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FINAL REPORT 

Software Tools for Climate Simulation 

AFOSR grant 74-2732 

Principle investigator: John Gary 
Computer Science Department 

University of Colorado 
Boulder, Colorado 80302 

Our objective was the design and implementation of software 

tools to aid in the programming of atmospheric simulations based on partial 

differential equations. In the course of this project we designed three 

such software tools. 

1) A macro preprocessor. 

2) A vector extension to Fortran intended either for serial 

or parallel computers. 

3) A finite difference extension to Fortran. 

These are described in three CU technical notes which are 

included with this report. 

We did produce these initial designs, but we failed to imple- 

ment much of it. A lexical scanne, of about 700 lines was written and 

mostly debugged. A skeleton of the finite difference operator extension 

was written (around 2000 lines of Fortran), however it is not complete. 

It became clear that we needed to improve the methods we were using to 

implement these designs. Our intention is to drop the code we did pro- 

duce and start over using a syntax-directed compiler generator. There are 

several possibilities for such a generator, and we have not yet selected 

one. It will take us some time to redesign our software to use the 

compiler generator and to become familiar w.th the generator. Therefore 

we will probably not resume the implementation until the summer or Fall 

of 19/6. 
--  I ÜH 
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This summer I designed and programmed a software package (HYPPACK) 

for the solution of a class of partial differential equations common in 

atmospheric simulation.    I have not given up on the three software tools 

mentioned above.    Within the next two or three years I hope to at least 

complete a first version of the macro preprocessor and the vector exten- 

sion.    The HYPPACK package will give us a good program package to which 

these tools can be applied and permit comparisons to be made.    Also we 

wanted to have some tangible output during the rather lengthy period 

required to learn how to apply the compiler generator to our problem. 

This software package is designed to solve a system of prog- 

nostic equations coupled with a single elliptic equation.    Examples of such 

systems are the Navier-Stokes equations, an anelastic cloud model, or a 

vorticity-stream function model.    The code allows a second or fourth 

order finite difference approximation to be used in space.    A second 

order leapfrog or fourth order Runge-Kutta-Fehlberg ODE solver can be 

used for the time discretization.    We use a code written by John Adams 

at NCAR, which is based on deferred corrections, to solve the elliptic 

equation.       His is in turn based on the package of Sv/eet and 

Swartztrauber for the direct solution of elliptic equations.    The user 

of this package need only program some simple subroutines which define 

the coefficients in the differential equations in order to solve these 

equations.    One of the main problems with this code is the proper 

specification of the boundary conditions for the prognostic equations. 

We have enclosed a fourth CU technical note which deals with this question. 

Another problem is the computational efficiency of the code which I 

suspect is now not too good due to the generality of the code.   We plan 

to attempt to solve this problem by the use of a macro-preprocessor, 

— i i (aMH „^^ mm       - ^^i      r   
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initially IFTRAN or M0RTRAN2, eventually our own.    We also plan to use 

the macro-processor to generate two versions   from a single program, one 

using LCM variables and another using variables contained in central 

memory.    One, two and three dimensional versions could also be generated 

from this same basic program.    Although there are several  interesting 

programming questions connected with the development of this package, 

the most serious problems will probably be of a numerical nature.    The 

code is currently .unning although we have not checked out the elliptic 

equation solver and the graphics output is not yet included.    Also 

considerable cleanup of the code is required and the users manual must 

be greatly improved.    The code I wrote is about 1800 lines currently, 

and the elliptic equation solver from NCAR is around 2000 lines.    Both 

are written in Fortran and should be reasonably portable. 

i 
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0. Introduction. Our objective is to provide a macro preprocessor 

for a language similar to FORTRAN. This is a "mesh operator" language 

(PDELAN) intended for the construction of finite difference codes for 

partial differential equations. It is described in a companion report 

[8]. The PDELAN compiler generates a FORTRAN object program. These ideas 

have not been implemented at the time of this writing. 

The macro preprocessor could be used with a modified version of 

FORTRAN in which blanks are delimiters and certain "keywords" such as 

IF, FORMAT, DO, etc., are also reserved words which cannot be used as 

names by the user. The syntax of the macro preprocessor is intended to 

be natural to a FORTRAN programmer. Its most frequent application, 

such as the propagation of COMMON declarations throughout subroutines, 

should be easy to remember and use. It would place the error messages 

from the PDELAN compiler in the original source code. PDELAN contains 

structured control statemfits such as the following [13] 

IF ... THEN ... ELSE ... ENDIF 

REPEAT ... UNTIL ... ENDREPEAT 

The macro preprocessor permits long names (up to 29 characters) which are 

shortened to 6 characters on output (with name conflicts avoided). It 

also permits, through conditional macro expansion, the generation of code 

which is more machine independent. It is not intended to allow user 

defined language extension, except trivial extensions. It seems to us 

to be too difficult to include good error diagnostics in a macro extension. 

Also the macro extensions are probably too slow. Thus we place the pro- 

cessor for the MflN language in a compiler which follows the macro prepro- 

cessor. This compiler for the PDELAN language is described elsewhere [8]. 

 ■*****^-  ■. ^ - -—■- — ^  -- 
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This is a continuation of work started at NCAR in 1970. A first 

version of PDELAN for solving partial differential equations was 

developed by Gary and Helgason [1]. A set of graphics commands was 

added to PDELAN by iocs and Gary [2]. This code is in light use at 

NCAR (fewer than 10 people use it). However Helgason wrote an improved 

version of the macro preprocessor called FRED which has been further 

improved by Dave Kennison [5]. FRED contains macro capability, sub- 

scripts bounds checking, a "TIDY" feature to renumber and indent a 

deck, and other features. However, it does not contain difference 

operators or graphics commands. Here we propose a macro facility somewhat 

different from FRED. It will not have the subscript bounds checking or 

the TIDY feature. It will have the capability to modify and generate 

tokens, perform conditional macro expansion, and execute macro-time 

expressions. It will be based on the PDELAN language in which blanks 

are delimiters and the keywords are reserved. PDELAN contains many 

FORTRAN features such as COMMON, SUBROUTINE, the same type of data 

structures (or lack of them), and the same I/O structure. However, it 

does have structured conditional and repetitive statements such as the 

PASCAL language or the preprocessors RATFOR, FLECS, MORTRAN, IFTRAN 

[14]. 

One of our main objectives is to make the macro syntax appear nat- 

ural to an experienced FORTRAN programmer. Thus the macro definitions 

are similar to subroutines and the macro calls are similar to a FORTRAN 

function call. The macro-time statements and conditional compilation 

are similar to FORTRAN although we did use the IF ... THEN ... ELSE 

    —  - 
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construction. We feel our macro preprocessor is easier for a FORTRAN 

programmer to learn and remember than the macro preprocessor for 

FORTRAN called MP/1 by Macleod [6] or the preprocessor imbedded in the 

LLL FORTRAN [3]. MP/1 is more powerful since it is a pattern matching 

macro and it has a good set of macro-time commands. The LLL macros do 

not have much macro-time capability.  The macro processors designed 

for FORTRAN (FLECS. MORTRAN. IFTRAN. RATFOR) that we are familiar with 

do not ha'e enough macro-time commands or sufficiently flexible macros. 

u^-^^^^u hUfc^^^MM^^-JIfc-..-.- .„■^■^■. .^M^m^mtdutt^äätlm. ^.-^ --:- -: ^ j^Jha^ifciMk^AJBM^Ah^i. 
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1. The syntax. In order to simplify the macro preprocessor 

a modified FORTRAN syntax is used in which blanks are delimiters and 

the keywords are reserved. Tokens can be recognized by a lexical scan 

ahead of the macro expansion and thus also ahead of the syntactical 

analysis. Macro calls are recognized by the appearance of a macro 

name with no special delimiting character or pattern matching required. 

The syntax of a macro definition is similar to that of a FORTRAN 

subroutine or function. The macro definitions can be stored as a string 

of tokens rather than a character string which should permit a more 

compact internal representation. The token types include integer and 

real constants, identifiers, and the operators or delimiters +-*/** 

..:()=. The delimiters $ # and ' are also used. The first two are 

used in conjunction with the macros, the last is used to delimit 

character strings. The last three characters have a different form on the 

keypunch than the teletype form given here. Various periott-delimited 

operators are also used (.LE. .LT. .GT. .NE. .EQ. .AND. .OR. .NOT. 

.NULL.). Boolean constants (10B) and Hollerith constants ("ABCD" 

4HABCD) are also used. Format specifications must be included as tokens 

(for example, 2E10.3,2P,2PE10.3). A nonblank character in column six 

denotes a continue card, which is almost the standard FORTRAN convention. 

Columns 1 thru 5 can be used only for statement labels. 

In order to use a compiler writing system such as that described 

by Cohen [(5], we might allow only identifiers, integers and character 

delimiters as tokens. These tokens can be recognized by a lexical 

scanner built into the compiler writing system. 

 ,„ 
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The statements are almost "free-form". They may start anywhere 

on the card after column bix. Column six it  used to mark continuation 

cards. Only statement labels may appear in Columns 2 thru 5. The 

statement termination ";" can be used to place more than one statement 

on a card. The added statements can be labeled. If the first token 

of the statement is an integer constant, then this constant is a 

statement label. In order to produce better error diagnostics, 

it was decided not to attempt to make the macro preprocessor independent 

of the lanqaqe syntax. It is also an advantrqe if the macro preprocessor 

can recognize statement labels. Eventually we will even partially 

parse the input ahead of the macro explansion in order to indent the 

input source proaram according to the nestinq level of the source 

statements. 

2. The macros and macro-time statements. All the "macro-time" 

statements are preceded by a name which starts with the delimiter "%" 

or by the delimiter "%"  itself. The character used for this delimiter 

is system dependent, it does not exit on the KRONOS timeshjre system. 

These delimiters can be easily altered. There are two types of macro, 

a statement macro and an expression macro. The body of the statement 

macro consists of one or more statements. Such a macro name can 

be used as a statement in the PDELAN language. The macro name is an 

abbreviation for the macro body which replaces it prior to compilation 

of the PDELAN program. ror example, consider the following abbreviation 

of a subprogram header block. 

%MACR0 COMMONBLKA 
COMMON A,E,C,D,U 
COMMON /B/ H,DLX,DLY 
INTEGER HX,UX 

%ENDMACR0 

iBMMMH^   
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The body of the second type of macro is an expression,  «oth types 

of macro may have arguments. The following is an example of an expression 

macro definition and usage. 

The definition is 

%EXPMACR0 FN(F,X) • EXP(F(X)) 

An example of the usable is 

T = FN(SIN,W+1.) 

The second statement would expand into 

T + EXP(SIN(W+1.)) 

The definition of this type of macro is a single statement and 

therefore does not require the %ENDMACR0 statement. More than one 

expression macro may be defined in a single statement. For example 

%EXPMACR0 UT ■ U(N1), U2 ■ U(N2) 

Macro calls may be nested, that is a macro definition may contain 

a call to a macro. Recursion is allowed, that is a macro may call 

itself. However, a macro definition may not contain another macro 

definition. A statement number may be placed on a statement macro call, 

for example 

100 INITIALIZE 

In this case a CONTINUE statement is generated ahead of the body of the 

macro INITIALIZE. 

The scope of the macro definitions. When a macro definition 

is encountered the name of the macro is placed in the symbol table 

and its body is placed on a "definition stack." To avoid cverflow 

of this stack it is possible to limit the scope of a macro definition. 

The command %MACR0BL0CK indicates the start of a "block." All 

—- -. ■ ■ —'- __.. __. __ 
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macros defined within the block are reqarded as local  to the block. 

When the command %ENDMACR0RL0CK is encountered all  these local macros 

will  be removed from the symbol  table and their definitions popped from 

the definition stack.    Macros not within such a block are reqarded as 

qlobal  and cannot be removed from the definition stack.    In addition, 

macros defined within a subproqram are available only within that 

subproqram.    The  WOOBLOCK and  %ENDMACR0RL0CK commands cannot 

occur within a subproqram. 

