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quirements have 11ade it practical to devise: 

a) interactive on-line ~uter network solution systems linked with display 
and graphical terainal devices to enhance the applicability of mathematical 
progru.ing. 

b) network solution systems that are capable of solving vastly larger problems 
than previously imagined .possible. For example, it is now possible to solve network 
problems with 50,000 nodes 
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ABSTRACT 

The primary purpose of this paper is to provide the practitioner with a 

short, but informative handbook of tools to use in modeling decision making 

situations as network flow problems. These tools are presented as part of 

the discussion of recent industrial and governmental applications. The in- 

tent, is not to enumerate all applications of networks, but rather to give 

the reader a flavor of the versatility and usability of networks. An addi- 

tional objective is to acquaint the reader with the process of visualizing 

a problem by means of network diagrams, thereby making it possible to capture 

important interrelationships in an easily understood "pictorial" framework. 

A secondary purpose is to familiarize the reader with recent computa- 

tional advances in the development of computer codes to solve these problems. 

For example, recent breakthroughs in the solution and human engineering 

aspects of minimum cost flow transshipment problems have made it possible 

to solve problems that require many hours of computing time with state-of- 

the-art commercial LP packages in only a few minutes. These increases in 

solution speed and reductions in computer memory requirements have made it 

practical to devise: 

a) interactive on-line computer network solution systems linked with 

display and graphical terminal devices to enhance the applicability of mathe- 

matical programming. 

b) network solution systems that are capable of solving vastly larger 

problems than previously imagined possible. For example, it is now possible 

to solve netwo'K problems with 50,000 nodes (equations) and 62 million variables. 
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I.     INTRODUCTION 

Networks constitute one of  the most significant classes of application 

problems in management science.    Yet the extent of their pervasiveness has 

only recently come to be realized.    A wide array of problems in production, 

distribution,  financial planning, project selection,  facilities location, 

resource management,  and budget allocation -  to mention only a few - fall 

naturally in the network domain    [5,  6,  8, 9,   12,   15,   22,   27,   28,29,  35,  36 

37,   39,  40,  41,   43] . 

The remarkable diversity and importance of network problems has become 

especially conspicuous in the past few years.    This is primarily due to six 

main developments  that have  taken place since 1969: 

(1) significant advances  in solution methodology    C3,   4,   16,   19,  21, 

25,  26] ; 

(2) improved computer software from intensive code development efforts 

[l,  2,   3,   4,   14,   17,   20,   23, 30, 38.  42 J ; 

(3) rigorous empirical studies  to determine the best solution and 

implementation procedures   [l,  2,  3,  4,   14,   17,   29,   20,  23,   30, 

32,   38,   42 J   ; 

(4) new modelling  techniques    [2/;,   35,  48 J   ; 

(5) extensions of the network framework to broader classes of problems 

[24,   35,   38j ; 

(6) application of  these new tools and computer solution methods to 

substantive real world problems,  leading to improved user-oriented 

software    [l,   4,   20,   30j  . 

A direct consequence of  these developments has been to enable network 

problems  to be handled far more conveniently and effectively than In the 

past.     In fact,   the new computer code? have succeeded in solving network 
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problems with an efficiency many times beyond that of codes previously 

available. Problems that were "too large" or "too difficult" to accommo- 

date even as recently as 1970 can now be handled on a routine basis. In 

fact, the fastest network code jl  Is at least 15 times faster than any pre 

1970 transshipment code and It requires much less computer memory. 

The Importance of these considerations may be further illustrated by 

the following example. Consider the situation in which the branch managers 

of an automobile manufacturing firm are required to develop a coordinated 

production and marketing schedule for the next varter. Since these mana- 

gers must deal with a multitude of details, the sequential and dynamic 

process of their deliberations proves to be extremely time-consuming and 

does not invariably lead to ideal results. Plans are met with counterplans 

in a tedious spiral of feedback and incremental change that only gradually 

converges to an agreeable resolution. Typically, time pressures force this 

process to end before a truly satisfactory operating policy can be decided 

upon. Because each proposed alternative customarily requires several days 

of calculation to measure its effect on company profit, the number of alter- 

natives explored is often extremely limited. 

With the appropriate use of an on-line network system (e.g., utilizing 

visual displays and appropriate simulation models) marketing and production 

personnel can discuss their goals and assumptions in a very short time. 

Answers to questions of the form "What if we do this?" can be quickly ob- 

tained and evaluated. 

Because of the advances in solution codes both in terms of computer 

memory requirements and solution time, it is now possible to design and 

implement interactive on-line network optimization systems.  In fact, we 
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have helped design two such systems, one for a major U.S. car manufacturer 

and another for a major U.S. bank, which Illustrate the feasibility and 

practical utility of on-line applications. 

Many organizations, however, are unaware of these advances.  Significant 

opportunities to reduce costs, and/or increase returns have thereby been 

bypassed. Yet it is not difficult to identify key operating problems that 

can be profitably treated in the network framework. In fact, the use of 

such a framework often makes it easier to visualize important interrela- 

tionships that might otherwise go unrecognized, thus leading to the discovery 

of additional opportunities for improved operations. Accordingly, the pur- 

pose of this paper is to show how some major real world applications have 

been identified, visualized, and solved as network problems. (Mathematical 

justifications have been eliminated to keep the discussion Informal and 

within manageable limits.) 

II.  PURE NETWORK APPLICATIONS 

Transportation Problem 

A fundamental network structure that appears in numerous applications - 

either directly, or as a subproblem - is the "distribution" (or "transporta- 

tion") problem, depicted in Figure 1. 

Figure 1 

Distribution (or Transportation) Problem 

Costs Customers 

Demands 
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The "arrows" shown in this diagram are called arcs and the "circles" (which 

serve as endpoints of the arrow) are called nodes.  In this example nodes 

A and B may be thought of a corresponding to warehouses and the nodes 1, 

2, and 3 are corresponding to customers. The arcs indicate the possible 

ways to ship goods from the warehouses to the customers. Thus, for instance, 

the arc from node A to node 3 indicates that it is possible to ship from 

warehouse A to customer 3.  The absence of an arc from node B to node 2 

indicates that warehouse B cannot ship to customer 2. 

In addition to the foregoing information, the distribution problem 

has three ot.ier elements which are generally common to network problems: 

supplies, demands, and costs. The supplies associated with the warehouse 

nodes in Figure 1 indicate that warehouse A has 7 units and warehouse B has 

8 units of some commodity (e.g., drums of fuel oil, bushels of wheat, truck 

loads of refrigerators, ect.) to distribute to the customers.  The demands 

associated with the customer nodes indicate that customer 1 requires 5 

units of the commodity, customer 2 requires 6 units, and customer 3 requires 

4 units.  Finally, the cost attached to the arcs indicate that, it costs $6 

per unit to ship from warehouse A to customer 1, $3 per unit to ship from 

warehouse A to customer 2, etc.  The objective in the distribution problem 

is to determine how much to ship from each warehouse to each customer in 

order to satisfy all supplies and demands and to minimize total cost. 

