
mm^mm

AND NEWMAN

tJr

/D D C
mm

LG m*

SDTTE1

\~f

MMMMMMMMI

. ^ ^liumtMmmmmt^.]^t.

Hppnvpif. IMJUlli ■ mm^mmmr 4

Report No. 3126 Bolt Beranek and Newman Inc

A MULTIPRÜCESSOR DESIGN

October 1975

W. B. Barker
D D C

ntEQISILQE
W DEC 16 1975

Jlkc5EinrE
pr0' D

The research reported in this document was sponsored by the
Advanced Research Projects Agency of the United States Depart-
ment of Defense undar Contract Nos. DAHC15-69-C-0179,
F08606-73-C-OO27, and F08606-75-C-0032.

The text of this report was submitted by the author as his
doctoral thesis at Harvard University.

DISTRIBUTION STATEMENT A

Approved lo: public leleaso;
Distribution Unlimited

.*wrtv«

Preface

This work has enjoyed the support of many people from

Harvard University and Bolt Beranek and Newman Inc. to whom

I would like to express my appreciation.

To Professor T.E. Cheatham, my thesis advisor, for his

advice and support.

To the other members of my thesis committee from Harvard,

Professor A.G. Oettinger, for his comments and suggestions,

and Professor U.O. Gagliardi.

To members emeriti of my thesis committee. Dr. D. Cohen and

Dr. T.A. Standish, for their help and direction.

To Mr. S.M. Ornstein, who served both on my thesis committe

and as manager of the BBN Pluribus project, for bis

assistance.

To Hr. F.E. Heart, Director of the BBN Computer Systems

Division, for his support over the years of my work on the

project as well as on this dissertation.

To Mr. W.R. Crowther, for his inspiring ideas and helpful

comments.

To Mr. D.C. Waiden, for his support and helpful comments on

the dissertation.

To the other members of the Pluribus design crew

»-us, ■ ■■'•^•C^. • -»-. ."v«^

Preface li

To Mr. H.A. Brooks for his help in preparinr thin document.

And most importantly to my wife, Janet, for her support,

understandinR, and assistance o*/er the many years of this

effort.

This work was supported by the Advanced Research Projects

Agency of the Department of Defense under Contracts Mo.

DAHC15-69-C-0179, No. FÜ8606-73-C-0027, and iio.

FO8606-75-C-0032.

-^"w«. "^C* —-r-Ci.,

^

i I i 1

111

Table of Contents

Introduction
0 A - What this Dissertation is About 1
0 A 1 - Our Thesis 1

0 A 2 - Fundamental Reasons 2

0 A 2 a - Economical Powerful Computer 3
0 A 2 b - Economical Reliable Computer 5
OB- How the Dissertation is Structured 6
OBI- Chapter I - Forms of Parallelism 7
0 B 2 - Chapter II - Interprocessor Interactions...... .8
0 B 2 a - Conflicts • • •9

0 B 2 b - Allocation of Tasks to Processors 9
0 B 2 c - Interactions for Reliability 10
0 B 3 - Chapter III - Multiprocessor Architectures.... 11
0 B M - Chapter IV - Pluribus: A Real Live One 11
0 B 5 - Chapter V - Conclusion 12

Chapter I - Forms of Computational Parallelism
1 A - Control vs. Data Parallelism 1
I A 1 - Data Parallelism 2

I A 1 a - Reasons for Data Parallelism 2
I A 1 a i - To Reduce Complexity and Cost 3
I A 1 a ii - To Increase Speed j|
I A 1 b - Limitations of Data Parallelism 6
I A 2 - Control Parallelism 7
.[A 2 a - Purposes f
:: A 2 a i - Design Simplicity B
I A 2 a ii - Reliability 9
I A 2 a iii - Speed 1°
I A 2 b - History 1°
I A 2 b i - I/O Channels 11
I A 2 b ii - Display Processors 12
I A 2 b iii - CDC 66LO 1J
I A 2 b iv - NASA's Triple 360 1^
I A 2 b v - Dual Processor Time-Sharing Systems 15
I A 2 b vi - C.mmp and Pluribur 16
I A 2 c - Limitations 17
I A 2 c i - ReliaMlity Limitations 18
I A 2 c ii - System Power Limitations 2Ü
I A 3 - Pipelining 24
IB- Parallelizing a Task 27
I B 1 - Data Parallel Programs 27
I B 2 - Control Parallel Programs 29
I B 2 a - Job Boundaries 31
I B 2 b - Simultaneous Equivalent Executions 32
I B 2 c - Precomputation Down Decision Trees 33
Summary 35

Chapter II - interprocessor Interactions
II A - Conflicts 4

II A 1 - Hardware Conflicts 5
II A 1 a - Why Not Synchronous? 6
II A 1 a i - Efficiency 7

—«S;-

Contents IV

II A 1 a ii - Reliability 8
II A 1 s ill - Expansibility 9
II A 1 b - Arbitration 9
II A 1 b i - Can't Be Done Perfectly 10
II A 1 b ii - Can Be Done Adeauately 12
II A 2 - Software Conflicts... 14
II A 2 a - With Indivisible Test/Modify 16
II A 2 b - Without Indivisible Test/Modify 19
II A 2 b i - Round-Robin 20
II A 2 b ii - Crowther's Technique 21
II A 3 - Delays Due To Conflicts 21
II A 2 b i - Overhead 22
II A 2 b ii - Queueing Delays 24
II A 2 b ii (a) - Low Utilization Extreme 26
II A 2 b ii (b) - Saturation 27
II A 2 c ii (c) - Bandwidth Matching 28
II B - Task Allocation Algorithms 32
II B 1 - Interruption Algorithms 34
II B 1 a - Blind 35
II Ei 1 b - Dedicated ProcessorrDevice Relationship.... 36
II B 1 c - Priority 37
II B 1 d - Intelligent 40
II B 2 - Voluntary Algorithn« 41
II B 2 a - Advantages 46
II B 2 b - Latency Buffering 48
II B 2 c - Other Disadvantages 55
II C - Interactions For Reliability 56
II C 1 - Accuracy 59
II C 2 - Availability 60
II C 2 a - Limits 61
II C 2 b - Redundancy 63
II C 2 b i - Protection 65
II C 2 b i (a) - Write Protection 66
II C 2 b i (b) - Read and Execute Protection 67
II C 2 b i (c) - Capabilities 67
II C 2 b ii - Parity 70
II C 2 b ii (a) - Memory Parity 71
II C 2 b ii (b) - Communication Parity 72
II C 2 b iii - Diagnosis 74
II C 2 b iii (a) - Diagnostic Programs 76
II C 2 b iii (b) - Diagnostic Deactivation 77
II C 2 c - Other Interactions, 79
IJ C 2 c i - Deactivation 79
II C 2 c ii - Processor to Processor Communication....^
II C 2 c iii - Automatic Restarting and Reloading 85
II C 2 c iv - Duplication of Essentials 90
II C 2 d - Bandwidth Reduction on Failures 95
Summary 98

Chapter III - Architectures
III A - Two General Issues 2
III A 1 - Private Memory 3
III A 2 - Pickinp a Processor 15

.—

Contents

III A 2 a - Weak or Powerful? 15
III A 2 b - Price/Performance Evaluation 19
III B - Some Specifiic Architectures 22
III B 1 - Interprocessor Buffers 23
III B 2 - Interprocessor Channel 25
III B 3 - Crossbar Switch 28
III B 1 - High Speed Bus 3^
III B 5 - Lazy Susan 37
III B 6 - Hierarchical ^1
Sum.nary 46

Chapter IV - Pluribus - A Real Multiprocessor
IV A - Design Objectives 3
IV A 1 - Faster.". 3
IV A 2 - Modular 5
IV A 3 - Reliable 6
IV B - The System 8
IV B 1 - Architecture 8
IV B 2 - The LEG SUE 10
IV B 2 a - The Single Bus 10
IV B 2 b - The Bus Controller 17
IV ß 2 c - The Processor 21
IV B 3 - Bus Couplers 22
IV B 3 a - Inter-Bus Communication 22
IV B 3 b - Ancillary functions 23
IV B 3 b (1) - Address Mapoinp 23
IV B 3 b (2) - Locks 28
IV B 3 b (3) - Backward Bus Coupling 29
IV B 4 - The Pseudo-Interrupt Device 30
IV B 4 a - Characteristics 30
IV B 4 b - Use 31
IV B 4 c - Where Should They Be? 34
IV C - Performance 36
IV C 1 - As an IMP 36
IV C 2 - As an Optimizing Compiler 42
Summary 45

Chapter V - Conclusion
V A - Our Thesis 1
V A 1 - A Cost-Effective Powerful Machine 2
V A 2 - A Cost-Effective Reliable Machine 5
V B - The Main Points 7
V C - How to Design a Multiprocessor 11
V C 1 - Processor Selection 12
V C 2 - How Many Processors? 13
V C 3 - How Many Memory and I/O Busses? 14
V C 4 - The Communication Medium 15
V D - Considerations Which Make it Work , 17
V E - The Future 19

vi

List of Figures

Figure II-1 Arbiter Energy Diagram 11-11
Figure III-1 Memory COP*s per Bit and

pui Bit pei Microsecond 111-10
Figure III-2 Interprocessor Buffer 111-24
Figure III-3 Interprocessor Channel 111-27
Figure 111-4 Interprocessor Channel

with DMA Arbitration 111-29
Figure III-5 Distributed Crossbar Switch 111-30
Figure III-6 Centralized Crossbar Switch 111-32
Figure III-7 High Speed Bus 111-36
Figure III-8 Lazy Susan 111-39
Figure III-9 What is a Processor? 111-42
Figure 111-10 The Hierarchical Structure 111-43
Figure 111-11 One More Level 111-45
Figure IV-1 Prototype Pluribus Configuration IV- 9
Figure IV-2 Pluribus Address Space IV-25
Figure IV-3 Cost and Performance Comparison IV-46
Figure IV-4 Cost-Effectiveness Comparison IV-47

-^——-r-Ca. .•w.t^. .^

vii

-

Table
Table

Table
Table
Table

List of Tables

11-1 Latency Buffering Requireraent3 11-54
III-1 Memory Costs per Bit and

per Bit per Microsecond 111-11
III-2 Processor Power Comparison Factors 111-22
IV-1 Weighted Average Instruction Times IV-43
IV-2 Cost/Performance Comparison 17-45

''•_ mi-mim mg-

Vlll

SYNOPSIS

This dissertation addresses the issues involved in the

design of a multiprocessor. In the dissertation, we explore

a wide range of design considerations, and arrive at

judgments of relative merit at each decision point. The

results of these decisions lead us to a particular

multiprocessor design. A real multiprocessor has been built

to this design, and its configuration and performance are

described. This system, the Pluribus, has many advantages

over other computer systems in cost-effectiveness,

reliability, modularity, and expansibility.

In the first chapter, we explore the distinction between

data parallel structures, which possess a single control

element driving multiple data elements, and control parallel

structures, in which a separate control element drives each

data element. We observe that data parallelism is as old as

automatic computation, and that recent data parallel

"multiprocessors", such as ILLIAC IV, are only

Quantitatively different from old binary machines such as

the PDP-1. We then briefly investigate the issue of

programming a control parallel multiprocessor and conclude

that there are numerous straightforward techniques currently

usable, but that more work needs to be done in this field.

The second chapter deals with the interactions among the

processors of a control parallel multiprocessor. We first

i Synopsis ix

investigate the advantages of asynchronous structures as

compared with those multiprocessors which are driven from a

single centralized clock. Reliability -'s improved through

independence from a single timing source. Efficiency is

improved through the ability of each processor to run at the

fastest rate possible for it at that instant. System

expansion is facilitated through independence from timing

restrictions which are due to signal time-of-flight.

We then present a brief discussion of the loss of system

power due to queueing delays behind shared resources. We

introduce the concept of computational bandwidth matching as

a mechanism useful throughout the design of a

multiprocessor.

We next consider algorithms for assigning tasks to

processors, and point out disadvantages in various schemes

used in other multiprocessor designs. We present a novel

algorithm which permits processors to decide for themselves

when to accept a new task. Extremely high efficiency and

reliability are achieved through the use of a simple

priority-ordered self-locking hardware oueue of pending

tasks, to which new entries can be added by either hardware

or software devices.

The second chapter concludes with a d'scussion of

interactions among processors intended to improve the system

availability. The relation between the redundancy inherent

Synopsis x

in a homopeneous control parallel multiprocessor and the

redundancy in classical Triple Modular Redundancy systems is

explored, alone with techniques which can help identify,

locate, and promote survival from component failures. Amonf

these techniques, a novel parity scheme, oapa ^e of

detecting address and data failures in either memory or

communication subsystems, is presented. The advantages and

difficulties in propram controlled component testinp and

deactivation are discussed, followed by some novel ways to

employ such techniques while protecting the facility from

abuse by falling processors.

In the fourth chapter, we consider issues relating to the

organization of components in a multiprocessor. We discuss

the advantages of coupling memories closely with individual

processors. We investigate characteristics of processors

desirable in a multiprocessor environment, and reach the

conclusion that slower, less axpensive processors offer

advantages over faster, more expensive processors, because

of the diminished cost in processing newer of the time lost

in intercommunication.

We then consider various structures which mierht be used for

interconnecting the processors and memories. Of these, the

novel distributed crossbar switch dominates the others

because of desicn simplicity, reliability, reparability,

expansibility, and modularity. All complete connectivity

communication schemes suffer in very large systems in that

-^*-v. ■*s- -~<2w

i Synopsis XI

"ü" a given application, communication costs increase as the

square of the number of processors. A review of current

processors shows a tree structure prevalent in the

composition of the processor, and suggests that a desipn

appropriate to very larpe systems of hundreds of processors

should increase the depth of the tree rather than simply the

width at a Riven level.

In the fourth chapter, we describe the Pluribus in detail,

pointing out how the various design objectives described in

earlier chapters have been implemented. In places where the

organisation of this system appears to limit its generality,

we describe some techniques which could be used to alleviate

those restrictions, but were not used in the current

implementation because the particular application for which

this system was built did not require them. Althoutrh the

software to run on this system is not yet fully operational,

we present performance evaluations and predictions based on

the currently operational store-and-forward inner loop code.

We also present a comparison of this system with various

other large computer systems on the basis of

price/performance on a •< anning algorithm for use in an

optimizing compiler. This application was chosen because it

seemed well matched to the Pluribus' abilities;

nevertheless, the comparison is sufficiently striking to

lend credence to the thesis that a control parallel

multiprocessor is capable of high performance at low cost.

1

-*sr — «-. ^Sr.

PPBBtCSDINO PACSB PLANK-NOT FID-ED

INTRODUCTION

0 A - What this Dissertation is About

The subject of this dissertation is multiprocessors, by

which term we mean computing systems containing multiple

processing elements capable of performing operations

simultaneously.

0 A 1 - Our Thesis

Our thesis is that the combining of independent processing

elements when done properly, represents a very effective way

to construct both powerful and reliable computing machines.

We contend that this architecture produces a very general

computer. While there are applications for which such

machines are inferior to monolithic uniprocessors, we

maintain that such applications are extremely unusual. For

the large majority of comput?tional applications, a powerful

uniprocessor will be more expensive and less reliable than a

properly designed multiprocessor of comparable power.

This dissertation is concerned primarily with the hardware

organization of multiprocessors; programming considerations

will be mentioned only briefly, at the end of the first

chapter. We will begin by examining various ways in which

multiprocessoi-s might be constructed. We will then narrow

our focus to successively more limited areas of particular

interest, to a point at which we will describe an

implementation of a multiprocessor architecture well suited

■■»III.» ^-

Our Thesis
0-2

to a particular problem, ^iven today's technology. This

system is an asynchronous control parallel multiprocessor

with c: distributed crossbar switch interconnection medium.

Throughout the discussion, we shall point out considerations

which can make the difference between success and failure in

designinp a multiprocessor.

In this introduction, we will first explore the fundamental

reasons for the attractiveness of a multiprocessor

architecture, then gly« an outline of the way in which the

body of the dissertation addresses the subject.

0 A 2 - Fundamental Reasons

When a person encounters a problem too large or difficult

for him to solve alone, he typically engages the assistance

of other people, and the problem is attacked by the team.

Each member of the team operates independently, in that he

observes, and acts on these observations, without a

continuous command stream fr om a superior. However, all

members of the team act together in trying to reach the

common goal. To achieve this constancy of purpose, they

must intercommunicate. The authority structure may be

hierarchical, consisting of leaders and workers, or it may

be republican, in that decisions are made by vote. The

authority structure may even vary, depending on the subject.

An example is a democratic arrangement in which a vote is

taken to determine the overall goals and to choose the

•^M»

Fundamental Reasons 0-3

leader whose instructions will be obeyed in implementinp

those goals until a future vote. The hierarchical structure

has advantages in efficiency, bur, disadvantages in

reliability, in that the leader may be mad. A republican

structure can provide reliability in that the system can

survive the death or madness of any individual, at a cost in

efficiency due to the time spent voting on every decision.

The democratic structure can produce an attractive balance,

as has been observed for some centuries in the political

area.

The same observations can be made about comouter processors

tackling a job too bier for a single processor. Because man

has been more successful at increasing the work capacity of

computers than of man himself, the tendency in designing a

system to tackle a more difficult class of problems has been

to build a more powerful, faster machine. This has serious

disadvantages in coot and in reliability as compared to the

group structure which people tend to use. It is the intent

of this dissertation to point out ways in which

multiprocessors can be built practically, and to show the

advantages over more centralized schemes of comparable

power, both in cost and in reliability.

0 A 2 a - Economical Powerful Computer

Our thesis is that multiprocessor architecture can provide

an economically effective means of constructing both

• «w.-rw.

Economical Powerful Computer 0-4

powerful and reliable computing machines. We now consider

the fundamental reasons for this, first in terms of power,

then in terms of reliability.

The fundamental reason why a multiprocessor architecture car.

provide a cost-advantageous means of constructing a nowerful

computing system is that the cheapest processors tend to be

slow, and further, even when normalised for speed, the most

cost-effective processors are near the slow end of the

performance scale. In other words, as the power of a system

increases past some small value, the cost of the system

increases faster than the power. This increase is very

dramatic in very powerful systems.

There are two primary reasons for using such

cost-ineffective equipment, both producing a need for

concentrations of computational power. The first is the

simple case where a particular job requires more

computational power than can be had from the more

cost-effective machines, in order to process the reouired

amount of data in the permissible amount of time. The

second is the desire to consolidate peripherals. If each

job is run on a system only powerful enough to support that

job, there must be many systems to support many jobs. Each

of these systems needs peripherals, and thus the peripherals

need to be duplicated. The multiprocessor architecture

solves these problems by interconnecting cost-effective

processors to provide large computational power without the

dramatic increase in cost per unit of performance.

■^-Ci- ■■.■•.->».

Economical Powerful Conputer 0-5

In an ideal multiprocessor, the power of the system, as

compared to a uniprocessor, is multiplied by the number of

processors, while the system cost is increased by only the

same factor, yieldinr a system of great power at a

price/performance ratio equal to the optimal value achieved

in the slow processor.

Naturally, a sacrifice must be trade in the transition from

ideal to real. The processors will need to

intercommunicate. This implies an increase in system cost,

due to the cost of the intercommunication logic, and a

decrease in system performance, due to the time lost

communicating. Both of these detract from the optimal

price/performance characteristics. These costs need only be

proportional to the amount of interprocessor communication

required; for many applications, very powerful

multiprocessor systems can be configured bt costs very much

below those of commercially available uniprocessors of

comparable performance.

0 A 2 b - Economical Reliable Computer

We now turn to considerations of reliability. The

fundamental reason why a multiprocessor architecture can

provide a cost-advantageous means of constructincr a reliable

computing system is that the cost of the element which needs

to be duplicated in order to survive a single component

failure is much smaller than in a uniprocessor of comparable

-«s- "••■^■^a»

Economical Reliaole Computer 0-6

power. Providing backup for a large scale uniprocessor

requit-es another equivalent large uniproce-son, some means

for recognizing a failure, and some means of switching

operation from the primary machine to the backup in case of

failure. It is possible to design a multiprocessor system

such that remaining healthy processors can take over tasks

left undone by one or more failing processors. Thus, the

cost of the ability to survive at full computational power

despite any single processor failure is one additional

processor. The power of this processor is available to the

system until the failure, further reducing the cost of the

backup.

Similar arguments hold for system components other than

processors. Thus, a single segment of memory (or disk pack,

or tape drive, etc.) can back up a number of such devices in

the system, and be available for use until a failure occurs.

0 B - How the Dissertation is Structured

In this dissertation we undertake an exploration of the

range of multiprocessors which might be constructed. In so

doing, we distinguish among various sorts of

multiprocessors. With each distinction comes a choice, and

we shall present arguments as to the relative merits of each

alternative. The end result of these choices is a specific

architecture. An operational implementatior of this

architecture is described.

«-.r».
-T - ,_- ^ .

How the Dissertation is Structured 0-7

There are five chapters in the dissertation. The first

talks about different forms of computational parallelism,

the second about interactions between the processors of a

multiprocessor. The third chapter discusses architectures

for multiprocessors, while in the fourth we describe in some

detail the Pluribus, a real implementation of a

multiprocessor. In the fifth chapter, we present our

conclusions. We now briefly preview each of the chapters.

GDI- Chapter I - Forms of Parallelism

In the first chapter, we present a distinction between data

parallelism, which has pervaded the entire history of

automatic computation, and control parallelism, which is a

relative newcomer. In discussinp: this distinction, some of

ehe significant machines typifyinp each type of parallelism

are mentioned. Data parallel machines range from early

adding machines, whicn add the separate digits

simultaneously, to ILLIAC IV [1], which does full 64 bit

arithmetic operations on 64 independent arguments

simultaneously. Control parallel machines range from the

earliest computers with programmable data channels to the

Pluribus homogeneous multiprocessor described in this

dissertation. Thus, the current ILLIAC IV is qualitatively

no more a multiprocessor than is a PDP-1 .

A technique sometimes used to achieve computational

parallelism is "pipelining", in which separate processing

—

IIIWI mmi u ««- —-r-Ci.
s'-. "'«»•»-

Chapter I - Forms of Parallelism 0-8

elements are performinp; successive phases of a cunp.'tation

simultaneously on successive sets of data, in an assembly

line fashion. Some systems employing this technique are

mentioned. A homogeneous control parallel architecture is

capable of, but not limited to, this mode of operation.

0 B 2 - Chapter II - Interprocessor Interactions

The second chapter deals with the interactions between the

processors of a ^ntrol parallel multiprocessor. We first

treat the prerequisites for such interaction, then turn to

some of the ways processors can interact to improve system

performance and reliability.

Until the processors interact, a multiprocessor is simply an

accumulation of independent computers, each unaware of the

others' existence. In order to take advantage of the

increased power and reliability available from the

multiprocessor architecture, the processors must

intercommunicate. The nature of these communications then

determines both the power and the reliability of the system.

If the processors spend their time waiting for a resource

which can support only one processor, the system degrades to

a single processor equivalent; if they can productively run

concurrently, the processing power is multiplied by almost

the number of processors. If the failure of a single

processor takes the system down, the system reliability is

limited by the probability of all processors being up; if

"—— -——w-l

.

Chapter II - Interprocessor Interactions 0-9

healthy processors can continue to function despite failures

of other processors, and can take over the workload of

failing processors, the system reliability can approach the

probability of any processor beinr up.

0 B 2 a - Conflicts

The second chapter begins with a discussion of the

differences between synchronous and asynchronous control

parallel multiprocessors. The disadvantages of synchronous

systems in reliability and in plprid constraints on size and

relative timing are balanced against delays due to

arbitration of asynchronous requests. First, the unsolvable

problem of unambiguous arbitration of conflicting

asynchronous requests is presented, and practical although

imperfect solutions are described. The problem of software

conflict resolution is then mentioned, along with techniaues

for solution with and without special hardware.

0 B 2 b - Allocation of Tasks to Processors

One problem fundamental to most multiprocessor systems which

requires interaction between processors is task allocation.

Given a multiprocessor system and a collection of tasks to

be done, how does one allocate tasks to processors without

incurring very high over'iead or dependency on a single

sophisticated accumulation of hardware? A novel approach is

presented, in which the processors decide when thev are

ready to change tasks, thus avoiding high interruption

■■■-■-- ■■■- ■--^■- ^

Allocation of Tasks to Processors 0-10

overhead, while an inexpensive and easily duplicated

hardware device maintains a priority ordered queue of

pending tasks. Such a scheme may increase the processor

latency - that is, the time from a service request until the

request is serviced. An analysis of the buffering required

due to latency is presented. This analysis is new and quite

widely applicable to processors servicing fixed speed

devices.

0 B 2 c - Interactions for Reliability

One nrimary advantage of control parallel multiprocessors is

their potential ability to survive failures without large

increases in system cost. This requires various

interactions between the processors. We thereiore present a

discussion of reliability considerations in multiprocessor

design. Classic techniques for configuring reliable systems

are mentioned, along with the homogeneous multiprocessor

approach of letting other processors take up the load of

failing processors. In order for this technique to be

useful, there must be some means for detecting the failure

of processors and other components, so that the failing

component may be amputated, permitting the remainder of the

system to function. Techniques for detecting failures are

discussed, including various forms of memory protection, a

novel kind of parity to check memories and communication

media, diagnostic techniques, and processor controlled

deactivation of system components, including itself or other

mmm* ■ 'f*\-~ —<2*. rv».
".i-WW^i. muw^.i

Interactions for Reliability 0-11

processors. The reduction in the computational throughput,

or bandwidth, brought on by component failure :s then

discussed.

0 B 3 - Chanter III - Multiprocessor Architectures

Having settled on a control parallel multiprocessor, we need

to consider the various ways in which such a system might be

configured. In the third chapter, we present a discussion

of multiprocessor architectures which might be employed. We

begin by considering two general architectural questions:

whether or not there should be "private" memory associated

with individual processors, and the considerations

influencing the selection of a processor. For a given

price/performance ratio, there are advantages in selecting a

less powerful processor. V/e then discuss a variety of

specific architectures. Some strong and weak points of

these architectures are pointed out, along with applications

in which they mipiht be appropriate.

0 B 4 - Chapter IV - Pluribus: A Real Live One

Throughout the dissertation, we consider various alternative

ways in which a multiprocessor might be configured, pointing

out advantages and disadvantages of each. From these

considerations, the overall superior choice is selected.

These choices then specify a particular system

configuration. A system based on the considerations

presented in this dissertation has been constructed in

,~^
»mm* '^Ig* -Ci. -»-.•>«—

Chapter IV - Pluribus: A Real Live One 0-12

prototype form by Bolt Beranek and Newman Inc. to serve as

a high bandwidth, highly reliable packet switching

processor. This system, called the "Pluribus", is an

asynchronous control parallel multiprocessor with a

distributed crossbar switch interconnection medium, and

local memory. This architecture uus chosen as being

superior to alternatives at each choice point. The specific

implementations of many of the concepts are described,

partly because they represent a feasibility proof, and

partly because they are exemplary of how these concepts can

be embodied in practical hardware.

0 B 5 - Chapter V - Conclusion

The fifth chaptet presents our conclusions. The primary

conclusion drawn is that the homogeneous multiprocessor

architecture represents today's most sensible and economical

method for building a powerful computer, in addition to

being a sensible and economical method for building a

reliable computer. The resultant machine can be both

powerful and reliable at less than the cost of either of

these objectives using classical techniques.

Having stated this conclusion, we review the methodology

utilized in the design of a multiprocessor system.

Following this is a summary of some techniques which make

such a system workable. We briefly mention aret.s we feel

merit further investigation. A closing look to the future

-—»

^i I.JI n^- —--'Ca- ■ --..rv.

Chapter V - Conclusion 0-13

expresses our conviction that this method represents the

most promisinp technique for the desipn of future mediun-

and large scale computer systems.

PRECEDING PASS BLANK-NOT FIIMSD

Chapter I

FORMS OF COMPUTATIONAL PARALLELISM

In this chapter we will discuss the various fornis of

parrllelism which have been used in the design of

computational systems. We will first present a distinction

between data parallelism and control parallelism. We

mention a few examples of each. We will also discuss the

technique of pipelining as a method of achieving

parallelism. We then turn to a discussion of the problems

of applying the power of a multiprocessor to a task,

including multiprocessor programming considerations. We

defend the position that a homogeneous control parallel

multiprocessor is a very general structure whic'r. can fill

almost all computational requirements.

I A - Control vs. Data Parallelism

We bepin by presenting the distinction between data

parallelism and control parallelism. By data parallel

systems we mean system in which a single control element

drives a number of data elements simultaneously with a

single command. Thus, there is a single control stream. By

control parallel systems, we mean systems in which multiple

independent control elements are processing independent

control streams simultaneously, with each control element

driving one or more data elements. This distinction is

crucial to the thesis that the multiprocessor provides a

sensible means of constructing both powerful and reliable

r

-■■^^^-

Control vs. Data Parallelism 1-2

computinp machines, If that the data parallel architecture

is a sensible powerful machine for only a limited class of

problems, and probably a less reliable machine than the

uniprocessor. The control parallel multiprocessor, however,

provides the flexibility to concentrate its power on a wider

range of problems, vhile permittinp improved reliability due

to the ability of any eciven processor to back up any other.

I A 1 - Data Parallel ism

We have defined the term "Data Parallel" as referrinp to

processors containing a single control element driving

multiple data elements simultaneously with a single command.

This definition subsumes computing machines from the

earliest adding machines which added different digits

simultaneously, through binary computers which do arithmetic

or logical operations on different bits simultaneously, to

large modern computers such as ILLIAC IV, which does 64 bit

arithmetic operations on 6H different arguments

simultaneously.

I A 1 a - Reasons for Data Parallel! sm

We will now examine the reasons why this technique might be,

and has been, used. Primary among these reasons are design

simplicity, cost reduction, and operating speed. We will

review how these goals have been achieved through the use of

data parallelism in the implementation of various computers,

and point out some of the limitations of these systems.

"\ ... -«c-

To Reduce Complexity and Cost 1-3

I A 1 a i - To Reduce Complexity and Cost

If an adding machine is to add the various digits of addends

sequentially, it must have the ability to transfer the

digits to and from a centralized adder. The mechanism to

accomplish those transfers is sometimes more complex than

simply replicating the adder once for each digit. Certainly

in design difficulty, the parallel adder wins, since it is

easier to duplicate already extant designs tnan to invent a

new design for a transfer mechanism. In the design of LSI

microprocessors, the expensive mask layout operation can be

simplified through replication, substantially reducing the

product cost.

Similarly, usiig the medium- and large-scale integration

logic circuitry available today, logic operations may be

performed simultaneously on the various bits of data with

simple replicated logic. Performing those operations

sequentially requires transfer logic to and from a

centralized operation register. This logic may be more

complex than the replicated logic, producing a cost benefit

from the parallel mode of operation.

This savings from parallel operation is not universal. A

machine designed around shift register technology can be

built more inexpensively using sequential operations than

parallel. Another example of cost considerations favoring

sequential additions is the IBM 1620, whicl does additions

• <■■•-. >«i

To Reduce Complexity and Cost 1-4

in decimal by a table lookup. This table needs to contain

10"(2*N) entries in order to add N bit numbers in one

lookup. A table large enough to add full words

simultaneously would be enormously expensive; the 100 word

table to add digits is quite inexpensive.

I A 1 a ii - To Increase Speed

The primary reason for the extensive use of parallelism in

the recent history of automatic computation is speed. If

operations can be simultaneously performed on a number of

essentially independent data, the delays involved in

transferring data and in waiting for the single operation

register can be eliminated. The overall operation time can

then be reduced to roughly the time necessary to perform

that operation on a single datum, rather than somewhat more

than the product of this time and the number of data to be

operated on.

This argument applies to most binary machines, in which

independent data bits are ANDed simultaneously, as well as

to ILLIAC IV, in which independent 64 bit numbers are

multiplied simultaneously.

Most binary machines, such as the PDP-1, operate

simultaneously on the various bits of a word. Thus, during

the execution of a PDP-1 AND instruction, 18 independent 1

bit data are multiplied by 18 other independent 1 bit data

to give 18 independent 1 bit results.

•\—, • m~ mg, ■ •--..■v.

To Increase Speed 1-5

A number of 'multiprocessors' have been built which simply

expand this same fundamental concept of a single instruction

interpreter driving a number of independent calculating

elements, but with larger and higher performance data

elements. ILLIAC IV is the present extreme of these

efforts. This machine contains an array of 64 arithmetic

elements, each 64 bits wide. These arithmetic "processors"

are capable of performing their operations at extremely hifrh

speed, but since they are all under the control of a single

instruction stream, no two can be doing different operations

simultaneously. Thus, ILLIAC IV has a larger number of data

elements (64 instead of 18), each is wider (64 bits instead

of one), and substantially faster (200 ns instead of 10

microseconds), but in that its parallelism is only in the

data, it is in some senses another uniprocessor, like the

PDP--1 .

ILLIAC IV was intended to be a four-quadrant machine, each

quadrant having a separate control stream and 64 arithmetic

elements. However, due to the difficulties encountered in

attempting i device so close to the limit of the then

available technology, and other problems, only one quadrant

has been built. If more are built, ILLIAC IV will move from

a data parallel macl"ine, as is the PDP-1, to a control

parallel multiprocessor.

"-"•"^"wppimBiPBWpwp"

—"~—■ts-

Limitations of Data Parallelisn 1-6

I A 1 b - Limitations of Data Parallelism

Few and far between are the proRrammers who have actually

written any substantial programs which utilize the fact that

a binary machine is capable of operating simultaneously on

as many independent one-Lit data as there are bits in its

accumulator. There are applications in which this can be a

handy feature, particularly in computations involvinr

boolean matrices. Numerical matrices are generally much

more utilized in the world of programming, and for this

reason, an architecture such as ILLIAC's has a place in the

world. However, even those who have programmed parallel

boolean operations on a binary machine can attest to the

fact that much of the cost - both in programming time and in

execution time - typically goes to the non-matrix overhead

operations, and to setting up and tearinp down the matrix.

This lesson may very well apply as experience is gained with

ILLIAC.

The basic limitation with this sort of architecture for a

powerful machine is that there is only one control stream,

and thus there can never be two different operations

occurring simultaneously, although there can bo different

executions of the same operation on independent data. For

most problems, the amount of time spent doing the L act same

operation to many independent data is small. This is not

always true; weather prediction, consisting of analysis of

the forces on and motions of blocks of air, wants to perform

.rv^.

Limitations of Data Parallelism 1-1

the same computation on many blocks of air at the same time.

Some matrix computations will spend a lot of time doing the

same operations to independent data. However, this is the

only class of problems for which this sort of architecture

is sensible. ILLIAC IV will certainly always be a wonderful

example of the extreme power which can be broupht to be^r on

a limited class of problems through the use of specialized

hardware.

I A 2 - Control Parallelism

We now turn our attention to multiprocessor systems which

utilize independent control streams. We believe that this

architecture produces a more general computing machine,

capable of providing power and reliability at reasonable

cost.

We will discuss the reasons why control parallel

multiprocessors have been contemplated and constructed, and

will also review a small number of control parallel machines

which have been contemplated, discussing the considerations

which led to their architecture, and how successful they

were at meeting these design objectives.

I A 2 a - Purposes

The primary reasons for considering an independent control

stream multiprocessor are speed, reliability, and design

simplicity. We will begin our discussion with perhaps the

least intuitively obvious, design simplicity.

'-r"'-■"•'"','"-

Design Simplicity 1-8

I A 2 a i - Design Simplicity

Consider the problem of connecting a number o' terminals to

a reasonably powerful computer which is underutilized. The

most hardware-economical way to do this might be to bring

the raw data lines into the machine, so that they could b^

sampled directly by the CPU to determine whether each line

is in a zero or one state, and conversely driven to either a

one or a zero by the CPU. The excess power of the processor

can then be utilized to generate tne timing information

necessary to drive and sample the lines at the appropriate

times, and to convert characters to bit streams. This does

place severe timing constraints on the processor and the

programs it runs, since the processor must return to this

I/O task at quite narrowly defined intervals. Thus,

although the system described might very well be the most

economical possible system in terms of hardware costs, the

complexity added in softwai ~t constraints probably offsetf.

this, making such a solution impractical.

An alternative available from some manufacturers is to have

a separate processor, whose sole duty is to receive and

drive these lines, and communicate in complete,

timing-independent characters to the main processor. This

removes the complexity from the main system, while the

system needed to run the small data line scanner processor

is small, since it runs a dedicated program, and its timing

constraints are entirely internal. Thus, a dual processor

'^ J. 1

Design Simplicity
1-9

system with independent control streams is a simpler system

to build than a single processor system. This result is not

atypical for special-purpose real time processing on a

reasonably large system.

I A 2 a ii - Rpliability

A technique used to insure a high system availability (the

percentage of time the system is usable) is the active

backup. Here, another identical but entirely independent

mchine is running the same program, and being Riven the

same inputs, as the primary machine. In the case of a

failu'3 of the primary, control is switched to the backup,

which is already entirely up to date. This, then, is a case

of using a second CPU, which executes instructions

independently, for reliability.

In addition to backup machines such as that described above,

a number of multiprocessors have been built with the

explicit thought that in the case of a failure of one or

more processors, other processors would take the load,

leaving the system available [2,3,4,5,6]. One such is the

Pluribus [7] now under construction at Bolt Beranek and

Newman as a hieh performance node for the ARPANET. This

machine will be discussed in some detail in the later

portions of this dissertation; here we mention only that the

initial design goal of high speed has become subsidiary to

the goal of increased availability.

•--.rw.

Speed 1-10

I A 2 a iii - Speed

Perhaps the most obvious reason for contcrnplatin* a

multiprocessor architecture of any sort is the increased

performance, in terms of speed of a given computation, or

equivalently computational throughput, which one hopes to

obtain from the multiplicity of processors. Ideally, one

would like to obtain from a system of N processors, N times

the power available from a single processor. In fact, there

are always overheads encountered, due to communication and

queueing delays, which reduce the actual power available to

somewhat less than this, the exact amount of the reduction

depending on the amount of inter-processor communication

required.

There have been many instances of multiple processors being

used to increase speed of computation. These include

inhomogeneous systems, such as program processors and I/O

controllers of all sorts, as well as homogeneous systems,

such as time-shared dual processor PDP-10's. The Pluribus

is one of the latter, and increased throughput was the

original purpose in contemplating a multiprocessor for this

application.