Macro formal  parameters are local  to the definition and can 

be used as names elsewhere in the source deck.    A macro definition 

must appear ahead of its first usaoe or call. 

•*.    Macro-time statements.       These are declarations, expressions 

and the conditional  control of macro expansion.    These statements are 

executed at "macro-time," that is, when the expansion is performed. 

In this first version only intener variables can be declared at macro- 

time, and these variables must be nlobal, they cannot be declared within 

a macro definition or a macro block.    An example of a macro-time 

declaration of an integer variable is the following 

^INTEGER    N,M 

There must net be a blank following the %, it is part of the identifier. 

Expressions involving the operators + - * / and integer variables 

are allowed.    For example 

%      M ■  (N+l)/2 

The % alone denotes a macro-time replacement statement. 

l:.^..^!A^.-^.-J....  ■ ■>  .W-   .     . ^^1^*10,11**^****^.^^-*****^^*^-^^  — 
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Conditional expansion. A Boolean expression can be evaluated 

at macro-time to control macro expansion. For example 

UP N .LT. 0 THEN 
PRINT 250, X,Y,Z 
KC ■ KC+1 

%ENDIF 

If the Boolean is true then these two statements will be included 

in the code to be compiled, otherwise they will not. Note that THEN 

is a reserved word. The %IF THEN %ELSE %ENDIF compound statement 

must not overlap a macro definition, it must be completely within or 

completely outside a macro definition. 

The Boolean expression can involve relational operations on 

macro-time integer expressions. Comparisons(.EQ. or .NE.) between 

character strings are allowed. For example 

%MACR0 M(X) 
KIF X .EQ. A THEN CALL SUB(A): %ENDIF 

8 

XENDMACRO 

If the actual argument of a macro call of this macro M is the token 

A, then the code 

CALL SUB(A) ; 

will be added to the output. These conditional statements can be 

nested. Note that %ELSE and %ENDIF must be used and not ELSE or ENDIF. 

4. Generated symbols. Statement, labels distinct from any used 

in the source code may be generated by use of the symbols #L(3) or #L{N) 

where N is a macro-time integer variable. Within each macro call 

#L(3) represents the same statement label different from the label 

generated by #L(3) on other calls of this macro. The label generated by 

§l(H)  will depend on the value of N within a given call of the macro, and 

      - - -    - --    —■ -- -  ■     - ■- ■ ■— --   •—-—*■ 
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will also be different on different calls of the macro. As an example 

conside*' 

%MACR0 SUM(S,A,N) 
S=0, 
DO i (1) K-1,N 
#L(1) S=S+A(K) 
^ENDMACRO 

A generated name, distinct from other names in the program, which 

starts with "I" is obtained from #1(1) or #I(N).  For names starting 

with "E" the symbols #E(1) or #E(N) are included. These can be used 

to generate "local" variables within a macro call. 

In addition the macro preprocessor wil1 shorten 'onq identifiers 

to 6 characters. This will be done by truncation provided no conflicts 

arise, otherwise the last character or characters will be modified 

until a unique name is obtained. This modification is carried out for 

each subprogram. Therefore external names should not exceed 6 characters 

 -  ■ ■ .^„^^^Jt^jMM—IlM 
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5.    Commands to control  expansion.     These are identifiers 

whose first character is %.    They constitute a complete statement in 

PDELAN.    Mot all  of these will   be implemented initially. 

XNOLIST - 

%LIST - 

%NEWPAGE OR 
%NEWPAGE(ID) 

cease listinq source code 

list source code 

skip source listinq to new paqe. Print identifier ID on 

top of page, 

%L0NGNAMES - at end of preprocessor source listinq print lonqnames and 

their shortened form 

.'ItAMEMAP - list line numbers where each identifier is used 

:.'FINUS - end of source check 

%-MACROMAP - list line numbers where macros are definied or used. 

XMACROBLOCK -        indicate start of a block of macro definitions 

%ENDMACR0RL0CK - indicates the end of a block of macros.    When this 

command is encountered the macros in the block will  be 

popped from the macro definition stack.    Therefore 

macros within the block are not defined    following 

this card.    This permits the use of "local" macros 

and may prevent overflow of the macro stack. 

LL  ■     !■ —  I     II    !■! I   *      " •"  "— 
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6. Error diagnostics.  When an error is detected we will print 

the error message with the listing of the original source. If the error 

is inside a nested set of macro calls, then the error message will be 

printed after the innermost macro call. However, the name of each macro 

called mithin the nested set will be printed along with the line number 

from which it was called. We will try lo print the innermost line of code 

along with a pointer to the token at which the scanner stopped, and of 

course a message to indicate the type of error. The error recovery will 

try to resume at the next statement inside the Innermost macro. Ue are 

jsing recursive descent to parse the PDELAN variant of FORTRAN, and 

we may have some difficulty achieving good error recovery. 

Note that good error messages and recovery probably requires the 

compiler which follows the macro expansion to be designed together with 

the macro preprocessor. Errors which the compiler finds should 

probably be printed in the original source code which is input t  .,e 

macro preprocessor and not in the input to the compiler which is tne 

output from the macro preprocessor. We regard the output of good error 

messages in this context as a difficult problem. Note that our mesh 

operator variant of FORTRAN (PDELAN) produces FORTRAN code as output 

which must then be input to a FORFRAN compiler. The code passed to 

the FORTRAN compiler by the mesh langage compiler should never contain 

any undetected errors. The user should not be required to inspect the 

FORTRAN output any more than a user need look at assembly langage 

output from a FORTRAN compiler. 

gUttgjatMtti^^^MÜli^ii ^^^^^^^^^^g^^j^^ä^gUIgm^l^l^^^tl^k. -----■■■     , ^^^gl^M^j^^M^J 
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7-    Desirable additions.    We should allow array % variables and % 

variables of real or double precision type.    For example 

%REAL ARRAY    A,  B(10) 

^INTEGER XM(10) 

The usual FORTRAN functions should be available within the %  statements. 

Also, X variables could be initialized within their declarations. For 

example 

%REAL CPI " 4.*ATAN(1.) 

DATA PI/CPI/ 

The DATA statement in the output program sets the value of PI to ir. 

Note that a %  variable which appears outside a % statement is transformed 

to a character string in the output program. Thus, CPI becomes 3.1416... 

using the number of digits carried by the machine. 

A macro-time repetition command.  This is the 

%REPEAT ... % UNTIL ... %ENDREPEAT 

command. The Boolean expression following %UNTIL is the same type as 

that used with the %IF command. Note that we have not included labeled 

% statements or a %G0T0. This is probably a mistaken position from 

which we will have to retreat. 

The & macro formal parameter marker.  A formal parameter in a 

macro definition can be indicated by an identifier as in a FORTRAN 

subroutine. An integer constant or an INTEGER variable prefaced by a 

& could also be used. For example &(1) or &(N). This type of notation is 

found in many macro processors. For example suppose the macro has 

d  variable number of arguments and is to generate a subroutine call for 

each argument. 

  __ 
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^INTEGER N 
%MACRO PLOTV 

%  N=1 
%REPEAT 

CALL PLTr{&(N)) 
% N=N-n 

%UNTIL &(N) .EQ. NULL 
%ENDMACR0 

Then the macro call 

PL0TV(U,V) 

would generate the statements 

CALL PLOT(U) 
CALL PLOT(V) 

Note that we have added a macro-time repetition command 

%REPEAT mriL   

We have also added a reserved word to represent the null token, 

namely NULL. 

Symbol table information. Our macro preprocessor is coupled 

to the compiler for PDELAN. This compiler has a symbol table containing 

information such as arithmetic type, array dimensions, etc. This infor- 

mation should be available within %  statements. This can be done by 

providing another function call for the % statements (a suggestion of 

Tom Wright from NCAR). For example 

%    Nl ■ ARITHTYPE (&(1) 

% N2 ■ DIMEN(&(1)) 

%    N3 - DIMEXTENT(U,2) 

The macro actual parameter substituted for &1 must be a single token 

which is an identifier. If the variable U is declared 

RiAL U(20,30,10) 

and &(1) ■ U, then N2 = 3 and N3 = 30. 

IfMlliMiMÜtlill ■ -...■.^, ....*- ,....  ....^-^     ■■■...:,—■-I..  i.......  ..,...,.— . .c.^...     ..:—■,..... ,.,. 
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A parenthesized list could be used as an actual argument. 

For example, consider the macro call 

MAC(X,(A,B),Y) 

In this 1(1) would be replaced by X, 1(2} by A,B. The parentheses are 

dropped. Also 1(2).1 is A and &(2).2 is B. A similar construe is 

used in the macro preprocessor of Macleod [6]. 

A second type of expression macro. This type of macro allows 

macro-time conditional statements to be used to select the expression 

which defines the macro. A new type of statement is allowed which 

permits a concatenation of tokens. This statement is defined by 

occurrence of the macro name on the left of the "=" with a string of 

tokens separated by blanks on the right. The macro name can also 

appear on the right.  The macro name represents a string of tokens 

which is null when the macro is entered. The contents of this string 

can be changed by the concatenation statement as the sequence of 

macro-time statements within the expression macro are executed. Only 

macro-time statements are allowed in the body of this expression macro. 

The contents of the string when the %RETURN is executed define the 

macro. For example consider the following definition of an A format 

specification. Here NWORD is a global %INTEGER variable. This type 

of macro is distinguished from the previous %EXPMACR0 by the absence of 

the "=" in the %EXPMACR0 statement. 

%EXPMACR0 AFORM 
tlf  NWORD .FQ. 4 THEN 

%    AFORM - 20A4 %ENDIF 
IIF NWORD .EQ. 10 THEN 

%  AFORM = 8A10 %ENDIF 
%   AFORM ■ FORMAT (AFORM) 
%RETURN 

%ENDEXPMACRO 

1. ^m .. .^, A .. , ._.  
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The following macro may not produce the same result as the one 

above. 

%EXPMACR0 AFORM 
%INTEGER N 
IN« 80/NWORD 
%  AFORM ■ F0RMAT(N A NWORD) 
%RETURN $ 

%ENDEXPMACRO 

When a macro-time %INTEGER variable appears in the expression macro 

string it is replaced by the character string which represents its 

value. If NWORD ■ 4, then the token string (N A NWORD) consists of 

5 tokens (20 A4). If these tokens are converted back into a character 

string before the output is given to a compiler, then this %EXPMACR0 

should produce the same result as the first macro. If the tokens are 

input directly to the syntactical scan of a compiler, then these two 

macros might not yield the same result. They would certainly output 

different token strings. 

Macro-time string variables might be included which could incre«*:- 

the power of this second type of expression macro. 

A pattern matching macro.  It should be possible to insert a 

pattern matching macro into the preprocessor ahead of the lexical 

analysis which produces the tokens. If no pattern macros are defined, 

then the pattern matching could be suppressed. Pattern matching and 

token generation with symbol table lookup are said to cost about 

the same [11]. The pattern macro could be modeled after those in 

M0RTRAN2 [14] which is fairly easy to understand and implement and 

probably provides sufficient power. 
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1. Introduction. We are mainly concerned with the inclusion 

of a vector capability within a higher level language used to construct 

codes for the solution of partial differential equations. The vector 

constructs are modeled after those in APL, exc pt that we impose 

restrictions in order to produce efficient programs on a parallel 

computer such as the Texas Instruments ASC, the Cray computer, or a 

new version of the Illiac IV. The language should be designed so 

that it is easy for the user to differentiate between those constructs 

which can be compiled efficiently and those which can not. We should 

also impose restrictions so that implementation of an efficient com- 

piler is not too difficult. The language should be designed so that 

it can be implemented on a serial computer by a preprocessor which 

generates an object FORTRAN program. 

