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ABSTRACT 

A new method  Is described  for calculating bounds   for a special 

class of 0-1 Integer programning problems.    This met lod  includes  features 

of  both Lagrangean and  surrogate  relaxation approaches.     Certain binary 

knapsack calculations carried out  in appropriate combinations  together 

with an additivity principle provide the basis for computing the bounds. 

1 
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Solving a   linear programming relaxation of an   integer  programming 

problem is a commonly used method for computing bounds   in branch and 

bound algorithms.     When an  integer program includes a subset of con- 

straints with an exploitable mathematical  structure,  better bounds may 

be obtained by solving Lagrangean relaxations  [3,6] or surrogate relaxa- 

tions  [7,8,9].    The constraints  lacking special   structure are assigned 

multipliers and carried  into  the objective function  in  the Lagrangean 

approach or used to form a summarizing  distraint   'n the surrogate 

approach.    These  relaxations may  improve the efficiency of a branch and 

bound algorithm when specia'ized algorithms are  used to solve the relaxa- 

tions and when  the stronger bounds enhance the fathoming  tests.    The 

value of these  relaxations over other  relaxations depends   in part on 

the values selected for the multipliers,  and the determination of optimal 

multipliers give rise to "duality theories" of mathematical  programming 

[5,9]'    Although surrogate  relaxations are stronger  than Lagrangean re- 

laxations  (i.e.  yield smaller duality gaps)     they may also be more diffi- 

cult to solve.     In general,   the issue of strength versus ease of solution 

can be crucial   to  the design of an effective algorithm. 

The purpose of  this paper  is  to describe a  new method for calculating 

bounds for a special  class of 0-1   integer programming problems.    This 

method has features of both  the Lagrangean and  surrograte approaches. 

Certain binary knapsack calculations carried out   in appropriate combina- 

tions together with an additiv!ty principle provide the basis for com- 

puting the bound.     Our development  is strongly motivated by  the ".augmented" 

—k. 
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bounding construct  proposed by Ross and  Soland   in   their algorithm fur 

the generalized assignment problem [10].     in  that algorithm,  bounds 

are computed by calculating an  initiü!   bound  from a   relaxation and 

augmenting  this with penalties computed  from  the solution  to binary 

knapsack  problems.     These penalties may be developed   in  the framework 

of Lagrangean  relaxation,  but  the extension proposed here, which also 

makes use of surrogate analyses, gives stronger penalties  for the more 

general  class of problems we consider.    At  the same  time,  these new 

penalties can  be computed   in a highly efficie.1t manner and may be used 

to augment   the bound  through appropriate binary knapsack calculations. 

Our development   is motivated not only by  the success of Ross and 

Soland's  use of binary knapsacks  for accelerating  the  solution of gener- 

alized assignment  problems,  but also by  the  recent  advance  in  the effi- 

ciency of binary knapsack procedures described   in   [2].     Consequently, 

the method proposed   in  this paper  is  designed  to  take advantage of 

techniques with demonstrated computational  attractiveness,  as well   as  to 

solve problems of  substantially greater scope  than  those previously shown 

to be amenable  to  the "augmented" bounding construct. 
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I.     Notation and Problem Oeflnition 

Thv* class of problems  discussed  in this paper has  the  following 

mathematical   structure: 

minimize:     2 

subject  to 

r      d.x. 
jej      J  J 

Z      a..x.  - A for all   f«  I 

I       b. .x.   -  B. for all   kr K 
kj  j k 

JtR 

jeS 
Z       c. .x,   - C. 

hj  j        h 

0 ^ x.   ^ 
J 

for all  he H 

for all  j e J 

x.   integer for all  j e J 

(2.1) 

(2.2) 

(2.3) 

(2.k) 

(2.5) 

(2.6) 

where R|/ ^   Rk      " '    ^or ki'k2 e  K an^ kl ^ ^2 

sk ^  su      - *    for h-.h, e H and h. * h, n«        n» I     z I / 

In addition, the coefficients of (2.3) and (2 '♦) must satisfy a sign 

assumption: 