In network problems, nodes typically represent entities, locations, 

periods or states, while arcs typically represent channels or routes for 

"shipping" from one node to another.  A variety of the possible interpre- 

tation of nodes and arcs can in fact be illustrated by the simple network 

structure underlying Figure 1. 
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Treasury Application 

A special "file merging" problem constitutes an important real world 

application with a transportation structure. The U.S. Department of the 

Treasury has two statistical data base files. Current Population Survey and 

Statistics of Income. These files are extensively used to analyze the 

effect of various policy changes (e.g., welfare payment levels, social 

security benefits, income tax rates, etc.) on federal revenue. However, 

to fully analyze the effect of these changes, it is necessary to have the 

information in both of these files. Thus it is desirable to have a method 

which limits the amount of information lost as these original files are 

merged. 

The statistical files are weighted samples where control totals are 

maintained. Iv  particular, each record contains a weight indicating the 

number of units (families) in the population which this observation re- 

presents. Thus, the file merging problem involves two interrelated prob- 

lems. The first problem is to select the number and type of records to 

be in the merged file. The second problem is to select the weights for 

the merged recotds. 

Figure 2 Indicates how this problem can be formulated and solved as 

a transportation problem. In this diagram, the nodes represent records 

in each of the files to be merged. The supply or demand associated with 

a given node corresponds to the weight of the associated record. Since 

both files represent all U.S. inhabitants, the sum of the weights in each 

file must equal the total U.S. population. The "cost" coefficients are 

multi-attribute measures of the "distances" between the records in terms 

of information characteristics of the population subgroups making up these 

records. While there is not a unique procedure to use for calculating these 
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distance coefficients, the problem of determining distance between records 

in a ralcrodata file is similar to the problem of determining distance 

between coordinates in a multi-dimensional space for multi-variate regres- 

sion. Thus, a weighted sum of squared deviations can reasonably be used 

to estimate this distance (or information loss). 

The solution to the transportation problem indicates:  (a) the number 

of records to be contained in the merged file; (b) which records are to be 

merged with each other; and (c) the weight of each merged record. To illus- 

trate, the numbers in the semi-circles in Figure 2 indicate the flows on 

the arcs.  (The flow on an arc is the amount "shipped" from its initial 

node to its terminal node.) If the flow is non-zero, then the two records 

connected by this arc are to be merged. For example, record 1 of the popu- 

lation census file is to be merged with record 1 and record n of the statis- 

tical income file, creating two new records (one for each arc emanating from 

node 1 with non-zero flow). The weight (i.e., the number of units repre- 

sented by each merged record) is equal to the flow on the arc. Consequently, 

solving the transportation problem yields the specifications for a merged 

file which minimizes the information lost with respect to the distance func- 

tion used. 

We have recently implemented an extended transportation system ClH for 

the U.S. Department of Treasury on a UNIVAC 1108 which is capable of solving 

a transportation problem with 50,000 nodes and 62.5 million arcs.  This 

system will be used to merge the Current Population Survey file and Statis- 

tics of Income file. We recently solved a prototype of this problem with 

5,000 nodes and 625,000 arcs in less than A minutes of central processing 

time and less than 9 minutes of total Job time (including all input and out- 

put processing) on a UNIVAC 1108. We have also solved the problem on a 
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CDC 6600 In 10 minutes. (The total time on the CDC 6600 Is slower due to the 

less efficient Control Data Corporation 1/0 library routines.) Thus, we are 

hopeful that the full size problem can be solved in a reasonable amount of 

time. The solution of the full size problem will mark the beginning of a 

new era of mathematical optimization and give a new meaning to the term 

large-scale optimization, bringing mathematical programming closer to Its 

envisioned purpose of being a major vehicle for solving pressing real world 

problems. 

Figure 2 

Microdata Set File 
Merge Problem 

70 

15 

30 

Population 
Census 
Records 

"Cost" coefficient is 
a multi-attribute 
quantitative measure 
of the degree of close- 
ness between the records 

Supply equals 
the number of 
units represented 
by this record. 

Statistical 
Income 
Pecords 

If the optimal "flow" on 
the arc is non-zero,the 
two records associated 
with the arc are to be 
roorged and the flow value 
indicates the weight of 
the merged record. 

18 

16 

31 

Demand equals the 
number of units 
represented by this 
record. 
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In problems of this magnitude, the Intimate coordination of modeling 

and computer solution efforts are Indlspenslble. In fact, the value of 

such coordination for problems at all levels can spell major differences In 

overall solution efficiency. For example, by coordinating the design of 

the solution system with the modeling effort In the above application, it 

was possible to devise an iterative procedure for bounding the optimal ob- 

jective function value. This feature may be exti'jiely important in solving 

the 62 miliion arc problem since a 95 percent o timal solution is sufficient 

for the Treasury's purpose and may require much .1ess computer time. 

The preceding transportatic r. examples illustrate several of the basic 

features of network problems. However, further modeling considerations are 

required to accommodate features that are encountered in many real world 

applications. Additional types of flexibility in formulating network prob- 

lems are given in the following examples. For instance, supplies and demands 

need not be Imposed as "equality" restrictions, but can be expressed as 

upper and/or lower bound restrictions - e.g., supplying "at least" or "at 

most" a certain quantity. In general, a given supply or demand can be re- 

quired to lie anywhere between two stated limits. 

Another type of flexibility involves capacity restrictions on arcs. The 

number of units shipped across an arc - i.e., the arc flow - may be allowed 

to vary within specified limits (Just as in the case of supplies and demands). 

For example, in the illustration of Figure 1, if warehouse A can ship at most 

3 units to customer 1, then 3 constitutes a capacity i.estrlctlon in the form 

of an upper bound (limiting the flow on the arr fi.om node A to node 1).  In 

the previous illustrations, a lower bound of 0 units of flow was assumed. 

Zero lower bounds are implicitly taken for granted in most applications, but 

sometimes nonzero lower bounds are Imposed. 
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Transshlpment Problems 

Another class of models that typically exhibits an underlying network 

structure is the class of "inventory maintenance" models [431 . One in- 

stance of these is illustrated in Figure 3. 

Inventory  (o V 
Flow 

Figure 3 

Inventory Maintenance 

Purchases 

Sales 

<D 

This model is time-phased. Node 0 represent» the "starting point" at which 

some initial inventory level is introduced into the system (which may be 

treated as a supply at node 0). Nodes PI and P2 represent inventory pur- 

chases in periods 1 and 2, and nodes SI and S2 represent sales in periods 

1 and 2. Nodes 1 and 2 which have arcs leading both to them and from them, 

are called transshipment nodes since the flow shipped to such nodes can in 

turn be shipped on to other nodes.  (Problems with transshipment nodes are 

called transshipment problems.) For transshipment nodes that have no net 

supply or demand requirements of their own, which is  the case here, the 

amount of flow received at the node must equal the amount shipped out of the 

node. Thus, the amount of flow on the arc from node 1 to node 2 equals the 

initial inventory, plus the amount received from period 1 purchases, less 

the amount that goes to period 2 sales - or in other words, this flow equals 
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the inventory remaining at the end of period 1 (or the beginning Inventory 

for period 2). Similarly, the flow on the arc from node 2 to node J equals 

the ending Inventory for period 2 (or the beginning inventory for period 3). 

