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1.   INTRODUCTION 

A central problem in target tracking is the determination of position probabilities 
after an arbitrary time interval for an assumed distribution of target course and speed. 
A general treatment of this problem which requires only that all contributing distribu- 
tions are discrete is given in reference 1.   One consequence of the distribution-free 
nature of this treatment, however, is that the procedures which result are excessive 
in terms of machine time or storage requirements where standard distributions are 
involved.   In such cases, probabilities can be generated by algorithms based on standard 
mathematical forms and the storage and manipulation of large numerical arrays is thus 
circumvented. 

If mathematical expressions for both the initial position distribution and that of the 
motion are available, the final position distribution is expressible in terms of the param- 
eters of these two distributions.   Thus, if the mathematical form of the final distribution 
can be established, the computation of the required probabilities consists of the following 
steps. 

1. The computation of the parameters of the final position distribution from those 
of the constituent distributions of initial position and motion. 

2. The computation of the final position probabilities from the fully-specified dis- 
tribution function so obtained. 

For the standard bivariate distributions under consideration, the number of param- 
eters necessary for their specification is small, so the extent of the computation should 
compare very favorably with that necessary to implement the more general procedures 
derived in the referenced memorandum.    If it turns out that the stated computations 
can be based on simple, closed-form expressions, this is self-evident, but unfortunately, 
such relationships cannot be guaranteed.   We argue, however, that the lack of a closed- 
form expression does not necessarily preclude a satisfactory computational procedure, 
and that the inherent economy provided by constituent distributions with standard mathe- 
matical forms is not necessarily eliminated by a transcendental outcome. 

The specific problem to be addressed is related to current efforts to improve track- 
ing procedures in the fleet.   For the purpose of this research contribution, the problem 
may be formulated as follows. 

Following observations of a target of interest, the probability density function of its 
position  (x, y) is closely approximated by the bivariate normal density with mean   (u , u ) 

variances   $ a and n a , and correlation coefficient   p .   The direction of target motion, 
x y 

cp, is uniformly distributed and independent of target speed. That is, if V  is the effec- 
tive speed, 

-1- 



= 2^v(v> for 0 ^ cp< 2TT    . 

Further, the probability density of the effective speed over a time interval  t  may be 
approximated by means of a discrete density function, that is, 

pv<v) = £ P|«(v-v) 
i=l 

where V., V_, ..., V    are known constants.   Required are the probability density func- 
12 n 

tions of the cartesian and polar coordinates,   (u,v)  and  (R, 9)  respectively, of the 
position at the end of the time interval.   The maximum target speed is such that a flat 
earth approximation is acceptable. 

It should be noted that the derivation of the mathematical forms of these final posi- 
tion densities is but an intermediate result.   The computation of the position probabilities 
with accuracies adequate for particular applications by means of the facilities available 
may require additional effort other than at the programming level.   While the principal 
emphasis of this research contribution is on obtaining relationships applicable to the 
problem stated above, the advantages of a solution in terms of functions for which com- 
putational procedures already exist have not been overlooked. A solution of this nature 
based on the formal solution derived in the main text is presented in appendix B. 
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2.   GENERAL FORMULATION 

In this section the general formulation that will be used is outlined.   The succeeding 
section is devoted to the specific problem just described. 

Let   (x, y)  be the initial position of the target of interest.   The joint probability 
density function of this position,   p    (x,y)   , is assumed known. xy 

Let  p    (V, cp)  be the joint density of target speed  V   and direction   cp , also assumed 
Vcp 

known.   This joint density, which describes the motion, may be conveniently replaced by: 

where   r = Vt  is the range traversed in the time interval  t . 

Finally, let  (u,v)  and  (R, 0)  be the cartesian and polar coordinates of the target 
position at the end of this time interval, and let  p    (u, v)  and  p     (R, 8)  be the corres- 

ponding position densities. 

To formulate the relationship of these densities to  p    (x, y)  and  p    (r, cp)  , we 
proceed as follows. y ^ 

The target coordinates   (u,v)  after time  t >0 , are related to the initial coordinates 
(x,y) by: 

u = x + r cos cp /rt  , v (2.1) 
v = y + r sin cp    . 