For any k E K, h e H such that Rk ^ 
s
h >* ^. 

either b, .cL. > 0 for all j e R. fl S. 
kj hj ■'  k   h 

or    b. .c. . < 0 for all je R. f\  S. . kj hj J  k   h 
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In general, the sign assumption is satisfied as long as the co- 

efficients b . associated wl'h any set R. are all the same sign (either 

all positive or all negative with zero coefficients excluded by restrict- 

ing the membership of the sets R.) and the same is true for the coefficients 

c   in any S..  As a practical matter, such conditions are common In re- 
nj        h 

source allocation problems.  Other more complex sign conditions are also 

compatible with the sign assumption. 

For notations I convenience, it is assumed chat L^., S. C U„ R, . 
h £ H  h   k i K  k 

If this assumption does not hold, a redundant constraint of the form 

, £„    6.X. - 5« may be added.  In this constraint, each 6. is chosen 
J c M  J J   0 J 

to be either +1 or -I to satisfy the sign assumption, f>9  equals the sum of 

the negative 6. and M ={j |j E S. for some hcH and j / R. for all k t   K)' 
j '    h k 

The model (2.l)-(2.6) encompasses a number of important special cases 

of the distribution-assignment type.  In particular, the general'zed as- 

signment problem arises when I = 0, all b,. = I, all B. = I, each con- 

straint (2.3) is an equality, all c, . and C. are negative and there is 

exactly one index j in each intersection  R.A S, .   More importantly, 

generalized transportation ana assignment problems with additional side 

conditions, including certain multi-commodity distribution problems, may 

be represented in this Format. 
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2.     Calculating a Lower  Bound 

To  provide   insight   into our  method   for  computing a   lower  bound   for 

(2.1)   -   (2.6),  an  interpretation of  the bounding procedure proposed by 

Ross and Soland   [10]   in  terms of    Lagrangean  relaxation   is  presented 

first. 

Corresponding to the genera)   integer programming problem: 

(P) minimize Cx 

> 
subject   to      A x -  b 

B x  - a 

x  ^ 0 

x   integer 

the    Ltgrangean Relaxation of  (P)   can be defined  [3,6]   relative to A x -  b 

and a non negative vector x  to be 

minimize Cx + A   (b-Ax) <PV 
subject  to      Bx  - d 

x*- 0 

x  integer 

An equivalent  form of the objective  function of   (PR,)   is minimize    b + 

C -  ^A)  x.    This alternate form has a  special   interpretation when ^ is 

chosen as a vector of optima)  dual  multipliers associated with the con- 

straints Ax -  b  In the relaxation 

(PR) minimize cx 

subject  to      Ax  -  b 

x ^ 0. 

J 
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Clearlv the optimal solution to (PR) is a (possibly weak) lower bound on 

the optimal value for (P), and its value is given by Ab ^by duality), 

the relative cost factors of (PR) are given by the vector (c -A A).  In 

general, one would expect that some of the constraints B x - d would not 

be satisfied by the optimal solution to (PR).  Thus, in this case, the 

Lagrangean relaxation may be interpreted as a problem of identifying the 

least costly modifications in the linear programming solution necessary 

to solve (P).  That is, each relative cost factor c. - AA. may be inter- 

preted as a penalty that accompanies changes in the value of x..  The 

optimal value of (PfO consists of a linear programming bound together 

with an accumulated penalty reflecting necessary changes in the linear 

programming solution.  Using such an approach to determine a Lagrangean 

bound has particular appeal, whenever (PR) has a special mathematical 

structure. 