Data for the problem, if shown, would Include expected sales volumes 

(demands at nodes Si and S2), expected sales prices (revenues - or "negative 

costs" - on the arcs from 1 to SI and from 1 to S2), expected purchase prices 

(costs on the arcs from PI to 1 and from P2 to 2), and Inventory holding 

costs (costs on the arcs from 1 to 2 and from 2 to 3). The objective is to 

determine how much to purchase and maintain in Inventory in each of the 

time periods to maximize total profit (or minimize total cost). Additional 

considerations such as back order costs, quantity discounts on purchases 

and Inventory capacity restrictions can also be incorporated into the prob- 

lem. 

It should be emphasized that in this example, and in many of the others 

cited, there may be a random or uncertain element in supplies and demands. 

Effective treatment of such uncertainties can be accomplished by one of 

three approaches ([6, 9, 43J : sensitivity and postoptimality analyses, im- 

bedded simulation, and "chance constrained" (or "stochastic") programming. 

Each of these approaches (which need not be mutually exclusive) reduces to 

solving or partially solving one or more ordinary transshipment problems, 

given that the original problem was modeled as a transshipment problem. 

The inventory model of Figure 3 also applies to a number of problems 

which at first glance bear no particular resemblance to inventory maintenance. 

The scheduling of equipment purchases [9] and hiring of personnel r43j (as 

in the presence of strong seasonal demand swings), for example, can be 

amenable to formulation in a variant of this network model. 
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Car Industry Application 

A transshipment problem which combines attributes of several of the 

preceding examples Is the Production Planning and Distribution Model. 

This application, which Is Illustrated In Figure 4, is a bit more detailed 

than some of the preceding ones In order to disclose several useful features 

of the underlying model. 

The problem represented by this diagram is that of determining the 

number of cars of each of three models (Ml, M2, and M3) to produce at the 

Atlanta and Los Angeles plants (represented by the "Atl." and "L.A." nodes), 

and th^n to determine how many of each of these car models to ship from 

each plant to distribution centers in Pittsburgh and Chicago (represented 

by the "Pitt." and "Chi." nodes). The objective is to identify a production- 

distribution plan that minimizes total cost. 

Bounded supplies are associated with the Atl. and L.A. nodes, indicat- 

ing the least and most that can be produced at these plants. In addition, 

upper and lower bounds are placed on the various arcs emanating from these 

two nodes to control the minimum and maximum number of each particular car 

model that can be produced at these plants. Similar bounds (capacity re- 

strictions) can be placed on other arcs. For instance, if there is a limit 

on the number of Ml type cars that can be shipped from Atlanta to Pittsburgh, 

then this would appear as an upper bound iestrictlon on the "top-center" arc 

in the network. Finally, the number of each particular model required at 

Pittsburgh and Chicago is handled by placing bounds on the "far right" arcs. 

For example, if exactly 4,000 M3 - type cars are required in Chicago, then 

4,000 becomes both the lower and upper bound on the M3 - Chi arc. 

An interesting feature of this model is not only that it coordinates the 

production and distribution decisions, but also that it handles a multi- 

commodity problem in a "single-commodity" framework. That is, the three 
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models Ml, M2, and M3 are distinct commodities being shipped through the 

network, but their Identities never get mixed or confustd, as could be 

possible In some network models. This Illustrates the Importance of get- 

ting the "right" network formulation. 

The typical size of this problem for a particular division (that Is, 

Pontlac, Bulck, etc.) Is 1200 nodes and 4000 arcs. When we began working 

with the company on this problem, they were using a version of the SHARE 

out-of-kllter code [7j to solve these problems. The solution time ranged 

from 10 to 20 minutes on an IBM 370-145 and required 120 K bytes of computer 

memory. Using our transshipment code [l, 14j , such a problem can be solved 

in less than 10 seconds on a UNIVAC 1108, CDC 6600, IBM 360*145, or PDP-10. 

Only 23 K words or 92 K bytes of computer memory are requiredt thus making 

it easy to solve such problems in an on-line computer mode. In fact, due 

to the nature of the decision making environment of this application, 

the company has developed a on-line real time production planning and 

distribution system which is linked to a graphics display terminal and an 

English language input processor. This system is currently being used by 

the executive division for planning purposes. 

Modified in various, ways to handle distinguishing characteristics of 

different settings, this model can be used in production and distribution 

planning for many types of products other than cars. It may also be expanded 

to handle decisions relevant to various stages of a production process. 
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Production Planning and Distribution Model 
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III.  FIXED-CHARGE AND PLANT LOCATION PROBLEMS 

Many problems Involve certain "nonlinear" features in addition to the 

features illustrated in the previous examples. One of the most basic and 

prevalent forms of nonlinear problems is the fixed-charge network problem 

[S, 9, 43 whose major offshoots Include the extremely Important genre Known 

as "location" problems. 

A fixed-charge arc is one with the following special property: whenever 

the arc is "used" (i.e., permitted to transmit flow), a charge is incurred 

that is independent of the amount of flow across the arc. This property is 

illustrated in Figure 5. 
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Flgure 5 

Plant Location Problem 

The flows on the arcs from node 0 to nodes PI and P2 correspond to the num- 

ber of units of a particular product tha ■ are produced at plants PI and P2, 

respectively. In turn, the flows on the arcs from PI and P2 to Cl, C2, and 

C3 represent the amounts of the product that are shipped from PI and P2 to 

each of the customers Cl, C2, and C3. The plants PI and P2, however, are 

not presently in existence, and must be built (or acquired) before the dis- 

tribution to the customers can occur. 

The figures in boxes on the arcs from node 0 to  nodes PI and P2 repre- 

sent the fixed charges of building the two plants *50,000 for PI and 40,000 

for P2).  Thus, if any positive flow occurs on the arc from 0 to PI — hence 

this number of units is produced at pi — then the plant PI must first be 

"built" and the full 50,000 must be paid.  In addition, there is an "ordinary" 

cost for each unit produced at PI, and this is Indicated by the 3 which 

appears on the arc from 0 to PI.  Likewise, the numbers attached to the arc 

from 0 to P2 indicate that the fixed charge is A0,000 and the ordinary unit 

co,?t is 4 for this arc. 

The fixed-charge distribution problem of Figure 5 lends itself to a 

variety of interpretations other than those involving "plants" and "custo- 

mers".  For example, such a network can be used to model decisions Involved 

in purchasing or leasing equipment, hiring personnel, and so forth. 
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A fixed-charge network problem requires problem-solving "machinery" 

beyond that required to solve zn  ordinary network problem. However, the 

cost savings that can result from the solution ^f these problems generally 

far outweighs the Increased machinery and computational effort required to 

solve them. Indeed, the advances cited earlier have made It possible to 

accommodate a wide class of difficult and previously unsolvable large-scale 

problems on a highly cost-effective basis [3^ . 

