical arbiters. 

We observed that the time taken by an arbiter to transition 

to a well-defined state in one of the energy wells will 

increase as the distance of the initial operating point from 

the unstable equilibrium point decreases. The arbitrary 

nature of the timing relationships of asynchronous requests 

makes the probability of hitting a given region of the 

operating curve proportional to the width of the region. In 

jrder for an arbiter to still be ambiguous after a length of 

time, it must have initially been within a region near the 

equilibrium point. As the time increases, the width of the 

region decreases, and thus the probability of being within 

that region decreases. By waiting a long time after 

applying inputs to an arbiter before examining the output. 
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therefore, one can make the probability of an ambiguous 

result very small. From an acceptably low failure rate 

specification, one can derive the length of time which one 

must allow for arbiter settling to achieve that failure 

rate. Such a derivation is straightforward from simple 

considerations which we will now outline. 

The timing of the resolution of requests is determined by 

the shape of the energy curve. Since we are interested in 

the performance when the device spends a significant amount 

of time in , an unstable state, we can assure that there is 

very little driving force on the device over the period of 

interest, and thus that the first derivative of the energy 

curve is zero. Furthermore, since the first derivative is 

very small over only a very small portion of the enerpy 

curve, we can assume that we are interested in only a very 

small portion of the curve, and therefore that the 

derivatives higher than the second can be ignored. The 

second derivative, while not known, cannot be neglected, as 

that would predict a finite zone of equilibrium, a 

characteristic one seeks to avoid in designing arbiters. 

We  can  thus characterize the energy curve over the area of 

interest as a parabola, E=-k*X**2, for some positive k.  For 

such a curve, the  probability  of  being within a region 

defined as ambiguous can be shown to be: 
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P = exp(-t/T) 

Where t is the time waited and T is a time constant 

characteristic of the device. Computation of T from 

theoretical grounds is most difficult. Empirical 

measurement is straightforward. 

Given this equation for the probability of failure and an 

empirical measurement of the time constant T, one can easily 

find a value for t, the waiting time, which will produce an 

acceptably low failure rate. In practice in today's 

technology, a delay of one to several hundred nanoseconds 

can produce failure rates of one per century  to millenium. 

In an asynchronous system, arbiter reliability and delay can 

be improved by permitting the arbiter to announce its 

decision when it observes that it is no longer ambiguous. 

Thus, by adding logic to measure whether or not the state is 

near the equilibrium point, one can postpone any action 

based on the result of the arbitration just long enough to 

get an unambiguous result. 

II A 2 - Software Conflicts 

Having described some hardware primitives for resolving 

simultaneous usage requests, we briefly describe the 

software primitives required to permit processes to share 

resources without permitting ambiguous states.  Each of the 
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lock was locking, secure in the knowledge that no 

undesirable competitors also own it. When the processor has 

finished with the locked resource, it rewrites the lock as 

unlocked, permitting some other processor access to the 

resource. 

We now briefly consider how such locks may be implemented 

with  or  without  hardware capable of an indivisible 

test/modify sequence.   While  such hardware  is  not 

indispensable, the efficiency gained justifies the small 

hardware cost. 

II A 2 a - With Indivisible Test/Modify 

Classical implementations of interlocks have utilized an 

uninterruptible hardware sequence which both tests and 

modifies the state of a location in memory. Often, a 

Read/Modify/Write memory cycle is used, in which in a single 

memory cycle, the contents of a location are fetched, 

updated, and rewritten. For example, a multiprocessor 

PDP-10 can implement an interlock using the AOSE (Add One 

and Skip if Equal to zero) instruction as follows: 

AOSF LOCK      ; Increment the lock and test 

JRST .-1       ; Continue checking until unlocked 

; Now use the locked resource 

SETOM LOCK     ; Unlock (Set to -1) 
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In this example, a value of -1 means unlocked, and any other 

value means locked. If LOCK contained a -1, the AOSF will 

bring it to zero and therefore skip. If it contained 

anything else, the processor will loop here, incrementinp it 

until some other processor unlocks it. Since it would take 

more than three days for this loop to count a zero value 

around to zero apain, we can neglect that source of multiple 

ownership. 

The test/modify sequence need only be indivisible by another 

process which might be competinp for the same resource. 

Thus, in a DDP-516, the IMA (Interchanpe Memory and 

Accumulator) instruction uses different memory cycles to 

fetch the old contents of memory and rewrite the new 

contents. Nevertheless, this instruction can be used to 

interlock processes at different interrupt levels, since 

interrupts can only occur at the end of an instruction, not 

in between the cycles of an instruction. Therefore the 

multi-cycle IMA is indivisible in terms of interrupting 

processes. 

In a multiprocessor environment, interlocking is of crucial 

importance, and typically must be done frequently. 

Efficiency is therefore of utmost concern. An efficient and 

very useable interlock mechanism can be implemented by 

simply using a destructive readout from memory, that is, the 
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act of reading the contents from memory destroys the 

contents, leaving zero or some other ..ominal value behind. 

In core memory systems this may be very straightforward to 

implement, since core is inherently a cestructive readout 

device, which is made nondestructive only by adding an 

automatic rewrite uycle to each read cycle. Simply 

disabling this rewrite provides an inexpensive and efficient 

locking mechanism. In cases where because of parity or 

other practical considerations elimination of the rewrite 

cycle is not feasible, simply zeroing t'.ie data before 

rewriting can give the same effect. 

The attractiveness of this particular locking mechanism 

arises from the fact that the lock datum can itself be the 

locked resource. For example, one can imagine there being a 

shared list of available memory space. A processor desiring 

some memory would read the lock location corresponding to 

this resource. If the result is zero, the resource is 

currently locked, and the processor rereads it until a 

non-zero result is obtained. This result is then a pointer 

to the first available space. The act of obtaining this 

information then locks the resource so that no other 

processor will attempt to claim the same space. After 

reserving the space it needs, the processor computes the nev 

pointer to the first available space, and rewrites it into 

the lock location. This simultaneously updates the 

allocation information and unlocks the resource to permit 

access to others. 
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The efficiency in this scheme comes about fron the fact that 

the locking and unlocking is made part of the normal 

activity of obtaining and updating the locked information. 

The only overhead paid as compared to the same actions 

without Interlocking is the test for zero, and, necessarily, 

any waiting while the resource is utilized by others. The 

cost of this efficiency is simply that of the destructive 

read, described above. 

II A 2 b - Without Indivisible Test/Modify 

It is possible to implement interlocks without an 

uninterruptible test/modify sequence. We now present two 

algorithms for doing so, again assuming the existence of 

unambiguous hardwarQ arbitration. These are of interest as 

demonstrations of the non-necessity of indivisible 

test/modify sequences, and may have practical value in 

multiprocessor situations in which the processors are almost 

independent, intercommunicating only most infrequently, so 

that the efficiency of such communication is unimportant. 

In general, the high efficiency and low cost of hardware 

implementations of interlocks make these algorithms 

irrelevant. 
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II A 2 b i - Round-Robin 

The essence of a lock is that no two processors can read 

from it a value which gives both of them permission to use 

the resource. Usually, as described above, this is 

accomplished by having one state of the lock mean "locked" 

to all processors, and another mean "unlocked" to all 

processors. However, it can also be accomplished by having 

a different state mean "unlocked" to each processor. Thus, 

an interlock might be implemented by having a "permission" 

location in shared memory. One device, either hardware or 

software, has responsibility to set this location on 

alternate units of time to 0 and to consecutive integers, 

modulo the number of processors. Thus, in a four-processor 

system, thiü.location would, on successive units of time, 

contain 0,1,0,2,0,3,0,4 repeated every 8 units of time. 

When a processor wishes to access any lock, it must wait for 

its processor number to appear in this location. It may 

then read, test, and rewrite any locks under the control of 

that one permission location, but it must be done in less 

than one unit of time. In this way, it knows that it alone 

has access to these locks, and thus that any resource it 

locks, it owns uniquely. The der.d times (when permission is 

zero) assure that even if a processor gets permission at the 

very end of its interval, it will have finished before any 

other processor can get permission. 
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IIA2bii- C-^owther's Techniqun 

Another technique which can be used to implement locks 

without using indivisible test/modify sequences, proposed by 

W. Crowther, is aa follows: define a conventional memory 

location to be a lock. If the location contains a zero, the 

lock is defined as unlocked. Any processor may read this 

location, and if it is zero, will then rewrite its processor 

number into.it, on a later memory cycle. The processor will 

now wait lonp enoufth to allow any processors to rewrite 

their processor numbers if they have read the lock between 

the time this processor read it and the time this processor 

rewrote his processor number. This processor now rereads 

the lOOStlon, and, if it finds its processor number therein, 

it owns the resource, and proceeds. Otherwise, it goes back 

to wait for the lock to become zero once arrain. Thus 

though multiple processors may find -,he lock initially zero, 

only one will pain access to the resource. Any processor 

which reads the lock after the first processor has rewritten 

its processor number will find the lock non-zero, and  wait. 

II A 3 - palnY^l (>us ^9 (fonfllstja 

We have now examined hardware and software primitives for 

unambiguous inter-processor communication. We have seen in 

each case that practical implementations are available, but 

imply slowdowns, and thereby reductions in the computational 
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power of the system. In this subsection, we will consider 

the effect of these slowdowns on computational power. We 

will break our discussion into two parts, first considering 

the penalty paid in computational power for handlinp the 

possibility of conflicts, then turninp, to a brief discussion 

of the queueing delays encountered when conflicts actually 

occur. 

II A 2 b i - Overhead 

In this subsection, we will derive a measure of the slowdown 

of a program from the overhead required to run in a 

multiprocessor environment, without considering slowdowns 

from conflicts. We will measure this slowdown as a ratio R 

of the time to execute a uniprocessor version of the program 

to the time taken to execute the program in a multiprocessor 

environment. Thus, if the processors were entirely 

independent, no changes would be necessary, and R would be 

1. An R of 1/N in an N processor system would mean that the 

overbad involved in running that program on nat system 

would it least offset any power increase obtained from the 

multiprocessor. 

Clearly, R depends both on the program being run and on the 

hardware running it. Thus, one cannot ascribe to a hardware 

configuration a specific R, valid for all programs. 

However, one can. characterize the R of a system for a  class 
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of programs with certain eharacteristies. We now examine 

what those characteristics are. 

Assuninp that the only change involved in translating a 

uniprocessor program for multiprocessor operation is the 

addition of locking instructions, the amount of extra time 

that will be spent executinp a giytn piece of code is the 

number of references that code makes to shared resources 

times the amount of delay added to each of these by the 

hardware arbitration delay and communication time, plus the 

number of lock/unlock seouences which must be performed by 

that code times the time taken to perform one of these. 

Call the time to execute the code on a uniprocessor Tu, the 

time added to each access to a shared resource Ts, the 

number of such references in the code Ns, the time taken to 

execute a lock/unlock sequence Tl, and the number of such 

sequences in the code HI, then for that particular piece of 

code runninp on that hardware- 

R=Tu/(Tu+Ts«Ns+Tl»Nl). 

Of these parameters, Tu, Ns, and Nl are characteristics of 

the program, whereas Ts and Tl are characteristics of the 

hardware. Note that at this point we don't care whether the 

lock references |to to one or many different locks; when we 

consider the effects of actual conflicts, this will be of 

critical importance. . 
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As an example, consider a program piece which runs in 

225 microseconds on a uniprocessor, which makes 50 

references to shared resources, each of which is 

slowed by 500 nanoseconds, and which does 5 

lock/unlock sequences, each of which takes 10 

microseconds;  then R=225/(225+50«.5+5*10)=.75 . 

It should be noted that this equation does not make clear 

the effect on R of Ts, since the lock/unlock sequence 

usually contains references to shared resources. If we call 

the number of such references in one lock/unlock sequence 

Ls, and the time of the lock/unlock sequence if these were 

to local memory To, then 

R = Tu/(Tu+Ts*Ns+Nl»(To+Ls»Ts)) 

= Tu/(Tu+Ts»(Ns+Nl»Ls)+To»Nl). 

II A 2 b ii - Queueing Delays 

Having considered the slowdown a program incurs due to 

running in a multiprocessor environment, we now turn our 

attention to the delays incurred because of waiting for 

another process which currently owns a needed resource. We 

will not derive formal mathematical models of the delays 

involved, although such models for multiple users competing 

for a single resource are well known [14]. 

In fact, the queueing situation in a real multiprocessor  is 

much more complex than this simple model.  The difficulty of 
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mathematically modolinp such complex systems lies outside 

the realm of this thesis. Imaftln« a mul t iprocossor 

including four processors, two on each of two shared busses, 

competing for two different software structures contained in 

the same or separate memories. ^irst, the processors must 

compete for ownership of the processor bus. Then the 

winners may compete for the shared memory bus. The winners 

of this competition may then find the software resource 

locked, and have to po back to the first level competition. 

The losers of the earlier competitions way find the software 

resource free by the time they finally pain access. In 

addition to the difficulty which this ranpe of possible 

combinations brinps to the.analysis, the inapplicability of 

I random arrival time model to the timing of processors 

executing small repetitious hardware or program functions 

makes general mathematical analysis even more Intractable. 

Accordingly, we will not attempt such an analysis In this 

dlssertatIon. 

The extreme conditions of low and high utilization of a 

given resource are more tractable. We will briefly present 

an analysis methodology which will permit approximate 

evaluation of the aueueing delays expected In a practical 

multiprocessor. In so dolnp, we will Introduce the concept 

of the bandwidth of a device, and the rule of bandwidth 

matching as a technique for achieving cost-effectiveness. 
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II A 2 b ii (a) - yai Utilization  Extreme 

In the situation where multiple users are competing for a 

given resource which is busy a very small fraction of the 

time, a simple analysis which neglects the impacts of 

multiple collisions can be used. In a system of N 

processors, each of which keeps a resource tuny for a 

duration of mean B out of each interval of mean If the 

probability that a given request from any processor will 

find the device ousy is given by: 

P=(N-1)«B/I 

If the device is found busy, then, neglecting multiple 

collisions, the average duration of the wait for the device 

will be B/2. The average waiting time out of each interval 

I is therefore 

B/2«(N-1)»B/I 

Since this delay is incurred each interval I, the fraction 

of the machine  spent waiting is 

(B/2»(n-1)»B/I)/I 

=   (N-1)/2»(B/I)»»2 

If we call the total fraction of the time the device is used 

U, then 

1 
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U = iM*(B/I) 

and  the slowdown reduces to 

(N-1)/(2*N»»2)»1J*«2 

As we have stated before, this approximatton only holds when 

U is much less than 1. 

IIA2bii(b)- Saturation 

We have discussed a model which applies when the utilization 

U is much less than 1. Another interesting and 

straightforward case is when U=1, i.e. when the device is 

always busy. Whether oi" not complete saturation will ever 

occur, and therefore whether or not U will ever truly equal 

1, depends on the distributions of service times and 

computational periods between service reouests. If these 

distributions are entirely random, then a U of 1 can never 

be obtained. For fixed service times and fixed computation 

intervals between requests, saturation is easy to achieve 

and understand. The model we present here assumes 

saturation. 

We define another utilization  parameter  U'  as  being the 

utilization  the  processors  would try  to achieve in the 

absence of conflicts.  To achieve a  U  of  1,  U'  must be 

greater than or equal to 1.  By this definition. 
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U'=(B/I)*N 
r 

If the length of a service cycle is B, the number of service 

cycles per unit of time in saturation is 1/B. If the 

interval in which one service cycle is requested is I, then 

each of these 1/B service cycles results in a time I of 

useful computation, so that the amount of time spent doing 

useful computation per unit of time is 1/B. The amount of 

computation time available per unit of time in an N 

processor system in the absence of conflicts is N. Thus, 

the time lost due to conflicts is 

N-I/B 

Since this time is divided among N processors, the time each 

processor spends waiting per unit of time, and thus the 

fraction of the machine  lost  because of conflicts,   is 

(N-I/B)/N 

= 1-1/(N»B) 

=   1-1/U' 

II  A  2  c   ii  (c)   -   Bandwidth Matching 

In developing these extreme case models, we have referred to 

the utilization, i.e., the fraction of the time which a 

resource is in use. This leads us to a more general notion 

of mai-rhing the usage of each resource to its capacity, in 

order to achieve  efficiency.     To do this,   we     introduce     the 
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concept  of  computational  bandwidth,  in  an  effort  to 

understand how this matching can be easily done. 

One major reason for considering a multiprocessor 

architecture is to achieve an increase in the computational 

power available, as compared to economically sensible 

uniprocessor systems. We now considei- briefly what is meant 

by the term computational power. 

We  define  the »j ower" of a computing system as the rate at 

which it processes data, or more precisely,  the  amount  of 

data  it  can process  in  a unit of time.  We then need to 

define what we mean by processing data.  We can measure  the 

amount  of data involved, by counting the bits which need to 

be taken in.  Exactly which bits  concern  us,  and  exactly 

what  it  takes  to  process them, is application-dependent. 

One measure of system power is simply the memory cycle time, 

the time required for a memory to present a  requested  wore 

and  prepare  for  a  new  request.   This is indeed a crude 

measure of system power, since the time taken to perform any 

operation may be very different from this number.   However, 

the  number of  bits in a word divided by the cycle time of 

the memory does give the maximum rate at  which  information 

can be extracted from that memory, a crucial characteristic 

of the memory. 
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Another metric which has been used to measure the power of 

computing systems is the rate at which instructions can be 

executed. Measured in KIPS (kilo-instructions oer second), 

this gives some measure of the amount of processing a system 

can do in a unit of time. While this does not measure the 

ability of the system to perform the needed computation in a 

given time, it does, when divided into the average number of 

bits in an instruction, yield the rate at which the 

processor requires data as instructions. 

An accurate measure of the ability of a system to perform a 

given task is simply the data rate at which that system can 

absorb the data to be processed. This then is the system 

input data rate. Its measurement depends not only on the 

system and the Job to be done but also on the specific 

program written to perform that job on that system. 

We have spoken about a number of different system 

characteristics in terms of the rate at which they process 

or provide data. Comparisons of these numbers are useful, 

and for this reason we define the term "bandwidth", as used 

in this dissertation, to mean a data rate, in bits per 

second. Thus, the bandwidth of a memory is the maximum 

number of bits which can be stored into or retrieved from 

that memory in a second, the bandwidth required by a 

processor of its supply of instructions is the number of 

bits of instruction the processor processes in a second, and 

the system bandwidth is the number of input bits the system 
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can process in a second. This system bandwidth is then our 

measure of the computational power of the system. 

The concept cf bandwidth as defined above is generally 

useful. One can easily understand that a memory bandwidth 

at least equal to the processor's instruction bandwidth is 

needed to supply the processor with instructions unless a 

slowdown is to be incurred. Interleaved memory bank'i permit 

parallel operation of memories, and the individual memory 

bandwidths can be added to get the memory system  bandwidth. 

We can now define the bandwidth of any given resource as the 

number of bits per second it can handle, and the bandwidth 

requirement of any user of that resource in terms of the 

"number of bits per second that it requires. Our utilization 

factor U is then equal to the fraction of the bandwidth of 

the resource which is utilized. 

By comparing the total bandwidth requirement on a resource, 

namely the bandwidth required by each user times the number 

of users, to the bandwidth available from that resource, we 

can determine the number of copies of that resource we must 

supply to support that number of users. For example, the 

memory bandwidth required by a processor times the number of 

processors divided by the bandwidth available from a single 

memory will give us the number of independent memory units 

required for the system. 
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In fact, the queueing delays can get to be large if the 

system is designed on the assumption of utilizing the entire 

bandwidth available from a given resource. In practical 

terms, a utilization of fifty to eighty percent yields a 

suitable compromise between waited user bandwidth and wasted 

server bandwidth. 

II B - Task Allocation Algorithms 

In the first section of this chapter, we discussed the 

fundamentals of interprocesbor interaction, the mechanisms 

by which such interactions can take place, and some 

implications for system configuration of these interactions. 

In this section, we look in some detail at one specific 

interaction: the problem of allocating tasks among the 

various processors. This problem is central to the system 

power and reliability. 

We will consider various possible approaches to this 

problem, and explore the advantages and shortcomings of 

each. We will break the discussion into two sections, first 

considering interruption algorithms, then move on to novel, 

efficient voluntary algorithms. In the following and final 

section of the chapter, we will deal with other reliability 

issues. 
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One  approach  to the task allocation problem is to pive one 

processor the duty of assipninp: tasks to  other processors. 

This  processor must then have the ability to interrupt and 

give commands to all other processors.  If this ability  is 

given  in an  inhomogeneous  fashion, that is if the "king" 

processor is  king  by  nature  of  special   hardware 

configuration, the system reliability is impaired, in that a 

failure  of this one processor takes the system down.  This 

situation can be somewhat improved upon in terms of  system 

availability by  manually  interchanging  processors in the 

event of a failure.  In many situations, however, the  delay 

and  high  probability of incorrect action inherent in human 

intervention makes this dependence unacceptable. 

This "king" scheme of task allocation can be implemented on 

a hardware homogeneous system by giving to all processors 

the "king" hardware, permitting any to act as "king for a 

day", and leaving to the software the problem of selecting 

the current task allocator. There are problems in such a 

scheme, however. One area needful of attention is the 

impact on reliability of tne "malicious" processor, that is, 

a processor which fails in such a way as to believe it is 

king, and thus interrupts and assigns useless or harmful 

tasks to healthy processors. While this sort of failure may 

be unlikely, the effect on the system is sufficiently 

disastrous to necessitate considering schemes for protection 

against  it.  This sort of protection can be achieved by 
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requiring that some hard-to-compute password be given before 

a given processor's task assignment hardware can be 

activated, and perhaps requiring a cooperative effort of a 

number of healthy processors to el-ct a new king and compute 

this password. However, as the election hardware becomes 

more complex, it becomes less reliable, and a failure here 

can take the system down. It also becomes more expensive, 

decreasing the computational power available from a system 

of a given cost. 

Some of these problems can be avoided by having the 

processors decide for themselves what tasks to do. Some 

advantages and disadvantages of such voluntary algorithms 

will be discussed after we consider various interruption 

algorithms. 

11 B '' - Interruption Algorithms 

Given that tasks are to be assigned to processors by 

interrupting the processor and starting it on the new task, 

there arises the question of how to decide what tasks should 

be run, and on which processors. A number cf schemes are 

possible, with different advantages and disadvantages in 

terms of hardware cost, reliability, and efficiency. We 

discuss a few here. 
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One possibxlity is to have a central task allocator which 

simply dispatches tasks in a blind fashion, for instance 

successive tasks might be assigned to processors in turn, so 

that each processor in an N-processor system would receive 

every Nth task. Alternatively, tasks could be assigned to 

processors entirely at random. 

A principal advantage of a blind interruption scheme would 

be the simplicity of the hardware required. The reliability 

penalty paid by having a single central task allocator could 

be overcome by duplicating this logic. The apparent fault 

of taking no account of the relative priorities of tasks can 

be overcome by putting that duty in the software, so that on 

an interrupt, the program might decide whether to start on a 

new task or continue with the old. 

The principal disadvantage of this scheme is that it permits 

one processor to become overburdened while others sit idle, 

if there is a significant disparity in the time required to 

execute the different tasks. Even this might be overcome by 

permitting a processor to set a flag asking for help in a 

common memory, and, if another processor should become idle, 

one or more tasks might be passed to it through the common 

memory. Clearly, any such scheme has significant overhead 

associated with it, and perhaps also implies degradation in 

system  reliability.  However,  if all tasks took the same 
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time, this sort of inefficiency would not be encountered, 

and a blind interruption scheme might be sensible. 

II B 1 b - Dedicated Processor:Device Relationship 

Another scheme for allocating tasks to processors is to tie 

all devices which might spawn tasks to specific processors, 

and decree that any task a device spawns must be executed by 

the processor to which it is tied. The principal advantages 

of such a scheme are simplicity, both conceptually and in 

hardware. People are quite accustomed to having devices 

interrupt their associated processor, and hardware can be 

economically purchased to do this. 

The disadvantages are in efficiency and reliability. If one 

device tends to generate most of the tasks, either generally 

or locally in time, the processor to which it is tied nay be 

very busy while others sit idle. As with the blind scheme 

discussed above, this may be overcome by handing tasks off 

to other processors through common memory, again paying 

penalties in overhead. This process passing can be brought 

more in line with the overall scheme of fixed 

Processor:Device relationship, and also made less expensive 

in overhead, by adding pseudo-devices, which connect between 

processors, and permit one processor to interrupt another 

when it wishes to hand off a process. However, in the case 

of some high speed devices, the simple task of servicing the 

device's interrupts and setting up new transfers  may  take 

i 
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more computational power than is available from the single 

processor to which it is connected, in which case the scheme 

does not work. 

