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ity is^f? < 4TEI, where El is the bending stiffness under load.  The approach used was to 
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axial end torques and forces.  The report includes curves showing torques and forces for the 
possible range of deflection curves. 
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GREENHILL'S FORMULA AND THE MECHANICS 
OF CABLE HOCKLING 

INTRODUCTION 

In the application of marine cables as tension members, such as in lifting objects 
from the ocean floor, serious structural failures have occurred as a result of two phenom- 
ena called hockling and bird caging.   Both problems stem from the torsional moments 
which develop in the cable, usually as a result of its tendency to unwind under load. 
Hockling occurs when, for a given torque reaction at the ends of the cable, the tension 
becomes insufficient to keep the cable taut, resulting in the formation of a loop or 
hockle.   When increased tension is subsequently reapplied to a hockled cable, the loop 
tends to tighten, causing the cable to fail.   Bird caging, on the other hand, occurs when 
individual wires or strands unravel under excessive torsional loads that are reverse to the 
direction in which the wire strands are wound. 

The hockling of cables would seem to be closely related to the well-known problem 
of the elastica (thin elastic rod under combined tension and moments applied at its ends). 
This problem has received much attention in the literature. Kirchhoff [1,2] recognized 
that the deflection curve of the elastica is governed by the same set of differential equa- 
tions as the motion of a heavy spinning top.   Greenhill [2-4] gave a buckling formula 
for the rod subje'U'd f.o tension (or thrust, if negative) and twisting couples, based on the 
assumption of in Inic 's Tial bending deformations.  Southwell [5], in a discussion of the 
elastica under ena Ic re- i with zero moments, showed that a column under thrust at and 
above the Elder buckling load remains stable.   More recently, considerable effort has gone 
into studies of the dynamic characteristics of thin three-dimensional beams.   An excellent 
review and bibliography of this subject through 1972 may be found in Ref. 6.  The prob- 
lem of rods of variable cross section has been comprehensively addressed by Green, Naghdi, 
and Wenner [7]. 

In spite of all this attention to the problem of the elastica, some puzzling questions 
have remained with regard to the hockling of cables:   What are the stability characteristics 
of small-deflection solutions corresponding to Greenhill's formula with respect to increasing 
torque or decreasing tension?  What in fact is the largest torque for given tension to which 
a cable may safely be subjected?   And, conversely, how far may the tension safely be 
lowered for given end torque?  When this report's author first became interested in the 
hockling problem, he did a rudimentary experiment, trying to put bending deflections into 
a straight rod under twist and modest tension.  The rod was twisted until numerous helical 
slip lines developed, indicating substantial shear yielding.   Yet no significant bending de- 
flections were observed.   But cables in tension do hockle.   Must they be described in a way 
essentially different from rods, or can the observed difference in behavior be explained en- 
tirely in terms of the much lower bending stiffness pertaining to cables? 

Manuscript submitted October 3, IQVJi. 
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The purpose of the analysis described in this report was to obtain some insight into 
these questions and if possible to establish a loading criterion for the avoidance of cable 
hockles.  The approach was to obtain computer solutions to the differential equations of 
the elastica in nondimensional form for the full range of values of axial end forces and 
moments. 

STATEMENT OF THE PROBLEM 

The problem is to calculate the deflection curve and strain energy of a cable or rod 
that is prismatic and straight when unloaded and is "hinged" at each end so as to permit 
only an axial moment M and an axial force T.  Axial means along the straight line joining 
the two end points.   Although this presents a two-point boundary-value problem, it can 
be solved in reverse as an initial-value problem by assuming a starting angle 7 between the 
deflection curve and the axis and then solving the differential equations step by step un- 
til a point possessing appropriate symmetry properties is reached.   This point (or alterna- 
tively the end point) must be established from the local properties of the deflection curve, 
since the length is initially unknown and must be calculated.  When the problem is solved 
in nondimensional form, a two-parameter set of solutions is sufficient to cover the full 
range of possible loading values. 

DERIVATION OF EQUATIONS 

A length t of rod or cable that is straight and prismatic when unloadM and possesses 
a bending stiffness El and torsional rigidity ÜJ is assumed to lie alonu a space curve and 
is referred to a fixed coordinate system OXYZ with unit vectors I, J, and K as shown in 
Fig. 1.   The +X axis is vertical upward.   Arc length along the cable is denoted by - and 
increases as shown in the figure.  The cable is assumed to be "hinged" at O through some- 
thing resembling a universal joint such that the reaction there consists solely of a vertical 
force T and a vertical couple M, both directed downward if positive.   T and M denote the 
magnitudes of T and M (0) respectively.   At the free end P of the cable, where x(s) = 
[*. y. 2]. the required equilibrating forces are a constant vertical upward force T and a 
couple M(s), where 

T(s) =   T(0) = T = Tl (la) 

and 

M(s) = M(0) + T X x(s) = Ml -7>J + TyK. (lb) 

At the free end P of the cable segment OP, Fig. 1 shows the unit vectors of two 
other coordinate systems:   {, tj, f and t, n, b.   Mere f = t is the unit tangent vector to 
the space curve defined by the cable's center line.  The vectors | and TJ are perpendicular 
to the tangent and thus lie in the plane of the cross section of the cable.   They are taken 
as principal axes of the cross section and are considered to be inscribed in the cross sec- 
tion (rotate with the cable). 

—.   m    1 .i,'...,.. -•■-•: ,.'t:,.*,^., ■  n 
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On the other hand, n and b are respec 
the center line. 

lively the principal normal and the binormal of 

Fig. 1 — Coordinate systems and tree-body diagram 
of cable section OP 

It is usual [8] to introduce an "angular velocity" vector il which denotes the vector 
rate of turn of the system t, tf, f with respect to arc length s. 

Since t is a unit vector, its arc-length derivative is thus given by 

Cross multiplication by t yields 

where n and b are defined by 

and 

dt/da = t' = fi X t. 

n = Kb + Oft, 

t' = n X t = Kn 

b = t X n 

(2) 

,       wMaHHMMW«     ' 
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and 0;, = if is the principal curvature of the center line.   In terms of the local compon- 
ents of the moment vector M the components of ß are 

and 

n, = MJGJ, (3a) 

n„ = iW„ = 0, (3b) 

n6 = Mbm = K. (3c) 

Differentiation of (2) further yields the derivative of the normal vector, 

n' = b' X t - K\. 