The fixed-charge framework also accommodates a variety of location 

problems.  For example, PI and P2 may be thought of as possible sites to 

locate warehouses or service centers which have fixed-charges attached to 

putting them In these locations. Thereupon the "residual" problem Is an 

ordinary distribution problem of the type illustrated earlier in Figure 1. 

It is sometimes suggested that one way to deal with such problems is simply 

to itemize the number of possible ways to locate warehouses, and then solve 

the distribution problems remaining. However, with as few as 20 prospective 

sites, this would entail the solution of more than a million distribution 

problems. 

Another location problem of the fixed-charge variety is the location 

of offshore oil drilling platforms. This problem Incorporates the ability 

to select the placement of the drilling platforms, as well as determining 

which wells should be drilled from each platform once the platforms are 

placed. Figure 5 provides e.a  instance of this problem by interpreting PI 

and P2 to be prospective locations for platforms, and Cl, C2, and1 C3 to be 

drilling sites. 

The location of waste disposal collection centers in large cities, to 

which trucks from local collection areas bring refuse to be subsequently 

transported to main dumps, is likewise an instance of a fixed-charge loca- 

tion problem. 
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Cotton Gin Application 

Agricultural problems often have network representations. A common 

problem, for example, is that of deciding how much of a particular crop to 

plant at various farms over a sequence of time periods, how much to ship 

for processing to various facilities (whose "activitlons" involve fixed- 

charges) , and how much to store at various alternatives areas, leading 

up to final distribution. A real world problem which we recently solved 

provides a useful illustration C35j . 

This application involves the minimization of total cost associated 

with processing or ginning cotton produced in the Rio Grande Valley of 

New Mexico and the Upper Rio Grande Valley of El Paao County, Texas [35] . 

This portion of the irrigated valley is approximately 95 miles in length 

and varies from .5 to 5.0 miles in width. The study area annually pro- 

duces 40,000-55,000 bales of high quality Upland cotton and 10,000-18,000 

bales of American Pima, an extra long staple variety. From historical 

cotton production data and aerial photos, the study area was divided into 

150 production origins. Distance to the area's twenty different cotton 

gins scattered throughout the area were recorded. In recent years, the 

cotton production has decreased by 50 percent. Thus the objective is to 

determine an optimal policy of shipping cotton from farms to gins. 

This project was funded under the provisions of the Hatch Act, whose 

purpose is to provide federal monies to improve efficiency of the domestic 

food and fiber production and marketing systems. The excess processing 

capacity of the ginning industry in the study area and the nature of the 

gin plant cost functions led industry people and researchers to question 

the efficiency of the industry. Many area cotton producers and industry 

personnel were willing to consider a reorganization of the industry if a 
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cost-cuttlng blueprint for change could be provided. A mathematical model 

was constructed to represent the entire system, since it was assumed that 

producers and gin firms would desire to Implement a least-cost organization 

for the entire area industry rather than a fragmented Industry solution. 

Implementation, to a considerable extent, is dependent on the anticipated 

cost savings of the least-cost organization. To convince farmers and gin 

plant operators that Joint cooperative action is preferred to Independent 

action, cost comparisons between present methods and alternatives suggested 

by the model were required.  Implementation is being aided by recent Agri- 

cultural Stabilization and Conservation Service action which has funds 

available to make recourse loans on seed cotton in field storage. Personnel 

of the Ccoperatlve Extension Service are involved in dissemination of study 

results and the educational process. It is visualized that the complete 

implementation of the solution will be an evolutionary process, extending 

over several seasons. However, without the model's solution any implemen- 

tation of the fully cooperative procedures would be impossible. The evolu- 

tion of a mathematical model for this evaluation is briefly described below. 

The substantial decrease in cotton production in New Mexico in recent 

years has created a corresponding increase in excess puant capacity. Be- 

cause existing processing capacity exceeds required capacity, it may be 

desirable to operate only a portion of the current gins. To evaluate this, 

the general form of a gin's cost function was sought. This disclosed that 

the cost function of a gin is typically a convex, ]«iecewise linear function 

with a fixed charge. An example is given in Figure 6. The fixed charge in 

Figure 6 represents a one-time charge for activating a gin each year, since 

gins typically operate for at most 7 months a year, and include costs asso- 

ciated with electrical connection charges, cleaning, and salaried personnel. 
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The variable costs in Figure 6 are mainly due to maintenance and electri- 

city, and do not include r.on-salaried personnel costs. The connection 

charge includes the purchase of an initial quantity of electricity. Con- 

sequently, the initial variable costs are lower than the regular variable 

costs in Figure 6. 

Another ginning cost which is not represented in Figure 6 Is regular 

time and overtime labor costs.  In particular, the total weekly capacity of 

each gin is divided into the regular capacity and an additional capacity 

available with an overtime shift. Thus, there are two levels of weekly 

direct variable labor costs associated with each gin — one for regular 

time and another for overtime.  If the capacity of the regular shift is 

exceeded, all of the additional cotton must be processed at this more ex- 

pensive overtime rate. However, prudent use of this overtime may be pro- 

fitable if it avoids the necessity of activating an additional gin. 

In order to study the structure of this problem better, a small fic- 

ticious example of five farms which produce cotton available for shipping 

each week for three weeks will be used. The example assumes the existence 

of four gins which may operate for these three weeks plus an additional 

three weeks. Each gin has two levels of weekly costs for ginning. The first 

level is applicable to all cotton ginned during the regular shift, while the 

second level applies to all cotton ginned during the overtime-shift. Also, 

each gin has a seasonal start-up cost and two levels of seasonal costs. The 

seasonal costs, the regular shifts' capacities with their associated costs, 

and the overtime shifts' capacities with the associated overtime costs are 

given in Table I. The production level for each of the five farms during 

the three weeks of cotton picking, the shipping costs from each farm to each 

gin, and the holding cost for storing cotton on the farms is also Included 

in Table I. 
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Table I.    Production,   costs and capacities. 