The method just described for computing a bound features three im- 

portant steps that :'iust be performed.  First, a linear relaxation that 

ignores some constraints must be solved.  Second, using post optimality 

information, penalties associated with making changes in individual 

variable values must be determined.  Finally, an aggreg-. • penalty re- 

flecting the composite changes necessary to satisfy the previously ignored 

constraints must be computed to add to the linear relaxation bound.  When 

applied to the problem (2.l)-(2.6) these three steps can provide a strong 

bound provided the structure of the problem is exploited fully. 
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The initial step of our procedure is to solve the linear program 

given by (2.1) (2.2) (2.3) and (2.5).  Given the optimal dual variables, 

w.", associated with the constraints (2.2), a partial Lagrangean relaxa- 

tion can be formed with the constraints (2.2) in the objective-! function. 

This relaxation has the form: 

minimize 

subject to 

where 

j eJ   J J  0 

I       b, .x.  - B, for all kt K 

<   < 
o - x. - 1 for all i i J 

J 

d. = d. -  .  , w? a.. 
J   J    i e I  i  IJ 

(3-1) 

(2.3) 

(2.5) 

d *  .  . w. A. 
o   i e I  i  i 

This new problem consists simply of a collection of separable continuous 

knapsack problems each of the form 

minimize Z 
j tK 

subject to    I 
j cRL 

d.x. 
J J 

kj j   k 

o - x. - 1 for al 1 j t R, 
J k 

(3.2) 

(3 ' 

(3.^ 

The problems (3.2) (3.3) (3./*) are easily solved by standard techni- 

ques.  It may be assumed that all b.^o (substituting the variable x. = l-x. H 7 kj j   j 

if b . < o to achieve positivity). The variables are then ordered in terms 
kj 

of ascending values of the ratio d./b. ., and the x. are assigned values by 
j  kj j        J 

reference to their position in the ordering in the customary manner.  If 

somed.-o, the associated variables x. is set equal to I and remaining x- 
J J i 

t^tmmmm 
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assigned values until (3.3) is satisfied.  From duality theory, the opti 

mal values for the variables in the knapsack problems (3.2) (33) (3-'0, 

denoted X., substituted in either (3.1) or (2.1) give thr same value. 

That is, if E" denotes the optimal value of the objective function frr 

the problem (2.1) (2.2) (2.3) (2.5) then 

Z* I      d. x* 
j cJ  J J 

X  d.x.  + d^. 

j' J 
J J 

The solution x.- gives, therefore, a valid lower bound i*  on the optimal 

value for I   in the integer program (2.1)-(2.6).  Except for trivial prob- 

lems, the values x." will not satisfy some of the constraints (2.M and 

(2.6), and as indicated earlier, this fact may be used to revise the 

bound. 

In or^er to obtain a solution that satisfies (2.^) and (2.6), some 

changes must be made in the values of K.*.     Making these changes will in 

turn increase the value of H"-': to better reflect the value of 2 in the 

problem (2.l)-(2.6).  The next steps in computing the revised bound are, 

therefore, to identify changes that decrease infeasibi1ity and to ascertain 

the penalty associated with each such change. 

For notational convenience, let H1 z{hc   H I I c..x. <CuJaric' for 

j e Sh 
each he H' let S. 2{ .c   S. I c. .< o and x. > II  and let Sr  -{j c S. I c..< o 

h  j   h  hj j h        h  hj 

and xv > o}.  The set S+ (Sr ) comprises those variables that decrease in- 
j h  h 

feasibility in the constraints (2.6) when they themselves are increased to I 

(decreased to 0).  More importantly, the collection of modified solutions 

that would satisfy any single constraint h <: H' is given by the set of 

feasible soljtions to the constraints: 

j^ VJ + Jcs- c'  (l-x.) 
hj     J 

-C' 

0 or 1 

(3.5) 

(3.6) 

Ma^ft^MM. Mja^MMMMMIMUMUi MflHM 
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where Ci!.  = C.   " 
n h 

and 

j' K 

C.   .XV 
hj   J 

'hj 

r {]-*v Sjfor j' si 

■x*  c,.     for  j c Sr 
J     hj h 

For the purpose of determining a lower bound on the optimal solution 

to (2.l)-(2.6), we are particularly interested in finding a solution to 

(3-5) and (3-6) that optimizes the objective function 

minimize i.   =     .1  c^ q.x. + . ^ -  p. (l-x.) 
h   jc S^j  'j j   je S^  j    j 

