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ABSTRACT

A new method is described for calculating bounds for a special

class of 0-1 integer prcgramming problems. This met sod includes features

of both Lagrangean and surrogate relaxation approaches. Certain binary

knapsack calculations carried out in appropriate combinations together

with an additivity principle provide the basis for computing the bounds.
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Solving a linear programming relaxation of an integer programming
problem is a commonly used method for computing bounds in branch and
bound algorithms. When an integer program includes a subset of con-
straints with an exploitable mathematical structure, better bounds may
be obtained by solving Lagrangean relaxations [3,6] or surrogate relaxa-
tions (7,8,9]. The constraints lacking special structure are assigned
multipliers and carried into the objective function in the Lagrangean
approach or used to form a summarizing :~astraint in the surrogate
approach. These relaxations may imgrove the efficiency of a branch and
bound algorithm when specia‘’ized algorithms are used to solve the relaxa-
tions and when the stronger bounds enhance the fathoming tests. The
value of these relaxations over other relaxations depends in part on
the values selected for the multipliers, and the determination of optimal
multipliers give rise to '"duality theories' of mathematical programming
[5,9]. Although surrogate relaxations are stronger than Lagrangean re-
laxations (i.e. yield smaller duality gaps)' they may also be more diffi-
cult to solve. In general, the issue of strength versus ease of solution
can be crucial to the design of an effective algorithm.

The purpose of this paper is to describe a new method for calculating
bounds for a special class of 0-1 integer programming problems. This
method has features of botk the Lagrangean and surrograte approaches.
Certain binary knapsack calculations carried out in appropriate combina-
tions together with an additivity principle provide the basis for com-

puting the bound. Our development is strongly motivated by i:e '"augmented'
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bounding construct proposed by Ross and Soland in their algorithm for
the generalized assignment problem [10]. {n that algorithm, bounds
are computed by calculating an initia: bound from a relaxation and
augmenting this with penalties computed from the solution to binary
knapsact problems. These penalties may be developed in the framework

of Lagrangean relaxation, but the extension proposed here, which also

makes use of surrogate analyses, gives stronger penalties for the more
general class of problems we consider. At the same time, these new
penalties can be computed in a highly efficieat manner and may be used
to augment the bound through appropriate binary knapsack calculations.
OQur development is motivated not only by the success of Ross and
Soland's use of binary knapsacks for accelerating the solution of gener-
alized assignment problems, but also by the recent advance in the effi-
ciency of binary knapsack procedures described in [2]. Consequently,
the method proposed in this paper is designed to take advantage of
techniques with demonstrated computational attractiveness, as well as to
solve problems of substantially greater scope than those previously shown

to be amenable to the '‘augmented' bounding construct.
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1. Notation and Problem Nefinition

The class of problems discussed in this paper has the following

mathematical structure:
minimize: 2 = L d.x,

subject to

T aij-A‘ for all ie¢ |
JE&J

"

B8 for all ke K

v

c for all he H
JjEeSs

o= x, S forall jed

xj integer for all jeJ

where R, A R -f forkkeKandklik2

1°72

=@ for h,,h cHandhlt‘h2

1°°2

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)
(2.6)

In addition, the coefficients of (2.3) and (2.4) must satisfy a sign

assumption:
For any k ¢ K, he H such that ka\ Sh LR

either b >0 for all jCRanh

kjhj

or bkjchj <0 for all je Rkl\ Sh.




In general, the sign assumption is satisfied as long as the co-

efficients b, . associated with any set R are all the same sign (either

k j k

all positive or all negative with zero coefficients excluded by restrict-
ing the membership of the sets Rk) and the same is true for the coefficients

c.. inany S

hj As a practical matter, such conditions are common in re-

he
| source allocation problems. Other more complex sign conditions are also

compatitle with the sign assumption.