Shipping Costs 

Gin 

Farm 1 2 3 4 
1 6 2 4 7 
2 3 5 8 4 
3 2 6 2 9 
4 5 3 7 6 
5 4 5 9 4 

Production (: In Bales) 

Farm 

ek 1 2 3 4 5 Total 
1 15 40 30 15 15 115 
2 35 75 45 50 50 255 
3 20 60 20 35 20 155 

Total Production 525 

Weekly Gin Capacities  (In Bales) 

Gin Regular Shift 
1 20 
2 15 
3 20 
4 50 

0 ;rcime Shift   Total 
10 30 
10 25 
10 30 
20 70 

Total Capacity 930 

6-Week8 Total 
180 
150 
180 
420 

Gin Costs 

Weekly Costs 

Gin 
Regular per-bale Cost 
Overtime Per-bale Cost 

1 2 3 4 
1 2 2 1 
3 7 5 2 

Seasonal Costs 

Start-up Copt 200 200 500 650 
Initial per-bale Cost 1 6 2 1 
Regular per-bale Cost 6 10 7 5 
Transition Point 40 20 30 70 

between Inltia] and 
regular rate in bales 

Holding Cost 

Cost per bale per week = 1 
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Flgure 6 

SEASONAL GINNING COSTS FOR GIN 1 

Transition 50 
Point 

Bales 

Regular Costs 

100 

This probleni can be modeled as a transportation problem with extra 

linear constraints and zero-one variables. The resulting model, which is 

partially illustrated in Figure 7, is not solvable due to the existence of 

the extra constraints, the zero-one variables and the immense size of the 

problem. Fortunately, an equivalent fixed charge formulation was found for 

the problem which is solvable. Before describing the latter formulation, 

the original formulation will be briefly discussed to provide the reader 

with an idea of "do's and don'ts" in network modeling. Also this emphasizes 
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Flgure 7 

PARTIAL TRANSPORTATION FORHIJLATION 

Farm/Production Weeks 

Supply 
equals 
farm's ^ 
weekly 

production 

Supply 
equals the 

amount 
ginning * 

capacity 
exceeds farm 
production 

Gin^Ginning Weeks 

Demand 
^ equals weekly 

ginning 
capacity 

Cost - Transportation + Storage + ginning rate/bale 

ANOTHER COST CALLED THE VARIABLE UTILITY RATE CANNOT BE ACCOMMODATED 

IN THIS TRANSPORTATION STRUCTURE. 
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again the desirability of finding not merely the "most visible" formulation 

of a problem, but the most effective one. However, the reader should note 

that any network formulation of a problem is likely to be useful. In fact, 

even capturing segments of a problem in a network structure can be useful 

because problems with embedded network structure can often be solved effi- 

ciently by repeatedly solving the embedded networks 6, 9, 23, 43 . 

The transportation subproblem of the original model is shown in Figure 7. 

Farm i in week j is represented in Figure 7 by node iAj and gin i is repre- 

sented for week j by two nodes IBjR and iBjO, one for regular ginning and 

another for overtime ginning. Thus the nodes 1A1 to 1A4 represent farm 1 

for production weeks 1 through 4. Nodes 1B1R and 1B10 represent regular 

ginning and overtime ginning for gin 1 in week 1, respectively. Since the 

valley being studied involved 150 farms with 20 cotton production weeks and 

20 gins with 30 ginning weeks, this transportation problem involves 4200 

nodes plus an extra dummy supply node added to force total supply to equal 

total demand. Each farm node is connected to each gin node associated with 

a time period greater than or equal to the time period of the farm node. 

This yields approximately 2.46 million arcs. The cost of each of these arcs 

is equal to the transportation per bale cost plus storage/bale and ginning/bale 

cost. This transportation formulation does not accommodate the fixed charge 

or convex cost aspects associated with the seasonal (total production) ginning 

cost function of Figure 6. Consequently, as previously noted, the full for- 

mulation of the problem involves extra linear constraints and zero-one variables 

which yields a mixed integer linear programming problem whose scope exceeds 

current solution capabilities. 
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The improved formulation Is based on the Idea of treating each of the 

problem's cost components separately. There are nine main elements which 

affect the optimal solution to this problem: 

(1) The cost of shipping cotton from each firm to each gin. 

(2) The start-up cost for each gin. 

(3) The capacity of each gin's regular shift and its overtime shift. 

(4) The variable weekly costs of ginning at regular rates. 

(5) The variable costs of ginning at overtime rates. 

(6) Each farm's holding costs for storing cotton. 

(7) The variable initial utility rates. (See Figure 6.) 

(8) The variable regular utility rates.  (See Figure 6.) 

(9) The transition point in seasonal gin production between initial 

and regular rates.  (See Figure 6.) 

By separating the cost elements, the problem may be modeled as the fixed 

charge transshipment problem depicted in Figure 8, The area enclosed in 

double lines in Figure 8, which considers only the arcs from farm one to 

gin one, is shown more clearly in Figure 9. 

First consider the nodes of the transshipment model. There is an origin 

node representing each farm for each of the ginning weeks. In Figures 8 

and 9 the iAj nodes represent farm 1 in week j. The supply of each of these 

nodes is the estimated amount of cotton to be picked at the farm during 

this week. The iBj nodes of Figures 8 and 9 represent gin i in week j. The 

total amount of cotton processed by each gin.during the year is then channeled 

through a single node, called the weekly master node for the gin. Node iC 

represents the weekly master node for gin i in Figures 8 and 9. This trans- 

shipment structure eliminates the need for creating two arcs from each farm 
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node to accommodate the two weekly ginning costs, but adds the four weekly 

master nodes. Another four nodes are also added and linked to the 1C nodes 

to accommodate the variable seasonal utility costs. These nodes are repre- 

sented by the D level nodes in Figures 8 and 9. Finally, all flow is 

channeled through a single node, node E, which acts as a sink for the entire 

production. By setting its demand equal to total farm production, the need 

for the slack node and arcs in Figure 7 is eliminated. 

Next consider the farm arcs of the transshipment model. For each week 

the cotton picked on a farm for that week may be shipped to any one of the 

four gins or may be stored at the farm. Shipping to the gins is represented 

by four arcs (one to each gin), while storage at the farm is accomplished 

by shipping the cotton to the source node of that farm for the subsequent 

ginning week. The affect of storing the cotton is to increase the amount 

available for shipping next week. The reader should compare Figures 7 and 

8 and note the dramatic reduction on the number of arcs by handling cotton 

storage in their transshipment manner. For example, in a problem with 150 

farms, 20 production weeks, 20 gins, and 30 ginning weeks, the transporta- 

tion formulation uses over one million more arcs to model the storage feature 

than the transshipment formulation. 

The gin arcs may be used to handle both the weekly capacity restriction 

and the overtime capability of a gin. Specifically, two arcs are used to 

link each IBj node to its 1C node. One arc has a cost equal to the labor 

cost of the regular time shift and an upper bound equal to the weekly regu- 

lar time production capacity of the gin. The other arc has the appropriate 

costs and capacity of the weekly overtime shift. Note that since the two 

arcs ship between the same two nodes, the arc with the higher cost will not 

be used until the arc with the J.. «^er cost has reached its capacity; this 
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Insures that no overtime is used until the capacity of the regular shift 

has been reached. Additionally, observe the marked reduction In the num- 

ber of nodes and arcs used by the transshipment formulation to model the 

overtime aspect. 

From each gin's weekly master node, C, there are two more arcs leading 

to the gin's seasonal master node, D. Theso two arcs represent the initial 

and regular seasonal ginning costs depicted in Figure 6. The arc associated 

with the initial costs has an upper bound which is equal to the transition 

point between initial and regular utility costs of the gin. This feature 

of the transshipment model eliminates the extra constraints associated with 

the transportation formulation. 

