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For long straight rods or cables under tension T and twisting moment M, this criterion for stabil-
ity is M9 < 4TEI, where EI is the bending stiffness under load. The approach used was to
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GREENHILL’S FORMULA AND THE MECHANICS
OF CABLE HOCKLING

INTRODUCTION

In the application of marine cables as tension meinbers, such as in lifting objects 4
from the ocean floor, serious structural failures have occurred as a result of two phenom- 3
ena called hockling and bird caging. Both problems stem from the torsional moments 3
which develop in the cable, usually as a result of its tendency to unwind under load. 3
Hockling occurs when, for a given torque reactior: at the ends of the cable, the tension
becomes insufficient to keep the cable taut, resulting in the formation of a loop or 3
hockle. When increased tension is subsequently reapplied to a hockled cable, the loop
tends to tighten, causing the cable to fail. Bird caging, on the other hand, occurs when
individual wires or strands unravel under excessive torsional loads that are reverse to the
direction in which the wire strands are wound.

The hockling of cables would seem to be closely related to the well-known problem
of the elastica (thin elastic rod under combined tension and moments applied at its ends).
This problem has received much attention in the literature. Kirchhoff {1,2] recognized
that the deflection curve of the elastica is governed by the same set of differential equa-
tions as the motion of a heavy spinning top. Greenhill [2-4] gave a buckling formula
for the rod subje +’d *o tension (or thrust, if negative) and twisting couples, based on the {
assumption of in in.c s mal bending deformations. Southwell [5], in a discussion of the E
elastica under ena {cre: ; with zero moments, showed that a column under thrust at and
above the Euler buckling load remains stable. More recently, considerable effort has gone
into studies of the dynamic characteristics of thin three-dimensional beams. An excellent
review and bibliography of this subject through 1972 may be found in Ref. 6. The prob-
lem of rods of variable cross section has been comprehensively addressed by Green, Naghdi,

and Wenner [7].

In spite of all this attention to the problem of the elastica, some puzzling questions
have remained with regard to the hockling of cables: What are the stability characteristics
of small-deflection solutions corresponding to Greenhill’s formula with respect to increasing
torque or decreasing tension? What in fact is the largest torque for given tension to which
a cable may safely be subjected? And, conversely, how far may the tension safely be
lowered for given end torque? When this report’s author first became interested in the
hockling problem, he did a rudimentary experiment, trying to put bending deflections into
a straight rod under twist and modest tension. The rod was twisted until numerous helical
slip lines developed, indicating substantial shear yielding. Yet no significant bending de-
flections were observed. But cables in tension do hockle, Must they be described in a way
essentially different from rods, or can the observed difference in behavior be explained en-
tirely in terms of the much lower bending stiffness pertaining to cables?

Mzmuscri[')_t s_t-thittod October 3, 1975.
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The purpose of the analysis described in this report was to obtain some insight into
these questions and if possible to establish a loading criterion for the avoidance of cable
hockles. The approach was to obtain computer solutions to the differential equations of
the elastica in nondimensional form for the full range of values of axial end forces and

moments.

STATEMENT OF THE PROBLEM

The problem is to calculate the deflection curve and strain energy of a cable or rod
that is prismatic and straight when unloaded and is “hinged” at each end so as to permit
only an axial moment M and an axial force T. Axial means along the straight line joining
the two end points. Although this presents a two-point boundary-value problem, it can
be solved in reverse as an initial-value problem by assuming a starting angle -y between the
deflection curve and the axis and then solving the differential equations step by step un-
til a point possessing appropriate symmetry properties is reached. This point (or alterna-
tively the end point) must be established from the local properties of the deflection curve,
since the length is initially unknown and must be calculated. When the problem is solved
in nondimensional form, a two-parameter set of solutions is sufficient to cover the full

range of possible loading values.

DERIVATION OF EQUATIONS

A length ¢ of rod or cable that is straight and prismatic when unloaded and possesses
a bending stiffness EI and torsional rigidity GJ is assumed to lie along a space curve and
is referred to a fixed coordinate system OXYZ with unit vectors 1, J, and K as shown in
Fig. 1. The +X axis is vertical upward. Arc length along the cable is denoted by s and
increases as shown in the figure. The cable is assumed to be “hinged’’ at O through some-
thing resembling a universal joint such that the reaction there consists solely of a vertical
force T and a vertical couple M, both directed downward if positive. T and M denote the
magnitudes of T and M (0) respectively. At the free end P of the cable, where x(s) =
[x, ¥, 2], the required equilibrating forces are a constant vertical upward force T and a

couple M(s), where

TO) =T =Ti (1a)

T(8)

and

M(s) = M(0) + T X x(s) = Mi - Tz4 + TyK. (1b)

At the free end P of the cable segment OP, Fig. 1 shows the unit vectors of two
other coordinate systems: ¢, n, { and t, n, b, Here { = t is the unit tangent vector to
the space curve defined by the cable’s center line. The vectors ¢ and 5 are perpendicular
to the tangent and thus lie in the plane of the cross section of the cable. They are taken
as principal axes of the cross section and are considered to be inscribed in the cross sec-

tion (rotate with the cable).
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tively the principal normal and the binormal of

. On the other hand, n and b are respec
the center line.

S i el

Fig. 1 — Coordinate systems and free-body diagram
of cable section OP

“angular velocity” vector £ which denotes the vector 1

It is usual [8] to introduce an
th respect to arc length s.

rate of turn of the system & 7§ wi

Since t is a unit vector, its arc-length derivative is thus given by

dijds=t = QX t.

Cross multiplication by t yields
Q=Kb+ Qgt,
’ where n and b are defined by

t =02 xt=Kn (2)
9 and
, | b=tXn

3
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and Q, = K is the principal curvature of the center line. In terms of the local compon-
ents of the moment vector M the components of Q are

Q, = M,/GJ, (3a) y ]
; Q, =M, =0, (3b)
and
: Qp, = My/EI =K. (3c)

Differentiation of (2) further yields the derivative of the normal vector,

n=b' X t-Kt 4)

Taking components of (4) in the t and b directions respectively gives

n'*b=-b"n. (5)

The quantities n’ * n and b’ * b on the other hand are zero, since they represent the com-
ponent of the derivative of a unit vector upon itself. The remaining required derivative
component is b’ - t, which is zero as shown by the following: Since t * b = 0, it follows

s

'

r thatt' * b +t* b’ = 0. But since t’' is perpendicular to b, then t’ * b and hence also t * b
F must vanish. The preceding calculation of the components of the t', n’, b’ vectors along
1 the ., n, b coordinates may be summarized as the matrix equation representing the
Frenét-Serret differential equations for a space curve: A
¢ 0 K of] 3
b
n’ = |-K 0 ¢ n | (6)
b’ 0 -y 0 b L
] The quantity », substituted for n’ * b in (5), is thus seen to be the geometric torsion,
or tortuosity as Love [2] calls it, of the space curve traced by the center line of the cable
or rod. Differentiating equation (1b), noting that x' = t and using equations (3), gives along
the t, n, b components 3
;

=S
Eta s o




e

NRL REPORT 7940

K(oEI -M;) +T ~ b =0,

and

EIK'=-T - n

(Ta)

(7b)

(7c)

Equation (7a) states that the internal twisting moment, and hence the twist angle per unit
length, is constant along the arc length. M, = M, (0) is one of the three first integrals
available to this problem, analogously with the problem of the heavy top. Equation (7b)
is needed along with equations (3) and (6) to complete the system of equations.