Taking  x  and    y  as fixed, the Jacobian of the transformation is: 

r= f(u-x)a + (v-y)3}* 

and the conditional density  p    (u,v |x, y)  is given by: 

p    (u,v|x,y)= f(u-x)3 + (v-y)arV   [{(u-x)a + (y^)a}*, arctan ££]    . 
uv r cp L u —x -i 

The unconditional density p    (u,v)  is given by: 

Puv<U'V) =  J1I ^-I PUv(U'V'X'y) Pxy(x'y) ^ dy    " 
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Replacing  p    (u,v |x, y) with the expression derived above and using the transformation 

(2.1), with u  and v   considered as fixed, to change the variables of integration from 
x  and  y to   r  and   cp, we obtain: 

Ji 2TT r* oo 
p    (r, cp) p    (u-r cos cp, v-r sincp)dr dcp   . (2.2) o    Jo    rep xy T 

If direction and speed are independent: 

rep r        cp 

and 

«2TT 

0       P   <<P> J0   Pr
(r)P

Xy(U"r C0S V>   V"r Sin^ dr dCP   ' (2"3) 

If, in addition,   p   (cp)   is uniform, 

Puv(u, v) = — J^^p^rjp    (u-r cos cp , v-r sin cp) dr dcp    . (2.4) 

Finally, if course and speed are independent and the former is uniformly distributed and, 
in addition, the distribution of speed is discrete, that is, 

it is readily shown that: 

n 
Pr(r)= £P, 6(r-r) , 

i=l 

When these conditions all hold, 

1    r»2n poo 

r.=V.t    . 

n 
Puv(U'V) = 2^ 4     $o   ^ Pi 6(r"*P Pxv(U "r C0S *' V "r Sin Cp)dr dcp 

i=l y 

n 
=   EPjP.^v)     , (2.5) 

i=l 
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where 

P.(u,v) = — f       p    (u-r. cos cp, v-r, sincp) dcp 
i 2n ,Jo        xy       1 I       T     T xy 

Clearly   P (u,v)   is the final position density for the special case of the problem 

under consideration in which 

PV(V) = 6(V-V.)    , 

that is, the speed is assigned the constant value  V.   with certainty.   It follows that if 

P (u,v)   can be determined for i=l, 2,..., n   , the relationship (2.5) provides the final 

position density,   p    (u,v) , for all cases in which an adequate description of the effec- 

tive speed is provided by a discrete density function. 

Where the polar form of the final position coordinates is preferred, the required 
density  p   fi(R, 9) is obtained from  p    (u,v)  by means of the transformation 

R  = (U3+V3)t 

0 = arctan v/u    . 

Thus, 

PR0(R, e) = RPUV(R cos 9 , Rsin 0) 

(2.6) 
n 

= H R Pp.(R cos 9 , R sin 0)    . 
i=l        l X 
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3.   NORMALLY DISTRIBUTED INITIAL POSITION 

For this case, the density  p    (x, y)  is bivariate normal with parameters     u   , 

[i   t n   » a    and   P t and a solution to the problem is obtained by evaluating the integral 

on the right of the expression 

1 OTT 

Pi(u'V) = 2n 4     Pxy(U ~ri C0S V' V "riSÜ1 ^ dcp (3'X) 

and applying (2.5). 

It is clear that this task would have been simplified if the original coordinate system 
had been translated and rotated to provide a new system in which the coordinate variables 
were uncorrelated.   This would, of course, result in a final position density with respect 
to the transformed system, and a further transformation to effect the restoration of the 
original coordinate system would then be necessary.   The approach we shall take to 
simplify the form of the integral is essentially equivalent to this. 

We introduce the transformation: 

u* = (u -u ) cos ß + (v-u ) sin ß 
X Y (3.2) 

v' = -(u-p ) sin/3 + (v-^i ) cos/3 

when ß  satisfies the equation 

2paa 
tan 2ß = w   *—r      . (3.3) 

x    y     x    y 

The inverse transformation is: 

u = [x  + u* cos ß - v' sin ß 

v = u   + u' sin ß + v' cos ß   . 
(3.4) 

The density function of the transformed variables,   P.(uf, vf)   , is therefore related to 

that of the untransformed variables, P.(u,v)   , by: 
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P.(u', v') = P. {(p   + u' cos ß -v1 sinß)f(ji   + u' sin ß + v' cos ß) } 

1 9TT 
= — f      p      f(u   + u* cos ß - v' sin ß-r. cos cp)   , 2rr «Jo        xy l rx i        T'   # 

(p   + uf sin ß +v* cos ß-r. sincp) ]dcp 

Introducing the identities: 

cos (cp - ß) = cos cp cos ß + sin cp sinß 

sin (cp - ß) = cos cp sin ß + sin cp cos ß 

and 

(3.5a) 

cos cp= cos (cp - ß) cos ß - sin(cp - ß)sinß 

sin co = cos (cp - ß) sin ß + sin (cp - ß) cos ß 

and using the latter pair to replace   cos cp and sincp in the integrand of the above expres- 
sion, we obtain: 

P^u*. V) = 2^ J,
0

2TTPxyf
A

i(
u''v,.<P>.   Bj(u', V, cp) ]dcp 

where 

A.(u\ v\ cp) = \i   + [u*-r cos(cp-ß) ) cosß - fv'-r. sin(cp-ß)] sinß 
I A. 1 1 

B.(u', v',  cp) = [i   + fu'-r  cos(cp-ß) }sinß + {v'-r. sin(cp-ß) } cosß    . 