I A 2 b - Historv

Having mentioned the reasons why control parallel

multiprocessor architectures might be considered for a

machine design, we now review a few multiprocessor

,-%_ —~«sr •w-r-^ — v«-.t>n».

History 1-11

configurations, and discuss the factors which favored tnis

architecture.

I A 2 D i - I/O Channels

As computational machinery increased in size, and "computer"

became "computer system", it was observed that a great deal

of a processor's power was often utilized in simple I/O

transfers. When a device had a word ready to transfer to

the memory (or was ready to accept a new word from me.iory),

it would send an attention signal to the processor. This

would force the processor into a section of dedicated code,

which would simply read a word from the device and store it

in memory (or read a word from memory and send it to the

device), and then increment the pointer to memory, and check

for buffer completion. Since the cost of hardware was

decreasing, this was a sensible simple task which could be

moved to hardware, increasing processor efficiency. Thus,

the I/O channel came into being. At this stage, it was

hardly a processor, being only capaole of executing this one

hard-wired function. The channel would be activated by the

device's request, and would interrupt the processor only on

completion or error.

This concept was then carried a step further, when it was

observed that the processor was still spending a

non-negligible amount of time servicing interrupts, and

setting the channel up with new buffers from a

"*«T "Ci-

1/0 Channels 1-12

pre-construoted buffer chain. This function was also moved

into hardware. In order to have commands ready for the

channel when it needed new buffer location, size, and

control information, the program processor simply places

these commands in appropriate locations in memory, and the

channel interprets them as needed. If we define a processor

as anything which interprets stored commands, the channel

has become a processor, and our system has become a

multiprocessor.

I A 2 b ii - Display Processors

One of the peripheral devices often connected to digital

computing machinery is a refresh display. This is a device

which when given a command - either a simple X,Y coordinate

pair or perhaps a complex command - the device positions a

CRT beam, and intensifies one or more points on the screen

for a very short interval. If a lasting image is desired

rather than a transitory flash, the points in the image must

be repeatedly illuminated. To avoid flickering, the imaRe

should be refreshed at least 20 to 30 times per second.

This requires a tremendous command rate for any sort of a

complex image; if a processor is expected to feed the

commands to the display, it is probably asking toe much to

expect the processor to be able to do much of anything else.

This then is a job for a channel. If the various commands

are placed in memory, the channel can fetch them and feed

them to the display, leaving the processor free to compute.

Display Processors
'k 1-13

While it is possible to have a display with one'fixed

command, such as X and Y coordinates in the two halves of

each word, more efficient use of the program processor, the

memory, and the display/channel can be obtained by having a

more complex command structure. As examples of the

efficiencies which can be achieved we mention the JUMP

command, which will allow the display to repeatedly refresh

itself without disturbing the program processor. Line and

character commands permit illumination of many points from a

single command, and therefore a single memory cycle.

Subroutine calling and returninr commands permit a more

'efficient data structure, as well as simplifying the

programming problem for a larse class of Fraphics

applications.

Myer and Sutherland [8] observed a "Wheel of Reincarnation",

as follows. The original view of a display as a simple

peripheral on a general purpose computer becomes less

accurate as the display and its channel grow in complexity

until the display beccmes capable of interpreting commands

independently from the main orocessor. The architecture of

the display then resembles the architecture of the original

system - a programmable processor with a simple display unit

peripheral to it. This cycle can be repeated.

As soon in this development as the display channel is

capable of interpreting commands, the system - the program

processor together with the display processor - becomes an

""t-m* —-—-Ci.

Display Processors 1-14

independent control stream multiprocessor. Reasons for

going to this architecture are the speed and design

simplification resultant from the separation of function, as

we have discussed.

I A 2 b iii - CDC 6600

The CDC 6600 [9] represented perhaps the first successful

effort to build a supercomputer. Following the channel

philosophy of unloading I/O details to peripheral

processors, so as to permit the central processor to focus

entirely on the main computational problem, the 6600 has one

central processing unit (CP) connected to 10 peripheral

processors (PP's). The PP's are general and programmable,

and can execute conventional channel programs, or can be

programmed for special ourpose functions, from graphic

display generation to line protocol formatting and

interpretation. All I/O to the CP is handled through the

PP s. This independent control stream multiprocessor

achieves a high speed in the CP by removing this burden from

it, and achieves a simplicity of design by permitting \

dedication of a PP to a device or class of devices, and by

not requiring a single processor to handle all devices.

I A 2 b iv - NASA's Triple ^60

In all i[the systems we have discussed so far in this

section, the purpose of going to a multiprocessor

architecture has been increased speed, and secondarily.

'-"s_ ii.— ug •

NASA's Triple 360 1-15

desipn simplicity. Further, all have been inhomopeneous;

that is, the various processors have not been alike.

Homogeneous multiprocessor have been used, but their

primary goal, until recently, has been increased

reliability. Throughout the space program, NASA has

depended very heavily on computational facilities to compute

a wide variety of parameters of each voyape, used in

determining timing and intensity of rocket thrusts as well

as all manner of other flight control data. It is vital, in

terms of men's lives and millions of dollars, that this

information be available, and further that it be correct. A

system was developed for a 360 to perform these functions

for the first manned space launches. Two additional

identical machines were kept as active backups. More

recently, as experience has shown that this degree of

redundancy is not necessary to achieve the necessary

reliability, the system has dropped to a sinple active

backup. This then is an example of an independent control

stream multiprocessor whose purpose is reliability.

I A 2 b v - Dual Proce sor Time-Sharing Svstems

A number of independent control stream multiprocessors have

been built for time-sharing systems [10]. Both homogeneous

and inhomogeneous multiprocessor systems have been

constructed. The typical system consists of two very

similar, if not identical, machines, either of which is

capable of executing most user jobs. The scheduler

^

'H^ ' • *■«..>,.

Dual Processor Time-Sharing Systems 1-16

typically is run by only one, and allocates jobs and manages

storage for both ^ Thus, despite homogeneous, or nearly so,

hardware, the software is inhomogeneous. This means that a

crash of the "master" machine, namely that one which runs

the scheduler, will crash the system. Hardware homogeneous

systems can be restarted, running the scheduler on the other

processors.

The primary purpose for going to a multiprocessor

timesnaring system is speed. Neglecting overhead due to

communication, conflict resolution, and queueing, twice as

many processors can supper* more than twice as many users of

the same characteristics, since the random arrival times of

execution requests permit higher utilization with shorter

queues, given multiple load-sharing servers, each with a

given load factor, as contrasted with a single server with

the same load factor. However, higher availability can also

be achieved in such a system, since the system can remain

available to users, but at reduced speed despite failure of

a single processor. Generally, a restart may be necessary

to recover a crashed system.

I A 2 b vi - C.mmp and Pluribus

Recently, a number of efforts have been undertaken to apply

the multiprocessor concept by using a substantial number of

inexpensive minicomputers to build an inexpensive

supercomputer. Exemplary among these are the

mxmmi n^'

C.mrap and Pluribus 1-17

Carnepie-Mellon multiprocessor (C.mmp) [11] snd the BBN

IMuribus. In each of these, many miniprocessors are

mtnnocted to shared memory through a complete connectivity

switching arrangement, which allows any processor to access

any memory. Arain, the initial primary deslpn poal in each

was an increase in execution power. A reliability increase

is also possible; in the C.mmp, faulty processors or

memories can be manually cut out of the system. In the

Pluribus, this process is automatic, under program control.

Further, the Pluribus architecture permits any processor to

control any I/O device, removing the requirement that a

given processor be up in order to operate a given device.

The details of how these and other goals are achieved in the

Plur'^us are given later in this dissertation.

In these systems, the attractive price/performance ratio of

the modern minicomputer is used to advantage in constructing

a very powerful computer. The resultant machine is capable

of providing all of the multiprocessor advantages we have

mentioned: speed, design simplicity, and reliability. The

design of such a system is the primary subject of this

dissertation.

I A 1 c - Limitations

We now explore the limitations of the control parallel

multiprocessor structure. This exploration will be divided

into two parts: first a brief description of the limitations

Limitations 1-18

of such an architecture as a means of achieving reliability,

followed by an investigation of the limitations of this

structure as a means of achieving increased power.

I A 2 c i - Reliability Limitations

The term "Reliability" is va^ue, and subsumes a wide range

of different considerations. We might consider reliability

as a measure of the probability of the system being

available at any particular time, or "System Availability".

This measure is of general interest in that i system being

down surely means loss of money and time for iti users.

However, a discussion of reliability in these terms does not

belong in a section about the limitations of the control

parallel multiprocessor architecture, since the ability of

any processor to do any part of the job, and the lack of

dependence of the system on any individual component permits

ai extraordinarily high system availability and is one of

this architecture's fortes. Rather, to find the structure's

reliability limitations, we will consider reliability as the

probability of a given computation being done correctly, or

one minus the probability that the result of any individual

computation will be lost or in error. This measure is of

interest in certain applications such as life support and

navigation systems.

The classic technique used to decrease the probability of

error in any given computation is Triple Modular Redundancy

' ^ i mm m I In wi «S* r-O- .-•v-^

System Power Limitations 1-22

second, an explosion may occur. It takes a

minicomputer 10 seconds to process one set

of data. This case differs from the simple

need to get more computation done each day

in that the execution time of each

individual computation needs to be

diminished, and thus simply having separate

processors working on separate problems does

not help.

In this case, the applicability of the

control parallel multiprocessor is dependent

on the divisibility of the required

computation into simultaneously executable

subcomputations. In the case of large

matrix manipulations, this presents no

problem. In fact, in most any practical

computational problem, the isolation of

independently executable subproblems is

straightforward. However, it is not always

possible. In cases where every computation

is dependent on the result of the previous

computation, this division is impossible.

It is difficult to divide the problem of

computing the Nth term of the Fibonocci

sequence.

's—*. -«sr •^-.rv«^

System Power Limitations 1-23

For those problems with a real time

constraint which cannot be divided, the

control parallel multiprocessor is

inappropriate.

(c) - Increased Efficiency for Random Request Arrivals

Suppose that a time-sharing system is capable of

supporting 20 users. Their computation requests

arrive randomly in time. The system sits idle

when no requests come in for a period of time. A

system twice as powerful could handle more than 40

users, because the increased numbers provide a

smoother distribution of arrivals, decreasing the

system idle time. The control parallel

multiprocessor is well suited to this task,

assigning processors to users as required.

(d) - Sharing of Peripherals

Multi-user systems can achieve economy with

respect to single-user systems in that expensive

peripheral equipment which is used infrequently by

any single user can be shared among many users,

decreasing the cost to each. Again, the control

parallel multiprocessor architecture provides this

benefit as well as any powerful uniprocessor.

We conclude that the use of a control parallel

multiprocessor for the purpose of increasing system power is

—«s- —--0-

System Power Limitations 1-24

appropriate in all cases except a situation which requires

rapid real time response on problems which are not divisible

into simultaneously executable subprobleras. We argue that

this class of problems is negligibly small, and that

therefore this architecture is very general and widely

applicable.

I A 3 - Pipelining

Pipelining has been used at different levels in a wide

variety of computational machinery. It permits parallelism

in the simultaneous operation of separate pieces of hardware

on different phases of successive executions of a given

algorithm. A given computation moves from one piece of

hardware to the next as it goes through its successive

phases of execution. The sole purpose of such an

architecture is increased speed. We mention here a number

of applications in which this technique has been used:

(a) - A display system containing a display processor

and a program processor can be thought of as a

pipelined system to con;pute and display a moving

picture, the program processor working on the

computation phase of a given execution while the

display processor works on the display phase of

the previous execution.

(b) - The Evans and Sutherland LDS-I carries this

concept farther, in that a PDP-10 is computing a

—: <i^^mmammmmmm mam

-■^**V>WI

Pipelining 1-25

picture while the LDS-1 passes previous pictures

through its instruction interpreter, matrix

multiplier, clipper divider, and vector generator.

(c) - The 360-91 instruction interpreter is pipelined;

successive instructions are in successive phases

of interpretation in separate pieces of hardware.

(r.) - The CDC-STAR computer's arithmetic processor is

pipelined, providing a spectacularly high

throughput rate, by performing 64 bit

multiplications at about 20 nanoseconds each. An

N by N bit multiplication is co.nposed of N

conditional additions of one of the multiplicands

(appropriately shifted) into the running total.

In the Star, these N additions are performed on N

separate adders, the output of each presented to

the input of the next. While the i+lth adder is

performing the i+lth addition to the j+lth

multiplicands, the ith adder is performing the ith

addition to the jth multiplicands. While each

individual multiplication passes through N stages,

and is thereby (relatively) slow, the rate at

which multiplications can be done is very high.

This tradeoff between delay and throughput is to

many counterintuitive, but typifies many problems

in computation as well as traffic control and

other non-computational concerns.

Pipelining 1-26

e - In the Pluribus, a given task is divided into

sub tasks which run sequentially. For example, the

problem of taking in a packet of information,

deciding what tc do with it, and sending it out

another line, is divided into these three

essential phases. These three phases of execution

may very well be in process for different packets

from the same line at the same time on different

processors. Thus, the system may take on a

pipeline-type configuration, in which different

packets are in different states of processing on

different procrtisors at one time. The primary

difference between this and other pipelined

systems we have discussed is the flexibility.

While the Pluribus is capable of operating in this

mode, it is not restricted to it, whereas

classical pipelined systems ?.re capable only of

pipelined operation, and are thereby restricted in

the range of problems they can handle.

Conventional pipelined systems tend to be less

reliable than uniprocessors, because all of the

individual processors must be functional for the

system to be functional, whereas the homogeneous

multiprocessor can be more reliable than a

uniprocessor, as we have discussed. (A noteworthy

"w. *•'->«».

Pipelining 1-27

exception to the requirement that all elements be

up is the LDS-1 , in which the matrix multiplier

can be removed from the pipe, and its function

moved into software, in the event of failure.)

IB- Parallelizing a Task

The body of this dissertation concerns itself with hardware

configurations which permit parallel execution of

algorithms. We have not made mention of the serious problem

of how to construct a program to run on such an accumulation

of hardware so as to implement a given algorithm. We here

briefly mention this problem with the note that it is only

incidental to the subject of this dissertrtion. We take the

program presently being written for the Pluribus as an

existence proof that such hardware can be programmed to

accomplish useful goals. in this section, we mention

various techniques which have been used to generate programs

for parallel hardware, without presenting any substantial

discussion of their relative merits.

\

I B 1 - Data Parallel Programs

having built an assemblage of hardware such as ILLIAC IV,

one is left with the burdensome job of generating programs

to take advantage of its powerful structure. The first

reauirement is that the task to be done be doable in the way

that the hardware is fast at doing problems. It is probably

not sensible to code for ILLIAC a problem which would run as

i li fi;iiirW"'i"-"'"l''J'"^»liifiiiiiiirtit^»ilMi'tlinitiilii- n ■Mnnii

-'%_ "^Z' —--Ci.

Data Parallel Programs 1-28

fast on a PDP-8. This means that the problem be of a

certain type, such as a numerical matrix problem, and that

the algorithm be sensibly constructed - minimizing

conditional branches, and so forth. As with any new

programmable hardware device, the first technique used to

generate programs is the guy who sits down with a thorough

understanding of the hardware, its capabilities, and its

restrictions, as well as a tho-ough understanding of the

problem to be done and the ways it night fit with that

machine, and tries writing machine instructions until he has

an implementation which he believes best, for some

particular set of objectives and costs.

It has long been observed that programmers can get more work

done if they work in higher level languages. This

observation, as well as a desire for efficiency through

optimal matching of a program to the hardware on which it is

to run, leads to the pursuit of automatic program

parallelization algorithms. A substantial amount of work

has been done in this area [12]. The scope of this work is

to attempt to extract from a conventional p-ogram those

sequences of identical operations which can be performed

simultaneously on independent data, or in jome homogeneous

fashion on interdependent data, such as in a K^rlx

relaxation. The degree to which this sort of operation is

possible is not obvious, since the data interdependence may

come from the way the code is written, and not from the

fundamental task to be done.

Control Parallel Programs 1-29

I B 2 - Control Paralle] Programs

The complaint might very well be levelled at any

multiprocessor architecture such as the Pluribus that it

will be impossible to construct practical programs for a

machine with such a complex control structure. Given that

the software represents the majority of the cost of most

computational facilities today, can such an architecture be

sensible?

We have four answers to this question.

First, in some applications, such as the High Speed IMP

application for which the Pluribus was originally developed,

the software, like the hardware, is built once, and then

falls back into an ongoing maintenance mode. In such

applications, the cost of careful program design, to permit

advantage to be taken of the powerful hardware structure,

may be small compared to the hardware savings. This was

decided to be the case with the Pluribus. In these "special

purpose" applications, such an architecture is sensible.

Second, unlike data parallel multiprocessors, a natch

between the structure of the end job to be done - the "user"

program - and the hardware architecture is not prerequisite

to the successful application of the hardware to the job. A

time-shared system could well be imagined which simply

allocated users one-to-one to processors, giving each user

no more power than he would have from a single machine, but

„^

Control Parallel Programs 1-30

able to support many users. Such a system could achieve

increased efficiency compared to a collection of independent

processors due to load averaging and resource sharing. The

executive of such a system must be cognizant of the

architecture, but only in the scheduler. Thus, such a

system might be constructed without incurring large

increases in software costs, particularly in ongoing

software costs.

Third, this sort of architecture is new, and there has not

been much effort at writing programs for it. Even less

effort has gone into the automatic generation of those

programs. Surely the fruits of such labors can make easier

and more economical the job of writing individual programs

which take advantage of the architecture. We believe this

to be a vitally useful area for research.

Fourth, we have designed and written some programs for a

control parallel multiprocessor. We have attempted to

structure programs in an application-independent fashion,

building a computational structure which imposes constraints

on the processes it controls, but handles interprocessor

communications and the trading of processes between

processors in a fashion unrelated to any particular task to

be done, and which is thereby useful for a variety of tasks.

We thus have some understanding of how it can be done, and

conclude that it is not all that difficult. We here present

some techniques for dividing an algorithm for execution on

an independent control stream multiprocessor.

>—~ '"*£' • ■ !■■ mwm m* ~

Job Boundaries 1-31

I B 2 a - Job Boundaries

In an inhomogeneous multiprocessor, such as a data line

scanner front end for a time-shared system, there is very

little difficulty in breaking the problem up into pieces to

run on a multiprocessor. In fact, one of the significant

advantages of using a multiprocessor for such a system is

just that it permits independence between portions of the

overall job which are conceptually independent, that is it

places a real boundary where a conceptual boundary natr-ally

falls. In such a system, therefore, breaking the overall

problem into simultaneously executable code is not a

difficulty but a relief.

While this may be an extreme, programming a general problem

on a multiprocessor is not that different. If the program

can be divided into subtasks which run sequentially and with

relatively few interlocking references to shared data

?tructures, these subtasks can run in a pipeline fashion,

each activating the next. Thus, the multiple processors can

be simultaneously employed in various phases of different

executions of the algorithm. Care must be taken that those

references to shared data structures which reauire integrity

of the structure are interlocked, and the utilization of

such locked resources must be low in order to prevent

inefficiencies due to waiting for them, but these are not

very difficult matters.

—•«;- -- ^<»-»-

Job Boundaries 1-32

Further, there is no requirement that multiple processors

cannot simultaneously run the same code for successive input

data. In this way, the power of the multiole processors can

be brought to bear on a single device whose service requires

many times the processing power available from n single

processor. Alternatively, the various processors can at a

given time be servicing different devices of the same or

different types using the same or different programs. If

the program is thought of as being event driven, as long as

references to shared resources are carefully interlocked,

service can be provided where it is needed at any instant,

without burdening the programmer with multiprocessor-related

constraints on an instruction-by-instruction basis.

This scheme increases the system throughput, as compared to

a single-processor system running the same program, but does

not decrease the time taken to process a given datum. In

this sense, it is equivalent to the time-shared

multiprocessor which gives no user more than one processor.

While no individual datum receives speedier service, the

rate at which data can be serviced is increased, without

adding substantial complication to the coding process.

1 B 2 b - Simultaneous Fquivalent Executions

There are other ways in which tasks may be divided for

simultaneous execution on processors with independent

control streams. One of these is simoly to have two or more

•""»•'.>«».

Simultaneous Equivalent Executions 1-33

processors executing exactly the same program independently.

This can be done for reliability, by having the processors

working on the same data; we have mentioned such systems.

It can also be done for speed, having the processors work on

independent data, thus processing twice as much data in a

given time, or halving the time taken to process two sets of

data.

I B 2 c - Precomputation Down Decision Trees

An interesting application of independent control stream

multiprocessors is to look ahead of decision points, and

thus get a head start on the computation which will be

necessary, before the results of the decision are known.

For example, suppose a task consists of a computation and an

N-way test on the result, followed by N possible

computations, each comparable in execution time to the first

computation. The overall execution time of the task can be

cut almost in half by setting one processor on the initial

computation, and setting N other processors on the N

subsequent computations, selecting only the one computation

corresponding to the correct branch of the jecision as soon

as the first computation is complete and the decision known.

The secondary computations may reach decision points, and

the process of duplicating the process for all possible

decision outcomes can be repeated until all the processors

in the system are used.

^»1—w—i»^ ■ -*^—o-

Precomputation Down Decision Trees 1-3*1

This scheme can reduce the execution time of a given program

by a factor of almost the number of levels there are in the

decision tree. Its cost in processors is the number of

nodes in the decision tree. To return to our example of a

single N-way decision, a factor of almost two can be gained

in execution time, at a cost of a factor of N+1 in

processors.

This precomputation application of control parallel

multiprocessors differs conceptually from those we have

discussed earlier, in that there is a substantial inherent

inefficiency in the use of computational power, since only

one of the second level computations will be useful, and

therefore N-1 processors are performing operations which do

not contribute to system throughput. In other applications

for control parallel multiprocessors we have discussed, the

inefficiencies have resulted only from the necessity for

inter-processor interactions, rather than from any inherent

design attributes. We can quantitatively compare the

results for this N-way precomputation problem to other

problems without inherent inefficiencies. The

multiprocessor doing precomputation is a factor of (N+1)/2

less powerful in terms of throughput, since only 2

processors, rather than N+1, are profitably employed. Where

speed is of utmost concern, this sort of inefficiency may be

acceptable; for most applications, the critical timing

constraints can be avoided in other ways, as we discuss

di

j-«-ii'" [..^■J i »nmw -"^W^BSWWWI

Frecomputation Down Decision Trees 1-35

later, and the throufthput/delay tradeoff can be nore

sensibly made in favor of throughput.

Summary

This concludes our discussion of the forms of computational

parallelism. We first considered data parallel structures,

and concluded that while very prevalent, such architectures

are powerful for only a limited class of problems, and are

restricted in their reliability. We then turned to control

parallel structures, and concluded that such architectures

have the potential to provide economical, reliable, and

powerful general purpose computing machinery. We next

considered pipelined structures, and concluded that although

they permit simple powerful designs for some problems,

reliability is again restricted. We observed that a treneral

control parallel multiprocessor is capable of, but not

restricted to, oipelined operation. We ended with a brief

discussion of the problem of programming a multiprocessor,

and concluded that this area is as yet largely unexplored,

and certainly worthy of extensive study, but does not

present extreme or insurmountable obstacles to the present

implementation and application of these architectures.

•-■ I^»»II ^» — w>-

PRBCäDINQ PAOS BLANK-NOT FIIMED

Chapter II

INTERPROCESSOR INTERACTIONS

In the first Chapter, we discussed the various forms of

parallelism which might be used in the design of a

multiprocessor. We spoke of data parallel structures, and

pointed out the limitations they imply. We spoke of control

parallel structures, and observed that they had the

potential to provide highly reliable powerful computing

machines at a reasonable price. We observed that the

problem of programming such a machine is an interesting

problem, but by no means insurmountable. We conclude that

the control parallel multiprocessor is the structure we wish

to investigate further.

In this chapter, we besin that investigation with an

analysis of the ways in which the various processors of a

multiprocessor might interact.

Until the processors interact, a multiprocessor is simply a

number of independent single-processor systems. It is the

nature of the interactions between the processors which

determines the characteristics of the multiprocessor. If

the processors spend their tine waiting for each other, the

system degrades to a single processor equivalent; if they

can usefully run concurrently, the processing power is

multiplied by the number of processors. If the failure of a

single processor takes the system down, the system

reliability is limited by the probability of all processors

Interprocessor Interactions II-2

being up; if working processors can diagnose and heal or

amputate faulty processors and proceed with the Job, the

system reliability can approach the probability of any

processor being up.

In this chapter we will discuss various interprocessor

intercommunication issues. This discussion will be divided

into three categories: Conflicts, Task Allocation, and

Interactions for Reliability.

In the area of conflicts, we will discuss the proolems of

conflict resolution between competing hardware or software

mechrnisms. Tne distinction between synchronous and

asynchronous architectures is discussed, with a brief review

of the advantages and disadvantages of each. We conclude

that asynchronous architectures are sufficiently attractive

in terms of flexibility to justify the use of practical

synchronizing hardware. We also conclude that hardware

mechanisms to permit rapid interlocking of software

processes, while not strictly necessary, are sufficiently

inexpensive and powerful to make them worthwhile. We

discuss the problem of queueing delays, without developing

rigorous mathematical models, and present th« concept of

computational bandwidth and bandwidth matching as a

mechanism for configuring a oractical multiprocessor.

In the area of Task Allocation, various algorithms for

allocating tasks among processors will be considered.

• mumm ni^ ■ —-r-Cl- ~.--.rs^

Interprocessor Interactions II-3

Interruption strateRies will be explored, and various

methods of deciding which of the various processors to

interrupt will be presented. The need for substantial

computational power to make this decision leads to a search

for a mechanism which will permit the power of the

processors to be applied to this problem, rather than

building more specialized hardware. This leads in turn to a

discussion of voluntary task allocation algorithms. In this

discussion, a novel alrrorithm is presented, basec on an

inexpensive hardware task queue, which permits a very high

efficiency and a high degre- of reliability at a low cost.

A discussion of the disadvantages of voluntary task

allocation algorithms is then presented, including a quite

general discussion of the latency buffering requirements for

synchronous devices.

In the area of Interactions for Reliability, we briefly

mention the 11 lits of reliability in a multiprocessor, and

point out that the observed reliability will depend on

numerous engineering considerations in the design of the

system. We then examine a number of these considerations.

We conclude with a discussion of the reduction of

computational bandwidth on component failure.

Conflicts II-4

II A - Conflicts

In this section, we will discuss the problems which arise

out of different hardware or software devices simultaneously

desiring access to a common shared resource. Mechanisms

must be provided to unambiguously resolve these conflicts in

order for the system to function usefully. We will divide

this discussion into three parts. In the first, we will

consider conflicts between hardware devices. The second

will deal with conflicting software devices. In the third,

we will briefly discuss the delays introduced by conflicts.

In the area of hardware conflict resolution, we will first

consider the distinction between synchronous and

asynchronous multiprocessors, and observe that the design

simplicity which makes the synchronous architecture appear

attractive is outweighed by the constraints it imposes on

system timing, reliability, and expansibility. We will tnen

consider how arbitration logic can ba constructed to resolve

the conflicts inevitable in an asynchronous system. We

observe that while it is impossible to implement circuitry

which performs such arbi' ^ation in any finite time without a

probability of ambiguity, practical circuits with acceptably

low failure rates are straightforward.

In our discussion of software conflicts, we will make

mention of mechanisms which can be used to implement

' V ._ . ' .. _„:- .-.

^ . ' ' — •^ Iwil l|.. -—I I.. Mil '- -V_

Hardware Conflicts II-6

meaningful communication, there must be a mechanism for

unambiguously resolving ccnflicting simultaneous requests

for this resource. Even in so simple a communication

discipline as a simplex register which one processor can

read and one processor can write, a synchronizing mechanism

must exist to prevent simultaneous reading and writing, or

the data read may be a meaningless combination of new and

old data, and further cannot be relied on even to remain

constant in the internals of the machine which read it, as

we shall discuss later.

These difficulties in intercommunication lead to a desire

for a global synchronizing mechanism, i.e., a synchronous

architecture. We will first consider the distinction

between synchronous and asynchronous multiprocessor

architectures, and conclude that considerations of

efficiency, reliability, and expansibility militate against

the synchronous design. We then turn our attention to the

problem of unambiguously resolving arbitrarily timed

conflicting requests for a shared resource. This problem is

inherent in an asynchronous structure.

II A 1 a - Whv Not Svnchronous?

A multiprocessor can be constructed either synchronously or

asynchronously. In a synchronous system, all processors and

devices are driven by a single central system clock. All

________^-______^___^_^__^^

—--ns'

Why Not Synchronous? II-7

events happen at clock time, after which there is a settlinp

time to permit all transitions to propagate throughout the

logic, whereupon the next clock pulse occurs. This sort of

system has the advantage of being conceptually simple,

permitting knowledge at design time of the relative timing

of all events. Unfortunately, there are several

disadvantages of such an architecture, in terms of

efficiency, reliability, and expansibility.

II A 1 a i - Efficiencv

A synchronous .nultiprocessor suffers inefficiency because

all operations are constrained to take the same amount of

time. Thus a processor completing a fast operation must

wait until a slow operation could have been completed, since

some other processor migi.ö have been using that time

interval to do a slow operation. This inefficiency can be

minimized by reducing the interval between clock pulses, and

making different operations take different numbers of clock

ticks. In this case, a cost is paid in time and hardware

complexity to determine which phase of a given operation is

to be performed on a given clock pulse. Thus, whether the

inefficiency comes in idle processors or in slow and costly

phase determining hardware, a synchronous multiprocessor

architecture will pay a price in efficiency.

Reliability II-8

II A 1 a ii - Reliability

A synchronous multiprocessor by definition depends on a

single central clock to provide the synchronizing pulses to

all of the processors. This clock then is crucial to the

functioning of the multiprocessor, and if it stops, the

entire machine stops. Certainly isolation can be built into

the central clock logic so that no individual processor

failure can cause the clock to appear stopped to any other

processor, but central clock failures are more difficult to

protect against. Note that it is not adequate for each

processor to have its own clock as backup to the central

clock; there must be an intercommunication path so that all

processors agree on when clock pulses happen. This

intercommunication medium is then as crucial as was the

original clock.

The clock can be duplicated, and separate clock signals can

be run to all of the processors, with rules such as "Believe

clock A as long as it is running. If it fails, believe

clock B". It is in general impossible, however, to get the

various processors to agree on whether clock A is running,

particularly if it starts running at the wrong speed.

Thus, a synchronous multiprocessor architecture suffers

unreliability due to the difficulty in providing a

believable reliable central clock for synchronization.

. ■■ • mmm—m

Expansibility 11-9

11 A 1 a iii - Expansibility

The fixed timing requirements on a synchronous architecture

impose difficulties on system expansion. Given that the

time for a signal to propagate from one side of a system to

another is typically comparable to or in exce.ss of the time

to perform a logic computation, addition of new logic which

expands the physical size of the system requires careful

reconsideration of the system timing, and may reqjire

slowing the central clock. This makes it difficult and

expensive in terns of design time and system power to expand

a synchronous multiprocessor.

II A 1 b - Arbitration

In an asynchronous system, each device - processor, I/O

interface, etc. - runs on its own internal timing, at the

fastest speed appropriate to it at the time. While this

architecture alleviates the problems discussed above in

efficiency, reliability, and expansibility, it introduces

new problems due to the lack of knowledge of the relative

timing of requests on the shared resources. Since the

devices are asynchronous, their timing relationships are

probabilistic. The probability of receiving two requests

with any given timing relationship, to within epsilon, is

then proportional to epsilon. This presents a particular

problem in the design of the hardware to arbitrate between

•^sr **-.>««—

Arbitration 11-10

requests, since there is always some time relationship of

inputs to any hardware device which will result in an

ambiguous output.

We will first consider the reasons why an arbiter cannot be

designed which does not have a finite probability of giving

an ambiguous result after any finite length of time, then

observe that practical circuits which perform arbitration

witn an acceptably low rate of ambiguous results can be

implemented with ease.

II A 1 b i - Can't Be Done Perfectlv

A detailed understanding of the failure of any particular

arbitration circuit requires a thorough understanding of the

static and dynamic analog characteristics of the components

involved. In an effort to give some intuitive understanding

of the reason for the impossibility of unambiguous

resolution, we now present a circuit-independent argument.

Decision-makers are positive feedback devices. That is to

say, once a decision-maker has decided one way, it tries to

to stick with that decision. The fact that it has begun to

change its mind encourages it to quickly change to the other

decision. The state of any such bistable positive-feedback

device can be represented as a point on an energy curve such

as that in Figure II-1.

■"■— *s—

Can't Be Done Perfectly 11-11

Unstable
Equilibrium

Stable
Equilibria

Figure II-1

Arbiter Energy Diagram

Once in either of the energy wells, small amounts of input

energy are ignored; the device remains in the well. Once

sufficient energy is applied to force the device up over the

crest of the hill, however, the device will rapidly drive

itself down into the other energy well.

In any such curve, there must be a zero-derivative point at

the top of the hill. This is guaranteed by the fact that

there is a point between the two wells which is higher than

either of the two wells, which is necessary for the device

to have two stable states.

The ambiguity arises when the input provides just enough

energy to drive the device to the exact top of the energy

curve, but no more.

'•''"*'> ■'■ «U! .' ■'■^'•"'^■■l ■ IMI». ^—»i^— «*^. >n.

Can't Be Done Perfectly 11-12

While the probability of hivting the exact unstable

equilibrium point is zero, if a point very near that point

is hit, it will take a long time to fall, one way or the

other. This time increases as the distance from the

equilibrium point decreases, and would be infinite if the

equilibrium point were hit exactly.

II A 1 b ii - Can Be Done Adequately

Having pointed out the impossibility of building an arbiter

which does not have a finite probability of being ambiguous

after any finite time, we now consider how to build

practical arbiters.

We observed that the time taken by an arbiter to transition

to a well-defined state in one of the energy wells will

increase as the distance of the initial operating point from

the unstable equilibrium point decreases. The arbitrary

nature of the timing relationships of asynchronous requests

makes the probability of hitting a given region of the

operating curve proportional to the width of the region. In

jrder for an arbiter to still be ambiguous after a length of

time, it must have initially been within a region near the

equilibrium point. As the time increases, the width of the

region decreases, and thus the probability of being within

that region decreases. By waiting a long time after

applying inputs to an arbiter before examining the output.

-^;-

Can Be Done Adequately 11-13

therefore, one can make the probability of an ambiguous

result very small. From an acceptably low failure rate

specification, one can derive the length of time which one

must allow for arbiter settling to achieve that failure

rate. Such a derivation is straightforward from simple

considerations which we will now outline.

The timing of the resolution of requests is determined by

the shape of the energy curve. Since we are interested in

the performance when the device spends a significant amount

of time in , an unstable state, we can assure that there is

very little driving force on the device over the period of

interest, and thus that the first derivative of the energy

curve is zero. Furthermore, since the first derivative is

very small over only a very small portion of the enerpy

curve, we can assume that we are interested in only a very

small portion of the curve, and therefore that the

derivatives higher than the second can be ignored. The

second derivative, while not known, cannot be neglected, as

that would predict a finite zone of equilibrium, a

characteristic one seeks to avoid in designing arbiters.

We can thus characterize the energy curve over the area of

interest as a parabola, E=-k*X**2, for some positive k. For

such a curve, the probability of being within a region

defined as ambiguous can be shown to be:

»^■*ww——** <^-

Can Be Done Adequately 11-14

P = exp(-t/T)

Where t is the time waited and T is a time constant

characteristic of the device. Computation of T from

theoretical grounds is most difficult. Empirical

measurement is straightforward.

Given this equation for the probability of failure and an

empirical measurement of the time constant T, one can easily

find a value for t, the waiting time, which will produce an

acceptably low failure rate. In practice in today's

technology, a delay of one to several hundred nanoseconds

can produce failure rates of one per century to millenium.

In an asynchronous system, arbiter reliability and delay can

be improved by permitting the arbiter to announce its

decision when it observes that it is no longer ambiguous.

Thus, by adding logic to measure whether or not the state is

near the equilibrium point, one can postpone any action

based on the result of the arbitration just long enough to

get an unambiguous result.

II A 2 - Software Conflicts

Having described some hardware primitives for resolving

simultaneous usage requests, we briefly describe the

software primitives required to permit processes to share

resources without permitting ambiguous states. Each of the

Software Conflicts 11-16

lock was locking, secure in the knowledge that no

undesirable competitors also own it. When the processor has

finished with the locked resource, it rewrites the lock as

unlocked, permitting some other processor access to the

resource.

We now briefly consider how such locks may be implemented

with or without hardware capable of an indivisible

test/modify sequence. While such hardware is not

indispensable, the efficiency gained justifies the small

hardware cost.

II A 2 a - With Indivisible Test/Modify

Classical implementations of interlocks have utilized an

uninterruptible hardware sequence which both tests and

modifies the state of a location in memory. Often, a

Read/Modify/Write memory cycle is used, in which in a single

memory cycle, the contents of a location are fetched,

updated, and rewritten. For example, a multiprocessor

PDP-10 can implement an interlock using the AOSE (Add One

and Skip if Equal to zero) instruction as follows:

AOSF LOCK ; Increment the lock and test

JRST .-1 ; Continue checking until unlocked

; Now use the locked resource

SETOM LOCK ; Unlock (Set to -1)

mg ■

With Indivisible Test/Modify 11-17

In this example, a value of -1 means unlocked, and any other

value means locked. If LOCK contained a -1, the AOSF will

bring it to zero and therefore skip. If it contained

anything else, the processor will loop here, incrementinp it

until some other processor unlocks it. Since it would take

more than three days for this loop to count a zero value

around to zero apain, we can neglect that source of multiple

ownership.

The test/modify sequence need only be indivisible by another

process which might be competinp for the same resource.

Thus, in a DDP-516, the IMA (Interchanpe Memory and

Accumulator) instruction uses different memory cycles to

fetch the old contents of memory and rewrite the new

contents. Nevertheless, this instruction can be used to

interlock processes at different interrupt levels, since

interrupts can only occur at the end of an instruction, not

in between the cycles of an instruction. Therefore the

multi-cycle IMA is indivisible in terms of interrupting

processes.