The following non-dimensional quantities are introduced:

S="Ts/M, X=Tx/M, Y=Ty/M, Z=TzM, L=TUM,

F =M2/TEI, H=KEI/M, % = oEI/M,

(*) = d/dS = (M/T) ('), Mg = M/M = oy (0).

Further the direction cosines, or components ;; of the t, n, b vectors with respect to the
fixed system 1, J, K, as well as a set of Euler angles A, B, C to remove unncessary re-

dundacies in the direction cosines, are defined:

aqp = cos (¢, 1),

aq9 = cos (t, 3),

etc., and

t cBcC

sAsBcC - cAsC

fegj] = | n

b cAsBeC + sAsC

where ¢B means cos B, sC means sin C, etc.

cBsC
sAsBsC + cAcC

¢AsBsC - sAcC

-sB
sAcB 5 (8)

cAcB

LR s
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In these terms the complete system of differential equations defining the space curve
and other quantities pertaining to the rod or cable consists of equation (8) for the a;; in
terms of the Euler angles together with the following:

H =uwg) - Zagy + Yoy, (9a)
& =Mp-oay/FH, ifH#0, (9b)
& = Mqp/2, if H=0 (by L'Hospital’s rule), (9c)
A* = F(HcAsB/cB + @), (9d)
B* = -FHsA, (9e)
C* = FHcA/cB, (9f)
X* =0q,, (98)
Y* =0y, (9h)
Z* =y (9i)

INITIAL CONDITIONS

Initial conditions are chosen with X, = Yy = Z3 = 0 and so that the tangent vector
initially makes an angle v (0 < y < 180°) with the X axis. An appropriate set of initial

values of the Euler angles is

AO = 1r/2,
BO = 0,

CO = 'Y7
thus making the curve begin in the XY plane.

Equations (9) become singular when ¢B = 0. This happens infrequently, and is en-
tirely a difficulty of the particular Euler-angle representation. It is avoided either by
choosing a different initial azimuth (say Ay = 0, By = v, Co = 0) or by departing from
the Euler-angle formulation w-ienever cB is small and instead using derivatives of a set of
three independent direction cosines.
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FINDING MIDHOCKLE

To determine when midhockle, the point of symmetry halfway between the “hinged”
ends, is reached, we seek an arc length s, at which K(s,, + s) = K(s,, - s) and p(s,, + s) =
(s, - s) for any s. This happens when all the odd derivatives K(2¥*1) (s) and w(aN*l)
(s) are equal to zero at s =s,,. It is easily shown that this happens whenever K'(s) = 0 or,

by equation (7c), when ay, = 0.

An outline of the proof comes in two parts: The first part to be proved is that if
K(2n+1) = ,(20+1) = O for n = 0, 1, ..., N-1 and if K(2N+1) = 0, then also ¢(2N*1) = 0,
This follows from successive double differentiations of (7b) and use of (6) and (7¢). Each
such doubly differentiated equation consists of terms which are products of derivatives of
order zero up to the order of differentiation. Since the sum of orders for each term is
odd, each term must contain at least one factor which is an odd-order derivative of either
K or v. But by hypothesis all these factors except the highest derivative of ¢ are zero.
Hence also the highest derivative must vanish.

The second part to be proved is that if K(27*1) = »,(2n+1) = 0 forn = 0, ..., N-1,
then also K(2N+1) = 0, Since by (7c) differentiated 2n times
EIK(2n+1) = _y - n{(2n)

it suffices to show that -T - n(2N)= 0, or that n{2N) has a zero | component. Let the
direction-cosine matrix of (8) be denoted by r and the curvature-torsion matrix of (6) by

X:

0= n
b
and
0 K 0
x= | K 0 "
0 -9 0
Then (6) may be written as
T’ = xr. (10)

To be shown therefore is that under the assumed circumstances the {2,1} component
of matrix 7(2N) is zero. Successive differentiaticn and substitution of (10) shows that the

higher derivatives of 7 are expressible in the form

7

it S0 it 5
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7n) = [f,,(x("'”, e x)] T,

where each terra of f,, is a product of from one to n of the n matrices x through x(7-1).
From the formai process of differentiation it follows that these terms are homogeneous

of degr-c n in each term’s sum of orders plus number of factors. As an example a term
xx""x'xx has u total order 0 + 3+ 1+ 0 + 0 =4 and has five factors and therefore could
belong only to fg. Thus for n = 2N the highest derivative term is x2¥-! multiplied by no
other factors. Because of the homogeneity of orders plus factors of degree 2N, every term
of fon other than this highest derivative term must also possess one of two properties:
Either it is the product of an even number of factors or it must contain at least one lower
odd-order derivative. In either case, the matrix term can be shown to be zero at all “odd”
locations including { 2,1} ; hence the same follows for their sum r(2N),

From the preceding two parts of the proof it follows that a point at which K' = 0
(or ag; = 0) is always a point of symmetry.

BRIEF DESCRIPTION OF THE FORTRAN LISTINGS

The Fortran routine to accomplish the required calculations consists of the main pro-
gram Hockle and subroutines Dcalc, Sym, and Step. The listings are given in Appendix A.

The main program accepts sets of values for F, v, increment of nondimensional arc
length AS, and print interval (to permit printing less than every calculation step). It also
calculates initial conditions and determines when midhockle is passed (a5, changes sign),
at which time it interpolates for S,,. Endhockle is prescribed to be at S = L = 2S,,, and
the option exists to keep calculating that far. The program Hockle contains necessary
print and punch instructions and calls subroutines as needed. An important output is sets
of values of nondimensional moment u = M{/EI = FL and force v = T(?/El = FL2.

The subroutine Dcalc calculates the distance of closest approach D,;, between pairs
of symmetric points on the rod. This is done because if that distance became zero in a
real cable, then the mutual lateral forces at the point of intersection would no longer per-
mit representation by the present mathematical model, which would allow the cable to
pass right through itscl.” ‘The calculation of 1), is performed using points only between
zero and midhockle and does not require stepping past midhockle.