I 

This scheme pays a price in reliability if it is essential 

to keep certain devices alive in the case of processor 

failure, since each device is tied to a single processor. 

This can be avoided by designing the interfaces co be 

parallelizeable, that is, so that a single device can 

connect to multiple interfaces. In this case, the 

interfaces would be tied to different processors, and only 

one would be active at any one time. If the processor to 

which that one was tied appeared down to the system, the 

system would select another to continue communication. 

There remain potential problems of multiple processors 

believing themselves healthy and in control of the device at 

any given time; the hardware can be designed to minimize the 

likelihood of this. All of these considerations are 

irrelevant if there are no devices of crucial importance, 

and it is ftlt that the loss of all device? tied to any 

individual processor is not disastrous. 

II ß 1 c - Prioritv 

A scheme which allows somewhat greater efficiency is to give 

the tasks a hardware priority ord&ring. Thus, the problem 

of deciding which process to execute next is removed from 

the software, which works on whatever  tasks  it  is  given. 
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Further, as new tasks arrive, the ones which get the 

speediest attention are the highest priority runnable tasks. 

This could be implemented by having hardware registers in 

the Interruption lo:,ic which remember the priority levels of 

the tasks which the processors are working on, and, if a 

task of higher priority than the lowest priority task 

presently active should arrive, interrupting the processor 

working at the lowest priority level, and giving it the 

task. 

This scheme is appealing, in that it seems to leave all 

processors doing what one would want them to do, at very 

little penalty in overhead. However, it does have some 

severe implications in hardware cost and compl.xity, and in 

reliability. 

The first observation about this scheme is that it is 

inadequate to have a single priority level register per 

processor; there must somewhere be a stack of priority 

levels of processes stacked in each processor, since upon 

completion of a task, a processor would return to the task 

which it was doing when interrupted, and it is the priority 

level of this task which the interruption lo^ic must 

consider. Further, it is necessary that the processors 

inform the interruption logic when they complete tasks, so 

that the priority level can be changed. Since this 

communication  is necessary  anyway, it would be reasonable 

for the processor to keep the priority level stack, and have 
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the interruption logic inform the processor of the priority 

level of the task on which it is to start working, at the 

time it is given an interrupt. The processor can then 

inform the interruption logic, at the time it finishes a 

task and resumes an old one, of the priority level of the 

task it is now working on. 

The  inefficiency  in this scheme results from the fact that 

once a processor has started a task, that processor must  be 

the  one  to  finish  it.   Consider an  extreme  case  of 

inefficiency, in which all but one  of  the  processors  are 

executing tasks  of  the highest possible priority, and the 

remaining one is executing a task of  the  lowest  priority. 

Mow,   successive   tasks  of  increasing  priority  become 

runnable.  Note that all of these find the same processor to 

be interruptable and the lowest priority, and thus this  one 

processor gets  assigned all of these tasks.  Now the other 

processors finish their high  priority  tasks,  but  no  new 

tasks  are arriving.  Thus, these processors sit idle while 

the processor executinr the lower priority  tasks  continues 

for a long time to finish its stack of tasks.  This problem 

can again be overcome by handing  partially  executed  tasks 

among  processors,  but again, the associated overhead makes 

such a solution likely to be impractical. 

The reliability problems in this scheme stem from the 

central and non-trivial interruption logic. If this fails, 

the entire system goes down.  The amount of  logic  involved 
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is sufficient to make it expensive to duplicate, especially 

when one considers the additional logic which is required to 

permit the program to selectively enable and disable the 

different copies, after so.ne believability check on the 

commands to do so. 

II B 1 d - Intelligent 

The efficiency problems discussed above can be avoided by 

adding more intelligence to the interruption hardware, if 

some constraints are placed on the time to complete a task. 

Specifically, if the interruption logic can know in advance 

roughly how long a given task will take to complete, it can 

then make a reasonable estimate of when the various 

processors will be finished with their load, and can then 

hold an interrupt request for a processor which is about to 

be free, rather than burdening an already busy processor 

which might be running a task of lower priority. 

In this case, the interruption logic reust keep track of the 

specific tasks queued at each processor, and how much longer 

each has to run. It must also have enough intelligence to 

compute on the basis of this information which processor 

each task should be assigned to. The amount of storage and 

intelligence required implies quite powerful logio, 

comparable in power to a programmable processor. In fact, a 

programmable processor is probably the most sensible way to 

implement  this  function.  For reliability, we wish to have 

- -- — — ■ . ^ -.A...,       ......  / irliiliiit...iii.Tifiiiiiij-itiriiiii.irrtlf«-^'- ■'^J"wiMiliiiirif<t<ltli1iiilii[lifriil —  



muiiMip ■sawpwpBP '■"■"""V' '"'■"l-1'  • nw* 

Intelligent 11-41 

this function duplicated, so we now have two proprammable 

processors in the interruption logic. It is not clear that 

two processors are adequate to handle the peak interruption 

request rate, so still more processors might be needed, and 

the number will surely increase with the number of 

task-executing processors in the system. 

Economy, comprehensibility, interchangeability, and 

convenience dictate that these processors should be of the 

same sort as the task-executing processors. Reliability and 

adaptability arguments  then suggest the following line of 

reasoning: 

If we iTiust give up some fraction nf the processing 

power of the system to the problem of task 

allocation, can we not divide this onus equally among 

the processors, letting each do its own share of this 

problem, rather than having some few which do only 

this, and can do nothing else, even when this problem 

does not fullv occupy them? 

Indeed,  the answer is yes, and a technique for so doing is 

discussed in the next subsection. 

II B 2 - Voluntary Algorithms 

We have discussed various interruption algorithms for task 

allocation, and have pointed out some difficulties in each. 

There are additional drawbacks which we have not discussed, 

but which plague all interruption algorithms.  Among these 
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is the overhead of saving the state of the task which was 

being executed, and setting up to execute the new task, when 

interrupted; then restoring the state to continue with the 

old task once the new one has finished. This overhead can 

be quite significant, since in general one does not know at 

a particular time how much of the state of the machine is 

important to the process which was being executed, and 

therefore the entire state must be saved and later restored. 

Another difficulty arises from the software locks discussed 

in the previous section. A deadlock situation can arise if 

a process has taken a lock and is in the midst of a 

computation involving a locked resource when it is 

interrupted by another task which also requires access to 

that resource. Various solutions to this problem are 

available; perhaps the simplest is just to have all 

processors inhibit interrupts from before they lock a 

resource until after they unlock it. Thus, the individual 

processors declare themselves to be interruptable or not as 

a function of the overhead implied by interrupting them. 

This concept can be extended by making the processors 

declare themselves uninterruptable at all times unless the 

only aspects of the state of the machine which the tas^ 

requires are some small number of key words, such as just 

the program counter. In this case, the interrupt service 

need save only this small amount of information, decreasing 

the associated overhead.  Thus,  the  processors might  run 
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i 

most of the time uninterruptable, and only declare 

themselves ready for a change of tasks at periodic intervals 

convenient to themselves. 

The concept can then be brought into line with the 

desideratum mentioned earlier, that the task allocation 

burden be distributed among the processors, by having the 

processors, at such time as they consider themselves 

interruptable, inquire of some pending task queue whether 

there is some task pending of higher priority than the one 

on which it is working, and if so, switch to the new task. 

Since at this time there is very little information required 

to record the state of the task which was being executed, 

the processor can simply add that task to the pending task 

queue, and another processor can then resume execution of 

the task fron that point. 

Central to this scheme is the queue of pending tasks. Its 

management can have great impact on both system reliability 

and overhead. If this queue is managed by the software as a 

conventional locked resource, the resultant system slowdown 

can be derived from the oueueing models discussed earlier. 

The amount of slowdown depends fundamentally on the 

frequency with which processors enquire of it, and is 

reduced by reducing this frequency. However, this reduction 

also has the property of decreasing system responsiveness, 

and as such is not always permissible. Selection of this 

important system parameter is a trade-nff between overhead 

and responsiveness, between throughput and delay. 
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The queue can be managed in hardware. It is desirable that 

it have a priority structure, so that inquiring processors 

can quickly be given the highest priority pending task. It 

is also desirable that it be self-locking, that is to say 

the act of reading an entry from it should delete the entry, 

so that a given tc.sk will be assigned to only one processor, 

without the need for an external software lock. 

A piece of hardware to perform these functions has been 

constructed, giving 127 priority levels in addition to all 

required interface and control logic to connect directly to 

a computer bus on a single 7x11 inch two-layer card, at a 

very low cost. This device is the central task allocation 

mechanism used in the BBN Pluribus multiprocessor. 

Reliability problems are once again encountered because a 

single piece of hardware is responsible for a vital portion 

of the task allocation problem, and if it fails the system 

hoes down. This problem can be avoided by having multiple 

copies of this hardware, and letting the software use them 

either in a priority fashion (that is, always read number 

one first, unless it is down; if it is holding no tasks, 

then read number two, unless it is down, etc.), or in an 

equivalent fashion (such as read consecutive ones to pet 

successive tasks). The hardware involved is sufficiently 

simple to be quite reliable, as well as sufficiently 

inexpensive to make this degree of duplication economically 

sensible. 
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I/O devices can spawn tasks, and thus must be able to affect 

the pending task queue.  One method of doing this, which  is 

perfectly adequate  for  low  speed devices, is to have the 

processors periodically poll the devices, and, if there is a 

task ready, the processor will add it  to the  queue.   For 

high  speed  devices, this would imply high overhead, as the 

processors would have to spend a larRe portion of their time 

polling to keep up with the device, and large  delay,  since 

it might  take a long time for a processor to pet around to 

polling a specific device.  In  this  case,  therefore,  one 

would want the devices to add entries to the queue directly. 

This is another advantage of a hardware queue, with a simple 

procedure  for adding entries; a device without a great deal 

of intelligence can simply send its pre-specifled flag level 

to the queue, and the entry will be made.   In  this  sense, 

the  queue replaces a conventional interrupt system, thereby 

earning the name of Pseudo Interrupt Device (PID). 

We thus have an algorithm for task allocation which is based 

on a voluntary decision by the processor that it is an 

appropriate time to change tasks, rather than on an external 

interruption of the processor's control stream. We now 

briefly mention a few advantages and disadvantages of such a 

scheme. 
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(1) Simple Hardware 

As discussed above, the hardware required to 

implement the voluntary scheme with a hardware queue 

of pending tasks is straightforward, using today's 

TTL/MSI (Transistor-Transistor Logic, Medium Scale 

Integration) technology. This device has been 

constructed using for the basic priority flag system 

16 8-bit addressable latch chips and 16 8-level 

priority encoder chips. These 32 plus 37 other chips 

needed to resolve priorities and decode addresses for 

the latch chips, and to interface to the bus, and 

generally appear as a memory location, have been 

built onto a straightforward 2-layer printed circuit 

card. This card costs roughly $450, built and 

debugged, in small quantity. 

(2) Decreased Task-Changing Overhead 

As mentioned earlier, the amount of overhead 

associated with changing tasks is decreased if the 

processor initiates the change, since the processor 

can choose to change at times when very little 

information which would be lost by the change is 

necessary to continue the previous tas':. If the 

processor is interrupted by external logic at 

arbitrary times, the interruption routine  cannot  in 
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general know how much of the state of the machine 

must be saved and restored to permit continuation of 

the interrupted process, and thus must treat every 

interrupt as a worst rase, and save and restore any 

state information which could conceivably be 

required. The amount of overhead saved depends on 

the frequency of possible task changes, and thus on 

the choice of operating point in the throughput-delay 

trade-off continuum. An unfortunate requirement in 

this area can make this scheme have in fact higher 

overhead than a conventional interrupt system, as 

discussed in the following section. 

(3) Easy to Think About 

A very real problem in efficiently coding a complex 

system is the area generally referred to as 

"interrupt bugs". These come about from a failure to 

consider the implications of all possible sequences 

of various interrupts occurring at any possible point 

in the instruction stream. These bugs are difficult 

to think about and very difficult to find, because 

they often require a coincidence of multiple external 

events and internal control states, and therefore 

happen extremely infrequently, cannot be reproduced 

on command, and leave very confusing traces. 

While this problem is not  solved  by  the  voluntary 

algorithm,  it  is simplified, since there are a very 
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limited number of points in the control stream «/here 

task changing can take place, and one can choose them 

to be at points where one is confident the program is 

relatively invulnerable. In addition, if rules are 

established regarding vulnerability, the overhead of 

following them can be substantially diminished 

because they need be followed only at those times 

when tasK changing can occur. 

(4; Intelligent, Reliable 

This scheme gives the full power of the task 

executing programmable processors to the problem of 

task allocation, without dedicating a large amount of 

specialized hardware to the problem. The task 

allocation is distributed, giving greater 

flexibility, in that a processor may decide what is 

best for it, and reliability, in that the loss of any 

single processor removes only the task allocation 

facility for that processor, while the only hardware 

specialized to the task allocation problem is 

passive, in that it never initiates an action, and is 

simple, reliable, and inexpensive. 

II B 2 b - Latencv Buffering 

This scheme does compare unfavorably with a system which is 

driven by interrupts, if the interrupts are enabled most or 

all  of the  time,  in that  the time to respond to a new 
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high-priority task is greater. In fact, the longest time it 

can take to respond to a new task of the highest priority in 

an interrupt-driven system is just the maximum length of 

time for which interrupts are disabled; whereas for the 

voluntary algorithm, it is the longest time between 

task-changing points. As has been mentioned, programs 

cannot in general run all of the time with interrupts 

enabled. Indeed, it is not obvious that the maximum or even 

the typical time for which interrupts would be inhibited 

would be less than the time between task-changinp points. 

Thus, it may be the case that the voluntary scheme imposes 

no increase in latency as compared to an interruption 

scheme. 

We now consider briefly the amount of latency and the 

problems caused by it. We shall consider two areas in which 

latency causes difficulties. The first of these is the 

human interface: oeople quickly tire of waiting for 

machines. The other is at the interface to devices whose 

timing is not controlled by the computer, such as 

communication lines, magnetic tapes, and disks. In this 

case, if the machine fails to respond sufficiently quickly 

to a "data available" signal, the data may be lost or the 

device might not be useable at anywhere near its full 

bandwidth. 

The people problem generally does not become bothersome 

until  the delay is at least of the order of several tens of 
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milliseconds.  If the time between task-changing points  is 

significantly shorter than this, this problem vanishes.  The 

externallv-timed  device  problem  is not eliminated by this 

sort of  task-change  interval,  but  does  lend  itself  to 

hardware solution more easily than do people.  The problem 

can be solved by adding per-device buffering sufficient  to 

handle whatever data may be received (or needed) between the 

time of the first indication that the device is ready and 

the worst case time for a processor to become ready to 

process   (or provide)  the data.   The  exact amount  of 

buffering required depends on the device data rate and  the 

number of devices of the same, higher, or lower priority, as 

well as the processor latency time. 

We now derive the amount of device buffering required, 

assuming there are D such similar devices, and no other 

devices in the system, and assuming further that there are P 

processors in the system. This is a worst-case situation 

because if there are other devices in the system, there will 

have to be enough additional processors to support not only 

the high-priority pseudo-interrupt level processing of these 

devices, but also the less time-critical task of processing 

the information. If the pseudo-interrupt service for the 

device under consideration is higher priority than this 

"background" processing  thprp  -i «a «,««« K wv-cöc»infc,  tnere is more processing power 

available to service  the pseudo-interrupts at the level 

under consideration due to the existence of higher priority 

flW 
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devices. Thus, fie worst-case buffering requirement occurs 

if the device type under consideration is the only device 

type in the system. 

Call the  (maximum)  time  between  task-change  points Teh 

seconds.  Assume that having been given  a  pseudo-interrupt 

indicating that  data  is available  (needed), some Td<Tch 

later a processor will take (provide) the  data.   Call the 

number of bits which are transferred before this action is 

required N; call the device data rate  R  bits  per  second; 

call the total processor time taken to fully process these N 

bits Tp seconds.   Processor action is then required every 

N/R seconds, and takes Tp seconds.   Thus,  to  support one 

such device,  Tp/(N/R)  =R*Tp/N processors are required; to 

support D such devices requires D*R*Tp/N processors.   Thus, 

P must be  at  least  D»R*Tp/N,  and  in  the  worst  case 

P=D«R*Tp/N. 

The worst case timing occurs if all of the processors have 

just passed task change points when all of the devices 

request service. Call this time zero. In this case, the 

first P devices' requests will be recognized at time Teh, 

and their data will be taken (given) at time Tch+Td. The 

next P devices' requests will be recognized at time 2*Tch, 

and th3ir data transfer will occur at time 2*Tch+Td. There 

will be a number of such groups of P transfers, the number 

being equal to the first integer greater than or equal to 

D/P,  which  from  the above =N/(R*Tp).  The i'th group will 
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suffer a delay of i»Tch+Td in getting its data transferred; 

the last will suffer a delay of NGI(N/(R»Tp))»Tch+Td, where 

NGI(x) is the first integer greater than or equal to x. 

Thus, NGI(x)=x+f, where 0<f<1. The equation for the delay 

can thus be written as (N/(R«Tp)+f)»Tch+Td. 

If this is the delay for which bits must be buffered, the 

number of bits which must be buffered is R times this, or 

N»Tch/Tp+R»(f»Tch+Td).   A  "safe"  estimate of  this  is 

N»Tch/Tp+2»R»Tch, since f<1 and Td<Tch, from the above. In 

English, this can be stated as: 

The worst case buffering requirement for a fixed data 

rate device is the sum of two components, one 

constant, and one proportional to the data rate. The 

constant component may be computed from the number of 

bits in a "batch", i.e., the number which arrive 

before processor action is requested. The number of 

bits in the constant component of the buffering 

requirement is a fraction of a batch, the value of 

the fraction being the fraction of the time taken to 

process a batch which one task-change interval 

occupies. The component of the buffering requirement 

which is proportional to line speed is twice the 

number of bits which are transferred in one 

task-change interval. 
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This discussion  has assumed that the data either comes in 

from the device,  is  processed by  the   program,   and 

disappears,  or  is  created by the program and delivered to 

the device.  In fact, a more typical situation is  that  the 

data comes  from  a device, is massaged by the program, and 

then delivered to the same or another device.  This  can  be 

taken  into consideration in the above analysis by assuming 

that there are two processes, one which takes data from  the 

device  and does  half of the processing, and another which 

then finishes the processing, and delivers  the  data  to a 

device.  If we assume that the devices to which the data are 

delivered are of the same priority as those from which they 

come, the effect is simply to halve the processing  time  Tp 

in  the buffering computation.  In this case, the number of 

bits of buffering required is 2*N*Tch/Tp+2»R*Tch. 

Note that by rearranging the priority levels of various 

devices, we can decrease the buffering requirements. For 

example, if all output devices were made lower priority than 

all input devices, then the longer buffers would be required 

only for the output devices, not for the input. Similarly, 

if the various input devices are given a priority ordering, 

the higher priority devices do not need as much buffering. 

This latter arrangement is unattractive for reasons of 

interchangeability, however. 

We now give a simple numerical example  of  a  e'evice which 

transfers  1000 bits before requiring processor action, on a 
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system in which task-change points ocnur every 300 

microseconds, and a total of 900 microseconds ol processor 

time is required to turn around a 1000 bit packet. Table 

11-1 presents the amount of buffering required by this 

device at data rates of 50 kilobaud, 250 kilobaud, and 1.3 

raegabaud. 

50 Kb 
250 Kb 
1 .2 mb 

Bits of Buffering 

697 
817 
1447 

Table 11-1 
Latency Buffering Requirements 

It should be roted that these figures are worst case; the 

probability of all devices simultaneously needing service is 

small if there are many devices, and the probability of all 

processors being just past a task-change point is small if 

there are many processors. If one is willing to accept a 

small probability of losing data, these buffer sizes can be 

significantly reduced in some cases. However, buffering of 

tnis sort is not difficult to obtain using today's MOS 

(Metal-Oxide-Silicon) technology. Device interfaces have 

been designed and fabricated with on-card buffering of 512 

or 1024 data bits for both input and output, using 4-bit 

wide by 64-bit long asynchronous FIFOs, in 16 pin DIPs (Dual 

Inline Packages) (Fairchild 3341). 

i  
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II B 2 (. - Other Disadvantages 

(1) High Overhead if Interrupts Infrequent 

The time between task-change points, Teh,  is a key 

system parameter.   As discussed  above,  if  it is 

chosen to be very long, the speed of response of  the 

system to new  tasks  is slow, requiring additional 

latency buffering, and perhaps annoying  people.   If 

it is chosen to be very short, on the other hand, the 

overhead  involved  in checking for new tasks becomes 

large,  decreasing  system  throughput.   If  actual 

interrupting conditions occur only very infrequently, 

say on the order of seconds to minutes, one is forced 

to choose between two unattractive alternatives.  One 

-hoice  is very  high  overhead,  if the task-change 

interval  is on  the  order  of  milliseconds  or 

microseconds,  in  which case almost all task-change 

noints would find no new tasks and  therefore  the 

amount  of overhead  paid for each new task is high. 

The other choice  is  to  incur  very  large  latency 

delays  if the  task-change  interval is made on the 

order of seconds to minutes, resulting in very  large 

per-device latency buffering and very annoyed people. 

In  this  sort of environment, an interrupt structure 

is probably more appropriate. 
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(2) Vulnerable - Requires Cooperative Processors 

Another problem with this scheme is that it requires 

that the processors cooperate, that they always 

inquire whether there is a dilTerent task to do every 

Teh. This presents a particular problem in the case 

of bugs^y code, which might loop, or if the code is 

regarded as "user code'1, in which case it can be 

counted on to do any conceivable mischief. These 

problems car be avoided by using true interrupts 

solely to check the running code for obedience to the 

Teh parameter. This could be done by having each 

processor, each time it checks for a new task, 

increment a count, which is tested and zeroed by a 

periodic interrupt routine. If there have not been a 

sufficient number of new-task checks, the running 

program is declared buggy and unrunnable, and the 

processor turns to other matters. This scheme 

implies a small increase in overhead, both at 

task-change check time, to increment the count, and 

at the periodic interrupt time, to service the 

interrupt.  This overhead is generally  quite  small. 

II C - Interactions F'or Reliability 

In this chapter, we are considering interactions between the 

processors of a multiprocessor.  In the first section, we 
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explored the fundamental prerequisites and mechanisms of 

such interactions. In the second section, we studied a 

particular cl.-ss of interactions, namely those which deal 

with the problem of allocating tasks among the various 

processors. In this third and final section, we will deal 

with another class of interactions, namely those whose 

objective is to increase the reliability of ttl« system. 

The term "Reliability" is used to signify different things 

at different timts by different people. We will begin by 

considering the distinction between accuracy, a measure of 

the reliability of a given computation, and availability, a 

measure of the probability that a system is useable at a 

given time. Our discussion of accjracy will be brief, 

centering on Modular Redundancy, the technique classically 

used to achieve both accuracy and availability. We observe 

that accuracy will be improved by our efforts to improve 

availability, but by a smaller amount than that achievable 

by Modular Redundancy. 

We will then turn to methods for improving availability, our 

primary concern. We will first consider the impact on 

availability which system configuration can have, by 

calculating extreme limits of the availability. This range, 

from terrible to virtual perfection, motivates a careful 

examination of engineering considerations so as to favor the 

more perfect end of the scale. 
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The first technique we consider for improving availability 

is redundancy. We note that the redundancy inherent in a 

homogeneous multiprocessor diminishes the need for Triple 

Modular Redundancy or other expensive schemes, but needs 

techniques for error detection. We will consider a number 

of appropriate techniques. We then consider other 

interprocessör Interactions to improve availability. We 

conclude with a brief discussion of the loss of 

computational bandwidth suffered in the event of a failure, 

and the cost of adequate extra computational power to permit 

full bandwidth operation through component failures. 

We now consider the difference between accuracy and 

availability. 

The difference between accuracy and availability can perhaps 

best be understood by example. Which is more "reliable", a 

computer which is down for only fifteen minutes each month, 

but which gives a wrong answer once each hour, or a computer 

which is down at least half of each day, but which doesn't 

give a wrong answer more than once per century? The answer 

depends on the application. In general both numbers are of 

interest. We will refer to "accuracy" as a measure of the 

probability of a wrong answer, measured in computational 

errors per unit of computation. We will refer to 

"availability" as the probability of a system being up, 

being a dimensionless ratio of up time to total time. 