Taking components of (4) in the t and b directions respectively gives 

(4) 

and 

n   • t 

n   • b 

-K 

(5) 

The quantities n' ' n and b' ■ b on the other hand are zero, since they represent the com- 
ponent of the derivative of a unit vector upon itself.  The remaining required derivative 
component is b' ■ t, which is zero as shown by the following:   Since t " b s 0, it follows 
that t' • b + t ■ b' = 0.  But since t' is perpendicular to b, then t' • b and hence also t ' b' 
must vanish.  The preceding calculation of the components of the t', n', b' vectors along 
the ., n, b coordinates may be summarized as the matrix equation representing the 
Frenet-Serret differential equations for a space curve: 

(6) 

The quantity i#, substituted for n' • b in (5), is thus seen to be the geometric torsion, 
or tortuosity as Love [2] calls it, of the space curve traced by the center line of the cable 
or rod. Differentiating equation (lb), noting that x' s t and using equations (3), gives along 
the t, n, b components 

0 K ol t 

■K 0 f 1   n 

0 -V 0 b 

. ..»-A-iUiUiJQ^'^.J.^.^. .,..„;,.,, 
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M' • t = M't = 0, (7a) 

and 

/C(^£/ -iW,) +T    »1 = 0; 

£/K' = -T ■ n. 

(7b) 

(7c) 

Equation (7a) states that the internal twisting moment, and hence the twist angle per unit 
length, is constant along the arc length.   Mt = M((0) is one of the three first integrals 
available to this problem, analogously with the problem of the heavy top.   Equation (7b) 
is needed along with equations (3) and (6) to complete the system of equations. 

The following non-dimensional quantities are introduced: 

S = Ts/M,  X = TxjM,   Y = Ty/M,   Z = Tz/M,   L = TK/iW; 

F = iW2/m,   H = KEI/M,   * = yEI/M, 

(*) = d/dS = (M/T) ('),  MT = Mf/JM s oin (0). 

Further the direction cosines, or components a^ of the t, n, b vectors with respect to the 
fixed system I, J, K, as well as a set of Euler angles A, B, C to remove unncessary re- 
dundacies in the direction cosines, are defined: 

«U = cos (t, I), 

a12 = cos (t, J), 

etc., and 

cBcC cBsC -sB 

sAsBcC - cAsC        sAsBsC + c^icC        sAcB 

cAsBcC + sAsC        cAsBsC - sAcC        cAcB 

(8) 

where cß means cos B, sC means sin C, etc. 

tetr.--.'r^.:,.t; 
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In these terms the complete system of differential equations defining the space curve 
and other quantities pertaining to the rod or cable consists of equation (8) for the ctjj in 
terms of the Euler angles together with the following: 

H = a31 - Za32 + y«33, 

«P = MT - oi3i/FH,   if H fO, 

<l> = MT/2,  if// = 0 (by L'Hospital's rule), 

A* = F{HcAsB/cB + <P), 

B* = -FHsA, 

C* = FHcA/cB, 

X* =a11, 

Y* =a12, 

Z*    =al3. 

(9a) 

(9b) 

(9c) 

(9d) 

(9e) 

(9f) 

(9g) 

(9h) 

(9i) 

INITIAL CONDITIONS 

Initial conditions are chosen with Xa = Y0 = ZQ = 0 and so that the tangent vector 
initially makes an angle 7 (0 < -y < 180°) with the X axis.   An appropriate set of initial 
values of the Euler angles is 

if/2, 

ß0 = 0, 

7. 

thus making the curve begin in the XY plane. 

Equations (9) become singular when cß = 0.   This happens infrequently, and is en- 
tirely a difficulty of the particular Euler-angle representation.   It is avoided either by 
choosing a different initial azimuth (say /J0 = 0, B0 = 7, C0 = 0) or by departing from 
the Euler-angle formulation wienever cB is small and instead using derivatives of a set of 
three independent direction cosines. 
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FINDING MIDHOCKLE 

To determine when midhockle, the point of symmetry halfway between the "hinged" 
ends, is reached, we seek an arc length sm at which K(sm + s) = K(s_) - s) and ^(s_. + s) = 
^(sm - s) for any s.   This happens when all the odd derivatives K(2™ + 1' (s) and ^(2^+1) 
(s) are equal to zero at s = sm.   It is easily shown that this happens whenever K'(s) = 0 or, 
by equation (7c), when «21 = 0- 

An outline of the proof comes in two parts:   The first part to be proved is that if 
X(2n + i) =^(2n + i) = Q for n = 0,1, ..., N-l and ifif(2N+i) = 0i then also .Z2^1) = 0. 
This follows from successive double differentiations of (7b) and use of (6) and (7c).   Each 
such doubly differentiated equation consists of terms which are products of derivatives of 
order zero up to the order of differentiation.  Since the sum of orders for each term is 
odd, each term must contain at least one factor which is an odd-order derivative of either 
K or ip.   But by hypothesis all these factors except the highest derivative of <f> are zero. 
Hence also the highest derivative must vanish. 

The second part to be proved is that if K'2"*1' = ^2" + 1) = 0 for n = 0, 
then also Kl21^1) = 0.   Since by (7c) differentiated 2n times 

N-l, 

£/K(2n + l) = .T  ■ n(2«); 

it suffices to show that -T ■ n(2JV)= 0, or that n(2Af) has a zero I component.   Let the 
direction-cosine matrix of (8) be denoted by T and the curvature-torsion matrix of (6) by 

n 

b 

and 

X = 

0 K 0 

K 0 * 

0 -v 0 

Then (6) may be written as 

T    = XT- (10) 

To be shown therefore is that under the assumed circumstances the   ( 2,1 )   component 
of matrix T'

2
^ is zero.   Successive differentiation and substitution of (10) shows that the 

higher derivatives of T are expressible in the form 

.■,*'.v5dt.*UAA«lj»(l«)HW«**-"-iÄ*i.-* 
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^(x'"-1', ..., x', X) 

where each term oi fn is a product of from one to n of the n matrices x through x*""1 *• 
From the formal process of differentiation it follows that these terms are homogeneous 
of degr-xi n in »ach term's sum of orders plus number of factors.   As an example a term 
xx'x'xx has u total order 0 + 3 + 1 + 0 + 0 = 4 and has five factors and therefore could 
belong only to f9.   Thus iot n = 2N the highest derivative term is x2^"1 multiplied by no 
other factors.   Because of the homogeneity of orders plus factors of degree 2N, every term 
of ^A/ other than this highest derivative term must also possess one of two properties: 
Either it is the product of an even number of factors or it must contain at least one lower 
odd-order derivative.   In either case, the matrix term can be shown to be zero at all "odd" 
locations including { 2,1}; hence the same follows for their sum T^

2N
\ 

From the preceding two parts of the proof it follows that a point at which K' = 0 
(or «21 = 0) is always a iioint of symmetry. 

BRIEF DESCRIPTION OF THE FORTRAN LISTINGS 

The Fortran routine to accomplish the required calculations consists of the main pro- 
gram Hockle and subroutines Dcalc, Sym, and Step.   The listings are given in Appendix A. 