The subroutine Sym does require calculation all the way to endhockle and calculates
the degree of symmetry about midhockle of selected quantities such as & and «yy. This
provides a check on the accuracy of calculation, since in theory the symmetry should be
perfect.

Finally, the subroutine Step performs the basic stepping procedure on the differential
equations and calculates the required quantities: direction cosines, curvature H (both di-
rectly and from a first integral for comparison), &, etc. When informed by Hockle that
¢B is too small to use the Euler angles, Step uses alternate equations for stepping. The
stepping interval is the inputted AS except either side of midhockle, where steps and
print points are chosen in such a way as to preserve symmetry of the calculations and
print intervals.

b i o e bt e




e s i

NRL REPORT 7940

DISCUSSION OF RESULTS

Relation Between End Forces, End Moments,
and Cable Configuration

Once the program has calculated the nondimensional length L of a symmetric space
curve for given values of load parameter F and initial angle y, then the values of the non-
dimensional moment and force

i g

]
=
=
- w‘;'».\'." -y

u = MYEI

and

v =TC/EI = FL2

are readily calculated. The results are shown in Fig. 2 for a number of values of vy, with
a few F = constant curves also indicated. The ¥ = 0° and y = 180° curves constitute the
two halves of a parabola corresponding to Greenhill’s formula

v= 2?2 -n21, (11

referred to in the Introduction. The reason for the absolute-value signs and thus the para-
bola with the lower portion reflected in the u axis is that there is the following duality of
solutions: If a (F, y) input yields a (¢, v) solution, then a (-F, n-y) input yields the iden-
tical (1, -v) solution. However the concept of positive F and T representing a tension and
negative F and T representing a compression makes sense only for the Greenhill case of

v = 0 (or, for reversed signs, 180°). For example, the elastica, under end force only, can
go with a continuously increasing force from Euler buckling in compression, at (0, 72) in
the figure, to a looped rod in tension, with no clear break in between. To exhibit this be-
havior correctly, all forces as well as moments are therefore shown in the first quadrant,
with the result that half of the Greenhill parabola is reflected in the u axis. Also, because
of these same symmetries, all ¥ = constant curves are perpendicular to the v axis at u = 0.
In addition the y = 90° curve is perpendicular to the u axis at v = 0.

| An important set of check points is provided on the v axis. Clearly this corresponds
1 to the elastica with zero moment. As shown by Southwell [5], the relation on u = 0 be-
j tween v and v is given by

v =4K2(k),
where

1 k = sin|(r-vy)/2] and

where K (k) is the complete elliptic integral of the first kind. This formula checks the
computer solution for small values of F and hence of u.

9
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Fig. 2 — Nondimensional end moments and forces on an elastica for
various end angles y and load parameters F =M 2/TE[ or u 2jv

In Fig. 2 all nontrivial solutions to this problem as expressed in the uv quarter plane
fall between the two segments of the Greenhill parabola. (Trivial solutions exist through-
out the uv quarter plane.) All combinations of moment and force inside the 180° seg-
ment of the parabola correspond to the trivial solution of twist only, and zero bending.
Similarly moments outside the 0° segment are unattainable, since only an unstable trivial
solution exists there.

The dashed curve D,,;,/L = 0 along with the portion of the v axis above 21.55 is
the locus in uv space along which the calculated icflection curve of the loaded cable pos-
sesses a self-intersection. This locus provides a barrier to the configuration of a real cable.
For example, if a cable loaded by a constant thrust v = 20 is subjected to an increasing
moment u, a self-intersection will occur when u equais approximately 3, and any config-
uration corresponding to larger moments will not be correctly predicted by the present
theory. With reference again to Southwell’s solution, the D ;. /L = 0 curve meets the v
axis when the ratio of the complete elliptic integral of the second kind & (k) to the one of
the first kind equals 1/2:

&(R)K(R) =1/2.

This in turn occurs when v = 21,55 and y = 49.29° as shown in Fig. 2.

10
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If a rod is subjected to a constant compressive force below the Euler load while the
twisting moment is increased starting at zero, the rod remains straight until the moment
reaches the lower Greenhill value at y = 180°. This point is stable however in that the
moment can be increased beyond this value at least until the dashed curve is reached.

If a rod or cable begins in tension, it remains straight until the upper Greenhill value
is reached at y = Q°, but at this point no further increase in torque is possible and any
further twisting deformation must be accompanied by a decreased reaction torque. Thus
for a rod or cable in combined tension and twist, Greenhill’s formula does not represent
merely the point of first departure from a trivial twist-only sclution, It additionally rep-
resents the maximum torque which can be applied at a given tension, or the minimum
tension necessary to support a given torque, and represents a point of instability if any
attempts were made to increase the torque relative to the force. This instahility must be
particularly violent in the case of cables, for the following reason: For a rod or cable in
combined tension and sub-Greenhill torsion, all strain energy is stored in twist, a relatively
stiff mode. As the Greenhill curve is approached and bending becomes possible, a sub-
stantial part of this twisting strain energy must be transferred into bending. But a cable
is distinguished by its very low bending stiffness, so that the conversion of a given amount
of strain energy would require much larger deflections than would be the case for a rod.

The previous paragraphs also illustrate the double-valuedness of the graph of Fig. 2
in the area between the two branches of the Greenhill curve. Consider a cable loaded by
a nondimensional moment 4 = 7.2 and a nor.dimensional force v = 52.4, at the point in
Fig. 2 at which ¥ = 15° and F = 1. One possible configuration of the cable under this
loading is the straight cable in tension, with v actually equal to 0° and not 15°. This con-
figuration can result if the tension on an initially unloaded cable is raised to 52.4 and a
subsequently applied moment is raised to 7.2. Since this is below the Greenhill torque in
tension, the cable remains straight. The other possible configuration under the same load-
ing is a hockled cable with y really equal to 15°. This may be produced by ‘‘compressing”
an initially straight cable past Euler buckling, forming a loop which is tightened as the
force is increased to 52.4 (now a “‘tension’ because the end points have passed each other),
with a subsequent increase in moment to 7.2, applied in the direction in which the loap
is able to open partially.

The quarter plane u > 0, v > 0 is thus divided into three ristinct regions: Inside the
180° branch of the Greenhill curve, only the trivial solution exists, and it is stable, In the
second region, between the 180° and 0° branches, the configuration is double valued for
any given loading. Here, if loading begins from a straight rod in tension, then the trivial
sution is stable, but if the loading begins from compression, then the trivial solution is
unstable and the nontrivial configuration results. In the third region, outside the 0° branch
of the Greenhill curve, only the unstable trivial solution exists, so that such loadings cannot

be sustained.