Interactions For Reliability 11-59 

We wil.1 now consider techniques for improving each of these 

parameters in a multiprocessor. Our emphasis is on 

availability rather than accuracy primarily because in most 

applications the accuracy of technologically current 

corapuuers is adequate, whereas the availaoility of many 

computers is unacceptable, and may be much worse in a 

multiprocessor than in a uniprocessor. 

II C 1 - Accu racy 

Central among the techniques conventionally used to improve 

both the accuracy and the availability of processors, and 

especially of multiprocessors, is modular redundancy with 

spares. The central notion in this scheme is that every 

operation is performed simultaneously by three or more 

equivalent parallel components, and that there is logic at 

the output which polls these paths and reports the majority 

result. This will detect all single component failures, 

other than in the output itself, as well as giving an 

indication of the failing path. Other components are 

available as spares, and when a path is determined to be 

failing, these components are substituted one by one for 

those in the failing path, until the problem is corrected. 

Modular Redundancy is useful for improving availability, as 

we shall discuss in the next subsection. In the context of 

accuracy, Moaular Redundancy is a vitally important 

technique in that no transient failure will go undetected. 
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In certain critical applications, such as life-support 

systems, this is an overriding concern, and Modular 

Redundancy is the appropriate technique for achieving 

acceptable accuracy. In most applications, however, the 

demand on accuracy is less stringent, and cost 

considerations outweigh the advantages of this technique. 

Note that the cost of a trebly redundant system is more than 

three  times the cost of the same system without redundancy. 

Modular Redundancy can be implemented in a homogeneo.s 

multiprocessor architecture by requiring that three 

different processors perform each computation and report 

their results to specialized polling hardware before the 

answer is given. Such an architecture has merit if the 

accuracy requirement is high for only a fraction of the 

total usage of the multiprocessor, and the increased power 

available from the same system behaving in a non-redundant 

fashion is desired at other times. 

ii c 2 - AvaUabUitY 

We now turn from considering how to ensure that an answer 

the computer gives you is the right one to the question of 

how to  increase the likelihood that the computer  is 

available to answer at all. This issue is of vital concern, 

in part because the availability of technologically current 

processors is less than is desirable for some applications, 

and in part because the availability of a poorly designed 
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multiprocessor can be much worse than that  of any  of  its 

components. 

We  will  begin  this  subsection with a discussion of the 

limits of reliability which mignt apply to extremes of  ?ood 

and bad system design.  We will then turn to redundancy as a 

method  for  improving availability,  pointing out that if 

mechanisms  are  incorporated  into  tne design  to  detect 

failures,  then  redundancy  levels far less than triple can 

achieve very high availabilities at  very  small  cost.   We 

Will   then  consider   other  mechanisms   for  improving 

availability, based  on  inter-processor  communication  and 

control.   We  conclude  with a  brief discussion  of  the 

reduction  in computational  bandwidth due  to   component 

failure. 

II C 2 a - Limits 

The availability of a system can be approximated by the 

product of the availabilities of various vital subsystems. 

Thus, the probability of the system being available might be 

the product of the probability that the processor subsystem 

is available and the memory subsystem is available and the 

I/O subsystem is available and the intercommunication 

subsystem is available. Let us now consider the 

availability of a subsystem as a function of the 

availability of its components and their configuration. 
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S  Be  the  subsystem availability 

C  Be  the  availability of a  component  of  the   subsystem 

N Be  the  number  of  such  components  in  the   subsystem 

If the system is configured such that all components are 

required to be functioning in order for the subsystem to 

function, then the probability of the subsystem being 

available is the product of the availabilities of the 

components,   or: 

S  =   C«»N 

An example of such a configuration would be a multiprocessor 

in which the processors are specialized, and each must do 

its own part of the overall task, and where further all cf 

these parts must be done to process each datum. 

If, on the other hand, the subsystem is configured so that 

no component is vital, and any component can do the task of 

any other, then the availability of the subsystem can 

approach the probability of any compor^nt being available, 

or: 

S =1-(1-C)»»N 

An example of such a configuration would be a homogeneous 

multiprocessor. 

■■'•--'-—^-^- ■••' 
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These two cases are worst and best, so that the actual 

availability of a subsystem will fall somewhere in between. 

Thus, 

C«»N < S < 1-(1-C)»»N 

Perhaps the significance of these limits can best be 

understood with a numerical example. Suppose we consider 

the availability of the processor subsystem of a twenty 

processor multiprocessor, with an individual processor 

availability of ninety percent. These limits would then 

correspond to subsystem availabilities of .12 and 1-10**-20. 

This means that the configuration makes a difference between 

this subsystem being up 12 percent of the time and being 

sufficiently reliable that the probability of a single 

failure in centuries is negligibly small. Clearly, there 

are other factors which make this sort of reliability 

unattainable. It is nevertheless the direction in which one 

seeks to move. 

We now examine some properties of multiprocessors and some 

techniques which can be used in their design to encourage 

such a move. 

II C 2 b - Redundancy 

We discussed earlier the use of Modular Redundancy as a 

technique to improve accuracy. It is also a useful 

technique to improve availability.  If a systom can continue 

\ 
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normal, error-free operation with two of its three 

processors functioning normally and the third dead, then no 

single hardware failure will take the system down. 

We seek to ease the requirements on the redundant circuitry 

because with TMR (Triple Modular Redundancy), the price of a 

system of a given performance is more than tripled, compared 

to that of a non-redundant system, since each component must 

be tripled and polling hardware must be added. We now 

consider methods of providing improved reliability in a 

system of less than triple modular redundancy in which we 

are willing to accept loss of data on failure. 

By reducing the redundancy level from three to two, we can 

still detect all instances of single component failure, 

although we cannot correct them. If we simply abandon the 

computation and back up to a checkpoint in the event of a 

discrepancy, we can achieve the same degree of availability 

ati a trebly redundant system, with a system cost increase of 

over 100$, rather than the 200% required for TMR. This can 

be done only if it is possible to remove the failing 

component from the system so that it does not effect future 

computations, and if further all computations are either 

checkpointed, so that they can be resumed from a previous 

state, or can be abandoned in the event of failure. 

Even an overhead of >'\00% is undesirable. If there are 

means available to detect errors without doubling the amount 
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of computation involved, we can reduce this figure 

substantially, thus improving the performance of J. system of 

a given cost. In the remainder of this subsection, we 

consider means of detecting failures, and actions which can 

be taken on the basis of this information to improve system 

reliability. 

II C 2 b i - Protection 

A  variety of schemes have been proposed and implemented to 

control the sorts of access various processors or  processes 

have  to  certain devices  or locations or areas of memory. 

Some of the earliest of these were done to prevent user code 

from destroying system integrity in  time-shared  and  other 

multiprocessing  uniprocessors.   In  these,  the  user  is 

permitted  to execute  "normal"  arithmetic  and  similar 

instructions,   but   is  not   permitted  to execute  I/O 

instructions, since these are the  system's  responsibility, 

or to access the system's private innards.  Thus, there are 

two modes of system  operation:  user mode and  privileged 

mode.   The hardware keeps track of which mode the system is 

in at any time, and if a privileged instruction is .executed 

in user mode,  causes  a  trap  to the system.  This then 

provides a method for user processes to coiumunicate with the 

system in a fashion controlled by the system.  The user code 

executes an illegal  instruction,  causing a  trap  to  the 

system,  which  then  determines whether a legitimate action 

was requested, and if so performs it. 
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The initial purpose of this scheme was to prevent malicious 

or accidental damage to the system by user code and to 

prevent unauthorized access by a user to information private 

to another user or to the system. However, another 

advantage of this and other protection schemes is that a 

faulty program is likely to execute something illegal at 

some point, and can then be flagged as faulty and stopped 

before it causes excessive damage to those entities to which 

it is entitled access. Programs always have bugs, and the 

hardware on which they run always has bugs; a perfectly 

proper program which has run for years and is part of the 

system will sooner or later leap off to an incorrect 

location and start executing totally meaningless 

instructions. If the tightest possible restrictions are 

placed on all possible code, not just user code, the 

probability of a violation of some protection on any given 

instruction becomes high, and thereby the probability of 

doing damage before being stopped becomes low. This then is 

an argument for making as large a fraction as possible of 

the words which might appear in core illegal when executed 

as instructions. 

IIC2bi(a)- Write Protection 

11 

Another form of protection u&ed in many time-shared systems 

is write protection, in which one declares illegal and 

causes a trap on any instruction which attemots to store 

into a protected area of memory.  This  is useful  in many 
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situations to protect areas which are supposed to be only 

read or executed from being accidentally or maliciously 

overwritten. Thus, for example, multiple users can share 

data bases in the confidence that no user will modify them. 

This technique applies to system code as well as to user 

code, to protect from and to detect software and hardware 

failures, as discussed above. 

IIC2bi(b)- RpaH nnd Ryppnte Protection 

These arguments lead to the concept of protecting not only 

against unauthorized writing, but also against unauthorized 

reading and executing of memory. This sort of protection 

does not of itself prevent a program from destroying a thing 

it shouldn't, though it can be used to protect proprietary 

code, for instance, which should be executable by the user 

but not readable. Its utility in the context of the present 

discussion is to detect that an unexpected situation has 

arisen, such as a processor executing a table of data, and 

thus to stop the processor before it does damage. 

IIC2bi(c)- Capabilities 

We began with the idea of protecting an assumed fault-free 

system from malicious or buggy user code by defining a user 

mode, in which protection was in effect, and a priviWed 

mode, in which it was not. We extended this concept to 

apply to unexpected actions which were not inherently 

destructive,  but  indicated  a  failure, and were therefore 
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useful to stop faulty processes before damage was done. We 

wish to apply this concept to "system" code as well as to 

"user" code, in order to prevent hardware or software faults 

from destroying the system. This is particularly important 

in a multiprocessor, to proven*, a single failing processor 

from destroying system resources needed by other processor's. 

To accomplish this sort of protection requires a more 

complicated structure than is provided by a simple 

user-mode/privileged-mode distinction. We in fact require a 

technique which will permit dynamic granting and revocation 

of privileges to read, write, or execute areas of memory, to 

certain processes and not to others, and will further detect 

any attempted violations of these privileges and stop the 

offending process. 

A technique which provides the ability to do these and more 

is a "capability" system, proposed and implemented by 

various groups over the last several years [15,16,4]. In 

this scheme, a new entity, called a capability, is 

introduced. It is a descriptor, which grants privileges; 

the hardware verifies all references against the various 

capabilities a process possesses at the time. System code, 

as well as user code, runs under the restrictions of its 

capabilities, and thus has only as much ability to destroy 

as is necessary to accomplish its duty. 

The question of how capabilities are created and granted is 

fundamental to  any capability-based  system.   The  scheme 
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generally used is to have a very tiny and rarely-run piece 

of code which possesses a capability-creation capability. 

It is then this code's responsibility to create and 

distribute the capabilities required by other code. It is 

claimed that this code can be made sufficiently small and 

simple that it can be "thoroughly debugged", and that it 

will be run a sufficiently small fraction of the time, that 

the probability of a hardware failure while executing it 

will be small. 

While  this scheme for protection is very general, powerful, 

and appealing, it does imply substantial overhead  in  terms 

of  hardware and,  if  it  is  to be  useful,  in terms of 

software.  The degree of protection can be selected  at  the 

system  programmer's  choice, with a continuous trade-off in 

effect between protection and overhead.  At one extremf., one 

could simply give all capabilities to all code.  This  would 

yield  no overhead  at all, but also no protection.  At the 

other extreme, one could obtain instruction  by  instruction 

only  those  capabilities  needed  to execute  the  next 

instruction.  This might  yield  a  substantial  degree  of 

protection,  but  would imply enormous overhead, and thus an 

inefficient and expensive system. 

In designing a system, one must consider carefully where in 

the range of this trade-off it makes the best economic sense 

to operate, and whether the degree of protection obtained is 

sufficient to justify the cost of a capabilities based 

system in hardware as well as in software overhead. 
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Since the early days of automatic digital computation, 

consistency checks have been used to detect memory failures. 

The most common such check is a single parity bit per word. 

This bit is usually defined to be the complement of the 

modulo 2 sum of the bits in the word, and thus detects as 

being in error any words which have one bit wrong, as well 

as any words in which all bits, including the parity bit, 

read as zero. 

Parity consistency checks are useful in a multi-processor to 

prevent the acceptance of faulty data as valid. If a 

processor should read a memory location incorrectly, it 

might execute an improper instruction (what should have been 

a load might be turned into a store) or might get an 

improper address to a store instruction. Both of these can 

destroy vital shared software resources. In addition to 

verifying memories, parity is a convenient technique in 

multiprocessors for verifying the communication and 

selection logic through which the processors communicate 

with shared resources. 

We now discuss memory parity, and then some considerations 

for communication verification parity. 
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IIC2bii(a)- Memory Parity 

There are a number of classic types of momory failures, 

including: 

1) One data bit in error 

2) All data bits read as zero 

3) All data bits read as one 

4) One address bit wrong 

Type 1 classically results from a bad sense amp, or from a 

marginal driyer/core/sense amp combination. Types 2 and 3 

result from bad address decoders, bad read or write driyers, 

or bad inhibit driyers. Type H is typical of address 

decoder failures. 

Note that these failure modes relate to core memory systems. 

It would appear, howeyer, that semiconductor systems will 

typically fail in much the same ways. A single memory chip 

failure will change only one bit in any word, since the 

memory is organized as N words by 1 bit. This giyes a type 

1 error. A catastrophic memory failure, such as supply 

yoltage failure, could presumably destroy the contents of 

all memory chips, if not the chips themselyes. This would 

giye a type 2 or type 3 error. A failure in the memory 

driying logic could also giye this sort of failure. Address 

buffer/driyer problems might giye type 4 errors. 

No single bit parity scheme can possibly detect both all 

zeroes and all ones (Types 1 and 2) in a data word with an 

eyen number of bits. 
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If, however, there are two parity bits, there are many 

schemes which detect, both of these classes of errors in 

addition to detecting all single bit failures. One such 

scheme is to write the opposite parity in the two bits; thus 

01 ana 10 would be the only legal combinations, and all 

zeroes or all ones would clearly be detected. 

Type 4 errors (one bit address failure) cannot be detected 

by any ddta parity scheme. They can be detected by 

exclusive ORing the address parity with the data parity to 

give the parity bit. If there are at least two 

consecutively addressed bytes in each word of memory, and if 

this address parity is generated for and stored with all 

bytes of a word, and the parity of all bytes of a word are 

checked on every read, all type 2 and type 3 errors will 

also be detected, since the byte addresses will differ in 

one bit (the least significant bit). This "Address Xor 

Data" parity thus detects all errors of type 1, 2, 3, and 4. 

II C 2 b ii (b) - Communication Paritv 

The communication paths between processors and memories can 

be verified simply by generating and checking the parity at 

the processor, and storing it in  the memory  in  the  same 

* Single check bit schemes can be devised which detect both 
of these. As an example, consider a check bit defined to be 
the conventional odd parity bit except that it is zero if 
the data is all ones. Such a scheme cannot also detect all 
single bit failures. In the example given, any single bit 
dropped from a word which is all ones would  go  undetected. 
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fashion as  the data.  If the AXD parity described above is 

used, the address as well as the data paths can be  checked. 

This  scheme  does have  the unfortunate property that if a 

communication failure occurs on a write,  the  information 

stored may be  incorrect, or it may be stored in the wrong 

place.  Tnis error will not be detected until  it  is read 

back.   While  this will  prevent  computation errors which 

might otherwise ensue from the use of the  faulty  data,  it 

does not prevent the original destruction.  It also does not 

identify  the  faulty  component, since the retrieval of the 

data may well be done by a different processor and data path 

than that used to store it.  Thus, a bad parity indication 

implies a failure somewhere in the system at some time, but 

not  necessarily  in  the path used  in  the  data  fetch. 

Further,  a  processor which has a hard failure in its data 

storage path to a shared resource may store many  incorrect 

words without any indication of failure. 

We can avoid these difficulties by checking the parity at 

the memory before executing a write command, and inhibiting 

the operation, returning an error indication, unless the 

parity is correct. This need not slow the write operation 

in many cases because core and many semiconductor memories 

do not actually destroy the previous contents until w11 

after the command is received. 

Once the parity logic is added to the memory system, it can 

also be used on read operations to distinguish between 
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memory failures and communication failures, giving the 

system and the repairman a better idea of now to fix or 

avoid the problem. 

We have discussed this communication verification in the 

context of communication between processors and nemories. 

It can be used intact to verify communications between I/O 

devices and memories, for the transfer of data, or between 

processors and I/O devices for command and control 

information or data. In this context, however, efficiency 

can be gained from the fact that I/O devices are often 

clustered on busses through which all communications with 

these devices are channelled; if one is willing to assume 

that the communication between the devices and their busses 

is reliable, a single parity generator/checker on a bus can 

be used to handle parity computations for all devices on 

that bus. 

II C 2 b lii - Diagnosis 

VJe have mentioned some techniques for determining that some 

component of the system has failed in some way. In addition 

to these techniques, reasonableness checks can be performed 

on the various components of a system, or on the overall 

system. As an example of a component reasonableness check, 

the processors might be checked to see that each is 

requesting new tasks at a reasonable rate. This would 

detect  a halted or  looping machine, as well as a maunine 
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which is doing nothing but requesting new tasks as fast as 

it could. Such a check could be performed by havinp each 

processor increment a count in a common table each time it 

requests a new task. A periodic timeout routine could then 

verify that each of these counts is within reasonable 

bounds, and zero it. While this is by no means a foolproof 

system, in that there is nothing to prevent a faulty 

processor from storing reasonable numbers in its own entr^ 

or unreasonable numbers in others' entries, it is not 

difficult or expensive to implement, and can lead to an 

indication of failure, and thus improve the system 

reliability. 

As an example of a system-wide reasonableness check, a 

packet-switching communications processor might verify that 

the number of incoming and outgoing packets are equal, 

discounting those directed to itself. Again, while by no 

means foolproof, such a scheme can lead to improved 

reliability through early detection of failure. 

In both of these examples, the tecnnique iescribed is 

somewhat application drpendent. The ability to do 

reasonableness and consistency checks depends fundamentally 

on a detailed knowledge of what it is that the syste.i does. 

In general, one can only check that the known rules of 

operation are being followed. In a time-shared system 

running user ."de, there might be very few rules, making 

consistency  checking difficult.   It might be desirable to 
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impose rules for the express purpose of permitting 

consistency checks. One could imagine user-defined 

consistency check routines associated with individual user 

programs, which might be forced to run on a different 

processor from that which executed the checked routine, 

whose explicit purpose was to verify the reasonableness of 

the results of the computation. It would be desirable to 

have high level languages able to automatically generate 

these consistency check programs. 

Having determined that there is a failure somewhere in the 

system, we would like to localize it, preferably to an 

individual failing device, and then scop using that device. 

In this way, the remainder of the system can continue 

operating without the errors which that device introduces. 

We consider two techniques for localization, one applicable 

to "hard" failures, or those which occur repeatedly, the 

other to "soft" failures, or those which occur infrequently 

despite heavy utilization of the failing component. In many 

ways, the "hard" failures are the easy ones to deal with, 

since they show themselves under testing, while the 

ephemeral "soft" failures are hard. 

II C 2 b iii (a) - Diagnostic Programs 

We can incorporate into the system programs whose duty it is 

to exercise various components, look for failures, and 

identify  the  falling component or components.  This can be 

.    L ....,:■■;...■,. 
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accomplished by knowing in advance what the result of a 

given sequence of actions should be. These programs can 

then be run when there is some reason to believe that some 

component in the system is failing. They can be run 

successively on each of the processors and through each of 

the available communication paths, as well as on each of the 

common memories or other shared resources. In addition, I/O 

devices can be checked. 

Once these diagnostic programs are available in the system, 

they can be run on an infrequent periodic basis, to detect 

failures which might not have been detected by the 

reasonableness checks, thus improving the chances of finding 

failures. 

IIC2b iii (b) - Diagnostic Deactivation 

We have throughout this discussion assumed the ability to 

remove from use a component which is failing. Manual 

removal of failing components implies an extended down time 

in the case of failures which make the system unuseable. 

Removal can be made automatic, giving the program the 

ability to selectively disable suspected failing components. 

If this is to be done, one must face the issue of protection 

of healthy processors and other components against 

deactivation by unhealthy processors which believe 

themselves healthy and the component unhealthy. We discuss 

this issue briefly in the next subsection. 
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If we assume that processors have a means of disabling 

components, we have a powerful tool for diagnosis in the 

form of diagnostic disabling of components. This technique 

is particularly useful in the diagnosis of soft failures. 

Errors can be detected in the system without specific 

information as to the failing component. Examples of this 

sort of error are parity errors on reading and system data 

structure inconsistencies. When such an error is detected, 

the first line of attack would be to run diagnostic programs 

on each of the components whose failure Dould have produced 

the observed effect. If this fails to show errors, for the 

first few times the error occurs, we wish to recover from 

the efi'ect of the error and to proceed with the job. While 

some data may be lost in this process, the system will not 

go down. 

For those errors which occur only once, this is a very 

desirable approach. For those which occur repeatedly, we 

would like i.ome means of isolating the failing component. 

Since we are interested in this only after repeated 

failures, we have a decent measure of the expected time to 

failure. Therefore, by deactivating possibly failing 

components one by one until an nrror-free period of several 

times the expected time to failure has elapsed, we can 

isolate the failing component. 

Diagnostic deactivation can of course be performed manually 

if automatic deactivation is not available.  As such, it  is 

..^^.■4r.^,.v .■mffl,,iaM|t^^ 
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a common technique in debugging conventional systems, both 

hardware and software. 

II C 2 c - Other Interactions 

In the previous subsection, we discussed redundancy as a 

technique for improving availability. We considered various 

techniques for detecting errors so as to permit a high 

availability without a high level of redundancy. 

In this subsection, we consider various other ways in which 

processors can use shared resources to improve system 

availability. We will discuss processor controlled 

component deactivation, direct processor-to-processor 

communication, automatic restarting and reloading, and 

duplication of essential components, whether hardware or 

software. 

II C 2 c i - Deactivation 

We have repeatedly mentioned the concept of deactivation of 

suspected or known failing components, for diagnostic as 

well as curative purposes. As has been mentioned, this 

deactivation can be done either manually or automatically, 

under program control. The worst drawback with manual 

deactivation is the slowness and incorrectness of human 

actions. If a failure takes a system down until such time 

as a person notices it, observes it sufficiently to 

determine which component to disable, and correctly disables 
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that component, the system will be down for at least seconds 

to minutes, and perhaps longer. This amount of (.'own time 

may make the scheme unacceptable. Further, keeping a 

sufficiently competent person available to do this 

deactivation at a moment's notice all the time the system is 

up may be expensive, if not lr jssible because of the 

limited human attention span. 

We are left with the option of giving the program the 

ability to selectively disable any component of the system 

it knows, or suspects, to be failing. The difficulty with 

this is that programs also fail, and a program which has run 

wild might one by one disable all or at least a critical 

number of system components. 

We must distinguish between the intelligently malicious 

program and the runaway program which accidentally creates 

random havoc. The very fact that we have decided to give 

the program the power to decide when a component should be 

deactivated impliej that a malicious program, designed to 

destroy the system, can deactivate anything which can be 

deactivated if failing. If the system is to run "user" 

code, in an environment in which a malicious user is a 

possibility, the deactivation procedures must be possible 

only ;f the processor is in "exec" mode, rather than "user" 

mode. 

.. ..^^—^-~—^. —- .-. 
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Protection against the runaway program is feasible by making 

the  deactivation  procedure  "difficult",  in  that  it  is 

unlikely  to  occur during  the execution  of a  random 

instruction stream.  A technique to provide such a difficult 

procedure which  is straightforward and  inexpensive  to 

implement in hardware is to require that a password be given 

by a  processor  to enable the deactivation hardware.  This 

password should be a "complex" pattern; all zeroes  and  all 

ones are undesirable since machines running wild often store 

these  patterns  thrüughcut  memory.  Ideally, the password 

should be a pattern which  appears nowhere  in memo;-y  and 

never occurs  in  any  of  the processors' active registers 

during normal operation, since a common  node  of  processor 

failure is to store an active register throughout memory. 

The intent of these procedures is to minimize the likelihood 

of   an  "expected"   failure  mode  causing  undesired 

deactivation.  Surely, however, there must be code somewhere 

in the operational system whose effect, when executed, is to 

compute and store  the  necessary  password,   and  then 

deactivate a  failing component.  This code must be present 

if automatic deactivation is ever to occur.   We  must  then 

face  the possibility  of  a failure causing the program to 

leap into the middle of this  code,  thereby  producing  the 

undesired deactivation.   Some degree of protection against 

such i   failure can be afforded  by clever  coding  of  this 

program,  so   that  various  consistency  checks  must  be 
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performed before the damaging sequence can be performed. 