2. Vector definition. The usual scalar variables and ex- 

pressions are included. The scalar types are logical, real, complex, 

double, integer. Arrays can be declared with fixed dimensions, for 

example 

REAL ARRAY A[10,20], B[-10..10.30] 

Note the use of the brackets. A[10] is equivalent to A[1..10]. The 

language could permit dynamic storage allocation, and perhaps recursive 

procedure calls. If so, then an efficient static storage allocation 

should be included for scalar operations involving arrays. 

Vectors rap be defined explicitly as follows //3., X+2.,Y,0.// 

Unlike APL the // is used to explicitly bracket vector definitions. 

■MMM^dÜM . 1  mmtMttMtamat^ _ _ 
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An Increment vector can be defined as 2. .13. .2 which has the 

vector value //2,4,6,8,10,12//.  This definition was suggested by 

Gerry Fisher of the Burroughs Corporation. It is similar to a con- 

struct used in TRANQUIL. This vector is intended for use as an 

array subscript. It would probably have a different internal representa- 

tion than the other vectors. It permits efficient access to the com- 

ponents of a vector. The increment vectors are declared as follows. 

INCJECTOR IV,JV 

and can be set as indicated below. Here N,M, and I can be integer 

valued expressions. 

IV=N..M..I 

The only arithmetic operation which can be performed with these vectors 

is addition or subtraction with a scalar integer expression, for 

example, 

IV=(2..37) + 5 

Then IV has the value 7..42, or 7. .42. .1.    A vectjr may be created 

from an array by use of a vector subscript.    For example, 

REAL ARRAY A[-10..10]   ,  B[30] 
INCJECTOR IV 
IV=1..21 
A[IV-n] = B[IV] 

Here we deviate from APL, since the origin of the subscripts need 

not be zero or one.    Also we allow array declarations in order to 

obtain efficient computation with scalar array elements. 

The rank of a vector is defined as in APL to be the number 

of (vector) subscripts.    The rank could be obtained from a RANK 

function within a program.    For example, 
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REAL ARRAY A[20,2Q,10] 
INCJECTOR IV.JV 
JV = 1..5 
IV = 1..10 
N = RANK(A[IV,1,JV]) 

For a declared array, whose rank is fixed, we might allow RANK(A), 

which would yield RANK(A) = 3. In this case N would have the value 

2, since there are two vector subscripts. The "dimension1 of a 

vector V is another vector with rank one whose components are integers 

equal to the number of components in each vector subscript of V. 

In the above example, the dimension of the vector A[IV,1,JV] is 

//10,5//. The. dimension could be obtained by a function call 

DIMEN(A[IV,1,JV]). This is essentially the same as in APL. Perhaps 

the dimension should be //10,1,5// in this case, but we prefer to 

ignore scalar subscripts. 

Storage can be allocated to dynamic vectors, that is vectors 

whose dimensions, and hence the storage space required, vary during 

the computation. This may not be necessary for most PDE codes. These 

vectors are declared by means of a block declaration. Perhaps this 

block name could then be put in COMMON. For example, 

VECTOR BLOCK VBUF[2000] 
REAL VECTOR VA,VB,VC 
INTEGER VECTOR VN.VM 

END_VECTOR_BLOCK 

This construct could be inefficient, particularly for short vectors 

and certainly if these vectors are used in scalar expressions,  that 

is with a subscript containing a "FOR" index.    Perhaps arrays with 

dynamic storage allocation for subroutines or procedures is better, 

particularly if recursive calls are not allowed, and the dynamic 

allocation can be overridden to create a static allocation.    The 

I 
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dimension of a dynamic vector is set when the vector appears on the 

left of a replacement statement (which could occur within a subroutine 

call). For example, 

VA = //I.,2.,3.// 

A vector of type LOGICAL can be used as a subscript, in which 

case the vector is regarded as a bit vector in the sense used on the 

Illiac IV. For example, 

LOGICAL ARRAY IV[5] 
REAL ARRAY A[5] , B[5] 
IV = //1,0,1,1.1// 
A[1..5] ■ //I.,2.,3.,4.,5.// 

In the above 1 is assumed equivalent +o true and 0 to false. Then the 

vector A[IV] is equivalent to //1,3,4,5// , that is the subscript 

values corresponding to zero in IV are dropped. This gives a vector 

similar to the "monotone" vector in TRANQUIL. If a vector is defined 

by means of a general vector subscript, there may be no way to effi- 

ciently access the components on a vector computer. The components 

may all be in the same memory bank, or the location of the components 

may be too random for the vector access mechanism on the parallel 

comouter. The use of a logical vector as a subscript should permit 

efficient computation on a vector machine, provided the percentage of 

zeros in the logical vector is not too high. This depends on the 

flexibility of the vector access on the computer. 

3. Basic vector operations. The usual arithmetic operations 

are performed component-wise on vectors. This requires the vectors 

to have the same dimension, that is they must be conformable in the 

sense of APL. Comparisons may bo made between arithmetic vectors to 

form logical vectors of the same dimension. For example. 
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REAL ARRAY A[100]  , B[100],  C[100,20] 
INC VECTOR IV 
LOGICAL ARRAY LV TOO 
IV ■ 1..100 
LV ■ A[IV] < 0. 
B[LV] = 1. 
BC-LV] ■ 0. 

Here ^ represents the logical operator "not". For simplicity in the 

lexical scanner, and for ease of typing, blanks should probably be 

delimiters and reserved words should be used. In tnis case the opera- 

tors -, and < might be represented by NOT and LT. Note that the vectors 

on the left and right side of an assignment statement must have the same 

dimension. Again, there can be difficulty with the use of general 

vectors as subscripts. For example the following should be prohibited. 

A[//l.l//] ■ //I.,2.// 

since the storage assignment is not well defined. Perhaps subscript 

vectors should be restricted to increment vectors and logical vectors. 

A vector can be created from an array by using "*" as a 

subscript. In the above code segment C[M] would be a vector of 

dimension 100. 

4. indexed vector expressions. This is a construct which is 

not included in APL. We include it because it seems particularly well 

suited to mesh calculations for the solution of PDE problems. The 

following are some vector calculations which seem to us to be awkward 

using the APL notation for vectors. 

a. . = b. .*C.   for 1 S 1.J S H 
ij   iJ J 

ai ■ b..*Ci   for 1 < i ^ n 
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In APL the following operations 

I «IN 
J = IN 
A[I;J] - B[I;J] - B[J;I] 

yield 

A[I;J] l 0 

which is not what the notation suggests. 

We allow arrays and vectors to use subscripts which have been 

flagged as "index" vectors. Operations involving such indexed vectors 

are performed componentwise by matching the indices; that is, the 

operations are performed pairwise on the components with the same 

index subscript. Only logical or increment vectors may be declared 

index vectors. Arrays or vectors with such vectors used as subscripts 

are treated differently from the usual vectors. For example, 

INC VECTOR IV.JV 
SETJNDEX IV,JV 
REAL ARRAY A[100],  B[100,100] 
IV =  1..100 
JV = 1..100 
B[IV,JV] = B[IV,JV]* A[IV] 

Note that if IV ana JV are not indices, but only vectors, the operation 

B[IV,JV]* A[IV] 

is not allowed since the vector operands do not have the same dimension 

When index vectors are used the expression 

.$•( B[IV,JV] - B[IV,JV] ) 

yields the skew symmetric part of B. 

An indexed expression has an associated index list. The 

index list associated with an array consists of all the index vectors 

which appear as subscripts of the array. The index list associated 

with a simple binary arithmetic operation consists of the union of 

1           —-   .-~-~^*~*~-m~m*~~*~~*~*-~~~~* ^^^.^^^j—,,^*^^   .... .. I—MnilnWlllMl—iia^l 
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the index lists of the two operands. For example, the index list 

of the expressions 

A[IV], B[IV,JV]* A[IV] , B[IV.l]* A[JV] 

are the following 

IV,  (IV,JV),  (IV,JV). 

Note that the last operation is really a direct product. If one 

subscript of an array or vector is an index, then we require that all 

vector subscripts be declared index vectors. If one operand of an 

expression is an indexed expression and the other is a vector in which 

no Indices are used, then the operation could be carried out by 

regarding the first operand as a vector. Then the dimensions of the 

two vector operands must be the same. This provides a sort of mixed 

mode which permits indexed vectors to be converted into vectors. 

In a replacement statement each index of the expression on 

the right must appear on the left, however, those on the left need 

not appear on the right. For example, an indexed array may be equated 

to a scala-, however a scalar variable can not be equated to an 

indexed vector. A notation is available which allows the entire range 

of an array subscript to be identified as an index. Note that B[*,l] 

is a vector, whereas B[*l,l] is an indexed vector since the vector 

subscript is identified by a number and thus indexed. For example, 

B(*l,*2] = B[*2,*l] * A[*2] 

Vectors can be removed from the set of index vectors by the comnand 

DROPJNDEX IV,JV 

As an example of the use of index vectors in a finite difference type 

of computation, consider the following 

■aAUilllMMIIIiHdU ^m^^^M^mimmiti   im i     —■ --- 
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WC VECTOR 1.0 
SET_INDEX I,J 
REAL ARRAY U.V,W[64,-16..16,2], C[-16..16] 
I ■ 2..63 
J ■ -15..15 
Nl ■ 1 
N2 = 2 
U[I,J,N2] = U[I,J,N1] + DT*C[J] * (U[I+1,J,N1] - U[I-1 ,J,m])/DX 

It will be easy to forget to include vectors in a SETINDEX 

statement. The intended indexed operations using these vectors might 

be syntactically correct as vector operators. It might be desirable 

to build some redundancy into the language at this point by using 

special symbols for the indexed arithmetic operations. For example, 

+!,-!,*!»/!.**!• However, the use of special characters is trouble- 

some because character sets differ widely from one system to the next, 

and they have an awkward appearance. 

5. The INDEX_IF conditional statement. This statement allows 

a computation to be restricted to that portion of a mesh for which a 

Boolean expression is true. The mesh points are identifed by index 

vectors. For example, 

INC VECTOR I,J 
SET INDEX I,J 
REAL VECTOR U,V,W[100,100],X,Y[100] 
INDEX I« X[I]*Y[J] f  0. THEN 

W[I,J] ■ l./X[I] + l./Y[J] 
ELSE 

W[I,J] = EXP( V[I,J]) 
ENDJNDEXJF 

In this case the first replacement statement is executed only for 

those values of I and <1 for which X[I]*Y[J] ^0. The second replace 

ment statement is executed for the complementary set of values of I 

and J. The index list of each expression within the scope of an 

INDEXJF is extended to include the index list of the Boolean expression 

of the INDEXJF. Thus the expression l./X[I] in this example is 

 -  -■ ■ ■     ■   - -  — tM*kt^**Mmt^lktim»ät^mi* !  ! 
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evaluated over a different set of values of I depending on the value 

of J. If an index from the INDEXJF Boolean appears on the left side 

of a replacement statement, then so must all indices which appear in 

the Boolean. We say that the members of index list associated with the 

Boolean expression of an INDEXJF are "linked". In the above example 

I and J are linked within the scope of the INDEXJF. 

Expressions within an INDEXJF must be extended to contain 

all the linked indices. This conditional statement should compile 

reasonably efficiently on a well designed parallel computer. 

6. Additional vector operators. APL includes many operators 

which can be applied to vectors. Perhaps a mesh language does not need 

quite so many. Also it may be better to include these operators in 

the form of internal functions, since the names may be easier to read 

and recall, particularly with a restricted character set. Therefore 

we do not use special symbols as does APL. 

The compress and expand operators of APL are included as 

vector valued functions with two arguments. The first argument of 

compresses a logical vector and the second is an arithmetic vector. 