The main program accepts sets of values for F, 7, increment of nondimensional arc 
length AS, and print interval (to permit printing less than every calculation step).   It also 
calculates initial conditions and determines when midhockle is passed («21 changes sign), 
at which time it interpolates for Sm.  Endhockle is prescribed to be at S = L = 2Sm, and 
the option exists to keep calculating that far.   The program Hockle contains necessary 
print and punch instructions and calls subroutines as needed.   An important output is sets 
of values of nondimensional moment u = MV./EI = FL and force v = n2/EI = FL2. 

The subroutine Dcalc calculates the distance of closest approach Dmm between pairs 
of symmetric points on the rod.  This is done because if that distance became zero in a 
real cable, then the mutual lateral forces at the point of intersection would no longer per- 
mit representation by the preient mathematical model, which would allow the cable to 
pass right through itstl.'   The calculation of limm is performed using points only between 
zero and midhockle and does not require stepping past midhockle. 

The subroutine Sym does require calculation all the way to endhockle and calculates 
the degree of symmetry about midhockle of selected quantities such as <[> and «21 •   This 
provides a check on the accuracy of calculation, since in theory the symmetry should be 
perfect. 

Finally, the subroutine Step performs the basic stepping procedure on the differential 
equations and calculates the required quantities:   direction cosines, curvature H (both di- 
rectly and from a first integral for comparison), <I>, etc.   When informed by Hockle that 
cB is too small to use the Euler angles. Step uses alternate equations for stepping.  The 
stepping interval is the inputted AS except either side of midhockle, where steps and 
print points are chosen in such a way as to preserve symmetry of the calculations and 
print intervals. 

8 
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DISCUSSION OF RESULTS 

Relation Between End Forces, End Moments, 
and Cable Configuration 

Once the program has calculated the nondimensional length /, of a symmetric space 
curve for given values of load parameter F and initial angle y, then the values of the non- 
dimensional moment and force 

u = Mi/El = FL 

and 

v = n2/EI = FL2 

are readily calculated.   The results are shown in Fig. 2 for a number of values of y, with 
a few F = constant curves also indicated. The 7 = 0° and 7 = 180° curves constitute the 
two halves of a parabola corresponding to Greenhill's formula 

v = \{u/2)2 - rr2 I, (11) 

referred to in the Introduction.  The reason for the absolute-value signs and thus the para- 
bola with the lower portion reflected in the u axis is that there is the following duality of 
solutions:   If a (F, 7) input yields a (u, v) solution, then a {-F, n-y) input yields the iden- 
tical (M, -U) solution.   However the concept of positive F and T representing a tension and 
negative F and T representing a compression makes sense only for the Greenhill case of 
7 = 0 (or, for reversed signs, 180°).   For example, the elastica, under end force only, can 
go with a continuously increasing force from Euler buckling in compression, at (0, rr2) in 
the figure, to a looped rod in tension, with no clear break in between.  To exhibit this be- 
havior correctly, all forces as well as moments are therefore shown in the first quadrant, 
with the result that half of the Greenhill parabola is reflected in the u axis.   Also, because 
of these same symmetries, all 7 = constant curves are perpendicular to the v axis at u = 0. 
In addition the 7 = 90° curve is perpendicular to the u axis at v = 0. 

An important set of check points is provided on the u axis. Clearly this corresponds 
to the elastica with zero moment. As shown by Southwell [5], the relation on u = 0 be- 
tween v and 7 is given by 

y= 4K2(fe). 

where 

It = sin[(7r-7)/2] and 

where  K (fe) is the complete elliptic integral of the first kind.   This formula checks the 
computer solution for small values of F and hence of u. 
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PELIX ROSENTHAL 

Fig. 2 — Nondimcnsional end moments and forces on an elastica for 
various end angles 7 and load parameters /■' =M^/TEIor u */ü 

In Fig. 2 all nontrivial solutions to this problem as expressed in the uu quarter plane 
fall between the two segments of the Greenhill parabola.   (Trivial solutions exist through- 
out the uu quarter plane.)   All combinations of moment and force inside the 180° seg- 
ment of the parabola correspond to the trivial solution of twist only, and zero bending. 
Similarly moments outside the 0° segment are unattainable, since only an unstable trivial 
solution exists there. 

The dashed curve Dmm/L = 0 along with the portion of the v axis above 21.55 is 
the locus in uv space along which the calculated Reflection curve of the loaded cable pos- 
sesses a self-intersection.   This locus provides a barrier to the configuration of a real cable. 
For example, if a cable loaded by a constant thrust t; = 20 is subjected to an increasing 
moment u, a self-intersection will occur when u equals approximately 3, and any config- 
uration corresponding to larger moments will not be correctly predicted by the present 
theory.   With reference again to Southwell's solution, the Dmln/L = 0 curve meets the v 
axis when the ratio of the complete elliptic integral of the second kind ti(k) to the one of 
the first kind equals 1/2: 

g(fe)/K(fe) = 1/2. 

This in turn occurs when v = 21.55 and 7 = 49.29° as shown in Fig. 2. 
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If a rod is subjected to a constant compressive force below the Euler load while the 
twisting moment is increased starting at zero, the rod remains straight until the moment 
reaches the lower Greenhill value at 7 = 180°.   This point is stable however in that the 
moment can be increased beyond this value at least until the dashed curve is reached. 

If a rod or cable begins in tension, it remains straight until the upper Greenhill value 
is reached at 7 = 0°, but at this point no further increase in torque is possible and any 
further twisting deformation must be accompanied by a decreased reaction torque.   Thus 
for a rod or cable in combined tension and twist, Greenhill's formula does not represent 
merely the point of first departure from a trivial twist-only solution.   It additionally rep- 
resents the maximum torque which can be applied at a given tension, or the minimum 
tension necessary to support a given torque, and represents a point of instability if any 
attempts were made to increase the torque relative to the force.   This instability must be 
particularly violent in the case of cables, for the following reason:   For a rod or cable in 
combined tension and sub-Greenhill torsion, all strain energy is stored in twist, a relatively 
stiff mode.   As the Greenhill curve is approached and bending becomes possible, a sub- 
stantial part of this twisting strain energy must be transferred into bending.  But a cable 
is distinguished by its very low bending stiffness, so that the conversion of a given amount 
of strain energy would require much larger deflections than would be the case for a rod. 

The previous paragraphs also illustrate the double-valuedness of the graph of Fig. 2 
in the area between the two branches of the Greenhill curve.  Consider a cable loaded by 
a nondimensional moment u = 7.2 and a nondimensional force v = 52.4, at the point in 
Fig. 2 at which 7 = 15° and F = 1.   One possible configuration of the cable under this 
loading is the straight ■cable in tension, with 7 actually equal to 0° and not 15°.   This con- 
figuration can result if the tension on an initially unloaded cable is raised to 52.4 and a 
subsequently applied moment is raised to 7.2.   Since this is below the Greenhill torque in 
tension, the cable remains straight.   The other possible configuration under the same load- 
ing is a hockled cable with 7 really equal to 15°.  This may be produced by "compressing" 
an initially straight cable past Euler buckling, forming a loop which is tightened as the 
force is increased to 52.4 (now a "tension" because the end points have passed each other), 
with a subsequent increase in moment to 7.2, applied in the direction in which the loip 
is able to open partially. 