(3.7) 

That   is,  we seek  to  identify the   least costly modified solutio.i to  (3-2) 

(3-3)   (3.'«) which satisfies   (2.^)  and   (2.6),  where q.   denotes   in  increase 

in I* associated with enforcing  x.  =   1   and p.   denotes   the  increase  in Z" 
J J 

associated with  enforcing x.  = 0.     The penalties p.  and q.  can  be computed 

easily using a naive post-optimality calculation on   (3.2)   (3-3)  and   (3.M 

that will   subsequently be  illustrated by example. 

The  result   that establishes   the value of  solving  binary  knapsack 

problems of  the  form  (3-7)  subject   to   (3-5)   and   (3-6)   is the   following: 

Theorem  -   If  i*  denote   the optimal   value of   (3-7)   subject  to   (3.5)and 
 h 

(3.6) ,   then        H* + 
h • H' 

lt. 
is a valid lower bound on the optimum objective function value 

to the problem (2.l)-(2.6). 

The theorem will establish that the penalties | . and q. are ^Hditive under 

the sign assumption.  Thus an aggregate penalty can be determined to re- 

flect the minimal cost of making changes necessary to satisfy (2.'») and 

(2.6) which were ignored in finding the optimal solution to the relaxation 

(2.1), (2.2), (2.3) and (2.5). 

■- ■ MMMMBMl 
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Before proving the theorem, an example will be given of the method 

for determining p. and q. that will clarify t'ieir nature nnd illustrate 
J     J 

conditions that need to be established in order to demonstrate the va- 

lidity of the theorem.  Consider the continuous knapsack problem 

minimize        -9x + 30x + 20x + 50x. + ^5x 

subject to      20x. + 30x + lOx + 20x, + 15x :  55 

0 - x  - I,  j=l,2,...,5 

which has the form of the knapsack problem (3.2)-(3.'0 • All b > 0, and 
kj 

the variables are arranged by ascending value of the ratio of the objective 

function coefficient to the constraint coefficient.  The optimal solution 

A   ft      ft       ft   ft + 
is x, = x» = 1, x, = 1/2, x, = x_ = 0.  By the definitions of S. and S. , 

I   /      J       H   3 h     h 

p. values are needed for at most the first three variables, and q.  values 
J J 

are needed for at most the last three variables.  Each penalty is simply 

the change that occurs in the optimal value of the objective function when 

the variable is forced to 0 or to 1 as required.  The following calcula- 

tions illustrate the post optlmality determination of these penalties. 

P, = -(-9) + 1/2(20)+ 3A(50) = 56 1/2 

0 = -20 + 1/2(10) + 3/^(20) 

P2 = -30 + 1/2(20) + 1(50) + 1/3(^5) = ^5 

0 =  -30 + 1/2(10) + 1(20) + 1/3(15) 

p = -\/2(Z0) + 1/M50) = 2 1/2 

0 « -1/2(10) + 1/4(20) 

q3 =  1/2(20) - 1/6(30) = 5 

0 =  1/2(10) - 1/6(30) 

q^ = 50 - 1/2(20) - 1/2(30) = 25 

0 = 20 - 1/2(10) - 1/2(30) 

q  =  45 - l/?(20) - 1/3(30) = 2S 
j 

0 =  15 - 1/2(10) - 1/3(30) 

Mil   ^^^m^^^^mmM 
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It should be noted that the foregoing penalties for setting variables 

to 0 and I are not independently additive. That is, the effect of sutrviing 

several such penalties may not give a valid penalty for the corresponding 

assignment of values to the x. variables. To illustrate, the penalty for 

setting x » 0 and x, ■ 1 is kS whereas the sum of p? and q. is 70. Never- 

theless, it is desirable to use the foregoing "knapsack panalties" in some 

fashion because they are stronger than the corresponding Lagrangean penal- 

ties  (which are respectively k3,   30, 0, 0, 10 and 15 for p.,p?,p.,q-,q. 