These vectors must be of rank one. The value of the compress function 

is another vector of the same arithmetic type as the second argument 

whose dimension equals the number of ones in the logical vector. For 

example, 

LOGICAL ARRAY L[100] 
REAL ARRAY U[100], A[100,100] 
VECTORJLOCK VBUF[1000] 

REAL VECTOR V,W 
END_VECTOR_BLOCK 
INCJECTOR I,J 
SETJNDEX I,J 
I = 1..100 
L[I] = U[I] < 0. 
V = COMPRESS(L.U) 

j-lB^^—j^^üj^^»^lj^^-^-^^i^^^ö4u^^—^^^^jl^lg^l Mi|||dMlg£|ittiMMilMi«MMIIiUM^iMM^MMl "-'-■- - '-- ■     ■- -- ---- ■■■ 
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In this example the vector V consists of the negative components of 

U. It is awkward to have the result of the compression be an indexed 

vector since the index as well as the vector must be set. If we allow 

V[J] = C0MPRESS(L[I],U[I]) 

then the notation would not be consistent with that used previously 

since both V and J would be altered. The EXPAND function is defined 

in a similar manner. The result vector has the same dimension as the 

logical vector. For example, if the following statement is added to 

the above program segment 

W ■ EXPAND(L[I],V) 

then W is obtained from the vector ll[I] by zeroing out the positive 

components of U. 

A reduction or inner product operator is included. In this 

case we do use a special symbol, namely •♦. If both operands are 

vrctors, then the last vector subscript of the first operator is 

reduced by taking the inner product with the first vector subscript 

of the second operand. This corresponds to matrix multiplication, 

and is the convention used in APL. If both operands are indexed 

expressions, then the reduction is carried out over all repeated 

indices. If the reduction is to be restricted to specified indices, 

then these indices are specified within brackets. For example, con- 

sider 

A[I,J]*+U[J] 
A[J,I]*lU[J] 
A[J,I]n[J]U[J] 
A[*l,*2]*iU[*l] 
A[I,J]MJ]A[I,J] 
v n v 

If we assume that I, J, and V are vectors, then the first expression 

multiplies the matrix A with the vector U. the second multiplies the 

     - -- ■■ ■ - -■- -      ..  - - -   ^  ^^  — 
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matrix A with the vector U, tKe second nuUtpUes the transpose of 

the matrix A by the vector U, the third and fourth are the same as 

the second, the fifth computes the inner product of the rows of A 

with themselves, and the last computes the inner product of the vector 

V with itself. If the reduction is to be carried out along specific 

subscripts of vector operands (not indexed vectors), the subscripts 

can be indicated by their sequence number in the subscript list. For 

example, 

A[*,*] •♦[2:2] A[*,*] 

This yields the same computation as the fifth example given in the 

group above. 

Other internal functions or operators might be desirable. 

The RANK and DIMEN functions have already been discussed. A function 

to find the maximum and another to find the minimum of the components 

of a vector should be included (ceiling and floor in APL). These 

might be VMAX and VMIN. The usual FORTAAN functions such as SIN, 

EXP, ate. should be extended to vectors without change of name. 

7. Vector valued functions. The user needs the ability to 

define functions whose value is a vector which can be used in vector 

expressions. Subroutines may also communicate arguments which are 

vectors. A FORTRAN-like syntax could be used for this. A vector 

block could be placed in COMMON to provide another manner to communicate 

vectors Netween separate subprograms. In addition to separately 

compiled subroutines procedures in the style of ALGOL could be included 

in the language. This would provide global variables. If a subprogram 

argument is an indexed vector expression, then it must be converted to 

|MM illlliBilM(iggMIMtiagM ^^ — - 
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a vector for transmission to the subprogram. The following is an 

example of a function 

REAL VECTOR FUNCTION FN(X) 
REAL VECTOR X 
COMMON VBUF.NMAX.EPS 
VECTOR BLOCK VBUF[1000] 

REAL VECTOR TA.TB 
END_VECTOR_BLOCK 
REAL EPS 
INTEGER NMAX.N 
FN=1.+X 
TA=X 
N=l 
WHILE (VMAX(ABS(TA)) GT EPS) AND (N LT NMAX) DO 

N=N+1 
TA=TA*X/N 
FN=FN+TA 

END_WHILE 
ENDJUNCTION 

In this example the storage for the vector result FN would have to be 

declared in the calling program. It might be necessary to require that 

FN appear in a VECT0R_BL0CK declaration in the calling program. 

8. Some comments on the design of a vector language. Perhaps 

most users would be adequately served by vectors formed from arrays 

using increment vectors. Thus the vector declaration could be elim- 

inated which would certainly simplify the compiler. However, we do 

not see a reasonable way to transmit vector arguments to subprograms, 

return a vector valued function, or to define compress and expand 

operations if this restriction is made. Therefore we feel it is 

desirable to include variables of vector type. 

The structures and types allowed in the language should be 

considered more carefully. Should a more general type of structure 

be allowed as in ALGOL 68, or a record structure as in PASCAL? Should 

we allow the value of a function to be any structure permitted in the 

■Mi . 
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language? What seems natural to the average scientific programmer 

should be considered here as should the cost of implementation and 

the effect on run-time efficiency. 

The control structures used in the language should be re- 

designed taking into account the ideas of Knuth, Wirth and others. 

This is a very active area in Computer Science at the moment; perhaps 

the design of a good set of control commands will be easier in the 

future. 

We have not included any I/O features which is a bad omission. 

We especially need to include format-free I/O, good graphics commands, 

the ability to handle a memory hierarchy, etc. 

The design of a vector language raises optimization questions 

which may be different from those which arise with a scalar language. 

The parse tree now contains vector operands and this should allow 

better optimization. 

-- ^—-*■■- —^^—. - -- - ■-■ -— —"* 
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1.  Introduction.  The objective of this language, which we call PDELAN. 

is to facilitate the coding of finite difference schemes for partial differ- 

ential equations.  The aspect of these codes which we have emphasized is the 

difference equations.  An operator notation is provided so that the equations 

can be written as the numerical analyst frequently invites them prior to 

translation into a program.  That is 

U2 - Ul + DLT * DXX(Ul) 

where DXX represents the operator 

(Ui+l-
2Ui+Ui-l)/Ax2 

and DLT - At.  Implicit difference schemes can also be written in this opera- 

tor notation. The set up and solution of the resulting linear systems will 

be handled automatically.  This treatment of implicit schemes is the most 

powerful facility within PDELAN. 

The language is a dialect of Fortran rather than an extension. The 

conditional and iteration commands are taken from PASCAL and thus allow a 

better structured programming style than Fortran.  These Include 

IF ... THEN ... ELSE ... ENDIF 

REPEAT ... UNTIL ... ENDREPEAT 

The language is coupled with a macro preprocessor which allows a topdown program- 

ming style [41. The language is implemented as a preprocessor to Fortran. 

This is similar to the approach taken by Gear for a PL/I like language [5]. 

An earlier version of PDELAN was implemented at NCAR in 1971 [1].  The 

finite difference language has received only light use; however, we feel this 

may be due to deficiencies in the earlier version which we can eliminate. 

Also, implicit schemes could not be treated with the previous version. In 

any case a language like this is intended for a specialized use and will apply 

ui^*t^^^m^a^^^^m^mtim t^^mma* 



mfwm^umm^mmm^t^mK 1 •■    «■■ "   mi^w~mm^*—m      MI I.IIIMII i  IPI. II u 

to a small percentage of jobs even in a computing center which does much 

continuous simulation. 

Graphics and file management capability should be provided in a language 

for PDE problems. The earlier version doe. contain a sophisticated set of 

high level graphics commands, but no file management commands [2]. However, 

our effort concentrates on the difference equations and the macro preprocessor. 

2. The basic language.  In this section we describe the basic set of 

instructions available in PDELAN. The syntax is somewhat different than in 

FORTRAN. The declarations are nested. For example, variable declarations 

are placed within the scope of a COMMON block in order to declare them as 

COMMON variables. The conditional statements are similar to those in PASCAL. 

The I/O statements are similar to FORTRAN. An end-of-card is an end-of- 

statement unless the statement is continued. Our objective is to provide a 

structured base for the mesh operator constructs, but with minimal departure 

from FORTRAN. We proceed to a description of the features of the language. 

2.1  The lexical scan. The PDELAN syntax is restricted so that a 

compatable macro preprocessor can operate ahead of the PDELAN translator [4]. 

Therefore, blanks are delimiters. Furthermore, the PDELAN keywords such as 

IF, DO, FORMAT, etc. are all reserved words and may not be used as variable 

names. Long Identifiers, up M 29 characters, may be used. Two continuation 

modes are allowed.  The first uses  column six punch as in FORTRAN. The 

second uses the two characters ;+ to terminate reading of one card and indi- 

cate that the statement is to be continued to the next card. Statements may 

be separated by ";" which is an end-of-statement marker. A statement ends 

in column 72 unless it is explicitly continued to the next card. We think 

it better not to require that every statement be terminated by 'V'. An 

occasional use of the continuation ";+" seems preferable to this hardened 

FOR/RAN programmer who tends to forget the ";" in PL/I and PASCAL. Blocks 

- .   . , . Mini  „ ^^^** ^dttlg^                                  ^^^Ä^-^w-. 
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are all terminated by special terminators such as ENDIF, ENDCOMMON, etc. 

This is done for readibility and also to reduce doubt about when a ";" 

is required.  If a statement starts with an integer constant, then the inte- 

ger is a statement label.  A statement, including the label can start any- 

where in columns 2 through 72. Names which start in column one are instruc- 

tions for the preprocessor. 

Comments can be defined by a "C" in column one as in FORTRAN, or by the 

"brackets" */.../* as in PL/I.  The "*/" delimiter is an end-of-statement 

marker, so this type of comment cannot be imbedded within a statement.  This 

restriction allows all comments to be conveniently output to the object 

FORTRAN program. 

Some examples of statements are: 

C   SAMPLE DECK 

IF X.LT.Y THEN 

W(I) - X*A(I) 

ELSE 

W(I) = Y*A(I) 

ENDIF 

CASE K OF 2 

1:  I - 1 ; 20 A(I) =I*K;I-I+1 

IF I.LE.M THEN GO TO 20 ENDIF 

2:  FOR I = 1 TO M DO A(I) = 0.  ENDFOR 

ENDCASE 

U(l) - U(2) + A(M) * (U(3) - U(2))* ;+ 

(C/B(M)) * (W(3) - W(2))  »/LEFT BOUNDARY/* 

2.2 Declarations.  The declarations are nested.  A COMMON block of 

declarations can be declared in whose scope variable declarations may be 

^Myd^o^ngMu^^^^ Jl^fcmj;.!.^-..^^-..:^ j. ...■-.■.I^^M.J^J^:.J.IJJ.^1—^s^-^-^^-ja^L. .^J. - — ------^ ^..^.*^.  - ■- - - -—*■ 
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placed.    This same type of nesting can be used to declare mesh variables 

and to declare groupings of variables for convenient I/O.    For example, 

consider the following declarations of blank and labeled COMMON 

COMMON 

REAL X, Y, T 

INTEGER A, B, C 

ENDCOMMON 

COMMON LAB 

DOUBLE XD, YD 

ENDCOMMON 

The arithmetic modes are INTEGER, REAL, DOUBLE, COMPLEX, LOGICAL. The 

only variable structure is the ARRAY. Vrriables may be declared as having 

array structure in two ways 

REAL X, Y, U(20,30), Z, V(20,31) 

REAL ARRAY T, P(20,30), Wl, W2(20,31) 

In the first statement X, Y, and Z are sealer variables, and U and V are 

arrays.  In the second statement T and P are declared arrays of dimension 2 

and extent (20,30).  If more variable types were allowed, then the PASCAL 

declaration style would be more appropriate.  The declarations would then be 

grouped together as follows 

DECLAREVAR 

COMMON LAB 

X, Y, Z I REAL 

U, T, P : ARRAY(20,30) OF REAL 

V, Wl, W2 : ARRAY(20,31) OF REAL 

ENDCOMMON 

ENDDECLARE 

■ lUlllfc       <■    - ■- --.-■■ "       ■-       - ■jjMiMinini i — - — .- --■       -     -n , „   .- mam. 
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PASCAL permits the user to declare types and assign these types names. The 

PASCAL record type and sealer type could be useful in finite difference codes. 