For example, a processor might compute the password one bit 

at a time from various internal flags which should be in a 

known state at any time deactivation is legal. 

It is possible to require agreement by two or more 

processors that a component is failing before that component 

can be deactivated. This can be accomplished in software, 

by requiring that a processor be given half of the password 

by another processor. 

The objective of these techniques is to make it increasingly 

unlikely that a failing processor will fail in such a way as 

to deactivate working components. F - this protection a 

penalty is paid in the execution time of a desired 

deactivation. However, since component failures, and 

therefore deactivations, are presumably infrequent, this 

poses no significant difficulty. Increasing the level of 

protection excessively may decrease the system reliability 

by making it impossible to deactivate failing components 

before the failing component destroys the computation which 

is attempting to deactivate it. Thus, a scheme which 

requires cooperative agreement between processors, 

communicated by way of flags in shared memory, may fail if 

the failing component is a processor which is writing zeroes 

throughout memory, thus clearing the very flags necessary 

for the deactivation. The detailed decision on the exact 

degree  of  protection  desired depends  on a detailed 

■ ■ ■--■— 
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understanding of the possible failure modes and their 

probabilities. This information is never fully available, 

and at design time is at best a crude guess. Therefore the 

exact level of protection, embodied in the deactivation 

computation cocedure, should not be thought of as finished 

until extended periods of field operating time have 

demonstrated that the system failure rate due to incorrect 

deactivation, and that due to the failure of deactivation 

when required, are sufficiently well balanced that neither 

causes an excessive degradation of system reliability. 

IlC2cii- Processor to Processor Communication 

Processors differ from other components in a system in that 

a great deal of information is required to specify their 

state. Most apparent are certain control and status bits 

traditionally referred to as the "Program Status Word". In 

this category are bits which indicate whether the 

processor's interrupts are enabled, whether it is in user or 

exec mode, whether overflow conditions exist, and so forth. 

Another bit which is sometimes included in the status word 

is a run bit, which indicates that the processor is 

currently running. In some cases, the processor can be 

started and stopped by storing a one or zero into this bit. 

However this bit is accessed, it forms an important element 

of the state description of a processor. 
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Other st"te information is contained in the processor's 

program counter, accumulators, and other active registers. 

In architectures utilizing cache or other "local" memory, 

private to a particular processor, this memory can be 

considered a part of the processor, and as such its contents 

are part of the state descriptor of the processor. 

Because of the abundance of information required to define 

the state of a processor, deactivating and reactivating 

impose certain problems different from those encountered 

with other components. Clearly, means are required to 

simply halt and start the processor. Additionally, to 

permit determination of the causes of failure of a 

processor, it is desirable to access other state information 

such as program counter, active registers, and local memory. 

Any of these being incorrect can account for a processor 

crash; examination may help to determine the reason for 

failure, and thus permit more rapid repair. If the problem 

was a software bug or a "soft" hardware failure, which 

occurred only once, the ability to set any of the state 

indicators to a correct value will enable healthy 

processors, automatically or under human direction, to 

correct the problem and restart the crashed processor. 

This argument applies to whatever "private"  memory the 

processor has which is rot generally accessed  by other 

processors,  as well as to the processor's active registers. 

We  thus  require  a general   processor-to-processor 
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communication path through which one processor may examine 

or set another processor's registers and memory. ihis is 

particularly convenient in some of the modern single bus 

machines, in which active registers and state indicators 

respond in the same way as memory locations. We then can 

provide a commur.ication path from processor to processor 

similar to that provided from processor to memory. Since 

the utilization of this path is very low, being used only in 

case of processor failure, it can be a multiplexed path 

through a central switch, rather than requiring a more 

complete connectivity. Since this path does give any 

processor the ability to halt or in other ways crash any 

other processor, it should be subjected to the same 

protection constraints discussed above under the general 

topic of component deactivation. 

IIC2ciii- Automatic Restarting and Reloading 

Given a communication path over which a processor can halt, 

examine, and restart another processor, we can survive a 

large fraction of the processor crashes which occur, 

particularly in the developmental and early operational 

stages of a system. The software bug which causes the 

processor to loop, halt, or leap to an area of memory from 

which it should not be executing code can now be survived, 

and the processor, which was down, can be repaired. In 

addition, a common mode of hardware failure throughout the 

life of the system, the "soft" or transient failure, such as 

L _ . 
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a bit being picked up in the program counter, can likewise 

be survived, and the processor repaired. To do this, the 

processors need to be able, on discovering another processor 

down, to record whatever state information night be useful 

for a later diagnosis of the nature of the crash, so that 

the hardware or software bug can be eventually 'epaired, and 

then simply restart the processor at a clean restart point 

in either private or shared memory. 

This procedure will fail if the code which that processor 

will execute upon restarting has been destroyed, either by 

hardware failure or by runaway software. In this case, it 

is desirable to have some mechanism for reloading the memory 

with a fresh copy of the code, to prevent such a transient 

failure from taking a processor or even a system down. The 

simplest technique for preventing memory from being 

destroyed is to make the memory Read-Only, so that there is 

no way for software or transient hardware failures to 

destroy it. The disadvantage of Read Only Memory (ROM) is 

that software changes, inevitable during the early stages, 

and virtually unavoidable throughout the operational life of 

any sophisticated system, imply significant and expensive 

hardware changes, in that the ROM must be replaced with a 

new ROM with the new program. 

Another technique for survival of incorrect memory contents 

is to provide a copy of the contents of memory somewhere in 

thN system and a mechanism' for reloading a memory with 
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This may be accomplrshcd over conventional communication 

lines, if the systems are so interconnected, or over a 

dial-up line. The reloading ma/ be requested either by the 

failing machine or by the central office. There are 

problems inherent in either source of requests. 

If the responsibility for requesting a reload lies with the 

failing system, there is a problem if the system is failing 

sufficiently badly to be unable to request the -eload. If 

all of the processors are halted, where is the -equest to 

come from? Simply disabling the halt instruction answers 

this problem, but raises others, and does not solve the 

problem of the looping machine, and others. Another 

approach is to add a "watchdog timer", a device to which the 

program periodically reports its health. If this device 

does not hear from the program in a predefined long time, it 

forces the suspect processor into an error recovery state, 

which may include reloading. Such a device fails if the 

program is healthy enough to inform the timer of its health, 

but not healthy enough to carry out its duties. 

These problems are overcome by giving the initiative for 

reloading the system to an external observer, such as a 

centrr.l office. This option has disadvantages in terms of 

response time, particularly if there is a human involved. 

It also has a fundamental problem in that there are now two 

portions of a system entirely at odds with each other, each 

of whose design objective is in some sense to disable the 
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other. The first of these is the normal system fault 

diagnosis and recovery procedures; the second is the reload 

mechanism. 

The primary duty of the fault recovery procedures is to 

diagnose aspects of system operation which are interfering 

with, or causing damage to, normal systeia operation, and to 

deactivate the guilty component. A system which believes 

itself to be operating normally and correctly sees a device 

which is trying to reload it - meaning that it is trying to 

alter the contents of memory - as being destructive to 

normal system operation, and as such believes that its duty 

is to disable that device, or in fact as much of the system 

as is necessary to isolate itself from that device. This, 

if successful, will destroy the ability of the reload 

mechanism to reload, as well as removing normally 

functioning components from the system. If, on the other 

hand, this reload .nechanism has some special ability to 

prevent its being disconnected, this mechanism becomes a 

systemic Achilles' heel, whereby any hardware or software 

device which manages to look like the reload device achieves 

invulnerability in its efforts to destroy the system. 

These two considerations, failure survival and externally 

activated reloading, are in direct conflict. It is 

unacceptable to give either absolute authority; a balance 

must be achieved. This can be done by making the sequence 

of events  that  the  reload  device must  do an  unlikely 
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sequence to occur unintentionally. This approach is similar 

to that taken in the case of component deactivation, where 

again, a balance was required between granting abilities to 

fault recovery procedures and preventing their accidental 

abuse by unhealthy processors. In the present case, the 

reload device might be made somewhat higher speed than the 

processors' deactivation procedure, so that as intelligent 

commands to disable processors are received, they will 

gradually win over the processors' attempts to revitalize 

each other,, since they will occur more rapidly than the 

processors' commands. However, even if commands to disable 

are accidentally generated by the reload device, the 

probability of a stream of them occurring at a sufficient 

rate to disable a large fraction of the processors will be 

negligibly small. Thus, whatever might have been 

accidentally disabled will be brought back to life by the 

remaining processors. 

There are problems both with an internally motivated reload 

scheme and with an externally motivated reload scheme. The 

two are not mutually exclusive; a practical multiprocessor 

can profitably employ both simultaneously. 

II C 2 c iv - Duplication of Essentials 

In order to survive the failure of a component, either 

hardware or software, there must be a backup for that 

component which can be substituted for the failing component 
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in the event of failure. These backup components need not 

sit idle until a failure; they can be used to improve syrten 

performance under normal operating conditions if a 

degradation to the system performance without them is 

acceptable on failure. 

k hardware homogeneous multiprocessor has a strong advantage 

in this area, since homogeneity implies that the various 

processors are equivalent, and thus each acts as a backup 

for the others. In the case of a multiprocessor which is 

not hardware homogeneous, there must be at least one backup 

for each type of processor. If there are I/O devices which 

must be kept operational through processor failure, a system 

with a tixed processor/device relationship must have each 

device connected to at least two processors. 

There must in general be a backup for each type of component 

which is essential to system operation, if we wish to 

survive a failure in that component. In addition to 

processors, this applies to memories and to I/O devices. 

Duplication of these is generally straightforward, and 

affects system size and cost, but not fundamental design 

concepts. Duplication of the task allocator is more 

difficult, since it is in a position to decide what task is 

to go to which processor. In an interruption-oriented task 

allocation scheme, the problem is extremely difficult, since 

the logic is forcing the processors to new tasks, and the 

intelligence of the processors is therefore not available in 
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determining the sensibility of the order.  This can be 

resolved by distributing the interruption logic, so that the 

logic is closely associated w.th the processor it  is  to 

interrupt,  and  further giving the processor the ability to 

select which set of interruption logic will be  active.   If 

the logic is then designed so that no central logic failure 

can put the processors into loops so tight that they  cannot 

detect  the  failure,  single failures can be survived.  The 

overhead, in hardware, software, and design time, of such  a 

system is high:  in addition to duplicating the complex 

interruption logic, there must be selection logic at  each 

processor,  all of which hardware is costly; the software to 

determine the reasonableness of an interrupt must run at a 

high  enough priority to prevent being shut out by erroneous 

interrupts from the  failing hardware,  taking substantial 

amounts of program bandwidth;  designing the interruption 

logic to be such that no central failure can cause so many 

interrupts that the program cannot survive poses a difficult 

design  problem,  which will  be extremely hard to debug, 

because not all possible failures will occur during  the 

debugging phase.  A simpler and perhaps less expensive 

scheme is to use Triple Modular  Redundancy at  the  logic 

component level for this aspect of the multiproces.-aor.  This 

technology is well understood, and given the complexity of 

the program-controlled selection logic, it is not a great 

deal more expensive in hardware cost. 
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The  problem of duplication of task allocation hardware is 

much simplified  in  a  voluntary  task  chanpe  system,  as 

discussed earlier.  In such a system, the processo--s inquire 

as to the existence of new or higher priority tasks at their 

own   convenience,   and   thus  can  easily  discover 

inconsistencies before being given yet another new task.   A 

number  of  techniques  are  possible  to  permit  usage  of 

multiple  task allocators  in a  voluntary  scheme.   The 

simplest  of  these  is to have processors and other devices 

which reference the allocator use the  different  allocators 

in a round-robin sequence.  This has the disadvantage that a 

task of  the  highest  priority  cannot be assured of being 

serviced before others of lower priority.   If this causes 

problems  in  the  system  responsiveness  to  high priority 

tasks, the allocators can be  usea  in a  priority  ordered 

fashion,  that  is, all processors will first inquire of the 

highest priority allocator, and only if that is  empty will 

they inquire of the next highest, and so on.  Processors and 

other devices needing to add entries to the allocator's list 

will  choose which allocator on the basis of the priority of 

the task being added.   In  the  event of  failure  of  an 

allocator,  the  processors and  aevices will  agree among 

themselves on a new priority ordering of allocators, leaving 

out the faulty one. 

If there are no more kinds of tasks  to be  stored  in  the 

allocators  than can  be stored in a single allocator, this 
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was such as to destroy information about the process it was 

executing. 

In addition to the software backup provided by duplicate 

local memories, it is desirable to have a backup of the code 

in common memory, preferably in another physical section of 

common memory, so that if this information is destroyed 

either by a transient hardware or software bug, or by a 

physical memory going down, the system can continue tj 

operate without necessitating a time-consuming reload. 

This code sitting in common memory, not being used for 

extended periods of time, may become invalid because of 

hardware or software failure. Such a failure would 

ordinarily go undetected until the code was needed for error 

recovery, at which time a reload would be necessitated, thus 

nullifying the time advantage of having a local copy. This 

possibility can be made extremely unlikely by having idle 

processors periodically compute and verify checksums of 

areas of core, and upon detecting an error, request a reload 

before it is needed. 

II C 2 d - Bandwidth Reduction on Failures 

We have been considering how systems may be designed to have 

a good chance of surviving component failures without 

resorting to the difficulty and expense of TMR. The 

objective has been to design a system with backup components 

which can  be  used  in  the  event of failures to keep the 
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system operational, but which are utilized before failure to 

improve the performance of the system. This concept is 

useful only if the system can be profitably used with 

diminished performance characteristics. If, as is the case 

in certain real-time applications, a certain amount of 

computational bandwidth is required, and any additional is 

wasted, while anything less is useless, then a reliable 

system must have enough spares to keep sufficiently 

operational through expected failures to support the 

required computation, and these spares are not useful until 

a failure occurs. Even in this case, however, the 

techniques herein described require only one extra of each 

component type to be able to survive any single component 

failure, where TMR requires three tokens of each component 

type, plus selection logic. 

In the event of a component failure, the computational 

bandwidth is reduced. The actual amount of the reduction 

depends on many system parameters, including how heavily 

that token was utilized, how many other tokens of the same 

type are in the system, and how dependent other components 

are on that token. Often, failures in one component will 

make other components unuseable. For example, a memory 

which is connected to a bus with other memories, and which 

goes down in such a way as to force a bus data line to zero, 

will take down all other memories which must be accessed 

through that bus.  Ignoring this effect for a moment,  the 
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effect on system bandwidth of a single component becoming 

unuseable is to multiply the system bandwidth by a fraction 

between one and the fraction of tokens of that component 

type left running. The exact value of that fraction depends 

on the utilization of the lost component and tne increased 

queueing delays at the remaining tokens. The fraction will 

not be less than (t-1)/t, for losing the t'th token, since 

that is the amount the system bandwidth would be diminished 

if all t were being utilized all of the time, and if the t 

were not fully utilized, the load which the failing unit was 

carrying can to some extent be taken up by the remaining 

units, thus lessening the Impact of the failure. 

If a component failure causes other components to be 

unavailable, their loss can be treated as successive losses 

of different tokens of the same or different types, and the 

overall effect is therefore to multiply the computational 

bandwidth by a fraction between 1 and the product of the 

fractions of the various component types which continue to 

be operational. 

A precise measurement of this degradation can be obtained by 

analyzing, simulating, or measuring the performance of the 

system with and without the failing component. 
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This concludes our discussion of the interactions among the 

processors of a multiprocessor. We began this discussion by 

considering the primitive interlocks necessary to permit 

meaningful communication. We observed that while error 

immune hardware arbiters cannot be built, circuits with an 

acceptably low error rate are straightforward, although they 

do impose a small bu1-- significant delay. We concluded 

further that indivisible test/modify sequences are 

worthwhile but unnecessary, and that the selection of the 

proper sequence can substantially improve system 

performance. We briefly addressed the topic of queueing 

delays for shared resources, and introduced the concept of 

bandwidth matching. 

In the second section, we considered the issue of assigning 

tasks to processors. We considered a number of schemes 

based on interruption, then turned to voluntary schemes. We 

concluded that with an inexpensive hardware task queue, the 

voluntary scheme can provide remarkable simplicity, 

efficiency, flexibility, and reliability. 

In the third section, we considered those interactions among 

processors whose objective is the improvement of system 

availability. We considered a variety of engineering 

techniques which can be used to detect failing components, 

and then turned to ways  of  organizing systems  so as  to 
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utilize  this  and other information to permit the system to 

survive component failures. 

-•• '■ '■■'•'■ -T^r^l^i^WWJB 



■ 

*!« 

ffSCEDINQ PAOB BLANK.NOT FIIMBD 

Chapter III 

ARCHITECTURES 

In the first chapter, we discussed the  distinction  between 

data  parallel  and  control  parallel multiprocessors, and 

concluded that control  parallelism was  the  structure we 

wished to  investigate  further.  In the second chapter, we 

discussed aspects of the interactions among  the  processors 

of a  control  parallel  multiprocessor.   We  explored the 

difference between synchronous and asynchronous  structures, 

and  concluded that  the  flexibility  of the asynchronous 

structure made it the one we wish to pursue.  We  considered 

the  problem of allocating  tasks among  processors,  and 

concluded that voluntary  algorithms  optimize  efficiency, 

reliability,  and cost.  We investigated various approaches 

to improving the system availability,  and  concluded  that 

many  techniques  for  identifying and  surviving hardware 

failures can be beneficially incorporated into the design of 

a multiprocessor. 

In this chapter, we will consider various architectures, or 

system organizations, for control parallel multiprocessors. 

We will begin by discussing two general questions: whether 

processors should possess "private" memory, and how to 

select a processor. We then turn to an analysis of the 

overall system structure, presenting various possible 

arrangements, and pointing out the reasons for the 

weaknesses  and  strengths  of  each.   In considering 

organizations of systems with very many components, we come 

■'; -■" 
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Private Memory 

III A 1 - Private Memory 

III-3 

In any multiprocessor there are, in addition to the 

processors and some communication medium, I/O devices and 

memories. These latter may be tightly coupled to 

processors, or to the communication medium, or may exist as 

separate entities. An examole of memories tightly coupled 

to processors is the "private" memory which an individual 

processor owns. An example of a mamory which is tighcly 

coupled to the communication medium is a syster: such as the 

multiprocessor PDP-10, in which the processors 

intercommunicate through a multi-port memory. An example of 

a system in which memories exist as separate entities is the 

BBN Pluribus, described in the next chapter. Similar 

examples exist for I/O devices. 

We discussed the question of whether the I/O devices should 

be tightly coupled to processors in the second chapter, 

while considering task allocation algorithms. We concluded 

that reliability and efficiency are enhanced by avoiding 

such a coupling. We now turn to the question of whether 

there should be memory tightly coupled with individual 

processors. Note that making such a coupling is not in 

conflict with having additional memory which is not tightly 

coupled; there are advantages to having both in a 

multiprocessor. We will base our analysis of the private 

memory issue on bandwidth considerations. 

'~.,.. U-JJ.l 
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To  a first approximation, the number of processors required 

to obtain a given factor  increase  in  computational  speed 

over a single processor is simply the next greater integer 

than that factor.  Given that that number of  processors  is 

required,  and  knowing to what extent a processor utilizes 

the bandwidth of a memory, we  can compute  the number  of 

independently  accessible memories of  a  given bandwidth 

necessary to support  those  processors.   For example,  if 

fifteen processors  are needed,  and each processor uses a 

memory 505t of the time, eight memories would be needed.   In 

fact, as discussed under the topic of queueing delays in the 

previous chapter, the asynchronous nature of the processors 

implies that excess bandwidth is useful in preventing  large 

waiting times,  thus increasing system bandwidth.  However, 

the present computation provides a minimum,  in that  any 

reduction  below  this  level will  surely prevent  the 

processors from running at their full speed. 

In general, then, the number of independently accessible 

memories can be computed as a function of the following 

parameters: 

Bm - The bandwidth of a single memory, as measured  in 

bits per second obtainable by a processor. 

Bp - The memory bandwidth used by a processor, measured 

in bits per second. 

P - The number of processors. 
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If we  call the number of independently accessible memories 

required M, then we have: 

M = P*Bp/Bm 

In this computation, Bm is the memory bandwidth as seen at 

the processor, including any delays due to communication and 

arbitration which are not overlapped with memory operation. 

In a classic synchronous computer, the timing of the 

processor and the memory is identical; at each point of each 

cycle, both processor and memory are in well-defined states. 

In this case, neither can get ahead of the other, and the 

processor uses the full available memory bandwidth, that is, 

Bm=Bp. Tn some of the newer asynchronous machines, the 

processor requests and utilizes the memory only when it 

needs it, so that Bp<Bm. If such a processor and memory are 

to be used in a multiprocessor, there need not be as many 

memories as processors. In the case of some of the new 

microcomputers, the processor is very slow compared to ehe 

speed of economically practical memories. In this case, a 

single memory can support many processors. Using more 

conventional processors, however, Bp/Bm is typically 

slightly less than 1. 

Given that there must be many memories in a system to 

provide the needed bandwidth, we gain efficiency by 

associating those memories closely with individual 

processors or sets of processors,  since the communication 

r-w 
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and arbitration delays which must be suffered in each 

reference to common memory can be eliminated on those memory 

references which need not be to shared resources. In this 

way, we can increase the effective memory bandwidth, 

decrease queueing delays, and perhaps reduce the number of 

memories needed overall. 

This technique is useful if the contents of the memories 

involved are either private, in that only one processor 

would ever care about them, or are read-only, so that they 

would never change. Difficulties are introduced if it is 

possible that one processor would want to change a word in 

another processor's "private" memory. Engineering solutions 

to this problem are possible, but are generally complex and 

expensive. 

If the memories are to be read-only, a viable alternative to 

having multiple "private" copies would be to have a single 

copy of this information in a high-speed shared read-only 

memory, since read-only memory is generally available at a 

higher speed for comparable cost than read-write memory. 

However, it is difficult to get the communication and 

arbitration delays in referencing a common memory down to a 

small enough value to make even a high speed memory through 

these delays as fast as a conventional memory which need not 

suffer them. In addition, the freezing of the software so 

that it cannot be altered without an expensive hardware 

change is very unattractive. 
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in a system which may be referencing a wide range of memory 

locations with comparable probability, it is difficulc to 

know which locations should be in private memory. If all of 

the contents of memory must be stored in each private 

memory, the cost of these memories become? very large. In 

dedicatee system applications, it is often possible to 

identify that portion of the code which the system will be 

executing most of uhe time under the conditions of heavy 

system usage. This code often represents a very small 

portion of the total code in the system, and putting it in 

private memory will make most of the memory references 

during those times when system performance is critical be to 

local rather than shared memory. In the application of a 

particular packet-switching digital communications 

processor, for example, it has been found that putting 

approximately 2000 words of "hot" code in private memory 

will make 75% of a processor's references be local, the 

remainder being divided between shared memory and I/O 

devices. 

In a system designed to run "user" code, or other systems in 

which the distribution of references is not known at design 

time, it is more difficult to partition code between private 

and shared memory. This problem can be handled by making 

the local memory be a "cache" memory. This implies that the 

local memory is initially empty, and is loaded with the 

contents of accessed  remote locations and also perhaps 
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Private  Memory III-9 

with easily identifiable sections of read-only hot code, 

this code can be stored in local private memories or in 

common memory. If the common memory is fast enough to 

support many processors, less memory will be needed overall 

if the code is stored in common memory. The cost of the 

needed memory will increase as the number of memories needed 

increases, but will also vary as the speed of the memories 

varies, the very highest bandwidth memories available being 

generaly expensive. The cost of the memory system should no 

longer be measured in cents per bit, since the number of 

bits required will vary with the memory bandwidth. Instead, 

the measure which is relevant is the cost per unit of memory 

bandwidth, this bandwidth being obtainable either from 

higher sceed memories or from more memories. Thus, in 

selecting a memory for storage of hot code, the available 

memories should be compared in terms of cents per bit per 

microsecond, whereas for storage of infrequently executed 

code, of which one copy is enough to support the bandwidth 

requirements of all the processors, the relevant metric is 

cents per bit. 