In a multiprocessor environment, interlocking is of crucial

importance, and typically must be done frequently.

Efficiency is therefore of utmost concern. An efficient and

very useable interlock mechanism can be implemented by

simply using a destructive readout from memory, that is, the

With Indivisible Test/Modify 11-18

act of reading the contents from memory destroys the

contents, leaving zero or some other ..ominal value behind.

In core memory systems this may be very straightforward to

implement, since core is inherently a cestructive readout

device, which is made nondestructive only by adding an

automatic rewrite uycle to each read cycle. Simply

disabling this rewrite provides an inexpensive and efficient

locking mechanism. In cases where because of parity or

other practical considerations elimination of the rewrite

cycle is not feasible, simply zeroing t'.ie data before

rewriting can give the same effect.

The attractiveness of this particular locking mechanism

arises from the fact that the lock datum can itself be the

locked resource. For example, one can imagine there being a

shared list of available memory space. A processor desiring

some memory would read the lock location corresponding to

this resource. If the result is zero, the resource is

currently locked, and the processor rereads it until a

non-zero result is obtained. This result is then a pointer

to the first available space. The act of obtaining this

information then locks the resource so that no other

processor will attempt to claim the same space. After

reserving the space it needs, the processor computes the nev

pointer to the first available space, and rewrites it into

the lock location. This simultaneously updates the

allocation information and unlocks the resource to permit

access to others.

II »W»!.!»«. Hl^ -^Ci-.

With Indivisible Test/Modify 11-19

The efficiency in this scheme comes about fron the fact that

the locking and unlocking is made part of the normal

activity of obtaining and updating the locked information.

The only overhead paid as compared to the same actions

without Interlocking is the test for zero, and, necessarily,

any waiting while the resource is utilized by others. The

cost of this efficiency is simply that of the destructive

read, described above.

II A 2 b - Without Indivisible Test/Modify

It is possible to implement interlocks without an

uninterruptible test/modify sequence. We now present two

algorithms for doing so, again assuming the existence of

unambiguous hardwarQ arbitration. These are of interest as

demonstrations of the non-necessity of indivisible

test/modify sequences, and may have practical value in

multiprocessor situations in which the processors are almost

independent, intercommunicating only most infrequently, so

that the efficiency of such communication is unimportant.

In general, the high efficiency and low cost of hardware

implementations of interlocks make these algorithms

irrelevant.

^-v .„ .i n^ ' —•-^•^a»

Round-Robin 11-20

II A 2 b i - Round-Robin

The essence of a lock is that no two processors can read

from it a value which gives both of them permission to use

the resource. Usually, as described above, this is

accomplished by having one state of the lock mean "locked"

to all processors, and another mean "unlocked" to all

processors. However, it can also be accomplished by having

a different state mean "unlocked" to each processor. Thus,

an interlock might be implemented by having a "permission"

location in shared memory. One device, either hardware or

software, has responsibility to set this location on

alternate units of time to 0 and to consecutive integers,

modulo the number of processors. Thus, in a four-processor

system, thiü.location would, on successive units of time,

contain 0,1,0,2,0,3,0,4 repeated every 8 units of time.

When a processor wishes to access any lock, it must wait for

its processor number to appear in this location. It may

then read, test, and rewrite any locks under the control of

that one permission location, but it must be done in less

than one unit of time. In this way, it knows that it alone

has access to these locks, and thus that any resource it

locks, it owns uniquely. The der.d times (when permission is

zero) assure that even if a processor gets permission at the

very end of its interval, it will have finished before any

other processor can get permission.

^~m
«p~^;-

Crowther's Technique 11-21

IIA2bii- C-^owther's Techniqun

Another technique which can be used to implement locks

without using indivisible test/modify sequences, proposed by

W. Crowther, is aa follows: define a conventional memory

location to be a lock. If the location contains a zero, the

lock is defined as unlocked. Any processor may read this

location, and if it is zero, will then rewrite its processor

number into.it, on a later memory cycle. The processor will

now wait lonp enoufth to allow any processors to rewrite

their processor numbers if they have read the lock between

the time this processor read it and the time this processor

rewrote his processor number. This processor now rereads

the lOOStlon, and, if it finds its processor number therein,

it owns the resource, and proceeds. Otherwise, it goes back

to wait for the lock to become zero once arrain. Thus

though multiple processors may find -,he lock initially zero,

only one will pain access to the resource. Any processor

which reads the lock after the first processor has rewritten

its processor number will find the lock non-zero, and wait.

II A 3 - palnY^l (>us ^9 (fonfllstja

We have now examined hardware and software primitives for

unambiguous inter-processor communication. We have seen in

each case that practical implementations are available, but

imply slowdowns, and thereby reductions in the computational

^ i ■ mmmim^ .1

Delays Due To Conflicts 11-22

power of the system. In this subsection, we will consider

the effect of these slowdowns on computational power. We

will break our discussion into two parts, first considering

the penalty paid in computational power for handlinp the

possibility of conflicts, then turninp, to a brief discussion

of the queueing delays encountered when conflicts actually

occur.

II A 2 b i - Overhead

In this subsection, we will derive a measure of the slowdown

of a program from the overhead required to run in a

multiprocessor environment, without considering slowdowns

from conflicts. We will measure this slowdown as a ratio R

of the time to execute a uniprocessor version of the program

to the time taken to execute the program in a multiprocessor

environment. Thus, if the processors were entirely

independent, no changes would be necessary, and R would be

1. An R of 1/N in an N processor system would mean that the

overbad involved in running that program on nat system

would it least offset any power increase obtained from the

multiprocessor.

Clearly, R depends both on the program being run and on the

hardware running it. Thus, one cannot ascribe to a hardware

configuration a specific R, valid for all programs.

However, one can. characterize the R of a system for a class

-*sr'

Overhead ; [-23

of programs with certain eharacteristies. We now examine

what those characteristics are.

Assuninp that the only change involved in translating a

uniprocessor program for multiprocessor operation is the

addition of locking instructions, the amount of extra time

that will be spent executinp a giytn piece of code is the

number of references that code makes to shared resources

times the amount of delay added to each of these by the

hardware arbitration delay and communication time, plus the

number of lock/unlock seouences which must be performed by

that code times the time taken to perform one of these.

Call the time to execute the code on a uniprocessor Tu, the

time added to each access to a shared resource Ts, the

number of such references in the code Ns, the time taken to

execute a lock/unlock sequence Tl, and the number of such

sequences in the code HI, then for that particular piece of

code runninp on that hardware-

R=Tu/(Tu+Ts«Ns+Tl»Nl).

Of these parameters, Tu, Ns, and Nl are characteristics of

the program, whereas Ts and Tl are characteristics of the

hardware. Note that at this point we don't care whether the

lock references |to to one or many different locks; when we

consider the effects of actual conflicts, this will be of

critical importance. .

-"•—!t^-

Overhead 11-24

As an example, consider a program piece which runs in

225 microseconds on a uniprocessor, which makes 50

references to shared resources, each of which is

slowed by 500 nanoseconds, and which does 5

lock/unlock sequences, each of which takes 10

microseconds; then R=225/(225+50«.5+5*10)=.75 .

It should be noted that this equation does not make clear

the effect on R of Ts, since the lock/unlock sequence

usually contains references to shared resources. If we call

the number of such references in one lock/unlock sequence

Ls, and the time of the lock/unlock sequence if these were

to local memory To, then

R = Tu/(Tu+Ts*Ns+Nl»(To+Ls»Ts))

= Tu/(Tu+Ts»(Ns+Nl»Ls)+To»Nl).

II A 2 b ii - Queueing Delays

Having considered the slowdown a program incurs due to

running in a multiprocessor environment, we now turn our

attention to the delays incurred because of waiting for

another process which currently owns a needed resource. We

will not derive formal mathematical models of the delays

involved, although such models for multiple users competing

for a single resource are well known [14].

In fact, the queueing situation in a real multiprocessor is

much more complex than this simple model. The difficulty of

•"«c- . I I ■! ***•<****.

Queueinp Delays 1 1-2'

\

mathematically modolinp such complex systems lies outside

the realm of this thesis. Imaftln« a mul t iprocossor

including four processors, two on each of two shared busses,

competing for two different software structures contained in

the same or separate memories. ^irst, the processors must

compete for ownership of the processor bus. Then the

winners may compete for the shared memory bus. The winners

of this competition may then find the software resource

locked, and have to po back to the first level competition.

The losers of the earlier competitions way find the software

resource free by the time they finally pain access. In

addition to the difficulty which this ranpe of possible

combinations brinps to the.analysis, the inapplicability of

I random arrival time model to the timing of processors

executing small repetitious hardware or program functions

makes general mathematical analysis even more Intractable.

Accordingly, we will not attempt such an analysis In this

dlssertatIon.

The extreme conditions of low and high utilization of a

given resource are more tractable. We will briefly present

an analysis methodology which will permit approximate

evaluation of the aueueing delays expected In a practical

multiprocessor. In so dolnp, we will Introduce the concept

of the bandwidth of a device, and the rule of bandwidth

matching as a technique for achieving cost-effectiveness.

Low Utilization Extreme 11-26

II A 2 b ii (a) - yai Utilization Extreme

In the situation where multiple users are competing for a

given resource which is busy a very small fraction of the

time, a simple analysis which neglects the impacts of

multiple collisions can be used. In a system of N

processors, each of which keeps a resource tuny for a

duration of mean B out of each interval of mean If the

probability that a given request from any processor will

find the device ousy is given by:

P=(N-1)«B/I

If the device is found busy, then, neglecting multiple

collisions, the average duration of the wait for the device

will be B/2. The average waiting time out of each interval

I is therefore

B/2«(N-1)»B/I

Since this delay is incurred each interval I, the fraction

of the machine spent waiting is

(B/2»(n-1)»B/I)/I

= (N-1)/2»(B/I)»»2

If we call the total fraction of the time the device is used

U, then

1

Low Utilization Extrene 11-27

U = iM*(B/I)

and the slowdown reduces to

(N-1)/(2*N»»2)»1J*«2

As we have stated before, this approximatton only holds when

U is much less than 1.

IIA2bii(b)- Saturation

We have discussed a model which applies when the utilization

U is much less than 1. Another interesting and

straightforward case is when U=1, i.e. when the device is

always busy. Whether oi" not complete saturation will ever

occur, and therefore whether or not U will ever truly equal

1, depends on the distributions of service times and

computational periods between service reouests. If these

distributions are entirely random, then a U of 1 can never

be obtained. For fixed service times and fixed computation

intervals between requests, saturation is easy to achieve

and understand. The model we present here assumes

saturation.

We define another utilization parameter U' as being the

utilization the processors would try to achieve in the

absence of conflicts. To achieve a U of 1, U' must be

greater than or equal to 1. By this definition.

Saturation 11-28

U'=(B/I)*N
r

If the length of a service cycle is B, the number of service

cycles per unit of time in saturation is 1/B. If the

interval in which one service cycle is requested is I, then

each of these 1/B service cycles results in a time I of

useful computation, so that the amount of time spent doing

useful computation per unit of time is 1/B. The amount of

computation time available per unit of time in an N

processor system in the absence of conflicts is N. Thus,

the time lost due to conflicts is

N-I/B

Since this time is divided among N processors, the time each

processor spends waiting per unit of time, and thus the

fraction of the machine lost because of conflicts, is

(N-I/B)/N

= 1-1/(N»B)

= 1-1/U'

II A 2 c ii (c) - Bandwidth Matching

In developing these extreme case models, we have referred to

the utilization, i.e., the fraction of the time which a

resource is in use. This leads us to a more general notion

of mai-rhing the usage of each resource to its capacity, in

order to achieve efficiency. To do this, we introduce the

"V—~ —II»— in"

Bandwidth Hatching 11-29

concept of computational bandwidth, in an effort to

understand how this matching can be easily done.

One major reason for considering a multiprocessor

architecture is to achieve an increase in the computational

power available, as compared to economically sensible

uniprocessor systems. We now considei- briefly what is meant

by the term computational power.

We define the »j ower" of a computing system as the rate at

which it processes data, or more precisely, the amount of

data it can process in a unit of time. We then need to

define what we mean by processing data. We can measure the

amount of data involved, by counting the bits which need to

be taken in. Exactly which bits concern us, and exactly

what it takes to process them, is application-dependent.

One measure of system power is simply the memory cycle time,

the time required for a memory to present a requested wore

and prepare for a new request. This is indeed a crude

measure of system power, since the time taken to perform any

operation may be very different from this number. However,

the number of bits in a word divided by the cycle time of

the memory does give the maximum rate at which information

can be extracted from that memory, a crucial characteristic

of the memory.

Bandwidth Matching 11-30

Another metric which has been used to measure the power of

computing systems is the rate at which instructions can be

executed. Measured in KIPS (kilo-instructions oer second),

this gives some measure of the amount of processing a system

can do in a unit of time. While this does not measure the

ability of the system to perform the needed computation in a

given time, it does, when divided into the average number of

bits in an instruction, yield the rate at which the

processor requires data as instructions.

An accurate measure of the ability of a system to perform a

given task is simply the data rate at which that system can

absorb the data to be processed. This then is the system

input data rate. Its measurement depends not only on the

system and the Job to be done but also on the specific

program written to perform that job on that system.

We have spoken about a number of different system

characteristics in terms of the rate at which they process

or provide data. Comparisons of these numbers are useful,

and for this reason we define the term "bandwidth", as used

in this dissertation, to mean a data rate, in bits per

second. Thus, the bandwidth of a memory is the maximum

number of bits which can be stored into or retrieved from

that memory in a second, the bandwidth required by a

processor of its supply of instructions is the number of

bits of instruction the processor processes in a second, and

the system bandwidth is the number of input bits the system

'**V, '"~*C

Bandwidth Matching 11-31

can process in a second. This system bandwidth is then our

measure of the computational power of the system.

The concept cf bandwidth as defined above is generally

useful. One can easily understand that a memory bandwidth

at least equal to the processor's instruction bandwidth is

needed to supply the processor with instructions unless a

slowdown is to be incurred. Interleaved memory bank'i permit

parallel operation of memories, and the individual memory

bandwidths can be added to get the memory system bandwidth.

We can now define the bandwidth of any given resource as the

number of bits per second it can handle, and the bandwidth

requirement of any user of that resource in terms of the

"number of bits per second that it requires. Our utilization

factor U is then equal to the fraction of the bandwidth of

the resource which is utilized.

By comparing the total bandwidth requirement on a resource,

namely the bandwidth required by each user times the number

of users, to the bandwidth available from that resource, we

can determine the number of copies of that resource we must

supply to support that number of users. For example, the

memory bandwidth required by a processor times the number of

processors divided by the bandwidth available from a single

memory will give us the number of independent memory units

required for the system.

^,.^,,.^ -—rr-y,,,, ..

Bandwidth Matching 11-32

In fact, the queueing delays can get to be large if the

system is designed on the assumption of utilizing the entire

bandwidth available from a given resource. In practical

terms, a utilization of fifty to eighty percent yields a

suitable compromise between waited user bandwidth and wasted

server bandwidth.

II B - Task Allocation Algorithms

In the first section of this chapter, we discussed the

fundamentals of interprocesbor interaction, the mechanisms

by which such interactions can take place, and some

implications for system configuration of these interactions.

In this section, we look in some detail at one specific

interaction: the problem of allocating tasks among the

various processors. This problem is central to the system

power and reliability.

We will consider various possible approaches to this

problem, and explore the advantages and shortcomings of

each. We will break the discussion into two sections, first

considering interruption algorithms, then move on to novel,

efficient voluntary algorithms. In the following and final

section of the chapter, we will deal with other reliability

issues.

. wi m^

Task Allocation Algorithms II-3:

One approach to the task allocation problem is to pive one

processor the duty of assipninp: tasks to other processors.

This processor must then have the ability to interrupt and

give commands to all other processors. If this ability is

given in an inhomogeneous fashion, that is if the "king"

processor is king by nature of special hardware

configuration, the system reliability is impaired, in that a

failure of this one processor takes the system down. This

situation can be somewhat improved upon in terms of system

availability by manually interchanging processors in the

event of a failure. In many situations, however, the delay

and high probability of incorrect action inherent in human

intervention makes this dependence unacceptable.

This "king" scheme of task allocation can be implemented on

a hardware homogeneous system by giving to all processors

the "king" hardware, permitting any to act as "king for a

day", and leaving to the software the problem of selecting

the current task allocator. There are problems in such a

scheme, however. One area needful of attention is the

impact on reliability of tne "malicious" processor, that is,

a processor which fails in such a way as to believe it is

king, and thus interrupts and assigns useless or harmful

tasks to healthy processors. While this sort of failure may

be unlikely, the effect on the system is sufficiently

disastrous to necessitate considering schemes for protection

against it. This sort of protection can be achieved by

"**' i m »min.» «^ . -1

mm* ■"W ' U

Task Allocation Algorithms
11-34

requiring that some hard-to-compute password be given before

a given processor's task assignment hardware can be

activated, and perhaps requiring a cooperative effort of a

number of healthy processors to el-ct a new king and compute

this password. However, as the election hardware becomes

more complex, it becomes less reliable, and a failure here

can take the system down. It also becomes more expensive,

decreasing the computational power available from a system

of a given cost.

Some of these problems can be avoided by having the

processors decide for themselves what tasks to do. Some

advantages and disadvantages of such voluntary algorithms

will be discussed after we consider various interruption

algorithms.

11 B '' - Interruption Algorithms

Given that tasks are to be assigned to processors by

interrupting the processor and starting it on the new task,

there arises the question of how to decide what tasks should

be run, and on which processors. A number cf schemes are

possible, with different advantages and disadvantages in

terms of hardware cost, reliability, and efficiency. We

discuss a few here.

piuii.>WP-iini"nq^iRfipf«R"n^> 11 .. 11 ■■■■«ill n in.

mumm KZ'

Blind

II B 1 a - Blind

11-35

One possibxlity is to have a central task allocator which

simply dispatches tasks in a blind fashion, for instance

successive tasks might be assigned to processors in turn, so

that each processor in an N-processor system would receive

every Nth task. Alternatively, tasks could be assigned to

processors entirely at random.

A principal advantage of a blind interruption scheme would

be the simplicity of the hardware required. The reliability

penalty paid by having a single central task allocator could

be overcome by duplicating this logic. The apparent fault

of taking no account of the relative priorities of tasks can

be overcome by putting that duty in the software, so that on

an interrupt, the program might decide whether to start on a

new task or continue with the old.

The principal disadvantage of this scheme is that it permits

one processor to become overburdened while others sit idle,

if there is a significant disparity in the time required to

execute the different tasks. Even this might be overcome by

permitting a processor to set a flag asking for help in a

common memory, and, if another processor should become idle,

one or more tasks might be passed to it through the common

memory. Clearly, any such scheme has significant overhead

associated with it, and perhaps also implies degradation in

system reliability. However, if all tasks took the same

 '- ■■--■" ' mntrr »-rt-iMihiV.ali.iliiif---^ ^ü.-^ ..^^.^ ;,.,.*. r^^. ..*.,..^.^...*..-.*:.^~>.,<.m >.., ..^^^.Vä-J:^.:*.,^ unriBÜMIMl'ÜIMi liitiriÜiMlili

'' ' ■" '' —<i • i •■ I ipaailHPiwilPnaav^Miin. .ii.iii. >■" '■ ■"

"•w—7^;

"WP

Blind 11-36

time, this sort of inefficiency would not be encountered,

and a blind interruption scheme might be sensible.

II B 1 b - Dedicated Processor:Device Relationship

Another scheme for allocating tasks to processors is to tie

all devices which might spawn tasks to specific processors,

and decree that any task a device spawns must be executed by

the processor to which it is tied. The principal advantages

of such a scheme are simplicity, both conceptually and in

hardware. People are quite accustomed to having devices

interrupt their associated processor, and hardware can be

economically purchased to do this.

The disadvantages are in efficiency and reliability. If one

device tends to generate most of the tasks, either generally

or locally in time, the processor to which it is tied nay be

very busy while others sit idle. As with the blind scheme

discussed above, this may be overcome by handing tasks off

to other processors through common memory, again paying

penalties in overhead. This process passing can be brought

more in line with the overall scheme of fixed

Processor:Device relationship, and also made less expensive

in overhead, by adding pseudo-devices, which connect between

processors, and permit one processor to interrupt another

when it wishes to hand off a process. However, in the case

of some high speed devices, the simple task of servicing the

device's interrupts and setting up new transfers may take

i

liiiiiiir iniwiir"-'-'^-- - HÜlillMih^l ■- ""--'^

w Wl'ai'P1" 11111,1 LIHPil ■""•""'-

Dedicated Processor:Device Relationship 11-37

more computational power than is available from the single

processor to which it is connected, in which case the scheme

does not work.

I

This scheme pays a price in reliability if it is essential

to keep certain devices alive in the case of processor

failure, since each device is tied to a single processor.

This can be avoided by designing the interfaces co be

parallelizeable, that is, so that a single device can

connect to multiple interfaces. In this case, the

interfaces would be tied to different processors, and only

one would be active at any one time. If the processor to

which that one was tied appeared down to the system, the

system would select another to continue communication.

There remain potential problems of multiple processors

believing themselves healthy and in control of the device at

any given time; the hardware can be designed to minimize the

likelihood of this. All of these considerations are

irrelevant if there are no devices of crucial importance,

and it is ftlt that the loss of all device? tied to any

individual processor is not disastrous.

II ß 1 c - Prioritv

A scheme which allows somewhat greater efficiency is to give

the tasks a hardware priority ord&ring. Thus, the problem

of deciding which process to execute next is removed from

the software, which works on whatever tasks it is given.

■PI—«»W.I.l I . Jl! ll.iJWIWlli|l|»."lii)IU|IPllM»l"HIWH«»»».liJ I..>P ''uvimr mmvii^

-*x-
-.*■.» vw."'

Priority 11-38

Further, as new tasks arrive, the ones which get the

speediest attention are the highest priority runnable tasks.

This could be implemented by having hardware registers in

the Interruption lo:,ic which remember the priority levels of

the tasks which the processors are working on, and, if a

task of higher priority than the lowest priority task

presently active should arrive, interrupting the processor

working at the lowest priority level, and giving it the

task.

This scheme is appealing, in that it seems to leave all

processors doing what one would want them to do, at very

little penalty in overhead. However, it does have some

severe implications in hardware cost and compl.xity, and in

reliability.

The first observation about this scheme is that it is

inadequate to have a single priority level register per

processor; there must somewhere be a stack of priority

levels of processes stacked in each processor, since upon

completion of a task, a processor would return to the task

which it was doing when interrupted, and it is the priority

level of this task which the interruption lo^ic must

consider. Further, it is necessary that the processors

inform the interruption logic when they complete tasks, so

that the priority level can be changed. Since this

communication is necessary anyway, it would be reasonable

for the processor to keep the priority level stack, and have

,i..»:j»..^„-.a.ji,.i4^i»a.. ■ ■■ .-..-■.. .-..,,._■-—■.■.- -.1. .u !..,.,■■ .,.; .^^^...■.- .^.».^»^»..J'Mi^^/rU^^.^-^ -.,. .,.. ■-■ .„ai^-j..— .1-..J^m.-.ii.j

-«s-
WIIMIIW« «I 111 Ml jww»rww»*«^"ipp,^w»»ipww"

■ -w.rv.

Priority
11-39

the interruption logic inform the processor of the priority

level of the task on which it is to start working, at the

time it is given an interrupt. The processor can then

inform the interruption logic, at the time it finishes a

task and resumes an old one, of the priority level of the

task it is now working on.

The inefficiency in this scheme results from the fact that

once a processor has started a task, that processor must be

the one to finish it. Consider an extreme case of

inefficiency, in which all but one of the processors are

executing tasks of the highest possible priority, and the

remaining one is executing a task of the lowest priority.

Mow, successive tasks of increasing priority become

runnable. Note that all of these find the same processor to

be interruptable and the lowest priority, and thus this one

processor gets assigned all of these tasks. Now the other

processors finish their high priority tasks, but no new

tasks are arriving. Thus, these processors sit idle while

the processor executinr the lower priority tasks continues

for a long time to finish its stack of tasks. This problem

can again be overcome by handing partially executed tasks

among processors, but again, the associated overhead makes

such a solution likely to be impractical.

The reliability problems in this scheme stem from the

central and non-trivial interruption logic. If this fails,

the entire system goes down. The amount of logic involved

u,^.^.....:.f^\^.^^.J^ ., .^..la^i^-;JOA^- .^...A.,.^.-.,....:,.. ..,„.. i iriiiiri'iiiiiiiiiiiiiiiiiiiiMI

'■I ll- ■■ ■ ■

■-Ci- ■ "^.."tV«

Priority 11-40

is sufficient to make it expensive to duplicate, especially

when one considers the additional logic which is required to

permit the program to selectively enable and disable the

different copies, after so.ne believability check on the

commands to do so.

II B 1 d - Intelligent

The efficiency problems discussed above can be avoided by

adding more intelligence to the interruption hardware, if

some constraints are placed on the time to complete a task.

Specifically, if the interruption logic can know in advance

roughly how long a given task will take to complete, it can

then make a reasonable estimate of when the various

processors will be finished with their load, and can then

hold an interrupt request for a processor which is about to

be free, rather than burdening an already busy processor

which might be running a task of lower priority.

In this case, the interruption logic reust keep track of the

specific tasks queued at each processor, and how much longer

each has to run. It must also have enough intelligence to

compute on the basis of this information which processor

each task should be assigned to. The amount of storage and

intelligence required implies quite powerful logio,

comparable in power to a programmable processor. In fact, a

programmable processor is probably the most sensible way to

implement this function. For reliability, we wish to have

- -- — — ■ . ^ -.A..., / irliiliiit...iii.Tifiiiiiij-itiriiiii.irrtlf«-^'- ■'^J"wiMiliiiirif<t<ltli1iiilii[lifriil —

muiiMip ■sawpwpBP '■"■"""V' '"'■"l-1' • nw*

Intelligent 11-41

this function duplicated, so we now have two proprammable

processors in the interruption logic. It is not clear that

two processors are adequate to handle the peak interruption

request rate, so still more processors might be needed, and

the number will surely increase with the number of

task-executing processors in the system.

Economy, comprehensibility, interchangeability, and

convenience dictate that these processors should be of the

same sort as the task-executing processors. Reliability and

adaptability arguments then suggest the following line of

reasoning:

If we iTiust give up some fraction nf the processing

power of the system to the problem of task

allocation, can we not divide this onus equally among

the processors, letting each do its own share of this

problem, rather than having some few which do only

this, and can do nothing else, even when this problem

does not fullv occupy them?

Indeed, the answer is yes, and a technique for so doing is

discussed in the next subsection.

II B 2 - Voluntary Algorithms

We have discussed various interruption algorithms for task

allocation, and have pointed out some difficulties in each.

There are additional drawbacks which we have not discussed,

but which plague all interruption algorithms. Among these

..,aj..««t.vi<»» ^—,> ^...t..*.^ V-^..i..— J—-,!■...■ ..- ■ --,-- ,., ...„-^^ ^nl

% • I^^OHMPWI» ■ .",r_ ■"-" *" "'''■ "^MMiW —m ^—B———»* ***< rVj,, ,„ ., — mmm ■ ■ ■■■■■■ -MI ■!.■„.,

Voluntary Algorithms 11-42

is the overhead of saving the state of the task which was

being executed, and setting up to execute the new task, when

interrupted; then restoring the state to continue with the

old task once the new one has finished. This overhead can

be quite significant, since in general one does not know at

a particular time how much of the state of the machine is

important to the process which was being executed, and

therefore the entire state must be saved and later restored.

Another difficulty arises from the software locks discussed

in the previous section. A deadlock situation can arise if

a process has taken a lock and is in the midst of a

computation involving a locked resource when it is

interrupted by another task which also requires access to

that resource. Various solutions to this problem are

available; perhaps the simplest is just to have all

processors inhibit interrupts from before they lock a

resource until after they unlock it. Thus, the individual

processors declare themselves to be interruptable or not as

a function of the overhead implied by interrupting them.

This concept can be extended by making the processors

declare themselves uninterruptable at all times unless the

only aspects of the state of the machine which the tas^

requires are some small number of key words, such as just

the program counter. In this case, the interrupt service

need save only this small amount of information, decreasing

the associated overhead. Thus, the processors might run

—....^^..^.^.m..t.^ *mmmMmm*m mmmmäi .--^ -:...-•■ -■• -- ■
-■'"-- ■■■

!wwrwwBiii»i»iii-«wiiw»p»rw!i"ip<i»,' *i w^""""«!™'-"-1«" "' "','■ ^'"iwp^'v««»""««^."!««!".! JHMI wip tmwiimnmim'^r' V«W^r''l.,,*^fll"" •-I'K"."

mitmm i n^" ••-f-^i. *»..?w.

Voluntary Algorithms 11-43

i

i

most of the time uninterruptable, and only declare

themselves ready for a change of tasks at periodic intervals

convenient to themselves.

The concept can then be brought into line with the

desideratum mentioned earlier, that the task allocation

burden be distributed among the processors, by having the

processors, at such time as they consider themselves

interruptable, inquire of some pending task queue whether

there is some task pending of higher priority than the one

on which it is working, and if so, switch to the new task.

Since at this time there is very little information required

to record the state of the task which was being executed,

the processor can simply add that task to the pending task

queue, and another processor can then resume execution of

the task fron that point.

Central to this scheme is the queue of pending tasks. Its

management can have great impact on both system reliability

and overhead. If this queue is managed by the software as a

conventional locked resource, the resultant system slowdown

can be derived from the oueueing models discussed earlier.

The amount of slowdown depends fundamentally on the

frequency with which processors enquire of it, and is

reduced by reducing this frequency. However, this reduction

also has the property of decreasing system responsiveness,

and as such is not always permissible. Selection of this

important system parameter is a trade-nff between overhead

and responsiveness, between throughput and delay.

Voluntary Algorithms 11-44

The queue can be managed in hardware. It is desirable that

it have a priority structure, so that inquiring processors

can quickly be given the highest priority pending task. It

is also desirable that it be self-locking, that is to say

the act of reading an entry from it should delete the entry,

so that a given tc.sk will be assigned to only one processor,

without the need for an external software lock.

A piece of hardware to perform these functions has been

constructed, giving 127 priority levels in addition to all

required interface and control logic to connect directly to

a computer bus on a single 7x11 inch two-layer card, at a

very low cost. This device is the central task allocation

mechanism used in the BBN Pluribus multiprocessor.

Reliability problems are once again encountered because a

single piece of hardware is responsible for a vital portion

of the task allocation problem, and if it fails the system

hoes down. This problem can be avoided by having multiple

copies of this hardware, and letting the software use them

either in a priority fashion (that is, always read number

one first, unless it is down; if it is holding no tasks,

then read number two, unless it is down, etc.), or in an

equivalent fashion (such as read consecutive ones to pet

successive tasks). The hardware involved is sufficiently

simple to be quite reliable, as well as sufficiently

inexpensive to make this degree of duplication economically

sensible.

; i nUW^M^^^M .^..■..-■^Mr.^^--.. .--■ -"■■-^■■•^-f.iMiiiM*a^itt,-'i^iiiftiiit ^ilr^■|^^lrll4Mf■•llll^h>l^ftwr rft^fi^^iiiiMaMiitriwiiai^'Mriti^fl

■uivp^iii ii mi UM. M *mmm<m'n'm'm i<i|iiiiiiiiiii.i^>ipiaF^<BMi.iiii.ii i- »■ ■' — PW«"P»PBW"^WKPI

Voluntary Algorithms II-M5

I/O devices can spawn tasks, and thus must be able to affect

the pending task queue. One method of doing this, which is

perfectly adequate for low speed devices, is to have the

processors periodically poll the devices, and, if there is a

task ready, the processor will add it to the queue. For

high speed devices, this would imply high overhead, as the

processors would have to spend a larRe portion of their time

polling to keep up with the device, and large delay, since

it might take a long time for a processor to pet around to

polling a specific device. In this case, therefore, one

would want the devices to add entries to the queue directly.

This is another advantage of a hardware queue, with a simple

procedure for adding entries; a device without a great deal

of intelligence can simply send its pre-specifled flag level

to the queue, and the entry will be made. In this sense,

the queue replaces a conventional interrupt system, thereby

earning the name of Pseudo Interrupt Device (PID).

We thus have an algorithm for task allocation which is based

on a voluntary decision by the processor that it is an

appropriate time to change tasks, rather than on an external

interruption of the processor's control stream. We now

briefly mention a few advantages and disadvantages of such a

scheme.

'■'rtm» i 1 . i -i r g| ■•■V^iiitiinMätiiil«^^ .. . -.^A- ■■-■■ frnMii i - - - ■■-.-. ■ . -—

■tsr

,^W"^PPIilliP«l»PWHIiffF^

Advantages

II B 2 a - Advantages

11-46

(1) Simple Hardware

As discussed above, the hardware required to

implement the voluntary scheme with a hardware queue

of pending tasks is straightforward, using today's

TTL/MSI (Transistor-Transistor Logic, Medium Scale

Integration) technology. This device has been

constructed using for the basic priority flag system

16 8-bit addressable latch chips and 16 8-level

priority encoder chips. These 32 plus 37 other chips

needed to resolve priorities and decode addresses for

the latch chips, and to interface to the bus, and

generally appear as a memory location, have been

built onto a straightforward 2-layer printed circuit

card. This card costs roughly $450, built and

debugged, in small quantity.

(2) Decreased Task-Changing Overhead

As mentioned earlier, the amount of overhead

associated with changing tasks is decreased if the

processor initiates the change, since the processor

can choose to change at times when very little

information which would be lost by the change is

necessary to continue the previous tas':. If the

processor is interrupted by external logic at

arbitrary times, the interruption routine cannot in

trtitfiiili^Üiikltli* rif . . _*. • ,.^L, -. —.■.„^■^. .»— ,_ > - -. .■-^- iiMiiaiiinirn ' iii1ii<it'*' ■-.-- ■- ■ iniMiiiii iitiiMuiiiiimai

i.>i4 IIIRJII.I,II iilliMlpn^i^iiiH^jiiiii ■ ■PPj'^'

■*—--'S- ■■ .^iwi iw n« «an

Advantages 11-^7

general know how much of the state of the machine

must be saved and restored to permit continuation of

the interrupted process, and thus must treat every

interrupt as a worst rase, and save and restore any

state information which could conceivably be

required. The amount of overhead saved depends on

the frequency of possible task changes, and thus on

the choice of operating point in the throughput-delay

trade-off continuum. An unfortunate requirement in

this area can make this scheme have in fact higher

overhead than a conventional interrupt system, as

discussed in the following section.

(3) Easy to Think About

A very real problem in efficiently coding a complex

system is the area generally referred to as

"interrupt bugs". These come about from a failure to

consider the implications of all possible sequences

of various interrupts occurring at any possible point

in the instruction stream. These bugs are difficult

to think about and very difficult to find, because

they often require a coincidence of multiple external

events and internal control states, and therefore

happen extremely infrequently, cannot be reproduced

on command, and leave very confusing traces.

While this problem is not solved by the voluntary

algorithm, it is simplified, since there are a very

■in in ni't'ir-'"'—■•"—-^ ■t. "m^-za ■ ' '"■-'-

■ -«-■.>. i

Advantages 11-48

limited number of points in the control stream «/here

task changing can take place, and one can choose them

to be at points where one is confident the program is

relatively invulnerable. In addition, if rules are

established regarding vulnerability, the overhead of

following them can be substantially diminished

because they need be followed only at those times

when tasK changing can occur.

(4; Intelligent, Reliable

This scheme gives the full power of the task

executing programmable processors to the problem of

task allocation, without dedicating a large amount of

specialized hardware to the problem. The task

allocation is distributed, giving greater

flexibility, in that a processor may decide what is

best for it, and reliability, in that the loss of any

single processor removes only the task allocation

facility for that processor, while the only hardware

specialized to the task allocation problem is

passive, in that it never initiates an action, and is

simple, reliable, and inexpensive.

II B 2 b - Latencv Buffering

This scheme does compare unfavorably with a system which is

driven by interrupts, if the interrupts are enabled most or

all of the time, in that the time to respond to a new

■ ■-^ — ——- ■-■—*•—— -^ --■"

imß*m*mmmmm*Q**'''Bi'**'*^*~**~m^!mm iww^jmiiwi .JiiiM

Latency Buffering 11-49

high-priority task is greater. In fact, the longest time it

can take to respond to a new task of the highest priority in

an interrupt-driven system is just the maximum length of

time for which interrupts are disabled; whereas for the

voluntary algorithm, it is the longest time between

task-changing points. As has been mentioned, programs

cannot in general run all of the time with interrupts

enabled. Indeed, it is not obvious that the maximum or even

the typical time for which interrupts would be inhibited

would be less than the time between task-changinp points.

Thus, it may be the case that the voluntary scheme imposes

no increase in latency as compared to an interruption

scheme.

We now consider briefly the amount of latency and the

problems caused by it. We shall consider two areas in which

latency causes difficulties. The first of these is the

human interface: oeople quickly tire of waiting for

machines. The other is at the interface to devices whose

timing is not controlled by the computer, such as

communication lines, magnetic tapes, and disks. In this

case, if the machine fails to respond sufficiently quickly

to a "data available" signal, the data may be lost or the

device might not be useable at anywhere near its full

bandwidth.

The people problem generally does not become bothersome

until the delay is at least of the order of several tens of

L.J ..-1.-.1. ■J^WW.-,.^..^. ■■ ,,,„.: Lt-m,...^ Jj.^m.l^f:

•'^

Latency Buffering
11-50

i

milliseconds. If the time between task-changing points is

significantly shorter than this, this problem vanishes. The

externallv-timed device problem is not eliminated by this

sort of task-change interval, but does lend itself to

hardware solution more easily than do people. The problem

can be solved by adding per-device buffering sufficient to

handle whatever data may be received (or needed) between the

time of the first indication that the device is ready and

the worst case time for a processor to become ready to

process (or provide) the data. The exact amount of

buffering required depends on the device data rate and the

number of devices of the same, higher, or lower priority, as

well as the processor latency time.