2 
and q,.) •  The following observation lays a foundation for using the 

knapsack penalties. 

Lemma:  The p. and q. penalties for a knapsack problem with all b. .> 0 
       J     J kj 

are additive as long as they are not mixed (I.e., as long as a 

given sum contains only one of these two types but not the other). 

Proof:  The lemma follows immediately by considering the form of the cal- 

culation that gives a valid penalty for simultaneously setting 

more than one x. to 0 or setting more than x.to 1.  A sequential 
J J 

assignment of such values yields a piecewise linear concave func- 

tion. 

This lemma is significant because when addition is permissible it 

increases the differential between the knapsack penalties and the Langranean 

penalties.  (In fact, it is easy to see that any given p. or q. will always 

dominate the corresponding Lagrangean penalty since the latter involves a 

single ratio calculation whereas the former can involve several ratios each 

progressively more costly.)  The more terms that appear in a legitimate sum, 

the greater the difference between the two types of penalties.  This is not 

meant to minimize the value of the Lagrangean penalties in the context of 

the theorem which art. ,\lso valid in this application. 

si •^•••HaMMI 
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The difficulty in using the foregoing Lemma to take advantage of 

the knapsack penalties in a more general context relates to the signs of 

coefficients b  .  In particul-ir, if some b   in (3.3) are negative, 
KJ Kj 

necessitating a transformation to achieve positivity, then a p. for a 

transformed variable will not necessarily be additive with a p. associated 
J 

with a variable which was not transformed.  That is, for a variable with 

b . < 0, the p. will have been computed as q. and vice versa.  However, 

under the sign assumption such potential conflicts are resolved as we 

now show. 

Proof of the Theorem: 

Penalties associated with any two variables j., L e S. such that 

j. e R. , j- e R.  and k. ^ k. are automaticly additive because of the 

separability of the problems (3-2)-(3.'*) • Thus, in order to invoke the 

Lemma, we must show that for all j c S.A R, , the penalties p. and q. in 
' J  h  k J     J 

(3.5) are of the same type in the sense of the Lemma. 

The condition b. .c. . >0 for all j e S.H R. assures that for j e S. , 
kj hj J  h   I« h 

b, . > 0 and for j e S. , b, . < 0. Thus a penalty p. incurred when xv is set 
kj J   h*  kj J J 

equal to 0 given that b. .< 0 is of the q. type for a knapsack problem 
■^J J 

with all b, . > 0.  Sii.I larly, the condition b. .c. . <0 for al I j e S, A R 
kj kj hj -"  h   k 

assures that for j e S. , b. . <0 and for je S. , b. . >0.  Thus a penalty J   h  kj h  kj 

q. incurred when x. is set equal to 1 given that b. . < 0 is of the p. 
J J       H       s kj Kj 

type for a knapsack problem with all b. .> 0.  Thus, the Lemma applies to 
kj 

(3-7)  and  the penalties p.  and q.  of   (3-7)   are acceptably additive. 

HMMflMM. ■ -       ■'-■  ■--"*—"—^ .^^^ ■    
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Next we show that for any set of additive (non-negative) penalties, the 

sum i: 

h t- H' 
i.      is a valid increment to Z" and thus yields a hjund on th: 

optimal integer solution to (2.1)-(2.6).  Since for any he HI the constraint 

* •'•■       + 
(2.'») is not satisfied by x. it follows that some subset of the x. for j c S. 

J J       h 

must be set equal to 1 and/or some x. for j e S.  must be set to 0. Moreover, 
^ J        b 

since the penalties for changing the x. values are non-negative, tl ? total 

cost of such changes cannot be less than the optimal value of (3.7) which 

is the least cost assignment that permits (2.3) to be satisfied, leaving 

A A A 
other x. unchanged.  Thus each Z. is a valid increment to Z , and  the fact 

J h 

that the sets S. are disjoint assures that the sum .  ...  Z^' is a valid 
h he H1  h 

increment for Z-.  This completes the proof. 