It is instructive to examine from an energy point of view the possible rod or cable
configurations at the load point in Fig. 2 (u = 2r, v = 0) where all the y = constant curves
intersect. The loading corresponding to this point supports equilibrium configurations for
all values of vy from 0° to 180°. The deflection curve corresponding to these configura-
tions would in general be a complete turn of a helix of pitch 7/2 - y. It is a helix because

11
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the force is zero and the internal moment therefore is constant; it contains a full revolu-
tion because the end moments act along the direction of the line joining the end points.
For v = 0° or 180°, the helix is reduced to a straight line in pure twist under end mo-
ment M; for y = 90°, it is a full circular hoop in pure bending under end moments M
perpendicular to the plane of the circle. Of all possible equilibrium configurations, the
stable one is that one for which the applied end moments are at the lowest possible level
of potential energy, i.e., the one for which the strain energy is maximum.

For this case of pure moment loading, the total strain energy is

U = M2 (21 + M2Y/2GJ,

where GJ is the torsional stiffness. In terms of the applied moment M and the angle v,
My, =M sin y and M, = M cos v, so that

U = M2¢/2 (sin? y/EI + cos? v/GJ).

The extreme values of U occur when dU/dy = 0, or when

sin 2y (1/EI - 1/GJ) = C,

or vy = 0°% 90° and 180°. Which extreme corresponds to the maximum strain energy then
depends on the stiffnesses, as may be seen by putting the three values of y back into U:

U (y = 0°, 180°) = M2¢/2GJ, ior pure twist,
and
U (y = 90°) = M2Q/2E!, for pure bending.

Thus for the rod or cable loaded by end moments MY/El = 2nr, the stable configuralion
is the straight twisted one if GJ < EI and is the circular hoop if GJ > EI. For typical
solid rods, GJ ~ 0.7EI, while for cables GJ >> EI. Thus a hinged cable loaded with

v = 0 and u increasing from zero will remain straight until u = 2r, when it will snap into
the shape of a closed circular hoop.

In spite of this apparent difference between the configuration of cables and rods at
(4 = 2r, v = 0), it should be borne in mind that this point does in any case represent the
limit of stability of the straight form, for rods as well as for cables. This behavior of
rods is also discussed in Ref. 2 (paragraph 272(d), page 417), where the more general
Greenhill formula is also developed.

The main purpose in presenting Fig. 2 is to show the central importance of Green-
hill’s formula in evaluating the stability of rods and cables and to clarify it~ relationship
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to the force-only solution of Southwell. The figure may also be used to determine the
possible configuration (or configurations, in the double-valued region hetween the two
branches of the Greenhill parabola ) when end loads u and v to the left of they = 0
branch are given. In this application the barrier locus D,,;,/L = 0 must be taken into
account.

Why Don’t Rods or Solid Wires Hockle?

Understanding the fundamental importance of Greenhill’s formula, we can now eval-
uate under what conditions a rod in combined tension and torsion might undergo bending.
For a circular steel rod or wire with Young’s modulus of E = 2 X 1011 N/m2 and shear
yield strength o, = 350 X 108 N/m2, the precondition for bending is that any tension be
so low as to keep the actual tensile stress below 0.15 X 108 N/m2, or a mere 0.027% of
a tensile capability of say 550 X 106 N/m2! Any attempt to induce bending due to twist
at a higher applied tension will cause torsion shear failure instead. This conclusion is ar-
rived at as follows: Assume the tension T is such that bending is just possible by Green-
hill’s formula while at the same time the shear yield limit o5 = 2M/na3 is reached, where
a is the radius of the rod. For an infinitely long rod (which would bend most readily),
Greenhill’s formula reduces to M = 2(TEN1/2 = a2 (TEn)1/2, In the equation o, = 2M/na®, if
a2(TEn)1/2 is substituted for M and then g, (the tensile stress produced) is substituted for
T/na2, the result yields

oy = 02/4E.

For the values assumed earlier this becomes ¢, = 0.15 X 108 N/m2 as stated.

EXPERIMENTAL VERIFICATION
Woods Hole, MIT, and NCEL Tests

Field and laboratory tests to investigate the hockling or *kinking” properties of
oceanographic cable have been conducted by Berteaux and Walden [9], Vachon [10], and
Liu (11,12]. The laboratory tests by Berteaux and Walden concentrated on measuring
rotation rather than torque and therefore cannot be evaluated here without further knowl-

edge of the torsional rigidity.

Vachon measured for a number of cables and loadings the bending stiffness E/ (which
he was also able to calculate to good accuracy), the force T, and the hockling torque M
both positive (tightening) and negative (unwinding). His 17-foot cables were long enough
to reduce end effects to a modest 10% or so (which can be estimated from Greenhill’s
formula, equation (11), by dividing through by ¢2 and comparing 72/¢2 to T/EI or
(M/2E1)?). This order of magnitude is borne out also by his evaluation of the effects of
end mounting on hockling torque.

When these end effects are ignored, by putting ¢ = e in the Greenhill formula, and
each experiment is assigned a Greenhill number G = M2/4TEI, which theoretically should
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then be equal to 1, the results show G to range from about 0.5 to 5. These values of ¢
are at least the right order of magnitude and have a reasonahle mean value. Vachon’s
results show a rather wide divergence in positive and negative hockling torques for iden-
tical cables and tensions. If the torque had been consistently higher in the positive di-
rection, one might be tempted to ascribe this divergence to increased bending stiffness
for a tightened cable. Unfortunately, in half the cases the divergence goes the other way,
and no explanation can be offered at this time. In the one case in which the positive and
negative hockling torques fell to within about 10% of their average, the calculated Green-
hill numbers turn out to be an encouraging 1.2 and 0.8 respectively.

Reading about the explosiveness with which some of Vachon’s kinking experiments
were completed (“a 3/16 inch thick circular ring, supporting the water can [used as a
weight], was straightened out, thus dropping the can to the floor”) is more amusing than
having observed it. But in retrospect, this explosive behavior is quite consistent with the
instability of the Greenhill loading in tension combined with the substantial energy stored
in the relatively stiff twisting mode at the instant when that instability occurs. Vachon
was well aware of the energy consideration, which he reviewed in his report.

The applicability of Greenhill’s formula to cable kinking has also been recognized by
Liu, whose recent experiments described in Ref. 11 appear to be well correlated with the
formula over a wide loading range. Reference 12 is a more detailed report of his results.

NRL Tests

In view of the incomplete knowledge at NRL about the conditions under which
hockling tests at other Laboratories were conducted and, even more, to get some engi-
neering insight into the phenomena under study, a few rudimentary measurements were '
made at NRL. The most sophisticated measuring tools were fish scales and weights
(steel, to keep the floor dry), and the time allowed for the experiment was about 2 days.
Nonetheless the results showed good agreement with theory.

The no-load small-deflection bending stiffness EIl for a sample of 1/4-inch cable was
measured by loading several lengths of it as cantilever beams. Calculated values of EJ
ranged from 0.051 to 0.063 Nm2, with 0.057 as an average value.