The quarter plane u > 0, u > 0 is thus divided into three distinct regions:   Inside the 
180° branch of the Greenhill curve, only the trivial solution exists, and it is stable.   In the 
second region, between the 180° and 0° branches, the configuration is double valued for 
any given loading.   Here, if loading begins from a straight rod in tension, then the trivial 
solution is stable, but if the loading begins from compression, then the trivial solution is 
unstable and the nontrivial configuration results.   In the third region, outside the 0° branch 
of the Greenhill curve, only the unstable trivial solution exists, so that such loadings cannot 
be sustained. 

It is instructive to examine from an energy point of view the possible rod or cable 
configurations at the load point in Fig. 2 (u = 2TI, v = 0) where all the 7 = constant curves 
intersect.   The loading corresponding to this point supports equilibrium configurations for 
all values of 7 from 0° to 180°.   The deflection curve corresponding to these configura- 
tions would in general be a complete turn of a helix of  pitch ir/2 - 7. It is a helix because 
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the force is zero and the internal moment therefore is constant; it contains a full revolu- 
tion because the end moments act along the direction of the line joining the end points. 
For 7 = 0° or 180°, the helix is reduced to a straight line in pure twist under end mo- 
ment M\ for y = 90°, it is a full circular hoop in pure bending under end moments M 
perpendicular to the plane of the circle.   Of all possible equilibrium configurations, the 
stable one is that one for which the applied end moments are at the lowest possible level 
of potential energy, i.e., the one for which the strain energy is maximum. 

For this case of pure moment loading, the total strain energy is 

U = Ml ?/2£/ + Mf IßGJ, 

where GJ is the torsional stiffness.   In terms of the applied moment M and the angle T, 

Jlfj, = W sin 7 and Mt = M cos -y, so that 

U = MHI2 (sin2 yfEl + cos2 y/GJ). 

The extreme values of U occur when dU/dy = 0, or when 

sin 2y {I I El ■ l/GJ) = 0, 

or 7 = 0°, 90°, and 180°.   Which extreme corresponds to the maximum strain energy then 
depends on the stiffnesses, as may be seen by putting the three values of y back into U: 

(/ (7 = 0°, 180°) = MHßGJ, ior pure twist, 

and 

U (y = 90°) = M2il2E[, for pure bending. 

Thus for the rod or cable loaded by end moments MV/EI = 2n, the stable configuration 
is the straight twisted on? if GJ < El and is the circular hoop if GJ > El.   For typical 
solid rods, GJ * 0JEI, while for cables GJ » El.   Thus a hinged cable loaded with 
y = 0 and u increasing from zero will remain straight until u = 2rr, when it will snap into 
the shape of a closed circular hoop. 

In spite of this apparent difference between the configuration of cables and rods at 
(u = 2ir, i = 0), it should be borne in mind that this point does in any case represent the 
limit of stability of the straight form, for rods as well as for cables.   This behavior of 
rods is also discussed in Ref. 2 (paragraph 272(d), page 417), where the more general 
Greenhill formula is also developed. 

The main purpose in presenting Fig. 2 is to show the central importance of Green- 
hill's formula in evaluating the stability of rods and cables and to clarify It" relationship 
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to the force-only solution of Southwell.  The figure may also be used to determine the 
possible configuration (or configurations, in the double-valued region between the two 
branches of the Greenhill parabola ) when end loads u and v to the left of the 7=0 
branch are given.   In this application the barrier locus Dmm/L = 0 must be taken into 
account. 

Why Don't Rods or Solid Wires Hockle? 

Understanding the fundamental importance of Greenhill's formula, we can now eval- 
uate under what conditions a rod in combined tension and torsion might undergo bending. 
For a circular steel rod or wire with Young's modulus of £ = 2 X 1011 N/m2 and shear 
yield strength as = 350 X 106 N/m2, the precondition for bending is that any tension be 
so low as to keep the actual tensile stress below 0.15 X 106 N/m2, or a mere 0.027% of 
a tensile capability of say 550 X 106 N/m2!   Any attempt to induce bending due to twist 
at a higher applied tension will cause torsion shear failure instead.   This conclusion is ar- 
rived at as follows:   Assume the tension T is such that bending is just possible by Green- 
hill's formula while at the same time the shear yield limit os = 27W/rra3 is reached, where 
a is the radius of the rod.   For an infinitely long rod (which would bend most readily), 
Greenhill's formula reduces to iW = 2(T£/)1/2 = a2 {TEn)1'2.   In the equation os = 2iW/7ra3,if 
a2{TEn)ll2 is substituted for M and then o( (the tensile stress produced) is substituted for 
T/na2, the result yields 

ot = O
2
I4E. 

For the values assumed earlier this becomes Of = 0.15 X 106 N/m2 as stated. 

EXPERIMENTAL VERIFICATION 

Woods Hole, MIT, and NCEL Tests 

Field and laboratory tests to investigate the hockling or "kinking" properties of 
oceanographic cable have been conducted by Berteaux and Waiden [9], Vachon [10), and 
Liu [11,12].  The laboratory tests by Berteaux and Waiden concentrated on measuring 
rotation rather than torque and therefore cannot be evaluated here without further knowl- 
edge of the torsional rigidity. 

Vachon measured for a number of cables and loadings the bending stiffness El (which 
he was also able to calculate to good accuracy), the force 7', and the hockling torque M 
both positive (tightening) and negative (unwinding).   His 17-foot cables were long enough 
to reduce end effects to a modest 10% or so (which can be estimated from Greenhill's 
formula, equation (11), by dividing through by V2 and comparing u2jV2 to T/El or 
(M/IEl)2).   This order of magnitude is borne out also by his evaluation of the effects of 
end mounting on hockling torque. 

When these end effects are ignored, by putting ? = «> in the Greenhill formula, and 
each experiment is assigned a Greenhill number G = M2/4TEI, which theoretically should 
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then be equal to 1, the results show G to range from about 0.5 to 5.   These values of G 
are at least the ri^ht order of magnitude and have a reasonable mean value.   Vachon's 
results show a rather wide divergence in positive and negative hockling torques for iden- 
tical cables and tensions.   If the torque had been consistently higher in the positive di- 
rection, one might be tempted to ascribe this divergence to increased bending stiffness 
for a tightened cable.   Unfortunately, in half the cases the divergence goes the other way, 
and no explanation can be offered at this time.   In the one case in which the positive and 
negative hockling torques fell to within about 10% of their average, the calculated Green- 
hill numbers turn out to be an encouraging 1.2 and 0.8 respectively. 