i For notational convenience, it is assumed chat he H Sh kE!K Rk

If this assumption does not hold, a redundant constraint of the form

L 5.%, : 8§, may be added. In this constraint, each &. is chosen
JeM j

"Ry TR

to be either +1 or -1 to satisfy the sign assump*ion, &, equals the sum of

for some heH and j ¢/ R, for all k ¢ Ki}-

the negative Gj and M ={j |je S K

h

‘The model (2.1)-(2.6) encompasses a number of important special cases
of the distribution-assignment type. In particular, the general’zed as-

signment problem arises wher | = @, all bkj =1, all Bk = |, each con-

straint (2.3) is an equality, all c_. and Ch are negative and there is

hj

exactly one index j in each intersection Rpf\Sh. More importantly,

generalized transportation anog assignment problems with additional side
conditions, including certain multi-commodity distribution problems, may

be represented in this format.
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2. Calculating a Lower Bound
t §
4 ; To provide insight into our method for computing a lower bound for
| § (2.1) - (2.6), an interpretation of the bourding procedure proposed by
1
% Ross and Soland [10] in terms of Lagrangean relaxation is presented

first.

f ; Corresponding to the general Integer programming problem:

{ { (P) minimize €x
g subject to A x b
? ? Bx - a
S x =0

x integer

the Lagrangean Relaxation of (P) can be defined [3,6] relative to A x = b

and a non negative vecior A to be

e e

: (PRA) minimize ex + A (b-Ax)
subject tc  Bx 24
X = 0

x integer

An equivalent form of the objective function of (PRX) is minimize b +

€ - M) x. This alternate form has a special interpretation when A is
i chosen as a vector of optimal dual multipliers associated with the con-
straints Ax 2 b in the relaxation

(PR) minimize ¢x

1
o

subject te  Ax :

X
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Clearly the optimal solution to (PR) is a (possiblv weak) lower bound on
the optimal value for (P), and its value is given by Ab by duality).
Ihe relative cost factors of (PR) are given by the vector (c -2 A). In
general, one would expect that some of the constraints B x 2 d would not
be satisfied by the optimal solution to (PR). Thus, in thic case, the
Lagrangean relaxation may be interpreted as a problem of identifying the
least costly modificatiors in the linear programming solution necessary
to solve (P). That is, each relative cost factor ¢ - XAJ may be inter-
preted as a penalty that accompanies changes in the value of xj. The

optimal value of (PR,) consists of a linear programming bound together

A
with an accumulated penalty reflecting necessary changes in the linear
programming solution. Using such an approach to determine a Lagrangean
bound has particular appeal, whenever (PR) has a special mathematical
structure.

The method just described for computing a bound features three im-
portant steps that :ust be performed. First, a linear relaxatinn that
ignores some constraints must be solved. Second, using post optimality
information, penalties associated with making changes in individual
variable values must be determined. Finally, an aggreg- : penalty re-
flecting the composite changes necessary to satisfy the previously ignored
constraints must be computed to add to the linear relaxation bound. When

applied to the problem (2.1)-(2.6) these three steps can provide a strong

bound provided the structure of the problem is exploited fully.
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The initial step of our procedure is to solve the linear program
given by (2.1) (2.2) (2.3) and (2.5). Given the optimal dual variables,
w.*, associated with the constraints (2.2), a partial Lagrangean relaxa-
tion can be formed with the constraints (2.2) in the objective function.

This relaxation has the form:

SR L
minimi ze L djwj +dg (3.1)
subject to I b .x. -B forall kek (2.3)
jeR %'l k
k
< <
o - xj -1 for all j.J (2.5)
)
where d. =d, - ., wfa,.
J J el i ]
d = .E w, A,
o] el 1 i

This new problem consists simply of a collection of separable continuous

knapsack problems each of the form

minimi ze L d.x, (3.2)
je Rk J
» >
subject to ER bijJ. B, (3
J &Ry
o : xj 21 for all jkiRk (3.4)

The problems (3.2) (3.3) (3.4) are easily solved by standard techni-

ques. It may be assumed that all bkj> o (substituting the variable xJ.=l-xj

if b,. < o to achieve positivity). The variables are then ordered in terms

kj
of ascending values of the ratio dj/bkj’ and the xj are assigned values by
reference to their position in the ordering in the customarv manner. |f

the associated variables xj is set equal to | and remaining xj

some dj(:o.