Finally, the single arc from each gin's seasonal master node to the 

sink node are the fixed charge arcs . That is, if any flow occurs on these 

arcs (i.e., if the gin is used at all) the full fixed start-up cost of 

Figure 6 is paid. 

This formulation for the 150 farm problem reduces the number of arcs 

from 2,460,600 to 95,610.  It does, however, increase the number of nodes 

from 4,201 to 5,141.  Such a fixed charge transshipment problem is well 

within the solution capability of our state-of-the-art fixed charge network 

code [35] . However, by exploiting additional structural features of the 

problem, this transshipment model can be compactified to 3,441 nodes and 

61,640 variables. For brevity, these refinements are not Included. 

To solve this problem a branch and bound program was designed [33 

where the branching variables correspond to the fixed charge (node D-E) arcs. 

Then each node in the decision tree corresponds to a transshipment problem. 

This code solved a cotton gin problem with 991 nodes, 16,981 arcs, and 15 

fixed charge arcs in 5 minutes on a CDC 6600 and a problem with 3,441 nodes, 

61,640 and 20 fixed charge arcs in 50 minutes on a CDC 6600. The solutions 



PWWRWi puunpiimiii iinvi   ijmummßmmm mnM,,w ' KimmA J» 

   - 

-26- 

Flgure 8 

NETWORK DIAGRAM FOR THE TRANSSHIPMENT FORMULATION 

For 150 farms,   20 production weeks,  20 gins,  and 30 ginning weeks,  the 
problem size is:   5,141 nodes,  95,610 arcs. 
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Indlcated that the farmers could obtain substantial savings (more than a 

20 percent reduction In ginning costs) by closing some gins and working 

as a cooperative. 

IV.  GENERALIZED NETWORKS 

In the transportation and transshipment problems that have been dis- 

cussed thus far, flow Is not changed as It passes across an arc. That Is, 

one unit of flow starting across an arc Is still one unit of flow after 

crossing the arc.  Such problems are often called pure transportation and 

pure transshipment problems or more simply pure network problems. A dif- 

ferent form of network problem Involves "flows with gains and losses". In 

this type of problem, the amount of flow that enters an arc may differ by 

a specified multiple from the amount that leaves the arc. Transmission 

through electrical power lines is a good example of this phenomenon, where 

the power deteriorates over distance. The cash flows of financial transac- 

tions constitute another prominent example. For example, interest charges 

on borrowed money decrease the amount of cash as it travels across an arc 

from a present time period to a future time period. On the other hand, 

interest income increases the cash value of a bond, whose possible redemption 

at alternative future periods may be represented by arcs leading from the 

purchase period to each of the alternative redemption dates.  In a like 

manner, devaluation (or appreciation) of certain types of inventories over 

time can be represented by arcs whose flows attenuate (or amplify) by speci- 

fied multiples. Additionally, the design of sewage treatment plants can be 

viewed in this fashion since the effluent passes through a sequence of puri- 

fication processors with varying efficiencies. Arcs which have this character 

are called generalized arcs^ and networks which include them are called 

generalized networks. 
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An illustration of a problem involving generalized arcs is the cash 

management model depicted in Figure 10. In this figure, node Cl represents 

cash in period 1 and node C2 represents cash in period 2.  Investment possi- 

bilities in periods 1, 2, and 3 are denoted by the nodes II, 12, and 13, 

respectively. There is no arc connecting node C2 to node II because a 

period i investment is not available in period 2 within the context of this 

example. However, it is possible to commit current cash to a future in- 

vestment, and hence arcs are included that lead to future investment possi- 

bilities. Such a commitment may be carried out, for example, by temporarily 

putting the money in the bank or in standard "interim" Investments which 

yieJd interest earnings until the targeted investment can be made. 

The numbers in the "triangles" on the arcs indicate the amount that 

each unit of flow becomes as it traverses the arc. Thus, the 1.18 in the 

triangle on the arc from node Cl to node 13 indicates that this arc is a 

generalized arc whose "multiplier" is 1.18. Consequently, whatever the flow 

across the arc, 1.18 times this flow is actually transmitted to node 13. 

For example, if the flow on the arc is 4, then node 13 receives 4(1.18) = 

4.72 units of flow. Finally the numbers in parentheses represent lower and 

Cash in 
time periods 
1 and 2 

Figure 10 

CASH MANAGEMENT 

Capacity 
Restrictions 

(3.5) 

Multiplier 

at Investment 
opportunities 
In time periods 
1, 2, and 3. 
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upper bounds on how much cash from a given period Is permitted to be in- 

vested in each alternative.  For brevity the supplies, demands, and costs 

are not shown. Note that this Illustration explicitly Introduces the time 

element into the network context. The time-phased purchase of equipment 

and inventories can be put in a similar framework. 

The cash management model of Figure 10 can readily be enlarged to 

include sources of funds in addition to cash, such as maturing accounts and 

notes receivable, sales of securities, borrowing, etc., and uses of funds 

other than a single "investraent", such as maturing accounts and notes 

payable, purchases of securities, lending, etc. Indeed it is possible to 

incorporate discount, interest charges, and other related financial consider- 

ations directly into the model [22j . The objective, as in earlier examples. 

Is to minimize the cost or maximize the profit of the transactions involved. 

There are numerous applications which can be formulated and solved as 

a generalized network. These Include structural design problems föj , 

machine loading problems [6,  9, 43]] , blending problems (6, 43j , the 

caterer problem f9, 43j , and scheduling problems \6,  9, A3] such as produc- 

tion and distribution problems, crew scheduling, aircraft scheduling, and 

manpower training. 

Mathematically, it is considerably harder to devise efficient special- 

ized algorithms and computer codes for solving generalized networks than 

for pure networks. The most efficient generalized network computer codes 

require 3 to 4 times the amount of time to solve generalized networks as 

pure network codes require to solve pure networks of the same size. Never- 

theless, computer codes fl9, 20, 21]  which can solve generalized capacitated 

and uncapacitated transportation and transshipment problems with thousands 

of nodes and variables have recently been developed. Current solution 
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times on pure transshipment problems of the same size  1  are typically 

10 seconds on a CDC 6600. It is important to note, however, that the 

generalized network times are at least 100 times faster than state-of- 

the-art LP codes on these problems  20 

V.  IN1EGER GENERALIZED NETWORKS 

The uses of generalized arcs just discussed do not by any means exhaust 

their range of application.  In fact, upon adding the requirement of dis- 

creteness, which compels the flows on particular arcs to occur in integer 

quantities, the generalized network, problem is capable of modeling an un- 

expected diversity of problems.  For example, introducing multipliers into 

the type of model illustrated in Figure 1 produces a framework for problems 

such as scheduling variable length television commercials into time slots, 

assigning jobs to computers in computer networks, scheduling payments on 

accounts where contractual agreements specify "lump sum" payments, and de- 

signing communication networks with capacity constraints.  While these are 

"direct" applications, there is a modeling principle which enables even 

somewhat more complex applications to be handled in an entirely straight- 

forward way.  Figure II provides an illustration of this principle. The 0 

and 1 in parentheses associated with each arc in Figure 11 Indicate the 

lower and upper bound on the flow across the arc.  In addition, the 3 in 

the triangle on the arc from node 0 to node A indicates that this arc is 

a generalized arc whose "multiplier" is 3.  Thuü, whatever the flow across 

the arc, 3 times this flow is actually transmitted to node A. 