Reading about the explosiveness with which some of Vachon's kinking experiments 
were completed ("a 3/16 inch thick circular ring, supporting the water can [used as a 
weight], was straightened out, thus dropping the can to the floor") is more amusing than 
having observed it.   But in retrospect, this explosive behavior is quite consistent with the 
instability of the Greenhill loading in tension combined with the substantial energy stored 
in the relatively stiff twisting mode at the instant when that instability occurs.   Vachon 
was well aware of the energy consideration, which he reviewed in his report. 

The applicability of Greenhill's formula to cable kinking has also been recognized by 
Liu, whose recent experiments described in Ref. 11 appear to be well correlated with the 
formula over a wide loading range.   Reference 12 is a more detailed report of his results. 

NRL Tests 

In view of the incomplete knowledge at NRL about the conditions under which 
hockling tests at other Laboratories were conducted and, even more, to get some engi- 
neering insight into the phenomena under study, a few rudimentary measurements were  ' 
made at NRL.  The most sophisticated measuring tools were fish scales and weights 
(steel, to keep the floor dry), and the time allowed for the experiment was about 2 days. 
Nonetheless the results showed good agreement with theory. 

The no-load small-deflection bending stiffness El for a sample of 1/4-inch cable was 
measured by loading several lengths of it as cantilever beams.  Calculated values of El 
ranged from 0.051 to 0.063 Nm2, with 0.057 as an average value. 

A 12-foot length of this cable was suspended from the ceiling.   Because of a lack of 
safety devices, loading was kept at light tensions up to 18 iV and torques up to 2 Nm. 
For four loading cases Greenhill numbers G = M2/4T£/ of 0.97, 0.72, 0.97, and 1.10 
were obtained.   In view the closeness of these observations to the theoretical G = 1, more 
comprehensive and better instrumented hockling experiments are anticipated, with a view 
to developing a usable method for specifying torsional properties of marine cables. 

CONCLUSIONS 

The conclusions are as follows: 

•   The importance of Greenhill's 100-year-old formula for determining the elastic 
stability of rods in combined axial force and twist far surpasses merely defining the onset 
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of possible bending modes.   For rods or cables in tension the Greenhill condition repre- 
sents the largest torque which can be applied for a given tension or the lowest tension 
capable of supporting a given torque.   It represents a point of instability with respect to 
increasing torque or decreasing tension.   This instability is expected to be particularly 
violent in the case of cables, because of their low bending stiffness. 

• For applications in which a cable remains substantially straight, such as the lifting 
of objects from the ocean floor, the Greenhill formula, modified by an appropriate safety 
factor, should provide a valid criterion for estimating the onset of hockling. 

• For applications involving initially curved cables, such as in towing, where the in- 
fluences of gravity and drag are strong, the situation is less clear.   It is known that the 
Greenhill condition cannot be exceeded, but it is possible that instabilities might already 
occur at much lower values of torque or higher values of tension, since the relevance of 
Greenhill's formula depends on the relatively large twisting stiffness of the initially un- 
bent and straight cable.  The stability of initially curved cables thus is an interesting sub- 
ject for further research. 
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Appendix A 
FORTRAN LISTINGS FOR PROGRAM HOCKLE 

PROGRAM  HOCKLE 
DIMENSION  FH 100),QAM(100),DSD(100) 
COMMON  /8I0K1/   All»Al2,Al3,F,H,PMI,A.B,C,X,Y,2tS,A21,A31,A32,A33, 

1   0A,0B,DC,0)(iDy,DZ,«BAFl»IC0UNT,HNEW,An0,3ÄMMAiIt)FLAG 
COMMON  /BLoKZ/   KQUNl ,SYM|3HI (1500) »SYMALF (1500) 
COMMON  /BL0i;3/   XS(lbOO) if ä (1500) »ZS (1500) ,LS,DHIN, OS, SMIN,NSTEPS 
REAL  L 

C  THE F0LL0W1N8    FUNCTION  CALCULATES OREENHILL LENGTH 

XL(X)"  6,2831B53072  /   SQRTJX   •   (X-4)) 

C     WE  NO« HEAD  IN  NUMBER  "F  STEPS  BETWEEN PRJNT LINES  AND  STOP  SIGNAU 
C 

OS.O, 
J001  READ 2.NSTEPS,NST0P 

2  F0RMAT(2l5) 
IF(NSTOP.GT.O)   GO   TO   J002 

C   WE  NOW  READ   IN  UP   TO   10Ü   P0IN1S   F.QAMMA.DS 

READ   l,NF,NG.NDS,lFF{I),I=l,NF),(eAM{J)fJ.l,NG),(DSD(KQ),KQnl,NDS) 
I   F0RMA|(3I3,(/8F10.0)) 

C  FOR  OUTPUT  PURPOSES   WE  NOW   COMPUTE  THE  LENGTH OF  THE   PRINT   INTERVAL 
C   AND   INTIALIZE   THE' CASE   NUMBER«     PRN.NCASE 
C 

NCAsE»0 

C WE RUN THE CALCULATION 1HHOUGM THE F,GAMMA PAIRS, 
C      I IS A COUNTER TO STEP IHROUSH  THE VALUES OF F 
C      J IS A COUNTER TO STEP 1HROUGH THE VALUES OF GAMMA 
C KO IS A COUNTER 10 STEP THE VALUES OF OS 
C 

DO 1000 1=1,NF 
F'FFd) 

C   »••■CHECK   TO  SEF.   IFl F   li   IN   THEI INTERVAL   (0,4)   AND   IGNORE  GREENHILU 
C LENGTH  IFi IT   IS. 
C 

GL.O 
IF(   (F.LT.fl.)    .OR«   (F-QT.*.)   )   GL"XLtF) 

C   ••♦   INNER LOOPS   ON   J   ANU  f.Q 

DO  1000   J;-i,MG 
DO  1000   KCl.NOS 
0S=0SD<KC) 
PnNsNSTElS^D^ 
IBFLAS«O 
SMnO, 
SMIN»0. 
R'O« 
RNaO» 
NPRlNTo0 

NTEST«o 
Sl«Sü"S3"!;<[-0« 
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ABAR'O 
KOuNT"! 
MIDFLAO-O 
1COUNT«0 
GAHMA«OAH(J) 

C 
C •••PRINT INITIAL! CONOIUONS AND CASE NUMBER 
C 

NCASEüNCASE»! 
PRINT StNCASE' 

3 FORMATdHl, INlTlAti CONDITIONS FOR CASE NO.»tU//) 
PRINT ♦,F,GAMMA 

4 FORMATIIH '.lOXi'FB'iFe.ZilOX^GAMMA-'iFe.Z//) 

r. ••• CONVERT 6AMMA TO RADIANS [OR CALCULATION 
C 

GAMMA-OAMMA • 3.1*1S)926536/180. 