3 VTP NIRRT TTRPTRRTRPY ™, YTy v




G ang st o it abotu gL bt 4y N N A I Y T T A U I T YIS T L

3

Y

|

3

[ assigned values until (3.3) is satisfied. From duality theory, the opti-
mal values for the variables in the knapsack problems (3.2) (3.3) (3.4),

b1
denoted xj, substituted in either (3.1) or (2.1) give thr same value.

S i

That is, if Z* denotes the optimal value of the objective function fcr

the problem (2.1) (2.2) (2.3) (2.5) then !

2t = od.xt = v d.x. +d

A
. o -
jed I jrg 3 j
t The solution xj* gives, therefore, a valid lower bound 2% on the optimal j
¥

value for 2 in the integer program (2.1)-(2.6). Except for trivial prob-

|
lems, the values xj* will not satisfy some of the constraints (2.4) and 1
(2.6), and as indicated earlier, this fact may be used to revise the 4
bound.

In order to obtain a solution that satisfies (2.4) and (2.6), some E

changes must be made in the values of xj*. Making these changes will in
turn increase the value of 2% to better reflect the value of 2 in the
problem (2.1)-(2.6). The next steps in computing the revised bound are,
therefore, to identify changes that decrease infeasibility and to ascertain

the penalty associated with each such change.

For notational convenience, let H' ={he H l 3 Chjxj < Ch}and for
jes
! i = 5 < s h - {1 =
each he H' let Sh -{jL Sh| chj' o and xj > |1} and let Sh ={j = Shl chj< o]
and xj > o}. The set Sﬁ (Sﬁ ) comprises those variables that decrease in-

feasibility in the constraints (2.6) when they themselves are increased to |

(decreased to 0). More importantly, the collection of modified solutions
that would satisfy any single constraint h v+ H' is given by the set of

feasible solutions to the constraints:

z . R : _ e
jese ©hi%] + jes hj (1 xJ.) Ch (3.5)
xj =0 or | (3.6)




+

(l-x}) h;j for j+ st

céj
-x? Chj for j cSﬁ .
For the purpose of determining a lower bound on the optimal solution
to (2.1)-(2.6), we are particularly interested in finding a solution to
(3.5) and (3.6) that optimizes the objective function

minimize Zh = jg Sﬁ qjxj bt jg:SE pj (quj) (3.7)
That is, we seek to identify the least costly modified solutioa to (3.2)
(3.3) (3.4) which satisfies (2.4) and (2.6), where qj denotes in increase
in 2% associated with enforcing xj = | and pj denotes the increase in 2%
associated with enforcing xj = 0. The penalties pj and qj can be computed
easily using a naive post-optimality calculation on (3.2) (3.3) and (3.4)
that will subsequently be illustrated by exaryple.

The result that establishes the value of solving binary knapsack

problems of the form (3.7) subject to (3.5) and (3.6) is the following:

Theorem - |f 2% denote the optimal value of (3.7) subject to (3.5)and

=7 h

(3.6), then 25+ hiiH' CH

is a valid lower bound on the optimum objective function value
to the problem (2.1)-(2.6).
The theorem will estabiish that the penalties ¥ and qj are .4ditive under
the sign assumption. Thus an aggregate penalty can be determined to re-
flect the minimal cost of making changes necessary to satisfy (2.4) and

(2.6) which were ignored in finding the optimal solution to the relaxation

(2.1), (2.2), (2.3) and (2.5).