3, Considerations in Implementation 

The second half of the proof of the theorem show? that other additive 

penalties may be used in place of the knapsack penalties.  Furthermore, 

it may be observed that for penalties p. and q. that have a piecewise con- 

cave interaction, the knapsack problem (3-5)~(3.7) can be expanded to in- 

clude 0-1 variables and constraints reflecting these interactions.  For 

example, if p  is a lower bound on the penalty for setting both x and x r  '   ruv u     v 

equal to 0, then we may introduce a 0-1 variable x  with a coefficient p 
uv uv 

(p + p ) in (3-7) and a constraint X  - x + x -1.  Such techniques for 
u u uv u v 

handling   interactions are easily generalizable,   but   they may not  be extremely 

useful   since  they destroy  the convenient  knapsack structure. 

L ■ .,.,..-,.> .-,....■  
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It may be noted that problems cortainlnq imbedded networks dnd re- 

lated special structures generally contain a set of constraints (2.3) 

with all b  equal to +1 or -I. The knapsack penalty calculations 

simplify substantially for such constiaints, anH in addition, the solu- 

tions x. are integer valued.  The findings of [k]   suggest that there may 

be some virtue in this latter condition.  One approach to take greater 

advantage of the continuous knapsack problems (3-2)-(3.M, when some 

x.  values are fractional is by employing several iterations of a cutting 

plane approach, continuing as long as worthwhile progress is made.  Upon 

termination, the constraint (3-3) may be replaced by a surrogate constraint 

generated from the dual multipliers of the original (3-3) and the currently 

binding cutting planes to give a m* constraint (3.31)-  If the cutting 

plane approach succeeds in obtaining an integer solution, the resulting 

continuous knapsack will admit this same solution as optimal thereby giv- 

ing an improved value for Z-'.  The validity of replacing (3-3) b/ (3.31) 

is assured by the following observation. 

Remark: If the constraint (3-3) satisfies the sign assumption, the 

constraint (3-31) will also satisfy this assumption upon drop- 

ping any j from R  for which b'  becomes 0. 

Proof:  Suppose all b  ~- 0 in (3-3)-  If the remark were false, some 
kj 

b', . would be negative.  This implies that whereas x, = 1 would 
kj J 

assist the satisfaction of (3-3) it would hinder the satisfaction 

of Ü.'V).  No standard cutting plane produces such ^ contrary 

coefficient condition which could only be valid if superfluous. 

3 
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It may also be observed that every Index j in (3-3) will appear in 

(3-31) if (3.3) has a non-zero weight in forming the surrogate constraint 

(3.3')-  There is, however, no disadvantage in dropping some j from R . 

Our remarks on this point also have a bearing on the general case in 

which .U.. S. ^ .»-'.. R. .  Whenever a coefficient b. . (or b.'.) is egual 
h »; H h   k c K K kj     k | 

to 0 (and j may be removed from R ), the calculation of knapsac'c penalties 

for x. independent of the problem (3.2)-{3.M•  For any such j. there are 

two relevant cases: 

a,  = -dl and x* » 1 if d.< 0. 
J    J     J        J 

g. « d. and x* - 0 if d,> 0. 
J   J     J J 

(If d',  ■ 0 x* may be set equal   to 0 or  I and j may be excluded  from the 

sets  5+ and Sc   .)    Thus,  when the knapsack calculation   is   irrelevant  for 

some variables,   the calculation of  the p.  and g.   penalties corresponds  to 

standard Lagrangean relexation methods.    Further, when  the optimal  dual 

multiplier, w*,  associateJ with a  constraint   (2.3)   is equal   to 0,   indicat- 

ing  the constraint   is non-binding   in  the  linear program   (2.1)   (2.2)   (2.3) 

(2.5),   the knapsack calculation may be  irrelevant.     In  this  case,   the  fore- 

going  rule would be more efficient   than setting up  the knapsack problem. 