C INITIALIZE ANGLES AND COORDINATES 
C 

A»1.5T07963268 
B»o. 
C«6AMMA 

C    ALTERNATE INITIAL VALUES A.o,, B'GAMMA, CpOt INSERT HERE 
C 

X-0. 

Z"o» 
S'o» 
RNMAX"o« 
RNBQ, 
US-I 

C CALCULATE   INITIAL! VALUES  OF  A(I,J> 

AU-COS(B)iCOS(C)   %  AllO"Ali 
*BAR»ftBAR*Äl| 
KOUNTBICOUNT«! 

A12«C0S(8)»SIN(C) 
Al3=-SIN(Bl 
A21«SlN(A)«sIN(B)<,COs(C)   -  COS(M,SlN(C» 
A3l«COS(A)«SIN(0)»CUS(C)   ♦  SINU)«SIN(CI 
A3E«C0S(A)»SIN([J)*S1N(C)   "  SINCA^COSiC) 
A33eCOS(A)«C0SlB) 

C 
C  ALTERNATE  A21   INSERT HEKE 

C CALCULATE   INITIALi VALUES  OF  H.PHI,PSI,HNEW 
C 

H"A31-ZeA32»r6&33 
PHlo0'5*Ali 
IF(ADS(H)..000000011  5»5»*1 

41 pHIm All • A31 / (F»H) 
5 HNEWBS0RT((2./F')»tCÜS(GAMMAl-Alll ♦ SIN(6AMMA) ••2) 

PSlaO. 

18 

-^r^1 rV'iifM'mttViil/iaWimilTiliiiii iiriiliiirniliniriaiiM r ._  . ; ._  



NHL REPORT 7940 

ITESTl.O 
1TESTZ»0 
PUNCH  60»NCASE 

60 FORMAT(« INITIAL VALUES FOB CASE^IIö) 
PUNCH 61,s.pHl,X,Y«ZiRN.H.psI 
PUNCH ei.Aii.Aiz.Au.Azi.Asi.Asz.Aaa 

61 F0RHAT(8Fl(i.6> 
64 F0RMAT(4Fl4.6i2F':2.6) 

C 
C PRINT OUTPUT HEAOERSt 
C 

PRINT 6 
6 FORMAT(/4H       S,5Xi3MPHlf5X,1HXI6XI1HY.6X,1HZ,5X,2HH0.5X,3HPSI»SXt 

UHAi6X«lHBl6X*lHCf6XllHlli»Xi3HAlli4Xi3HA12i4Xf3HA13l4X«3HA2Ii4Xi 
23HA3Ji4Xf3HA32,4Xi3HA33/) 
IFFL.l 

C 
C PRINT INITIAU VALUES 
C 

7 PRINT 8,StPHI,XfY,ZlHNEK,PSI,A,BlC,HtAnlA12,A13,A21,A3l,A3Z,A33 
6 FORMATtlH 'flßF7,4) 

RN=SQRT(Y»»?*Z»»2) 
IF(RN.GT.RNMAX) RNMAX"RN 
NPRINT«NPRINT*i 
CALL SYM(lFFLiSI.S2tS3.S4) 
IF(MIbFLAG.EQ.l) 00 TO 50 
XS(LS)«X 
YS(LS)BY 
ZS(LS).Z 
l.S«LS*i 

50 CONTINUE 
C 
C «E NOW BEGIN TO STEP OUK WAY AUONO THE CABLE 
C ISP IS A COUNTtR CONTROLLING PRINT 
C WE ARE LOOKING FOR MIDHUCKLE 
C 

ISPBO 
9 AziOLO.Agi 

CALL STEP(OS) 

C ••• TEST FOR MIOHOCKLE 

1F(((A21»A210LO).LT.O).AND,(MIDFLAG,EO,0)|GO TO 13 
C 
C ••« WE ARE NOT AT MIOHOCKLE. 
C     HAVE WE COME TO THE END OF THE CABLE. 
C 

10 IF(MlOFLAG.NE.l) GO TO 11 
IF(NPRINT,EQ.NTEST)  GO TU 25 

C 
C WE ARE NOT AT END OR MIUHOCKLE. CHECK TO SEE IF IT IS TIME TO PRINT 
C 

11 I3P«ISP*1 
C 
C WE ARE NOW READY TO PRINT SO WEI NEED TO COMPUTE HNEW.PSI.PHI 

PSIBASIN( Z/S0RT(Z»«2tY»»O I 

19 

i i 

T! !,.,-,».,:."'-'-'' "■"-■'■.^ -.~:'.. \..,.--.-..,..„--.—.— ^.,.■■...,■■■,■...^„iJ..;..,..- ..^i.^,-^..^-..- .......^.J  i-^-  ^-...-.....>-»:  . 



FELIX ROSENTHAL 

IF(ISP.LT.NSTEPS)  öO TO » 
GO TO 7 

C KE ARE AT MIDHOCKLE 

1* Äm/Z/IH  MIOHOCKUE ///) 

C WE NOW FIND s»  THE LENS^ JO MIDHOCKLE 
HIOFLAO«! 
DSH«-A2i»DS/(A2l-A2iOUD) 
CAUL STEP(OSM) 
RNoSQRTtr o«2*Z »»Z) 
IFtRN.ST'RNMAXl RNMAX"RN 
X5(LS>"X 
YS(LS)»Y 
ZS(LS)BZ 

C CURRENT VALUES OF' VARr*»LES IN COMMON ARE MIDHOCKLE VALUES SM»S. 
PSI«ASIN( Z/SQHT(Z»»Z »YV.Z' ' 
L-2.*S 
FL.F»L 
FL2-FL»L 

C CALCULATE TWIST AND BENUING ENERGIES 

ENTL.F»FL2»0.5»C0S((>AMMA)».2 

EÄ"coS(GAMlIlA).K.FL2*0.5.SIN.OAMMA)"2.FL2»A8AR 

SMaS 
G»GAHMA»ie6./3.1*l5V26536 

C  PRINT  HEADERS  rOR  MIDHOCKLE  PRINTOUT 
C 

17  ÄniH  .32X  .PRINT».3X..GREENHILI»   .2X..MIDHOCKLE».3X..TOTAL«. 
J?4X.»TWIST     BENDINS»! 