R S L N
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Before proving the theorem, an example will be given of the method
for determining pj and qj that will clarify their nature and illustrate
conditions that need to be established in order to demonstrate the va-
lidity of the theorem. Consider the continuous knapsack problem

minimize -9x, + 30x2 + 20x3 + SOXQ + 45x

] 5
subject to 20xI + 30x2 + le3 + ZOxh + ISx5 - 55
% <
0-x, -1, j=1,2,...,5
i J

which has the form of the knapsack problem (3.2)-(3.4). All b 0, and

>
k;
the variables are arranged by ascending value of the ratio of the objective
function coefficient to the constraint coefficient. The optimal solution
% % R 5 + -
i = = ] =, = = 4 initi
is x Xy . x3 1/2, Xy xs 0 By the definitions of Sh and Sh .
pj values are needed for at most the first three variables, and qj values
are needed for at most the last three variables. Each penalty is simply
the change that occurs in the optimal value of the objective function when

the variable is forced to 0 or to | as required. The following calcula-

tions illustrate the post optimality determination of these penalties.

Py = -(=9) + 1/2(20)+ 3/4(50) = 56 1/2
= -20 + 1/2(10) + 3/4(20)
P, = -30 + 1/2(20) + 1(50) + 1/3(45) = 45
0= =30+ 1/2(10) + 1(20) + 1/3(15}
Py = -1/2(20) + 1/4(50) =2 1/2
0« -1/2(10) + 1/4(20)
q, = 1/2(20) - 1/6(30) = 5
0= 1/2(10) - i1/6(30)
a, = 50 - 1/2(20) - 1/2(30) = 25
0= 20 - 1/2(10) - 1/2(30)
ag = 45 - 1/2(20) - 1/3(30) = 25
0= 15~ 1/2(10) - 1/3(30)




It should be noted that the foregoing penalties for setting variables
to 0 and | are not independently additive. That is, the effect of sumiing
several such penalties may not give a valid penalty for the corresponding
assignment of values to the xj variables. To illustrate, the penalty for

setting )= 0 and X, = 1 is 45 whereas the sum of P, and qy is 70. Never-

theless, it is desirable to use the foregoing '"'knapsack panalties' in some
fashion because they are stronger than the corresponding Lagrangean penal-
ties (which are respectively 49, 30, 0, 0, 10 and 15 for P)+P:P3:03:0y,
and qS).2 The following observation lays a foundation for using the
knapsack penalties.

Lemma: The pj and qj penalties for a knapsack problem with all bkj> 0

are additive as long as they are not mixed (i.e., as long as a

given sum contains only one of these two types but not the other).

Proof: The lemma follows immediately by considering the form of the cal-
culation that gives a valid penalty for simultaneously setting
more than one xj to 0 or setting more than xjto 1. A sequential
assignment of such values yields a piecewise linear concave func-

tion.

This lemma is significant because when addition is permissible it

increases the differential between the knapsack penalties and the Langranean

penalties. (In fact, it is easy to see that any given pj or qj will always

dominate the corresponding Lagrangean penalty since the latter involves a

single ratio calculation whereas the former can involve several ratios each
progressively more costly.) The more terms that appear in a legitimate sum,

the greater the difference between the two types of penalties. This is not

meant to minimize the value of the Lagrangean penalties in the context of

the theorem which are also valid in this application.

!
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The difficulty in using the foregoing Lemma to take advantage of
the knapsack penalties in a more general context relates to the signs of
coefficients bkj' In particular, if some bkj in (3.3) are negative,
necessitating a transformation to achieve positivity, then a pj for a
transformed variable will not necessarily be additive with a p, associated
with a variable which was not transformed. That is, for a variable with
bkj <0, the pj will have been computed as qj and vice versa. However,
under the sign assumption such potential conflicts are resolved as we

now show.

Proof of the Theorem:

Penalties associated with any two variables j‘. j2 € Sh such that

j,eR , j, e R, and k, # k, are automaticly additive because of the
1 k' 2 kz 1 2

separability of the problems (3.2)-(3.4). Thus, in order to invoke the
Lemma, we must show that for all je Shn Rk, the penalties pj and qj in
(3.5) are of the same type in the sense of the Lemma.

araf . q +
The condition bkjchj >0 for all je Sh/\ RL assures that for j ¢ S_ ,

b .>0and for jeS., b, .<9. Thus a penalt . incurred when x* is set
Kj J ’ kj p YPJ j

equal to 0 given that bkj< 0 is of the qj type for a knapsack probliem

with all bkj> 0. Siwilarly, the condition bkjc <0 for all je Shf\ R

hj k
assures that for je S+, bkj <0 and for je S_, bkj >0. Thus a penalty
*
qj incurred when xj Is set equal to | given that bkj< 0 is of the pj
type for a knapsack problem with all ka> 0. Thus, the Lemma applies to