Figure III-1 presents a comparison of various semiconductor 

memory devices, compared in terms of cents per bit and also 

cents per bit per microsecond. Table III-1 presents the 

same data in tabular form. These are costs of the devices 

only, and do not include the overhead of building them into 

memory  systems.   Core memory has not been included because 

i   •' IIV1 HI iitfcriiimii« irlil^ll^■^'"^, ■'"^-^^^'^••"^, ■^-■^-il- •-*'- 



w   »v- 
"••-    ^ .™T™^..™i............. > -.■•«., 

i 

III-1Ü 

'• 
Cents   per  Bit 

Cents  per Bit  per  Microsecond 

2U T TTT I     1 1 Ml 
■ 

10 
■ 

_ - 
_ — 

5 

- ■ 
■ - 

- ■ • - 

2 

- 1 
• 

■ ■ ■ 

1.0 

0.5 

• • 

1 
• • 

• 
■ 

1 
- 

• 

- ' • - 

0.2 _l 1 1 1 I     ' MM 
0.05 0.10 0.2 0.5 1.0 

CYCLE TIME (MICROSECONDS) 

2 0 

^iKure III-l 

Memory Costs per Bit and per Bit per Microsecond 



!■«■   ii~*w~*~^~^^~m "5»WWP«WHIPPIIP»»P^F VW^^* waF^rrmrm**'*m*l*m*******^7*rr~**~*m 

<*et '■i ■     >-j" 

Private Memory III-11 

Figure III-1 plots the following data for INTEL  and  Texas 
Instruments devices: 

Mfr. Device Cents per Cents per Bit Cvcl 
Type Bit per Microsecond Time 

INTEL 3101A 14.0625 01.167187 .083 
INTEL 31C6A 06.4453 00.599414 .093 
INTEL 3106 05.6641 00.623046 .11 
INTEL 3101 11 .25 01.2375 . 11 
INTEL 2105 03.9062 00.898438 .23 
INTEL 1 103A 00.7617 00.464648 .61 
INTEL 1 103 00.7617 00.464648 .61 
INTEL 2107 01.5625 02.390625 1.53 
INTEL 2102 01 .6552 01.704932 1 .03 
INTEL 1101A1 03.0469 03.138281 1 .03 
INTEL 1 101A 02.5391 03.884766 1 .53 
T.I. TMS 4030 00.6433 00.321655 .50 

The INTEL data are taken from the October 1973 INTEL data 
catalog and from the July 1, 1973, INTEL Memory Components 
and Microcomputer Systems price list. The T.I. data are 
from a July 1973 Preliminary Specification Sheet and a 
verbal quote, November 9, 1973. 

lahle III-1 
Memory Costs per Bit and per Bit per Microsecond 

of the difficulty of comparing it precisely in these terms; 

however, its performance does not compare favorably by 

either criterion with the more attractive semiconductor 

devices. 

Memory bandwidth can also be increased by interleaving, that 

is, dividing logical memory into physical independently 

accessible units on a word-by-word basis. This will reduce 

the fraction of any individual processor's references which 

go to a particular physical memory, and increase, by a 

factor equal to the  number of memories  interleaved,  the 
I 
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bandwidth available from an area of logical memory. This 

then can permit many processors to share a memory system 

made up of memory modules each of which has a bandwidth 

comparable to that needed by a single processor. As with 

any memory sharing system, this necessarily slows all 

references to the shared memory by the communication and 

arbitration delays in accessing the shared resource. In 

addition, it jeopardizes the system reliability, both in 

that the code contained in that memory is not inherently 

duplicated, and more importantly in that a physicr.l memory 

going down makes the entire area of logical memory space 

which that unit covers unuseable. The size of this area 

would be greater than the actual size of the failing unit by 

a factor equal to the interleaving ratio, and thus to the 

bandwidth increase. 

From Figure III-1, then, we may pick the memory devices with 

the lowest cost per bit or the lowest cost per bit per 

second, of those presented. Interestingly enough the same 

devices generally, and the same particular device, minimize 

both costs. While this chart does not include various other 

parameters relevant to the cost of memory system design and 

consumption, such as number of components, power 

consumption, ease of interface, etc., these parameters also 

tend to favor the device which is the least expensive. Were 

this not the case, the selection of the particular device to 

use would have to be made on the basis of the  total design 

■**j 
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and production cost of the system. That there should be an 

obvious winner in this competition is not unusual, however, 

and is due in part to the positive feedback in the market 

place, in which a device which is well matched to the 

current technology will tend to sell rapidly, making the 

price low. 

The decision to have or not have memories local to 

processors is then based on the comparison between the 

increment in system cost due to the increased amount of 

storage required to replicate the hot code at each 

processor, and the increment in system cost due to the 

slowdown of processors because of the communication and 

arbitration delays if no local memories are used. This 

latter cost can be evaluated by measuring the incremental 

cost either of increasing the number of processors and other 

elements sufficiently to offset the loss in computational 

power, or of employing remote memories with faster response 

times. In addition to these costs, the increased bandwidth 

requirements on the communication medium imply an increased 

cost here also, which must be added in considering the cost 

of a system without local memories. The reliability issue 

discussed above also weighs in this decision, and if the 

reliability implications of interleaving are unacceptable, 

the additional cost of high bandwidth memories, not always 

the same as fast access memories, has to be added to the 

no-local-memory system cost. 
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We have so far treated the question of whether there is an 

amount of read-only hot code sufficient to justify local 

memories as having a simple binary answer. In fact, this is 

also a continuously variable financial consideration 

affecting the size of local memory needed. The assumption 

made above is that the amount of memory required is no 

greater than the physical unit into which a memory system 

subdivides. If significantly more memory is required to 

make a substantial fraction of the references be local, 

private memory increases in cost while losing in advantage. 

The cost increases because there must now be many copies of 

enough code to fill a number of modules of memory, implying 

many additional modules. Further, the fact that many 

modules are required implies that no single one is very 

heavily utilized, since references are distributed among the 

various modules. Thus, the additional bandwidth provided by 

local memories is not heavily utilized. 

In general, if a significant fraction of the memory 

references are read-only references to a small amount of 

logical memory space, private memories can improve the 

performance of a system of a given cost by speeding memory 

references,   decreasing  dependence on communication and 

arbitration delays, and increasing memory bandwidth and 

reliability. 

1 — 
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III A 2 - Picking a Processor 

An issue of key importance in the design of a multiprocessor 

is the selection of the particular processor to be used. In 

essence, this operation consists of choosing the processor 

most cost effective for the application. To do this, one 

must define objective standards for comparison of the 

price/performance ratios of processors under consideration. 

Price/performance is a suitable metric for the comparison of 

processors, since a given performance level can be obtained 

from many weak processors or a few powerful ones. 

We will now consider a method for selecting an appropriate 

processor. We will first examine system design 

considerations which favor more or less powerful processors 

of a given price/performance ratio, then turn to evaluation 

of the price/performance ratio of individual candidate 

processors. 

Ill A 2 a - Weak or Powerful? 

Selection of a processor cannot be made on the basis of 

price/performance alone, because other aspects of the system 

are affeoted by the number and speed of the processors used. 

The size of the communication logic will increase as the 

number of processors increases; however, the timing 

considerations will be less critical, since a given delay 

will represent a smaller fractional slowdown of a slower 

machine.   In fact,  multiple  small  machines  can  be 
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multiplexed over a limited number of communication channels 

for communication with the shared resources. This will slow 

the references because of the arbitration necessary in the 

multiplexing, but the amount saved in communication cost can 

more than make up for this. 

In  a  system without  local  memories or the processors, a 

processor with a weak instruction sef. suffers more from  the 

communication delay, since in general a weak instruction set 

requires more instructions to be executed to get a job done. 

This  implies more memory references which must suffer the 

communication delays if they are to be from common memory. 

If, however, there are local memories on the processors from 

which  instructions are fetched, we achieve a situation in 

which  the only references  to shared memory are  those 

interprocessor communications  essential to getting the job 

done.  The number of such references required per unit of 

time  is a function of the job which needs doing, and not of 

the number or speed of the processors doing it.  Thus, in a 

system with local memory, which uses the communication paths 

only  for necessary communication, the number of references 

per unit of time which must suffer the communication  delay 

is  independent of the speed, number, or cost of processors. 

Given the above, we can compare the cost of the 

communication delay as a function of 'ehe number of 

processors, for a given price/performance ratio, assuming 

that  only the essential references suffer the delay.  Call 

r-r -^     -^ -   - --.; ^A   „■-....■-     ^  .- _.   ..     iiiM« 1 11« 
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the number of essential common references per second J; call 

the communication delay each suffers  S  seconds.   If the 

processor  is  idle while  the communication occurs, then a 

processor will be idle C«S seconds per second as a result of 

these references.  (Note that if the processor is not  idle, 

but productively occupied while the communication occurs, no 

penalty  is  paid  for  the communication delay.  This i" an 

unusual case for the processors, memories, and communication 

elements economically sensible today.) We thus conclude that 

C*S seconds of processor time are lost each  second due  to 

co-nmunication  delays.  Note that this number is independent 

of the number of processors or their speed or  cost.   Thus, 

C*S processors  can be thought of as simply overcoming this 

delay.  The cost in terms of ehe system is  then C»S  times 

the cost of a processor.  Thus, the communication delay cost 

is proportional  to the cost of a given processor, and will 

decrease as the cost per processor decreases and the number 

of processors increases for a given price/performance ratio. 

Considering processors of a given price performance ratio, 

we can express the processing power needed in the system in 

dollars. Call the cost of this power D. If there are P 

processors in the system, the cost of each is D/P. Thus, 

the  cost  in dollars of the communicaMon delay is C*S*D/P. 

We can now compare this to the cost of the delay in a system 

which utilizes N-way multiplexing to connect N times as many 

processors to the same communication  structure.  Call  the 

■u^ -^^^ 
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additional delay introduced by multiplexing M. Since the 

number of references which suffer the delay is unchanged, 

and the multiplexing delay is simply added to the 

communication delay S, the cost of the communication delay 

in this N*P processor system is C*(S+M)*D/(N*P). Comparing 

this to the unmultiplexed cost C*S*D/P, 

C»(S+M)«D/(N»P) < C»S»D/P 

if and only if 

(S+M)/N < S 

or 

(S+M)/S < N. 

Thus, local multiplexing into the communication logic wins 

as a technique for permitting the use of smaller cheaper 

processors of a given price/performance ratio if, and only 

if, the ratio by which the communication delay is increased 

due to the multiplexing delay is less than the ratio by 

which  the  number of processors  is  increased. 

This argument does not include the cost of the multiplexing 

hardware, but only its delay. To be validly subjected to 

this comparison, processors would have to have the same 

price/performance including the cost of the multiplexor. In 

fact,     the    price  performance    of    the    tiniest       processors 

available today is less attractive than that of the somewhat 

larger "mini's". Nevertheless, this argument does show the 

advantage to be gained from many small processors, despite 

dramatic increases in the delay necessary for them to make 

their essential  interprocessor communication  references. 
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We have now shown the benefit obtainable by replacing a 

conventional processor by a nodule of tiny processors. Tne 

overall system structure then takes on a hierarchical 

appearance, with each element labelled a processor made up 

of sub-elements of structure similar to the overall 

structure. Wc will explore this observation further in our 

discussion of specific architectures. 

Ill A 2 b - Price/Performance Evaluation 

We have repeatedly referred to the  price/performance  ratio 

of  a processor.  This number is very application dependent: 

a processor with specialized flc iting point hardware  might 

be much more  attractive  than a similar processor without 

such hardware in a numerical analysis  application,  because 

of  improved performance.  However, the same machines might 

compare quite the other way  in  a  control application  in 

which  no complex computation  is done,  because  of  the 

increased cost of the special  hardware.   We  thus  need  a 

benchmark  to  compare  processors  for our p. -ticular 

application.  Coding the entire problem for each processor 

under consideration is likely to be exceedingly expensive. 

We therefore Leek a model of the program simple enough to 

permit straightforward comparison, but sufficiently good in 

modeling the application program to permit  reasonable 

accuracy in comparison. 
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A model can be deduced from an implementation of the program 

on a given processor by measuring instruction frequencies in 

that portioi of the code which is run when the system is 

operating at maximum load. A trivial program with 

comparable instruction frequencies can be written. A 

version of this program can then be prepared for each of the 

machines under consideration, and the speed of execution can 

be compared. 

As an example, the time-critical portion of a data 

communication program which was written for a Honeywell 

DDP-516 was observed to be made up of roughlv 25% "Load 

Accumulator" instructions, 25% "Store Accumulator" 

instructions, 25% "Jump" instructions, the large majority of 

which were to nearby locations, and the remaining 25% 

roughly equally divided among ADD, SUBTRACT, EXCLUSIVE OR, 

AND, and similar instructions. It was further observed that 

roughly 25% of the instructions had constant operands, and 

that roughly 50% were indexed. From this information, the 

following model (written in PDP-10 code) of the program was 

developed: 

LOOP:    MOVEI AC, CONST 
ADD  AC, T1(XR) 
MOVEM AC, T2(XR) 

JRST LOOP 

;Load accumulator with a constant 
;Add an indexed table entry 
;Store accumulator 
;    indexed into another table 
;Jump back to the loop 

This  tiny program was then coded for each of the machines 

under consideration, and the execution time computed. 

.......;\--\.J.-^.,.r,,v.^...M.-.-...;..^1^ .. .^.. ■■..■:  . .... -"-^- 
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The timing information from such a tiny program does not 

really reflect the differences in instruction set power and 

other machine features, such as multiple registers. To take 

these into account in the evaluation, factors of merit can 

be used to .nultiply the execution time. Unfortunately, 

these factors are again to some degree application 

dependent, and there is no straightforward way of evaluating 

them. Extreme accuracy is not required, since this is only 

a crude comparison, and an intuitive guess is generally 

adequate. These guesses can be checked to some extent as 

more accurate information becomes available, and the crude 

comparison can be reevaluated. 

The factors used in comparing processors for the 

communication program mentioned above are given in Table 

III-2. 

We now have a crude technique for comparison of various 

processors of interest. From this, those processors which 

are roughly suited to the application can be selected. 

Larger sections of the time-critical code can then be 

written for these processors, and a finer comparison 

obtained. In addition, comparison of these results with the 

crude results obtained above gives a means of evaluating the 

accuracy of the tiny model program and the factors of merit. 

If there is substantial disagreement between the observed 

and expected effects of machine features, the factors can be 

adjusted to reflect reality, and a somewhat more accurate 
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Page Ka 
Size 
6i4 3 
128 2 
256 1. 
512 1 
4096 .9 

Word Fact or Ind ex Fac tor Accumu- Factor 
Size Reg s lators 
4 8 0 2 1 1 
8 4 1 1 2 .8 
12 1.3 2 .9 4 .7 
16 1 4 .9 8 .6 
32 .9 8 .9 16 .6 

Where "Page Size" is the number of words that can be 
directly referenced, "Word Size" is the number of bits in a 
machine word, and the remaining two factors are the number 
of index registers and accumulators. The product of these 
factors for a given processor multiplies the time taken to 
execute the comparison program in each case to give the time 
values which will be compared. 

Table III-2 
Processor Power Comparison Factors 

comparison can be made of the broad field of machines, 

perhaps revealing additional machines worthy of serious 

consideration and substantial coding. In the case of the 

example given, the factors produced estimates which agreed 

with the more detailed results to within a few percent. 

Ill B - Some Specific Architectures 

In the preceding section, we explored two general 

architectural questions. We first investigated the utility 

of memory local to each processor^ and concluded that the 

use of such memory, where possible, can provide substantial 

benefits in system cost and performance. We then 

contemplated the problem of selecting a processor, pointing 

out  the  advantages  of weaker processors  of a given 

price/performance ratio, then exploring how we might compare 

the performance of various processors. 
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In this section, we will compare various structures v/hich 

might be used for interconnecting processors and memories to 

form a multiprocessor. We will explore the strengths and 

weaknesses of each, and point out applications for which 

each might be appropriate. 

Ill B 1 - Interprocessor Buffers 

The first architecture we will consider consists of 

essentially independent processors which share what is 

essentially an I/O device to each, through which they can 

communicate. This scheme for two processors is a common 

technique for applications in which one processor performs 

various functions such as I/O control for another, but can 

be used for load sharing if the required communication 

bandwidth is small. Such an architecture is shown in Figure 

III-2. 

Such a scheme is very limited in the interprocessor 

communication bandwidth available due to the single buffer 

involved and to the slow access routes to it. It is 

therefore useful only if the processors need to 

intercommunicate only infrequently. 

A communications protocol is required to permit meaningful 

communications through this awkward medium. A feature which 

can be added to this structure to improve efficiency would 

be an automatic lock, whereby the arbiter would remain 

locked after honoring a request, so that new requests from 

^.■^ -^...^.^ ■^^"1Mgwirinvi-i i  _. 
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other processors can not be honored until the processor 

which owns it explicitly releases it. It is further 

desirable that the processor which owns the buffer at a 

given time be able to selectively enable requests from other 

processors, so that two or more processors are able to 

converse without concern that another will seize the buffer 

for other uses. 

Another feature which would make the scheme less expensive 

in processor overhead would be to permit the processor which 

has won the arbitration to interrupt other processors, as a 

clue that the buffer contains something for them. This 

relieves each processor of the onus of periodic polling to 

determine if there is something for it, while permitting 

more rapid response to a transfer request. Such an 

interrupt  system  is drawn in Figure III-2 in dotted lines. 

While each of these features makes the scheme faster and 

cheaper in processor overhead, none is necessary, and each 

increases the hardware cost. Nevertheless, the hardware 

cost of such a scheme remains small, and for applications 

requiring very low bandwidth interprocessor communication, 

such a scheme is sensible. 

Ill B 2 - Int -processor Channel 

One technique for substantially improving the bandwidth 

available from an I/O device to a processor is to give the 

device a Direct Memory Access channel to the processor's 
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memory. Applying this technique to the scheme described 

above produces a system such as that shown in Firure III-3. 

Here, the individual processors contend for their local 

memories on a cycle-by-cycle basis with the arbiter's choice 

of processors. In this way, a processor can examine and 

alter another processor's local memory, thus permittinp' a 

much more rapid interchange. 

There are two primary factors which limit the bandwidth of 

this system. One is the slowness of the I/O type data 

transfers between the processors and the arbiter. This can 

be improved if the communication tends to be in long blocks 

by having the arbiter's inputs be DMA type channels, rather 

than I/O type transfers. This permits more rapid transfers 

of blocks of information, but implies larger overhead to set 

up a short transfer, since beginning and ending addresses 

need to be given to two channels, rather than simply 

specifyinp; a location and its contents. If the transfers 

are not large contiguous blocks, such a channel-to-channel 

scheme would be less efficient and more expensive than an 

I/O-to-channel transfer scheme. If large blocks are to be 

transferred, the increased hardware cost can be justified by 

increased efficiency and bandwidth. 

Another technique which permits increased speed of access 

becomes apparent from an examination of the new single-bus 

machines, such as the PDP-11. Here the I/O devices and 

memory locations are accessed in an identical  fashion.   In 
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this case, I/O type instructions look just like memory 

reference instructions, and are no slower. This can make 

the communication faster. In machines with dual bus 

structures, the same effect can be achieved by connectinp 

the arbiter and communication logic on the processor's 

memory bus, instead of the I/O bus. This poses some 

difficulty, since the memory bus is generally more difficult 

to access, both electrically and politically, and further 

often imposes rigid timing constraints on the accessed 

devices, which it believes to be known core memories. 

The other major limitation on the bandwidth of an 

interprocessor channel arises from the necessity for all 

interprocessor communication to go through the single 

arbiter. To avoid this, one can incorporate the arbitration 

function into the DMA on each memory, so that processors can 

access each other's memories contending only with other 

processors trying to access the same memory at the same 

time. Thus, multiple interprocessor communications can 

occur simultaneously, increasing the bandwidth available. A 

scheme which combines this arbitrating DMA approach with the 

single bus concept mentioned earlier is shown in Figure 

III-4. 

Ill B 3 - Crossbar Switch 

Figure III-5 shows a scheme which amounts to little more 

than  a  redrawing  of  Figure  III-4,  recognizing that the 
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Interprocessor Channel With DMA Arbitration 
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access of a given processor to its memory is not 

conceptuaTly different from the access given to another 

processor, so that the scheme consists in essence of 

multi-channelled memories, or memories with arbitrating 

multiplexors on their inputs, completely connected to the 

processors. This then forms a distributed crossbar switch, 

through which any processor may access any memory. It does 

imply that all of a processor's references must suffer the 

communication and arbitration delays. To overcome this, 

local memories may be added to each processor, as discussed 

in the preceding section. Such a configuration is drawn in 

dotted lines on figure III-5. 

There are various advantages to collecting the connection 

and arbitration logic into one centralized crossbar switch, 

as shown in Figure III-6. Here, each column of the switch 

mc.trix represents the arbitrator of requests for a given 

memory. The primary advantage of this centralization is the 

decrease in the number of cables and connectors. Whereas 

the distributed crossbar switch requires P*M cables, and 

thus 2*P*M connectors to interconnect P processors and M 

memories, the centralized switch requires only P+M cables 

and thus 2*(P+M) connectors. Since bandwidth considerations 

dictate that for a given application, the number of memories 

required is proportional to the number of processors, the 

cabling requirements in the distributed system will increase 

as P**2, whereas in the centralized system, the number of 

cables will be proportional to P. 
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The disadvantages of a centralized switch are in 

reliability, expansibility, and modularity. Presumably, the 

centralized switch is run off a single power supply, and has 

a single cooling mechanism. A failure in either of these 

brings down the switch and thus the entire system. The 

reliability is also impaired by the fact that the 

centralized logic makes it hard to debug a single failing 

unit without taking down the entire switch, and thus the 

system. This problem can be overcome by making the 

individual interconnection points and arbitration devices 

separable, so that one can unplug a failing unit for 

maintenance. This unfortunately also removes the primary 

advantage of a centralized switch, namely the small number 

of connectors. 

The centralized switch also has disadvantages in 

expansibility. If this logic is built in a single enclosure 

to a fixed size, a system which uses the full switch becomes 

difficult to expand by one more processor or memory. By 

contrast, the distributed switch permits indefinite 

expansion by simple extension of the bus to which the 

communication cables connect. 

The other side of the expansibility argument is a modularity 

argument: if the switch is of a constant size, and if it is 

large enough to support a reasonably powerful system, a 

similar system with less stringent performance requirements, 

which need not contain so many processors or memories,  must 

i  _.._. _—.,.-_ i       —■■ -— - - -—  —   
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nevertheless contain the physically large and expensive full 

sized switch. This problem can be somewhat alleviated by 

semi-automatic custom tailoring of the switch to the 

individual application. This is more expensive than a 

single design, and prohibits the growth of a small system 

into a larger system as performance needs increase. 

Th?se disadvantages of the centralized crossbar switch make 

*•'■« distributed organization shown in Figure III-5 dominate 

the centralized arrangement. In fact, the flexibility, 

simplicity of design, and high bandwidth of the distributed 

crossbar switch cause it to dominate all other organizations 

for systems of up to perhaps two dozen processors. The cost 

of this interconnection medium increases as the square of 

the number of processors, and for very large systems becomes 

prohibitive. 

Ill B 4 - High Speed Bus 

A crossbar switch, whether distributed or centralized, must 

have P*M nodes to interconnect P processors and M memorjes. 

This is costly as P and M grow large. It implies many 

components, much electrical power, and large size. This is 

in general the limiting element in the size and therefore 

computational power of a system which can be economically 

constructed, since the processor ?nd memory costs will 

increase linearly with system power, but the switch cost 

will increase  as  its  square.   In a  fourteen  processor 
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Plurj-bus which contains seven proctssor busses, two memory 

busses, and two I/O busses, the cost of the communication 

medium is close to half of the total systemcost, and would 

dominate all other costs in a much larger system. 

In an effort to limit the soaring communication  costs,  we 

can  regard the  centralized crossbar switch as a black box 

with P processor ports and M memory ports, and consider how 

to devise such a box for a minimum cost for large M and P. 

An attractive answer is to use a bus structure, such as that 

diagrammed in Figure III-7.  Here, processors place requests 

on the bus,  and memories respond.   Since  onl"  one 

transaction can be taking place on the bus at any time, this 

scheme   is  essentially  that  of  Figure  III-3,  the 

inter-processor channel, given a single bus  processor.   As 

such,  it  suffers the bandwidth limitations of that scheme. 

The bandwidth can be increased by not requiring that the bus 

oe  tied up during the entire memory  access.   This  can  be 

accomplished by having a processor request an access, which 

the appropriate memory instantly  recognizes.   The bus  is 

then immediately released.  On a write,  the data to be 

written is transmitted and captured along with the address, 

at which point the memory proceeds to do the write without 

further disturbing the bus.  On a read, the memory captures 

the address  to  be  read,  executes  the  read,  and  upon 

retrieving the data requests a bus cycle to  send  the  data 

back  to the  requesting processor.  Thus, the speed of the 
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Figure   III-7 

High Speed  Bus 
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bus is not tied to the speed of the memories or processors. 