IB  FORMITUH  ,5X,»F».6*.»GAMMA..4X,»STEP  SIZE ^INTERVAL! ».3 (•     LENGTH- 
»   •),4X  •FLi.6X,.FL2»,7X.»ENEHGy       ENERGY») * 

PRINT     9,F,G iDs.PRN.GL.sM.L^FL.FLZ.ENTL.ENB 
19  F&llH  :n0.5.F?.2.3X.yF10.5////) 

CALL DCALC 

51 "RMITÜH^^SUM DISTANCE I?  ».F12.6.»    S.».F12.5) 

P51N! l.5,PHl.X,Y.Z.HNEw,PSl.A,B.CtH,AU,Al2,A13,A21,A31.A32,A33 

PUNCH 62 

" Ä^t^ÄDS.PRN.GL.L.RN.RNMAX 
PUNCH 6*,FL.FL2.ENTU,ENb.LlMlN.SMlN 
PUNCH fel.SjPHl.X.Y.i.RN.M.PSI 
PUNCH 61,Ail.A12,Ali,A21,A31.A32.A33 

C WE NOW 00 TO POINT SYHMtTRlC WITH PRINT VALUE PRECEEOING MIDHOCKLE 

20 
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DS2"0S*DSM 
CALL  STEPIOSZ) 
Kz-ISP 
DO   2*   K"1»KZ 

2*  CALL  STEP(OS) 

PRINTSB"s1,pHilxlYizlHNEW,t;SliAiB.CtH.All,Al2tA13tA2l,A31,A32,A33 

C  CALCULATE  TO  END  OFi CABLE  WITH ORIGINAL  Ds 
C 

1FFL-2 
ISP»0 

C SAVE NUMBER OF STEPS TO MIO HUCKLE FOR END TEST 

C 
NTEST»NPRINT 
NPRINT»! 
GO TO 9 

C WE GET TO HERE WHEN WE HAVE CUME TO THE END OF THE CABLE 

C 
25 IFFL-3 „ , 

CALL SYM(IFFL.S1.S2.S3.S4l 

26 FORMIT(/J/J!IH SYMMETRY FACTORS—•.6X.«pHI».FlZ.5,10X,»A21.» 

IF12.5///I 

27 FORMAn/ZlH'!* RM!» VALULS •UBX.FU.S.iaX.FU.S) 
Rl»Sl/S3 
RZ-SZ/S*  . 

28 FORMAT^/IH' RATIOS ,18XtF12,5,13X.Fl2.5) 
PUNCH 63 

63 FORMAT(«ENDHOCKLE«! 
PUNCH 6liS,PHlfXfYii|RNiHiPSI 
PUNCH 6l«Aiil.Al?fAU.A21.«-äl»A32tA33 
PUNCH 61.slis2«s3»S*«Rl,R^ 

C IF THERE ARE MORE' PAIRS P,GAMMA TO BE DONE RESET AND GO AGAIN 
C OTHERWISE STOP. 
C 
1000 CONTINUE 

GO TO 1001 
1002 STOP 

END 

21 
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KKL1X ROSENTHAL. 

?rMr/BELO
OKVLXS(.!.O0,.r5tl500,.2S(l5O0,,LS.OHIN.OS.SMIN.NSTEPS 

DIMENSION D(ISOO) 

TMIS SÜDROUTINE CfttCULJTEb RELATIVE MINIMUM OF DISTANCE 
BETWEEN PAIRS OF SYMMETRIC POINTS 

DO S J.lilSOO 
5 OtJ)"-I. 

DMIN"-2. 
XHaXS(LS) 
YHPYS«LS) 
ZM»ZS(LS> 
MIN^LS«! 
MM—i 
DO 10 I>liMIN 
J-LS-I 
T BYH»»2*ZM»*H 
IF(T1.LT.0.0000001» 00 TO 10 
T2» «YM^ZSIJ)-ZM'J.St J) 1 »»H 
T3»(XM-XS(J))«»2 
D(J)i-i:.»SQRT»T2/Tl»l3l 

10 CONTINUE , , , , 
PRINT 100, (D(J), J»l«LSl 

100 FORMATdH ,10F10.5) 
C 
C LOOK FOR MINIMA 

TEST.D(LS) 
I«LS-1 

20 IF(D(I).LT.TEST) GO TO 30 
TEST«0(I> 

21 I»!-! 
IFd.EO.o) GO TO 50 
GO TO 20 

30 IF(D(1».LT.0.> GO TO 21 
31 TEST*D(II 

I«l-T 
3? IF(Oil).ST.TEST) GO TO 40 

TEST"D(I) 
I-I-T 
GO TO 3? 

40 DHIN-TEST  . 
SHINn( I*i)«DS»NSTEfS 
RETURN 

I? PSRHIT'IH.*  0 HAS NO RELATIVE, MINIMUM 
RETURN 
END 

• ) 

22 
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SUBROUTINE  SrM(IiSliS2iS3fS4) 
COMMON   /BL0K1/  AU^lZtAlSiFiHiPMIiA.BfCiXiYiZtSiAzi.AawASZtAsa» 

1   DAft)BtDC.DXiDYiDZ«ABARiIC0UNTiHNEMtAll0tCAMMA«It)FLAO 
COMMON   /BL0K2/  K0UN|iSYMKMI(1500)iSYMALF(1600) 

c 
C THIS SUBROUTINE IS CALLtD AT EACH PRINT STEP AND CALCULATES SVMMETRr 
c FACTORS AT END OF' CABLE, 
C 

60 TO (Ii2i3)il 
c 
C KE ARE STILL IN FIRST HALF OF  CAßLEl, WE ACCUMULATE VALUES OF pHliAZl 
C 

J SYMPHI(KOUNT)''PHI 
SYMALF(KOUNT)«A2l 
S3«S3»PHl»»2 
S»»Si»A21«»2 
KOUNT"KOUNt»l 
J«KOUNT 
IF(KOUNT,EO.1500» OU TO 5 
RETURN 

C 
C NE ARE IN SECOND HALF 01- CABLE. 
C 

2 KOUNT"KOUNT-l 
SYMPHl(K0UNT)»(SYMPnI(K0UNT)»PHI)»#2 
SYMALF(K0UNT)"(SYM«I.F(K0UNT)*A21)«»2 
S1«S1»SYMPHI(K0UNTI 
s2ns2*SYMALF(K0uNT) 
RETURN 

C 
C  WE  ARE AT   THE  END  OF  TMt  CABLE, 
C 

3 Sl-SQRTCSl   /(JMl   ) 
S2»SQRT(S2/(J*l)) 
S3«SORT(S3/(J*ll) 
S4«SQRT<S4/(J*lll 
RETURN 

5 PRINT   A 
4 FORMAT (jH ,»————«KOUNT OVER LIMIT- «,—»•) 

STOP 
END 

23 
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FELIX ROSENTHAL 

SUBROUTINE   STEPIOSI 
COMMON /8LOK1/  AIl»*12»A13.F.H»PHIfAiBtCtXtYi7»S»A2liA31iA32iA33, 

1   OA.DB.DC,DX.Dlf,OZiABAR.ICoUNT.HNEK»AU0t5AMMA.IöFUQ 
COMMON  /BLOKZ/  KOU^TiSYMCHI(1500).SYMALF(1500) 

C  THIS  SUBROUTINE   STEPS  TME  CALCULATION  FROM  POINT  TO POINT  ALONO  THE 
C CABLE. 
C INPUT     OS ■ i>TEP  SIZE  FOR  CALCULATION 
C -.„- 
C 
C OUTPUT       A    ■ 
C —••-••      8      »ANGLES 
C C   • 
C X    ♦ 
C Y       »COORDINATES 
C z   ♦ 
C 
C  CHECK  IBFLAO. 
C IBFLAG-1   IF  B  TOO  CLOSE   TO  90  DEGREES 
C   IF  B  TOO  CLOSE   TO  9«  WE USE  ALTERNATE  FORMULAE 
C 