(3.7) and the penalties pj and qj of (3.7) are acceptably additive.
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Next we show that for any set of additive (non-negative) penalties, the

sum L Z: is a valid increment to 2% and thus yields a buund on th2
heH!'
optimal integer solution to (2.1)-(2.6). Since for any hc H! the constraint ’

e -

* ¥
(2.4) is not satisfied by X it follows that some subset of the X; for jec S;

et casaia R

* -
must be set equal to | and/or some xj for je Sh must be set to 0. Moreover,
*
since the penalties for changing the xj values are non-negative, tia total
cost of such changes cannot be less than the optimal value of (3.7) which

is the least cost assignment that permits (2.3) to be satisfied, leaving

X * &
other xj unchanged. Thus each Zh is a valid increment to 2 , and the fact

are disjoint assures that the sum hi " Zﬁ is a valid

FIp-o0 NE U B . LT T L T Gre

that the sets Sh

increment for 2*. This completes the proof.
3, Considerations in Implementation
The second half of the proof of the theorem shows that other additive

penalties may be used in place of the knapsack penalties. Furthermore,

T T

it may be observed that for penalties pj and qj that have a piecewise con- j

cave interaction, the knapsack problem (3.5)-(3.7) can be expanded to in-

heake

clude 0-1 variables and constraints reflecting these interactions. For

example, if p is a lower bound on the penalty for setting both x and x
uv u v

SEEESCAINPY 1

equal to 0, then we may introduce a 0-1 variable Xy with a coefficient Puv™

(p +p) in (3.7) and a constraint X 2x +x -1. Such techniques for i
u u uv u v

handling interactions are easily generalizable, but they may not be extremely

useful since they destroy the convenient knapsack structure.
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is assured by the following observation.

ping any j from R for which bij becomes 0.

of (3.3'). No standard cutting plane produces such a contrary

coefficient condition which could only be valid if suoerfluous.

it may be noted that problems cortaining imbedded networks and re-
lated special structures generally contain a set of constraints (2.3)
with all b . equal to +]1 or -1. The knapsack penalty calculations
simplify substantially for such constiaints, and in addition, the solu-
tions xj are integer valued. The findings of [4] suggest that there may
be some virtue in this latter condition. One approach to take greater
% advantage of the continuous knapsack problems (3.2)-(3.4), when some
i xj values are fractional is by employing several iterations of a cutting
plane approach, continuing as long as worthwhile progress is made.
termination, the constraint (3.3) may be replaced by a surrogate constraint3
generated from the dual multipliers of the original (3.3) and the currently
binding cutting planes to give a new constraint (3.3'). If the cutting
plane approack succeeds in obtaining an integer solution, the resulting
continuous knapsack will admit this same solution as optimal thereby giv-

ing an improved value for 2%. The validity of replacing (3.3) by f2.3')

Remark: !f the constraint (3.3) satisfies the sign assumption, the

constraint (3.3') will also satisfy this assumption upon drop-

k
Proof: Suppose all bkj\*o in (3.3). If the remark were false, some
blkj would be negative. This implies that whereas Kj = | would

assist the satisfaction of (3.3) it would hinder the satisfaction

Upon
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It may also be ohserved that every index j in (3.3) will appear in
(3.3') if (3.3) has a non-zero weight in forming the surrogate constraint
(3.3'). There is, however, no disadvantage in dropping some j from Rk'

Our remarks on this point also have a bearing on the general case in

3 v v
which &y Sh¢ ke K R

to 0 (and j may be removed from Rk)‘ the calculation of knapsac'< penalties

Wherever a coefficient bkj (or b&i) is equal

for X; independent of the problem (3.2)-(3.4). For any such j, there are
two relevant cases:

p, = -d! and x* = 1 if d.< 0.