With ß   chosen in accordance with (3.3), this reduces to: 

-3 -i   ,„        r    fu*-r. cos(tp-ß)}8      {v'-r sin(cp-ß)}8-] 
P (u-, V) = (2W>    (SuSv)  ' ;2    exp >— _ J^ 

L u v J 

-' -*,2rr-ß       r  ,   f(u'-r coscp)8      (v'-r  sincp) 
-0*    <W*/^*.xp[-i{ fi      L •«.   s s      }n 

(3.6) 

where   S    and   S    are given in terms of the parameters of the initial position density by: 
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— —      l 

S   ' S     ~2(l-p2) 
u      v 

—g- + —X T < g- +—3" 9 5~f • I3«7) 
Lax       ay        * ax ay ax ay ']• 

The integral appearing on the right of this relationship cannot be expressed in 
closed form, but may be reduced to an infinite series of Modified Bessel Functions.   The 
method used to achieve this reduction is given in reference 2 and is outlined in the ap- 
pendix.   It gives: 

P.(u',v') = (2rr)"1(SuSv)^exp(^»i) £ (Ve^yF^I    <w^ cos(2kv^ (3.8) 
k=0 

where 

e= 1    for k = 0 

= 2    for k > 0 

and the parameters  qf. , F. , wf. , and   y*   are as defined in appendix A. 

This gives the final position density in the transformed coordinate system.   By 
transforming back to the variables  u  and v , the coordinate system with reference 
to which the problem was originally stated is restored.   The required transformation 
is given by (3.4), namely: 

u = u   + iT cos ß - v' sin ß 

v = Li   + uf sin ß + vf cos b 
y 

and 

P.(u,v) = P. [{(u-ti ) cosß+ (v-Li )sinß }, f-(U-LI )sinß + (v-u ) cosß}] 

= (2n) \suSvf* exp(-q.) £ (-D^yF.^w.Jcos (2k v.) 
k=0 

where  q.(u,v), w.(u,v)  and   yi(
u»v) » the coordinate-dependent parameters of this 

density function are obtained from the corresponding expressions for  q\(uf,v') , 
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w\(u\v')  and   v\(u\ v')   , given in the appendix, by making the replacements required 

by the transformation, namely: 

u' = (u-|i ) cos 3 + (V-JJ ) sinß 

v' = - (u -u ) sin j3 + (v -u ) cos ß    . 

This permits the computation of  P.(u,v)  for  i=l,2, ...,n  and hence, from (2.5), the 

computation of the required final position density p    (u, v)    . 

If the final position density is required in polar form, an additional transformation 
is necessary. For any given values of  R   and   0 , P,(R cos 8,  R sin 6)   is given by 
(3.9) with parameters  q.(Rcos 6, r sin 9), w (R cos 9, R sin 9)  and   v.(Rcos 6» R sin 0) 

The required final position density,    p    (R, 6)   , is then obtained from (2.6). 
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4.   CONCLUSIONS 

It follows from equation (2.5) and the discussion following its derivation that a solu- 
tion to the problem stated in the Introduction is dependent on a solution being obtained for 
the special case of this problem where the effective speed can be assigned with certainty. 

The problem of obtaining a solution for the special case is apparent from (3.1).   If 
adequate computational facilities are available, a direct numerical evaluation of the 
integral expression in which  p    (x, y)   is a bivariate normal density of the most general 

type, is, at least, feasible.   In the absence of such facilities, a reduction to an equiva- 
lent, but more tractable, form is mandatory.   Consistent with this reasoning, an equiva- 
lent form has been determined and, in a formal sense, equation (3.9) and the discussion 
of its parameters, constitute the principal results of this research contribution. 

This concluding section would not be complete, however, without a brief examination 
of these results in the context of our opening remarks.   These remarks list two steps as 
being necessary for the computation of position probabilities consequent to the mathe- 
matical form of the density being available. 

No special problem is evident in implementing the first of these steps.   Instances 
will occur where the transformed coordinate system is adequate or preferable for the 
treatment of the problem at hand.   When this is the case, the parameters of the final 
density are directly provided by the simple algebraic formulas listed in appendix A. 
If results are to be referred to the original coordinate system or if the range and bear- 
ing of the final position are required, only the three coordinate-dependent parameters 
are affected and the modifications involved are readily implemented. 

