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INTRCDUCTION

In the design of structures one of the problems that 1is of
concern is the so-called first encounter problem. Thus, we
wish to know in a given exposure time: what is the probabllity
that a load of a given magnitude will be reached? We find this
concern in a number of different applications. 1n aeronautics,
one of the concerns 1s the encounter of large gust loads. 1In
the design of buildings or large outdoor structures, we are
concerned with wind loads and loads due to earthquakes (the
probability that wind loads or earthquake loads of a given
magnitude will be reached in n years).

Reference 1 gives a general theoretical treatment of this
probability problem. Key in the development 1s a probability
density distribution relating to the interval of time between
the encounter of like load levels. For a sine wave the interval
of time between the crossing of like levels 1is constant; the
probability density function for the interval between crossings
of a given magnitude 1is thus a "spike" cr Dirac function,
located at the period of the wave. For a random function the
interval of time between crocssings of like levels is variable.
The probabllity density function associated with intervals
between like crossings depends on the nature of the random
function under consideration. The probability of encounter of
a given level in a time T 1s thus also dependent on the nature
of the function being considered.

In this report, some extensions to the theoretical develop-
ments given in reference 1 are made. In addition, as a main
goal, an experimental type study 1is made of several types of
functions to establish what the probabllity density functions
for intervals between like crossings are like in real
situations. Three different type functions are considered:

1) a random function as obtained from a random noise generator,
2) "gust" acceleration records as obtained from an airplane
encountering continuous atmospheric turbulence, and 3) deduced
gust velocity records of continuous turbulence.
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THEORY EXTENSION

Consider the random function shown in the following
sketch:

We are interested in the probability that the level x will
be experienced in the time T . In general, the interval ¢t
between like crossings of x 1is variable. If we consilder
all the t values that are indicated in a record of large
length, we can form a probability density distribution of
these intervals, which may appear as follows
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In this sketch, Tx denctes the average of all the t values
&l considered. The p function has the following properties

) 00

fp(x,t)dt =1 (2)

{ o)

i [tp(x,t)dt = (2)

- o]

l Reference 1 develops the theory showing that, in terms of

} the function p(x,t), the probability of encountering x 1in a
time T 1s given by the equation
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P(x,T) = 1 - %— f(t - T)p(x,t)dt (3)
x "

It is to be noted that this equation applies to all stationary
functions whether random or not. The precise form of p
depends on the nature of the function.

As mentioned in the introduction, p for a sine wave 1s
a Dirac function at the period of the wave, In this case,
equation (3) reduces to

- xv-3|'-3
we

P(x,T)

X< x (4)
fl\

v
-3

where Tx is the period of the wave, and X is the sine
wave amplitude.
If p 1is given by

4
&
S X
p'Te (5)
X
equation (3) ylelds o
i
P(x,T) =1 -e (6)
which 1s associated with a Poisson distribution. Equitions (5)

and (6) apply to a function, or series of events, in which
each event is independent of all previous events. We are
interested in what p 1is like, and in turn P , for phenomenon
such as the gust encounter of airplanes.

Some extensions to the theory of reierence 1 follow.

Successive derivatives of equation (3) are
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%% = %—- L p{x,t)dt (1)
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Boundary conditions indicated are as follows. Equation (3)
indicates

P(x,0) = 0 (9)

P(x,») = 1 (10)
Equations (1) and (7) indicate

dP i

- = (11)

Tl Tx

Two ways are thus available for establishing the prob-
ability function P from a given p . One way is to make
direct use of equation (3). A second way is to use equation (8),
integrate, and, in the process, make use of boundary conditions
(9) and (11).

In reference 1, two general forms of p were assumed, and
associated results for P were established. We conclude this
section by presenting two more forms of p that are of possible
interest. The first assumes that the p function is repre-

sented by two exponential functions as follows:
\‘L g ‘t
- = -{1l+n)/4—
e (11DT \ ]T
T plx,t) =2 =1}e e . (12)

where n is a "family" variable; note, this representation of
p yields p(x,0) = 0 . The associated P(x,T) curves, as
established vy either of the two approaches described, are given

as follows:

Results for p and for P are shown in figures 1 and 2.

In the second case, we assume p 1is in the nature of a

Rayleigh-type distributicn, or
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The derived result for P is
. 7 T
P(x,T) = erf (2—- T—) (15)
%
These functions are shown in figures 3 and 4, in comparison to
the results given by equations (4), (5), and (6}.
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EXPERIMENTS WITH REAL FUNCTIONS

do not appear tc have been made. Some numerical experiments
were made, therefore, to gain an insight as to thelr makeup.