IFtIDFLAG.EQ.l)   60  10 500 
C 
C»*«  FIRST  WE  CALCULATE  INCREMENTS  FOR  ANGLES 
C 

»00   OB»   {-F   •   H   •   SlN(A))   •   Os 
DA«  F  •   (H  <  COS(A)   •  SIN1B)/COS(B)   *  PHI)   •  OS 
DC"   (   F  •  H   •  COS(A)/COS(b))   «OS 

C 
C ••• WE ADD INCREMENTS TU PRESENT VALUES TO OBTAIN VALUES 
C    AT A POINT DS-UNITS FUHTMtR ALONG THE CABLE. 
C 

A>A*0A 
B»B«0B 
C"C*OC 
SlGNCBuSlGNIl.iCOSdO) 

C 
C CHECK TO SEE IF B TOO CLQsE TO 90 OEGHEES 
C 

CBBABS(COS(B)) 
IF(CB.LT.0.1    ) OU TO 100 

C 
C •• WE ARE NOW READY TO CALCULATE INCREMENTS TO COORDINATES 
C 

DX'AU • De 
DY.A12 • OS 
DZoAia • os 

c 
C ••• WE ADO THE INCREMENTS TO THE PREVIOUS VALUES OF THE COORDINATES 
C     TO OBTAIN VALUES AT A POINT OS-UNITS FURTHER ALONG THE CABLE. 
C 

x«x»ox 
Y"Y*DY 
Z>Z*DZ 

c 
C ••• FINALLY.WE CALCULATt NEW CABLE LENGTH 
C 

24 
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S«S«D5 

•••  CALCULATE' NEM   VALUE!«  FOR  A21 ,A31 »A32»A33 

A2l-SIN(A)«SIN(B)«CUS(C) -  C0S(A)«SIN(C) 
A31-C0S(A)*,!IN(B)»CUStC) ♦   SIN(A>«SIN(C) 
A32aCOS(A)»SlN(B)*SlN(C) •   SlN(A)*C0S(C> 
A33-C0S(A>«C0S(B) 

•«•  CALCULATE  NE«  VALUES  FOR AHfA12iAJ3  AND  RETURN 

*11«C0S(B)«C0S(CI 
A12.C0S(B)«SIN(C) 
A13=-SJN(B) 

300  H"  AJl-Z»A32*Y»A33 
ABAR^ABAR^AU     $     IC0UNT=ICOUNT»l 
PHl»0.S»AilO 
IF(ABS(H)-.00000001)   16,16,15 

15 PHI»AH0-A31<'<F,H) 
16 HNEW-0. 

HNEW2"t2./F)»(COS(6«MMA)-All|»slN(GAMMA)»»2 
IF(HNEW2,GT.0.1HNEl<»SaRT(MNEW2) 
RETURN 

GET TO HERE WHEN B TOO CLOSE FOR FIRST TIME» 
WE SAVE CURRENT VALUES OF A.öiC 
WE THEN SET IBFLAB-1. A=C»0t 

100 AG»VE"A 
BSAVEaB 
CSAVE"C 
IBFLAG«! 
A"0. 
C'o« 
B«o. 

NOW CALCULATE A22.A23 FOR FIRST TIME THROUGH 

A22«sIN(ASAvE)»sINtBsAVE)*sIN(CsAvE|*COs(AsAvE)»COs(CsAvE) 
A23«SlN(ASAVEl»COS(bSAVE) 

WE NOW CALCULATE NEW VALUES FOR XIYIZIS 

200 X»X*A11»DS 
Y"Y»Al2,'0S 
Z«Z»A13»DS 
S.S*0S 

NOW  CALCULATE' NEW  VALUES» OF  AdiJ) 

DAHrFoH'AJltDs 

0AZi«F»(-HtAil»PHl»A3l)«DS 
OAlSS-tF^HitAasÄDS 
DA3lS=-F'PHl»A2i»DS 
0A32S«-F'PHl',A22»OS 

25 
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FELIX ROSENTHAL 

All>All*OAll 
Al2.Al2*DAl2 
A2l«A2l*DA2l 
*l3S«Ai3*DAi3S 
Al3«S0RT(i.-Ali»,Z-*l2,,Z'. 
^((Aia'AlSSl.tT.O.) Al3"-Al3 
A3ls-A3l»DA3lS 
A3lBS0HT(l.-AU»t2-A2lt«2| 
IF((A3l«A3lS>.LT.0.> A3l«-A3l 
A23«(iAll»Al3»A<il»Al2»A3ll/(l.«All»»2) 
AZ2«(Al2»A23-A3i)/Ai3 
A32S«A32*0A32S 
A32=S0RT(l.-Al2«»Z-A2Z,,2' 
IF((A32»A3?S).LT,0.) A32»"»32 
A33"(Än»A3l*Al2»A3ü)/(-Al3> 
CO TO 300 

GET TO HERE IF IBFLA8-1 
CHECK TO SEE IF B STILL' TOO CLOSE« 

500 CB«S0RT(l,-Al3»»2) 
IF(C8.LT.6.l    ) BÜ TO 200 

GET TO HERE IF 8 NO LONöER TOO CLOSE. 
HZ  RESTORE B TO PROPER UUAORANT 

IF(SIGNCB.GT.O.) C8--CB 
SB—Al3 

DETERMINE' BiA.C UP TO ROTATIONS 

B*ACOS(C8) 
IF(SB.LT 0.) BB-B 
CA» A33/CB 
SA«A23/CB 
AOACOSCCA) 
IFISA.LT.O.) A—A 
CC«AlJ/C8 
SC-A^/CB 
C»AC0S(CC) 
IF(SC.LT.O.) C—C 

NOW DETERMINE; ROTATIONS 

BROT«(8-SSAVE)/6.2B318530? 
N',BR0T«0.5 
B=B»Ni6,283l05307 
CROT«(C-CSAVE)/6.283ie530T 
NBCROT4ot5 
C«C»N»6.283l8530T 
AROT»tA-ASAVE)/6«28Jl6530T 
NBAROT»0.5 
A»A«Ne5.283185307 

; CONTINUE WITH ORIGINAL t-ORMULAEl 

IBFLAG-0 
GO TO 400 
END 

26 
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