We now derive the amount of device buffering required,

assuming there are D such similar devices, and no other

devices in the system, and assuming further that there are P

processors in the system. This is a worst-case situation

because if there are other devices in the system, there will

have to be enough additional processors to support not only

the high-priority pseudo-interrupt level processing of these

devices, but also the less time-critical task of processing

the information. If the pseudo-interrupt service for the

device under consideration is higher priority than this

"background" processing thprp -i «a «,««« K wv-cöc»infc, tnere is more processing power

available to service the pseudo-interrupts at the level

under consideration due to the existence of higher priority

flW

 i im .■....».>"■ • 1 Hl .1 .11. ,M.IS.«W»1J»I»

•m'mim~.\~'

i ^ linn i II ifliv i iiwapiiiiMii - -■■'.■■'■-J ■■"^PWBPW(gip«W5pp

Latency Buffering 11-51

devices. Thus, fie worst-case buffering requirement occurs

if the device type under consideration is the only device

type in the system.

Call the (maximum) time between task-change points Teh

seconds. Assume that having been given a pseudo-interrupt

indicating that data is available (needed), some Td<Tch

later a processor will take (provide) the data. Call the

number of bits which are transferred before this action is

required N; call the device data rate R bits per second;

call the total processor time taken to fully process these N

bits Tp seconds. Processor action is then required every

N/R seconds, and takes Tp seconds. Thus, to support one

such device, Tp/(N/R) =R*Tp/N processors are required; to

support D such devices requires D*R*Tp/N processors. Thus,

P must be at least D»R*Tp/N, and in the worst case

P=D«R*Tp/N.

The worst case timing occurs if all of the processors have

just passed task change points when all of the devices

request service. Call this time zero. In this case, the

first P devices' requests will be recognized at time Teh,

and their data will be taken (given) at time Tch+Td. The

next P devices' requests will be recognized at time 2*Tch,

and th3ir data transfer will occur at time 2*Tch+Td. There

will be a number of such groups of P transfers, the number

being equal to the first integer greater than or equal to

D/P, which from the above =N/(R*Tp). The i'th group will

wt^-^.-.^fa^-at^tUt^ ■ .A.-- .--,..-. -^ .—-, *..±..L: -■■■ ^ ^ ,. _.........,■ — -. ^■Ji ^.^-J

MV*"*^ - ^ J i——»i—ii nil J^^^ ■ '■ mm»*1*^!™ ^mmrnm

■ n \vmmm wmjtmw W% nniftiijui. .-«in W^PUJIJIIMMJ I t ,-™^^—

Latency Buffering 11-52

suffer a delay of i»Tch+Td in getting its data transferred;

the last will suffer a delay of NGI(N/(R»Tp))»Tch+Td, where

NGI(x) is the first integer greater than or equal to x.

Thus, NGI(x)=x+f, where 0<f<1. The equation for the delay

can thus be written as (N/(R«Tp)+f)»Tch+Td.

If this is the delay for which bits must be buffered, the

number of bits which must be buffered is R times this, or

N»Tch/Tp+R»(f»Tch+Td). A "safe" estimate of this is

N»Tch/Tp+2»R»Tch, since f<1 and Td<Tch, from the above. In

English, this can be stated as:

The worst case buffering requirement for a fixed data

rate device is the sum of two components, one

constant, and one proportional to the data rate. The

constant component may be computed from the number of

bits in a "batch", i.e., the number which arrive

before processor action is requested. The number of

bits in the constant component of the buffering

requirement is a fraction of a batch, the value of

the fraction being the fraction of the time taken to

process a batch which one task-change interval

occupies. The component of the buffering requirement

which is proportional to line speed is twice the

number of bits which are transferred in one

task-change interval.

W^""T"^. Ill pui«^^HI~,l . I i'

Latency Buffering 11-53

This discussion has assumed that the data either comes in

from the device, is processed by the program, and

disappears, or is created by the program and delivered to

the device. In fact, a more typical situation is that the

data comes from a device, is massaged by the program, and

then delivered to the same or another device. This can be

taken into consideration in the above analysis by assuming

that there are two processes, one which takes data from the

device and does half of the processing, and another which

then finishes the processing, and delivers the data to a

device. If we assume that the devices to which the data are

delivered are of the same priority as those from which they

come, the effect is simply to halve the processing time Tp

in the buffering computation. In this case, the number of

bits of buffering required is 2*N*Tch/Tp+2»R*Tch.

Note that by rearranging the priority levels of various

devices, we can decrease the buffering requirements. For

example, if all output devices were made lower priority than

all input devices, then the longer buffers would be required

only for the output devices, not for the input. Similarly,

if the various input devices are given a priority ordering,

the higher priority devices do not need as much buffering.

This latter arrangement is unattractive for reasons of

interchangeability, however.

We now give a simple numerical example of a e'evice which

transfers 1000 bits before requiring processor action, on a

. ■- i ii». j« -- -■■• — ■--■-.—^—,■.......-.

Latency Buffering 11-54

system in which task-change points ocnur every 300

microseconds, and a total of 900 microseconds ol processor

time is required to turn around a 1000 bit packet. Table

11-1 presents the amount of buffering required by this

device at data rates of 50 kilobaud, 250 kilobaud, and 1.3

raegabaud.

50 Kb
250 Kb
1 .2 mb

Bits of Buffering

697
817
1447

Table 11-1
Latency Buffering Requirements

It should be roted that these figures are worst case; the

probability of all devices simultaneously needing service is

small if there are many devices, and the probability of all

processors being just past a task-change point is small if

there are many processors. If one is willing to accept a

small probability of losing data, these buffer sizes can be

significantly reduced in some cases. However, buffering of

tnis sort is not difficult to obtain using today's MOS

(Metal-Oxide-Silicon) technology. Device interfaces have

been designed and fabricated with on-card buffering of 512

or 1024 data bits for both input and output, using 4-bit

wide by 64-bit long asynchronous FIFOs, in 16 pin DIPs (Dual

Inline Packages) (Fairchild 3341).

i

UMHIMittllil 11 «if n>ircMI**"*~—*~ .-.i...*^,;...-,r^.-.. -1...-^.* rftHtoati V OT^innl-Jlrr iilm'ii-rtri it'i liiHHIr ^— ■ —^•*~fa.^-:.u^^i-JJj

Other Disadvantages 11-55

II B 2 (. - Other Disadvantages

(1) High Overhead if Interrupts Infrequent

The time between task-change points, Teh, is a key

system parameter. As discussed above, if it is

chosen to be very long, the speed of response of the

system to new tasks is slow, requiring additional

latency buffering, and perhaps annoying people. If

it is chosen to be very short, on the other hand, the

overhead involved in checking for new tasks becomes

large, decreasing system throughput. If actual

interrupting conditions occur only very infrequently,

say on the order of seconds to minutes, one is forced

to choose between two unattractive alternatives. One

-hoice is very high overhead, if the task-change

interval is on the order of milliseconds or

microseconds, in which case almost all task-change

noints would find no new tasks and therefore the

amount of overhead paid for each new task is high.

The other choice is to incur very large latency

delays if the task-change interval is made on the

order of seconds to minutes, resulting in very large

per-device latency buffering and very annoyed people.

In this sort of environment, an interrupt structure

is probably more appropriate.

»» »|i»i|inii«»i.i: »iipn-i'ii —^-^-^mipBpmpgaiiaiiii i. .11. in iiiipi«Mnfmpi|pgp||cpRM ■w^ nnniiiivuMii ->II-.I J HI

: Other Disadvantages 11-56

(2) Vulnerable - Requires Cooperative Processors

Another problem with this scheme is that it requires

that the processors cooperate, that they always

inquire whether there is a dilTerent task to do every

Teh. This presents a particular problem in the case

of bugs^y code, which might loop, or if the code is

regarded as "user code'1, in which case it can be

counted on to do any conceivable mischief. These

problems car be avoided by using true interrupts

solely to check the running code for obedience to the

Teh parameter. This could be done by having each

processor, each time it checks for a new task,

increment a count, which is tested and zeroed by a

periodic interrupt routine. If there have not been a

sufficient number of new-task checks, the running

program is declared buggy and unrunnable, and the

processor turns to other matters. This scheme

implies a small increase in overhead, both at

task-change check time, to increment the count, and

at the periodic interrupt time, to service the

interrupt. This overhead is generally quite small.

II C - Interactions F'or Reliability

In this chapter, we are considering interactions between the

processors of a multiprocessor. In the first section, we

.^^■■^-.^.^ ^ x ■„■..,.; ., ..«.^^ ^,-,^..„^..-. .^,^.^...— -■:^.
-■-■

^■■"i •'•"''.•vr^^mmufffpufffm 11: . n1-' -^m

Interaccions For Reliability 11-57

explored the fundamental prerequisites and mechanisms of

such interactions. In the second section, we studied a

particular cl.-ss of interactions, namely those which deal

with the problem of allocating tasks among the various

processors. In this third and final section, we will deal

with another class of interactions, namely those whose

objective is to increase the reliability of ttl« system.

The term "Reliability" is used to signify different things

at different timts by different people. We will begin by

considering the distinction between accuracy, a measure of

the reliability of a given computation, and availability, a

measure of the probability that a system is useable at a

given time. Our discussion of accjracy will be brief,

centering on Modular Redundancy, the technique classically

used to achieve both accuracy and availability. We observe

that accuracy will be improved by our efforts to improve

availability, but by a smaller amount than that achievable

by Modular Redundancy.

We will then turn to methods for improving availability, our

primary concern. We will first consider the impact on

availability which system configuration can have, by

calculating extreme limits of the availability. This range,

from terrible to virtual perfection, motivates a careful

examination of engineering considerations so as to favor the

more perfect end of the scale.

I
Interactions For Reliability 11-58

The first technique we consider for improving availability

is redundancy. We note that the redundancy inherent in a

homogeneous multiprocessor diminishes the need for Triple

Modular Redundancy or other expensive schemes, but needs

techniques for error detection. We will consider a number

of appropriate techniques. We then consider other

interprocessör Interactions to improve availability. We

conclude with a brief discussion of the loss of

computational bandwidth suffered in the event of a failure,

and the cost of adequate extra computational power to permit

full bandwidth operation through component failures.

We now consider the difference between accuracy and

availability.

The difference between accuracy and availability can perhaps

best be understood by example. Which is more "reliable", a

computer which is down for only fifteen minutes each month,

but which gives a wrong answer once each hour, or a computer

which is down at least half of each day, but which doesn't

give a wrong answer more than once per century? The answer

depends on the application. In general both numbers are of

interest. We will refer to "accuracy" as a measure of the

probability of a wrong answer, measured in computational

errors per unit of computation. We will refer to

"availability" as the probability of a system being up,

being a dimensionless ratio of up time to total time.

Interactions For Reliability 11-59

We wil.1 now consider techniques for improving each of these

parameters in a multiprocessor. Our emphasis is on

availability rather than accuracy primarily because in most

applications the accuracy of technologically current

corapuuers is adequate, whereas the availaoility of many

computers is unacceptable, and may be much worse in a

multiprocessor than in a uniprocessor.

II C 1 - Accu racy

Central among the techniques conventionally used to improve

both the accuracy and the availability of processors, and

especially of multiprocessors, is modular redundancy with

spares. The central notion in this scheme is that every

operation is performed simultaneously by three or more

equivalent parallel components, and that there is logic at

the output which polls these paths and reports the majority

result. This will detect all single component failures,

other than in the output itself, as well as giving an

indication of the failing path. Other components are

available as spares, and when a path is determined to be

failing, these components are substituted one by one for

those in the failing path, until the problem is corrected.

Modular Redundancy is useful for improving availability, as

we shall discuss in the next subsection. In the context of

accuracy, Moaular Redundancy is a vitally important

technique in that no transient failure will go undetected.

t" " ." ii mi, J. in -■"■"■ .-

Accuracy 11-60

In certain critical applications, such as life-support

systems, this is an overriding concern, and Modular

Redundancy is the appropriate technique for achieving

acceptable accuracy. In most applications, however, the

demand on accuracy is less stringent, and cost

considerations outweigh the advantages of this technique.

Note that the cost of a trebly redundant system is more than

three times the cost of the same system without redundancy.

Modular Redundancy can be implemented in a homogeneo.s

multiprocessor architecture by requiring that three

different processors perform each computation and report

their results to specialized polling hardware before the

answer is given. Such an architecture has merit if the

accuracy requirement is high for only a fraction of the

total usage of the multiprocessor, and the increased power

available from the same system behaving in a non-redundant

fashion is desired at other times.

ii c 2 - AvaUabUitY

We now turn from considering how to ensure that an answer

the computer gives you is the right one to the question of

how to increase the likelihood that the computer is

available to answer at all. This issue is of vital concern,

in part because the availability of technologically current

processors is less than is desirable for some applications,

and in part because the availability of a poorly designed

.^^ _ .^.— . ^■■>.-..-^ -«- ^- .ii mm 11*111.1 , in i -- --.-.-

Availability
11-61

I

multiprocessor can be much worse than that of any of its

components.

We will begin this subsection with a discussion of the

limits of reliability which mignt apply to extremes of ?ood

and bad system design. We will then turn to redundancy as a

method for improving availability, pointing out that if

mechanisms are incorporated into tne design to detect

failures, then redundancy levels far less than triple can

achieve very high availabilities at very small cost. We

Will then consider other mechanisms for improving

availability, based on inter-processor communication and

control. We conclude with a brief discussion of the

reduction in computational bandwidth due to component

failure.

II C 2 a - Limits

The availability of a system can be approximated by the

product of the availabilities of various vital subsystems.

Thus, the probability of the system being available might be

the product of the probability that the processor subsystem

is available and the memory subsystem is available and the

I/O subsystem is available and the intercommunication

subsystem is available. Let us now consider the

availability of a subsystem as a function of the

availability of its components and their configuration.

* .»i n^ "■-'*<i"'>i» ^i... ■mi i — ^i., i

Limits

Let:

11-62

S Be the subsystem availability

C Be the availability of a component of the subsystem

N Be the number of such components in the subsystem

If the system is configured such that all components are

required to be functioning in order for the subsystem to

function, then the probability of the subsystem being

available is the product of the availabilities of the

components, or:

S = C«»N

An example of such a configuration would be a multiprocessor

in which the processors are specialized, and each must do

its own part of the overall task, and where further all cf

these parts must be done to process each datum.

If, on the other hand, the subsystem is configured so that

no component is vital, and any component can do the task of

any other, then the availability of the subsystem can

approach the probability of any compor^nt being available,

or:

S =1-(1-C)»»N

An example of such a configuration would be a homogeneous

multiprocessor.

■■'•--'-—^-^- ■••'

i
■ ■■■..-,..■,.■ ^ ^A— . ..-. ^..^i« . .-> .^ .^.^ . .. ^ - — ..^.-^-J ^

-•v. iwiii.il nj;
r^ v '-y »IJPIPWWP

Limits 11-63

These two cases are worst and best, so that the actual

availability of a subsystem will fall somewhere in between.

Thus,

C«»N < S < 1-(1-C)»»N

Perhaps the significance of these limits can best be

understood with a numerical example. Suppose we consider

the availability of the processor subsystem of a twenty

processor multiprocessor, with an individual processor

availability of ninety percent. These limits would then

correspond to subsystem availabilities of .12 and 1-10**-20.

This means that the configuration makes a difference between

this subsystem being up 12 percent of the time and being

sufficiently reliable that the probability of a single

failure in centuries is negligibly small. Clearly, there

are other factors which make this sort of reliability

unattainable. It is nevertheless the direction in which one

seeks to move.

We now examine some properties of multiprocessors and some

techniques which can be used in their design to encourage

such a move.

II C 2 b - Redundancy

We discussed earlier the use of Modular Redundancy as a

technique to improve accuracy. It is also a useful

technique to improve availability. If a systom can continue

\
■»»

B^»»^-« ii ".in u '^■^^BBP*^

Redundancy 11-64

normal, error-free operation with two of its three

processors functioning normally and the third dead, then no

single hardware failure will take the system down.

We seek to ease the requirements on the redundant circuitry

because with TMR (Triple Modular Redundancy), the price of a

system of a given performance is more than tripled, compared

to that of a non-redundant system, since each component must

be tripled and polling hardware must be added. We now

consider methods of providing improved reliability in a

system of less than triple modular redundancy in which we

are willing to accept loss of data on failure.

By reducing the redundancy level from three to two, we can

still detect all instances of single component failure,

although we cannot correct them. If we simply abandon the

computation and back up to a checkpoint in the event of a

discrepancy, we can achieve the same degree of availability

ati a trebly redundant system, with a system cost increase of

over 100$, rather than the 200% required for TMR. This can

be done only if it is possible to remove the failing

component from the system so that it does not effect future

computations, and if further all computations are either

checkpointed, so that they can be resumed from a previous

state, or can be abandoned in the event of failure.

Even an overhead of >'\00% is undesirable. If there are

means available to detect errors without doubling the amount

I ifecamuaUuMiLil^AlWi •' ^M-aiiMiiiMMiknMM^tMMM^^a-^..^ ^ .. '...- ,-- - ■- --^ ■,...■- ■''—■• ■"' '■ ' ' ..-- ^.■,. ,..„,■

mfmmmmm™ v'' n» M i, i .p»»-

fledundancy 11-65

of computation involved, we can reduce this figure

substantially, thus improving the performance of J. system of

a given cost. In the remainder of this subsection, we

consider means of detecting failures, and actions which can

be taken on the basis of this information to improve system

reliability.

II C 2 b i - Protection

A variety of schemes have been proposed and implemented to

control the sorts of access various processors or processes

have to certain devices or locations or areas of memory.

Some of the earliest of these were done to prevent user code

from destroying system integrity in time-shared and other

multiprocessing uniprocessors. In these, the user is

permitted to execute "normal" arithmetic and similar

instructions, but is not permitted to execute I/O

instructions, since these are the system's responsibility,

or to access the system's private innards. Thus, there are

two modes of system operation: user mode and privileged

mode. The hardware keeps track of which mode the system is

in at any time, and if a privileged instruction is .executed

in user mode, causes a trap to the system. This then

provides a method for user processes to coiumunicate with the

system in a fashion controlled by the system. The user code

executes an illegal instruction, causing a trap to the

system, which then determines whether a legitimate action

was requested, and if so performs it.

1 IIURIIIIIWWUJIW iW'IF'fWWM'WWi»'"!!, .11 IMIII-.N ■(Ijinn WW nil. (, ■lP,ipi.piHli.H<(pw«1TOimppj«^^IW«»i| i, "J. 11 i ,i w.i»r^llB«IP-lvi»»w,"iiliMi U^KJH

IW !■■ UJ^

Protection 11-66

The initial purpose of this scheme was to prevent malicious

or accidental damage to the system by user code and to

prevent unauthorized access by a user to information private

to another user or to the system. However, another

advantage of this and other protection schemes is that a

faulty program is likely to execute something illegal at

some point, and can then be flagged as faulty and stopped

before it causes excessive damage to those entities to which

it is entitled access. Programs always have bugs, and the

hardware on which they run always has bugs; a perfectly

proper program which has run for years and is part of the

system will sooner or later leap off to an incorrect

location and start executing totally meaningless

instructions. If the tightest possible restrictions are

placed on all possible code, not just user code, the

probability of a violation of some protection on any given

instruction becomes high, and thereby the probability of

doing damage before being stopped becomes low. This then is

an argument for making as large a fraction as possible of

the words which might appear in core illegal when executed

as instructions.

IIC2bi(a)- Write Protection

11

Another form of protection u&ed in many time-shared systems

is write protection, in which one declares illegal and

causes a trap on any instruction which attemots to store

into a protected area of memory. This is useful in many

.-'^

"wwi. nilJJU-PIJIJ*.!, iiii i ■mwiiqwui ll|M«jiiiiiiiTn<niii>mqniH

■

Write Protection 11-67

situations to protect areas which are supposed to be only

read or executed from being accidentally or maliciously

overwritten. Thus, for example, multiple users can share

data bases in the confidence that no user will modify them.

This technique applies to system code as well as to user

code, to protect from and to detect software and hardware

failures, as discussed above.

IIC2bi(b)- RpaH nnd Ryppnte Protection

These arguments lead to the concept of protecting not only

against unauthorized writing, but also against unauthorized

reading and executing of memory. This sort of protection

does not of itself prevent a program from destroying a thing

it shouldn't, though it can be used to protect proprietary

code, for instance, which should be executable by the user

but not readable. Its utility in the context of the present

discussion is to detect that an unexpected situation has

arisen, such as a processor executing a table of data, and

thus to stop the processor before it does damage.

IIC2bi(c)- Capabilities

We began with the idea of protecting an assumed fault-free

system from malicious or buggy user code by defining a user

mode, in which protection was in effect, and a priviWed

mode, in which it was not. We extended this concept to

apply to unexpected actions which were not inherently

destructive, but indicated a failure, and were therefore

-^..^■J.^,. ! ^^-.H..^ --'-"■"■^•±^*^•**— ■-'- ■■-'1— ■I.-.,- -.»..—■>. ■^,~--.,^^..-Jt—...„.^..«^...:~-- -"• •-- - -'1 '■-"■■■-

"■%—- ■ ■«■i Hi^'

Capabilities 11-68

useful to stop faulty processes before damage was done. We

wish to apply this concept to "system" code as well as to

"user" code, in order to prevent hardware or software faults

from destroying the system. This is particularly important

in a multiprocessor, to proven*, a single failing processor

from destroying system resources needed by other processor's.

To accomplish this sort of protection requires a more

complicated structure than is provided by a simple

user-mode/privileged-mode distinction. We in fact require a

technique which will permit dynamic granting and revocation

of privileges to read, write, or execute areas of memory, to

certain processes and not to others, and will further detect

any attempted violations of these privileges and stop the

offending process.

A technique which provides the ability to do these and more

is a "capability" system, proposed and implemented by

various groups over the last several years [15,16,4]. In

this scheme, a new entity, called a capability, is

introduced. It is a descriptor, which grants privileges;

the hardware verifies all references against the various

capabilities a process possesses at the time. System code,

as well as user code, runs under the restrictions of its

capabilities, and thus has only as much ability to destroy

as is necessary to accomplish its duty.

The question of how capabilities are created and granted is

fundamental to any capability-based system. The scheme

... . ,.. .^. \r*i . .;u^^^^^x.^^^^.^..^|.a^t/Mrt.j.ft..tl-^ill||l--.|i ■„ '-■^---•^■^-^■^^^■n.t'iiiiff^^ iiiiriii^iMimiiiin'-hiinM'fr'rimilifliiiaiiiiif iiriiriif -i-ffl r ntfiilii

,^""^m!!WBP"PWiWf»«»M,RVBWIUP^"WH"-11 • iilli - iMWpiii"Piij|i.,w.LiiN.1.i.JU|jiiwir^wifW(|«pMiiw.J]
|l.«i|"-P ,. ii.-.ik-viP-twwTr'w-1-

Capabilities 11-69

LL_

generally used is to have a very tiny and rarely-run piece

of code which possesses a capability-creation capability.

It is then this code's responsibility to create and

distribute the capabilities required by other code. It is

claimed that this code can be made sufficiently small and

simple that it can be "thoroughly debugged", and that it

will be run a sufficiently small fraction of the time, that

the probability of a hardware failure while executing it

will be small.

While this scheme for protection is very general, powerful,

and appealing, it does imply substantial overhead in terms

of hardware and, if it is to be useful, in terms of

software. The degree of protection can be selected at the

system programmer's choice, with a continuous trade-off in

effect between protection and overhead. At one extremf., one

could simply give all capabilities to all code. This would

yield no overhead at all, but also no protection. At the

other extreme, one could obtain instruction by instruction

only those capabilities needed to execute the next

instruction. This might yield a substantial degree of

protection, but would imply enormous overhead, and thus an

inefficient and expensive system.

In designing a system, one must consider carefully where in

the range of this trade-off it makes the best economic sense

to operate, and whether the degree of protection obtained is

sufficient to justify the cost of a capabilities based

system in hardware as well as in software overhead.

J^--^,^.....: t||jfcM j. ^i,. , .■^„^■^.r_.M.^-.^t1.ii.^.J.ul..:j>TM..^.

^^WWIWWf '— ■mtn A i>.j||n|HVf>-^.iji .irmw*-—' —■ -r r--*

•T
■"c

Parity

II C 2 b ii - Parity

11-70

Since the early days of automatic digital computation,

consistency checks have been used to detect memory failures.

The most common such check is a single parity bit per word.

This bit is usually defined to be the complement of the

modulo 2 sum of the bits in the word, and thus detects as

being in error any words which have one bit wrong, as well

as any words in which all bits, including the parity bit,

read as zero.

Parity consistency checks are useful in a multi-processor to

prevent the acceptance of faulty data as valid. If a

processor should read a memory location incorrectly, it

might execute an improper instruction (what should have been

a load might be turned into a store) or might get an

improper address to a store instruction. Both of these can

destroy vital shared software resources. In addition to

verifying memories, parity is a convenient technique in

multiprocessors for verifying the communication and

selection logic through which the processors communicate

with shared resources.

We now discuss memory parity, and then some considerations

for communication verification parity.

'—' - " '^«■.■IIWIIWH««^

imvmm icg," -r-ti
•*L.W&*>Wfy *

■■ -i -^- "^-n ■■

Memory Parity 11-71

IIC2bii(a)- Memory Parity

There are a number of classic types of momory failures,

including:

1) One data bit in error

2) All data bits read as zero

3) All data bits read as one

4) One address bit wrong

Type 1 classically results from a bad sense amp, or from a

marginal driyer/core/sense amp combination. Types 2 and 3

result from bad address decoders, bad read or write driyers,

or bad inhibit driyers. Type H is typical of address

decoder failures.

Note that these failure modes relate to core memory systems.

It would appear, howeyer, that semiconductor systems will

typically fail in much the same ways. A single memory chip

failure will change only one bit in any word, since the

memory is organized as N words by 1 bit. This giyes a type

1 error. A catastrophic memory failure, such as supply

yoltage failure, could presumably destroy the contents of

all memory chips, if not the chips themselyes. This would

giye a type 2 or type 3 error. A failure in the memory

driying logic could also giye this sort of failure. Address

buffer/driyer problems might giye type 4 errors.

No single bit parity scheme can possibly detect both all

zeroes and all ones (Types 1 and 2) in a data word with an

eyen number of bits.

'••«■■ ^■i" '• — ■" mmm^iwmw *.|P"'UIUI* .'«»(!*-"'■ ^'

Memory Parity 11-72

If, however, there are two parity bits, there are many

schemes which detect, both of these classes of errors in

addition to detecting all single bit failures. One such

scheme is to write the opposite parity in the two bits; thus

01 ana 10 would be the only legal combinations, and all

zeroes or all ones would clearly be detected.

Type 4 errors (one bit address failure) cannot be detected

by any ddta parity scheme. They can be detected by

exclusive ORing the address parity with the data parity to

give the parity bit. If there are at least two

consecutively addressed bytes in each word of memory, and if

this address parity is generated for and stored with all

bytes of a word, and the parity of all bytes of a word are

checked on every read, all type 2 and type 3 errors will

also be detected, since the byte addresses will differ in

one bit (the least significant bit). This "Address Xor

Data" parity thus detects all errors of type 1, 2, 3, and 4.

II C 2 b ii (b) - Communication Paritv

The communication paths between processors and memories can

be verified simply by generating and checking the parity at

the processor, and storing it in the memory in the same

* Single check bit schemes can be devised which detect both
of these. As an example, consider a check bit defined to be
the conventional odd parity bit except that it is zero if
the data is all ones. Such a scheme cannot also detect all
single bit failures. In the example given, any single bit
dropped from a word which is all ones would go undetected.

a-^..^...^^.-^^. -■... ■.

-^<^. wmimmv.'-mmiBmriimi inni.jin wiww'*vimmMm*.iiim!iimimiimm*mmim mvm*"—^■■—.-

Communication Parity 11-73

fashion as the data. If the AXD parity described above is

used, the address as well as the data paths can be checked.

This scheme does have the unfortunate property that if a

communication failure occurs on a write, the information

stored may be incorrect, or it may be stored in the wrong

place. Tnis error will not be detected until it is read

back. While this will prevent computation errors which

might otherwise ensue from the use of the faulty data, it

does not prevent the original destruction. It also does not

identify the faulty component, since the retrieval of the

data may well be done by a different processor and data path

than that used to store it. Thus, a bad parity indication

implies a failure somewhere in the system at some time, but

not necessarily in the path used in the data fetch.

Further, a processor which has a hard failure in its data

storage path to a shared resource may store many incorrect

words without any indication of failure.

We can avoid these difficulties by checking the parity at

the memory before executing a write command, and inhibiting

the operation, returning an error indication, unless the

parity is correct. This need not slow the write operation

in many cases because core and many semiconductor memories

do not actually destroy the previous contents until w11

after the command is received.

Once the parity logic is added to the memory system, it can

also be used on read operations to distinguish between

>.•-:■.- -> -»^--•- ■i^itiium ii

•^ «,
i^m'^mmmm'wm^i *> vmimmmmmmmmi^BmmmmmmimMW'wmimfwm^mj^mmmfm*

* *m0* H i^ —

Communication Parity 11-7^

memory failures and communication failures, giving the

system and the repairman a better idea of now to fix or

avoid the problem.

We have discussed this communication verification in the

context of communication between processors and nemories.

It can be used intact to verify communications between I/O

devices and memories, for the transfer of data, or between

processors and I/O devices for command and control

information or data. In this context, however, efficiency

can be gained from the fact that I/O devices are often

clustered on busses through which all communications with

these devices are channelled; if one is willing to assume

that the communication between the devices and their busses

is reliable, a single parity generator/checker on a bus can

be used to handle parity computations for all devices on

that bus.

II C 2 b lii - Diagnosis

VJe have mentioned some techniques for determining that some

component of the system has failed in some way. In addition

to these techniques, reasonableness checks can be performed

on the various components of a system, or on the overall

system. As an example of a component reasonableness check,

the processors might be checked to see that each is

requesting new tasks at a reasonable rate. This would

detect a halted or looping machine, as well as a maunine

^..^^^^■^.L^.... "M M , , , ggggwgi^

~«s.-

Diagnosis 11-15

which is doing nothing but requesting new tasks as fast as

it could. Such a check could be performed by havinp each

processor increment a count in a common table each time it

requests a new task. A periodic timeout routine could then

verify that each of these counts is within reasonable

bounds, and zero it. While this is by no means a foolproof

system, in that there is nothing to prevent a faulty

processor from storing reasonable numbers in its own entr^

or unreasonable numbers in others' entries, it is not

difficult or expensive to implement, and can lead to an

indication of failure, and thus improve the system

reliability.

As an example of a system-wide reasonableness check, a

packet-switching communications processor might verify that

the number of incoming and outgoing packets are equal,

discounting those directed to itself. Again, while by no

means foolproof, such a scheme can lead to improved

reliability through early detection of failure.

In both of these examples, the tecnnique iescribed is

somewhat application drpendent. The ability to do

reasonableness and consistency checks depends fundamentally

on a detailed knowledge of what it is that the syste.i does.

In general, one can only check that the known rules of

operation are being followed. In a time-shared system

running user ."de, there might be very few rules, making

consistency checking difficult. It might be desirable to

.!.,. .»-J *■«_... .
. ^^^^■^^^.■.^....-. ..A-. -..■...■■..;..^^...^:.a>JJ^l..dL^fc^^v ^a^jfe^.. i^^ti^lL, .■^-J^^^.^^^-^.^:^^-JB-^-..^^^^^^^^^^^^^^

•VP«^<«iiOTf«wi«i!ipivm^pg|i9^fniiiPOTpi .^.•...i,. „..,-..,,,,

Diagnosis II-7S

impose rules for the express purpose of permitting

consistency checks. One could imagine user-defined

consistency check routines associated with individual user

programs, which might be forced to run on a different

processor from that which executed the checked routine,

whose explicit purpose was to verify the reasonableness of

the results of the computation. It would be desirable to

have high level languages able to automatically generate

these consistency check programs.

Having determined that there is a failure somewhere in the

system, we would like to localize it, preferably to an

individual failing device, and then scop using that device.

In this way, the remainder of the system can continue

operating without the errors which that device introduces.

We consider two techniques for localization, one applicable

to "hard" failures, or those which occur repeatedly, the

other to "soft" failures, or those which occur infrequently

despite heavy utilization of the failing component. In many

ways, the "hard" failures are the easy ones to deal with,

since they show themselves under testing, while the

ephemeral "soft" failures are hard.

II C 2 b iii (a) - Diagnostic Programs

We can incorporate into the system programs whose duty it is

to exercise various components, look for failures, and

identify the falling component or components. This can be

. L,:■■;...■,.
.....'"•' •--—■

OH"!» •"■»! !pjiii.i.».wii nimmyii I«MU»MII« y ».nwi WJ«JII»<,JI'."»,« "•'"■»»■•-'^w''. „B.WH-I .i.nijiyjfuipw^.'J i«■!-. J.I ■7« . •■■wiiuf 1111 ■ *j|i|^i^p|pp«j||pppu|i|iiiij|i||)iii . I.^IU J III.II.IIIIIIMIII.PIIII.PP - ™^l

Diagnostic Programs 11-77

accomplished by knowing in advance what the result of a

given sequence of actions should be. These programs can

then be run when there is some reason to believe that some

component in the system is failing. They can be run

successively on each of the processors and through each of

the available communication paths, as well as on each of the

common memories or other shared resources. In addition, I/O

devices can be checked.

Once these diagnostic programs are available in the system,

they can be run on an infrequent periodic basis, to detect

failures which might not have been detected by the

reasonableness checks, thus improving the chances of finding

failures.

IIC2b iii (b) - Diagnostic Deactivation

We have throughout this discussion assumed the ability to

remove from use a component which is failing. Manual

removal of failing components implies an extended down time

in the case of failures which make the system unuseable.

Removal can be made automatic, giving the program the

ability to selectively disable suspected failing components.

If this is to be done, one must face the issue of protection

of healthy processors and other components against

deactivation by unhealthy processors which believe

themselves healthy and the component unhealthy. We discuss

this issue briefly in the next subsection.

» ■ilMUIlllwpmipWBPPiluu.i up jinnfm^xnnilU mwiiMiilimiin n

Diagnostic Deactivation 11-78

If we assume that processors have a means of disabling

components, we have a powerful tool for diagnosis in the

form of diagnostic disabling of components. This technique

is particularly useful in the diagnosis of soft failures.

Errors can be detected in the system without specific

information as to the failing component. Examples of this

sort of error are parity errors on reading and system data

structure inconsistencies. When such an error is detected,

the first line of attack would be to run diagnostic programs

on each of the components whose failure Dould have produced

the observed effect. If this fails to show errors, for the

first few times the error occurs, we wish to recover from

the efi'ect of the error and to proceed with the job. While

some data may be lost in this process, the system will not

go down.

For those errors which occur only once, this is a very

desirable approach. For those which occur repeatedly, we

would like i.ome means of isolating the failing component.

Since we are interested in this only after repeated

failures, we have a decent measure of the expected time to

failure. Therefore, by deactivating possibly failing

components one by one until an nrror-free period of several

times the expected time to failure has elapsed, we can

isolate the failing component.

Diagnostic deactivation can of course be performed manually

if automatic deactivation is not available. As such, it is

..^^.■4r.^,.v .■mffl,,iaM|t^^

PL..i ■■ '"-s■■IIW.,» .M -i-^-c^--'.»,".—•,,, i ^.v-v.—_____________

I

Diagnostic Deactivation 11-79

a common technique in debugging conventional systems, both

hardware and software.

II C 2 c - Other Interactions

In the previous subsection, we discussed redundancy as a

technique for improving availability. We considered various

techniques for detecting errors so as to permit a high

availability without a high level of redundancy.

In this subsection, we consider various other ways in which

processors can use shared resources to improve system

availability. We will discuss processor controlled

component deactivation, direct processor-to-processor

communication, automatic restarting and reloading, and

duplication of essential components, whether hardware or

software.

II C 2 c i - Deactivation

We have repeatedly mentioned the concept of deactivation of

suspected or known failing components, for diagnostic as

well as curative purposes. As has been mentioned, this

deactivation can be done either manually or automatically,

under program control. The worst drawback with manual

deactivation is the slowness and incorrectness of human

actions. If a failure takes a system down until such time

as a person notices it, observes it sufficiently to

determine which component to disable, and correctly disables

Deactivation 11-80

that component, the system will be down for at least seconds

to minutes, and perhaps longer. This amount of (.'own time

may make the scheme unacceptable. Further, keeping a

sufficiently competent person available to do this

deactivation at a moment's notice all the time the system is

up may be expensive, if not lr jssible because of the

limited human attention span.

We are left with the option of giving the program the

ability to selectively disable any component of the system

it knows, or suspects, to be failing. The difficulty with

this is that programs also fail, and a program which has run

wild might one by one disable all or at least a critical

number of system components.

We must distinguish between the intelligently malicious

program and the runaway program which accidentally creates

random havoc. The very fact that we have decided to give

the program the power to decide when a component should be

deactivated impliej that a malicious program, designed to

destroy the system, can deactivate anything which can be

deactivated if failing. If the system is to run "user"

code, in an environment in which a malicious user is a

possibility, the deactivation procedures must be possible

only ;f the processor is in "exec" mode, rather than "user"

mode.

.. ..^^—^-~—^. —- .-.

inn im miau«. BHummm •»w^^wi i i " '•i"""1 pp-w nnqRPWMvmf« Pul»«!»

üeactivation 11-81

Protection against the runaway program is feasible by making

the deactivation procedure "difficult", in that it is

unlikely to occur during the execution of a random

instruction stream. A technique to provide such a difficult

procedure which is straightforward and inexpensive to

implement in hardware is to require that a password be given

by a processor to enable the deactivation hardware. This

password should be a "complex" pattern; all zeroes and all

ones are undesirable since machines running wild often store

these patterns thrüughcut memory. Ideally, the password

should be a pattern which appears nowhere in memo;-y and

never occurs in any of the processors' active registers

during normal operation, since a common node of processor

failure is to store an active register throughout memory.

The intent of these procedures is to minimize the likelihood

of an "expected" failure mode causing undesired

deactivation. Surely, however, there must be code somewhere

in the operational system whose effect, when executed, is to

compute and store the necessary password, and then

deactivate a failing component. This code must be present

if automatic deactivation is ever to occur. We must then

face the possibility of a failure causing the program to

leap into the middle of this code, thereby producing the

undesired deactivation. Some degree of protection against

such i failure can be afforded by clever coding of this

program, so that various consistency checks must be

I)«»J»J,|". -"■— -pawmmmmf^n
•m'mmi 4^'

Deactivation 11-82

performed before the damaging sequence can be performed.