A 12-foot length of this cable was suspended from the ceiling. Because of a lack of
safety devices, loading was kept at light tensions up to 18 N and torques up to 2 Nm.
For four loading cases Greenhill numbers G = M2/4TEI of 0.97, 0.72, 0.97, and 1.10

were obtained. In view the closeness of these observations to the theoretical G = 1, more

comprehensive and better instrumented hockling experiments are anticipated, with a view
to developing a usable method for specifying torsional properties of marine cables.

CONCLUSIONS
The conclusions are as follows:

e The importance of Greenhill’s 100-year-old formula for determining the elastic
stability of rods in combined axial force and twist far surpasses merely defining the onset
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of possible bending modes. For rods or cables in tension the Greenhill condition repre-
sents the largest torque which can be applied for a given tension or the lowest tension
capable of supporting a given torque. It represents a point of instability with respect to
increasing torque or decreasing tension. This instability is expected to be particularly
violent in the case of cables, because of their low bending stiffness.

e For applications in which a cable remains substantially straight, such as the lifting
of objects from the ocean floor, the Greenhill formula, modified by an appropriate safety
factor, should provide a valid criterion for estimating the onset of hockling.

e For applications involving initially curved cables, such as in towing, where the in-
fluences of gravity and drag are strong, the situation is less clear. It is known that the
Greenhill condition cannot be exceeded, but it is possible that instabilities might already
occur at much lower values of torque or higher values of tension, since the relevance of
Greenhill’s formula depends on the relatively large twisting stiffness of the initially un-
bent and straight cable. The stability of initially curved cables thus is an interesting sub-
ject for further research,

ACKNOWLEDGMENTS

Major credit is due to James Mark, who wrote the Fortran routine with great care,
taking into account the several complications which occurred before it ran well for all
cases of interest. The author is also grateful for numerous fruitful discussions held on
both the practical and theoretical aspects of the cable hockling problem with George J.
O’Hara and Richard A. Skop, both of the NRL Ocean Technology Division. The exper-
imental checks performed on this problem at NRL were carried out most competently,
in a short time and using only the simplest tools, by Darrell A. Milburn and Kenneth M.

Ferer,
This work has been completed as part of the Division’s broader research program on

the use of cables in ocean engineering, and has been supported in part by the Office of
Naval Research program in Structural Mechanics.

REFERENCES
1. G. Kirchhoff, Jour. of Math. (Crelle) 56 (1859).

2. A.E.H. Love, The Mathematical Theory of Elasticity, Dover, New York, 1944,
Chapters XVIII and XIX.

3. A.G. Greenhill, Proc. Inst. Mech. Engrs. (London), 1883.

4. S.P. Timoshenko and J.M. Gere, Theory of Elastic Stability, 2nd edition, McGraw-
Hill, Toronto and London, 1961, p. 157.

5. R.V. Southwell, An Introduction to the Theory of Elasticity, Dover, New York,
1969, Chapter XIII.

15

-




10.

11.

12

FELIX ROSENTHAL

M.F. Massoud, and Y.A. Youssef, “Dynamic Characteristics of Thin Space Beams,”
The Shock and Vibration Digest 5 (No. 1), 7-14 (Jan, 1973).

A.E. Green, P.M. Naghdi, and M.L. Wenner, ‘“On the Theory of Rods, Part I: Deri-
vations from the Three-Dimensional Equations,” and ‘“‘Part II: Developments by
Direct Approach,” Reports AM-73-4/5 to the Office of Naval Research on Project
NR 064-436, University of California, Berkeley, Oct./Nov. 1973.

L.O. Landau, and E.M. Lifshitz, Theory of Elasticity, Pergammon Press, London/
Paris/Frankfurt, 1959, Sections 17-19.

H.O. Berteaux, and R.G. Walden, “Analysis and Experimental Evaluation of Single
Point Moored Buoy Systems,” unpublished manuscript 69-36, Woods Hole Oceano-
graphic Institution, under Office of Naval Research Contract N00014-66-C0241,

NR 083-004, May 1969.

W.A. Vachon, “Kink Formation Properties and Other Mechanical Characteristics of
Oceanographic Strands and Wire Rope,” Technical Report E-2497 prepared at the
MIT Charles S. Draper Laboratory for Woods Hole Oceanographic Institution under
Office of Naval Research Contract N0O0014-66-C0241, NR 083-004, Apr. 1970.

F.C. Liu, “Rotational and Kinking Properties of EM Cables,” abstracts of papers pre-
sented at “Civil Engineering in the Ocean/IIl,”” American Society of Civil Engineers,
New York, June 1975.

F.C. Liu, “Kink Formation and Rotational Response of Single and Multistrand Elec-
tromechanical Cables,” CEL Technical Note L-1403, Naval Civil Engineering Labora-

tory, Port Hueneme, Calif., Oct. 1975.




o A e T T

Appendix A
FORTRAN LISTINGS FOR PROGRAM HOCKLE

PROGRAM HOCKLE

DIMENSION FF(100) 48AM(100),0SD(100)

COMMON /B81.0K17 Al19A129A139FsHePHIsAIBICIXeY9ZeS9A211A319A320A33)
1 DAsDBIOCIDXoDYsDZoaBARYICOUNT o HNEWsAL10,GaAMMA» IBFLAG

COMMON /BLOK2/ KOUNT»SYMIPMI(1500)+SYMALF(1500)

COMMON /BLOK3/ XS(1500)995(1500)925(1500) +LSeDMIN,DSySMININSTEPS
REAL L

C THE FOLLOWINS FUNCTION CALCULATES GREENHILL LENGTH
c a
XL(X)® 642831853072 ¢ SQRT(X & (X=4)) »
c
C WE NOW READ IN NUMBER OF STYEPS BETWEEN PRINT LINES AND STOP SIGNAL!
c
DS=0,
1005 READ zoNSTEPSoNSTOP
FORMAT (215)
IF(NSTOP.GT40) GO TV 1002
c
C WE NOW READ IN UP TO 100 POIN]S'F'GAMMA.DS
c

READ 1oNFyNGoNDSs (FF (1) ¢IS1oNF) s (GAMIJ) 9 J=1#NG) 9 (DSD (KQ) $KQ=19NDS)
1 FORMA] (313, (/78F10,0))

c
C FOR OUTPUT PURPOSES WE NOW COMPUTE THE LENGTH OF THE PRINT INTERVAL
C AND INTIALIZE THE' CASE NUMDERs PRN¢NCASE
c
NCAGE=O
c
C WE RUN THE CALCULATION 1HROUGH THE F,GAMMA PAIRS,
c 1 IS A COUNTER TO STEP IHROUGH THE VALUES OF F
c J IS A COUNTER TO STEP THROUGH THE VALUES OF GAMMA
C KQ IS A COUNTER YO STEP- THE VALUES OF DS
C
DO 1000 Ie),NF
FRFF(I)
c
C ewo CHECK TO SEE IFI F I5 IN THE!I INTERVAL (0,4) AND IGNCRE GREENHILL
c LENGTH IFI IT IS,
c