The advantage of such a scheme is that it permits the use of 

a bus of much higher bandwidth than the memories connected 

to it. This may not be a significant improvement, since the 

technology economically available for construction of a 

multi-port bus is comparable in speed to the economically 

sensible memories. Further, an intermixing of technologies, 

such as an ECL bus, MOS memories, and TTL processors, 

generally produces electrical noise problems and interfacing 

problems of sufficient difficulty as to make any such 

solution expensive and probably not sensible. 

Ill B 5 - Lazv Susan 

There are two primary reasons why making the high speed bus 

sufficiently high speed is difficult. These are the 

arbitration delay necessary on each access, and the 

electrical problems associated with connection of many 

drivers and receivers to a single bus structure. In 

general, the more devices there are connected together on a 

single bus, the more capacitance there is tied to the bus, 

and the less well defined its impedance. The capacitance 

makes it difficult to change the levels rapidly, while the 

inconstant impedance implies ringing, which means that after 

a cnange of state, the lines take a significant time to 

settle into the new state.  Both of these then slow the bus. 
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The effects of the arbitration delay on the  bus  bandwidth, 

as well as the problem of many devices tied to one bus, can 

be eliminated by pipelining the bus.  In this case, the  bus 

takes  on a  ring structure, and rotates synchronously.  At 

regular clock  ticks,  the contents of each  cell  are 

transferred to the next.  If a processor requires access to 

a memory, it waits for an empty cell to come by and puts  in 

its  address  and  control  information,  and,  for write 

requests,  also  the  data.   If the addressed  memory  is 

available when  the  information comes  by,  it  takes the 

information and frees the  cell.   (If  the memory  is not 

available, it does not even look at the bus; it will get the 

information the next time around.)  If the request was for a 

read, the memory places the requested data in a cell when it 

is available, and the waiting processor will capture it when 

it  comes by.  Such a "Lazy Susan" arrangement is diagrammed 

in Figure III-8. 

In this arrangement, there is no point where an indefinite 

number of devices connect. Each cell connects only to the 

cell ahead and behind and to the processor or memory 

associated with it. Further, there is no arbitration delay 

in series with the bus cycle, since it is running 

synchronously, and always knows there will be data for it 

when it is ready. The processors and memories must wait a 

synchronization time to assure that their requests are in 

phase wi "-h the bus clock,  but  this  time  appears as  an 

...J.     ..■..-  Jl—U t -.^Mto^..^ . . J^-, , .... -JWv-'--"-—'->■-----" - -  •" ■ --■---^-•^-'»■-—Mftftj l-iftiir-^-"--1-—  :. - ■■-a.^-.^-.^. .=*-.■■■ .. ..-^-.  --^ - 



immmmqmfm 

Figure  III-8 

Lazy  Susan 

111-39 

W  -M n^ M 

!>.—,<   : 
r      i      i 

PL^ U^ • 



■PMPPpnamfm^wwjiaKi IIII«II|UJHWIWPW«WIH!^WWIW"^'»IMI"|| 'i««ii-i^»ww»ppiir4»i.ipiu um ,,..,...,.-,  Wwm  "   "'  WW"!I".«W '•    '    ■ '•' 

«W.I.I». "A^*— 

L 

Lazy  Susan 111-40 

increased delay, and not a decreased bandwidth. Additional 

processors and memories can be added by simply adding more 

cells, so the switch cost increa: . linearly with the number 

of processors. 

The disadvantages of this scheme are in reliability and 

perhaps delay and complexity. If there is a single lazy 

Susan, a failure of any cell takes down the entire system. 

This can be avoided by using multiple lazy Susans, letting 

the program decide which to use for a given request. They 

can be run synchronously with respect to each other, so the . 

arbitration delays are not required at the memories. 

However, with many lazy Susans, the number of connections 

and components increases, making this not necessarily an 

improvement over the crossbar switch. A trick which can be 

used to diminish the sensitivity to single failures is to 

proviae multiple choices for the input to a given cell, the 

choice being made by the program. Thus, a failing cell can 

be bypassed, permitting the system to remain up. Such a 

cell-bypassing scheme is shown on Figure III-8 in dotted 

lines. 

The laify Susan concept permits very high communication 

bandwidth, at a price in delay. This is characteristic of 

pipeline schemes. The increased delay need not be very 

large, since the lazy Susan can be run synchronously and 

very fast. With presently available Schottky-clamped TTL 

logic (T.I.  74S153 multiplexors, T^SI?^ flip-flops) a shift 
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time around 30 nanoseconds could be achieved. This delay is 

substantial but not overwhelming in a system of a dozen 

nodes; the delay becomes very large in a system of many 

dozens or hundreds of nodes. 

Ill B 6 - Hierarchical 

The architectures we have been describing in the last few 

sections can be represented, as shown in Figure III-9-A, as 

processors communicating through a complete connectivity 

communication medium to memories. We call this collection 

our processor, specifically our multiprocessor. If we 

observe in detail the entities called processors in Figure 

III-9-A, we find that they are in fact composed of 

processors and their local memories, as shown in Figure 

III-9-B. Thus, the "processor" component of our 

multiprocessor is in fact made up of processors, memories, 

and a communication medium connecting them. If we examine 

in yet greater detail the entity which at this level we call 

a processor, we find that it in turn may be made up of a 

microprocessor connected through a communication medium to a 

micromemory, as shown in Figure III-9-C. This sort of 

microprogrammed processor is an effective economical way of 

fabricating processors today. The overall system, as shown 

in Figure 111-10, has a distinctive hierarchical tree 

structure.  This provides a suggestion for expansion. 
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What is a Processor? 
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Figure 111-10 

The Hierarchical Structure 
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There is no need for a microprocessor to access another 

microprocessor's micromemory. Similarly, there is no need 

(other than on error conditions, as described earlier) for a 

processor to access another processor's local memory. If we 

can divide the system into modules each of which contains 

processors, memory, communication logic, and I/O equipment, 

and each of which handles the majority of its tasks 

internally, without need for access to other modules, we can 

extend the structure diagrammed in Figure 111-10 by an 

additional level, to Rive that shown in Figure 111-11, in 

which each module has access to the overall shared memory 

for those   few  communications which  must  occur. 

This structure may be extended by additional levels to the 

extent to whioh the program complies with the sort of 

modular     structure     described    above. This       hierarchical 

structure imposes a communication delay which is the sum of 

the delays at each level to cross multiple levels. However, 

such references are presumably less and less likely as the 

number of levels increases. A microprocessor gets words 

from micromemory at a rate of perhaps 150 nanoseconds, while 

the processor references its local memory at a rate of one 

reference per 1.4 microseconds, and references shared memory 

at a rate of ore reference per 6 microseconds. Thus, the 

delay added at each stage, while added to tnat from the 

previous stages, has a decreased effect on program execution 

time.       However,     substantial  decreases  in   the   size  and  cost 
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of the communication logic, as compared to complete 

connectivity schemes, can be achieved, since there is no 

need for each processor st a given level to he able to 

communicate to other processors' memories at that level. 

The structure can also be extended at a riven level. We 

have so far discussed organizations which have only one 

microprocessor per micromemory, and only one processor per 

local memory. There can be multiple processors connected to 

a given memory at any level, provided the memory bandwidth 

is sufficiently higher than the processor bandwidth 

requirements that a given memory can support multiple 

processors. This permits savings in system cost, due to the 

reduction in the number of memories required to support a 

given number of processors. A study of the effects of 

multiple microprocessors sharing memories is given in [17]. 

Summary 

This concludes our discussion of multiprocessor 

architectures. We began the discussion by considering two 

general architectural ouestions. We contemplated the issue 

of coupling a "private" memory with each processor, and 

concluded that where feasible, such a memory can 

substantially improve system cost, performance, and 

reliability. We then addressed the problem of processor 

selection, first observing that for a given 

price/performance characteristic, benefits in speed and cost 
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derive from slower, less expensive processors. We then 

described how the performance of a group of processors might 

be compared in order to evaluate the price/performance 

characteristics. 

We then turned to a discussion of various architectures, 

pointing out the strong and weak points of each. We 

concluded that for systems of a few to a perhaps two dozen 

processors, the distributed crossbar switch is the most 

attractive, whereas for systems of many more processors, a 

more hierarchical structure, containing nodules of 

processors, is more appropriate. 

tA 
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Chapter IV 

PLURIBUS - A REAL MULTIFROCESSOR 

In the preceding chapters we have considered various aspects 

of the design of multiprocessors.  In the first chapter,  we 

concluded that a homogeneous control parallel organization 

was advantageous.  In the  seconi,  we determined  that  an 

asynchronous design was feasible and attractive in terms of 

flexibility and reliability.   We concluded  further that 

methods  to detect and survive component  failures are 

worthwhile to improve system availability.   In  the  third 

chapter,  we reviewed various architectural  issues and 

concluded that a distributed crossbar switch organization, 

with private memories and slow, inexpensive processors, was 

the most desirable structure for a system with perhaps a 

dozen processors. 

In this chapter, we will describe a multiprocessor built on 

the basis of these conclusions. This system, the BBN 

Pluribus, is an asynchronous homogeneous control parallel 

multiprocessor with a distributed crossbar switch 

communication medium, incorporating private memories and 

slow inexpensive SUE* processors. 

We will first describe the objectives which motivated the 

design of this system, reviewing botn the initial goals and 

additional considerations which arose as the design effort 

■ SUE is a trademark  of  the  Lockheed  Electronics 
Corporation. 
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progressed. We will then turn M a detailed description of 

the system itself, discussing each of the major system 

components and their significant features. We will then 

turn to an evaluation of this system as a powerful computer 

in terms of cost and performance. We will consider the 

Pluribus in two applications. First, we will examine its 

performance in the High Speed IMP application for which it 

was originally designed, to determine the fraction of the 

computational power lost to communication and queueing 

delays, and thereby the effective power of the Pluribus in 

this application. We will also describe the current state 

of the failure survivability features of the Pluribus IMP. 

We will then compare Pluribus performance with that of 

several other large computer systems on a field scan 

application considered a good model for an optimizing 

compiler. 

These evaluations are necessarily crude, since the Pluribus 

is still under development, and real performance 

measurements cannot be obtained. We have attempted to make 

our estimates of the Pluribus conservativf and our estimates 

of other systems generous. Even so, the price/performance 

characteristics of the Pluribus appear very substantially 

superior to other computer systems. This, then, is the 

demonstration of the validity of the thesis that a 

multiprocessor organization can provide a cost-effective 

means of building a powerful computer system. 
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IV A - Design Objectives 

The  initial design objective of this project was to improve 

the speed of the already existing ARPANET IMP  [18,19].   As 

the  design  proceeded,  the  objective of speed took second 

place to that of modularity, in particular the  ability  to 

build small,  inexpensive units out of the sane technology. 

More recently, the potential improvement in reliability  has 

become  of increasingly central concern, until at present it 

is the single most important objective of the project.  This 

shifting of emphasis over  time  has altered  the  schedule 

substantially,  but has made  no major alterations in the 

fundamental design of the system,  nor  in our  expectation 

that  the system can meet all of these objectives. 

We discuss these objectives below. 

IV A 1 - Faster 

The initial design objective was to build an IMP that would 

be faster by a factor of ten than the present IMP, which was 

built around a Honeywell DDP-516 minicomputer. The speed 

improvement sought was a factor of ten in processing speed 

over the 516, to produce an IMP which could handle roughly 

7.5 megabits per second of throughput traffic, as compared 

to the roughly .75 megabits then available from the 516. 

The  IMP's  job is  that  of  a  communications  processor. 

Arriving  messages must  pass  through an error  control 
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algorithm, be inspected '"or such information as destination, 

and generally be rerouted out another communications li^e or 

to a Host computer. Some messages, such as routing 

information messages, are generated and digested by the IMPa 

themselves. The IMP must also concern itself with flow 

control, message assembly and sequencing, performance and 

flow monitoring, Host computer status, line and interface 

testing, and many other housekeeping functions. All of this 

requires processing power proportional to the amount of data 

to be handled per unit of time. In addition, memory is 

required, both for program storage and for data buffering. 

I/O interfaces to communication lines and Host computers are 

also required, with data paths to memory of sufficient 

bandwidth to support :he required data rates. 

The requirement of a factor of ten increase in throughput 

over a 516 implies in this instance a processing power 

increase of a factor of five over the 516 processor, because 

in the 516 the DMC channel used for all I/O transfers into 

and out of memory requires four memory cycles for each data 

word transferred. It was observed that the program required 

about eight memory cycles per word of data. Thus, half the 

power of the machine was being spent on I/O. An 

architecture which permits the processor(s) to run without 

interference from the I/O is therefore inherently faster by 

a factor cf two. 

■-' •-"■" 
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For  reasons  of the gut  feelings of the people involved, 

coupled with crude estimates of the delays to be added  by 

the  communication logic, queueing for shared resources, and 

additional code complexity in a multiprocessor environment, 

it was guessed  that  these  inefficiencies would slow the 

system by an overall factor of two.  This  then offset  the 

factor  of two gained by removing I/O - processor conflicts, 

and implied that the number of processors required would  be 

enough  to  produce a factor of ten in pure processing power 

over a  516.  Thus,  our  system  should  include  ten  516 

processors,  or a proportionately  larger number of slower 

processors, or a proportionately smaller number  of  faster 

processors. 

IV A 2 - Mocular 

As the very early system design proceeded, a comparison of 

high speed uniprocessors using very simplistic instruction 

sets with multiprocessors built from commercially obtainable 

processors showed that for our application, the two 

approaches were roughly comparable in terms of cost. 

However, the multiprocessor approach has advantages in 

reliability and in modularity. A machine built out of the 

same system components with fewer processors, less 

communication logic, ard less memory, could support the same 

system, even to the extent of executing the identical 

program,     at    a    much    reduced     cost.     This ability  to build 

small   inexpensive  systems  which  could then    be    expanded     in 
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the field as needs increased was the key consideration which 

swung the choice toward the multiprocessor approach. The 

processor which was chosen was at the time one of the very 

smallest and least expensive processors commercially 

available, which meant that a very small system - containing 

only one processor and no communication logic - could be 

built at a fraction of the cost of the 516 IMP, but could 

still run the program written for the high speed system, 

thus saving a major reprc'ramming cost. 

IV A 3 - Reliable 

As the project progressed from system design through 

component design and debugging and into hardware system 

construction and debugging, the issue of reliability of the 

resultant IMP became more and more important. As discussed 

in the previous chapter, the detailed consideration given to 

the issues of reliability in the design of a multiprocessor 

system can make the difference between a system whose 

reliability is far worse than that of any uniprocessor and 

one whose reliability can, we hope, far exceed that 

obtainable in a single processor. 

A primary reason for the added emphasis on the reliability 

features of the proposed system was the unreliability of the 

old style IMPs. i Averaging over an 18 month period from June 
1 

1972 through November 1973, while the number of IMPs in the 

ARPANET grew  from 29 to 45, a,nd the per node traffic rose 
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from just over one million to over three and a half million 

packets per day, the average IMP down rate was 2.35%. This 

figure includes preventive maintenance, site power problems, 

and all other causes. Of this, "1.56% was attributed to 

hardware or software failure. There was no obvious 

improvement or degradation in these figures despite the 

substantial increases in network size ard traffic. The 

average of the months' MTBFs was 397.3 hours, the average of 

the MTTRs was 5 hours 51 minutes. It is envisioned that the 

new system will substantially improve both of these figures, 

in that a component failure should no longer imply a system 

down, and in the case of system crashes, it should be 

possible to bring the system back up in a smaller 

configuration instantly, without first diagnosing the 

precise cause of the failure. While a down rate of 1.56% 

blamed on combined hardware and software failures may seem 

small at first blush, when considered as the system being 

unexoectedly down for 22.5 minutes each day, it is abysmal.* 

* IMP reliability has improved since th'. se statistics.   In 
January  1974,  a  new effort to improve network reliability 
was begun, including the assignment of the author to this 
problem.   The statistics averaged over the nine months 
August 1974 to April 1975 are as follows: 

Down Time (All Causes)       .89% 
Down Time (Hard/Soft failure) .32% 
MTBF 510 Hours 
MTTR 1 Hour 34 minutes 
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IV B - The System 

Given these three objectives - Speed, Modularity, and 

Reliability - we now describe the multiprocessor system we 

have desipned to try to achieve them. The fundamental 

arguments comparing various choices we made to other 

possibilities were p;iven in previous -:hapters. 

IV B 1 - Architecture 

The general architecture chosen was an asynchronous 

multi-bus system, with separate similar busses supporting 

processors, shared memory, and I/O devices. The system is 

designed around the Lockheed SUE computer, because it had 

the most attractive price/performance ratio of any machine 

available at the time of the selection, in addition to 

having the most convenient interfacing arrangement. The 

communication medium is a distributed crossbar switch, for 

reasons of speed, modularity and reliability. The task 

dispatching is done on a voluntary basis with a 

hardware-managed priority ordered self-locking queue of 

pending tasks. 

A drawing of the prototype system which was built is given 

in Figure IV-1. The large rectangular boxes represent 

busses; the labeled subdivisions represent devices plugged 

into those busses, the width of the subdivision being 

proportional to the number of cards the device occupies, and 

thus  its  physical  width.   The  interconnecting  lines 

. .-.. -.^^..^^^^.i^^aMa^  ..^.i.^-.  ^■..-;.., :.^..... . .  -. .^„.^J...^. 
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Architecture IV-10 

represent Bus Coupler cables. The overall prototype system 

occupies three six-foot high 19 inch equipment racks. 

IV B 2 - The LE: SUE 

The SUE is an inexpensive micro-programmed minicomputer 

introduced by Lockheed Electronics Corporation in 1972. In 

addition to the processor, the SUE line contains memories 

and various I/O interfaces as well as card guides, busses, 

consoles, power supplies, and other components useful in 

putting together a computer system. The acronym SUE stands 

for System User Engineered, reflecting the design philosophy 

that the system user can purchase those components necessary 

to the system he wishes to configure, and can then construct 

the system by simply plugging together the components. 

In this section, we describe the salient features of the SUE 

which led to its selection as the basis for the Pluribus. 

We begin by presenting a brief history of the ways in which 

computer busses have developed, observing that the SUE bus 

structure represents an ideal basis for a system such as the 

Pluribus. We will then describe the SUE's Bus Controller, 

and finally the SUE processor itself. 

IV B 2 a - The Single Bus 

In the earliest days of digital computation, peripheral 

devices were connected to processors by simply cross-wiring 

from the  central input and output logic to the peripheral. 

> _ 
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As th* number of peripherals on a given processor increased, 

it was observed that an increasing amount of centralized 

logic needed to be given over to input mixers and output 

buffer/drivers. This, combined with a desire to create a 

uniform publishable specification for interconnection of a 

given processor and a general periplieral, led to the 

emergence of the I/O bus, which was both electrically and 

physically different from the majority of the logic in the 

processor. Electrically, the bus is typically connected to 

by high power drivers and very sensitive receivers, so that 

an essentially arbitrary number of devices may be connected 

to one bus. Physically, the bus is typically made up of 

controlled impedance noise-immune wires, either coaxial or 

twisted pair, to permit some degree of controj over noise 

and reflection characteristics. The bus can then typically 

be daisy-chained through the various peripherals, and can be 

physically quite long. 

As large systems with many modules of memorj; started to 

become common, it was realized that the bus concept could 

profitably be applied to the problem of connection to 

memory. This "memory bus" had certain characteristics which 

differed from those of the I/O bus, howpver. The first 

noteworthy difference is the importance of the speed of 

operation. A processor spends a small fraction of its time 

executing I/O instructions, so that slowing these by a few 

microseconds,  to reduce dependence on bus reflections, will 
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have  little effect on the overall system performance. 

Slowing each memory cycle by a few microseconds, however, 

would reduce the system power by a large factor.  Therefore, 

the memory bus must be made as fast as possible,  and 

preferably  fast enough that the delay introduced is small 

compared to the time taken by the memory system itself to 

retrieve information. 

A number of considerations  simplified the achievement of 

this goal.   First,  the memory  bus was  private.    The 

manufacturer considered himself to be the only one building 

devices t-> connect to this bus, and therefore did not need 

to be as careful in accepting sloppy signals.  Second, since 

the cost of a module of memory was substantially higher than 

that of I/O interfaces, proportionately more money could be 

spent on the interface without  having the interface cost 

become  too large a  fraction of the module cost.  Third, 

since there were still fewer memory modules than I/O devices 

on typical systems, the cost of the memory interface had 

less  impact on the system cost.  Finally, the few memory 

modules could be physically  located very close to the 

processor,  permitting a shorter bus.  Thus, the typical 

system was drawn with two busses connecting to a processor: 

a slow,  sloppy, and cheap I/O Bus,  and a high-speed, 

close-tolerance, expensive Memory Bus. 

GRI Computer Corporation introduced a concept in computers 

of  having  a  single  bus  through which all devices 

.. HBj -■.i^i..- 
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intercommunicate, with modules of different  capabilities 

which could  be connected to this bus to form a system well 

suited to a particular task without  very  expensive  design 

costs.   This was  a particuüarly timely development, since 

the maturity of integrated  circuit  technology was making 

electrically  clean  interfaces cheaper, while the advent of 

the mini-computer was making the  processing  portion  of  a 

computer  less expensive.  As a result, the busses and their 

associated  drivers  and  receivers  were  becoming a  very 

substantial  fraction of the cost of a system.  Further, the 

limited power available from the instruction set of  a  mini 

gives  an  incentive  to eliminate special I/O instructions, 

permitting more  useful  instructions.   In  a  single  bus 

system,   communication  to I/O devices  and  memories  is 

accomplished in the same way, so that the same  instructions 

can  do  either.   1/0  commands  are  recognized  by  their 

distinct  set  of addresses.   Thus,  for  a multitude  of 

reasons,  the  single bus was a concept whose time had come. 

The DEC PDP-11 was the first widely marketed machine with a 

single bus. In this line, DEC offers a variety of 

interface- and program-compatible machines spanning a wide 

range of price and performance. The single bus, called the 

UNIBUS, is daisy-chained through devices in the same fashion 

as earlier busses had been. The bus is permitted to be 

physically quite long. To allow for the worst-case delays 

over  this  long  cable,   and  because   the   interface 
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specifications are not as tight as they might economically 

be with today's technology, the bus does introduce 

substantial delays into memory cycles. The processor 

controls access to the UNIBUS; peripherals may request and 

obtain mast .ry of the bus through a handshake with the 

procvissor. There is therefore a tight coupling between the 

processor and the bus, and one may not generally have one 

without the other. 

The LEG SUE is another single bus machine, in many ways 

similar to one of the less powerful PDP-lls, but having 

advantages the latter does not. In addition to being 

substantially less expensive, the SUE has a physically 

United bus with tighter interface specifications, and has 

separated the bus-controlling function from the processor, 

permitting systems without one-to-one processor:bus 

relationships. 

The SUC bus, called the INFIBUS, is a 15 inch long printed 

circuit card with 2k sockets mounted on it. All devices 

plug into these sockets. The bus can be extended with a Bus 

Extender, which consists of a card which plugs into the last 

socket on the master bus, a card which plugs into the first 

slot of a slave bus, and a cable which interconnects the 

two. The slave bus is then logically an extension of the 

first bus, but electrically is redriven, so that there are 

never more than 24 electrical loads on any bus Ivne. The 

bus extension introduces a delay in all communications which 
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times out all bus transactions, to prevent requests to 

unresponsive or non-existent devices from hanging the bus up 

permanently. In this system, the processor requests usage 

of the bus just as any other device would, but on a special 

lower priority line. This separation of bus control and 

processor functions permits the construction of busses 

without processors, supporting various non-processor master 

devices and memory or other slave devices. This is 

particularly convenient in a multiprocessor environment 

given a distributed crossbar switch communication 

arrangement. Busses can be constructed supporting shared 

memory and communication devices, but no processors. The 

Bus Controller then arbitrates between requests from the 

various communication devices, which then access the shared 

memory directly. This structure is utilized in the 

Pluribus. 

In addition to permitting busses with no processors, the 

separation of bus control from processor permits the 

construction of busses with multiple processors. Since 

processors contend for bus accesses in a fashion similar to 

other devices, multiple processors can contend for the bus. 

This permits more efficient utilization of the bus 

bandwidth, since a single processor cannot fully utilize a 

bus, but more important, it permits more efficient use of 

the communication logic. If a communication path is 

established between a bus which supports  processors  and a 
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bus which supports shared memory, any number of processors 

connected to the processor bus can use the same path; the 

multiplexing is already taken care of by the Bus Controller. 