For example, a processor might compute the password one bit

at a time from various internal flags which should be in a

known state at any time deactivation is legal.

It is possible to require agreement by two or more

processors that a component is failing before that component

can be deactivated. This can be accomplished in software,

by requiring that a processor be given half of the password

by another processor.

The objective of these techniques is to make it increasingly

unlikely that a failing processor will fail in such a way as

to deactivate working components. F - this protection a

penalty is paid in the execution time of a desired

deactivation. However, since component failures, and

therefore deactivations, are presumably infrequent, this

poses no significant difficulty. Increasing the level of

protection excessively may decrease the system reliability

by making it impossible to deactivate failing components

before the failing component destroys the computation which

is attempting to deactivate it. Thus, a scheme which

requires cooperative agreement between processors,

communicated by way of flags in shared memory, may fail if

the failing component is a processor which is writing zeroes

throughout memory, thus clearing the very flags necessary

for the deactivation. The detailed decision on the exact

degree of protection desired depends on a detailed

■ ■ ■--■—
^^J<.J^^^.^-^.,.-^...,---:.-^-^..^^ -'-^'^--"-^■■' £. ^L*. .i

^.->^.

Deactivation 11-83

■

understanding of the possible failure modes and their

probabilities. This information is never fully available,

and at design time is at best a crude guess. Therefore the

exact level of protection, embodied in the deactivation

computation cocedure, should not be thought of as finished

until extended periods of field operating time have

demonstrated that the system failure rate due to incorrect

deactivation, and that due to the failure of deactivation

when required, are sufficiently well balanced that neither

causes an excessive degradation of system reliability.

IlC2cii- Processor to Processor Communication

Processors differ from other components in a system in that

a great deal of information is required to specify their

state. Most apparent are certain control and status bits

traditionally referred to as the "Program Status Word". In

this category are bits which indicate whether the

processor's interrupts are enabled, whether it is in user or

exec mode, whether overflow conditions exist, and so forth.

Another bit which is sometimes included in the status word

is a run bit, which indicates that the processor is

currently running. In some cases, the processor can be

started and stopped by storing a one or zero into this bit.

However this bit is accessed, it forms an important element

of the state description of a processor.

— '^■•'^ttiiiMiniiiiMirtiiiiiiii M
-..^.^^...^.^^^.^^.^^^i^;^^...,^,^«^,^^^^...^v.u-^^:,.^.^.^.,,... ^.„^v,^......!..^., .„ :.^^..^.,^i^uai^airiiito

^II mm: n^-

^.l.^lill IHI 1 I III ■111 . I P ■ »I I 11 I !l—PWiW

(
Processor to Processor Communication 11-84

Other st"te information is contained in the processor's

program counter, accumulators, and other active registers.

In architectures utilizing cache or other "local" memory,

private to a particular processor, this memory can be

considered a part of the processor, and as such its contents

are part of the state descriptor of the processor.

Because of the abundance of information required to define

the state of a processor, deactivating and reactivating

impose certain problems different from those encountered

with other components. Clearly, means are required to

simply halt and start the processor. Additionally, to

permit determination of the causes of failure of a

processor, it is desirable to access other state information

such as program counter, active registers, and local memory.

Any of these being incorrect can account for a processor

crash; examination may help to determine the reason for

failure, and thus permit more rapid repair. If the problem

was a software bug or a "soft" hardware failure, which

occurred only once, the ability to set any of the state

indicators to a correct value will enable healthy

processors, automatically or under human direction, to

correct the problem and restart the crashed processor.

This argument applies to whatever "private" memory the

processor has which is rot generally accessed by other

processors, as well as to the processor's active registers.

We thus require a general processor-to-processor

LÜ ■— —^r-

Processor to Processor Communication 11-85

communication path through which one processor may examine

or set another processor's registers and memory. ihis is

particularly convenient in some of the modern single bus

machines, in which active registers and state indicators

respond in the same way as memory locations. We then can

provide a commur.ication path from processor to processor

similar to that provided from processor to memory. Since

the utilization of this path is very low, being used only in

case of processor failure, it can be a multiplexed path

through a central switch, rather than requiring a more

complete connectivity. Since this path does give any

processor the ability to halt or in other ways crash any

other processor, it should be subjected to the same

protection constraints discussed above under the general

topic of component deactivation.

IIC2ciii- Automatic Restarting and Reloading

Given a communication path over which a processor can halt,

examine, and restart another processor, we can survive a

large fraction of the processor crashes which occur,

particularly in the developmental and early operational

stages of a system. The software bug which causes the

processor to loop, halt, or leap to an area of memory from

which it should not be executing code can now be survived,

and the processor, which was down, can be repaired. In

addition, a common mode of hardware failure throughout the

life of the system, the "soft" or transient failure, such as

L _ .

"■ ijiji^n, i iiiam !ii(R I I 1 |l .IJU I' —^~-

Automatic Restarting and Reloading 11-86

a bit being picked up in the program counter, can likewise

be survived, and the processor repaired. To do this, the

processors need to be able, on discovering another processor

down, to record whatever state information night be useful

for a later diagnosis of the nature of the crash, so that

the hardware or software bug can be eventually 'epaired, and

then simply restart the processor at a clean restart point

in either private or shared memory.

This procedure will fail if the code which that processor

will execute upon restarting has been destroyed, either by

hardware failure or by runaway software. In this case, it

is desirable to have some mechanism for reloading the memory

with a fresh copy of the code, to prevent such a transient

failure from taking a processor or even a system down. The

simplest technique for preventing memory from being

destroyed is to make the memory Read-Only, so that there is

no way for software or transient hardware failures to

destroy it. The disadvantage of Read Only Memory (ROM) is

that software changes, inevitable during the early stages,

and virtually unavoidable throughout the operational life of

any sophisticated system, imply significant and expensive

hardware changes, in that the ROM must be replaced with a

new ROM with the new program.

Another technique for survival of incorrect memory contents

is to provide a copy of the contents of memory somewhere in

thN system and a mechanism' for reloading a memory with

— - ■..r^.. , .

iiWP>HWI<-> ■ ' ■ ,^f «■»WMIMI iPllliJ^M»WliW"ll'"I^WI «iw*J

■*»l»— -^

Automatic Restarting and Reloading 11-88

This may be accomplrshcd over conventional communication

lines, if the systems are so interconnected, or over a

dial-up line. The reloading ma/ be requested either by the

failing machine or by the central office. There are

problems inherent in either source of requests.

If the responsibility for requesting a reload lies with the

failing system, there is a problem if the system is failing

sufficiently badly to be unable to request the -eload. If

all of the processors are halted, where is the -equest to

come from? Simply disabling the halt instruction answers

this problem, but raises others, and does not solve the

problem of the looping machine, and others. Another

approach is to add a "watchdog timer", a device to which the

program periodically reports its health. If this device

does not hear from the program in a predefined long time, it

forces the suspect processor into an error recovery state,

which may include reloading. Such a device fails if the

program is healthy enough to inform the timer of its health,

but not healthy enough to carry out its duties.

These problems are overcome by giving the initiative for

reloading the system to an external observer, such as a

centrr.l office. This option has disadvantages in terms of

response time, particularly if there is a human involved.

It also has a fundamental problem in that there are now two

portions of a system entirely at odds with each other, each

of whose design objective is in some sense to disable the

- -"—^- ii^^amäMttiMmM

I
I

-■ '~*k ■ n 'i II ' •"""'* i ' -nn "- -^Si..

I UIPW, I »Mi li J M.|| III« J| ■P!Pip!WW^«B«"^

Automatic Restartinp; and Reloading 11-89

other. The first of these is the normal system fault

diagnosis and recovery procedures; the second is the reload

mechanism.

The primary duty of the fault recovery procedures is to

diagnose aspects of system operation which are interfering

with, or causing damage to, normal systeia operation, and to

deactivate the guilty component. A system which believes

itself to be operating normally and correctly sees a device

which is trying to reload it - meaning that it is trying to

alter the contents of memory - as being destructive to

normal system operation, and as such believes that its duty

is to disable that device, or in fact as much of the system

as is necessary to isolate itself from that device. This,

if successful, will destroy the ability of the reload

mechanism to reload, as well as removing normally

functioning components from the system. If, on the other

hand, this reload .nechanism has some special ability to

prevent its being disconnected, this mechanism becomes a

systemic Achilles' heel, whereby any hardware or software

device which manages to look like the reload device achieves

invulnerability in its efforts to destroy the system.

These two considerations, failure survival and externally

activated reloading, are in direct conflict. It is

unacceptable to give either absolute authority; a balance

must be achieved. This can be done by making the sequence

of events that the reload device must do an unlikely

' ' ■' ■"^^^^ l I L- ■■WWWPflPB»

Automatic Restarting and Reloading 11-90

sequence to occur unintentionally. This approach is similar

to that taken in the case of component deactivation, where

again, a balance was required between granting abilities to

fault recovery procedures and preventing their accidental

abuse by unhealthy processors. In the present case, the

reload device might be made somewhat higher speed than the

processors' deactivation procedure, so that as intelligent

commands to disable processors are received, they will

gradually win over the processors' attempts to revitalize

each other,, since they will occur more rapidly than the

processors' commands. However, even if commands to disable

are accidentally generated by the reload device, the

probability of a stream of them occurring at a sufficient

rate to disable a large fraction of the processors will be

negligibly small. Thus, whatever might have been

accidentally disabled will be brought back to life by the

remaining processors.

There are problems both with an internally motivated reload

scheme and with an externally motivated reload scheme. The

two are not mutually exclusive; a practical multiprocessor

can profitably employ both simultaneously.

II C 2 c iv - Duplication of Essentials

In order to survive the failure of a component, either

hardware or software, there must be a backup for that

component which can be substituted for the failing component

OftÜftÜ ■- - . J-L-- -■■■'- ■*-- ■■^-..■■^-.■^V-J. mimiimmmm*m**^mm

I^U I M.lllilVIIlM VIU'L ■"4»-IJI ^# li(lllfllI|»|")JW^«ll),|l,l I" J" ! 1,1^ »I i«iPMlJHp" w «'-I — mi.pr«Li^vi J^lijlli III pj*^**-*^ 1.4 JlL,Hl^u<mqnp^p|p).pi|f|l|lll .^ll MI-'T.^""

II»II»M Hj,, "'l'•*J^VIWI» l^rii ^

Duplication of Essentials 11-91

in the event of failure. These backup components need not

sit idle until a failure; they can be used to improve syrten

performance under normal operating conditions if a

degradation to the system performance without them is

acceptable on failure.

k hardware homogeneous multiprocessor has a strong advantage

in this area, since homogeneity implies that the various

processors are equivalent, and thus each acts as a backup

for the others. In the case of a multiprocessor which is

not hardware homogeneous, there must be at least one backup

for each type of processor. If there are I/O devices which

must be kept operational through processor failure, a system

with a tixed processor/device relationship must have each

device connected to at least two processors.

There must in general be a backup for each type of component

which is essential to system operation, if we wish to

survive a failure in that component. In addition to

processors, this applies to memories and to I/O devices.

Duplication of these is generally straightforward, and

affects system size and cost, but not fundamental design

concepts. Duplication of the task allocator is more

difficult, since it is in a position to decide what task is

to go to which processor. In an interruption-oriented task

allocation scheme, the problem is extremely difficult, since

the logic is forcing the processors to new tasks, and the

intelligence of the processors is therefore not available in

.11. 1

T W»»i^BVW«^«W»«lii II #l IIIK«! ' ■»•'■T" " ' '."' "

Duplication of Essentials 11-92

determining the sensibility of the order. This can be

resolved by distributing the interruption logic, so that the

logic is closely associated w.th the processor it is to

interrupt, and further giving the processor the ability to

select which set of interruption logic will be active. If

the logic is then designed so that no central logic failure

can put the processors into loops so tight that they cannot

detect the failure, single failures can be survived. The

overhead, in hardware, software, and design time, of such a

system is high: in addition to duplicating the complex

interruption logic, there must be selection logic at each

processor, all of which hardware is costly; the software to

determine the reasonableness of an interrupt must run at a

high enough priority to prevent being shut out by erroneous

interrupts from the failing hardware, taking substantial

amounts of program bandwidth; designing the interruption

logic to be such that no central failure can cause so many

interrupts that the program cannot survive poses a difficult

design problem, which will be extremely hard to debug,

because not all possible failures will occur during the

debugging phase. A simpler and perhaps less expensive

scheme is to use Triple Modular Redundancy at the logic

component level for this aspect of the multiproces.-aor. This

technology is well understood, and given the complexity of

the program-controlled selection logic, it is not a great

deal more expensive in hardware cost.

"j:-j"-2—aj ' —^^

• ■

-v\. »»•■»«»-HS.'

^••imi wvmwwW*!" ■t' ..■Mi.« liupfipipmn.ua

Duplication of Essentials 11-93

f

The problem of duplication of task allocation hardware is

much simplified in a voluntary task chanpe system, as

discussed earlier. In such a system, the processo--s inquire

as to the existence of new or higher priority tasks at their

own convenience, and thus can easily discover

inconsistencies before being given yet another new task. A

number of techniques are possible to permit usage of

multiple task allocators in a voluntary scheme. The

simplest of these is to have processors and other devices

which reference the allocator use the different allocators

in a round-robin sequence. This has the disadvantage that a

task of the highest priority cannot be assured of being

serviced before others of lower priority. If this causes

problems in the system responsiveness to high priority

tasks, the allocators can be usea in a priority ordered

fashion, that is, all processors will first inquire of the

highest priority allocator, and only if that is empty will

they inquire of the next highest, and so on. Processors and

other devices needing to add entries to the allocator's list

will choose which allocator on the basis of the priority of

the task being added. In the event of failure of an

allocator, the processors and aevices will agree among

themselves on a new priority ordering of allocators, leaving

out the faulty one.

If there are no more kinds of tasks to be stored in the

allocators than can be stored in a single allocator, this

»a.Wj.-.^.a- - . »■IHiMM HMHHtaM*

■MM

Duplication of Essentials 11-95

I ;

was such as to destroy information about the process it was

executing.

In addition to the software backup provided by duplicate

local memories, it is desirable to have a backup of the code

in common memory, preferably in another physical section of

common memory, so that if this information is destroyed

either by a transient hardware or software bug, or by a

physical memory going down, the system can continue tj

operate without necessitating a time-consuming reload.

This code sitting in common memory, not being used for

extended periods of time, may become invalid because of

hardware or software failure. Such a failure would

ordinarily go undetected until the code was needed for error

recovery, at which time a reload would be necessitated, thus

nullifying the time advantage of having a local copy. This

possibility can be made extremely unlikely by having idle

processors periodically compute and verify checksums of

areas of core, and upon detecting an error, request a reload

before it is needed.

II C 2 d - Bandwidth Reduction on Failures

We have been considering how systems may be designed to have

a good chance of surviving component failures without

resorting to the difficulty and expense of TMR. The

objective has been to design a system with backup components

which can be used in the event of failures to keep the

"...._. ^.■■. . _..: -^, ■■'""■ ."W "7.':.~.-.

^VVX^MI ■■IM» »■■.(■ IPIIB-P^ Uli» 111. J III II«! Ill ■■ IU^ I 1 II

> i in» in »"■I jny, ■ '* "^TVIMII » UMI'.II —■^—i i "^.. •^_. .

'm**mmmimmm*m*i'mmm'im* >IM* ' ■ ■ mi- H I umim.. <

L

Bandwidth Reduction on Failures 11-96

system operational, but which are utilized before failure to

improve the performance of the system. This concept is

useful only if the system can be profitably used with

diminished performance characteristics. If, as is the case

in certain real-time applications, a certain amount of

computational bandwidth is required, and any additional is

wasted, while anything less is useless, then a reliable

system must have enough spares to keep sufficiently

operational through expected failures to support the

required computation, and these spares are not useful until

a failure occurs. Even in this case, however, the

techniques herein described require only one extra of each

component type to be able to survive any single component

failure, where TMR requires three tokens of each component

type, plus selection logic.

In the event of a component failure, the computational

bandwidth is reduced. The actual amount of the reduction

depends on many system parameters, including how heavily

that token was utilized, how many other tokens of the same

type are in the system, and how dependent other components

are on that token. Often, failures in one component will

make other components unuseable. For example, a memory

which is connected to a bus with other memories, and which

goes down in such a way as to force a bus data line to zero,

will take down all other memories which must be accessed

through that bus. Ignoring this effect for a moment, the

j. .J-...^^ .-^^ .-r^-^.^.L. ^t.. --_.i^. ■jE-.hw-.J- i^ .*■--.■.■ ^-.^..i. .~i*:^>*al,~i

m*" ■ju.ii.jiilini 11 '« ■■,l "»i^ ll"■, ' V1

inm • * «» Hg*
■ ■MIII i p« .■ iUii1-""U'V'"'»"««!!«!!*!!!!

Bandwidth Reduction on Failures 11-97

effect on system bandwidth of a single component becoming

unuseable is to multiply the system bandwidth by a fraction

between one and the fraction of tokens of that component

type left running. The exact value of that fraction depends

on the utilization of the lost component and tne increased

queueing delays at the remaining tokens. The fraction will

not be less than (t-1)/t, for losing the t'th token, since

that is the amount the system bandwidth would be diminished

if all t were being utilized all of the time, and if the t

were not fully utilized, the load which the failing unit was

carrying can to some extent be taken up by the remaining

units, thus lessening the Impact of the failure.

If a component failure causes other components to be

unavailable, their loss can be treated as successive losses

of different tokens of the same or different types, and the

overall effect is therefore to multiply the computational

bandwidth by a fraction between 1 and the product of the

fractions of the various component types which continue to

be operational.

A precise measurement of this degradation can be obtained by

analyzing, simulating, or measuring the performance of the

system with and without the failing component.

-^3.f.*,;jfaj-^—

Ill II INI II.M1IIWLU.I l| PJI .|BI,.|I.IJI .11 llim,llll>l|lll.l| ,..iyill MJV. I III1H..I .I^IIMIipilWI^I Jipi III. W^WUPIPPPIPPWF!« i ■. " mm^mw^mmmnfm
*m

Summary

Summary

11-98

This concludes our discussion of the interactions among the

processors of a multiprocessor. We began this discussion by

considering the primitive interlocks necessary to permit

meaningful communication. We observed that while error

immune hardware arbiters cannot be built, circuits with an

acceptably low error rate are straightforward, although they

do impose a small bu1-- significant delay. We concluded

further that indivisible test/modify sequences are

worthwhile but unnecessary, and that the selection of the

proper sequence can substantially improve system

performance. We briefly addressed the topic of queueing

delays for shared resources, and introduced the concept of

bandwidth matching.

In the second section, we considered the issue of assigning

tasks to processors. We considered a number of schemes

based on interruption, then turned to voluntary schemes. We

concluded that with an inexpensive hardware task queue, the

voluntary scheme can provide remarkable simplicity,

efficiency, flexibility, and reliability.

In the third section, we considered those interactions among

processors whose objective is the improvement of system

availability. We considered a variety of engineering

techniques which can be used to detect failing components,

and then turned to ways of organizing systems so as to

il i.in.i.i'.Tif----- '■-■J-"'.—^■.'-■--■* -- ■ - ■'-'-' ■■ ^ ^A-
■ ■„..^.„..l-Mvl.....^^-. .. .^-^-u^..

■ - ■ -

ft ,
••-■ - M

, .HPI^I.^i.'-wy-iw-w-/- 'y ■*»'.»* KiFnpp^Vwp

1
Summarv 11-99

utilize this and other information to permit the system to

survive component failures.

-•• '■ '■■'•'■ -T^r^l^i^WWJB

■

*!«

ffSCEDINQ PAOB BLANK.NOT FIIMBD

Chapter III

ARCHITECTURES

In the first chapter, we discussed the distinction between

data parallel and control parallel multiprocessors, and

concluded that control parallelism was the structure we

wished to investigate further. In the second chapter, we

discussed aspects of the interactions among the processors

of a control parallel multiprocessor. We explored the

difference between synchronous and asynchronous structures,

and concluded that the flexibility of the asynchronous

structure made it the one we wish to pursue. We considered

the problem of allocating tasks among processors, and

concluded that voluntary algorithms optimize efficiency,

reliability, and cost. We investigated various approaches

to improving the system availability, and concluded that

many techniques for identifying and surviving hardware

failures can be beneficially incorporated into the design of

a multiprocessor.

In this chapter, we will consider various architectures, or

system organizations, for control parallel multiprocessors.

We will begin by discussing two general questions: whether

processors should possess "private" memory, and how to

select a processor. We then turn to an analysis of the

overall system structure, presenting various possible

arrangements, and pointing out the reasons for the

weaknesses and strengths of each. In considering

organizations of systems with very many components, we come

■'; -■"

—^^-'"*'^-^<—^■W»»«—ii iny J ''" * '^^■■ll I 111 I ' *«^—1^»^~ «•»."^ || -
(PPMnmuP

Private Memory

III A 1 - Private Memory

III-3

In any multiprocessor there are, in addition to the

processors and some communication medium, I/O devices and

memories. These latter may be tightly coupled to

processors, or to the communication medium, or may exist as

separate entities. An examole of memories tightly coupled

to processors is the "private" memory which an individual

processor owns. An example of a mamory which is tighcly

coupled to the communication medium is a syster: such as the

multiprocessor PDP-10, in which the processors

intercommunicate through a multi-port memory. An example of

a system in which memories exist as separate entities is the

BBN Pluribus, described in the next chapter. Similar

examples exist for I/O devices.

We discussed the question of whether the I/O devices should

be tightly coupled to processors in the second chapter,

while considering task allocation algorithms. We concluded

that reliability and efficiency are enhanced by avoiding

such a coupling. We now turn to the question of whether

there should be memory tightly coupled with individual

processors. Note that making such a coupling is not in

conflict with having additional memory which is not tightly

coupled; there are advantages to having both in a

multiprocessor. We will base our analysis of the private

memory issue on bandwidth considerations.

'~.,.. U-JJ.l

ppi.iL... prnmiw | ul ■ ■l ""Mi.M -II IJJI. 11 UI-II-.;--.«».. . .

Private Memory 111-4

To a first approximation, the number of processors required

to obtain a given factor increase in computational speed

over a single processor is simply the next greater integer

than that factor. Given that that number of processors is

required, and knowing to what extent a processor utilizes

the bandwidth of a memory, we can compute the number of

independently accessible memories of a given bandwidth

necessary to support those processors. For example, if

fifteen processors are needed, and each processor uses a

memory 505t of the time, eight memories would be needed. In

fact, as discussed under the topic of queueing delays in the

previous chapter, the asynchronous nature of the processors

implies that excess bandwidth is useful in preventing large

waiting times, thus increasing system bandwidth. However,

the present computation provides a minimum, in that any

reduction below this level will surely prevent the

processors from running at their full speed.

In general, then, the number of independently accessible

memories can be computed as a function of the following

parameters:

Bm - The bandwidth of a single memory, as measured in

bits per second obtainable by a processor.

Bp - The memory bandwidth used by a processor, measured

in bits per second.

P - The number of processors.

^..^.^......^•.w -■ -•■**■ — - -L-V-^ i.^ ^w^i.^.^. g, m.fti| ^.H,.- .: .*., .^L.^.^ ^■..^■*- -:...■. -i-. v^-i..: ;*a:^..j*.,..-.i..i......i.faA. :..*■,..,..,. ■^^■■.J.--J.i^^Bi

Mil.MlW^jiaiJiJ l.,,l|JI IJ..III, lllll WUH'lllHIPWjI^WUi.W.flll'I^W ll^l.l'p1-'1 -■ '.'■■ I ■..."■!'"■"■'JfL'J'1^ till II I H^.m ^-Ui. 1^1, P ■■I'glWBM^t^^H—WPmJPJfi^imj^yHW^W^II.g, Jill ll.ipHIII Ill.tUl

-""v. *"—»-«y

Private llemory III-5

If we call the number of independently accessible memories

required M, then we have:

M = P*Bp/Bm

In this computation, Bm is the memory bandwidth as seen at

the processor, including any delays due to communication and

arbitration which are not overlapped with memory operation.

In a classic synchronous computer, the timing of the

processor and the memory is identical; at each point of each

cycle, both processor and memory are in well-defined states.

In this case, neither can get ahead of the other, and the

processor uses the full available memory bandwidth, that is,

Bm=Bp. Tn some of the newer asynchronous machines, the

processor requests and utilizes the memory only when it

needs it, so that Bp<Bm. If such a processor and memory are

to be used in a multiprocessor, there need not be as many

memories as processors. In the case of some of the new

microcomputers, the processor is very slow compared to ehe

speed of economically practical memories. In this case, a

single memory can support many processors. Using more

conventional processors, however, Bp/Bm is typically

slightly less than 1.

Given that there must be many memories in a system to

provide the needed bandwidth, we gain efficiency by

associating those memories closely with individual

processors or sets of processors, since the communication

r-w

■■min mv >u ■•M i »• <m (i ' ,' ■■ ,'.' •lumwwwmm;. i I 1 ^HfwpiWP^^w-v

Private Memory III-6

and arbitration delays which must be suffered in each

reference to common memory can be eliminated on those memory

references which need not be to shared resources. In this

way, we can increase the effective memory bandwidth,

decrease queueing delays, and perhaps reduce the number of

memories needed overall.

This technique is useful if the contents of the memories

involved are either private, in that only one processor

would ever care about them, or are read-only, so that they

would never change. Difficulties are introduced if it is

possible that one processor would want to change a word in

another processor's "private" memory. Engineering solutions

to this problem are possible, but are generally complex and

expensive.

If the memories are to be read-only, a viable alternative to

having multiple "private" copies would be to have a single

copy of this information in a high-speed shared read-only

memory, since read-only memory is generally available at a

higher speed for comparable cost than read-write memory.

However, it is difficult to get the communication and

arbitration delays in referencing a common memory down to a

small enough value to make even a high speed memory through

these delays as fast as a conventional memory which need not

suffer them. In addition, the freezing of the software so

that it cannot be altered without an expensive hardware

change is very unattractive.

_. ...■■...■^~.. .^.i..... - _...-.■■^. .,-^^-.... ^„v ^ -'MI iii iiTiiiiMiiiiiiiiii
— ■■ ■-- ■• - —

, ,iili»»>(ii|jf}|ii . lunniM^pmip«

—«-^c
JJlllllUlfJIIiPWlllillJl P WJ.Miliipiaai iffOPnvw'-v .iii«nmnM|

Private Memory III-7

in a system which may be referencing a wide range of memory

locations with comparable probability, it is difficulc to

know which locations should be in private memory. If all of

the contents of memory must be stored in each private

memory, the cost of these memories become? very large. In

dedicatee system applications, it is often possible to

identify that portion of the code which the system will be

executing most of uhe time under the conditions of heavy

system usage. This code often represents a very small

portion of the total code in the system, and putting it in

private memory will make most of the memory references

during those times when system performance is critical be to

local rather than shared memory. In the application of a

particular packet-switching digital communications

processor, for example, it has been found that putting

approximately 2000 words of "hot" code in private memory

will make 75% of a processor's references be local, the

remainder being divided between shared memory and I/O

devices.

In a system designed to run "user" code, or other systems in

which the distribution of references is not known at design

time, it is more difficult to partition code between private

and shared memory. This problem can be handled by making

the local memory be a "cache" memory. This implies that the

local memory is initially empty, and is loaded with the

contents of accessed remote locations and also perhaps

^LaÜiMmi L.-1I.J^».»J inr ^-*.. iLMi-Ä^Äk.'.*

^wmipw.'llU.) i i-.-i'- ' -w —^».i^J!i!M»iJliMiJ),":Ui

•mi mm- 1m1
"|ip"i«-i«iW.|i

Private Memory III-9

with easily identifiable sections of read-only hot code,

this code can be stored in local private memories or in

common memory. If the common memory is fast enough to

support many processors, less memory will be needed overall

if the code is stored in common memory. The cost of the

needed memory will increase as the number of memories needed

increases, but will also vary as the speed of the memories

varies, the very highest bandwidth memories available being

generaly expensive. The cost of the memory system should no

longer be measured in cents per bit, since the number of

bits required will vary with the memory bandwidth. Instead,

the measure which is relevant is the cost per unit of memory

bandwidth, this bandwidth being obtainable either from

higher sceed memories or from more memories. Thus, in

selecting a memory for storage of hot code, the available

memories should be compared in terms of cents per bit per

microsecond, whereas for storage of infrequently executed

code, of which one copy is enough to support the bandwidth

requirements of all the processors, the relevant metric is

cents per bit.

Figure III-1 presents a comparison of various semiconductor

memory devices, compared in terms of cents per bit and also

cents per bit per microsecond. Table III-1 presents the

same data in tabular form. These are costs of the devices

only, and do not include the overhead of building them into

memory systems. Core memory has not been included because

i •' IIV1 HI iitfcriiimii« irlil^ll^■^'"^, ■'"^-^^^'^••"^, ■^-■^-il- •-*'-

w »v-
"••- ^ .™T™^..™i............. > -.■•«.,

i

III-1Ü

'•
Cents per Bit

Cents per Bit per Microsecond

2U T TTT I 1 1 Ml
■

10
■

_ -
_ —

5

- ■
■ -

- ■ • -

2

- 1
•

■ ■ ■

1.0

0.5

• •

1
• •

•
■

1
-

•

- ' • -

0.2 _l 1 1 1 I ' MM
0.05 0.10 0.2 0.5 1.0

CYCLE TIME (MICROSECONDS)

2 0

^iKure III-l

Memory Costs per Bit and per Bit per Microsecond

!■«■ ii~*w~*~^~^^~m "5»WWP«WHIPPIIP»»P^F VW^^* waF^rrmrm**'*m*l*m*******^7*rr~**~*m

<*et '■i ■ >-j"

Private Memory III-11

Figure III-1 plots the following data for INTEL and Texas
Instruments devices:

Mfr. Device Cents per Cents per Bit Cvcl
Type Bit per Microsecond Time

INTEL 3101A 14.0625 01.167187 .083
INTEL 31C6A 06.4453 00.599414 .093
INTEL 3106 05.6641 00.623046 .11
INTEL 3101 11 .25 01.2375 . 11
INTEL 2105 03.9062 00.898438 .23
INTEL 1 103A 00.7617 00.464648 .61
INTEL 1 103 00.7617 00.464648 .61
INTEL 2107 01.5625 02.390625 1.53
INTEL 2102 01 .6552 01.704932 1 .03
INTEL 1101A1 03.0469 03.138281 1 .03
INTEL 1 101A 02.5391 03.884766 1 .53
T.I. TMS 4030 00.6433 00.321655 .50

The INTEL data are taken from the October 1973 INTEL data
catalog and from the July 1, 1973, INTEL Memory Components
and Microcomputer Systems price list. The T.I. data are
from a July 1973 Preliminary Specification Sheet and a
verbal quote, November 9, 1973.

lahle III-1
Memory Costs per Bit and per Bit per Microsecond

of the difficulty of comparing it precisely in these terms;

however, its performance does not compare favorably by

either criterion with the more attractive semiconductor

devices.

Memory bandwidth can also be increased by interleaving, that

is, dividing logical memory into physical independently

accessible units on a word-by-word basis. This will reduce

the fraction of any individual processor's references which

go to a particular physical memory, and increase, by a

factor equal to the number of memories interleaved, the
I

:'> .,-..-.. 4^- : , [i ■ ■ lim i- iMiiiiv«tfr-*^-A'rf^rtMiiWiiiii)Mii^aii*i ri''iii iiiliiiir^-'—'-^- —'•■■

■"•VW"ÄT^"l "^ mil l.*^...^! l lagl. J,|

Private Memory 111-12

bandwidth available from an area of logical memory. This

then can permit many processors to share a memory system

made up of memory modules each of which has a bandwidth

comparable to that needed by a single processor. As with

any memory sharing system, this necessarily slows all

references to the shared memory by the communication and

arbitration delays in accessing the shared resource. In

addition, it jeopardizes the system reliability, both in

that the code contained in that memory is not inherently

duplicated, and more importantly in that a physicr.l memory

going down makes the entire area of logical memory space

which that unit covers unuseable. The size of this area

would be greater than the actual size of the failing unit by

a factor equal to the interleaving ratio, and thus to the

bandwidth increase.

From Figure III-1, then, we may pick the memory devices with

the lowest cost per bit or the lowest cost per bit per

second, of those presented. Interestingly enough the same

devices generally, and the same particular device, minimize

both costs. While this chart does not include various other

parameters relevant to the cost of memory system design and

consumption, such as number of components, power

consumption, ease of interface, etc., these parameters also

tend to favor the device which is the least expensive. Were

this not the case, the selection of the particular device to

use would have to be made on the basis of the total design

■**j

;ll"l'^ll", m^mm^^^im^ß

Private Memory 111-13

and production cost of the system. That there should be an

obvious winner in this competition is not unusual, however,

and is due in part to the positive feedback in the market

place, in which a device which is well matched to the

current technology will tend to sell rapidly, making the

price low.

The decision to have or not have memories local to

processors is then based on the comparison between the

increment in system cost due to the increased amount of

storage required to replicate the hot code at each

processor, and the increment in system cost due to the

slowdown of processors because of the communication and

arbitration delays if no local memories are used. This

latter cost can be evaluated by measuring the incremental

cost either of increasing the number of processors and other

elements sufficiently to offset the loss in computational

power, or of employing remote memories with faster response

times. In addition to these costs, the increased bandwidth

requirements on the communication medium imply an increased

cost here also, which must be added in considering the cost

of a system without local memories. The reliability issue

discussed above also weighs in this decision, and if the

reliability implications of interleaving are unacceptable,

the additional cost of high bandwidth memories, not always

the same as fast access memories, has to be added to the

no-local-memory system cost.

Private ilemory 111-14

We have so far treated the question of whether there is an

amount of read-only hot code sufficient to justify local

memories as having a simple binary answer. In fact, this is

also a continuously variable financial consideration

affecting the size of local memory needed. The assumption

made above is that the amount of memory required is no

greater than the physical unit into which a memory system

subdivides. If significantly more memory is required to

make a substantial fraction of the references be local,

private memory increases in cost while losing in advantage.

The cost increases because there must now be many copies of

enough code to fill a number of modules of memory, implying

many additional modules. Further, the fact that many

modules are required implies that no single one is very

heavily utilized, since references are distributed among the

various modules. Thus, the additional bandwidth provided by

local memories is not heavily utilized.

In general, if a significant fraction of the memory

references are read-only references to a small amount of

logical memory space, private memories can improve the

performance of a system of a given cost by speeding memory

references, decreasing dependence on communication and

arbitration delays, and increasing memory bandwidth and

reliability.

1 —

~m~m wmf

■*~~-

• ■~~—*—m*mmm^~w p^wflgmp^n ■! i.ip.i 1" Ji' ^wpiiMi.»««iwnui.iw» n«|. IU

Picking a Processor 111-15

III A 2 - Picking a Processor

An issue of key importance in the design of a multiprocessor

is the selection of the particular processor to be used. In

essence, this operation consists of choosing the processor

most cost effective for the application. To do this, one

must define objective standards for comparison of the

price/performance ratios of processors under consideration.

Price/performance is a suitable metric for the comparison of

processors, since a given performance level can be obtained

from many weak processors or a few powerful ones.

We will now consider a method for selecting an appropriate

processor. We will first examine system design

considerations which favor more or less powerful processors

of a given price/performance ratio, then turn to evaluation

of the price/performance ratio of individual candidate

processors.

Ill A 2 a - Weak or Powerful?

Selection of a processor cannot be made on the basis of

price/performance alone, because other aspects of the system

are affeoted by the number and speed of the processors used.

The size of the communication logic will increase as the

number of processors increases; however, the timing

considerations will be less critical, since a given delay

will represent a smaller fractional slowdown of a slower

machine. In fact, multiple small machines can be

'"■■■' " ! mm
[^i^ ii.i--<'^,i, ,'^1.1 '^i—,—^— -- -^ K

Weak or Powerful? III-16

multiplexed over a limited number of communication channels

for communication with the shared resources. This will slow

the references because of the arbitration necessary in the

multiplexing, but the amount saved in communication cost can

more than make up for this.

In a system without local memories or the processors, a

processor with a weak instruction sef. suffers more from the

communication delay, since in general a weak instruction set

requires more instructions to be executed to get a job done.

This implies more memory references which must suffer the

communication delays if they are to be from common memory.

If, however, there are local memories on the processors from

which instructions are fetched, we achieve a situation in

which the only references to shared memory are those

interprocessor communications essential to getting the job

done. The number of such references required per unit of

time is a function of the job which needs doing, and not of

the number or speed of the processors doing it. Thus, in a

system with local memory, which uses the communication paths

only for necessary communication, the number of references

per unit of time which must suffer the communication delay

is independent of the speed, number, or cost of processors.

Given the above, we can compare the cost of the

communication delay as a function of 'ehe number of

processors, for a given price/performance ratio, assuming

that only the essential references suffer the delay. Call

r-r -^ -^ - - --.; ^A „■-....■- ^ .- _. .. iiiM« 1 11«

'** i m »im,.«» .IM ■ " * "^"'i ■

^■■■■■»^■»'»^■•^»^P»» **W ~-~'"- ■wwm ■»mwinWT^V.1 >.»«,"

—«•-

Weak or Powerful? 111-17

the number of essential common references per second J; call

the communication delay each suffers S seconds. If the

processor is idle while the communication occurs, then a

processor will be idle C«S seconds per second as a result of

these references. (Note that if the processor is not idle,

but productively occupied while the communication occurs, no

penalty is paid for the communication delay. This i" an

unusual case for the processors, memories, and communication

elements economically sensible today.) We thus conclude that

C*S seconds of processor time are lost each second due to

co-nmunication delays. Note that this number is independent

of the number of processors or their speed or cost. Thus,

C*S processors can be thought of as simply overcoming this

delay. The cost in terms of ehe system is then C»S times

the cost of a processor. Thus, the communication delay cost

is proportional to the cost of a given processor, and will

decrease as the cost per processor decreases and the number

of processors increases for a given price/performance ratio.