GLe=o
IF( (FeLTcgs) «ORe (FeGTade) ) GLEXL(F)

#s¢ INNER LOORS ON J ANU hQ

(s Kele]

DO 1000 J:1,NG
DO 1000 KC-1,NDS
pS=pSD (KE)
PRANaNSTEF 3 DG
18rLAG=D

SHn0,

SMINEQ,

R'ol

RN=Q o

NPRINTsg
NTESTEp
S1wSz2mS3nG4%00
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S s

PR

ABAR=(
KOyNT®=1
MIDFLAGH0
ICOUNTup
GAMMAmGAM( )

ssa PRINT INITIAL! CONDITIONS AND CASE NUMBER

i b

OO0

NCASEmNCASEe]
PRINT 34NCASE!

3 FORMAT(1H]s@eroa~ne=enINITIAL' CONDITIONS FOR CASE NOs®e¢I14//)
PRINT 4¢FyGANMA

& FORMAT(IH 10X ®Fu®sF6,2¢10X*GAMMARSyF6,2//)

o\ iia i

#s® CONVERT GAMMA TO RAVIANS FOR CALCULATION
GAMMARGAMMA & 3,1419926536/180. ;
INITIALIZE ANGLES AND CUORDINATES ‘

OO0 IO

A®1,5707963268
B=pe
CoGAMMA

ALTERNATE INITIAL VALUES AmQ., B®GAMMA, Cu0s INSERT HERE

oo

X=p,
Y&pe
Z®qe
Slo.
RNMAX®g o
RNmg o
LS=)

CALCULATE INITIAL!I VALUES OF A(L,J)

o000

Al1mC0S(B)eCOS(C) s All0=Al)
ABAR=ABAR+AL )

JCOUNTmICOUNT®)

Al2=C0S(B)*SIN(C)

Al3==SIN(B)

A21=SIN(A)#gIN(B)#CUS(C) = COS(A)*SIN(C)
A31=COS(A)#SIN(B) €CUS(C) * SIN{A)®SIN(C)
A32nC0S(A)#SIN(B)#SIN(C) = SIN(al®cOS(C)
Ad3=C0g(A)#COS(B)

L

ALTERNATE A21 INSERT HERE
CALCULATE INITIAL! VALUES OF HyPHI,PSI HNEW

OO0

) HEA3]eZaAd2eYEA3D
PHX“O.S.A]
IF(ABS(H)-.OOOOOOOI) 595041
4) PHI= A1l o A3] /7 (F&H)
6§ HNEWESQRT((2e/F)#{CUS(GAMMA)=A1]1) ¢ SIN(GAMMA)es2)
PSY=0,

18
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I1TESTYs0
1TEST220
PUNCH 609NCASE
60 FORMAT(® INITIAL VALUES FOR CASE®elg)
PUNCH 6145,pHIsXeYoZ9RNoHrpsl
PUNCH 61,411,A12,A13,A219A319A32,4A33
6) FORMAT(8F10.6)
64 FORMAT{4F14.892F2200)

PRINT OUTPUT HEADERS,
PRINT &

6 FORMAT(/&4H  Ss6Xe3HPHI ¢SXelHX96Xe1HY 96X 1HZ 95X e 2HHO 95X 9 IHPSTsSXy

1IHAP6X o2 HBy 6 Ko 1HCo6X 9 JHI 9 DX 3HALL 14 X9 IHAL294X 9 IHAL3 04X 03HAZT 14Xy
23HAI1,40X93HA32,4X03MA33/)
1FMLel

PRINT INITIAL' vALUES

T PRINT B,5,PHI K, Yo ZoHNEW,PST,AyByCyH,AL11,A12,A13,A21,A31,A32,433

8 FORMAT{IH (1BF7.4)
RN=SQRT (Yee2e2882)
IF (RNeGToRNMAX) RNMAXERN
NPRINTeNPRINTe]
CALL SYM(IFFL9514520539564}
IF (MIDFLAG.EQs1) GO TO S0
XS (LS)=X
YS(LS)mY
Z5(LS)m2
L.SwiSey

50 CONTINUE

WE NOW BEGIN Yo STEP OUK WAY ALONG THE CABLE

ISP IS A COUNTER CONTROLLING PRINT
WE. ARE LOOKING FOR MIDHUCKLE

ISPeg
9 A2)10LNaApy
CALL STEP(DS)
ees TEST FOR MIDHOCKLE
IF(((A2182210LD) oL Te0) o ANDs (MIDFLAG,EQ40))GO TO 13

esu WE ARE NOT AT MIDHOCKLE,
HAVE WE COME T0 THE END OF THE CABLE,

10 IF (MIDFLAG.NEs)) GO TO 11
IF (NPRINT,EQ.NTEST) GO TU 25

WE ARE NOT AT END OR MIUHOCKLE, CHECK YO SEE IF IT IS TIME TO PRINT

11 15P=lSPe]

WE ARE NOW READY TO PRINT SO WEI NEED TO COMPUTE HNEW,PST,PHI
PSIEASIN( Z/SORT(Z#%2eY#&c) )
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IF (ISP.LT,NSTEPS) G0 TO 9
GO 70 7 F

c
C WE ARE AT MIDHOCKLE

13 PRINT 14
16 FORMAT(////1H r8es==co=s=® MIDHOCKLE we=woec==wst///)

c

C WE NOW FIND gM THE LENGJH TO MIDHOCKLE
MIDFLAGE)
DSMEeA21°DS/ (AR]=A210LD)
CALL STEP(OSM)
RNaGQRT(Y 0e2e7 @82}
IF (RN+GT s RNMAX) RNMAX®RN

3 XS (LS)mX

9 YS(LS)aY

3 ZS(LS)eZ

c

€ CURRENT VALUES OF' VARTABLES IN COMMON ARE MIDHOCKLE VALUES SM=S,
PSImASIN( Z/SQRT(Z®*%2 ¢Y®®2) )
LE24%S

FleFel
FL2wFLeL

¢
C CALCULATE TWIST AND BENUING ENERGIES
1 c i
ENTLeFoFL260¢5C0S (VAMMA) @62 ¥
ABARSABAR/ICOUNT
ENB-ELGcos(GAMMA)OFGFLz'Q.s'SXN(GAMMA)002-FL2'ABAR :
SMaS ' 1
GBGAMMA®] B0 ,4/341415926536 3