It would sometimes be useful to pack flags and indices into a single word. 

However, the CDC 6000 version of PASCAL is about a factor of two slower than 

FORTRAN on matrix codes, and FORTRAN is of course more common than PASCAL. 

Therefore we prefer to base the language on FORTRAN in spite of the superior 

design of PASCAL. 

2.3 Statement labels. If the first token of a statement is an integer, 

that integer is a statement label. An optional colon can follow the label 

to improve appearance.  For example 

10 : X - Y ; 20 W = A(l) 

IF X.LT.0. THEN GOTO 10 

The GOTO statement is included. There are some restrictions on the GOTO. 

Jumps into the scope of a FOR loop from outside the loop are not allowed. 

A second type of statement label uses an alphanumeric label, for example 

LOOPA : ENDF0R 

This is discussed below. 

2.4 Control structure.  We have taken our control statements from PASCAL. 

These are 

IF  . . .  THEN  . . . ENDIF 

IF  . . .  THEN  . . . ELSE  . . . ENDIF 

REPEAT  . . .  UNTIL  . . .  ENDREPEAT 

WHILE  ...  DO  ... ENDWHILE 

Some examples are 

Müaai^aitfiniii i i     —■■-'- ^—...■^..■■..-^.^:-.M^.. ^ -^. —- -^- ..-^--^    ■J^^_^_„^^..^^MlMi^^u«fc.td^M. 
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IF X.LT.O. THEN X - -X ENDIF 

IF A.LT.B THEN 

REPEAT A = A + H UNTIL A.GE.B ENDREPEAT 

ELSE 

A - B 

CALL SET 

ENDIF 

Use of matched end-of-block markers (ENDIF, etc.) provides redundancy 

in the language which allows improved error diagnostics.  This useage may 

also produce more readable code. 

As case statement of the following form is included 

CASE K OF 2 

1 : X - SIN(T) 

2 : X - SINH(T) 

ENDCASE 

These statement labels are local to the CASE block.  The followinti code will 

probably be allowed (hopefully, no one writes this way, and perhaps it should 

not be allowed) 

CASE K OF 2 

1 : X - 1. 

2 : Y - 1. ; GOTO 1 

ENDCASE 

2.5 Iteration and more on statement labels.  The iteration statement 

is illustrated by the following 

FOR K - M + 1 TO NA(N)**2 + 2 DO B(K) - K ENDFOR 

FOR L - 1 STEP N - 3 TO 20 DO 

B(L) - C(L) 
F(L) - L**L 

ENDFOR 

^^^^^g^^^^-l ,      ......  ^.M^fc^ii 
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The expression following STEP can be negative. If this expression Is a posi- 

tive integer constant such as STEP 2, then FOR will be translated into a DO 

statement.  Otherwise FOR becomes a loop terminated by an IF statement contain- 

ing the test on the Iteration parameter. 

An alphanumeric label of the following form is allowed 

LOOPA : FORK - 1 TO 10 DO 

A(K) » 1. 

B(K) - K 

LOOPA : ENDFOR 

This permits use of the EXIT statement. A statement of the form 

EXIT LAB 

causes control to drop through the control block containing the EXIT LAB 

statement until an END statement labeled by LAB is found.  Execution then 

starts innediately after this labeled END.  It is not necessary to label the 

beginning of the control block. The EXIT never refers to the beginning of 

a control block. However, if the beginning is labeled, then the end must 

also be labeled with the same label.  Only alphanumeric labels can be used 

with the EXIT. Alphanumeric labels may not be used with a GOTO.  An alpha- 

numeric label must be followed by a colon. 

2.6 Subprogram headers.  These are identical to those In FORTRAN. Namely, 

PROGRAM NAM(INPUT, . . .) 

SUBROUTINE NAM . . . 

FUNCTION NAM . . . 

BLOCKDATA . . . 

ENDPROGRAM 

Mi   ■-■ 
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ENDSUBROUTINE 

The PROGRAM statement is a CDC variant of FORTRAN. The usual subroutine and 

function calls are allowed. The ENTRY and EXTERNAL statements are also 

included. 

2.7    I/O statements.    The preprocessor will allow the following five 

statements which are identical with FORTRAN 

READ(nc,nf) 

WRITE(nc,nf) 

READ nf, 

PRINT 

nf  FORMAT( . . .) 

2.8 PASSTHRU blocks. These are blocks of statements which are passed 

directly to the Fortran compiler which compiles .ae abject code produced by 

the preprocessor. If a statement is not placed within such a block, then 

the preprocessor will rttempt to parse it as a statement in PDELAN and fail- 

ure will produce an error diagnostic. Most such non PDELAN statements will 

probably be I/O commands such as BUFFERIN to do buffered I/O, or commands 

to handle extended core. We could require the user to handle such commands 

by means of a subroutine call.  However, this would not allow addition of an 

EQUIVALENCE statement, for example.  An example of a PASSTHRU block is 

PASSTHRU 

EQUIVALENCE (A,X) 

IMPLICIT REAL*8 (A - H, 0 - Z) 

ENDPASSTHRU 
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3.     Finite difference equations.     The primary motivation for this prepro- 

cessor,   is  the simplification of  finite difference codes arising from the 

solution of partial differential equations.    For example consider the simple 

heat equation 

0 < x < 1 * .A u = u(x.t) 
6t  6x 

u(0,t) - u(l,t) - 0 

0 < t 

The problem is made discrete by use of a mesh in x and t, x^ - jAx, 0 i j < J, 

Ax - 1/J. Using the notation U* % •{My  t^), then the difference scheme 

might be 

At ix2 

.n+1 
This can be written as a "marching" scheme which computes values ÖJ  on the 

new time level t .- from the known values on level tn, namely 

un+1 . yn + At (un  . 2un + ,* )   1 < j , J-l 

J     J  Ax  J      J   J 

«r1 ■ üJ+1 -o 

If U11"4"1 is stored in the array U2 and Un in the array Ul, then this algorithm 

is written in Fortran as follows (U* stored in Ul(j+1), JT - J+D • 

U2(l) - 0. 

U2(J + 1) = 0. 

DO 100 K = 1, J 

100 U2(K) = U1(K) + (DLT/DLX**2)* 

X       (U1(K + 1) - 2.*U1(K) + U1(K - 1)) 

Frequently the numerical analvst writes the difference scheme in operator 

notation as follows 

,.n- 1  „n 
U 

,nN Un + At D^U") 

where 0(1^ -  (Uj+1 - 2^ + U^/Ax  . 
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PDELAN permits the same type of subscript free, operator notation. 

It is possible to declare meshes, variables on these meshes, and finite 

difference operators which map variables or expressions from one mesh to 

another.  The above problem would be written in PDELAN as follows (assume 

J - 128) 

MESH MS(128) 

REAL Ul, U2 

ENDMESH 

OPERATOR DXX(W) 

FROM MS TO MS(I = 2..127) 

(W(I + 1) - 2.*W(I) + W(I - 1))/(DLX**2) 

ENDOPERATOR 

U2(l) - 0. 

U2(128) - 0. 

FORMESH MS(J - 2..127) 

U2 - Ul + DLt*DXX(Ul) 

ENDFORMESH 

Note that the mesh variables need not be subscripted within the scope of a 

FORMESH, we write U2 Instead of U2(J). Mesh operators, such as DXX, can be 

applied only within the scope of a FORMESH.  The operators can be used in 

a fairly complex way. For example, if DX and AX are mesh operators, then 

the following expression involving mesh variables U and V might be used 

DX(C * AX(U) * DX(U + V)). 

An earlier version of PDELAN was Implemented at NCAR in 1971 111« We 

refer to the paper and documentation describing this version for a more com- 

plete definition and explanation of these operators. The earlier version had 

a different syntax and was rather awkward to use. The version described here 

 .— ,.- .......^  ..^~^.^.~....^^..^.^.^^— —^ -^-..-. .^^^^^^^^—^.^^.^^^^ m 
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should be a considerable improvement over the first one. Also the new 

version allows implicit difference schemes to be written in operator notation. 

This is certainly its most powerful and useful feature. An example of an 

Implicit scheme is the Crank-Nicolson scheme for the heat equation 

.n+1  „n . At ^/„n+1 . „n,. ir~.^ + *|»qr* + jf). 
.n+l 

We regard this as an equation for the unknown vector U  . This is a tri- 

. n+l 
diagonal system of equations for the unknown components ot U 

3.1 Mesh and variable declarations.  This is a nested block of state- 

ments which name a mesh and assign its extent.  The block also contains 

declarations of variables on this mesh.  These variables are arrays with 

the same extent as the mesh. No memory space is required for the mesh, 

only for variables declared on the mesh.  For example, 

MESH UVTMESH(6A,32) 

REAL U, V, T 

ENDMESH 

In this case the variables U, V, T are arrays of extent (6A,32).  The mesh 

name UVTMESH is entered into the symbol table and its associated information 

stored with it. 

A mesh variable may be in addition an array.  For example, 

MESH UVTMESH(64,32) 

REAL ARRAY U, V, T(3) 

ENDMESH 

In this case U, V, and T are arrays of extent (64,32,3). To each point in 

the mesh (i,j) there are 3 values assigned. Each of these arrays can be 

regarded as three mesh variables U^^, U^j^' and Ui,j,3- We wil1 Say 

more about this later. 

^^a^^^-ku^^^h^. _  .       .-^-. —^—^-.■. 
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An additional type of mesh variable, a PROJECTION variable, can be 

declared. For example, 

MESH UVTMESH(64,32) 

REAL ARRAY U,V,T(3) 

REAL PROJECTION CS(,*) 

ENDMESH 

In this case CS is an array of extent (32). At each point (i,j) the mesh 

variable CS has the value CS(j).  (Here 1 .< i ^ 6A, 1 $ j < 32). The "*" 

indicates the subscripts which are not removed. 

3.2 The mesh operator declaration. An example of a mesh operator declar- 

ation is the following 

MESH MUV(64) 

REAL U1,U2 

ENDMESH 

MESH M(63) 

REAL SG 

ENDMESH 

OPERATOR DX(W) 

FROM MÜV TO M(I = 1..63) 

(W(I + 1) - W(I))/DLX 

FROM M TO MUV(I • 2..63) 

(W(I) - W(I - 1))/DLX 

ENDOPERATOR 

A graphic representation of the meshes is 

• x • x • 
112 2 3 

. x . 
63 63 64 

The MUV points are "." and the M points "x".  The meaning of the DX operator 

 ——-- - - ■ .*_* 
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Is to difference values at the surrounding points on the MUV mesh to obtain 

an approximate derivative at a point on the M mesh.  If E is an expression 

on the MUV mesh, then DX(E) can be thought of as an expression on the M mesh. 

That is, DX(E) has a velue at each point j on the M mesh, namely 

DX(E)j - (Ej+1 - E^/DLX 

For example,   if E is Ul+ U2,  then 

DX(U1+ U2)(I)  =   ((U1(I + 1)+U2(I + D)   -  (U1(I)+U2(I))/DLX 

The expression on the right is evaluated on the MUV mesh. 

3.3 The FORMESH block. This is the means y which finite difference 

expressions are evaluated. For example, consider the parabolic equation 

IT- fc^> + «-" 
u(05t) - u(l,t) - 0 

The difference scheme might be 

VTI+1 mV* +  At6 (o6 (u")) + f (un) 

where the difference operator 6^ is 

Sx(U)J+l/2"
(Vl-VMX 

y^j= (VI/2-UJ-I/2)/AX 

Use the mesh, variable, and operator declarations given above in section 3.2. 