Moreover, th«2 asterisk on the arc from node 0 to node A indicates that 

its flow must be an integer amount.  Since the bounds on the arc constrain 
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Figure 11 

GENERALIZED NETIBRK WITH INTEGER PLOW RESTRICTIONS 

C0,l) 

Q (o.n*A /AV^
0,1
^ 

Lo.i) 

the flow to lie between 0 and 1, and the integer requirement rules out all 

"fractional" values, the only acceptable flow values are exactly 0 and 1. 

If the flow is 0, then 3 • 0 ■> 0 and no flow gets transmitted to node A. 

But if the flow is 1, then 3 units are transmitted to node A. Further, 

because of the upper bounds of 1 on each of the three arcs leaving node 

A, the only possible way to distribute the 3 units flowing into node A is 

to send exactly one unit to each c* the nodes 1, 2, and 3. Thus, by the 

devise of giving all arcs bounds of 0 and 1, and introducing a generalized 

arc, the following effect has been achieved: when the flow on the arc from 

node 0 to node A is 0, the flow en each of the three arcs out of node A is 

0; when the flow on the arc from node 0 to A is 1, the flow on each of the 

three arcs out of node A is 1. This effect makes it possible to model a 

variety of problems. One example, is the Undergraduate Flight Training 

(UFT) model on which we are currently conducting a feasibility study for 

the U.S. Air Force. 

UFT Graduate Application 

Undergraduate Flight Training (UFT) graduates are required upon gradua- 

tion to take advanced flight training and survival training courses enroute 

to their first operational assignment. The purpose of the advanced flight 
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tralning is to qualify a pilot for a specific aircraft. Advanced flight 

training is offered only in formal schools usually by the Major Air Command, 

the principal aircraft user. Newly qualified UFT graduates will additionally 

require from one to four extra training courses before being assigned to 

a crew - e.g., basic survival (Washington), water survival (Florida) , air 

weapons delivery (Texas), etc. These courses are only offered at certain 

times, have enrollment limits, and may have prerequisites. The identifica- 

tion of schedules is further complicated by attendance requirements at 

Combat Crew Training courses, various modes of transportation, the number 

of dead days in the pipeline, and the opportunity for the UFT graduates to 

take leave as desired, etc. 

To solve this UFT graduate scheduling problem, the Air Force developed 

a computer program (called the UFT Pipeline Scheduling Model) which generates 

from one to five feasible least cost schedules for each graduate.  Using these 

schedules and course enrollment limits, the personnel manager in the Train- 

ing Pipeline Management Division manually assigns each graduate to one of 

his feasible schedules. Clearly, this is a difficult and time-consuming 

task to do by hand; further, the total cost of these manual assignments may 

be far from optimal. Thus, the Air Force is interested both in automating 

this assignment procedure and in obtaining an assignment schedule which mini- 

mizes total cost. 

The UFT problem may be modeled using arcs such as the generalized arcs 

of Figure 11. Here, a generalized arc with a multiplier equal to the num- 

ber of classes in the schedule is created for each schedule of classes 

that a particular student pilot might cake.  In Figure 12, these are the 

arcs from the man nodes to the schedule option nodes. The arcs emanating 
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frora a schedule option node In Figure 12 lead to the individual classes 

making up the schedule. Since these arcs have an upper bound of one, if 

a particular schedule is "selected", then every class in the schedule is 

also automatically selected, which,of coursers precisely the relationship 

desired. The objective of the model is to pick a schedule for each student 

that will minimize the value of the overall class assignment, subject to 

satisfying the upper and lower attendance limits for each class expressed 

as bounds on the class node-sink arcs of Figure 12. The costs on the arcs 

are thus all equal to zero except on the man-schedule arcs. These arcs 

have a cost equal to the cost of this schedule. 

We developed a branch and bound network code to solve the UFT model 

that succeeds in solving problems involving 120 men, 460 schedules, and 

200 classes in 10 seconds on a CDC 6600. 

Equivalent Problem Types 

The generalized "set covering" and "set partitioning" problems can 

also be accommodated by the modeling technique Illustrated in Figures 11 

and 12. These problems include airline crew scheduling problems, emer- 

gency fire station location problems, and many others. An important member 

of this class of problems is the Acquisition problem depicted in Figure 13. 

In this diagram, nodes A, B, C represent different types of acquisition 

possibilities (e.g., different types of specialized equipment, trained 

personnel, pollution control devices, real estate investments, etc.) and 

nodes 1, 2, 3, 4 represent functions or qualities that must be exhibited 

by the total set of items acquired. Thus, for example, in the equipment 

acquisition context, nodes 1 through 4 may represent various kinds of pro- 

cessing capabilities. Alternatively in the real estate investment context, 
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Fljgure 12 

UFT MODEL 

1 = a. 

1 - a. 

1 = a 

Man Nodes 

cost of schedule 

Schedule Option     Class 
Nodes Nodes 

£flow^l   zero cost 

Multiplier equals 
number of classes 
in man i schedules 

enrollment 
limits 

total number 
of course 
assignments 

If the flow on each of these 
arcs equals 0 or 1, then the 
solution is feasible to the 
problem. 
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Flgure 13 

ACQUISTION PROBLEM 

Acquistion 
Possibilities 

Functions or Attributes Re- 
quired of Total Acquisition 

these nodes might represent attributes such as geographic locations, types 

of land, etc. 

The arcs from nodes A, Bf C to nodes 1, 2, 3, 4 Identify the exact 

functions that each of the potential acquisitions A, B, and C are able to 

accommodate.  In particular A accommodates functions 1 and 2, B accommo- 

dates all functions,and C accommodates functions 2, 3, 4. The "multipliers" 

appearing in triangles on the arcs from node 0 to nodes A, B, and C, re- 

spectively equal the number of different functions that each of A, B, and 

C, individually are capable of handling. Asterisks attached to these arcb 

Indicate the integer restriction as in Figure 11, and all arcs in the diagram 

are assumed to have lower and upper bounds of 0 and 1, respectively.  Given 

demands of "at least 1" on each of the function nodes 1 through 4, and costs 

on the generalized arcs equal to the acquisition cost of A, B, C, respectively, 

the model depicts the problem of determining the least cost set of acquisi- 

tions whose members can collectively handle all required functions or exhibit 

all required attributes. 
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Other modeling techniques Involving Integer-restricted generalized arcs 

make it possible to accommodate problems in which flows on selected arcs 

must be in multiples of some specified constant, as in financial contexts 

where investments and sales (e.g., of bonds) are permissable only In re- 

stricted denominations. 