If the form of the expression obtained for the final density were entirely novel, some 
discussion of its properties would be required before the second of the steps listed could 
be carried out in practice.   In view, however, of the striking resemblance of our princi- 
pal result to the mathematical form of the Nakagami Density Function (reference 3) which 
has extensive application in the theory of tropospheric scatter, referral to the literature 
on this topic appears a preferred alternative.   There can be little doubt that programs 
that will provide much of the information that is required, with only minor modification, 
already exist.   It is also apparent that tabulations of the Nakagami Density Function may 
be used to determine the final position probabilities subject to a minor preliminary com- 
putation to determine the appropriate point of entry. 
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APPENDIX A 

INTEGRAL REDUCTION 





From (3.6) and (3.7), 
-a 

'(U\V') = (2TT) 
i u v 

P.(U',V,) = (2TT)     (S S ) 

where 

Let 

^ expL-*|——+——Ud* 

i    i .   i    r i     i   \i i . i \a 4(1-^) (ti 

F.fU-L    i\ 
1      4    ^Su    V 
./ ,    »s      u,a     v,a        a/   1 1   \ 

^U^V) = 2S- + 2S-+ri     4S"+4S" 
U V 

/u,a      v,a\ 
w;(u'(V) = r.^+§7 

v'.^u', v') = arctan —7-75"^" 
u 

then 

P.(U\V') = (2TT)~  (S S )"*exp(-q\) J2TT"ßexp{-F.cos2cp+wf.cos(cp-v,.))dcp  . 
X UV X o * ^ x 

-p 

From the theory of Bessel Functions, 

yx) = 2n J* exp(-x cos cp + ik cp) dcp 

where  C   is any real constant, and 

k 
exp(-x cos cp) =   £ (-1)   L (x) exp (ik cp) 

k=-® 

A-l 



Therefore, 

-a 
Ai« ir«\ = iOrr\     ^ 

U   V f\-ii 
PAW,**) = (2tT)"a(S^Sj"*exp(-q\) 

OD 

J.2TT-P   <£(-l)k UF.Jexppikco + W. cos (cp-v1) } dtp 

-ß       k=- ' ' 

OC 

(2n)"a(SuSv)"*exp(K,»i)   f>l)k J^(F ) 
k=-» 

?TT-ß 
J* exp f2ikcp + wf. cos (cp-vV) 1 dcp 

-ß * l 

= (2n)"1(SuSv)"*exp «f)   £(-!)* 1^) 
k=- 

^    ..     1       r2TT-ß.Y: exp(2ik v'.) 5- T Yi exp(2ik cp + w* cos cp) dcp 
i 

* 4 "        k 
»(2TT)    (SuSy) *exp<-q'.)   ^ (-1)K ^(F^ I^-W.) exp(2ik v'.) 

k=-oo 

= (2n)"1(SuSv)"*exp«.)    £ (-l)\(PJ.^ftrl) exp(2ik y^) 
k=-« 

since, for  k   even,    L (-x) = L (x)    .   Combining terms with indices  k   and   -k 

P.(u\v') = (2lT)"©uSvf* exp«)  £ (-1)* e^F.) I    <W) cos (2k v'.) 
k=0 

where 

61  = 1    for k = 0 

= 2    for k > 0    . 

This is the required result and the relationship (3.8) is thus established. 
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APPENDIX B 

SOLUTION VIA THE NAKAGAMI DENSITY FUNCTION 





The density function referred to as the Nakagami Density Function in the concluding 
section may be introduced in the following way.   Let  x  and  y be normally distributed 
with arbitrary parameters   u*   , u*   , a   , a1   » and   p1 , and let 

Y = ^x3 + y3 

cp = arctan y/x     ; 

then 

PV(Y) = Jo^ycp^'^09 =X 4 ^ Pxy{x°0S ^' Xsincp)dcp    . 

This relationship may be used to define the Nakagami Density Function.   Although the 
integral expression in this form is unsuitable for computation, we may nevertheless write: 

0 TT 

Py(v ||ifx , u'y , n'x » a   »  o') = v J0    Pxy(vcos cp, vsincplp^^, a\» oy P1) dcp . 

We make use of this result by substituting variables defined in section 2 and in 
the opening sentence of section 3 as follows: 

p (r. lu-ii , v-ii , a » a »  P) = r. f    p    (r.cos co, r.sincp lu-u ,v-u , a , a , p)dcp KY   l'    rx       ry     x     y iJo     xy   I i      Y'    rx      ry    x    y 

*2TT 
= ri/0 ^^y^ "riCOS ^P.v-r.sincpl^, \i , axay, o) dcp 

= 2Trr. P.(u, v |px, ^ , ax, cy P) dcp 

by equation (3.1).   Then, from (2.5), 

puv(u'v K> V ax' Vp) = &PiPi(u,v '^ V a*' vp) 

1   n pi 
= r—   y — P (r- U"M >v~^ » a » a » P)   • 2TT   £- r.     Y   l1    rx      ry    x    y 

This expression provides a solution to the problem stated in the Introduction, where 

pv
(v) = t Pi<v-Vi> 

i=l 

r.=V.t, 

and  [i ,[i , o * a   and p are the parameters of the initial position density. 
7    X    Y B-l 
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