Then this difference scheme is written: 

U2(l) = 0. 

U2(64) - 0. 

FORMESH MUV(I - 2..63) 

U2 - Ul + DLT*DX(SG*DX(U1)) + F(U1) 

ENDFORMESH 

^^^Jl^yjU^^^l^^^^^g^ jto^tta --  —^—~*~ ^^^^^....... .. _  ^ 
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Here F is a Fortran function subprogram, U   and U are stored in U2 and 

Ul, and a is stored in SG. 

The replacement statements within the scope of a FORMESH are evaluated 

for each value of I in the indicated range, in thi.3 case 2 through 63.  The 

evaluation is performed in "parallel" in order to be compatible with parallel 

computers such as the Texas Instruments ASC or Seymouv Cray's proposed new 

machine.  This means that the right side is evaluated for all values of I 

before storage into the left side. Thus the evaluation is not the same as 

a conventional Fortran DO loop. For example 

FORMESH MUV(I = 2..63) 

U2 - DX(DX(U2)) 

ENDFORKESH 

is equivalent to 

DO 100 I - 2,63 

100 T(I) - (U2(I + 1) - 2.*U2(I) + U2(I - 1))/(DLX**2) 

DO 101 I - 2,63 

101 U2 I) - T(I) 

Here T is an array used for temporary storage of intermediate results.  If 

there are two statements within the scope of a FORMESH, the computation for 

the first will be completed for all values of the index before computation 

is started on the second statement. This is completely different than a DO 

loop. The first version of PDELAN uses a DOMESH instead of this FORMESH.  The 

DOMESH scope is executed in the same manner as a DO loop. The DOMESH does 

not execute in parallel. Also the syntax of the DOMESH resembles the DO.  It 

uses a statement number termination instead of the block structure. 

Next consider a difference operator which does not have a uniform defini- 

tion throughout the mesh. For example. 

ttontimätmimtm — MM^^MMI^MHMiliMigMgallHiltla 
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MESH MUV(128) 

REAL U1,U2,U3 

ENDMESH 

OPERATOR DX(W) 

FROM MUV TO MUV(I = 128) 

(W(I - 2) - 4.*W(I - 1) + 3.*W(I))/(2.*DLX) 

FROM MUV TO MUV(I - 2..127) 

(W(I + 1) - W(I - 1))/(2.*DLX) 

ENDOPERATOR 

U3(l) = 0. 

FORMESH MUV(I = 2. 

U3 -= Ul - DLT*DX(U2) 

ENDFORMESH 

This operator has a different definition at I = 128 than it does in the 

interior of the mesh, 2 ^ I < 127.  The evaluation of the FORMESH cannot use 

DO loops from 2 to 128, the calculation must be broken down according to th«; 

definition of the operator. Therefore the FORMESH can be translated as 

follows (note that U3 does not appear on the right side of the replacement 

statement). 

U3(128) - Ul(128) - DLT* 

(U2(126) - 4.*U2(127) + 3.*U2(128))/(2.*DLX) 

DO 100 I - 2,127 

100 U3(I) - U1(I) - DLT*(U2(I + 1) - U2(I - 1))/2.*DLX) 

The previous version of PDEIAN cannot handle a mesh operator unless it has 

a uniform definition within the range of a D0MESH. The removal of this 

deficiency is an important improvement. 

3.4 Implicit difference schemes.  This allows the user to write 

implicit schemes about as easily as explicit ones. This is probably the most 

h*M —- ■-- ^^^_i_^M^^^Jja»JiMJ«_^i^>^1]1^_^^ '  "■" — - - ■  -—-——- 
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useful and certainly the most powerful feature of PDELAN. To illustrate the 

method consider an Implicit scheme for the following equation: 

3u 
at 

3 / / x3Uv 

u(0,t) = u(l,t) - 0 

u(x,0) = f(x) 

The implicit scheme is 

.n+1 
U, - u: 

At 

„n+l 

a(xi+1/2) Ax -ö(xi-l/2)V   5 // 
Ax 

1 ^ i ^ M 

Un+1 - 0 

Ax - 1/(M + 1) 

„rri-l. n+1 
This is a tridiagonal system in the unknown vector {l^ }. We can write 

this equation in operator form as follows 

U2 - Ul + DLT*DX(SG*DX(U2)) 

Here the declarations are given in section 3.2 above. The meshes are MÜV 

and M.  The variable SG is on mesh M.  DX is defined on both meshes.  If 

U2 is regarded as a vector Uciknown, then this equation defines a linear 

system of equations for the unknown U2.  Because difference schemes are 

frequently nonlinear we will not attempt tc ,olve the linear system directly, 

instead we will ■110» the user to write out a linear difference equation in 

an unknown W and use this system to define a Jacobian matrix.  Then this 

Jacobian matrix is used to solve a possibly nonlinear system by iteration. 

In order to illustrate the definition of this Jacobian we use this same 

linear parabolic problem. The following block defines the Jacobian for this 

example 

---—-^<M - ■ - 
- -   ^■.-^——  
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SETJACOB AJ(W) ON MUV(I = 2..63) 

W - Ul - DLT*DX(SG*D':(W)) 

ENDSETJACOB 

The unknown vector is {Vi } with components in the range 2 $ i ^ 63. 

The expression defines a linear system of equations for W of the following 

form 

v=l 

c,  W...  + f, - 0 
i.v  i+k     i 

v 

For this example the system is 

Ci.lWi-l + r-i.2Wi + Ci.3Wi+l 
+ fi " 0 

That is, k - -1, k- - 0, k- - 1.  This can be written as a matrix equation 

AW - f_ 

Where A is given by 

'13 

Jo ,*!♦ 
c,,   J - i + k 
i,v J      v 

The SETJACOB block generates code to compute the entries in the matrix A. 

This matrix is stored in the mesh array AJ.  The user must declare the array 

AJ and it must be large enough to accomodate the matrix A.  In this case 

the declaration 

REAL ARRAY AJ(3) 

must be added to the MUV mesh block.  The SETJACOB block will also generate 

a subroutine call to perform the LU decomposition of the matrix A.  The result 

will be stored in AJ and the original matrix A will be lost.  If pivoting 

is desired, then the command SETJACOB(PIVOT) should be used.  In this case 

a larger AJ array must be declared. 

i   nnnnriMimMiiir   n  ■'-' -~-^ ■     mmmm IMUiliiHIliU 
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The Jacobian is used according to th<   following example. 

SOLVE    JACOB AJ ON MUV  (I - 2..63) 

F(U2)  - U2 - Ul - DLT*DX(SG*DX(U2)) 

ENDSOLVE 

The expression in the SOLVE block defines a function of U2. The SOLVE 

block generates code to perform a single step of a Newton iteration using 

the Jacobian AJ.  That is, the following equation is solved for 6W 

A6W = -F(U2) 

Here F must be a mesh variable declared on MUV by the user.  The value of the 

expression within the SOLVE block is stored in F.  Code to obtain an updated 

value of U2 from the solution 6W of the Jacobiar system, 

U2 - U2 + 6W 

is generated by the SOLVE command.  Since the Jacobian AJ was defined for 

2 < i < 63, the vector U2 is updated over the same range. 

We only allow difference schemes which are implicit in one dimension. 

This means that the mesh subscript list in the SETJACOB statement can have 

only one vector subscript. A scheme which is implicit in two dimensions is 

usually two expensive because the bandwidth of the Jacobian matrix is too 

large. However, the Jacobian could be defined on a two dimensional array. 

For example 

MESH M(128,64) 

REAL U2,U1 

REAL ARRAY AJ(3) 

ENDMESH 

OPERATOR DXX(W) 

, „in,, ... ^. -   
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FROM M TO M(I - 2..127, J - *) 

(W(I + l.J) - 2.*W(I,J) + W(l - 1,J)/(DLX**2) 

ENDOPERATOR 

OPERATOR DYY(W) 

FROM M TO M(I - *, J = 2..127) 

(W(I,J + 1) - 2.*W(I.J) + W(I. J - 1))/(DLY**2) 

ENDOPERATOR 

SETJACOB AJ(W) ON M(I - 2. .127, J = *) 

W - Ul - DLT*(DXX(W) + DYY(Ul)) 

ENDSETJACOB 

The Jacobian is still a tridiagonal matrix, but it is defined over a two 

dimensional mesh and thus has order 127 x 64.  The array AJ has extent 

(128,64,3).  Th6 term ^W^ indicates a scheme implicit in I. 

The Jacobian matrix should allow for difference schemes which have the 

same number of points in the stencil throughout the mesh but may be shifted 

near the boundary due to one sided difference approximations. For example, 

if the one sided approximation 

i-3V1 +  4U2 - U3)/(2Ax) 

is used along with the centered formula 

<Ui+l-
Ui-l)/(2Ax) 

then the Jacobian matrix would have the following structure 

^^^M^^^^^M^^^^M^^^k^ 
.-^.■^.-.., ^. .    ..:.^.~,J.  ^-„^ ^±.>~i^...Mi^~~~~..J.~rt*J...^^.,^ ^-.....^-^-.^.^...^.-L;..^^..—A..    ■-^—■^■- 
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X X X o 

X X X o 

O   X   X   X 

X X X o 

O X X X 

O   X   X   X 

The AJ mesh array containing the Jacobian should have extent 3 in this case 

(assume no pivoting). 

The language should also handle implicit systems of equations.  For 

example, consider 

R = ä7(o(u) r^ + aie 

3u 3   ,   ,  v   3uv   . d(u+v) 
Jl   '    37 (0(v) ff + V 

In this case the Jacobian might be block tridiagonal with 2x2 blocks. 

Here we are not using the true Jacobian because we are not using the deriva- 

tive of the function o(w). We assume SGF is a function subprogram. 

MESH MUV(64) 

REAL Ul,U2,v"l,V2, AJ(7) 

ENDMESH 

MESH M(63) 

ENDMESH 

OPERATOR DX(W) 

FROM M TO MUV(I - 2.j63) 

(W(I) - W(I - 1))/DLX 

  —■■■ —- —- —      — — - 
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FROM MUV TO M(l - 1..63) 

(W(I + 1) - W(I))/DLX 

ENDOPERATOR 

OPERATOR AX(W) 

FROM MUV TO M(l = 1..63) 

(W(I + 1) + W(I))*.5 

ENDOPERATOR 

SET JACOB AJ(U,V) ON MÜV(I ■ 2..63) 

U-U1-DLT*DX(SGF(AX(U1))*DX(U)) + Al*ALP*EXP(Ul + V1)*U 

V-V1-DLT*DX(SGF(AX(V1))*DX(V)) + A2*ALP*EXP(U1 + V1)*V 

ENDSETJACOB 

The SOLVE command is similar, except that the mesh function F required to 

hold intermediate results is an array of extent 2. 

4.  Extensions.  These are features that we would like to add after we 

get the language described in the previous two sections running. For dif- 

ference schemes which will not fit in fast memory, the following memory 

allocation scheme is useful. The data for such schemes is usually transmit- 

ted by blocks which consist of a "section" of a mesh.  For example, in a 

three dimensional problem such a section would be all points (i, j, k) with 

k fixed and i and j ranging through all possible values. If the data for the 

scheme consists of three variables U, V, W each of dimension (50, 50, 40), 

then only a few sections will be in fast memory, perhaps four sections, the 

rest will be located in bulk storage of some kind.  The bulk store should be 

accessed in large blocks.  In this case the block would consist of one section 

containing 7500 words. That is U(*, *, M. V(*, *, k), W(*, *, fc). Note that 

U(*, *, K) represents 2500 words. 