Considering processors of a given price performance ratio,

we can express the processing power needed in the system in

dollars. Call the cost of this power D. If there are P

processors in the system, the cost of each is D/P. Thus,

the cost in dollars of the communicaMon delay is C*S*D/P.

We can now compare this to the cost of the delay in a system

which utilizes N-way multiplexing to connect N times as many

processors to the same communication structure. Call the

■u^ -^^^

Weak or Powerful? 111-18

additional delay introduced by multiplexing M. Since the

number of references which suffer the delay is unchanged,

and the multiplexing delay is simply added to the

communication delay S, the cost of the communication delay

in this N*P processor system is C*(S+M)*D/(N*P). Comparing

this to the unmultiplexed cost C*S*D/P,

C»(S+M)«D/(N»P) < C»S»D/P

if and only if

(S+M)/N < S

or

(S+M)/S < N.

Thus, local multiplexing into the communication logic wins

as a technique for permitting the use of smaller cheaper

processors of a given price/performance ratio if, and only

if, the ratio by which the communication delay is increased

due to the multiplexing delay is less than the ratio by

which the number of processors is increased.

This argument does not include the cost of the multiplexing

hardware, but only its delay. To be validly subjected to

this comparison, processors would have to have the same

price/performance including the cost of the multiplexor. In

fact, the price performance of the tiniest processors

available today is less attractive than that of the somewhat

larger "mini's". Nevertheless, this argument does show the

advantage to be gained from many small processors, despite

dramatic increases in the delay necessary for them to make

their essential interprocessor communication references.

^ ^ ' II l«l IL^, '--^T^. ,. - |M|| "TT — "S^j . M _ .

i Weak or Powerful? 111-19

We have now shown the benefit obtainable by replacing a

conventional processor by a nodule of tiny processors. Tne

overall system structure then takes on a hierarchical

appearance, with each element labelled a processor made up

of sub-elements of structure similar to the overall

structure. Wc will explore this observation further in our

discussion of specific architectures.

Ill A 2 b - Price/Performance Evaluation

We have repeatedly referred to the price/performance ratio

of a processor. This number is very application dependent:

a processor with specialized flc iting point hardware might

be much more attractive than a similar processor without

such hardware in a numerical analysis application, because

of improved performance. However, the same machines might

compare quite the other way in a control application in

which no complex computation is done, because of the

increased cost of the special hardware. We thus need a

benchmark to compare processors for our p. -ticular

application. Coding the entire problem for each processor

under consideration is likely to be exceedingly expensive.

We therefore Leek a model of the program simple enough to

permit straightforward comparison, but sufficiently good in

modeling the application program to permit reasonable

accuracy in comparison.

foim^PW^ß lww ^'u' "^ '|lWHVP*V,'M|!||iPa|w|P!' '- '' -

Price/Performance Evaluation 111-20

A model can be deduced from an implementation of the program

on a given processor by measuring instruction frequencies in

that portioi of the code which is run when the system is

operating at maximum load. A trivial program with

comparable instruction frequencies can be written. A

version of this program can then be prepared for each of the

machines under consideration, and the speed of execution can

be compared.

As an example, the time-critical portion of a data

communication program which was written for a Honeywell

DDP-516 was observed to be made up of roughlv 25% "Load

Accumulator" instructions, 25% "Store Accumulator"

instructions, 25% "Jump" instructions, the large majority of

which were to nearby locations, and the remaining 25%

roughly equally divided among ADD, SUBTRACT, EXCLUSIVE OR,

AND, and similar instructions. It was further observed that

roughly 25% of the instructions had constant operands, and

that roughly 50% were indexed. From this information, the

following model (written in PDP-10 code) of the program was

developed:

LOOP: MOVEI AC, CONST
ADD AC, T1(XR)
MOVEM AC, T2(XR)

JRST LOOP

;Load accumulator with a constant
;Add an indexed table entry
;Store accumulator
; indexed into another table
;Jump back to the loop

This tiny program was then coded for each of the machines

under consideration, and the execution time computed.

.......;\--\.J.-^.,.r,,v.^...M.-.-...;..^1^ .. .^.. ■■..■: -"-^-

p.i«piiiL^ffiijiii|wiimnw^v^w«jfu i ^ ii -m-i»i JII,J, -in p^ i— ... i.. ,. --,-—-.-. -.

■

Price/Performance Evaluation 111-21

The timing information from such a tiny program does not

really reflect the differences in instruction set power and

other machine features, such as multiple registers. To take

these into account in the evaluation, factors of merit can

be used to .nultiply the execution time. Unfortunately,

these factors are again to some degree application

dependent, and there is no straightforward way of evaluating

them. Extreme accuracy is not required, since this is only

a crude comparison, and an intuitive guess is generally

adequate. These guesses can be checked to some extent as

more accurate information becomes available, and the crude

comparison can be reevaluated.

The factors used in comparing processors for the

communication program mentioned above are given in Table

III-2.

We now have a crude technique for comparison of various

processors of interest. From this, those processors which

are roughly suited to the application can be selected.

Larger sections of the time-critical code can then be

written for these processors, and a finer comparison

obtained. In addition, comparison of these results with the

crude results obtained above gives a means of evaluating the

accuracy of the tiny model program and the factors of merit.

If there is substantial disagreement between the observed

and expected effects of machine features, the factors can be

adjusted to reflect reality, and a somewhat more accurate

I ■ III WIMHBII •IIHIII a. fmm

. . —> ' '
•liiaa iti, ■ • -i ■ Ml I 11 »i

"• ■■•"■ i1 .Jin pi ii ■ ■■Ml Jill. j(W^i«in»Bi^mn J

Price/Performance Evaluation 111-22

Page Ka
Size
6i4 3
128 2
256 1.
512 1
4096 .9

Word Fact or Ind ex Fac tor Accumu- Factor
Size Reg s lators
4 8 0 2 1 1
8 4 1 1 2 .8
12 1.3 2 .9 4 .7
16 1 4 .9 8 .6
32 .9 8 .9 16 .6

Where "Page Size" is the number of words that can be
directly referenced, "Word Size" is the number of bits in a
machine word, and the remaining two factors are the number
of index registers and accumulators. The product of these
factors for a given processor multiplies the time taken to
execute the comparison program in each case to give the time
values which will be compared.

Table III-2
Processor Power Comparison Factors

comparison can be made of the broad field of machines,

perhaps revealing additional machines worthy of serious

consideration and substantial coding. In the case of the

example given, the factors produced estimates which agreed

with the more detailed results to within a few percent.

Ill B - Some Specific Architectures

In the preceding section, we explored two general

architectural questions. We first investigated the utility

of memory local to each processor^ and concluded that the

use of such memory, where possible, can provide substantial

benefits in system cost and performance. We then

contemplated the problem of selecting a processor, pointing

out the advantages of weaker processors of a given

price/performance ratio, then exploring how we might compare

the performance of various processors.

'i" "^ —- '-■ ■ ■ -' ---"'.■'■-'.'-^ ^..-.-:-^...-». ...--- -*■ .^--I. JJ~»..-'.*,^ - — ■ ■-■ '- --

1 ■"• ■" ■.■ ■"" If^iW''^'^"^

Some Specific Architectures 111-23

In this section, we will compare various structures v/hich

might be used for interconnecting processors and memories to

form a multiprocessor. We will explore the strengths and

weaknesses of each, and point out applications for which

each might be appropriate.

Ill B 1 - Interprocessor Buffers

The first architecture we will consider consists of

essentially independent processors which share what is

essentially an I/O device to each, through which they can

communicate. This scheme for two processors is a common

technique for applications in which one processor performs

various functions such as I/O control for another, but can

be used for load sharing if the required communication

bandwidth is small. Such an architecture is shown in Figure

III-2.

Such a scheme is very limited in the interprocessor

communication bandwidth available due to the single buffer

involved and to the slow access routes to it. It is

therefore useful only if the processors need to

intercommunicate only infrequently.

A communications protocol is required to permit meaningful

communications through this awkward medium. A feature which

can be added to this structure to improve efficiency would

be an automatic lock, whereby the arbiter would remain

locked after honoring a request, so that new requests from

^.■^ -^...^.^ ■^^"1Mgwirinvi-i i _.

mm Wm^"

•-"v.
i ii . nuKimm^mmmuv ■. i\iim~-—mmmmmm WPPIl n'S ««»TTT'!"

■I
111-2^

Figure III-2

Interprocessor Buffer

MIMA - ^ ■-■.- - ■.■^^-.■.
- - ■

i-.'-iii^-^U^^WWWWiPIIJJ'.WI11«1^. «V^W" .■;» >.i ' —^"W'.vr.wy

'^•.>^»-

Interprocessor Buffers 111-25

other processors can not be honored until the processor

which owns it explicitly releases it. It is further

desirable that the processor which owns the buffer at a

given time be able to selectively enable requests from other

processors, so that two or more processors are able to

converse without concern that another will seize the buffer

for other uses.

Another feature which would make the scheme less expensive

in processor overhead would be to permit the processor which

has won the arbitration to interrupt other processors, as a

clue that the buffer contains something for them. This

relieves each processor of the onus of periodic polling to

determine if there is something for it, while permitting

more rapid response to a transfer request. Such an

interrupt system is drawn in Figure III-2 in dotted lines.

While each of these features makes the scheme faster and

cheaper in processor overhead, none is necessary, and each

increases the hardware cost. Nevertheless, the hardware

cost of such a scheme remains small, and for applications

requiring very low bandwidth interprocessor communication,

such a scheme is sensible.

Ill B 2 - Int -processor Channel

One technique for substantially improving the bandwidth

available from an I/O device to a processor is to give the

device a Direct Memory Access channel to the processor's

r
.immmhvmm"- •wni«"ilH'*mfm*' Mi""v.mBimnw^mmf mfmmn^^mm .1 •■ " wnii.vin.w».^!»" Wi»..«

Interprocessor Channel 111-26

memory. Applying this technique to the scheme described

above produces a system such as that shown in Firure III-3.

Here, the individual processors contend for their local

memories on a cycle-by-cycle basis with the arbiter's choice

of processors. In this way, a processor can examine and

alter another processor's local memory, thus permittinp' a

much more rapid interchange.

There are two primary factors which limit the bandwidth of

this system. One is the slowness of the I/O type data

transfers between the processors and the arbiter. This can

be improved if the communication tends to be in long blocks

by having the arbiter's inputs be DMA type channels, rather

than I/O type transfers. This permits more rapid transfers

of blocks of information, but implies larger overhead to set

up a short transfer, since beginning and ending addresses

need to be given to two channels, rather than simply

specifyinp; a location and its contents. If the transfers

are not large contiguous blocks, such a channel-to-channel

scheme would be less efficient and more expensive than an

I/O-to-channel transfer scheme. If large blocks are to be

transferred, the increased hardware cost can be justified by

increased efficiency and bandwidth.

Another technique which permits increased speed of access

becomes apparent from an examination of the new single-bus

machines, such as the PDP-11. Here the I/O devices and

memory locations are accessed in an identical fashion. In

1 ^ .^ ^„M,^—.....j^,,- - >..f.^--.- -..-.:.. ..-.j,t^^■^■^-i.iiiiiinini, ri*dirtgaiiiiiiiiiiiifcilliii . .

Figure IiI-3

Interprocessor Channel

: .

111-27

>

F ^-i^ M M r (7X A

[151 ̂
1

M M .^TrT A V / V_x A —ÜJ
1 1 foV^ ^-4^

1

R
B
I

M M .Uh T
I J IMJ' XJ E

R -—[FH • •
•

1 1

• •
•

• •

1 \ fol / Is/
M M -In vL A r Vl/

tmt-aim] <-|ii»iiic - --. -. ■!l—■■-■,, Hi „i<*tMtH*mumt*milmMtt\- ■-: - -■ ■ ~*i~~* ^ml

!' "' lii^l"' •"'."• IWIB^^^^P ■ n^^m^m^muiii LI.IIIIWIIK iiJiii ,i wi*i HIIIIIMI,.»MUIII. i iniiia

Interprocessor Channel 111-28

this case, I/O type instructions look just like memory

reference instructions, and are no slower. This can make

the communication faster. In machines with dual bus

structures, the same effect can be achieved by connectinp

the arbiter and communication logic on the processor's

memory bus, instead of the I/O bus. This poses some

difficulty, since the memory bus is generally more difficult

to access, both electrically and politically, and further

often imposes rigid timing constraints on the accessed

devices, which it believes to be known core memories.

The other major limitation on the bandwidth of an

interprocessor channel arises from the necessity for all

interprocessor communication to go through the single

arbiter. To avoid this, one can incorporate the arbitration

function into the DMA on each memory, so that processors can

access each other's memories contending only with other

processors trying to access the same memory at the same

time. Thus, multiple interprocessor communications can

occur simultaneously, increasing the bandwidth available. A

scheme which combines this arbitrating DMA approach with the

single bus concept mentioned earlier is shown in Figure

III-4.

Ill B 3 - Crossbar Switch

Figure III-5 shows a scheme which amounts to little more

than a redrawing of Figure III-4, recognizing that the

II 1^ !!■ ^ llf^lB -' — TiiiliMnü^riihiri

■ 'vi'» ivumnimnijm!^'.. •jfi^mir:^ *• -j"
■-k*..^«».

' PPMIHP^IPIV PUPRPHfliimpu.lMMpiilli wwmnfm

M

M

M

-Ä

<s>

I
I I

I I

0

0

0

•—0
Figure III-4

111-29

Interprocessor Channel With DMA Arbitration

■ ■■II II «■ «IMI ■■ ■ 0 Ill I J »WLÖUl I ^ mmmmmmmm^***™'"lw>*'''*i**<mmmif*!*ie**'*mim*'*i*n>i,»<i "Jm

1X1-30

ARBITRATING ^
MULTIPLEXORS

M
U
X

M
U
X

M

M
U
X

M

M
U
X

M

M

Figure III-5

Distributed Crossbar Switch

. .-/.^^^^^^-wr-^ JL^-^^yJ^K ■-..,.. ^i^^^ — ----^^

-"^

Crossbar Switch 111-31

access of a given processor to its memory is not

conceptuaTly different from the access given to another

processor, so that the scheme consists in essence of

multi-channelled memories, or memories with arbitrating

multiplexors on their inputs, completely connected to the

processors. This then forms a distributed crossbar switch,

through which any processor may access any memory. It does

imply that all of a processor's references must suffer the

communication and arbitration delays. To overcome this,

local memories may be added to each processor, as discussed

in the preceding section. Such a configuration is drawn in

dotted lines on figure III-5.

There are various advantages to collecting the connection

and arbitration logic into one centralized crossbar switch,

as shown in Figure III-6. Here, each column of the switch

mc.trix represents the arbitrator of requests for a given

memory. The primary advantage of this centralization is the

decrease in the number of cables and connectors. Whereas

the distributed crossbar switch requires P*M cables, and

thus 2*P*M connectors to interconnect P processors and M

memories, the centralized switch requires only P+M cables

and thus 2*(P+M) connectors. Since bandwidth considerations

dictate that for a given application, the number of memories

required is proportional to the number of processors, the

cabling requirements in the distributed system will increase

as P**2, whereas in the centralized system, the number of

cables will be proportional to P.

'— ^n. mm

i M r-—{ P)

B--0
L"f-0

[»■0

t I
t I

M

i i
I I

M

I I
I I
I I

M

111-32

• • •

Figure III-6

Centralized Crossbar Switch

"

V

1
1

1
1
1

M

,-., •

www^mmmmimmif i - « i i.*immmmmmmm^w*ti^^mw^^^ mwmm" nm

Crossbar Switch 111-33

The disadvantages of a centralized switch are in

reliability, expansibility, and modularity. Presumably, the

centralized switch is run off a single power supply, and has

a single cooling mechanism. A failure in either of these

brings down the switch and thus the entire system. The

reliability is also impaired by the fact that the

centralized logic makes it hard to debug a single failing

unit without taking down the entire switch, and thus the

system. This problem can be overcome by making the

individual interconnection points and arbitration devices

separable, so that one can unplug a failing unit for

maintenance. This unfortunately also removes the primary

advantage of a centralized switch, namely the small number

of connectors.

The centralized switch also has disadvantages in

expansibility. If this logic is built in a single enclosure

to a fixed size, a system which uses the full switch becomes

difficult to expand by one more processor or memory. By

contrast, the distributed switch permits indefinite

expansion by simple extension of the bus to which the

communication cables connect.

The other side of the expansibility argument is a modularity

argument: if the switch is of a constant size, and if it is

large enough to support a reasonably powerful system, a

similar system with less stringent performance requirements,

which need not contain so many processors or memories, must

i _.._. _—.,.-_ i —■■ -— - - -— —

•—-■*%_ W J^ '

Crossbar Switch III-34

nevertheless contain the physically large and expensive full

sized switch. This problem can be somewhat alleviated by

semi-automatic custom tailoring of the switch to the

individual application. This is more expensive than a

single design, and prohibits the growth of a small system

into a larger system as performance needs increase.

Th?se disadvantages of the centralized crossbar switch make

*•'■« distributed organization shown in Figure III-5 dominate

the centralized arrangement. In fact, the flexibility,

simplicity of design, and high bandwidth of the distributed

crossbar switch cause it to dominate all other organizations

for systems of up to perhaps two dozen processors. The cost

of this interconnection medium increases as the square of

the number of processors, and for very large systems becomes

prohibitive.

Ill B 4 - High Speed Bus

A crossbar switch, whether distributed or centralized, must

have P*M nodes to interconnect P processors and M memorjes.

This is costly as P and M grow large. It implies many

components, much electrical power, and large size. This is

in general the limiting element in the size and therefore

computational power of a system which can be economically

constructed, since the processor ?nd memory costs will

increase linearly with system power, but the switch cost

will increase as its square. In a fourteen processor

W' ''W!!'""! . , l ,WI|P|«l4aiU| ILRl^^^nn^P

High Speed Bus 111-35

Plurj-bus which contains seven proctssor busses, two memory

busses, and two I/O busses, the cost of the communication

medium is close to half of the total systemcost, and would

dominate all other costs in a much larger system.

In an effort to limit the soaring communication costs, we

can regard the centralized crossbar switch as a black box

with P processor ports and M memory ports, and consider how

to devise such a box for a minimum cost for large M and P.

An attractive answer is to use a bus structure, such as that

diagrammed in Figure III-7. Here, processors place requests

on the bus, and memories respond. Since onl" one

transaction can be taking place on the bus at any time, this

scheme is essentially that of Figure III-3, the

inter-processor channel, given a single bus processor. As

such, it suffers the bandwidth limitations of that scheme.

The bandwidth can be increased by not requiring that the bus

oe tied up during the entire memory access. This can be

accomplished by having a processor request an access, which

the appropriate memory instantly recognizes. The bus is

then immediately released. On a write, the data to be

written is transmitted and captured along with the address,

at which point the memory proceeds to do the write without

further disturbing the bus. On a read, the memory captures

the address to be read, executes the read, and upon

retrieving the data requests a bus cycle to send the data

back to the requesting processor. Thus, the speed of the

if^^^^*~*~*^^i~^^n~^^rm^^~wiiit um >'■ ■■■ ■■• «■ i i i. ai^ii«. ii -■ ■ i ■ ■m» i i mann^ivi JI*II.> .™««wi|^>.» u i i maqpipigqim

-

111-36

Figure III-7

High Speed Bus

^--J.t...--..-^-. .--—^-^gftmili i - -■'~ -^ -■■ ■ .. ■■-.■■-■■.i.i.. ^..a.^.^.^.-:,!..;,,,.,^,,--^-..-^^-'»-'-'—'-»-'*-"- - ^■l. ■ i-i.-»»-»..^-...^^ "•-|iim"lrt«lmil,MliM'iflll' '-:-- -^A.--^.■---—"■^■■■^ ^■■-

«)UtJ^I|l.,«,.l. i -

-«s-
■*^;c ■

High Speed Bus 111-37

bus is not tied to the speed of the memories or processors.

The advantage of such a scheme is that it permits the use of

a bus of much higher bandwidth than the memories connected

to it. This may not be a significant improvement, since the

technology economically available for construction of a

multi-port bus is comparable in speed to the economically

sensible memories. Further, an intermixing of technologies,

such as an ECL bus, MOS memories, and TTL processors,

generally produces electrical noise problems and interfacing

problems of sufficient difficulty as to make any such

solution expensive and probably not sensible.

Ill B 5 - Lazv Susan

There are two primary reasons why making the high speed bus

sufficiently high speed is difficult. These are the

arbitration delay necessary on each access, and the

electrical problems associated with connection of many

drivers and receivers to a single bus structure. In

general, the more devices there are connected together on a

single bus, the more capacitance there is tied to the bus,

and the less well defined its impedance. The capacitance

makes it difficult to change the levels rapidly, while the

inconstant impedance implies ringing, which means that after

a cnange of state, the lines take a significant time to

settle into the new state. Both of these then slow the bus.

■ ^TI ! II- " -- •-■ - - --^-.A.« ««-I-h,,^ , *-..-.... ^. ^^ tf • ,±*-' -■ - J-""ffiatu Hi ■'Miirnan ^ ^-^^..L^-. .^^ .

HU« l pcppapmwp """v^^Mpwpiinpiippipvpi

Lazy Susan 111-38

The effects of the arbitration delay on the bus bandwidth,

as well as the problem of many devices tied to one bus, can

be eliminated by pipelining the bus. In this case, the bus

takes on a ring structure, and rotates synchronously. At

regular clock ticks, the contents of each cell are

transferred to the next. If a processor requires access to

a memory, it waits for an empty cell to come by and puts in

its address and control information, and, for write

requests, also the data. If the addressed memory is

available when the information comes by, it takes the

information and frees the cell. (If the memory is not

available, it does not even look at the bus; it will get the

information the next time around.) If the request was for a

read, the memory places the requested data in a cell when it

is available, and the waiting processor will capture it when

it comes by. Such a "Lazy Susan" arrangement is diagrammed

in Figure III-8.

In this arrangement, there is no point where an indefinite

number of devices connect. Each cell connects only to the

cell ahead and behind and to the processor or memory

associated with it. Further, there is no arbitration delay

in series with the bus cycle, since it is running

synchronously, and always knows there will be data for it

when it is ready. The processors and memories must wait a

synchronization time to assure that their requests are in

phase wi "-h the bus clock, but this time appears as an

...J. ..■..- Jl—U t -.^Mto^..^ . . J^-, , -JWv-'--"-—'->■-----" - - •" ■ --■---^-•^-'»■-—Mftftj l-iftiir-^-"--1-— :. - ■■-a.^-.^-.^. .=*-.■■■-^-. --^ -

immmmqmfm

Figure III-8

Lazy Susan

111-39

W -M n^ M

!>.—,< :
r i i

PL^ U^ •

■PMPPpnamfm^wwjiaKi IIII«II|UJHWIWPW«WIH!^WWIW"^'»IMI"|| 'i««ii-i^»ww»ppiir4»i.ipiu um ,,..,...,.-, Wwm " "' WW"!I".«W '• ' ■ '•'

«W.I.I». "A^*—

L

Lazy Susan 111-40

increased delay, and not a decreased bandwidth. Additional

processors and memories can be added by simply adding more

cells, so the switch cost increa: . linearly with the number

of processors.

The disadvantages of this scheme are in reliability and

perhaps delay and complexity. If there is a single lazy

Susan, a failure of any cell takes down the entire system.

This can be avoided by using multiple lazy Susans, letting

the program decide which to use for a given request. They

can be run synchronously with respect to each other, so the .

arbitration delays are not required at the memories.

However, with many lazy Susans, the number of connections

and components increases, making this not necessarily an

improvement over the crossbar switch. A trick which can be

used to diminish the sensitivity to single failures is to

proviae multiple choices for the input to a given cell, the

choice being made by the program. Thus, a failing cell can

be bypassed, permitting the system to remain up. Such a

cell-bypassing scheme is shown on Figure III-8 in dotted

lines.

The laify Susan concept permits very high communication

bandwidth, at a price in delay. This is characteristic of

pipeline schemes. The increased delay need not be very

large, since the lazy Susan can be run synchronously and

very fast. With presently available Schottky-clamped TTL

logic (T.I. 74S153 multiplexors, T^SI?^ flip-flops) a shift

i
■ J„^AM.famiaa^KiJ^aj^«J^^-».M.^.-J. ..-.,.. ,.., -- - * — i.i nr .«im ■ •-■ t- ■-■-.■. .-■ , ^.— ... ■- —

1^ H "ll^ iiiuii.mii^iiiwm iiii.iijin umii. ji^M.iH»

Lazy Susan 111-41

time around 30 nanoseconds could be achieved. This delay is

substantial but not overwhelming in a system of a dozen

nodes; the delay becomes very large in a system of many

dozens or hundreds of nodes.

Ill B 6 - Hierarchical

The architectures we have been describing in the last few

sections can be represented, as shown in Figure III-9-A, as

processors communicating through a complete connectivity

communication medium to memories. We call this collection

our processor, specifically our multiprocessor. If we

observe in detail the entities called processors in Figure

III-9-A, we find that they are in fact composed of

processors and their local memories, as shown in Figure

III-9-B. Thus, the "processor" component of our

multiprocessor is in fact made up of processors, memories,

and a communication medium connecting them. If we examine

in yet greater detail the entity which at this level we call

a processor, we find that it in turn may be made up of a

microprocessor connected through a communication medium to a

micromemory, as shown in Figure III-9-C. This sort of

microprogrammed processor is an effective economical way of

fabricating processors today. The overall system, as shown

in Figure 111-10, has a distinctive hierarchical tree

structure. This provides a suggestion for expansion.

rr?.--rw*mm^*^£y- •'-m-T-r.- ——— -^ ■■ - --- ^-. -f-.-wv---,.-«;:;^'-r-,:--^. ■ ^ . '■■■--1-v ,

•*sr

111-^2

I '

Figure III-9

What is a Processor?

"'-■—■r- Mu^ — —<-...■... . - . . ,„.,.. ,,,.,-,. , ., ,. i nilnmmn 1*1

r~- - .lupii WH WIM,!

««5- •^-Ci-

•Akw

111-43

Figure 111-10

The Hierarchical Structure

•**^!m*mmm

.Min ., iu.q,iiww<i.|iiiiiip>*i4>ij«y«««.iV-».«<iiiapi.«iilii^ii. J^.I,-miiMji.i. i. ■:iM'"'-m.m- mmimn.vnm. u JIPIIJ,IIIIIII ^■■^«•■■■^■u ■ ' -i «•tv. ■ in i ■■■i>NiaiMiij|l|pwv^1HVpn1rv»ni

Hierarchical III-M

There is no need for a microprocessor to access another

microprocessor's micromemory. Similarly, there is no need

(other than on error conditions, as described earlier) for a

processor to access another processor's local memory. If we

can divide the system into modules each of which contains

processors, memory, communication logic, and I/O equipment,

and each of which handles the majority of its tasks

internally, without need for access to other modules, we can

extend the structure diagrammed in Figure 111-10 by an

additional level, to Rive that shown in Figure 111-11, in

which each module has access to the overall shared memory

for those few communications which must occur.

This structure may be extended by additional levels to the

extent to whioh the program complies with the sort of

modular structure described above. This hierarchical

structure imposes a communication delay which is the sum of

the delays at each level to cross multiple levels. However,

such references are presumably less and less likely as the

number of levels increases. A microprocessor gets words

from micromemory at a rate of perhaps 150 nanoseconds, while

the processor references its local memory at a rate of one

reference per 1.4 microseconds, and references shared memory

at a rate of ore reference per 6 microseconds. Thus, the

delay added at each stage, while added to tnat from the

previous stages, has a decreased effect on program execution

time. However, substantial decreases in the size and cost

M f'^liw.u'H!IWWPW*"*wr ,. . - _ -^ . , . ^ . 58I5
'^^».tV«

Ill-US

I

ITL!

v /

-L^ \

\VaiB /

Figure III-ll

One More Level

1^ "■■"■■

■■in ii ■■■ wn n« ■ ■' ' -—" JIUH jtf.iiiwiW«*' ■■■Uli», p^n.^p

Hierarchical 111-46

of the communication logic, as compared to complete

connectivity schemes, can be achieved, since there is no

need for each processor st a given level to he able to

communicate to other processors' memories at that level.

The structure can also be extended at a riven level. We

have so far discussed organizations which have only one

microprocessor per micromemory, and only one processor per

local memory. There can be multiple processors connected to

a given memory at any level, provided the memory bandwidth

is sufficiently higher than the processor bandwidth

requirements that a given memory can support multiple

processors. This permits savings in system cost, due to the

reduction in the number of memories required to support a

given number of processors. A study of the effects of

multiple microprocessors sharing memories is given in [17].

Summary

This concludes our discussion of multiprocessor

architectures. We began the discussion by considering two

general architectural ouestions. We contemplated the issue

of coupling a "private" memory with each processor, and

concluded that where feasible, such a memory can

substantially improve system cost, performance, and

reliability. We then addressed the problem of processor

selection, first observing that for a given

price/performance characteristic, benefits in speed and cost

iiiidiiiirniiiii'^iilMÜÜM ,- ...-.■.-,..-.,... ...■.,.,.■.

Summary 111-47

derive from slower, less expensive processors. We then

described how the performance of a group of processors might

be compared in order to evaluate the price/performance

characteristics.

We then turned to a discussion of various architectures,

pointing out the strong and weak points of each. We

concluded that for systems of a few to a perhaps two dozen

processors, the distributed crossbar switch is the most

attractive, whereas for systems of many more processors, a

more hierarchical structure, containing nodules of

processors, is more appropriate.

tA

'wiifi||ipp|*i^ri^BriWP^^rW^!W*l!fWT^

,£* ■■s
PRBCEDIN^ PAGE BLANK-NOT FIIMSD

Chapter IV

PLURIBUS - A REAL MULTIFROCESSOR

In the preceding chapters we have considered various aspects

of the design of multiprocessors. In the first chapter, we

concluded that a homogeneous control parallel organization

was advantageous. In the seconi, we determined that an

asynchronous design was feasible and attractive in terms of

flexibility and reliability. We concluded further that

methods to detect and survive component failures are

worthwhile to improve system availability. In the third

chapter, we reviewed various architectural issues and

concluded that a distributed crossbar switch organization,

with private memories and slow, inexpensive processors, was

the most desirable structure for a system with perhaps a

dozen processors.

In this chapter, we will describe a multiprocessor built on

the basis of these conclusions. This system, the BBN

Pluribus, is an asynchronous homogeneous control parallel

multiprocessor with a distributed crossbar switch

communication medium, incorporating private memories and

slow inexpensive SUE* processors.

We will first describe the objectives which motivated the

design of this system, reviewing botn the initial goals and

additional considerations which arose as the design effort

■ SUE is a trademark of the Lockheed Electronics
Corporation.

iMFWIl^P ' I ■^ my ** **' V V !«' Jf " :lf'^W . "iiiJIiriiillWPIIIinHpjppip i i t ü i ii^iiipmp

Pluribus - A Real Multiprocessor IV-2

progressed. We will then turn M a detailed description of

the system itself, discussing each of the major system

components and their significant features. We will then

turn to an evaluation of this system as a powerful computer

in terms of cost and performance. We will consider the

Pluribus in two applications. First, we will examine its

performance in the High Speed IMP application for which it

was originally designed, to determine the fraction of the

computational power lost to communication and queueing

delays, and thereby the effective power of the Pluribus in

this application. We will also describe the current state

of the failure survivability features of the Pluribus IMP.

We will then compare Pluribus performance with that of

several other large computer systems on a field scan

application considered a good model for an optimizing

compiler.

These evaluations are necessarily crude, since the Pluribus

is still under development, and real performance

measurements cannot be obtained. We have attempted to make

our estimates of the Pluribus conservativf and our estimates

of other systems generous. Even so, the price/performance

characteristics of the Pluribus appear very substantially

superior to other computer systems. This, then, is the

demonstration of the validity of the thesis that a

multiprocessor organization can provide a cost-effective

means of building a powerful computer system.

n liiitti iiiMrli inrriifiliiülii'irii 11 i llllllllllM>^lifllili^ i11 inm Tniiiitf<ii'i<iliniriMlMaü-iBi(l>^Wfer.ii«i-inr ir .■«■-^--■^ •--1■itiiiijiiiiiiii .■^^.^■„^-^■»-.JJ^..^-.^..... ..i^..--.

s i mil iwninmimtm r,«imm

A,

Design Objectives IV-3

IV A - Design Objectives

The initial design objective of this project was to improve

the speed of the already existing ARPANET IMP [18,19]. As

the design proceeded, the objective of speed took second

place to that of modularity, in particular the ability to

build small, inexpensive units out of the sane technology.

More recently, the potential improvement in reliability has

become of increasingly central concern, until at present it

is the single most important objective of the project. This

shifting of emphasis over time has altered the schedule

substantially, but has made no major alterations in the

fundamental design of the system, nor in our expectation

that the system can meet all of these objectives.

We discuss these objectives below.

IV A 1 - Faster

The initial design objective was to build an IMP that would

be faster by a factor of ten than the present IMP, which was

built around a Honeywell DDP-516 minicomputer. The speed

improvement sought was a factor of ten in processing speed

over the 516, to produce an IMP which could handle roughly

7.5 megabits per second of throughput traffic, as compared

to the roughly .75 megabits then available from the 516.

The IMP's job is that of a communications processor.

Arriving messages must pass through an error control

""~ -■■■^„—-—-^..-—.~.— J-.—.. . -,..,.^.. .*-... ---imini - —■

r1,«»'»-, 11,^11) IWlltlHP»" 'J, im»uiii"A." ■■»■'IPIIliBBniBfPW ■■wrw^r^n^^w

Faster IV-4

algorithm, be inspected '"or such information as destination,

and generally be rerouted out another communications li^e or

to a Host computer. Some messages, such as routing

information messages, are generated and digested by the IMPa

themselves. The IMP must also concern itself with flow

control, message assembly and sequencing, performance and

flow monitoring, Host computer status, line and interface

testing, and many other housekeeping functions. All of this

requires processing power proportional to the amount of data

to be handled per unit of time. In addition, memory is

required, both for program storage and for data buffering.

I/O interfaces to communication lines and Host computers are

also required, with data paths to memory of sufficient

bandwidth to support :he required data rates.

The requirement of a factor of ten increase in throughput

over a 516 implies in this instance a processing power

increase of a factor of five over the 516 processor, because

in the 516 the DMC channel used for all I/O transfers into

and out of memory requires four memory cycles for each data

word transferred. It was observed that the program required

about eight memory cycles per word of data. Thus, half the

power of the machine was being spent on I/O. An

architecture which permits the processor(s) to run without

interference from the I/O is therefore inherently faster by

a factor cf two.

■-' •-"■"

'^^""

JSh.

Faster IV-5

For reasons of the gut feelings of the people involved,

coupled with crude estimates of the delays to be added by

the communication logic, queueing for shared resources, and

additional code complexity in a multiprocessor environment,

it was guessed that these inefficiencies would slow the

system by an overall factor of two. This then offset the

factor of two gained by removing I/O - processor conflicts,

and implied that the number of processors required would be

enough to produce a factor of ten in pure processing power

over a 516. Thus, our system should include ten 516

processors, or a proportionately larger number of slower

processors, or a proportionately smaller number of faster

processors.

IV A 2 - Mocular

As the very early system design proceeded, a comparison of

high speed uniprocessors using very simplistic instruction

sets with multiprocessors built from commercially obtainable

processors showed that for our application, the two

approaches were roughly comparable in terms of cost.

However, the multiprocessor approach has advantages in

reliability and in modularity. A machine built out of the

same system components with fewer processors, less

communication logic, ard less memory, could support the same

system, even to the extent of executing the identical

program, at a much reduced cost. This ability to build

small inexpensive systems which could then be expanded in

mmm "»■■" "— ■HWI^fcW^WWWPiWPWiWP^WWPWP

Modular IV-6

the field as needs increased was the key consideration which

swung the choice toward the multiprocessor approach. The

processor which was chosen was at the time one of the very

smallest and least expensive processors commercially

available, which meant that a very small system - containing

only one processor and no communication logic - could be

built at a fraction of the cost of the 516 IMP, but could

still run the program written for the high speed system,

thus saving a major reprc'ramming cost.

IV A 3 - Reliable

As the project progressed from system design through

component design and debugging and into hardware system

construction and debugging, the issue of reliability of the

resultant IMP became more and more important. As discussed

in the previous chapter, the detailed consideration given to

the issues of reliability in the design of a multiprocessor

system can make the difference between a system whose

reliability is far worse than that of any uniprocessor and

one whose reliability can, we hope, far exceed that

obtainable in a single processor.

A primary reason for the added emphasis on the reliability

features of the proposed system was the unreliability of the

old style IMPs. i Averaging over an 18 month period from June
1

1972 through November 1973, while the number of IMPs in the

ARPANET grew from 29 to 45, a,nd the per node traffic rose

-.-■.■ --■-- - - ■- - -*■ -" ■ -' *imt*m**mi*km*mmmmmmmi**mm

■ «g^gi in 111 iu II tuiilMDiw^vmiwipnri wmmmi^^^m^mmf'*' «iwjNimiwp^»»^
■MM» ""^ffT ■ »mi <*

Reliable IV-7

from just over one million to over three and a half million

packets per day, the average IMP down rate was 2.35%. This

figure includes preventive maintenance, site power problems,

and all other causes. Of this, "1.56% was attributed to

hardware or software failure. There was no obvious

improvement or degradation in these figures despite the

substantial increases in network size ard traffic. The

average of the months' MTBFs was 397.3 hours, the average of

the MTTRs was 5 hours 51 minutes. It is envisioned that the

new system will substantially improve both of these figures,

in that a component failure should no longer imply a system

down, and in the case of system crashes, it should be

possible to bring the system back up in a smaller

configuration instantly, without first diagnosing the

precise cause of the failure. While a down rate of 1.56%

blamed on combined hardware and software failures may seem

small at first blush, when considered as the system being

unexoectedly down for 22.5 minutes each day, it is abysmal.*

* IMP reliability has improved since th'. se statistics. In
January 1974, a new effort to improve network reliability
was begun, including the assignment of the author to this
problem. The statistics averaged over the nine months
August 1974 to April 1975 are as follows:

Down Time (All Causes) .89%
Down Time (Hard/Soft failure) .32%
MTBF 510 Hours
MTTR 1 Hour 34 minutes

pppmn^wjui .■imiinjiiiini i..i.iii|Bim<«<nra!p(««i«papwnp«pin^nm^<ifpp

■»n I.»! A;,-
V«w . .'V.

uiiiinwmiM^TtT^wBPPPpiPipi,, i

The System IV-8

IV B - The System

Given these three objectives - Speed, Modularity, and

Reliability - we now describe the multiprocessor system we

have desipned to try to achieve them. The fundamental

arguments comparing various choices we made to other

possibilities were p;iven in previous -:hapters.