This permits the use of smaller, slower, less expensive 

processors without increasing the ccst of the communication 

logic, which, as discussed in Chapter III, decreases the 

cost of the processing power lost due to communication 

delays. In the prototype Pluribus, each processor bus 

supports two processors. 

IV B 2 b - IheBusController 

We have repeatedly mentioned the general problem of 

arbitration between competing requests, and the fact that in 

the iUE, this problem is handled by a separate device, the 

Bus Controller. We now describe how it accomplishes this, 

and how the INFIBUS is used. The technique seems well 

suited to the problem of constructing a multiprocessor, 

permitting a uniform technique to be used for all cf the 

arbitrations necessary in a system. The electricj'l and 

physical standardization which is possible as a result 

reduces the complexity of the system in terms cf 

comprehensibility, reduces the number of devices which need 

to be designed and stocked, and permits the combination of 

logically distinct busses onto the same physical bus, where 

bandwidth considerations permit, without the necessity of 

modifying the design of the devices to be supported. 
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There are six kinds of requests which can be made on the SUE 

bus.  They are, in order of decreasing priority, as follows: 

1) Device Data Transfer requests. These are requests 

from a non-processor device requesting mastery of 

the bus to transfer data to a slave, without 

involving a processor. 

2-5)  Interrupt requests at any  of  the  four  possible 

priority-ordered levels. 

6) Processor requests. These are the means whereby 

processors request memory cycles for instructions 

or data. 

The Bus Controller monitors  these  six  request  lines 

continuously.   When a device wishes a cycle, it asserts one 

of these lines, if the Bus Controller  is  permitting that 

level  of request  at that time.  Upon detecting a request, 

the Bus Controller picks the highest level on which a 

request  is presently active, and disables further requests 

at that level.  Devices are no longer permitted to raise new 

requests on that level, and their internal  logic is then 

allowed to £ettle,  deciding whether or not that device is 

requesting.  After waiting enough time to permit each of the 

devices' requesting logic to settle,  the Bus Controller 

sends out a precedence pulse.  Unlike the other bus lines, 

this signal is daisy-chained through each device.  Devices 

which cannot be bus masters simply pass the signal directly. 
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The Bus Controller IV-20 

We  have  spoken of busses which support processors and of 

busses which support shared remory. There is a  third sort 

of bus  in the Pluribus, which supports I/O devices.  These 

I/O busses are physically and electrically the same sort  of 

SUE  busses as the others; however I/O devices are somewhat 

different from either processors or memories, and share some 

of the characteristics of each, in terms of  their  required 

systemic connectivity.  An I/O device looks like a processor 

to shared memory, in that it requests memory cycles through 

the communication medium in the same way that processors do, 

and thus need to have the same sort of access to the  shared 

memory busses that processor busses do.  On the other hand, 

I/O devices look like memories to processors,  in  that  the 

processor needs  to be able to write command information to 

the device and read status  information  from  the  device's 

control  registers.  In this way, processors need to be able 

to access I/O devices in  the  same way tnat  they access 

memories,  implying that  the same communication logic must 

exist between processor busses and I/O busses as exists 

between processor busses and memory busses.  Thus, the I/O 

busses appear as both  processor type busses and shared 

memory type busses to the communication logic. 

The Bus Controller is also used on I/O busses to arbitrate 

among the requests from the various devices which may be 

requesting access to shared memory through the communication 

logic, as well as those from the communication logic, which 
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may be presenting a request from a processor to read or 

write a device control register. Thus, this one device is 

used throughout the system to resolve all electrical 

conflicts. 

IV B 2 c - The Processor 

, 

The SUE processor is a slow (3.77 microseconds memory to 

accumulator ADD) inexpensive ($597 in 1972,* given a H0% 

discount) microprogrammed machine with a very 

attractivf/price performance ratio. It is built on two 6.25 

X 13.5 inch cards, and can thus be duplicated on a single 

bus without using up massive amounts of physical space. It 

is generally microcode limited in its timing, and keeps the 

bus busy substantially less than 50? of the time, so that 

two processors on a single bus do not often conflict. Thus, 

as described above, it is practical to put multiple 

processors on a single bus, and as described in Chapter III, 

this represents a substantial savings in the cost of the 

processing power wasted due to communication delays, given 

that the input multiplexing comes free with the separate Bus 

Controller. 

i ' 

* The current price of a SUE processor is more difficult to 
compute, because Lockheed's current pricing algorithm is 
based on systems, rather than components. The effective 
price of a processor has increased since 1972, due in part 
to additional complexity which has been added to fix 
original bugs, and can be approximated as $1000 in 1975. 
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IV B 3 - Bus Couplers 

As has been mentioned, the communication scheme used in  the 

Pluribus is a distributed crossbar switch, using the INFIBUS 

arbitration to  do  the  multiplexing at the memories.  The 

atomic communication unit of this switch is the Bus Coupler, 

which consists of a card which plugs into a processor bus, a 

card which pluga into  a memory  bus,  and  a  cable  which 

connects  the two.  One of these devices is required between 

each processor bus and each memory  bus,  and  between  each 

processor bus  and  each  I/O bus.  A similar device, whose 

differences fron this Bus Coupler we will note, is also used 

to connect each I/O bus to each shared memory  bus.   Thus, 

the  total  number of Bus Couplers of both types required to 

interconnect a system with  P  processor  busses,  M  shared 

memory  busses,  and  I  I/o  busses  is  P»M+M»I+P»I.   The 

prototype Pluribus contains seven processor busses, and  two 

each memory busses and I/O busses, and thus requires 32 Bus 

Couplers. 

IV B 3 a - Inter-Bns Communication 

The Bus Coupler's primary duty is to receive requests at the 

processor end, transmit them to the bus at the memory end, 

and transfer the data in whichever direction is required. 

To accomplish this, the Pus Coupler Processor end (BCP) 

appears as a memory or other slave device to the processor. 

When an address is recognized to be within the  range  to 

.^..--..■.^■■..^.■■:.J.-  -         .....,■-, .^„.^V ^.^.i. ■■■»■^l^.-.^.a-^A.  ■''■ —.^^•■V--^-'-»-"--^-- ■■"■■*--    ■—-^■.^■i..:.^.  ^J^,,^^„ 



••■rw^l^- 

Inter-Bus Communication IV-23 

which that coupler is set to respond, it will forward the 

request down the cable to the Bus Coupler Memory end (BCM), 

which then requests bus mastery for the next cycle. When it 

is granted mastery of the bus, it then requests a memory 

transfer at tie address which was specified by the 

processor. Thu1., the Bus Coupler appears as a memory to the 

processor, and as a processor to the memory. Except for the 

delay introduced by the commuriication and additional 

arbitration, the processor is unaware that the memory which 

it referenced was not on its own bus. Since the processors 

are asynchronous and do not depend on any specific memory 

timing, the delay does not complicate the procedure involved 

in referencing memory. 

IV B 3 b - Ancillary Functions 

Having presented the primary function of the Bus Coupler, we 

now turn briefly to three ancillary functions, namely: 

address mapping, locks, and backward bus coupling. While 

none of these functions needs to be performed in exactly the 

way described, all are necessary in some form in any 

practical multiprocessor. 

IV B 3 b (1) - Address Mapping 

As with most 16 bit minicomputers, the total address space 

directly accessible by a processor is extremely limited. To 

permit multi-level indirect references or byte addressing, 

one bit of any word used as an address is unavailable. 
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leaving 15 bits of address, and thus permitting only 32K 

words of memory addressable by a processor. This is 

generally inadequate for large systems, which need space 

both for program and for buffers. In the Pluribus IMP, 32K 

words is more than enough space for local, private memory, 

of which two to four thousand words are needed. However, 

enough shared memory is required to support a wide variety 

of infrequently used routines, as well as massive amounts of 

buffer space to hold data for a round-trip time in a 

high-speed satellite-linked network. Thus, some mechanism 

was needed to expand the amount of memory .'ddressable by a 

processor. The Bus Coupler was a logical place for address 

mapping, expanding a portion of the processor's 32K word 

space to a much larger system address space. In particular, 

the 32K words were logically divided into 8 segments of 4K 

words each. The middle four of these segments are mappea 

into system address space by appending 7 high order bits to 

the 12 remaining address bits to give a system address in 

one of 128 UK word segments which make up a 512K word system 

address space. These seven map bits are specified by the 

processor independently for each of its four mappable 

segments. In the case of multiple processors on a single 

processor bus, independent maps are kept for each processor 

(up to four). A diagram of the Pluribus address spaces is 

given in Figure IV-2. 
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Thus, the Bus Coupler maps 4 4K word segments of each 

processor's address space independently into 4 of 128 4K 

segments of system address space. Note that this function 

is not required of a Bus Coupler which connects an I/O bus 

to a memory bus, since the various devices which might wish 

to access shared memory must each keep track of the full 19 

bit system address of the location it wishes to access. If 

the mapping were included in this path, each device would 

have to first access the appropriate map, set it up, and 

then, without permitting another device to alter the setting 

in the interim, make the required reference. This would 

introduce substantial complication and overhead/.'" 

Alternatively, each device could have a separate map in the 

Bus Coupler. Thiö would mean that at design time, the 

maximum number of devices supportable by a single Bus 

Coupler would have to be specified. If the number is made 

low, few devices can connect to a single Bus Coupler, 

meaning that many T./0 busses with separate Bus Couplers 

would be needed in a system which is to support many 

devices, making the system «. pensive. However, if the 

number is made high, the cost and size of having a great 

deal of mapping hardware must be paid on every Bus Coupler, 

again making the system expensive. 

Both of these undesirable effects can be avoided by simply 

eliminating the mapping function on those Bus Couplers which 

conr.-act an I/O bus to a memory bus.  In  the  Pluribus,  the 
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mapping function is associated with the processor end of the 

Bus Coupler.  As a result, a different card, a BCI, replaces 

the  BCP in this application, and communicates to the BCM in 

the same fashion as a BCP, but permits devices which already 

know the full 19 bit system address they wish to  reference 

to do so without mapping. 

One other form of mapping is provided by the Bus Coupler. 

Since the number of status and control registers a given I/O 

device has is generally small, a substantial number of 

devices can fit in a small amount of address spacf1. In the 

Pluribus, just under 8K words of system "pace are dedicated 

to J/0 device control and status words. Each device has a 

block 8 words long, so that this address space permits 

almost 1024 devices to be connected to a Pluribus. This BK 

block is then referenced very frequently by the programs. 

Further, all programs reference the same 8K block. In fact, 

all references from a processor bus to an I/O bus will refer 

to this segment. Thus, the mapping from processor address 

space to I/O address space is simple: any reference to the 

appropriate area of the highest 8K words of processor 

address space is automatically mapped into the corresponding 

location in the highest 8K words of system space, on the I/O 

bus. This is done by sticking four "1" bits onto the high 

order end of the address. This process, known as "F 

sticking" (hexadecimal F), is performed by all 

procc!ssor-to-l/0-bus Bus Couplers, letting any processor 

refer to any I/O address without setting maps. 
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In Chapter II, we discussed the problem of synchronizing 

software through the medium of an indivisible test-modify 

sequence. Since the SUE processor available at the time of 

the Pluribus system design had no facility to perform this 

function, and since the function relates prLnarily to 

intercommunication of processors, rather than activities 

internal to a single processor, this also seemed a sensible 

function for the Bus Coupler to perform. As originally 

envisioned, a lock reference would dc a destructive read to 

a core memory, but would not then initiate a rewrite, 

leaving the contents zero. A number of problems arose from 

this implementation, including the problem that the 

remaining word would have bad parity, and the fact that the 

SUE memory was designed so that if a cycle was aborted in 

this fashion, the memory would automatically do the rewrite 

half cycle. However, the concept survived, and was 

implemented using a Read-Modify-Write cycle, as follows. 

Whenever a read reference is made by a processor through the 

fourth mappable segment, the contents of that location are 

fetched in the first half of a Read-Modify-Write cycle, and 

returned to the requesting processor. The Bus Coupler then 

zeroes the data lines, and initiates the rewrite portion of 

the cycle, putting a correct parity zero in the location. 

This operation is indivisible, and thus forms a valid "Lock" 

operation.  As we discussed in the second chapter,  this 
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destructive read locking operation permits very high 

efficiency by using the datum contained in the lock location 

as the locked resource itself. 

IV B 3 b (3) - Backward Bus Coupling 

In Chapter II, we discussed the examination and modification 

of one processor's registers and local memory by another as 

a means of improving system availability. In this way, a 

single transient failure need not remove a processor from 

normal operation for an extended period. We now describe 

how this sort of communication is accomplished in the 

Pluribus. 

A  facility is  provided  in  the Bus Coupler  to  permit 

communication in the reverse direction.  This  is a  less 

favored communication path. Hardware is provided to detect 

the deadlock condition of both  busses  simultaneously 

requesting access to the other, and  in this case, the 

reverse request is aborted. The requesting device is then 

free to retry. 

Since we wish to reference all addresses visible to any 

processor on a given processor bus, we need a window of 4 X 

32K words or 128K words, since a processor bus can support 

up to 4 processors. This infrequently used facility does 

not deserve to take up this much system address space. As a 

result, mapping is done between an 8 word BBC window and the 

128K word target space. Fourteen bits are required for this 

transformation. 
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As we discussed in Chapter II, this facility is a dangerous 

one, giving a processor the power to bring down the entire 

system. For this reason, a password must be given to the 

hardware befoi c it will permit any references to be made in 

the reverce direction. 

IV B 4 - The Pseudo-Interrupt Device 

In the second chapter we also discussed various techniques 

for allocation of tasks among processors. We concluded that 

there were substantial advantages in a voluntary task 

allocation regimen, with assistance from a hardware device 

for queue management and locking. The Fluribus 

Pseudo-Interrupt Device (FID) is such a device. We now 

point out some of its characteristics, and the reasons for 

its placement on the I/O bus in the Fluribus. 

IV B 4 a - Characteristics 

The FID appears to the program as a small block of memory. 

Its fundamental property is that it holds the state of 128 

priority ordered flags. When a seven bit number is written 

to the device, the flag at that priority level is set, to 

indicate that there is something to be done at that level. 

When rea^, the device returns the seven bit number 

corresponds g to the highest priority flag which is set at 

the time, then clears that flag. Thus, a processor may read 

the device and get a pointer to a task which needs service, 

with the knowledge that no other processor will be given the 

same task. 
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Because the early SUE processors would prefetch the contents 

of a rremory location before storin? into it, it was 

desirable to have the storing and readinp; of flags be done 

at different addresses, lest the setting of a new flag read 

out, and thus clear, the previous highest priority flap;. 

When the "write" location is read, the value of the highest 

priority set flag is returned, but the flag is not  cleared. 

IV B 4 b - Use 

As has been mentioned, the !JID is used to allocate tasks 

among processors. These tasks can be spawned by hardware or 

software. An I/O device, on completing a transfer to or 

from memory, needs to notify some processor that it needs 

service, to handle the data just transferred and to give the 

device a new buffer to transfer. The devices do this by 

storing their unique identifying numbers into the PID on 

completion. These numbers are selected by switch settings 

on the device, and so can be easily changed. The setting of 

the PID levels, as well as the simple ehfunel functions of 

address incrementing, end of block detection, and so forth, 

are handled by a Direct Memory Access card (DMA), one of 

which is associated with each device which communicates to 

the memory in tnis fashion, and which is in effect a simple 

full duplex channel. 

In addition to these hardware generated tasks, the  software 

may gener-.te tasks.  This is done, for example, when a given 
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strip of code does not complete a task, and so needs to 

place the task on the queue before checking for higher 

priority tasks. It is also done when the execution of a 

given task encounters a fork, a situation in which two 

independent control paths are needed to carry on a 

computation. At such a point, the processor can simply set 

a PID lev-l corresponding to one of the tasks, while working 

on the other one itself. Thus, the "FORK" command consists 

merely of a store to the PID. A third situation in which 

the program might wish to write to the PID arises when the 

program wishes to change the priority of the task it is 

executing. As an example of this sort of level shifting, 

upon receipt of an input buffer, the IMP p... forms various 

tasks at a high priority level. As soon as it has finished 

the urgent functions associated with not losing data, the 

priority drops to a more leisurely level to examine the 

packet and decide what to do with it. To accomplish this, 

the lower priority PID level corresponding to these 

computations would be set, whereupon the processor would 

read the PID to determine the highest priority pending 

computation. If there are no higher priority tasks pending, 

the processor will reassume the processing of the packet at 

lower priority. 

Our discussion of the utilization of the PID has been based 

on the assumption of software homogeneity, that is, that any 

processor can perform any task it might read from  the PID. 
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priority level allowed by that mask. The processors would 

presumably be able to modify the masks at will, as 

specialties changed, or as they discovered themselves 

underutilized, and thus willing to accept tasks they would 

perform less efficiently. Such a PID would probably be 

substantially more complex than the one card 6? integrated 

circuit PID which the Pljribus uses, but still need not be a 

substantial fraction of the system cost. 

IV B 4 c - Where Should Thev Be? 

A question remains as to the appropriate location for the 

PIDs. Since they must be shared by the processors, they 

must live on a shared bus, either an I/O bus or a memory 

bus. The advantage of an I/O bus location is that the 

processors can then reference them directly, as explained in 

the address mapping discussion above. This is an advantage 

because they must be referred to frequently by the 

processors, each time a task is to be stored or retrieved. 

The advantage of a memory bus location is that any I/O 

device can then reference any PID. If the PIDs are on I/O 

busses, devices can only reference the PID on their own bus, 

since there is no communication path between the various I/O 

busses. Thus, if a PID should fail, all devices on that I/O 

bus become unuseable. 

The counter-argument is that the PID is a simple device, and 

substantially more reliable  than power supplies or Bus 
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Controllers. If either of these devices should fail, all 

I/O devi-es on the bus would become unuseable. Further, if 

any device on the bus should fail in such a way as to hold 

one or more bus lines in one state, the bus, and thereby all 

devices on it, becomes jnuseable. If a given device is 

critical, it must be duplicated in order to survive these 

failures. Interfaces can be (and in the Pluribus IMP have 

been) designed so that multiple interfaces can be connected 

in parallel to a given device, and a failure in one, or in 

the communication path from the processors to that one, is 

very unlikely to interfere with the operation of the other. 

We expect PID failures to be of so much lower probability 

than these other classes of failure, and no more drastic in 

its implications, that the loss of all devices on an I/O bus 

because of a PID failure seems a small price to pay for 

instant access from all processors. 

An additional complication of having the PIDs on memory 

busses is that the processors would then have to be able to 

programmably set the address of the PID that each device 

would try to reference, so that the PID referenced could be 

changed on PID failure. This additional complication to the 

logic of each device interface is a further argument against 

having the devices able to access any PID. Since that is 

the only advantage of having PIDs on memory busses, this is 

a further argument for PIDs on I/O busses. These 

considerations led to the placement of PIDs on I/O busses in 

the Pluribus. 

li 
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IV C - Performance 

In this section, we will evaluate how the Pluribus performs 

as a powerful computer. We will first examine its 

application as an IMP. We will analyze the 

store-and-forward inner loop of the IMP code to determine 

the expected slowdowns due to communication and arbitration 

delays as well as those due to queueing delays. We will 

also mention the present status of the failure recovery 

facilities. 

We then turn to an evaluation of the Pluribus at a job other 

than the one for which it was originally designed. We will 

study the behavior of the Pluribus doing optimizing 

compiling of Fortran programs, as modeled by the lexical 

scan programs studied by Solomon [20]. We compare the 

Pluribus price and performance at this application to those 

of various other large computer systems. 

IV C 1 - As an IMP 

We here present information about the Pluribus IMP 

store-and-forward main-line code, derived from instruction 

counts done by W.R. Crowther on May 16, 1975. From these 

data and the queueing models derived in Chapter II, we will 

derive the expected amount of computational power lost due 

to the multiprocessor environment. 

i       , 
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The total program  time  neglecting  all  communication  and 

queueinr  delays  was  1^27.^2 microseconds.  There were 721 

references to local memory;  all were reads.  There were 174 

reads and 60 writes to common memory.   Six  writes and  11 

reads  »vent  to the I/O area.  At present, the communication 

and arDitration delays  involved  in  going  through  a  Bus 

Coupler  to  a  remote  bus add one microsecond to each such 

reference.  The memory cycle time is 850 nanoseconds; memory 

read access time is M80 ns;  memory write access time is 280 

nanoseconds.  I/O access times, both  read  and  write,  are 

roughly 280 nanoseconds. 

From these  data we  can compute that the total loop time, 

taking into account the slowdown due  to  communication  and 

arbitration   delays,   is  1427.42+174+60+11+6  =  1678.42 

microseconds, so that the fraction of  the  computing  power 

lost due to communication and arbitration delays is 17.58$. 

We cen further compute the utilization factors for each of 

the hardware resources: the 1/0 busses, the memory busses, 

and the local processor bus. For the purposes of these 

computations, we assume that the references are evenly 

distributed between the two 1/0 busses and between the two 

memory busses. 

In addition to the processors' use of the 1/0 and memory 

busses, the I/O-to-memory -at» transfer utilizes a portion 

of the bus bandwidth, and thus increases the probability of 
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a collision. In the case of the I/O busses, each is used by 

a processor 2.38 microseconds out of 1678.42, or .1^%, 

whereas the corresponding I/O data transfers utilize each 

bus 6i|»(1 + ( .28+.48)/2)/2 = 44.16 microseconds, or 3^. We 

can therefore neglect the processor utilization in computing 

the probability of a collision, and assume that the bus is 

busy only because of the I/O, or 375^ in a 14-procersor 

system. The expected waiting time if a collision occura is 

1/2*(.28+.48)/2 = .19 microseconds, neglecting multiple 

collisions. A processor therefore expects to see a delay of 

.37*.19 = .07 microseconds on each of its 17 references to 

I/O, producing a total waiting time of 1.20 microseconds out 

of 16/8.42, for a net slowdown of .07% waiting for I/O 

busses. 

The memory busses are used by a processor 60*.28+174*.48 = 

100.32 microseconds out of each 1678.42. Each is therefore 

used 50,16 microseconds or 3.0? by each processor. Since 

there a.'e 14 processors, this usage amounts to 42?, which 

gets added to the 1/0 utilization of each bus of 

64*(.28+.48)/2/2*l4/l678.42 = 10?. 

The probability of a collision is then .52, and the expected 

result?-nt delay, again neglecting multiple collisions, is 

(.28*(174+64)+.48»(60+64))/(174+64+60+64) = .35 microseconds 

producing IU expected delay of .52*.35 = .18 microseconds on 

each of 234 references, for a total expected waiting time of 

.18*234 = 43 microseconds out of 1678.42, or 2.5? lost 

waiting for common memory. 

> •*—~ 
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We are now in a position to accumulate  all  the  different 

slowdowns due to waiting into a single factor. This overall 

loss due to queueing delay is then 

1-(1-.0007)»(1-.025)*(1-.067)»(1-.0Cd4)»»2»(1-.0045)*»2 

= .10 

In other words, ten percent of each processor's time is 

spent waiting for shared resources, so that the new program 

time is 1678.42/.9 = 1870 microseconds. Comparing this to 

the original program time in a uniprocessor of 1427.42 

microseconds, we discover that the multiprocessor version 

runs .76 times ss fast. Thus, 24? of the computational 

power is loat to the communication, arbitration, and 

queueing delays of the multiprocessing environment, and our 

14 processor system is 10.6 times as powerful as a single 

SUE. 

All of these calculations are approximate. Our models for 

queueing for the I/O busses, memory busses, and software 

resources all neglected the possibility of multiple 

collisions. This will surely increase the waiting time. 

All of the calculations derived their utilization factors 

from the unslowed program time. Including the time spent 

queued will increase the total program time. Since the time 

each device is utilized remains constant, this increase in 

program '^.ime will decrease the fractional utilization of 

each device, and therefore decrease the probability of 

collisions.  This, then, will decrease the overall  queueing 

il^HHHtftiüfe. ^ t...^.J,.i,...i-^-*■..t^— 
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time. All of these considerations are swamped by the 

inaccuracy in the assumption that a processor's chance of 

finding its local bus busy is simply the utilization of that 

bus by the other processor on that bus. The arrival time 

distribution for processor requests is far from random. 

Processors tend to make a request, think for a certain 

length of time, and then make another request. This permits 

the two processors to phase-lock, so that each is thinking 

while the other is requesting. To the extent this occurs, 

the queueing time is decreased. This effect dominates the 

other inaccuracies, making our total waiting time 

computation be high, and our estimate of the power of the 

system be conservatively low. 