U(I, J, K) for 1 .< I ^ 50, 1 < J .< 50. 

liiMim ii i   —  ^^^^^. ^^M^^^ ^M^^UtM^MlU^^JMIdÜAiag^Uui^üUgl 
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The Fortran dimension statement 

DIMENSION 0(50,50,4), V(50,50,4), W(50,50,4) 

will not group this data properly. The variables in the section are not 

stored contiguously.  The following declaration will rearrange the data allocation 

ASRAYBLOCK NAM(4,LEN) 

REAL ARRAY U,V,W(50,50,*), ;+ 

CS,SN(50,*), TH(*) 

ENDARRAYBLOCK 

The "*" is replaced by the 4.  The variable LEN must be an integer variable. 

It will be set equal to the length of each of the 4 sections in a DATA state- 

ment in the Fortran object code.  In this case the section length is 7601. 

The output will contain a DIMENSION statement of the form 

DIMENSION U(200,50), 7(200,50), W(200,50) 

X        , CS(200), SN(200), TH(4) 

If these variables are not within a COMMON block they will all be placed 

in a labeled COMMON in order to be sure that they will be stored together. 

That is 

C0MM0N/TL0Ü01/U,V,W,CS,SN,TH 

Then U(I,J,K) where 1 < K < 4 is accessed by 

U(I + K*LEN - LEN.J) 

where LEN is replaced by its constant equivalent to yield 

U(I + 7601*K- 7601,J) 

A block I/O transmission can then be given in the form (on the CDC system) 

BUFFERIN(7,1)(U(1,1,K),TH(K)) 

- -     —-—■-* ■——— 
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Data initialization.  This performs the same function as the Fortran DATA 

statement and is Implemented by means of a DATA statement in the output object 

code. However, the syntax is r.ore consistent with the repetition used in 

FORMAT statements and avoids the use of * as a repetition indicator. This 

permits the use of expressions involving macro time variables [41 in the 

initialization. An example is 

REAL ARRAY U(50,50) - (50(0.),50(1.),48(0.)) 

General array extent.  We would prefer to have array declarations in 

the form 

REAL ARRAY U(-10..10,5) 

This is equivalent to U(-10..10,1..5).   The output for a reference of the 

form U(I,J) would be translated to U(I + 11,J) and the dimension statement 

would be of the form 

DIMENSION U(21,5) 

Since the CDC compilers only allow three subscripts, it would be desir- 

able to allow more than three dimensions in PDELAN and reduce to three in 

the output.  For example if 

COMPLEX CS(10,20,5,2) 

then the reference CS(I,J,K,L) would become 

CS(I,J,K + 5*L - 5). 

We assume it is preferable to reduce to three subscripts rather than 

one because some compilers will not optimize the complex one dimensional sub- 

script« as well as the three dimensional especially if the inner DO loop 

is over one of the first two subscripts. 

Recursive procedures and dynamic storage allocation. Within a given 

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  —^.^^^»^M^^^^J-.  — -  -  -       .. II^^M^^^^^^—^fclMt^^lM»^^^ M^UM^te^^g^^^^Aks 
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subprogram a set of procedures can be defined. These can contain variable 

declarations which are local to the procedure. These procedures allow 

recursive calls and are implemented by means of a stack which is simply an 

array in the containing Fortran subprogram. This provides dynamic storage 

allocation, at least within the containing subprogram. The procedures can 

be called only within this subprogram. 

A format free I/O statement in the NAMELIST style.  This would differ 

from NAMELIST in that the variable list would appear in the I/O command 

rather than in a separate declaration. A macro can be used to place the same 

list in several different commands.  Also, the input command can work in 

two modes.  If there are no identifiers of the form "ID-" on the input card, 

only a list of numbers, then these numbers are input according to the I/O 

list.  If an identifier "ID-" appears, then the input will be governed by 

the identifiers.  These identifiers must appear in the I/O list within the 

I/O command.  For example 

INLIST(7,NAM) X,Y,A(1..10,5..10),;+ 

B(*,3,2. 

The input card might appear in the form 

^NAM 1.2,3.7,B(1,1.2) = 37. $ 

or it might have the form 

$NAM 1,7.,21, 

gNAM A(l,7) - -21. $ 

A format free output is also included. For example 

0UTLIST(6,NAM) ^8821',X.Y,B(1.1..20,7) 

tii         ■'"-:' ^. .-■.-^-..^--^■.^---■- ■■— -— ..^.:.l...- ^ ^■--..■.-.   - ■ ■■   -.... ■■■..;■-.. ^- 
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The output is labeled.    That is,  the values are printed in the form 

OUTLIST NAM CASE 21 X -  1.2    Y - 3.7 

B(l,1..20,7) 

31.2      -21.7      8.IE +5     

END OUTLIST NAM 

A means to set the number of significant figures printed is provided. For 

example 

OU,rLlST(6,NAM,SIGNIF(E10.3,l6,Dl3.6)) . . . 

File management and graphics. A very important aspect of a language for 

PDE is the I/O facilities within the language. This should include an easy 

way to generate graphs and contour plots from arrays. Such a facility is 

included in the first version of PDELAN [2]. The graphics in this earlier 

version should be improved in various ways. For example, the syntax of 

these graphics commands should be Improved. Also the graphics commands should 

be organized into a hierarchy most of which is machine independent.  It should 

be possible to output the graphs and plots in a form suitable for efficient 

transmission over phone lines and output on a variety of graphics devices [6]. 

However, this is a large problem in its own right, and we have decided to 

concentrate on the finite difference aspects of the language. 

The design of a file management system and data structures suitable 

for PDE codes is an important problem and should be a part of the language. 

However, we have not put any effort into this part of the problem. 

■ — ■^^-^- — ■ —-■—-^- --* ■ -■■. —- -- ■  ■■   .~,.-^-... ...- ^   .-. _. 
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1. Introduction. A fundamental problem in the numerical solution 

of hyperbolic equations is the proper approximation of the boundary condi- 

tions. For example, the leapfrog scheme applied to the following hyper- 

bolic problem is unstable. 

0<x<jf 

u(0,t)=sin(-t) 0<t (1) 

u(x,0)=sin(x) 

The mesh for this scheme is X^JAX^TT/J for 0<j<J.    The exact solution 
y 

is  fin  (x-t).    If a second order difference approximation for the spatial 

derivative is combined with a leapfrog scheme for time, then the following 

scheme is obtained 

un
0=sin(-tn) 

U^Vj'^AtCUjVJ.^/aX 

U^^^-Atlu^-U^^/AX     l<j<J 

This scheme is unstable.    If the outflow boundary is modified as indicated 

below, then the scheme is stable and has second order accuracy. 

When the method of lines is used for the simple linear hyperbolic 

equation (1) with periodic boundary equations, then the resulting differ- 

ence scheme is stable, provided an ODE solver w:th automatic step-size 

adjustment is used to solve the system of ordinary differential equations. 

Even if the ODE solver uses an Euler forward time-step scheme, the inte- 

gration will  converge as the mesh spacing is taken  Ui zero, since the 

ODE solver will  take the step time-step small enough as a function of 

the mesh size to guarantee convergence.    It will not be the case that 

..  .   .  .     . 
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At=0(Ax).    Note that the semi-discrete approximation produced by the 

method of lines with periodic boundary conditions can be written in 

the form 

U=ALL LHU.J»-■ • .UJ_-|) X.-JTT/J 

where the matrix A is 

2AX 

0    10. 

-10    10 

0-101 

1 

•1 

0 

0 

0   -1    o 

The solution of this differential equation is given in terms of an 

exponential matrix as 

u(t)=u(0)eAt 

Since the matrix is skew symmetric and cyclic its eigenvalues are pure 

imaginary and its eigenvectors are orthogonal.    Therefore, the solution 

is bounded independently of the number of mesh points.    This  implies 

that the solution of this semi-discrete approximation will converge to 

the solution of the original equation (1).    Therefore any spatial 

discretization which yields a skew symmetric, cyclic matrix will define 

a convergent method of lines approximation.    Stability in a 

finite difference scheme for hyperbolic problems    is in a sense associated 

with the temporal  discretization. 

Unfortunately, the method of lines does not necessarily produce 

a stable scheme when the boundary conditions are not periodic.    However, 

the method of lines dues seem to be more likely to yield a stable scheme 

 -"-—  —  -—-—'^—-'— 
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than a laapfrog time discretization. 

Our purpose is an experimental  study of some boundary difference 

approximations for use on hyperbolic systems where the method of lines 

is used for the temporal  discretization.    Our results will   refer mainly 

to the Runge-Kutta-Fehlberg ODE sol/er,        althrjgh we intend to experi- 

ment with the Adams method of Shampine [9] in the future.    We have found 

it important to include test cases for hyperbolic systems (more than 

one independent variable)  for which the characteristics lie on both sides 

of the boundary.    This  is in agreement with comments by Chu [3] and 

Sundstrom [10].    We are  interested in boundary approximations which can 

be incorporated into a general  PDE solver to treat hyperbolic systems 

in two dimensions.    Such solvers for parabolic equations in one dimen- 

sion are described by Sincovec and Madsen [11], Carver [2], Loeb [6], 

Bowen [1], Hastings [12] and others.    Because of our interest in 

general  hyperbolic systems, we cannot consider boundary approximations 

stated ir terms of specific variables for specific equations.    We can 

only consider algorithms which can be presented in a general  gramework. 

We will  test two such algorithms. 

Of course, such a general algorithm requires the user to apply 

it in such a way as to produce a properly posed hyperbolic problem. 

We must allow the user the flexibility to set the boundary conditions. 

Eventually, we might be able to supoly an optional  check to see that 

the boundary conditions are consistent with the hyperbolic system. 

2.    rnmpnt.at.ional  results indicating stability and accuracy of 

«^ttodoMfl»«.      In this section we consider difference approximations 

for the system (1).    These are semi-discrete approximations of the form 

-   iiMniir ■ - -  - - - -      -   .   —  - -    ...     ,^J^^J—^-  — ■■ ■    - ^■. ■„■,-.... .,^- .■^-~ 
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u'=Au+f (2) 

J  . where u = u_(t) = (.. .u.(t)...)    is a vector of mesh point values.    In 

this section we will  look at the eigenvalues of A and the norm of the 

exponential matrix 

l|eA|l (3) 

for four finite difference approximations.    If this norm is bounded 

independent of the spatial  mesh, then the semi-discrete approximation 

is stable.    This follows from the integral  form of the solution of (2) 

u(t) ■ u(o)eAt+ f{x)e 
A(t-T) 

dt (4) 

If the eigenvectors of A are orthogonal, then a bound for the norm of 

the exponential  matrix can be obtained from the eigenvalues of A. 

Therefore, we compute these eigenvalues and also the norm (3)  in order 

to gain insight into the stability of the following four schemes. 

A.    An inconsistent scheme.    Here a one-sided difference is used 

at both boundaries in spite of the fact that the solution should be 

specified at the inflow or left boundary.    This must yield an unstable 

approximation.    The approximation is consistent, and if it were also 

stable, then it would be convergent.    That is, if the norm of the 

exponential matrix 

c 

were bounded independently of the mesh spacing the approximation would 

be convergent, which is impossible since no boundary condition has been 

specified on the inflow boundary.    The scheme is 

i^Ä^^tt^-fci,     .        äät. - ,.    ......  ..... ■ i.^ff- —■-■'--— ■  ■  «a^^^^M —-— ■ -*■ 
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Uo(t) = -A-[-(u1(t)-u0(t)) 

uj-{t)=-2Tx(Vi(t)-uj-i(t)) 

^WWP 

(5) 

l<j<J 

B. A second order scheme.    This scheme is the same as the previous 

one except 

u0{t)=sin(-t) 

It is only first o^der at the boundary, but the overall  accuracy should 

be second urder. 

C. Fourth order with a third order boundary.    This scheme is 

given below.    Öliger [7] has shown that subtle changes are reguir?d in 

this spatial approximation when it is used with a leapfrog time dis- 

cretization, in order that the resultant difference scheme be stable. 