C
C PRINT HEADERS FOR MIDHOCKLE PRINTOUT

PRINT 17
}T FORMAT(1H 332X SPRINT®93Xs8GREENHILL® 12X s #MIDHOCKLE® 93X #TOTAL®,
124Xe#THIST BENDING®}

PRINT 18
18 FORMAT (11 45X o®F®16R¢OGAMMABY4X ®STEP SIZE INTERVAL! #93(% LENGTH

1 ®) ) 4Xe®FLerXo®FL2¥ s TXs 2ENERGY ENERGY®) *
PRINY 19,F,46 +DSYPRNGL oMy Ly FLGFL2/ENTLSENB
19 FORMAT(1H yF10+51FT2203Xs9F10e5/7//)

c
CALL DcaLe |
PRINT 51 OMINSMIN ;
§1 FORMAT(1H o® MINIMUM DISTANCE IS *1F12460% S2#9F1245) ]
PRINT A
PRINT g.S.PH!OX'YOZOHNEHQESI'A'B'Cyﬂpﬂll'AIE'A13'A21'ﬁ31'A32'ﬂ33 3
| PUNCK 62
{ 62 FORMAT (#MIDHOCKLE®)

PUNCH 6l|F.GAMMa'DSoPRN'GEvLoRNoRNMAX
PUNCH g4 sFLyFL2oENTLIENS 1UMINy SHIN

PUNCH bloS!PHX'X'Yll.RN.ﬁOPSI 1
PUNCH 619A119A120A139A219A3]9A324A33 ;

c
C WE NOW GO TO POINT SYMMETRIC WITH PRINT VALUE PRECEEDING MIDHOCKLE

20
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Ds2=DseDSM

CALL STEP(DS2}

Kga]SP

DO 24 K=m)yK2
24 CALL STEP(DS)

CALL SYM(IFFL¥51152¢53454)
PRINT anule|X.Y|Z-HNEwaSI’AoBoCoHokxx.Alz.A13.A21.A31.A3z.A33

c
C CALCULATE 7O END OF CABLE WITH ORIGINAL Ds
¢ !

1FFL=2
15P=Q

¢
€ SAVE NUMBER OF SYEPS TO MID HUCKLE FOR END TEST
c

NTESTENPRINT

NPRINT=]

GO T0 9

c
€ WE GET T0 HERE WHEN WE MAVE CUME TO YHE END OF THE CABLE

c
25 1FFLe3
CALL SYMUIFFL1S}+52053+54)

PRINT 26451452
26 FORMAT(//7/y1H 1®===SYMMETRY FACTORS===®y6Xs8pHI®1F12:5¢10Xs#AZ1 0y

A\F12.5///)
PRINT 27,53,54 ]
27 FORMAT(//TH s®=aeRMS VALUES=ew®y15XcF1245013XyF1245)
R12S1/53
RZmg2/56
PRINT 28,Ri,R2
28 FORMAT(//]H s#=eesRATIOS==eut18KeF12+5013X0F12.5)
PUNCH 43
63 FORMAT {¢ENDHOCKLE®)
PUNCH gl eSyPHI+XeYsL9RN1HIPS]T
PUNCH 619A11¢A12sA1304219#3194320A33
c PUNCH 61»519520539540R1IRE

€ IF THERE ARE MORE' PAIRS F,GAMMA TO BE DONE RESET AND GO AGAIN
C OTHERWISE STOP,

c
1000 CONTINUE
GO T0 1001
1002 STOP
END

21
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SUBROUTINE DCALC
COMMON /BLOK3/ XS(lbOO)oY§(1500)015(1500)oLS'DNlN9050SHluoNSTEPS

DIMENSION D(1500)

THIS SUBROUTINE CALCULATES RELATIVE MINIMUM OF DISTANCE
BETWEEN PAIRS OF SYMMETRIC POINTS

DO S Jaly1500

D(J)mm],

DMIN"Z.

XM=aXS (LS}

YMBYS(LS)

IM=ZS(LS)

MINm[Se}

MMmew ) )

DO 10 I=1eMIN

JouLSe1 .

T xYNseoeZMbsp

IF(T1:sLT+0,0000001) GO 70 10

TZI(YM¢ZS(J)'ZM°ES(J))"Z

T3s(xMaXS(J) ) 002

D(J) e, #SQRT(T2/T1#13) ]
CONTINUE ;
PRINT 100, (O(J)s J=1leLS)

FORMAT (1H 410F1045)

c
C LOOK FOR MINIMA

c

20
21

30
3l
32

40

50
51

TESTaD(LS)
InLS~1 )
1F(D(I),LT,TESY) GO TO 30 i
TEST=0(I) 3
1-1.; ¥
IF(1,EQep) GO TO 50 3
60 TO 20 B
IF(DCI)oLT.0e) GO TO 21 3
TEST=D(I) 4
Infey E
IF(D‘!).ET.TEST) GO TO 40 3
TESTRO(I)

Inl=§

G0 Y0 32 y
DMIN=TEST | E
SMIN=( 1+7)#DS*NSTEPS 4
RETURN ;
PRINT 51 4
FORMAT (1He® D HAS NO RELATXVE!MXNIMUM ®) 3
RETURN i
END
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SUBRDUTINE SYM{14S1152953154) 1

¢ COMMON /BLOK1/Z AL19A)2+A139FsHIPHIsA9BeCoXoYsZ0SrA211A319A320433 ¥

1 DasDBDCyDX9DY9DZoABARs ICOUNTyHNEW9A1104GaMMAS JBFLAC 9
COMMON /BLOK2/ KOUN]¢SYMPHI(1500) ¢+SYMALF (1500) 3

c
C THIS SUBROUTINE IS CALLED AT EACH PRINT STEP AND CALCULATES SYMMETRY
FACTORS AT END OF' CABLEw

c
¢ )
GO TO (19243)01
c
g WE ARE STILL IN FIRST HMALF OF CABLE, WE ACCUMULATE VALUES OF PHIA2)
1 SYMPHI (KOUNT)mPHI
SYMALF (KOUNT) a2}
S3eS3ePilnan
SamS4en210e2
KOUNT=KOUNTS1
JEKOUNT
IF (KOUNT+EQs1500) BV TO §
RETURN

i AN e, ¢ i Rk R

WE ARE IN SECOND HALF OF CABLE,

o000
oo

2 KOUNT®XOUNTe]
SYMPHI (KOUNT) ® (SYMPH] (KOUNT) =P K] ) 085
SYMALF (KOUNT) ®{SYMALF (KOUNT) ¢p21) %02
S1xS)eSYMPH] (KOUNT)
§2m524 g YMALF (KOYNT)
RETURN