The Pluribus IMP also attempts to take advantage of the 

reliability potential of the Pluribus in that it attempts to 

survive component failures. The code to perform this 

function is currently in a primitive form; much is not 

written, more is undebugged. Nevertheless, with the code 

that is already in existence it is possible to power down 

any processor bus or most other busses, and have the system 

survive. When power is reapplied to the bus, the components 

on it are re-integrated into the system. We take this as 

demonstration of the thesis that a multiprocessor is capable 

of performing as a very cost-effective,  reliable  computer. 
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IV C 2 - As an Optimizing Compiler 

In the preceding subsection, we examined the performance and 

reliability characteristics of the Pluribus at the job it 

was designed to do, the IMP job. In this subsection we will 

examine Pluribus performance at a different job, that of an 

optimizing compiler. This job was picked for study because 

it appeared to be well matched to the Pluribus' 

capabilities, in that it contained many portions which could 

be execute! in parallel, and in that it did not place heavy 

emphasis on arithmetic functions. We will compare the 

Pluribus in this application to other large computer systems 

in terms of price and performance. 

The selection of this application for study, as well as the 

techniques for the comparisons and most of the comparison 

data itself, was done by C.R. Morgan in a series of BBN 

internal memos in January and February of 1974. In these 

memos he describes the structure of a five-pass optimizing 

compiler for FORTRAN. He then estimates the amount of 

memory required on a fourteen processor Pluribus to perform 

this function as 80K words of shared memory and 112K words 

of private memory, distributed 8K per processor. The cost 

of the system he proposed, including disk and other I/O 

gear, is $200,000, according to the May 1975 BBN Pluribus 

commercial pricing. 
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Morgan then compared the power of the SUE processor to that 

of various machines by computing the average instruct:on 

times weighted by the instruction frequencies for the field 

scan problem given by Solomon. Morgan comments on this 

computation, "For those instructions where number of bits 

seemed critical, the SUE processor times have been changed 

to reflect more than one instruction execution to hindle the 

correct number of bits. For arithmetic instructions used 

for table lookups and other internal functions 16 bits have 

been allowed to replace the 32 bit IBM word size. These 

figures should be assumed to be highly approximate." 

The weighted average instruction times he computes are given 

MACHINE 

DEC KA10 
IBM 360/65 
IBM 360/75 
IBM 370/158 
SUE 

Average Instruction 

2.07 microseconds 
1.72 microseconds 
1 .62 microseconds 
0.76 microseconds 
5.63 microseconds 

Table IV-1 
Weighted Average Instruction Times 

in Table IV-1. To compute the Pluribus instruction time we 

take the SUE instruction time, and divide by 14 for a 14 

processor system. We must then take into account the 

multiprocessor overhead. If we assume this to be the same 

as the Pluribus IMP (we actually believe the overhead in 

this application would be substantially lower), we compute 

the Pluribus average instruction time as 5.63/14/.76 =  0.53 

"' ■"■■■■i 
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microseconds, making the Pluribus the most powerful of these 

computer systems for this application. 

We now turn to pricing these systems. We will derive these 

prices on the basis of the purchase prices presented in the 

1975 GML Computer Review [21]. The pricing we use for the 

DEC and IBM machines is simply the low end of the range 

presented in Computer Review, and represents the minimal 

configuration of that processor which is useful. These 

figures are therefore undoubtedly low compared to the cost 

of systems capable of performing the optimizing compiling 

function. We therefore feel that this comparison is quite 

conservative, giving the systems other than Pluribus the 

benefit of every doubt. 

We can normalize the cost figures by the performance figures 

by Computing the number of average instructions one gets for 

each dollar on these machines. Assuming a 40 hour week, 

there are 173.33 hours or 6.24 »10»»11 microseconds in a 

month. By dividing this number by the average instruction 

time and by the monthly cost (assumed to be 2.5% of the 

purchase price of the system) of each machine, we get the 

corresponding number of instructions per dollar. This 

figure then provides the desired basis for cost/performance 

comparison. These comparisons are presented in tabular form 

in Table IV-2, and in graphical form in Figures IV-3 and 

IV-4. 
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Machine Average Purchase Mega 
Instruction Price Instructions 

Time ($1000's) per 
(microseconds) Dollar 

DEC KA10 2.07 350 34 
IBM 360/65 1.72 748 19 
IBM 360/75 1.62 1075 14 
IBM 370/158 0.76 1865 18 
Pluribus 0.53 200 236 

Table IV-2 
Cost/Performance Comparison 

These comparisons point up the fact that at this 

application, the Pluribus is conservatively a factor of 

three more cost-effective than any of the other large 

computer systems we considered, and is a factor of 'I more 

powerful than the closest system to it in 

cost-effectiveness. We take this as a demonstration of the 

thesis that a multiprocessor is capable of performing as a 

cost-effective powerful computer. 

Summary 

In this chapter we described the Pluribus, a control 

parallel multiprocessor designed on the principles discussed 

in earlier chapters. We began by describing the design 

objectives, in speed, modularity, and reliability, to which 

the Pluribus was designed, and how the emphasis shifted as 

the design effort progressed. We then presented a detailed 

description of the Pluribus system itself, describing the 

SUE line, the Bus Coupler, and the Pseudo-Interrupt Device, 
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and presenting the functions of each. We then turned to an 

evaluation of the performance of the Pluribus, both in the 

IMP application for which it was designed, and as an 

optimizing compiler. We concluded from these evaluations 

that, while final measurements are as yet "navailable, data 

already available demonstrates that the multiprocessor 

overhead is not excessive (2k% slowdown), and that the 

design objectives in terms of reliability are achievable in 

that the system can survive component failures. We 

concluded further that the cost-effectiveness of the 

Pluribus is conservatively 3 times Rreater than that of any 

other large system, and 7 times that of a system approaching 

its power. We thus have demonstrated the validity of the 

thesis that a multiprocessor architecture represents a very 

effective way to construct both powerful and reliable 

computing machines. 
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Chapter V 

CONCLUSION 

In this chapter, we review the most prominent conclusions of 

the dissertation. We begin by examining our original thesis 

in the light of the conclusions we have reached, and point 

out the ways in which we have demonstrated the validity of 

the thesis. Next, we will briefly review the major 

conclusions reached in each of the preceding four chapters. 

We will then summarize the design process involved in 

configuring a multiprocessor, then review some engineering 

considerations which enhance the practicality of a 

multiprocessor design. We close with a look to the future, 

speculating on the impact that this sort of machine 

organization will have on computers of the future. 

V A - Our Thesis 

Our thesis, as stated in the introduction, is that the 

combining of independent processing elements, when done 

properly, represents a very effective way to construct both 

powerful and reliable computing machines. Chapters I, II, 

and III discussed methods of doing this combining properly. 

Chapter IV described a system built using those methods, and 

demonstrated the power, reliability, and cost-effectiveness 

of the resultant machine. 

We now review the fundamental reasons why the multiprocessor 

architecture can provide cost-effectiveness in the design 

first of powerful machines, then of reliable machines. 

„■;... J..--...>.^^^-^-.     ., .. ■^... . ^., , ,....-^ ....... jL-ji^t.J.^..-Jr:>.....'n... ..■  ■       ■   ,    jii mmmirH-i'if I'-■■   "-■■->.^^~...'......^.. 
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V A 1 - A Cost-Effective Powerful Machine 

In the technology of any given day, there will be some class 

of processor power which will contain the most 

cost-effective processors. Processors less powerful than 

those in this class may be less expensive, but their power 

diminishes more rapidly than their cost, and thus they are 

less cost-effective. Such processors are generally designed 

to minimize the investment required to obtain a minimal 

amount of computation, and little attention is paid to the 

power of the resultant system. An example of a processor of 

this sort in the January 197^ market is the INTEL MCS-8 

microcomputer, a factor of perhaps 30 less powerful, and a 

factor of 10 less costly than a SUE computer. 

If we consider processors more powerful than those in the 

optimum ^ost-effectiveness class, v/e find that more money is 

being spent to buy improved performance, but that the cost 

is increasing more rapidly than the performance. There are 

several reasons for this cost, increase. First, such 

processors are built from very nigh-speed expensive 

technologies. These technologies are less widely utilized 

than the less expensive technologies, which increases their 

cost further. A second reason for the high cost of these 

processors is that they utilize extremely sophisticated 

techniques in the system architecture to maximize the amount 

of internal paralleliration possible. These techniques 

involve great amounts of this high speed logic, both because 
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of the complexity of the logic involved and because  of  the 

duplication   of   logic   functions  implied   by  the 

parallelization.  A  third  reason  for  the  high  cost  of 

high-speed processors is that in the technology available at 

a  given  time,  there is a limit imposed by gate delays and 

transition times to the rate at which data  can  be  moved. 

This  limit,  combined with the limited number of bits which 

can usefully be manipulated simultaneously in  the  majority 

of computations, implies a hard limit on the speed available 

from a r~al uniprocessor.  Greater expenditures can move one 

ever  closer  to  this limit, but cannot pass it.  Thus, the 

gains  in  power diminish  as  the  expenditures  increase, 

decreasing the cost-effective.iess. 

What  then  is  the  computer  iser who needs  a  powerful 

processor to do?  Particularly if his  requirements  exceed 

the  hard limit of the day's technology?  Perhaps nine women 

cannot have a baby in one month, but s -ely  nine  computers 

should  be able  to  do nine months' w rk in one month.  If 

those processors are all from the optimum cost-effectiveness 

class, the cost should be increased by only the same  factor 

as  the  performance,  yielding a  system with identically 

optima],  cost-effectiveness.   Independence  from  the  hard 

limits  of  technology  is  achieved  by  simultaneously 

performing independent operations on independent data,  thus 

increasing  the  number of  bits which can  be  usefully 

processed simultaneously. This,  then  is  the  unattainable 
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V A 2 - A Cost-Effective Reliable Machine 

Since the earliest days when it was observed that 

computational hardware did not always do the right thing, 

there has been interest in how to make computers more 

reliable. The concept of Triple Modular Redundancy arose, 

with the objective of making a machine which could survive 

any component failure. While having the advantage that the 

computation presently under way could continue undisturbed 

in the face of a failure, this scheme has the disadvantage 

that it mere than trebles the hardware cost. 

The simple concept of backups - having a second machine 

following the computation being performed by the first, and 

ready to take over in the event of failure - permits a high 

degree of availability at a cost of only somewhat more than 

twice the hardware cost of a comparable simple system. This 

method of availability improvement is dependent on the 

ability to detect failures and on some mechanism to transfer 

operation to the backup system. Without understanding 

precisely how these functions are performed, we can see that 

the existence of such functions increases the cost of the 

system. 

The asynchronous homogeneous independent control stream 

multiprocessor offers a different approach to the 

reliability  problem  by permitting the load to shift from a 
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failing processor to working processors, in the event of 

failure. We discussed a number of techniques useful in 

determining that failures have occurred. The transfer can 

be handled in a smooth automatic fashion. At a cost of only 

a single additional processor, such a system can survive any 

single processor failure. Further, the power of that 

processor is available until a failure does occur. Thus, 

the hardware cost is only incrementally more than that of 

the minimum system needed to handle the job in the absence 

of failure. This is typically much less than the cost of a 

single uniprocessor capable of performing the same function. 

We cannot give the same kind of measurements on system 

reliability that we can on system cost and power for two 

reasons, ^irst, the error detection and recovery mechanisms 

are primarily in software, and the development of this 

software is not yet complete. Second, measurements on 

reliability can only be carried out over a time period many 

times greater than the mean time to failure. Particularly 

in a machine as reliable as we hope and expect the Pluribus 

to be, it will take years from the time when the system is 

finally declared complete before any believable availability 

statistics can be produced. Nevertheless, the current 

system is äapable of withstanding total failure of almost 

any of the system components, and is further capable of 

resuming use of restored components. We take this as a 

demonstration that the goals we have set are achievable.  It 
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is our hope that the Pluribus will, in effect, never go 

down. 

V B - The Main Points 

In this section, we briefly review the main points discussed 

in each of the preceding four chapters, and the conclusions 

drawn. 

The first chapter addressed the various forms of 

multiprocessors which might be constructed. The distinction 

between data parallel and control parallel systems was 

considered. We observed that data parallelism is as old as 

automatic computation, and that the parallelism in such 

modern systems as ILLIAC IV differs from the parallelism 

inherent in a PDP-1 only quantitatively. We observe that 

large data parallel systems are useful only for a narrow 

class of applications in which there are many bits of data 

which can be identically processed simultaneously. We then 

observed that control parallel architectures do not suffer 

from this limitation because different operations can be 

performed on different bits at the same time. We argued 

that this sort of structure was capable of fulfilling most 

computational requirements. 

We then examined pipelining as a technique for achieving 

parallelism, and observed that pipelined structures have 

some but not all of the desirable characteristics of the 

homofzeneous control  parallel  multiprocessoi .   We  further 

■ 

.i 



»^■^ I I      , ip>|IWJ,l|l,Jl||LI 

The  Main  Points V-8 

observ5d that the latter is capable of, but not limited to, 

pipelined operation. 

Chapter I closed with a consideration of the problems of 

programming a multiprocessor. We concluded that this area 

is very worthy of further study, but that there are no major 

obstacles to prevent the instant construction of practical 

multiprocessors. 

We conclude from these considerations that the homogeneous 

control parallel multiprocessor is the structure we wish to 

investigate further. 

In the second chapter, we considered the interactions among 

the processors. This discussion was broken into three major 

sections. The first addressed the fundamental hardware and 

software synchronizing mechanisms required for meaningful 

communication. We concluded that keeping the processors' 

timing independent from one another implied delay to 

resynchronize their conflicting requests, but that the 

flexibility and modularity gained over synchronous systems 

more than,offset this cost. We further concluded that while 

hardware devices for the implementation of software 

interlocks are not strictly necessary, they are 

straightforward to implement, and, particularly if a simple 

destructive read is used to implement the locks, they can 

permit a remarkably high degree of efficiency in the 

synchronization of conflicting program requests. 



F 

•"v. 
^IIII.JIIIPIII i!i,« in i^ii||.i>jg.iiuiiM*jqji^|iipHii jiHH i ipjip^tp^^^ 

The  Main  Points V-9 

In the second section of the second chapte;', we considered 

the problem of allocating tasks to processors. After 

observing the weaknesses of a variety of interruption 

schemes, we presented a voluntary scheme which utilizes a 

hardware managed task queue to achieve very high efficiency 

and reliability at very low cost. 

The third section of the second chapter was devoted to those 

interactions among processors whose goal is the improvement 

of system availability. We observed that a homogeneous 

control parallel multiprocessor has inherent self-backup 

capabilities, in that working processors can take over the 

computational load left by a dying processor. This ability 

can only be utilized if there are means available to detect 

failing components. We described a number of techniques for 

doing so, and a variety of properties the system components 

must have to permit advantage to be taken of these 

techniques. We concluded that a practical multiprocessor 

must employ these techniques if it is to achieve the 

availability levels such an architecture is capable of. 

Architectural issues were taken up in the third chapter. We 

first considered the question of whether processors should 

possess private memories, and concluded that if the 

application permits the utilization of such memories, a 

tremendous benefit in the reduction of size and timing 

constraints on the intercommunication medium derives from 

their use.  We also considered the process involved in 
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selecting a processor for use in a multiprocessor.We 

concluded that using slower processors of a given 

price/performance ratio reduces the cost of the processing 

power lost to communication delays. We considered a 

technique for comparing the cost-effectiveness of a number 

of processors for a given application. 

We then discussed various ways one might interconnect the 

components of a multiprocessor. Of these, we observed the 

advantages in expansibility, modularity, reliability, and 

reparability of the distributed crossbar switch, and 

concluded that this was the structure we wish to enploy for 

systems of up to one or two dozen processors. For very 

large systems, we observed t lat the number of levels in the 

tree structure of the system should be increased, to avoid 

excessive communication costs. 

Chapter IV contained a description of the Pluribus, a 

multiprocessor designed on the principles presented in the 

earlier chapters. We reviewed the goals which motivated the 

design of the system, then presented a description of each 

of the major system components, and explained the ways in 

which the design principles had been implemented. We 

concluded the chapter with an evaluation of the performance 

of the system in the IMP job for which it was designed and 

also as an optimizing compiler of FORTRAN. We presented the 

multiprocessor overhead, a low 24%, and the observed failure 

survivability characteristics, that the system would survive 
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V C 1 - Processor Selection 

Given that the fundamental design concept of the 

multiprocessor is to get together a number of 

technologically current cost-effective processors to achieve 

a ^iven computational power, a good basis for a comparison 

of processors for a particular Job is their 

price/performance ratio on that job. This is not sufficient 

information for a complete comparison of processors for a 

job, si^.ce system cost and reliability vary substantially 

with the number of processors in a system because of effects 

other than processor cost, such as cost and complexity of 

the communication medium. As the number of processors of a 

given price/performance characteristic increases, the cost 

of providing an additional processor for reliability 

decreases, as does the cost of the processing power lost due 

to the communication delays. The cost of the communication 

logic increases, however, because of its increased size and 

complexity. In a well-designed multiprocessor the net 

effect of these considerations is small compared to the 

processor cost, and thus the price/performance ratio of an 

individual processor is the governing concern in selecting a 

processor. 

The price/performance ratio of a processor may be determined 

by coding the time-critical portions of the job to be done 

for that processor, and in this way determining the time 

taken  to process a given amount of data.  The inverse of 
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this quantity gives the amount of data which can be 

processed per processor per unit of time, and is thus a 

measure of performance. The price/performance ratio is then 

the ratio of the price of the processor to this quantity, 

and is therefore proportional to the product of the cost and 

the execution time for the given amount of data. A 

comparison of this quantity, in units of dollar 

mjcroseconds, for the various processors under 

consideration, will provide a basis for selection of an 

appropriate processor. 

V C 2 - How Many Processors? 

*] 

Having selected the processor, we wish to compute the number 

of  processors  necessary  for our system.  This can be done 

using the time to process a given number of bits, derived in 

our price/performance comparisons, and the  number of  bits 

the  sysLem needs to be able to process in one unit of time. 

The number of processors required is simply the product  of 

these   two  numbers,  if we  neglect  the  communication, 

arbitration,   and  queueing   delays  inherent   in   the 

multiprocessor architecture.   The exact  amount  of these 

delays is dependent on the amount of communication to shared 

resources required, and the number and  bandwidth of  those 

resources.   Having coded  the time-critical portion of the 

system  program,  those  references which are  to   shared 

resources  can be  identified  and  counted.  Given  this 

information and the number  of  processors  required,  again 

■'---■'--^- 
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neglecting the conmunication and queueinp delays, we can 

compute the bandwidth requirements on each of the resources, 

and whether or not multiple tokens of these resources are 

appropriate. Knowing how many tokens of each resource type 

are available, the systemic queueing delays can be 

calculated. We shall return briefly to this point after 

considering other design parameters. 

V C 3 - How Many Memory and I/O Busses? 

The bandwidth requirements on the common memory are made up 

of two components: the processor utilization, which we have 

just described, and the I/O utilization. Knowing the amount 

of information our system is designed to handle per unit of 

time, we have the I/O bandwidth required directly. The sum 

of these two gives us the bandwidth required of the shared 

memory, and in combination with the bandwidth available from 

a single bank of memory, gives us the number of banks of 

memory required. We can also compute the number of memory 

busses which will be required to support these memories from 

the memory bandwidth requirement and the bandwidth available 

from an individual memory bus. 

We can now derive the requirements on the I/O bus or busses. 

We computed the bandwidth of I/O data transferred in our 

memory bandwidth requirement calculation. From inspection 

of the program, we can derive the I/O bus bandwidth 

requirements of processors referencing device control and 
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status words and the PID. We can compute the bus bandwidth 

utilized by devices setting PID flags from the frequency at 

which such pseudo-interrupts occur. The sum of these three 

numbers gives the total I/O bus bandwidth required. The 

ratio of this number to the bandwidth available from a 

single bus gives the number of I/O busses required. 

We have now computed the number of each sort of busses 

required to provide the necessary bandwidth. Other 

considerations may dictate a larger number of busses. In 

particular, additional busses may be required if a 

sufficient number of physical devices cannot be connected to 

the given number of busses, or for reasons of re.1 lability. 

In the prototype Pluribus IMP, bandwidth requirements 

dictated two memory busses, each supporting two banks of 

memory, and one I/O bus. It was deemed adequate to be able 

to continue coeration with one memory bus in the event of 

failure of the other, but the potential loss of the entire 

system due to a failure of the single I/O bus was deemed 

unsatisfactory. The resultant configuration contains two 

memory busses and two I/O busses. 

V C 4 - The Communication Medi urn 

We now know the fundamental characteristics required of the 

communication logic; we know how many processor connections 

it must have, how many memory connections it must have, and 

how many  I/O connections it must have.  Equally important. 
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we know how much bandwidth will be required of tne overall 

communication  logic,  as well as how much bandwiuth will be 

required of each point-to-point connection.  A communication 

medium can then be designed to meet these specifications  as 

well  as  other  system  requirements,  such as modularity, 

expansibility, and reliability.  (The  distributed crossbar 

switch  has  numerous advantages in these areas, and seems a 

very  suitable   arrangement  for  a   small   to  medium 

multiprocessor system.)  With the communication logic design 

in mind,  the  communication delays can be evaluated.  This 

delay plus queueing delays car then be added to each of  the 

program's  references  to a shared resource.  This time can 

then be added to the basic program time to produce the  true 

program time.  From this, we can compute how many additional 

processors will be necessary to overcome the multiprocessor 

slowdowns. 

We have now refined our initial estimate of the number of 

processors required by taking into account the delays 

encountered. This will increase the number of processors, 

but will not effect the bandwidth requirements on other 

system components, since the increase Just offsets the 

delays which we did not account for in our initial 

estimates. Some reconsideration of the communication medium 

may be called for because of the increase in the number of 

processor connections required. However, since the 

bandwidth requirements on this logic have not  increased,  a 
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multiplexing arrangement may be appropriate to connect two 

or more processors to t given connection point of the 

communication logic. In the Pluribus IMP, two processors 

connect to each processor part of the distributed crossbar 

switch. 

V D - Considerations Which Make it Work 

In this section we repeat some conclusions reached as to 

engineering details which can substantially improve the 

performance or reliability of a multiprocessor system. 

1) A voluntary task allocation algorithm, particularly 

with a hardware-managed pending task queue, can 

improve homogeneous multiprocessor performance by 

permitting low task-change overhead, without complex 

and expensive special-purpose hardware. 

2) Per-device da'-a buffering is an inexpensive technique 

which can decrease system cost by relieving the 

requirement that sufficient processing power be 

available to service a large number of devices in a 

small inter-block time. This can also relax the 

requi-emPnt for frequent task-change points, and 

thereby decrease overhead. 

3) Reliability can be moved from the extreme of 

requiring all components to be functional for the 

system to be functional, in the direction of having a 

------  -^—' -- —■--"- -^ »^ - ■ -^ 
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functional system as long as there is one token of 

each type of component functioning. In order to move 

in this direction, we need reasonableness checks on 

performance, to be able to detect failures, and 

program-activated disabling switches, to be able to 

remove failing components from the system. In order 

to take advantage of these features, we need a 

homogeneous system, so that remaining functional 

components can continue tasks once executed by now 

failing components. Some reasonableness checks we 

have proposed are: 

a) Protection, anywhere from write-protection to 

a full capabilities-based system. 

b) Diagnostic programs incorporated into the 

operational system, which run periodically and 

on suspicion of failure, which detect and 

localize failures. 

c) AXD parity on all memories and all inter-bus 

communications. 

d) Checksums on memory. 

Some techniques proposed to recover a system after a 

failure  are: 

a) Inter-processor communication permitting any 

processor to start,   stop,   examine,   or load any 
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other  processor.   This dangerous  facility 

requires a password-like protection scheme. 

b) Amputation switches permitting the program to 

remove failing components from the system. 

This also requires password protection. 

c) Automatic restarting or reloading of an 

entirely smashed system from normally unused, 

but periodically tested, facilities. 

4) The use of local memories, closely associated with 

processors, can reduce communication as well a? 

queueing delays, while at the same time reducing size 

and complexity of the communication logic, thus 

improving system price/performance ratio. 

V E - The Future 

Many of the key concepts and conclusions discussed in this 

dissertation have been embodied in a practical 

multiprocessor which is now operational. In terms of 

price/performance, it is far superior to any system of 

comparable power. In terns of reliability, it is hoped that 

once the software is mostly debugged, the system will be 

able to survive any single component failure, and will in 

effect never be down. 

These considerations make this system the front-runner of 

all the powerful computing machinery available today.   The 
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I 

permits the use of less expensive, more reliable, less 

noise-sensitive, rmre easily debuggable components 

throughout the system. 

It is my belief that this machine organization represents 

the most promising technique for the design of medium and 

large scale computer systems for the foreseeable future. 
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