IV B 1 - Architecture

The general architecture chosen was an asynchronous

multi-bus system, with separate similar busses supporting

processors, shared memory, and I/O devices. The system is

designed around the Lockheed SUE computer, because it had

the most attractive price/performance ratio of any machine

available at the time of the selection, in addition to

having the most convenient interfacing arrangement. The

communication medium is a distributed crossbar switch, for

reasons of speed, modularity and reliability. The task

dispatching is done on a voluntary basis with a

hardware-managed priority ordered self-locking queue of

pending tasks.

A drawing of the prototype system which was built is given

in Figure IV-1. The large rectangular boxes represent

busses; the labeled subdivisions represent devices plugged

into those busses, the width of the subdivision being

proportional to the number of cards the device occupies, and

thus its physical width. The interconnecting lines

. .-.. -.^^..^^^^.i^^aMa^ ..^.i.^-. ^■..-;.., :.^..... . . -. .^„.^J...^.

1 ■J||^WI^«I«

IV-9

i
>

0

bC

C
O
•H
•P
CO
E
hD
•H
Cn
C
O
o
■
£)
•H
L

rH
PL,

CD a
>>

p>
o

J->
o
u

(X,

■u.w.-.j.'^arg

mi lulu IIBIUP.JIII .lit . nillH,H ,1J'«.I HI "I I

■Hll.»i .^i"-

H" 'n-1!'1"» I Hip|^p^mpp^W|W^»»PIWPWpi

Architecture IV-10

represent Bus Coupler cables. The overall prototype system

occupies three six-foot high 19 inch equipment racks.

IV B 2 - The LE: SUE

The SUE is an inexpensive micro-programmed minicomputer

introduced by Lockheed Electronics Corporation in 1972. In

addition to the processor, the SUE line contains memories

and various I/O interfaces as well as card guides, busses,

consoles, power supplies, and other components useful in

putting together a computer system. The acronym SUE stands

for System User Engineered, reflecting the design philosophy

that the system user can purchase those components necessary

to the system he wishes to configure, and can then construct

the system by simply plugging together the components.

In this section, we describe the salient features of the SUE

which led to its selection as the basis for the Pluribus.

We begin by presenting a brief history of the ways in which

computer busses have developed, observing that the SUE bus

structure represents an ideal basis for a system such as the

Pluribus. We will then describe the SUE's Bus Controller,

and finally the SUE processor itself.

IV B 2 a - The Single Bus

In the earliest days of digital computation, peripheral

devices were connected to processors by simply cross-wiring

from the central input and output logic to the peripheral.

> _

^■-ii—-■■■...^....■.a...,-. ^-i-^^" in i i i iiiSüimiii '-iü-|iii V« ii i mil iii mi L..,^^*,^ .,. ^..^.-■„—^^.,....... . iMMMMi

r-jj »^t,]ufjmr*~***vw*- ^v> ■nvpiip.iiiini ".HI

— ■■—i H^'

The Single Bus IV-11

As th* number of peripherals on a given processor increased,

it was observed that an increasing amount of centralized

logic needed to be given over to input mixers and output

buffer/drivers. This, combined with a desire to create a

uniform publishable specification for interconnection of a

given processor and a general periplieral, led to the

emergence of the I/O bus, which was both electrically and

physically different from the majority of the logic in the

processor. Electrically, the bus is typically connected to

by high power drivers and very sensitive receivers, so that

an essentially arbitrary number of devices may be connected

to one bus. Physically, the bus is typically made up of

controlled impedance noise-immune wires, either coaxial or

twisted pair, to permit some degree of controj over noise

and reflection characteristics. The bus can then typically

be daisy-chained through the various peripherals, and can be

physically quite long.

As large systems with many modules of memorj; started to

become common, it was realized that the bus concept could

profitably be applied to the problem of connection to

memory. This "memory bus" had certain characteristics which

differed from those of the I/O bus, howpver. The first

noteworthy difference is the importance of the speed of

operation. A processor spends a small fraction of its time

executing I/O instructions, so that slowing these by a few

microseconds, to reduce dependence on bus reflections, will

■■ i.iiii-ii i*»«!«! mm ■«II«I
s ■■■■■» »^ —'^vr^Mi.

p^pin^jiiji> 1,1 *JI.».4VI ••""*• ■ ■■ i P»IPI|II»|»MWWW"P1

t

The Single Bus IV-12

have little effect on the overall system performance.

Slowing each memory cycle by a few microseconds, however,

would reduce the system power by a large factor. Therefore,

the memory bus must be made as fast as possible, and

preferably fast enough that the delay introduced is small

compared to the time taken by the memory system itself to

retrieve information.

A number of considerations simplified the achievement of

this goal. First, the memory bus was private. The

manufacturer considered himself to be the only one building

devices t-> connect to this bus, and therefore did not need

to be as careful in accepting sloppy signals. Second, since

the cost of a module of memory was substantially higher than

that of I/O interfaces, proportionately more money could be

spent on the interface without having the interface cost

become too large a fraction of the module cost. Third,

since there were still fewer memory modules than I/O devices

on typical systems, the cost of the memory interface had

less impact on the system cost. Finally, the few memory

modules could be physically located very close to the

processor, permitting a shorter bus. Thus, the typical

system was drawn with two busses connecting to a processor:

a slow, sloppy, and cheap I/O Bus, and a high-speed,

close-tolerance, expensive Memory Bus.

GRI Computer Corporation introduced a concept in computers

of having a single bus through which all devices

.. HBj -■.i^i..-

iOTOT ■PMM*R
■ ■■IMIHI wwp»^?^-

The Single Bus IV-13

intercommunicate, with modules of different capabilities

which could be connected to this bus to form a system well

suited to a particular task without very expensive design

costs. This was a particuüarly timely development, since

the maturity of integrated circuit technology was making

electrically clean interfaces cheaper, while the advent of

the mini-computer was making the processing portion of a

computer less expensive. As a result, the busses and their

associated drivers and receivers were becoming a very

substantial fraction of the cost of a system. Further, the

limited power available from the instruction set of a mini

gives an incentive to eliminate special I/O instructions,

permitting more useful instructions. In a single bus

system, communication to I/O devices and memories is

accomplished in the same way, so that the same instructions

can do either. 1/0 commands are recognized by their

distinct set of addresses. Thus, for a multitude of

reasons, the single bus was a concept whose time had come.

The DEC PDP-11 was the first widely marketed machine with a

single bus. In this line, DEC offers a variety of

interface- and program-compatible machines spanning a wide

range of price and performance. The single bus, called the

UNIBUS, is daisy-chained through devices in the same fashion

as earlier busses had been. The bus is permitted to be

physically quite long. To allow for the worst-case delays

over this long cable, and because the interface

I
^L^..,-....^..-^■^^■■^— - ^ — . „ .^.„A-^ -■■•-—^.^ -■.-- -'--'-^ |^iiri|[|1ririiiinV',--^--,^--rt^1'^^-^ "tM-^rn mtäuMm.r-n«- - —-^--nühi-,-i riiiir-^..~-.^-.|iiiiti-iiiiiijiaitiriiii

■ «■ <-. poi. »Mi*i.Mjiii ujii«a|j I. Jiji I ,i,n)i|iju i J|I.UIIJI,I mi,m^ , iL i| Eil w^ul<^rJ>m"<«<^ ■. ■J<IM>pi|u.ijpm^*ff'l|l|«i|~. -■ *>ppqnipfPm*miplVPl

«c

The Single Bus IV-14

specifications are not as tight as they might economically

be with today's technology, the bus does introduce

substantial delays into memory cycles. The processor

controls access to the UNIBUS; peripherals may request and

obtain mast .ry of the bus through a handshake with the

procvissor. There is therefore a tight coupling between the

processor and the bus, and one may not generally have one

without the other.

The LEG SUE is another single bus machine, in many ways

similar to one of the less powerful PDP-lls, but having

advantages the latter does not. In addition to being

substantially less expensive, the SUE has a physically

United bus with tighter interface specifications, and has

separated the bus-controlling function from the processor,

permitting systems without one-to-one processor:bus

relationships.

The SUC bus, called the INFIBUS, is a 15 inch long printed

circuit card with 2k sockets mounted on it. All devices

plug into these sockets. The bus can be extended with a Bus

Extender, which consists of a card which plugs into the last

socket on the master bus, a card which plugs into the first

slot of a slave bus, and a cable which interconnects the

two. The slave bus is then logically an extension of the

first bus, but electrically is redriven, so that there are

never more than 24 electrical loads on any bus Ivne. The

bus extension introduces a delay in all communications which

, Z^^
 ■.■.-.j^-^-L-^-i.i..^-^.-.-^.---^.- ■.^- ■^,.wt:.-,.-i,o^ ^.t- .;-.—=..; ■■—(llWlillliitllll- "-■ -' ..^■■~-..^.~. - - -

pÄM--»w. ...M-l*'"^

Thvj Single Bus IV-16

times out all bus transactions, to prevent requests to

unresponsive or non-existent devices from hanging the bus up

permanently. In this system, the processor requests usage

of the bus just as any other device would, but on a special

lower priority line. This separation of bus control and

processor functions permits the construction of busses

without processors, supporting various non-processor master

devices and memory or other slave devices. This is

particularly convenient in a multiprocessor environment

given a distributed crossbar switch communication

arrangement. Busses can be constructed supporting shared

memory and communication devices, but no processors. The

Bus Controller then arbitrates between requests from the

various communication devices, which then access the shared

memory directly. This structure is utilized in the

Pluribus.

In addition to permitting busses with no processors, the

separation of bus control from processor permits the

construction of busses with multiple processors. Since

processors contend for bus accesses in a fashion similar to

other devices, multiple processors can contend for the bus.

This permits more efficient utilization of the bus

bandwidth, since a single processor cannot fully utilize a

bus, but more important, it permits more efficient use of

the communication logic. If a communication path is

established between a bus which supports processors and a

in i ii iltiiimtaatitm
.,.■**&.. . . V ü BH

. — ji

-W! ^■)P^i^wpt^w»wi»

The Single Bus IV-17

bus which supports shared memory, any number of processors

connected to the processor bus can use the same path; the

multiplexing is already taken care of by the Bus Controller.

This permits the use of smaller, slower, less expensive

processors without increasing the ccst of the communication

logic, which, as discussed in Chapter III, decreases the

cost of the processing power lost due to communication

delays. In the prototype Pluribus, each processor bus

supports two processors.

IV B 2 b - IheBusController

We have repeatedly mentioned the general problem of

arbitration between competing requests, and the fact that in

the iUE, this problem is handled by a separate device, the

Bus Controller. We now describe how it accomplishes this,

and how the INFIBUS is used. The technique seems well

suited to the problem of constructing a multiprocessor,

permitting a uniform technique to be used for all cf the

arbitrations necessary in a system. The electricj'l and

physical standardization which is possible as a result

reduces the complexity of the system in terms cf

comprehensibility, reduces the number of devices which need

to be designed and stocked, and permits the combination of

logically distinct busses onto the same physical bus, where

bandwidth considerations permit, without the necessity of

modifying the design of the devices to be supported.

^•*^ **-*■" ■■- - —- . . .■■;-i;..M^..tr,^-^J^i^J..J»^-..^fJ^w.-
,JL.-v^.^-^J*it.. .-.■■ ■.JJ—^-^ •-^_^fl ->,i,^ - -—!7S7rri*Mr*r

Pfpnrvni'ii i mfm'M**±wffi*imimim*mmnmmT

The Bus Controller IV-18

There are six kinds of requests which can be made on the SUE

bus. They are, in order of decreasing priority, as follows:

1) Device Data Transfer requests. These are requests

from a non-processor device requesting mastery of

the bus to transfer data to a slave, without

involving a processor.

2-5) Interrupt requests at any of the four possible

priority-ordered levels.

6) Processor requests. These are the means whereby

processors request memory cycles for instructions

or data.

The Bus Controller monitors these six request lines

continuously. When a device wishes a cycle, it asserts one

of these lines, if the Bus Controller is permitting that

level of request at that time. Upon detecting a request,

the Bus Controller picks the highest level on which a

request is presently active, and disables further requests

at that level. Devices are no longer permitted to raise new

requests on that level, and their internal logic is then

allowed to £ettle, deciding whether or not that device is

requesting. After waiting enough time to permit each of the

devices' requesting logic to settle, the Bus Controller

sends out a precedence pulse. Unlike the other bus lines,

this signal is daisy-chained through each device. Devices

which cannot be bus masters simply pass the signal directly.

J-^-l..aW'.---tli

i ■— ny. '■''•<S».i" «■■■ i
iTwnmfiaiiaii L u. i i PWM'.." ■>■'«-'•i><Ji'iii^>.i|><>^inpmpi!ppiqgMHp^(gpim HWpj|i ip.im.n!uu»i^

The Bus Controller IV-20

We have spoken of busses which support processors and of

busses which support shared remory. There is a third sort

of bus in the Pluribus, which supports I/O devices. These

I/O busses are physically and electrically the same sort of

SUE busses as the others; however I/O devices are somewhat

different from either processors or memories, and share some

of the characteristics of each, in terms of their required

systemic connectivity. An I/O device looks like a processor

to shared memory, in that it requests memory cycles through

the communication medium in the same way that processors do,

and thus need to have the same sort of access to the shared

memory busses that processor busses do. On the other hand,

I/O devices look like memories to processors, in that the

processor needs to be able to write command information to

the device and read status information from the device's

control registers. In this way, processors need to be able

to access I/O devices in the same way tnat they access

memories, implying that the same communication logic must

exist between processor busses and I/O busses as exists

between processor busses and memory busses. Thus, the I/O

busses appear as both processor type busses and shared

memory type busses to the communication logic.

The Bus Controller is also used on I/O busses to arbitrate

among the requests from the various devices which may be

requesting access to shared memory through the communication

logic, as well as those from the communication logic, which

^-"■'■w - • Vii ■V[r-
liV-tmiii^»-l*-^

1-'-J--^ -': "•-■-■-^^^^'■^^^■^-■■•■■■-■■-^.■ir>|iTy^ I,, [ilMäiilMfr niii^ii'i

The Bus Controller IV-21

may be presenting a request from a processor to read or

write a device control register. Thus, this one device is

used throughout the system to resolve all electrical

conflicts.

IV B 2 c - The Processor

,

The SUE processor is a slow (3.77 microseconds memory to

accumulator ADD) inexpensive ($597 in 1972,* given a H0%

discount) microprogrammed machine with a very

attractivf/price performance ratio. It is built on two 6.25

X 13.5 inch cards, and can thus be duplicated on a single

bus without using up massive amounts of physical space. It

is generally microcode limited in its timing, and keeps the

bus busy substantially less than 50? of the time, so that

two processors on a single bus do not often conflict. Thus,

as described above, it is practical to put multiple

processors on a single bus, and as described in Chapter III,

this represents a substantial savings in the cost of the

processing power wasted due to communication delays, given

that the input multiplexing comes free with the separate Bus

Controller.

i '

* The current price of a SUE processor is more difficult to
compute, because Lockheed's current pricing algorithm is
based on systems, rather than components. The effective
price of a processor has increased since 1972, due in part
to additional complexity which has been added to fix
original bugs, and can be approximated as $1000 in 1975.

■^mrirjm^m***mimmmimy&«mim"*''''''' ■ i || i "" mmmmnn**'

Bus Couplers IV-22

IV B 3 - Bus Couplers

As has been mentioned, the communication scheme used in the

Pluribus is a distributed crossbar switch, using the INFIBUS

arbitration to do the multiplexing at the memories. The

atomic communication unit of this switch is the Bus Coupler,

which consists of a card which plugs into a processor bus, a

card which pluga into a memory bus, and a cable which

connects the two. One of these devices is required between

each processor bus and each memory bus, and between each

processor bus and each I/O bus. A similar device, whose

differences fron this Bus Coupler we will note, is also used

to connect each I/O bus to each shared memory bus. Thus,

the total number of Bus Couplers of both types required to

interconnect a system with P processor busses, M shared

memory busses, and I I/o busses is P»M+M»I+P»I. The

prototype Pluribus contains seven processor busses, and two

each memory busses and I/O busses, and thus requires 32 Bus

Couplers.

IV B 3 a - Inter-Bns Communication

The Bus Coupler's primary duty is to receive requests at the

processor end, transmit them to the bus at the memory end,

and transfer the data in whichever direction is required.

To accomplish this, the Pus Coupler Processor end (BCP)

appears as a memory or other slave device to the processor.

When an address is recognized to be within the range to

.^..--..■.^■■..^.■■:.J.- - ,■-, .^„.^V ^.^.i. ■■■»■^l^.-.^.a-^A. ■''■ —.^^•■V--^-'-»-"--^-- ■■"■■*-- ■—-^■.^■i..:.^. ^J^,,^^„

••■rw^l^-

Inter-Bus Communication IV-23

which that coupler is set to respond, it will forward the

request down the cable to the Bus Coupler Memory end (BCM),

which then requests bus mastery for the next cycle. When it

is granted mastery of the bus, it then requests a memory

transfer at tie address which was specified by the

processor. Thu1., the Bus Coupler appears as a memory to the

processor, and as a processor to the memory. Except for the

delay introduced by the commuriication and additional

arbitration, the processor is unaware that the memory which

it referenced was not on its own bus. Since the processors

are asynchronous and do not depend on any specific memory

timing, the delay does not complicate the procedure involved

in referencing memory.

IV B 3 b - Ancillary Functions

Having presented the primary function of the Bus Coupler, we

now turn briefly to three ancillary functions, namely:

address mapping, locks, and backward bus coupling. While

none of these functions needs to be performed in exactly the

way described, all are necessary in some form in any

practical multiprocessor.

IV B 3 b (1) - Address Mapping

As with most 16 bit minicomputers, the total address space

directly accessible by a processor is extremely limited. To

permit multi-level indirect references or byte addressing,

one bit of any word used as an address is unavailable.

wmmr^^m i i . w i -m w^^fmum» i —————— u ««^i"

Address Mapping
A

IV-24

leaving 15 bits of address, and thus permitting only 32K

words of memory addressable by a processor. This is

generally inadequate for large systems, which need space

both for program and for buffers. In the Pluribus IMP, 32K

words is more than enough space for local, private memory,

of which two to four thousand words are needed. However,

enough shared memory is required to support a wide variety

of infrequently used routines, as well as massive amounts of

buffer space to hold data for a round-trip time in a

high-speed satellite-linked network. Thus, some mechanism

was needed to expand the amount of memory .'ddressable by a

processor. The Bus Coupler was a logical place for address

mapping, expanding a portion of the processor's 32K word

space to a much larger system address space. In particular,

the 32K words were logically divided into 8 segments of 4K

words each. The middle four of these segments are mappea

into system address space by appending 7 high order bits to

the 12 remaining address bits to give a system address in

one of 128 UK word segments which make up a 512K word system

address space. These seven map bits are specified by the

processor independently for each of its four mappable

segments. In the case of multiple processors on a single

processor bus, independent maps are kept for each processor

(up to four). A diagram of the Pluribus address spaces is

given in Figure IV-2.

... .».,.-.■ :^_.,^. .»-■^■--■.^-,..,.^^,.,.J—^^■-A"^iifciiiiiMiiiiii|girihi|iriiMiir — -^-^^»^^

ip1 ^"»TW' »LH.l.JI.H. W«^ll^ T^ * JPI' t' ■W"W'»,P'"*,Pl'W~ i« <«vn«»n iJllipuim.P^^M^vm^^tHP ip«VilVPVnilJliP!l! ii ÜJHiim

^.

»•
IV-25

p—s—

PR
O

C

B
U

S
I/

O

(L
E

O
 es

33

PR
O

C
ES

SO
R

a
 C

O
N

SO
LE

R

E
G

IS
TE

R
S

1 8 8 t;
fr uj u. U. *■ It il. u.

a>
ü

cfl
C.

00
f\J

1 rn
> ta
H 0)

f-!
0) -a
U ■0
p <
hi)
•H w
k, 3

X3
■H
U
3

"^
' ■' ■ ' '

Address Mapping IV-26

Thus, the Bus Coupler maps 4 4K word segments of each

processor's address space independently into 4 of 128 4K

segments of system address space. Note that this function

is not required of a Bus Coupler which connects an I/O bus

to a memory bus, since the various devices which might wish

to access shared memory must each keep track of the full 19

bit system address of the location it wishes to access. If

the mapping were included in this path, each device would

have to first access the appropriate map, set it up, and

then, without permitting another device to alter the setting

in the interim, make the required reference. This would

introduce substantial complication and overhead/.'"

Alternatively, each device could have a separate map in the

Bus Coupler. Thiö would mean that at design time, the

maximum number of devices supportable by a single Bus

Coupler would have to be specified. If the number is made

low, few devices can connect to a single Bus Coupler,

meaning that many T./0 busses with separate Bus Couplers

would be needed in a system which is to support many

devices, making the system «. pensive. However, if the

number is made high, the cost and size of having a great

deal of mapping hardware must be paid on every Bus Coupler,

again making the system expensive.

Both of these undesirable effects can be avoided by simply

eliminating the mapping function on those Bus Couplers which

conr.-act an I/O bus to a memory bus. In the Pluribus, the

 -■-■•'"-iiiiiiii>i rmiiiii'flliianiilliiilii .■■^^. .■■-.... _,^.>_..,^...J..,„.„.-^^. irWittrii i ii

••—w. —«—«5- — ^Ci.

Address Mapping IV-27

mapping function is associated with the processor end of the

Bus Coupler. As a result, a different card, a BCI, replaces

the BCP in this application, and communicates to the BCM in

the same fashion as a BCP, but permits devices which already

know the full 19 bit system address they wish to reference

to do so without mapping.

One other form of mapping is provided by the Bus Coupler.

Since the number of status and control registers a given I/O

device has is generally small, a substantial number of

devices can fit in a small amount of address spacf1. In the

Pluribus, just under 8K words of system "pace are dedicated

to J/0 device control and status words. Each device has a

block 8 words long, so that this address space permits

almost 1024 devices to be connected to a Pluribus. This BK

block is then referenced very frequently by the programs.

Further, all programs reference the same 8K block. In fact,

all references from a processor bus to an I/O bus will refer

to this segment. Thus, the mapping from processor address

space to I/O address space is simple: any reference to the

appropriate area of the highest 8K words of processor

address space is automatically mapped into the corresponding

location in the highest 8K words of system space, on the I/O

bus. This is done by sticking four "1" bits onto the high

order end of the address. This process, known as "F

sticking" (hexadecimal F), is performed by all

procc!ssor-to-l/0-bus Bus Couplers, letting any processor

refer to any I/O address without setting maps.

,..,.■-.. „..,. ■- ,^„AHkt^.'.-.^«..i..^.J^.-u..Jj. .:,J... ,,,., J-VJ„^ ^^..:^,;VA.^ .*..l.Jt<......^Jntf|>1^.A !. ^■-•■.,.'-.^.^. ^.

Locks

IV B 3 b (2) - Locks

17-28

In Chapter II, we discussed the problem of synchronizing

software through the medium of an indivisible test-modify

sequence. Since the SUE processor available at the time of

the Pluribus system design had no facility to perform this

function, and since the function relates prLnarily to

intercommunication of processors, rather than activities

internal to a single processor, this also seemed a sensible

function for the Bus Coupler to perform. As originally

envisioned, a lock reference would dc a destructive read to

a core memory, but would not then initiate a rewrite,

leaving the contents zero. A number of problems arose from

this implementation, including the problem that the

remaining word would have bad parity, and the fact that the

SUE memory was designed so that if a cycle was aborted in

this fashion, the memory would automatically do the rewrite

half cycle. However, the concept survived, and was

implemented using a Read-Modify-Write cycle, as follows.

Whenever a read reference is made by a processor through the

fourth mappable segment, the contents of that location are

fetched in the first half of a Read-Modify-Write cycle, and

returned to the requesting processor. The Bus Coupler then

zeroes the data lines, and initiates the rewrite portion of

the cycle, putting a correct parity zero in the location.

This operation is indivisible, and thus forms a valid "Lock"

operation. As we discussed in the second chapter, this

».. .^■. .■..„mi ,,...^J-. .,,— .. .■^.:. ■ .* —i . m i^- ■.-.... iinaur IIIIIMJ—itHtM^imaimniinmiiMtlii n

w^"^p^ppp*"l!!ip

)

Locks IV-29

destructive read locking operation permits very high

efficiency by using the datum contained in the lock location

as the locked resource itself.

IV B 3 b (3) - Backward Bus Coupling

In Chapter II, we discussed the examination and modification

of one processor's registers and local memory by another as

a means of improving system availability. In this way, a

single transient failure need not remove a processor from

normal operation for an extended period. We now describe

how this sort of communication is accomplished in the

Pluribus.

A facility is provided in the Bus Coupler to permit

communication in the reverse direction. This is a less

favored communication path. Hardware is provided to detect

the deadlock condition of both busses simultaneously

requesting access to the other, and in this case, the

reverse request is aborted. The requesting device is then

free to retry.

Since we wish to reference all addresses visible to any

processor on a given processor bus, we need a window of 4 X

32K words or 128K words, since a processor bus can support

up to 4 processors. This infrequently used facility does

not deserve to take up this much system address space. As a

result, mapping is done between an 8 word BBC window and the

128K word target space. Fourteen bits are required for this

transformation.

ill... i ii.«iii. i^jn^impBiM .WI.IWJ.. i.ui, ,11 IPI.IL ,HI»IHI»W5WWIW,IIII ■«mi :. m ßtm'" '|i'^rw«pipHp|||ppp||p|p

Backward Bus Coupling IV-30

As we discussed in Chapter II, this facility is a dangerous

one, giving a processor the power to bring down the entire

system. For this reason, a password must be given to the

hardware befoi c it will permit any references to be made in

the reverce direction.

IV B 4 - The Pseudo-Interrupt Device

In the second chapter we also discussed various techniques

for allocation of tasks among processors. We concluded that

there were substantial advantages in a voluntary task

allocation regimen, with assistance from a hardware device

for queue management and locking. The Fluribus

Pseudo-Interrupt Device (FID) is such a device. We now

point out some of its characteristics, and the reasons for

its placement on the I/O bus in the Fluribus.

IV B 4 a - Characteristics

The FID appears to the program as a small block of memory.

Its fundamental property is that it holds the state of 128

priority ordered flags. When a seven bit number is written

to the device, the flag at that priority level is set, to

indicate that there is something to be done at that level.

When rea^, the device returns the seven bit number

corresponds g to the highest priority flag which is set at

the time, then clears that flag. Thus, a processor may read

the device and get a pointer to a task which needs service,

with the knowledge that no other processor will be given the

same task.

■alMa*lfti i I iln i —' ---a-^- --.....- fr . _..„, -.^■^....-.■■..■.^.^.„...^...-^..■.^- . .. ■ :.

- •-

^fmmmmi^mm

Character-* sties TV-31

Because the early SUE processors would prefetch the contents

of a rremory location before storin? into it, it was

desirable to have the storing and readinp; of flags be done

at different addresses, lest the setting of a new flag read

out, and thus clear, the previous highest priority flap;.

When the "write" location is read, the value of the highest

priority set flag is returned, but the flag is not cleared.

IV B 4 b - Use

As has been mentioned, the !JID is used to allocate tasks

among processors. These tasks can be spawned by hardware or

software. An I/O device, on completing a transfer to or

from memory, needs to notify some processor that it needs

service, to handle the data just transferred and to give the

device a new buffer to transfer. The devices do this by

storing their unique identifying numbers into the PID on

completion. These numbers are selected by switch settings

on the device, and so can be easily changed. The setting of

the PID levels, as well as the simple ehfunel functions of

address incrementing, end of block detection, and so forth,

are handled by a Direct Memory Access card (DMA), one of

which is associated with each device which communicates to

the memory in tnis fashion, and which is in effect a simple

full duplex channel.

In addition to these hardware generated tasks, the software

may gener-.te tasks. This is done, for example, when a given

IMiiriltriiillil]fM«IK!rll it- - ll iinnnai^'-^'"'-'-"-" "■■^■■-.■^■■':- -^■•tmr i .I rill-"'-'■^--■»---^ —:.^.-.^a»*M^-»^^.

^ miimnt ■ IIIIIMW Jl W p" P^ ■P ^W^-

Use IV-32

strip of code does not complete a task, and so needs to

place the task on the queue before checking for higher

priority tasks. It is also done when the execution of a

given task encounters a fork, a situation in which two

independent control paths are needed to carry on a

computation. At such a point, the processor can simply set

a PID lev-l corresponding to one of the tasks, while working

on the other one itself. Thus, the "FORK" command consists

merely of a store to the PID. A third situation in which

the program might wish to write to the PID arises when the

program wishes to change the priority of the task it is

executing. As an example of this sort of level shifting,

upon receipt of an input buffer, the IMP p... forms various

tasks at a high priority level. As soon as it has finished

the urgent functions associated with not losing data, the

priority drops to a more leisurely level to examine the

packet and decide what to do with it. To accomplish this,

the lower priority PID level corresponding to these

computations would be set, whereupon the processor would

read the PID to determine the highest priority pending

computation. If there are no higher priority tasks pending,

the processor will reassume the processing of the packet at

lower priority.

Our discussion of the utilization of the PID has been based

on the assumption of software homogeneity, that is, that any

processor can perform any task it might read from the PID.

ii iniv ■mir i ■iii-Mf--"----'"----^"^--^'''■■■»-■■ ■-■■■■--'--^■■■-- •

—^^ _ -■ ■^'*~- - . ^ -

ppvppwq

Use IV-34

priority level allowed by that mask. The processors would

presumably be able to modify the masks at will, as

specialties changed, or as they discovered themselves

underutilized, and thus willing to accept tasks they would

perform less efficiently. Such a PID would probably be

substantially more complex than the one card 6? integrated

circuit PID which the Pljribus uses, but still need not be a

substantial fraction of the system cost.

IV B 4 c - Where Should Thev Be?

A question remains as to the appropriate location for the

PIDs. Since they must be shared by the processors, they

must live on a shared bus, either an I/O bus or a memory

bus. The advantage of an I/O bus location is that the

processors can then reference them directly, as explained in

the address mapping discussion above. This is an advantage

because they must be referred to frequently by the

processors, each time a task is to be stored or retrieved.

The advantage of a memory bus location is that any I/O

device can then reference any PID. If the PIDs are on I/O

busses, devices can only reference the PID on their own bus,

since there is no communication path between the various I/O

busses. Thus, if a PID should fail, all devices on that I/O

bus become unuseable.

The counter-argument is that the PID is a simple device, and

substantially more reliable than power supplies or Bus

.'':' ... —■^-.. ■ - - - -- ^..^J.. ^..■^..,,^,..,^^.,..>..,.,..^.,.«,^...a.^J,, ^.^M.fcJ^^J^ll

iwpwiwprpmpwpwv—"^ "■ ^" ^r^^trf. W^WipwwWP

Where Should They Be? IV-35

Controllers. If either of these devices should fail, all

I/O devi-es on the bus would become unuseable. Further, if

any device on the bus should fail in such a way as to hold

one or more bus lines in one state, the bus, and thereby all

devices on it, becomes jnuseable. If a given device is

critical, it must be duplicated in order to survive these

failures. Interfaces can be (and in the Pluribus IMP have

been) designed so that multiple interfaces can be connected

in parallel to a given device, and a failure in one, or in

the communication path from the processors to that one, is

very unlikely to interfere with the operation of the other.

We expect PID failures to be of so much lower probability

than these other classes of failure, and no more drastic in

its implications, that the loss of all devices on an I/O bus

because of a PID failure seems a small price to pay for

instant access from all processors.

An additional complication of having the PIDs on memory

busses is that the processors would then have to be able to

programmably set the address of the PID that each device

would try to reference, so that the PID referenced could be

changed on PID failure. This additional complication to the

logic of each device interface is a further argument against

having the devices able to access any PID. Since that is

the only advantage of having PIDs on memory busses, this is

a further argument for PIDs on I/O busses. These

considerations led to the placement of PIDs on I/O busses in

the Pluribus.

li

^.iim aiaMiuiw JI.» uj .i

Performance IV-36

IV C - Performance

In this section, we will evaluate how the Pluribus performs

as a powerful computer. We will first examine its

application as an IMP. We will analyze the

store-and-forward inner loop of the IMP code to determine

the expected slowdowns due to communication and arbitration

delays as well as those due to queueing delays. We will

also mention the present status of the failure recovery

facilities.

We then turn to an evaluation of the Pluribus at a job other

than the one for which it was originally designed. We will

study the behavior of the Pluribus doing optimizing

compiling of Fortran programs, as modeled by the lexical

scan programs studied by Solomon [20]. We compare the

Pluribus price and performance at this application to those

of various other large computer systems.

IV C 1 - As an IMP

We here present information about the Pluribus IMP

store-and-forward main-line code, derived from instruction

counts done by W.R. Crowther on May 16, 1975. From these

data and the queueing models derived in Chapter II, we will

derive the expected amount of computational power lost due

to the multiprocessor environment.

i ,

■W" I " " 111«. ■!■■ ■- ' ' - - — • ■■ ■■ II L iiflWf^wfiini ii '■ '■ ■•' mwi'i'

As an IMP IV-37

The total program time neglecting all communication and

queueinr delays was 1^27.^2 microseconds. There were 721

references to local memory; all were reads. There were 174

reads and 60 writes to common memory. Six writes and 11

reads »vent to the I/O area. At present, the communication

and arDitration delays involved in going through a Bus

Coupler to a remote bus add one microsecond to each such

reference. The memory cycle time is 850 nanoseconds; memory

read access time is M80 ns; memory write access time is 280

nanoseconds. I/O access times, both read and write, are

roughly 280 nanoseconds.

From these data we can compute that the total loop time,

taking into account the slowdown due to communication and

arbitration delays, is 1427.42+174+60+11+6 = 1678.42

microseconds, so that the fraction of the computing power

lost due to communication and arbitration delays is 17.58$.

We cen further compute the utilization factors for each of

the hardware resources: the 1/0 busses, the memory busses,

and the local processor bus. For the purposes of these

computations, we assume that the references are evenly

distributed between the two 1/0 busses and between the two

memory busses.

In addition to the processors' use of the 1/0 and memory

busses, the I/O-to-memory -at» transfer utilizes a portion

of the bus bandwidth, and thus increases the probability of

'-S^
i»»'"■ ■

--.tv.
^«■nHiBMIUI,,LIJWl<. -

As an IMP IV-38

a collision. In the case of the I/O busses, each is used by

a processor 2.38 microseconds out of 1678.42, or .1^%,

whereas the corresponding I/O data transfers utilize each

bus 6i|»(1 + (.28+.48)/2)/2 = 44.16 microseconds, or 3^. We

can therefore neglect the processor utilization in computing

the probability of a collision, and assume that the bus is

busy only because of the I/O, or 375^ in a 14-procersor

system. The expected waiting time if a collision occura is

1/2*(.28+.48)/2 = .19 microseconds, neglecting multiple

collisions. A processor therefore expects to see a delay of

.37*.19 = .07 microseconds on each of its 17 references to

I/O, producing a total waiting time of 1.20 microseconds out

of 16/8.42, for a net slowdown of .07% waiting for I/O

busses.

The memory busses are used by a processor 60*.28+174*.48 =

100.32 microseconds out of each 1678.42. Each is therefore

used 50,16 microseconds or 3.0? by each processor. Since

there a.'e 14 processors, this usage amounts to 42?, which

gets added to the 1/0 utilization of each bus of

64*(.28+.48)/2/2*l4/l678.42 = 10?.

The probability of a collision is then .52, and the expected

result?-nt delay, again neglecting multiple collisions, is

(.28*(174+64)+.48»(60+64))/(174+64+60+64) = .35 microseconds

producing IU expected delay of .52*.35 = .18 microseconds on

each of 234 references, for a total expected waiting time of

.18*234 = 43 microseconds out of 1678.42, or 2.5? lost

waiting for common memory.

> •*—~

As an IMP IV-40

We are now in a position to accumulate all the different

slowdowns due to waiting into a single factor. This overall

loss due to queueing delay is then

1-(1-.0007)»(1-.025)*(1-.067)»(1-.0Cd4)»»2»(1-.0045)*»2

= .10

In other words, ten percent of each processor's time is

spent waiting for shared resources, so that the new program

time is 1678.42/.9 = 1870 microseconds. Comparing this to

the original program time in a uniprocessor of 1427.42

microseconds, we discover that the multiprocessor version

runs .76 times ss fast. Thus, 24? of the computational

power is loat to the communication, arbitration, and

queueing delays of the multiprocessing environment, and our

14 processor system is 10.6 times as powerful as a single

SUE.

All of these calculations are approximate. Our models for

queueing for the I/O busses, memory busses, and software

resources all neglected the possibility of multiple

collisions. This will surely increase the waiting time.

All of the calculations derived their utilization factors

from the unslowed program time. Including the time spent

queued will increase the total program time. Since the time

each device is utilized remains constant, this increase in

program '^.ime will decrease the fractional utilization of

each device, and therefore decrease the probability of

collisions. This, then, will decrease the overall queueing

il^HHHtftiüfe. ^ t...^.J,.i,...i-^-*■..t^—

w.

■■»«iuiw.nL> "'**^<mw

As an IMP IV-41

time. All of these considerations are swamped by the

inaccuracy in the assumption that a processor's chance of

finding its local bus busy is simply the utilization of that

bus by the other processor on that bus. The arrival time

distribution for processor requests is far from random.

Processors tend to make a request, think for a certain

length of time, and then make another request. This permits

the two processors to phase-lock, so that each is thinking

while the other is requesting. To the extent this occurs,

the queueing time is decreased. This effect dominates the

other inaccuracies, making our total waiting time

computation be high, and our estimate of the power of the

system be conservatively low.