Still more generally, by allowing multipliers on all arcs, it Is possible 

to model any zero-one linear programming problem as an integer generalized 

network problem 24 . The above examples are special instances of the 

general technique used to accomplish this transformation. 

VI.  GENERALIZED ASSIGNMENT MODEL 

A cousin to the Integer generalized network problem is the so-called 

generalized assignment model.  In fact, a generalized assignment model is 

simply a special case of the generalized integer network problem. In these 

problems there are only two sets of nodes. One set (origin nodes) only has 

arcs leading out of the nodes and the other set (destination nodes) only 

has arcs leading into the nodes. See Figure 14. Each origin node has a 

supply of exactly one and each destination node 1 has a demand of at least 

(or at most) d . Additionally, each arc has a "cost" and a multiplier and 

the flows on each arc must be integers. For example, c11, r  , and on the 

arc between origin node 1 and destination node I of Figure 14 indicate the 

cost, multiplier, and Integer requirement on the arc. 

The name "generalized assignment model" is due to its interpretation 

as assigning personnel (oiigin nodes) to jobs (destination nodes) where each 

person contributes a specified amount (multiplier value) to a job. Further, 
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each person can only be assigned to one job (Integer requirement).  In con- 

trast to the classical assignment problem f6, 9, 43j , however, a job may 

have several persons assigned to It In order to satisfy Its demand. 

Supply 

Figure 14 

GENERALIZED ASSIGNMENT PROBLEM 

Demand 

Another application visualizes the origin nodes as checking accounts 

and the destination nodes as days of the month.  In this application the 

demands are "at most" requirements  (id.) and represant dally auditing 

capacity.  Each account must be assigned to a day of the month and the multi- 

pliers represent the auditing effort required for the account. 

A further application of this model Involves the assignment of ships 

to shipyards for overhaul.  In this application, the origin nodes in Figure 

14 represent the ships and the destination nodes shipyards. Like the last 

application, the deamnds are "at most" requirements and represent shipyard 

capacity in days.  The multiplier represents the number of days required for 

the overhaul at that shipyard. The "cost coefficients" could be a weighted 
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combination of attributes such as transportation costs, overhaul costs, 

naval desirability of assigning the ship to this yard, etc. The objective 

would then be to minimize total "cost". 

This problem is a subproblem of a model designed by Gross and Plnkus 

L27j  to evaluate shipyard expansion questions. Their objective was to 

minimize total overhaul time: that is, minimize E r^ .Xj. , where x, . is 
ij ij        ij 

the flow on arc (l,j). Gross and Pinkus noted that these subproblems have 

a "nice" mathematical structure and, thus, an efficient solution approach 

could probably be devised. This stimulated Ross and Soland ^393 to design 

a special code to solve generalized assignment problems using a Lagrangean 

relaxation approach. The code of £39] has proved to be extraordinarily 

fast, solving problems with 1000 ships, 29 yards, and 20,000 arcs in less 

than 30 seconds on a CDC 6600. 

VII.  CONSTRAINED NETWORK PROBLEMS 

The last type of network problem to be discussed in this paper is a 

problem which contains a network structure, but which also has some addi- 

tional linear constraints. The first formulation of the cotton gin problem 

is an example of such a problem.  As illustrated in the cotton gin applica- 

tion, it is often possible to incorporate such constraints directly into the 

network structure [6, 9, 13, 3A, 43] . However, there are a number of 

problems where this is not possible. The following manpower assignment for- 

mulation provides an example of such a problem. 

Manpower assignment problems typically involve the assignment of per- 

sonnel to tasks in the "most effective manner". Normally there are several 

competing factors involved in making an assignment [5] . Consequently, the 
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declsion maker Is faced with determining the best compromise of the com- 

peting goal? subject to satisfying the tasks. There are several ways to 

formulate such a multi-attribute, multi-goal assignment problem [5] . A 

formulation which has proven to be quite good is given below. 

The manpower assignment problem depicted in Figure 15 has the objective 

of determining the cheapest way to assign person A and person B to any two 

of the three jobs 1, 2, and 3. Here the supply of 1 unit at the personnel 

nodes Indicates that each person must be assigned to a job. The demands are 

at most 1 unit, so that each job will receive at most one person. Important 

additional goals are that the utility of the job assignment to the employer 

and the desirability of the job assignment to the personnel must, be within 

"acceptable ranges" in minimizing the cost of the assignments. In addition 

to the costs, numbers representing the utility and desirability of the em- 

ployer and employee respectively are shown on the arcs In Figure 15. 

One way to handle these additional goals is to find first the optimal 

value of each goal independent of the other goals. For instance, find the 

optimal value of the utility function Independent of the cost and deslra- 

+ +    + 
billty functions. Let u denote this value. Similarly, let c and d 

denote the optimal value of the cost and desirability functions. Then add 

the extra linear constraints 

and 

u(x) - u       c(x) - c 
+      S       + 
u c 

d(x) - d       c(x) - c 

d c 

(1) 

(2) 
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to the manpower problem, where u(x), d(x) and c(x) represent the utility, 

desirability, and cost functions. The goal is then to minimize the cost 

function subject to the manpower assignment constraints (network constraints) 

and the extra constraints. The solution will have the following property. 

Equation (1) will force the relative deviation of the utility function value 

from its optimal value u to be less than or equal to the relative deviation 

of the cost function value from its optimal value c . Intuitively this is 

an appealing solution since it balances the goals independently of their units 

of measure, and forces all deviations of the goals from their optimum values 

to be as small as possible. 

This type of problem cannot normally be transformed into a network 

problem. That is, the extra constraints cannot be directly incorporated into 

a network structure. However, it is possible to design computationally 

efficient solution codes for problems of this type [23, 3l] . In particular, 

we have designed a solution code for solving pure network problems with one 

extra constraint which is 100 times faster than state-of-the-art commercial 

linear progrannning computer programs [233 • 

Figure 15 

MANPOWER ASSIGNMENT PROBLEM 

Supply 

1 

cost   utility   desirability Demand 

£ 1 

£1 

*1 
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VIII.  COMCLÜSION 

The important thing to bear in mind is that it is unnecessary to be 

able to specify all problem characteristics in a rigorous mathemetlcal sense 

at the outset of constructing a network model; often parenthetical annota- 

tions will maintain these characteristics in view while the model undergoes 

refinement. Once the stage is finally reached at which the crucial inter- 

relationships are singled out, the effort to identify the best formulation 

and its appropriately matched solution approach can be undertaken. At this 

stage, the intimate coordination of modeling techniques and computer solu- 

tion methods is indispensible. 

This paper details several actual network applications on which we 

have worked during the last five years. The challenge of these applications 

has been an effective incentive to our efforts to develop improved solution 

codes with enhanced human engineering features. Accordingly, we invite 

those who professionally develop or apply mathematical programming techniques 

to feel more than welcome to share their problems and modeling needs with 

us, as a basis for a fertile interchange of ideas that may similarly con- 

tribute to further advances in MS/OR methodology and user-oriented software 

for solving real world problems. 
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