Three different type functions were examined:
1) A random function as obtained from a random number

f [] Studies to determine the actual nature of the p function

. generator.
i} 2) The vertical acceleration record as obtained from an
{

airplane traversing continuous turbulenec=z.
ﬁi} 3) The measured vertical veloclities of atmosgheric

turbulence.

. Results obtained are described in the following sectlons.

Random function.~ Typlical p functions as deduced from a

2

random functiocn (in this case, a Gaussian-white-noise function)
are shown ir figure 5. Two curves are shown, one for a re-

: sponse level of .250 , the cther for a level of 1o, where o
B denotes the rms value of the function. The mest striking as-
[ pect noted is the initial rise in the function to a peak and
y~f then the fali-off thereafter; this should be contrasted to the

n = o function shown in figure 1, which applies to a series

5%

IQE of independent events. Further insight is galned 1f the ' p
functions are plotted in semilog form, as shown in figure 6.
We see that, after the peak, the function behaves in ex-
ponential fashicn, thus indicating that, when the interval

g
i

between crossings is greater than some vaiue, events behave
o in independent manner, as might pe expected. Figure 6 applies 3
to crossings of a positive level, cr crossings of a negative

e level. If we consider consecutive crossings, regardless of

sign (see sketch in figure 7), then results as shown in

N——

figure 7 are obtained. The main difference tc be noted in the
value is one-half the

7

results of figure 7 is that the
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value of the 10 results shown in figure 6, which of course
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i should fcllow. A very definite exponential benRavior beyond
§

4 t of about 3 seconds 1s noted in figure e
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Vertical accelerations due to gusts.- The p function
that was found by analyzing an actual vertical acceleration
record obtained during an airplane gust encounter is shown in
figure 8. The dashed line represents a fitted exponentia.
function to the data at high t . We note, again, a rise in
the function to form a peak at low values of t . The dotted
curve and the dashed curve considered in combination corres-
pond roughly to the n = 6 curve in figure 1. Note, it 1s
because of the results shown in figures 5 and 8 that a develop-
ment of the functions shown in figures 1 and 2 were made.

The fact that the p function shown in figure 8 does not
behave in exponential fashion all the way to t =0 has a
physical interpretation. The n = «» curve in figure 1 applies
to a sequence of completely independent events. For physical
systems, however, successive response values within short
intervals of time cannot be independent cf one another because
of the response characteristics of the system. Consider
figure 9. The top sketch depicts a random input to a system
under consideration. The second sketch denotes the impulse-
response function of the system, here folded over as in the
sense oIl the superposition or convolution integral. The
bottom sketch denotes the response that is being developed
(the integration of the product of the top and middle
sketches). VW2 note the contrast of considering short time
intervals o1 response, compared to long time intervals.
Consider, for example, the cluster of large peaks in the 1input
in the region a . These peaks cannot come through ir an
indeper.dent way in the output tCecause of the averaging out, or
"smearing" out properties of the system response characteristics.
Thus, level crossings in the response in the region ot a (or b
or ¢c), are not strictly independent of one another. However,
what happens in the region b 1s independent of the region a ,
because the system has lost all memory of what was taking place
at a . In the same way, the response at c¢ 1s independent of
what has occurred at b or a . Thus, in reference to the p
curves, such as shown in figure 8, it is plausible that the

7
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results at the larger t values should behave in the manner
of independent events (an exponential fall off) but that for
low t's (which fall within the characteristic response time

of the system), there should be a marked difference in compari-

son to the independent event results. Note, until a more
thorough study is made, we must admit that the results shown
in figure 5 suggest a possible anomaly relative to the dis-
cussion just given of figure 8. Figure 5 applies to a random
sequence of numbers, as obtained from a random number
generator; presumably each number generated should be inde-
pendent of previous numbers, and thus we might expect that
results should conform to the n = » curve of figure 1. The
is a marked drop-off near the origin, however, as is ncted in
the airplane response results given in figure 8; the reason
why thils drop also appears in the case of the random functicn
is not clear.

Vertical gust velocities.- The vertical gust velccity

record shown in figure 10 was analyzed for the intervals be-
tween level crossings. Results for the p function found
are shown in figure 11. We note the tendency for the results
to drop off near the origin, as with the acceleration results
of figure 8. Reasoning along the lines used in connection
with figure 9 should alsc apply to these results. The laws
of fluid motion and the equation of continuity dictate that
turbulence velocities in the proximity of one another cannot
be independent of one another. We know that turbulence ve-
locities are described by a correlation function; the turbu-
lence velocities at one point are not independent of the
velocities at another point unless the separation distance

is large enough to make the correlation between the ve-
locities at the two points essentially zerc. This separation
distance is generally on the order of the integral scalie of
the turbulence, which, for atmospheric turbulence, appears to
be in the order of 500 to 1000 ft. Thus, if an airplane is
traveling at 5900 rps, velocity peaks occurring within-a 1 to

second period are not necessarily independent of one ancther.
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Unfortunately, it 1s not possible to infer the quantitative
nature of the p function for atmospheric turbulence from
figure 11, for two main reasons. One, the turbulence 1is not
strictly stationary, as can be seen in figure 10. JSecond, the
record length 1s not long enough. The experiment is in need of
repeating with a record that 1s more stationary ana which is
considerably longer, so that statistical reliavility and a
quantitative measure of p can be obtained.
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EXAMPLE PROBABILITY CONSIDERATIONS