The Pluribus IMP also attempts to take advantage of the

reliability potential of the Pluribus in that it attempts to

survive component failures. The code to perform this

function is currently in a primitive form; much is not

written, more is undebugged. Nevertheless, with the code

that is already in existence it is possible to power down

any processor bus or most other busses, and have the system

survive. When power is reapplied to the bus, the components

on it are re-integrated into the system. We take this as

demonstration of the thesis that a multiprocessor is capable

of performing as a very cost-effective, reliable computer.

ni-liil^ ■|iiiiilM-'lr^iliiMill>«i>i ^iM*~M**lii*M*k.M*t±.*i ,. ..q^... ■MnMjBMaMrt II<

,-'■<* _

•"■, w ^WWWIf^«! ■-"""■'|,,1IU""1 -w

As an Optimizing Compiler IV-42

IV C 2 - As an Optimizing Compiler

In the preceding subsection, we examined the performance and

reliability characteristics of the Pluribus at the job it

was designed to do, the IMP job. In this subsection we will

examine Pluribus performance at a different job, that of an

optimizing compiler. This job was picked for study because

it appeared to be well matched to the Pluribus'

capabilities, in that it contained many portions which could

be execute! in parallel, and in that it did not place heavy

emphasis on arithmetic functions. We will compare the

Pluribus in this application to other large computer systems

in terms of price and performance.

The selection of this application for study, as well as the

techniques for the comparisons and most of the comparison

data itself, was done by C.R. Morgan in a series of BBN

internal memos in January and February of 1974. In these

memos he describes the structure of a five-pass optimizing

compiler for FORTRAN. He then estimates the amount of

memory required on a fourteen processor Pluribus to perform

this function as 80K words of shared memory and 112K words

of private memory, distributed 8K per processor. The cost

of the system he proposed, including disk and other I/O

gear, is $200,000, according to the May 1975 BBN Pluribus

commercial pricing.

 * - ■%.—.. . riiinnia«-«—■■''■—"■ • A - - - - ---■■- .. — ...— ■— — .. 1 n ttmmM

»■»■»•»wWB^Wi^R»W*TSWT5»-"""»*«"!wr-!i-'

As an Optimizing Compiler HM3

Morgan then compared the power of the SUE processor to that

of various machines by computing the average instruct:on

times weighted by the instruction frequencies for the field

scan problem given by Solomon. Morgan comments on this

computation, "For those instructions where number of bits

seemed critical, the SUE processor times have been changed

to reflect more than one instruction execution to hindle the

correct number of bits. For arithmetic instructions used

for table lookups and other internal functions 16 bits have

been allowed to replace the 32 bit IBM word size. These

figures should be assumed to be highly approximate."

The weighted average instruction times he computes are given

MACHINE

DEC KA10
IBM 360/65
IBM 360/75
IBM 370/158
SUE

Average Instruction

2.07 microseconds
1.72 microseconds
1 .62 microseconds
0.76 microseconds
5.63 microseconds

Table IV-1
Weighted Average Instruction Times

in Table IV-1. To compute the Pluribus instruction time we

take the SUE instruction time, and divide by 14 for a 14

processor system. We must then take into account the

multiprocessor overhead. If we assume this to be the same

as the Pluribus IMP (we actually believe the overhead in

this application would be substantially lower), we compute

the Pluribus average instruction time as 5.63/14/.76 = 0.53

"' ■"■■■■i

— < .'t^gfj^h^ijifinii^mqpnm

As an Optimizing Compiler IV-1*

microseconds, making the Pluribus the most powerful of these

computer systems for this application.

We now turn to pricing these systems. We will derive these

prices on the basis of the purchase prices presented in the

1975 GML Computer Review [21]. The pricing we use for the

DEC and IBM machines is simply the low end of the range

presented in Computer Review, and represents the minimal

configuration of that processor which is useful. These

figures are therefore undoubtedly low compared to the cost

of systems capable of performing the optimizing compiling

function. We therefore feel that this comparison is quite

conservative, giving the systems other than Pluribus the

benefit of every doubt.

We can normalize the cost figures by the performance figures

by Computing the number of average instructions one gets for

each dollar on these machines. Assuming a 40 hour week,

there are 173.33 hours or 6.24 »10»»11 microseconds in a

month. By dividing this number by the average instruction

time and by the monthly cost (assumed to be 2.5% of the

purchase price of the system) of each machine, we get the

corresponding number of instructions per dollar. This

figure then provides the desired basis for cost/performance

comparison. These comparisons are presented in tabular form

in Table IV-2, and in graphical form in Figures IV-3 and

IV-4.

.^.*^. .' H" -^-J .' A , 1irit|fc|rnrT_.T::-..^.^ ^ ^..^A...... ^ 1, \..^ -^---igmnrninmii — • im iiiilrtl^MMi^MliW

N • I ^^^^vww«» ""^•. " ■'■' "" 'I '>IW I ^■•^i»Wi —«^——P—l—ii^»* ,,;**. "Nl .1 TTM^ III - 'I ■ I

As an Optimizing Compiler IV-45

Machine Average Purchase Mega
Instruction Price Instructions

Time ($1000's) per
(microseconds) Dollar

DEC KA10 2.07 350 34
IBM 360/65 1.72 748 19
IBM 360/75 1.62 1075 14
IBM 370/158 0.76 1865 18
Pluribus 0.53 200 236

Table IV-2
Cost/Performance Comparison

These comparisons point up the fact that at this

application, the Pluribus is conservatively a factor of

three more cost-effective than any of the other large

computer systems we considered, and is a factor of 'I more

powerful than the closest system to it in

cost-effectiveness. We take this as a demonstration of the

thesis that a multiprocessor is capable of performing as a

cost-effective powerful computer.

Summary

In this chapter we described the Pluribus, a control

parallel multiprocessor designed on the principles discussed

in earlier chapters. We began by describing the design

objectives, in speed, modularity, and reliability, to which

the Pluribus was designed, and how the emphasis shifted as

the design effort progressed. We then presented a detailed

description of the Pluribus system itself, describing the

SUE line, the Bus Coupler, and the Pseudo-Interrupt Device,

WWW"«*""»'1-!1 I"" " iiwini,»«»», ■■.,".■■< i i»i-ii , ■JWVII in iM>mv^pipimPIPW«^«pqwpwili*m<«Pi ^*)B

■ i.— ..■>-

00
in

ro

q
CVJ

m

IT)

O #

CD

in
ID

81
ro

o
<

IV-^

Ö

(SNOmiW 1) 33ldd 3SVHD«nd

CM </)

« y

8
B
O

- E

O 3
^ o:

« ^

o
6

o
6

m
i

>

01
u

C
o
m
•H
tt
CO
a
E o
o

CD
Ü

CO
E

Ü

?-

D-

c
a
.p
M
0 u

■ i ■■ r- ■ - - I Mi II ■ — ■ -^ -•■- - -" ■■ - -■■-■- - - - - -^

wp<»>"rw»w'iw«wWlPWiB«ip»P"WW5>B«"™ipw»» H.. >»t^ßmmmmm*,mim
"V

J i iu uiniii. i.iynin^"^«n««iMiiiiii|Pi**w

lV-^7

i i

CO

ffi

o
2
M
u
1

c
o
m

IO h

je 0,

0>
o
IO i

o
o

|
>
M n
(U

a;
e g 0)

3 >
hO •H
•H -P

CJ
00 d)
IO Cn

00 o
CM

W

K
z
00

4->
W
O
o

IO
K
v

< o
r- 1

z
ffi

8 III«
avnnoo ti3d SNOiisntiiSNi «ow

m^mima*«««

M" 'I" l**^^~^*~l~^W**^V^'*^' ^mmmmmimmimmitmm v^^^rwmimmmmmmm •m.'mm}vw»mmm*mm*

Summary IV-n8

and presenting the functions of each. We then turned to an

evaluation of the performance of the Pluribus, both in the

IMP application for which it was designed, and as an

optimizing compiler. We concluded from these evaluations

that, while final measurements are as yet "navailable, data

already available demonstrates that the multiprocessor

overhead is not excessive (2k% slowdown), and that the

design objectives in terms of reliability are achievable in

that the system can survive component failures. We

concluded further that the cost-effectiveness of the

Pluribus is conservatively 3 times Rreater than that of any

other large system, and 7 times that of a system approaching

its power. We thus have demonstrated the validity of the

thesis that a multiprocessor architecture represents a very

effective way to construct both powerful and reliable

computing machines.

'timäMimm .- . ..-- , ..:.... „...^.»-...■.^■^Ct^^,„.fr, ^

-"S- -11^) ' '■ "^ '! 'l—mi MMiWl ^^i^W—^^^M^- ^^."tV»

'WW^WWW»WilP>WPWii^pwWi^W|p||||PPPPp|

Chapter V

CONCLUSION

In this chapter, we review the most prominent conclusions of

the dissertation. We begin by examining our original thesis

in the light of the conclusions we have reached, and point

out the ways in which we have demonstrated the validity of

the thesis. Next, we will briefly review the major

conclusions reached in each of the preceding four chapters.

We will then summarize the design process involved in

configuring a multiprocessor, then review some engineering

considerations which enhance the practicality of a

multiprocessor design. We close with a look to the future,

speculating on the impact that this sort of machine

organization will have on computers of the future.

V A - Our Thesis

Our thesis, as stated in the introduction, is that the

combining of independent processing elements, when done

properly, represents a very effective way to construct both

powerful and reliable computing machines. Chapters I, II,

and III discussed methods of doing this combining properly.

Chapter IV described a system built using those methods, and

demonstrated the power, reliability, and cost-effectiveness

of the resultant machine.

We now review the fundamental reasons why the multiprocessor

architecture can provide cost-effectiveness in the design

first of powerful machines, then of reliable machines.

„■;... J..--...>.^^^-^-. ., .. ■^... . ^., , ,....-^ jL-ji^t.J.^..-Jr:>.....'n... ..■ ■ ■ , jii mmmirH-i'if I'-■■ "-■■->.^^~...'......^..
-"■' ■ ■*-•■ "'■^' "*

w*
"^rr

A Cost-Effective Powerful Machine V-2

V A 1 - A Cost-Effective Powerful Machine

In the technology of any given day, there will be some class

of processor power which will contain the most

cost-effective processors. Processors less powerful than

those in this class may be less expensive, but their power

diminishes more rapidly than their cost, and thus they are

less cost-effective. Such processors are generally designed

to minimize the investment required to obtain a minimal

amount of computation, and little attention is paid to the

power of the resultant system. An example of a processor of

this sort in the January 197^ market is the INTEL MCS-8

microcomputer, a factor of perhaps 30 less powerful, and a

factor of 10 less costly than a SUE computer.

If we consider processors more powerful than those in the

optimum ^ost-effectiveness class, v/e find that more money is

being spent to buy improved performance, but that the cost

is increasing more rapidly than the performance. There are

several reasons for this cost, increase. First, such

processors are built from very nigh-speed expensive

technologies. These technologies are less widely utilized

than the less expensive technologies, which increases their

cost further. A second reason for the high cost of these

processors is that they utilize extremely sophisticated

techniques in the system architecture to maximize the amount

of internal paralleliration possible. These techniques

involve great amounts of this high speed logic, both because

1 ■'»'■■"' q ■^^^^^^«'^''-^--^^^•^«IPh^WPilBPPipn'^nw

_

A Cost-Effective Powerful Machine V-3

of the complexity of the logic involved and because of the

duplication of logic functions implied by the

parallelization. A third reason for the high cost of

high-speed processors is that in the technology available at

a given time, there is a limit imposed by gate delays and

transition times to the rate at which data can be moved.

This limit, combined with the limited number of bits which

can usefully be manipulated simultaneously in the majority

of computations, implies a hard limit on the speed available

from a r~al uniprocessor. Greater expenditures can move one

ever closer to this limit, but cannot pass it. Thus, the

gains in power diminish as the expenditures increase,

decreasing the cost-effective.iess.

What then is the computer iser who needs a powerful

processor to do? Particularly if his requirements exceed

the hard limit of the day's technology? Perhaps nine women

cannot have a baby in one month, but s -ely nine computers

should be able to do nine months' w rk in one month. If

those processors are all from the optimum cost-effectiveness

class, the cost should be increased by only the same factor

as the performance, yielding a system with identically

optima], cost-effectiveness. Independence from the hard

limits of technology is achieved by simultaneously

performing independent operations on independent data, thus

increasing the number of bits which can be usefully

processed simultaneously. This, then is the unattainable

■-■■-- -~li»'i iniii« Mi i'-"-'"-•■■ ■ -'in in n ■■«mn n« i«il«ir ■'■- " -' ■

^^■■WBW ,..,, „ „.,. ,. ,

■*M|W^' '.C

-

A Cost-eTfective Reliable Machine

.»in i Jmini-WV^miMRPPiPVNH

V-5

V A 2 - A Cost-Effective Reliable Machine

Since the earliest days when it was observed that

computational hardware did not always do the right thing,

there has been interest in how to make computers more

reliable. The concept of Triple Modular Redundancy arose,

with the objective of making a machine which could survive

any component failure. While having the advantage that the

computation presently under way could continue undisturbed

in the face of a failure, this scheme has the disadvantage

that it mere than trebles the hardware cost.

The simple concept of backups - having a second machine

following the computation being performed by the first, and

ready to take over in the event of failure - permits a high

degree of availability at a cost of only somewhat more than

twice the hardware cost of a comparable simple system. This

method of availability improvement is dependent on the

ability to detect failures and on some mechanism to transfer

operation to the backup system. Without understanding

precisely how these functions are performed, we can see that

the existence of such functions increases the cost of the

system.

The asynchronous homogeneous independent control stream

multiprocessor offers a different approach to the

reliability problem by permitting the load to shift from a

^ ip» m»^ -n^ ' "^"^"N ■
--■■. m • ' "i nwnipwJiiiwi IIIJI "« -i ■■" i ". i'i « i>f>u<iRn<m^a i »i \i»m!fm\ uipuLi nu « n i

A Cost-effective Reliable Machine V-6

failing processor to working processors, in the event of

failure. We discussed a number of techniques useful in

determining that failures have occurred. The transfer can

be handled in a smooth automatic fashion. At a cost of only

a single additional processor, such a system can survive any

single processor failure. Further, the power of that

processor is available until a failure does occur. Thus,

the hardware cost is only incrementally more than that of

the minimum system needed to handle the job in the absence

of failure. This is typically much less than the cost of a

single uniprocessor capable of performing the same function.

We cannot give the same kind of measurements on system

reliability that we can on system cost and power for two

reasons, ^irst, the error detection and recovery mechanisms

are primarily in software, and the development of this

software is not yet complete. Second, measurements on

reliability can only be carried out over a time period many

times greater than the mean time to failure. Particularly

in a machine as reliable as we hope and expect the Pluribus

to be, it will take years from the time when the system is

finally declared complete before any believable availability

statistics can be produced. Nevertheless, the current

system is äapable of withstanding total failure of almost

any of the system components, and is further capable of

resuming use of restored components. We take this as a

demonstration that the goals we have set are achievable. It

 II lllBft—• --' —»■^.-..■~—1...^ ..w.-^..' .A— . - —.» *. — -A.* -r...-—•.J..-«......J.^. "-'*•'■'■-'- iii i 'iiiMaii

■v—~
«.an uniuiMHiiiniiKUJ. « n ,.M> »i >|i<ifiw«w-^m|pmmHpw<mmijwjli fP«i»^PBiflW!IWPppiPp|^ppi

A Cost-effective Reliable Machine V-7

is our hope that the Pluribus will, in effect, never go

down.

V B - The Main Points

In this section, we briefly review the main points discussed

in each of the preceding four chapters, and the conclusions

drawn.

The first chapter addressed the various forms of

multiprocessors which might be constructed. The distinction

between data parallel and control parallel systems was

considered. We observed that data parallelism is as old as

automatic computation, and that the parallelism in such

modern systems as ILLIAC IV differs from the parallelism

inherent in a PDP-1 only quantitatively. We observe that

large data parallel systems are useful only for a narrow

class of applications in which there are many bits of data

which can be identically processed simultaneously. We then

observed that control parallel architectures do not suffer

from this limitation because different operations can be

performed on different bits at the same time. We argued

that this sort of structure was capable of fulfilling most

computational requirements.

We then examined pipelining as a technique for achieving

parallelism, and observed that pipelined structures have

some but not all of the desirable characteristics of the

homofzeneous control parallel multiprocessoi . We further

■

.i

»^■^ I I , ip>|IWJ,l|l,Jl||LI

The Main Points V-8

observ5d that the latter is capable of, but not limited to,

pipelined operation.

Chapter I closed with a consideration of the problems of

programming a multiprocessor. We concluded that this area

is very worthy of further study, but that there are no major

obstacles to prevent the instant construction of practical

multiprocessors.

We conclude from these considerations that the homogeneous

control parallel multiprocessor is the structure we wish to

investigate further.

In the second chapter, we considered the interactions among

the processors. This discussion was broken into three major

sections. The first addressed the fundamental hardware and

software synchronizing mechanisms required for meaningful

communication. We concluded that keeping the processors'

timing independent from one another implied delay to

resynchronize their conflicting requests, but that the

flexibility and modularity gained over synchronous systems

more than,offset this cost. We further concluded that while

hardware devices for the implementation of software

interlocks are not strictly necessary, they are

straightforward to implement, and, particularly if a simple

destructive read is used to implement the locks, they can

permit a remarkably high degree of efficiency in the

synchronization of conflicting program requests.

F

•"v.
^IIII.JIIIPIII i!i,« in i^ii||.i>jg.iiuiiM*jqji^|iipHii jiHH i ipjip^tp^^^

The Main Points V-9

In the second section of the second chapte;', we considered

the problem of allocating tasks to processors. After

observing the weaknesses of a variety of interruption

schemes, we presented a voluntary scheme which utilizes a

hardware managed task queue to achieve very high efficiency

and reliability at very low cost.

The third section of the second chapter was devoted to those

interactions among processors whose goal is the improvement

of system availability. We observed that a homogeneous

control parallel multiprocessor has inherent self-backup

capabilities, in that working processors can take over the

computational load left by a dying processor. This ability

can only be utilized if there are means available to detect

failing components. We described a number of techniques for

doing so, and a variety of properties the system components

must have to permit advantage to be taken of these

techniques. We concluded that a practical multiprocessor

must employ these techniques if it is to achieve the

availability levels such an architecture is capable of.

Architectural issues were taken up in the third chapter. We

first considered the question of whether processors should

possess private memories, and concluded that if the

application permits the utilization of such memories, a

tremendous benefit in the reduction of size and timing

constraints on the intercommunication medium derives from

their use. We also considered the process involved in

■t"1111 > "Tr^*m-^~m—r*mr~^-r~*l ,111 \.[\,.ii.\wm^mrmm

—^C'
|H|||I||II.I II ^ r—~«r

The Main Points V-10

selecting a processor for use in a multiprocessor.We

concluded that using slower processors of a given

price/performance ratio reduces the cost of the processing

power lost to communication delays. We considered a

technique for comparing the cost-effectiveness of a number

of processors for a given application.

We then discussed various ways one might interconnect the

components of a multiprocessor. Of these, we observed the

advantages in expansibility, modularity, reliability, and

reparability of the distributed crossbar switch, and

concluded that this was the structure we wish to enploy for

systems of up to one or two dozen processors. For very

large systems, we observed t lat the number of levels in the

tree structure of the system should be increased, to avoid

excessive communication costs.

Chapter IV contained a description of the Pluribus, a

multiprocessor designed on the principles presented in the

earlier chapters. We reviewed the goals which motivated the

design of the system, then presented a description of each

of the major system components, and explained the ways in

which the design principles had been implemented. We

concluded the chapter with an evaluation of the performance

of the system in the IMP job for which it was designed and

also as an optimizing compiler of FORTRAN. We presented the

multiprocessor overhead, a low 24%, and the observed failure

survivability characteristics, that the system would survive

 ^■■^—.»^ —. t.»..a.-.. ...^.,..^-, ,,.....*..■' -■,, iiiTii'iitlMiini'*-''''-'^*

^mimmr*~t&

'■'■""^ ^^ppmp ^" "-"•■■»"

Processor Selection V-12

V C 1 - Processor Selection

Given that the fundamental design concept of the

multiprocessor is to get together a number of

technologically current cost-effective processors to achieve

a ^iven computational power, a good basis for a comparison

of processors for a particular Job is their

price/performance ratio on that job. This is not sufficient

information for a complete comparison of processors for a

job, si^.ce system cost and reliability vary substantially

with the number of processors in a system because of effects

other than processor cost, such as cost and complexity of

the communication medium. As the number of processors of a

given price/performance characteristic increases, the cost

of providing an additional processor for reliability

decreases, as does the cost of the processing power lost due

to the communication delays. The cost of the communication

logic increases, however, because of its increased size and

complexity. In a well-designed multiprocessor the net

effect of these considerations is small compared to the

processor cost, and thus the price/performance ratio of an

individual processor is the governing concern in selecting a

processor.

The price/performance ratio of a processor may be determined

by coding the time-critical portions of the job to be done

for that processor, and in this way determining the time

taken to process a given amount of data. The inverse of

.........-^^.ij.** rii niitfii^ I" lllI'Vll-illiAirii' ~Wm M*! ■ «[ihitniiMia »n lilW>M*-1-•— - *•- '-—- ■'■ '--Amtm n■rfrttn—rf—i ■

^ iw^wiim IBI^ »^ i ■ ■ -i um' i' w—.-i ■

■•l^'l jpill!,m,HJl|li».l,IINII)J , .llillip .IWRSI

l
Processor Selection V-13

this quantity gives the amount of data which can be

processed per processor per unit of time, and is thus a

measure of performance. The price/performance ratio is then

the ratio of the price of the processor to this quantity,

and is therefore proportional to the product of the cost and

the execution time for the given amount of data. A

comparison of this quantity, in units of dollar

mjcroseconds, for the various processors under

consideration, will provide a basis for selection of an

appropriate processor.

V C 2 - How Many Processors?

*]

Having selected the processor, we wish to compute the number

of processors necessary for our system. This can be done

using the time to process a given number of bits, derived in

our price/performance comparisons, and the number of bits

the sysLem needs to be able to process in one unit of time.

The number of processors required is simply the product of

these two numbers, if we neglect the communication,

arbitration, and queueing delays inherent in the

multiprocessor architecture. The exact amount of these

delays is dependent on the amount of communication to shared

resources required, and the number and bandwidth of those

resources. Having coded the time-critical portion of the

system program, those references which are to shared

resources can be identified and counted. Given this

information and the number of processors required, again

■'---■'--^-

■iiiiinwiiiiui IIIIIII w .mi II^IIN

iiw»i»in.r» Uj,

 Ill 'I ■ ^mm^m—'mn n i ^^^pn^nwippimpppipi »i ■ i

Ffow Many Processors? V-1M

neglecting the conmunication and queueinp delays, we can

compute the bandwidth requirements on each of the resources,

and whether or not multiple tokens of these resources are

appropriate. Knowing how many tokens of each resource type

are available, the systemic queueing delays can be

calculated. We shall return briefly to this point after

considering other design parameters.

V C 3 - How Many Memory and I/O Busses?

The bandwidth requirements on the common memory are made up

of two components: the processor utilization, which we have

just described, and the I/O utilization. Knowing the amount

of information our system is designed to handle per unit of

time, we have the I/O bandwidth required directly. The sum

of these two gives us the bandwidth required of the shared

memory, and in combination with the bandwidth available from

a single bank of memory, gives us the number of banks of

memory required. We can also compute the number of memory

busses which will be required to support these memories from

the memory bandwidth requirement and the bandwidth available

from an individual memory bus.

We can now derive the requirements on the I/O bus or busses.

We computed the bandwidth of I/O data transferred in our

memory bandwidth requirement calculation. From inspection

of the program, we can derive the I/O bus bandwidth

requirements of processors referencing device control and

--^- -— ii IM -: . ■- .:^-J.- -L- ■■■ .■..,■-.

———•^*^' I I—»^|I i. ii HL] * "^TVi» MI> I ■«■■in «w: ^n., . , .
WIHU-W«l.ll-«IIW™ppppp^^W«""*>T ■4yiW«!P"ilFH,,! ■'■' 'W.?^W"*M.

How Many Memory and I/O Busses? V-15

status words and the PID. We can compute the bus bandwidth

utilized by devices setting PID flags from the frequency at

which such pseudo-interrupts occur. The sum of these three

numbers gives the total I/O bus bandwidth required. The

ratio of this number to the bandwidth available from a

single bus gives the number of I/O busses required.

We have now computed the number of each sort of busses

required to provide the necessary bandwidth. Other

considerations may dictate a larger number of busses. In

particular, additional busses may be required if a

sufficient number of physical devices cannot be connected to

the given number of busses, or for reasons of re.1 lability.

In the prototype Pluribus IMP, bandwidth requirements

dictated two memory busses, each supporting two banks of

memory, and one I/O bus. It was deemed adequate to be able

to continue coeration with one memory bus in the event of

failure of the other, but the potential loss of the entire

system due to a failure of the single I/O bus was deemed

unsatisfactory. The resultant configuration contains two

memory busses and two I/O busses.

V C 4 - The Communication Medi urn

We now know the fundamental characteristics required of the

communication logic; we know how many processor connections

it must have, how many memory connections it must have, and

how many I/O connections it must have. Equally important.

■^^^•^«P* "Sl^ ' " "•' " >■ '■I»«— ■» — >^. ■Ill—III ■■■ ■ !■ - •-■ . V-—. * ! — ■ , ■ ■— ■ ,.

-mr™ rr^rw, L^l MUn.in T-«*!

The Communication Medium
\

V-16

we know how much bandwidth will be required of tne overall

communication logic, as well as how much bandwiuth will be

required of each point-to-point connection. A communication

medium can then be designed to meet these specifications as

well as other system requirements, such as modularity,

expansibility, and reliability. (The distributed crossbar

switch has numerous advantages in these areas, and seems a

very suitable arrangement for a small to medium

multiprocessor system.) With the communication logic design

in mind, the communication delays can be evaluated. This

delay plus queueing delays car then be added to each of the

program's references to a shared resource. This time can

then be added to the basic program time to produce the true

program time. From this, we can compute how many additional

processors will be necessary to overcome the multiprocessor

slowdowns.

We have now refined our initial estimate of the number of

processors required by taking into account the delays

encountered. This will increase the number of processors,

but will not effect the bandwidth requirements on other

system components, since the increase Just offsets the

delays which we did not account for in our initial

estimates. Some reconsideration of the communication medium

may be called for because of the increase in the number of

processor connections required. However, since the

bandwidth requirements on this logic have not increased, a

■ . . - ■" I

■ - -■ --r riiiiifMii--'■--''-■■'•■'''■•■'-'"■'■■■■*-•■--• ■■-'- ^^-■■•■'■■'■^—*-*-^|ty ' g -■-*■-* - ..-,..■ ^.,.^^..^J .^J. ._ .^^ ..—.. . -^ .- . —• .-

Hiiiiiiinnaap nvi >'I"WI.HJ ■■«■■]■■■■
- * VN «-H--<i. -m*mmmmimmi n^ .

■ ■■i um in i ■P PUPi

The Communication Medium V-17

multiplexing arrangement may be appropriate to connect two

or more processors to t given connection point of the

communication logic. In the Pluribus IMP, two processors

connect to each processor part of the distributed crossbar

switch.

V D - Considerations Which Make it Work

In this section we repeat some conclusions reached as to

engineering details which can substantially improve the

performance or reliability of a multiprocessor system.

1) A voluntary task allocation algorithm, particularly

with a hardware-managed pending task queue, can

improve homogeneous multiprocessor performance by

permitting low task-change overhead, without complex

and expensive special-purpose hardware.

2) Per-device da'-a buffering is an inexpensive technique

which can decrease system cost by relieving the

requirement that sufficient processing power be

available to service a large number of devices in a

small inter-block time. This can also relax the

requi-emPnt for frequent task-change points, and

thereby decrease overhead.

3) Reliability can be moved from the extreme of

requiring all components to be functional for the

system to be functional, in the direction of having a

------ -^—' -- —■--"- -^ »^ - ■ -^

^>^—"^^ iiiipwiwi wiiiii tul ■ ■'^'•^•^r^M ii i—in i ^——■——- J>i*..T^>w ,m *.
l^llipWIMII! ■!_.,! I.I.IJIIH|««.n<ll|VipiJMl. H. .IW,1W,I,|I Jp...n.,r.*.W..«CT| nvvpiiiip

Consicerations Which Make it Work V-18

functional system as long as there is one token of

each type of component functioning. In order to move

in this direction, we need reasonableness checks on

performance, to be able to detect failures, and

program-activated disabling switches, to be able to

remove failing components from the system. In order

to take advantage of these features, we need a

homogeneous system, so that remaining functional

components can continue tasks once executed by now

failing components. Some reasonableness checks we

have proposed are:

a) Protection, anywhere from write-protection to

a full capabilities-based system.

b) Diagnostic programs incorporated into the

operational system, which run periodically and

on suspicion of failure, which detect and

localize failures.

c) AXD parity on all memories and all inter-bus

communications.

d) Checksums on memory.

Some techniques proposed to recover a system after a

failure are:

a) Inter-processor communication permitting any

processor to start, stop, examine, or load any

TT .■ J 'HJ.—^rr;.-—'-„M ,-1^r...^... - minirtitii'ii ■■ .—v.-.....^..-.

, »*■< - -^*-^
' I ll»H III!»»! H«^ I " ■ ■, I—I ■ 1»

'•" ' "i P-ITOWWHF I i i<>iwiimivpMp|ippi*pi^piimnH

Considerations Which Make it Work V-19

other processor. This dangerous facility

requires a password-like protection scheme.

b) Amputation switches permitting the program to

remove failing components from the system.

This also requires password protection.

c) Automatic restarting or reloading of an

entirely smashed system from normally unused,

but periodically tested, facilities.

4) The use of local memories, closely associated with

processors, can reduce communication as well a?

queueing delays, while at the same time reducing size

and complexity of the communication logic, thus

improving system price/performance ratio.

V E - The Future

Many of the key concepts and conclusions discussed in this

dissertation have been embodied in a practical

multiprocessor which is now operational. In terms of

price/performance, it is far superior to any system of

comparable power. In terns of reliability, it is hoped that

once the software is mostly debugged, the system will be

able to survive any single component failure, and will in

effect never be down.

These considerations make this system the front-runner of

all the powerful computing machinery available today. The

i
Jet

«w^wp.^wmw P >) Ji'i11" .fwiw^^friiRpvu'iii.iiM1-'!-»1' *"^"» t«1"1' '«vw,

The Future V-21
I

permits the use of less expensive, more reliable, less

noise-sensitive, rmre easily debuggable components

throughout the system.

It is my belief that this machine organization represents

the most promising technique for the design of medium and

large scale computer systems for the foreseeable future.

■ ■ ■
..^...„^...■Illl IM|ll|jli| mummmnfitimu

—•~-.———^p-»»ww»—•—»-«•—■—»■•■•••. 111 ■' wmfmmmmmimfmiimmmm^immm < •

References

1 - G.H. Barnes, et al, "The ILLIAC IV Computer", IEEE
Trans. C-17, Vol. 8, pp. 746-757, August 1968

2 - James S. Miller and Woodrow H. Vandever, Jr., "Design
Features of an Aerospace Multiprocessor", Proceedings
of the International Workshop on Computer
Architecture, Grenoble, France, June 1973

3 - J. Crompton, "Structure and Internal Communication of
a Telepnone Control System", Proceedings of the First
International Conference on Computer Communications,
pp. 275-281, Washington, D.C., October 1972

4 - D.C. Cosserat, "A Capability Oriented Multi-Processor
System for Real-Time Applications", Proceedings of the
First International Conference on Computer
Communications, pp. 282-289, Washington, D.C, October
1972

5 - K.J. Haner-Hodges, "Fault Resistance and Recovery
within System 250", Proceedings of the First
International Conference on Computer "Communications,
pp. 290-296, Washington, D.C, October 1972

6 - Dr. C.S. Repton, "Reliability Assurance for System
250: A Reliable Real-Time Control System", Proceedings
of the First International Conference on Computer
Communications, pp. 297-305, Washington, D.C, October
1972

7 - F.E. Heart, S.M. Ornstein, W.R. Crowther, and W.B.
Barker, "A New Minicomputer/Multiprocessor for the
ARPA Network", AFIPS Conference Proceedings, Vol. 42,
pp.529-537, 1973 NCC, June 1973

8 - T.H. Myer and I.E. Sutherland, "On the Design of
Display Processors", CACM 11 6, pp. 410-414, 1968

9 - J.E. Thornton, "Parallel Operation in the Control Data
6600", AFIPS Conferencf Proceedings, Vol. 26-2, pp.
33-40, 1964 FJCC

10 - F.J. Corbato, and V.A. Vyssotsky, "Introduction and
Overview of the MULTICS System". AFIPS Conference
proceedings, Vol. 27-1, pp. l"85-196, 1965 FJCC

11 - W.A. Wulf and CG. Bell, "C.mmp - A Multi-Mini
Processor", AFIPS Conference Proceedings, Vol. 41,
1972 FJCC

 itittaiim mmmmm t^^jtmmmm MauMMltttfMi

* ■''■%_

ipwwip ^«■P"

12 - Proceedings of a Conference on Programming Languages
and Compilers for Parallel and Vector Machines, ACM
SIGPLAN Notices, Vol. 10, No. 3, March 1975, 21 Papers

13 - E.W. Dijkstra, "Cooperating Sequential Processes",
Technological University, Eindhoven, The Netherlands,
1965. (Reprinted in Programming Languages. F. Genuys,
ed.. Academic Press, New York, New York, 1968)

14 - H. Ashcroft, "The Productivity of Several Machines
Under the Care of One Operator", Journal of the Royal
Statistical Society, Series
pp.155-151

B, Volume 12, No. 1, 1950,

15 - J.B. Dennis and E.C. VanHorn, "Programming Semantics
for Multiprogrammed Computations", CACM 9 3, pp.
143-155, March 1966

16 - B.W. Lampson, Berkeley Computer Corporation, "Dynamic
Protection Structures", AFIPS Conference Proceedings,
Vol. 35, pp. 27-38, 1969 FJCC

17 - J.E. Juliusojn and F.J. Mowle, "Multiple
Microprocessors with Common Main and Control
Memories", IEEE Transactions on Computers, Vol. C-22,
No. 11, November 1973, pp.999-1007

18 - F.E. Heart, R.E. Kahn, S.M. Ornstein, W.R. Crow*-'ier,
and D.C. Waiden, "The Interface Message Processor for
the ARPA Computer Network", AFIPS Conference
Proceedings, Vol. 36, June 1970, pp. 551-567; also in
Advances in Computer Communications. W.W. Chu (ed.),
Artech House Inc., 1974, pp. 300-316.

19 - L.G. Roberts and B.D. Wessler, "Computer Network
Develooment to Achieve Resource Sharing", Proceedings
AFIPS *1970 SJCC, Vol. 36, op. 543-549

20 - M.B. Solomon, "Economies of Scale and the IBM
System/360", CACM June 1966, pp.435-440

21 - Computer Review. GML Corporation, 1975, pp.26, 54, 56

i

Muy^Jik

im* m IM ipMiii mm mmm wm «■■■i ■""-■—'■■' JPIPPPW^IIP

!
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PACE rWiwi DM« Enltitd)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM .

I. REPORT NUMBER 2. COVT ACCESSION NO 1. RECIPIENT'S CATALOG NUMBER

E f»rfSi>>WII»j

A flULTIPROCESSOR DESIGN *

/

1. ywyg

(|0J W. B./Barker /

». PERFORMING ORGANIZATION NAME AND ADDRESS

Bolt Beranek and Newman Inc. •«.
50 Moulton Street
Cambridge, Massachusetts 02138

II. CONTROLLING OFFICE NAME AND ADDRESS
Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209

14. MONITORING AGENCY NAME ft ADORESSfl/ dlHarmtl tnm Cenlrolllii« Olllc»)

Range Measurements Laboracory
Building 981
Patrick A.F.B., Florida 32925

«0. PROGRAM ELEMENT. PROJECT, TASK
AREA * WORK UNIT NUMBERS

ARPA Order No. 2351;
Program Element Codes
62301E, 62706E, 62708E J

TnHm.
«. "''■.■.TV /-»^««^ftf IM, „gffU ^

Unclassified
F

It«. DECl ASSIFICATION/DOWNCRADINO
SCNLOULE

16. DISTRIBUTION STATEMENT (ot ihlm Kmporl)

Distribution Unlimited

17. DISTRIBUTION STATEMENT (ol fh« mbilfl wif»r*d

(AyyfAiVT ^vUv-^-./; /

I .Mi^tfy.» /raw mmgü

»8. SUPPLEMENTARY NOTES

19. KEY W ROS fConllnu» on revrae »Id» II n»c»»««ry <nd Idmilly b)r block nutnbir;

multiprocessor computer architecture
Pluribus fault tolerant computation
reliable computer multiprocessor design
parallel processor

K ABSTRACT fConllnuo on MMMB »Id» II RMMMV US Idtnllly by block number;

This report addresses the issues involved in the design of a multiprocessor.
The author explores a wide range of design considerations and arrives at
judgments of relative merit at each decision point; the results of these
decisions lead to a particular multiprocessor design. A real multiprocessor
has been built to this design, and its configuration and performance are
described. This system, the Pluribus, has many advantages over other
computer systems in cost-effectiveness, reliability, modularity, and
expansibJllly

DD FORM
1 JAN n 1473 -E&ITION OF

Mt
I NOV 6S IS OBSOLETE UNCLASSIFIED

/y / fi /\ SECURITY CLASSIFICATION OF THIS PACE (IWi.n f>«o P.nl»t»d) ,i
:, ..^^L^.^;.^^^^^^jk.fc^a.^^K^--,j,J1-,!.v jj,..-!. rfii^flihrillkriaui

w

•rTr~-<~iimmmmmmmmmm***^^^m*,^mii>mimm

I UNCLASSIFIED
ICCUhlTY CLASWFICATIOM OF THU PAOtCmm Palm KMf^)

UHCIASSIFIED
ItCUMTV CLA$«PICATi,OM Of THIS PAGtfWi^n Df Bitlmnä)

.. ■ .v^..^ ..,-.,.,^^^.... ...■v.^v..... .- ...v^.:^-^»,.,. -..