J J J J

q. =d. and x* =0 if d.> 0.
J J J J

(1f dj = 0 x% may be set equal to 0 or | and j may be excluded from the
sets Sﬁ and Sg .) Thus, when the knapsack za:.:culation is irrelevant for
some variables, the calculation of the pj and qj penalties corresponds to
standard Lagrangean relexation methods. Further, when the optimal dual
multiplier, wt, associate. with a constraint (2.3) is equal to 0, indicat-
ing the constraint is non-binding in the linear program (2.1) (2.2) (2.3)
(2.5), the knapsack calculation may be irrelevant. In this case, the fore-
going rule would be more efficient than setting up the knapsack problem.
The dual multiplier values of the linear program (2.1) (2.2) (2.3)
and (2.5) make it clear how to utilize constraints (2.3) that are in
equality form. |If either of the two inequalities that compose the equa-

tion has implicitly a non-zero dual multiplier, then that inequality car

be used as (3.3).
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4. Extensions to More General Froblems

The proof of 'he theorem ip section 3 does not rest on the require-
ments that the constraints (2.4) and hence (3.6) are single inequality
knapsack constraints. The constraints (2.4) may in fact represent a
collection of disjoint decomposable matrix inequalities. In this case,
the sign assumption must hold in the same inequality sense for all com-

ponents of ¢, , (with a relaxation of the strict positivity or strict non-

hj

negativity). Thus, the sign assumption becomes for all components

. i '
either bkhchjl 0 for all Jeka\ S

or bkjc:‘ji 0 for all jeR NS, .

The necessary changes in other definitions and statements are analagous.

Systems of decomposable non negative or non-positive matrix inequali-
ties (or equations) may satisfy the extended sign assumption when (2.3)
has corresponding non-negativity or non-positivity properties. The appli-
cation of the Theorem to matrix systems may be extremely useful if the
matrix constraints have special structure that facilitates their solution
as 0-1 integer programs. On the other hand, if it is difficult to obtain
an integer solution to (3.5) (3.6) (3.7) an alternative is to use a few
interactions of a cutting plane procedure to obtain a iower bound on Zﬁ.

Surrogate constraints can again be used to transform more general
structures into the structure discussed in preceeding sections. |If, for

example, (2.3) is a system of matrix inequalities (with the bkj represent-

ing column vectors) then the penalty calculations can be applied to a
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surrogate for these inequalities. The surrogate constraint can be
generated from the dual multipliers of the linear program (2.1) (2.2)
(2.3) (2.5) or by alternative methods. The sign assumption stated in

the natural way for a matrix system (2.3) carries over to the surrogate
constraints, and tne remarks concerning (2.3) in its initial form are
applicable to the surrogate. This use of surrogate constraints to accomo-
date more general forms of (2.3) is essential because the additivity

principle identified in the Lemma does not manifest itself in analagous

calculations for matrices.




NOTLS

1. A certain subclass of surrogate relaxations in which the
integer restriction is disregarded or made irrelevant is
actually equivalent to a form of Lagrangean, relaxation,
as noted in [(6,9].

|

|

! 2. For a countinuous knapsack problem of the form
3
4 ! .
3 i minimize T ijj
». ‘ ng
3 '
: subject to 9 WX, o\
4 j=1
] |

O3 & )

3

the Lagrangean penalty assoclated with making a change in
the optimal value of any variable xj is v.-ij where A = vr/wr

and r is the least integer such that E wJ

Lagrangean penalties are simply the j-lreduced cost factors of

the continuous knapsack problem. It is possible, with an

additional bit of circumlocation, to view the stronger knap-

sack penalties proposed in [10] as "deferred" or '"conditional"
Lagrangean penalties. Independently of these taxonomic contrivarces
the key principle governing the stronger penalties, as expressed

in the lemma, is the source of their value in the present setting.

T

>w. Thus the

3. We rema:k that this form of surrogate constraint is one of
class originally proposed in [7] and not one of the weaker
type proposed in [8] , which corresponds to a Lagrangean
relaxation.
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