In this section we show how specific probability results
may be obtained. Examples are given for the situation of an
airplane encountering atmospheric turbulence. For this
situation, it has been found convenient to express load ex-
ceedance results in a form such as shown in figure 12, see
references 2 and 3; in this figure, N denotes the number of
upward crossings per second of the load level x , N0 is the
number of upward crossings per second of the mean or l-g level,
and A 1s a structural response quantity which relates the
rms value of the response x to the rms value of the gusts w
by the relation

o. = Ao
X w

Denote the value of the curves by f(%) s and thus N = Nof(%)
Since N represents a statistical average, the average repeat
time for a crossing is

1

T N

which makes the abscissa in figure 2 appear as
= m X %
T LNof(A) (16)
X
This applies to either a positive gust encounter, or a negative

encounter. If encounter is considered regardless of sign, the
average repeat time would be one-half of Tx , and thus 3—

=X
would be twice the value indicated by equation (16). It is of
interest to note that equation {16) also applies to the number
of times n the value of % will be reached on the average

in a time T ; thus,

X
n TNOf(K)

Consider now the following problem. What is the probability

that an airplane will encounter a value of % = + 60 fps in
10,000 hours of flight at 20,000 ft altitude, assuming that

No =1 and that the n = 6 curve of figure 2 applies. (Note

10
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values of % in the neighborhood of 50-60 correspond to

structural design values due to gust encounter.) From figure l¢
we find f(60) = 1.5 x 10”7 , which gives

T = 10,000 x 3600 x 1 x 1.5 x 10!
- = 5.4

From figure 2 we find p = .9981 ; this means that if the experi-
ment were repeated 1000 times, one could expect at least one
encounter of % = 60 in 998 of the cases, and 2 cases should
be free of this encounter. Note, on the average, there would be
5.4 encounters of the 60 level during the 10,000 hours of fligh:

Second example: establish the probability of encountering -
% = 50 value during a one-hour flight at sea level in conditiocrns
which are 2.5 times as severe as on the average; take No =1
The f(%) value for this case may be found from figure 12 by
making two adjustments. The curves in this figure reflect
automatically the proportion of time the airplane is in turbulence
on the average. For the consideration of a continuous emersion
in turbulence, the ordinates should be divided by the intercept
at % =0 (for the h =0 altitude, this intercept is .7). The
consideration of severities greater than average is taken into
account by dividing the given % value by the factcr of in-

crease, and then to use this newly found value for % , thus

; = ggg = 20 . For this example, f 1is found from figure 12
to be f = .0013 . Equation (16) gives
1
= 1 x 3600 x 1 x ,0013
X

4.68

Figure 2, n = 6 , gives in turn, P = .9956 . This example
shows the hazards of operating in conditions which are known to
be much more severe than the average, even for reiatively short
periods of time. Considerations of this type thus may be helpful
in establishing whether or not certain missions should be flown.
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CONCLUDING REMARKS

Extensions to the theory of the "first encounter" problem
have been considered herein. Some numerical experiments were
conducted with several time history functions to establish the
nature of the probability density function that is associated
with the time intervals between like crossings, and which is
basic in the determination of the probability function that a
certain level of the phenomenon under consideration will be
reached in a given exposure time.

It 1s found that, for the functions studied, which in-

cludes realistic gust acceleration and vertical gust velocity
time histories, the probability density function for the inter-
val between like crossings behaves in exponential fashion for

agreement with that which applies for the case of a time
sequence which 1s composed of a series of independent events.
For the short intervals between crossings, the density function
seems to depend on the type of time history being considered.
The inference is that the density distribution function for
intervals between crossings is dependent on the autccorre-
lation function of the time history. The fact that, at large
time intervals, there is little or no correlatiocn, seems

oy

synonymous with the fact that the events are independent. At
short intervals, where correlation exists, the events are not
independent.

L ieoatioi .

Further study should be made of realistic gust velocity
records having greater lengths than those available for the
present study, so that the characteristic density distribution
function for gust encounter can be established more reliably
than herein.

12

- i the larger intervals between crossings. This behavior is in
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