q
4
E]
3
3
Y,
3
4

WE ARE AT THE END OF THt CABLE,

3 S1uSQRTI(S) /{Je}1) )
S2=SQRT (Sp/(Je1))
S3=SORT (53/(Je]))
S4=SQRT(S4/(J*1))
RETURN
5 PRINT 4 )
4 fORMAT(lH 'Q-o-..---.-KOUNT OVER LIMIT---..-,.-.Q)
STopP
END

o000
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SUBROUTINE STEP(DS)
COMMON /BLOK1Z Al1eA12¢A130FoHoPHIsA9BoCoXoYsZ0eS0A219A310A320A33
1 DAsDBsDCoDXeDYsOZsABARyICOUNTIHNEW)AL109GAMMA o JUFLAG
COMMON /BLOK2/ KOUNTSYMPHI (1500) +SYMALF (1500)
THIS SUBROUTINE STEPS THE CALCULATION FROM POINT TO POINT ALONG THE
CABLE,
INPUT DS ®» STEP SIZE FOR CALCULATION

ouUTPUT

A
wrupwes: B =ANGLES
cC -
X o
Y  ¢COORUINATES
¢

CHECK IBFLAG, _
IBFLAG=] IF 8 TOU CLOSE TO 9p DEGREES
IF B TOO CLOSE TO 9y WE USE ALTERNATE FORMULAE

IF (IBFLAG.EQs)) 60 10 500
w&® FIRST WE CALCULATE INCREMENTS FOR ANGLES
400 DBas («F ® 1 ® GIN(A)) * Ds
DA F & (H = CDS(A) & SINVB)/COS(B) ¢ PHI) # DS
DCe ( F ® 4 ® COS(A)/COS{B)} €0S

ees WE ADD INCREMENTS TU PRESENT VALUES TO OBTAIN VALUES
AT A POINT DS=UNITS FURTHER ALONG THE CABLE.

AmAeDA
B=B+DB
C=C+DC
SIGNCB®SIGN(]e9COS(B})

CHECK 10 SEE IF B 100 CLOSE TO 90 DEGREES

CB=ABS (COS(B))
IF(CBeLTo0W1 } 60 70 100

«® WE ARE NOW READY TO CALCULATE INCREMENTS TO COORDINATES
Dx=All ® pg

DYyAl2 @ DS
DZeA}3 ¢ DS

#ss WE ADD THE INCREMENiS TO THE PREVIQUS VALUES oF THE COORDINATES
TO OBTAIN VALUES AT A POINT DSeUNITS FURTHER ALONG THE CABLEs
XaxeDX
Y=YeDY
IsZepZ

oo FINALLYoWE CALCULATE NEW CABLE LENGTH
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NOW

NRL REPORT 7940

S=5eD$
CALCULATE' NEW VALUES FOR A211A319A329A33

A21sSIN(A)#SIN(B)®CUS(C) = COS(AI*SIN(C)
A31=COS(A)*SIN(B)®CUS(C) ¢ SIN(AI*SIN(IC)
A328COS(A)#SIN(B)®SIN(C) = SIN(A)®COS(C)
A33=C0S(A)«COS(B)

CALCULATE NEW VALUES FOR Al19A129A13 AND RETURN

Al13C0S(B)¢COS(C)

A124C05 (B)aSIN(C)

A13==5IN(B)

HE Ad1eZ08a300Y%A3]3

ABAREABAReAll § ICOUNTSICOUNTel
PHIZ0,S#A110

IF (ABS(H)=,00000001) 16,16,15
PHIEA110=A31/ (FoH)

HNEW=0,

HNEW2m (2, 7/F) # (COS(GAMMA) wA11) ¢ SIN(GAMMA) wa2
1F (HNEW2 ¢ GT o 0¢ ) HNENSSGRT (HNEW2)
RETURN

T0 HERE WHEN 8 TOO CLOSE FOR FIRST TIMEw
SAVE CURRENT VALUES OF AsbeC
THEN SET IBFLAG=1ls A=C=0,

AGAVE=A
BSAVE=B
CSAVEsC
IBFLAGR)
A.o.
Coge
Bmge

CALCULATE A229A23 FUR FIRST TIME THROUGH

A22=gIN(AGAVE) #gIN{BSAVE) #SIN(CSAVE) +COS (AGAVE) ©COS (CSAVED
A23=SIN(ASAVE) #COS (BSAVE)

WE NOW CALCULATE NEW VALUES FUR X,Ys2sS

200

NOW

XoXenl)#ps
Ysyeplaaps
IwZeAl3wDg
SuSe+DS

CALCULATE! NEW VALUES OF A(I4J)

DAY1sFoHeAZ]1#Dg
DaY2nFutaA?2eDS
DAgyeFe(=Heay) ePHI®A3))8DY
DA13S=FuH#»A238DS
DA31S=eF¢PHI®AR1®DS
DA32SE«F¢PHI?A22%0S
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Al1=A11eDAlY

Al2eA)2.0A)2

A21mA210DA21

A13S=A134DA}3S
A13nSORT (), =A 11 ##2=A12007)
IF((AT3%A135) oL To0s) Al3==Al]
A3152A314DA31S

A3)eSORT (1,=Al1ee2eA2]0a2)
JF((A3]19A215) +LT,0s) A31"%A3)
A23m(=allep13%4210412%231) /(1 s allne2)
A22%(A12%A23~A31)/74AL3
A325mA32+Da32S

A325SGRY (1.=A12%%2°R22%42)
lF((A;Z'ﬂ355).L!.O.) A32a=A32
A33w(A110A316A)204A32)/(=AL3)
GO TO 300

Crovercccas:

c
€ GET TO HERE IF -1BFLAGS]
€ CHECK TO SEE IF B STILL!' TOO CLOSE,

C
S00 CBxSQRT(1,sA)3%#2)
IF(CBsLTe0.1 ) 60 TO 200

c
] C GET TO HERE IF B NO LONGER TOO CLOSEs
4 C WE RESTORE B TO PROPER WUADRANT

IF(SIGNCB.GTs0s) CB==CB
SBu=A]3y

[
C DETERMINE: ByAoC UP TD ROUTATIONS
c

B=AC05(C8)
i IF (SBsLT 04) Bm=B
! CA= A33/CB
SA=p23/CB
ARACOS (CA)
IF(SAeLTe0,) Ame=A
CCrayl/scs
SC=a12/CB
C2ACOS (CC)
IF(SCelLTe0,) Ca=C

c
C NOW DETERMINE: ROTATIONS

3 BROTs.{B»BSAVE} /64283185307
N2BROT40.5
B=BeN®6,283105307

CROT= (C~CEAVE) /64283185307
N=CRDTQO'5

g CsCoN®g,.283185307

; AROT= (A=ASAVE) /6283185307
: NsARDT¢045
A®AeN®54283185307

c
¢ CONTINUE WITH ORIGINAL FORMULAEI
¢

s el el S

IBFLAG=0
G0 TO 400
END
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