The dual  multiplier  values of  the  linear program   (2.1)   (2.2)   (2.3) 

and   (2.5)  make   it clear how to utilize constraints   (2.3)   that  are   in 

equality  form.     If either of  the  two   inegualities   that  compose   the equa- 

tion has   implicitly a non-zero dual   multiplier,   then  that   inequality car. 

be  used as   (3.3)• 

- — 
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k.     Extensions to More General Problems 

The proof of '.he theorem io section 3 does not rest on the requi ce- 

ments that the constraints (2.^) and hence (3-6) are single inequality 

knapsack constraints. The constraints (2.'4) may in fact represent a 

collection of disjoint decomposable matrix inequalities.  In this case, 

the sign assumption must hold in the same inequality sense for all com- 

ponents of c. . (with a relaxation of the strict positivity or strict non- 

negativity).  Thus, the sign assumption becomes for all components 

c}.  of c. .: 
hj    hj 

either b, . c' > 0 for all j e R. ^ S. 
kh hj— J  k   h 

or b. .c' < 0 for all j e R r» S. . 
kj hj— J  ..   h 

The necessary changes in other definitions and statements are analagous. 

Systems of decomposable non negative or non-f>ositive matrix inequali- 

ties (or equations) may satisfy the extended sign assumption when (2.3) 

has corresponding non-negativity or non-positivity properties.  The appli 

cation of the Theorem to matrix systems may be extremely useful if the 

matrix constraints have special structure that facilitates their solution 

as 0-1 integer programs.  On the other hand, if it is difficult to obtain 

an integer solution to (3.5) (3-6) (3-7) an alternative is to use a few 

interactions of a cutting plane procedure to obtain a lower bound on I*. 

Surrogate constraints can again be used to transform more general 

structures into the structure discussed in preceeding sections.  If, for 

example, (2.3) is a system of matrix inequalities (with the b, . represent- 

ing column vectors) then the penalty calculations can be applied to a 
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surrogate for these inequalities.  The surrogate constraint can be 

generated from the dual multipliers of the linear program (2.1) (2.2) 

(2.3) (2.5) or by alternative methods.  The sign assumption stated in 

the natural way for a matrix sy.icem (2.3) carries over to the surrogate 

constraints, and tne remarks concerning (2.3) In its initial form are 

applicable to the surrogate.  This use of surrogate constraints to accomo- 

date more general forms of (2.3) is essential because the additivity 

principle identified in the Lemma does not manifest itself in analagous 

calculations for matrices. 
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NOTKS 

A certain subclass of surrogate relaxations in which the 
integer restriction is disregarded or made irrelevant is 
actually equivalent to a form of Lagrangean, relaxation, 
as  noted  in [6,9]. 

For a continuous knapsack  problem of  the  form 

minimize 

subject   fo 

n 
z Vi J-l J J 

?   W   v      ^W 

j-l    *    J 

0^ x   S 1 

the Lagrangean  penalty  associated with making a change  in 
the optimal value of  any variable x    is v 

j 
and  r  is  the least  integer  such  that j w^W. 

1-1 nalties  are  pimply  the        reduce 

Aw.  where  A 
J       J 

Thus  the 

v  /w 
r    r 

Lagrangean penalties  are  pimply  the J  'reduced  cost  factors of 
the continuous  knapsack  problem.     It  is possible,  with  an 
additional bit of circumlocation,   to view the  stronger knap- 
sack penalties  proposed   in [lOj as  "deferred" or  "conditional" 
Lagrangean penalties.     Independently of  these  taxonomic contrivances 
the  key principle governing  the  stronger  penalties,  as  expressed 
in  the Lemma,   is  the  source of  their value   in  the  present  setting. 

We  remark that  this  form of   surrogate constraint  is  one of 
class originally proposed   in [7] and not one of  the weaker 
type  proposed   in [8]   ,  which  corresponds  to a Lagrangean 
relaxation. 

L ■MH MMMOMMlMBWMB 
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