However, it seems to be stable without modification when it is used 

with a variable step ODE solver. 

u0(t)-sin(-t) 

u](t)=-(2u0-3u1+6u3-u4)/6AX 

uj(t)=-(2uj_2-l6iij._l+l6u.+1-2uj+2)/(24Ax) 

UJ-l(t) = -(UJ-3-6UJ-2+3Vl+2UJ)/(6Ax) 

Uj(t)=-(-2uJ_3+9üJ_2-l8uJ_1+lluJ)/(6Ax) 

(6) 
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D.    A fourth order scheme with a fourth order boundary approximation 

This is the same schere as the one above except that one-sided fourth 

order differences are used at the boundary. 

u^{t)-(-6u0-20u1+36u2-12u3+2u4)/(24Ax) 

ui(t)--(6^.4-32UJ_3+72Uj.2-96uJ.1+50uJ)/{24Ax) 

The above four schemes can all be written in the matrix form of 

equation (2). The maximum of the real parts of the eigenvalues of 

the matrix A for these four schemes are given in Table I. The eigenvalues 

of A were determined by using the IMSL QR routine on the CDC 6400 

at the University of Colorado. The exponential matrix was determined 

by summing its series expansion. The norm is that induced by the vector 

maximum norm. For the inconsistent scheme (A) the eigenvalues are all 

pure imaginary with a double or triple root at zero iepending on whether 

J is even or odd. The instability of this scheme is evident from the 

norm of the exponential matrix but not from the eigenvalues. 

Schemes (B) and (C) would appear to be stable from this analysis. 

However, we might expect the solution of scheme (D) to show exponential 

growth in time since its matrix has an eigenvalue with positive real 

part. 

In order to provide a more complete test of these four schemes 

we wrote a code for these schemes applied to equation (1). This pro- 

vides a direct test of the stability and accuracy of these schemes. 

Table II shows the error obtained with the various schemes after 

integration to the indicated value of t=T using the mesh resolution 

uf^m-^^nB^dfa^AMi^-^fc^.. .■.   .. ,__^_^t^Mäum^A^dt^äUimdLiai^miM 



determined by J.    Note that the number of intervals per wave is 2(J-1) 

since the mesh runs from x=0 to X=TT    and J+l  is the number of mesh 

points.    Scheme (A)  is clearly unstable.    Schemes (B) and (C) seem to 

be stable which is consistent with the results in Table I giving the 

characteristics of the matrices corresponding to these schemes.    Scheme 

(D)  seems to be weakly unstable when the system is solved with the RKF 

ODE solver.      However this scheme seems to be stable when the Runge-Kutta 

scheme with a fixed ratio At/Ax is used. 

3.    A variable coefficient problem.    A hyperbolic problem which 

is more typical of many applications than equation  (1)  is the following 

defined on the interval  0<X<T\. 

u.+cos(t)ux=cos(x-t)(cos(t)-l)=r(x,t) 

If cos(t)>p then u(0,t)=sin(-t) (8) 

If cos(t)<0 then u(TT,t)=sin U-t) 

u(x,0)=sin x 

The solution of this problem is u(x,t)=sin(x-t). The mesh is x^jir/J, 

for 0<j<J. In this problem the inflow and outflow boundary alternate 

between the two endpoints of the interval. When cos(t)>p the left 

boundary is the inflow point. This makes the use of an ODE solver 

awkward if the method of equation (6) is used to define the system of 

differential equations. When cos(t)>0 the unknowns are (u^t),... ,Uj(t)) 

and when cos(t)<0 the unknown vector has shifted to (u0(t),...,Uj_1(t)). 

■--- J - ■ 
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(9) 

Therefore we differentiate the boundary condition so that the system 

of differential equations always contains the same unknowns. 

E.    A second order scheme for equation (8). 

If cos(t)>0 then 

u(l)(t)=^(sin(-t))=-cos(t) 

otherwise 

u^(t)=-(u1-u0)/Ax+r(0,t) 

If cos(t)<0 then 

u^{t)=^<sin(7r-t))=cos(t) 

otherwise 

Uj(t) = -{uJ-UJ_1)/AX+r(Tr,t) 

This scheme uses a differentiated form of the boundary condition at an 

inflow boundary and a one-sided first order difference approximation 

to the differential equation at an outflow boundary.    The definition 

of the differential equation used to define the solution along the 

boundary line varies depending on the inflow-outflow nature of the 

boundary.    However, the solution along these boundary lines is always 

determined by a differential equation. 

F.    ^fourth order scheme for equation (8). 

If cos(t)_Ü then 

u^(t)=-cos(t) 

otherwise 

^ .Jt_^..,1,^ 
MttMMMMM ^^-g^gggMHUgggl 
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He re Si is the third order difference approximation of u (0) using 
3 Ä 

(x ,xn,x0,xj. The equation for u'(t) is similar. The remainder of 
o  I  2 3 "J 

the system is identical with that of equation (6). 

The results of using these schemes to approximate the solution 

of equation (8) is given in Table III. These results indicate that 

these schemes are stable. The norm of the second order approximation 

shows a slow linear growth with time. The error shows the expected 

asymptotic behavior with J (approximately). The behavior of this method 

on a more complex multidimensional problem awaits testing which we 

hope to carry out in the near future. 

4. General boundary approximation algorithms. In this section 

we consider a program for the following, more general class of nonlinear 

hyperbolic equations. 

}f ■ ^(ä(u,x,t))+h(u,x,t) 

or the nonconservation form 

m* fAu,x,t)+h(u,x,t) 

(11) 

(11) 

Here f, £,  and h are general vector valued functions and u(x,t) is the 

vector solution. We assume that boundary conditions are given at two 

end points x=a and x=b. We consider two methods to specify these boundary 

conditions. 

The first method requires the specification of a subset of the 

unknowns at each boundary point. Consider the left boundary x=a. The 

unknowns are (uT(x,t),... ,uM(x,t)). The p unknowns (ML ....•1^ ) ^om 

the set I = {p1,...,Pm> are specified as follows: 

n   iiiiM-ijjfli-rtMMiai,. 
-  — -  ■ 



-^nmmmm^mmm m^mmmmmmmm IJIIIIIIIJ«||HMR NiHiiiMii i vwpnmmMPP 

-10- 

um (a,t) ■ ^(Ujjd.t),!) 

urT1 (a,t) ■ S (j||I(t.t)»t) 

(13) 

Here UT = (um ,...,um  ) is the compliment of Uj = (u ,...,um ). The 
'n "l    mM-p 1    , P 

problem specification must include the integer p and the functions 

S,,...^ at both boundary points. Note that p may depend on the time t. 

The functions S. are used to set the values of Uj at the boundary. The 

values of uTT are computed from the hyperbolic equation, using one sided 

approximations for spatial derivatives. 

For example, consider the variable coefficient problem given by 

equation (8). At the left boundary (x=0), if cos(t)>0, then for the 

number of boundary constraints we have p=l. The function S1(uII,t)= 

S1(t)=-sin(t). Note that U|| is empty in this case. If cos(t)<0, 

then p=0 at the left boundary and u. is empty. In this case the value 

of LL(t) (here U.(t) denotes the approximation to u(x.,t) on the 'time 
0        J J 

line") is obtained from the differential equation 

dU 
dt 
&■ -cos(t)6.(U)n+r(xn,t) 0 

(14) 

where 8. represents the onesided difference approximation. 

When the ODE solver, such as the Runge-Kutta-Fehlberg is used, 

there is a slight problem in implementing this algorithm.    When the 

characteristic slope cos(t) changes sign, the nature of the system of 

ordinary differential equations changes.    When cos(t)>0, the unknowns in 

the system (8) are (l^,...,^), but when cos(t)<0 the unknowns are (UQ,. .. .Uj.-,) 

^^^(g^i^^^^^^^i^,..,     mi^^ ■    mi     -.. .^^:^^^-^^—-^-^~^j-^-^^J^J^..-..i^^....^jto4.^i^fa^tli«äaa*J^i!i .  ^—  ._. mmM 
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The ODE solver always works with the full  set of unknowns including the 

boundary values, that is (tk»...•(!«).    However, in computing the "right 

side" functions in the Runge-Kutta steps the boundary constraints are 

applied to set the boundary values for variables in the U. sets.    If the 

system of ODE's is written 

dU. 
(15) 

and IL is in the constrained set Uj for t ■ tjVZtt, then the function 

F (U  ,   .  U.,t +l/2At)  used in the Runge-Kutta step is replaced by 
J    0 j    n 

F.(S(UII,t.+l/?At),Ur...,UJ,t+l/2At).    Also, at the end of the step the 

value of U0 computed by the ODE solver is replaced by S(U0,t) provided 

U    is still  in the constrained set U..    Obviously this requires modifi- 

cation of the ODE solver.    There is no guarantee that this method will 

converge.    In fact, as we will  see shortly, it does not always converge. 

The algorithm can be implemented as part of a PDE package once the user 

has supplied the subroutines to evaluate p, the sets Up and the functions 

The second method is a generalization of the differentiated 

boundary conditions described in section 3 in equations (9) and  (10). 

In this case the user is allowed to reset the time derivatives used 

by the ODE solver to compute the boundary values, that is 

dUm,0 _  r      fti    c    »1      anH m,J - -w   W^'^   and 
dt m,J       nuiT-d -vJ 

Here we assume a system of equations for the unknowns umj where there are 

M unknowns (l<m<M) and the mesh points are XJ.(a=x0<x1<  ...<Xj=b). 

1 
... ■.-.—  ,._■..   ... 

■ ■ 
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The vectors F« ■ (F^ 0.---'
F
Mjo)

T and ^0 are the tirne derivatives 

obtained using one sided difference approximations in the hyperbolic 

system at the boundary. The vectors U^,^ and the time t are supplied 

to a user written subroutine which must then determine the set I and 
dU n 

return values for /'    =  F n, for pel. The remaining time derivatives 

for pil are the values F n obtained from onesided differences in the p ,u 
hyperbolic system. This method is going to be difficult to explain to a 

user. However, it is the only method that hes, so far, worked reliably. 

We will illustrate this method by the following example. This 

is a system with characteristics of different sign. Chu [3] and Sundstrom 

[10] have noted the difficulties of setting boundary conditions for such 

systems. 

DU-, 

at 

3Du1 43u2 

3X 

3U2 23u1 33u2 

H 9x 3x 

0<t 

0<x<b 

(17) 

This system is derived from 

3u      3u 
3F = '3x " = VU2 

3v 
"5t 9x 

v ■ 2u2-u-| 

u1=2u+v 

U2=u+v 

Therefore the following boundary conditions are proper, since they 

amount to a specification of the characteristic variable   on   the 

inflow boundary. 

at x=0       v=2u2(0,t)-u1(0,t)=-sin2Trt 

at x=b       u=u1(b,t)-u2(b,t)=sin2TT(b+t) 
(18) 

— ^. ~      ■ ■ »m - — . - -. - -   - - immMttmmimim -■-- -  
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We have chosen the boundary conditions to correspond to the following 

solution 

y.(x,t) " 2sin27T(x,t)+sin2Tr(x-t) 

u2(x,t) =  sin2n{x+t)+sin2Tr(x-t) 
(19) 

To use the first method of setting the bounda.-y conditions we must 

specify the set U. at each boundary point. There is no unique choice 

here, since neither u-, nor u2 are characteristic variables. We will try 

to specify u, at each boundary from the given boundary conditions, namely 

at x=0   u1(0,t)=2u2(0,t)+sin2TTt (2o) 

at x=b   u1(b,t) = u2(b,t)+sin27r(b+t) 

In this case I ■ {1}, Uj ■ ttt,). H ■ (2), Uj, ■ {%),  and p = 1 at 

both boundary points. 

A derivative rather than a constrained boundary condition can be 

obtained by differentiation of the above equation, namely 

du-, n   du? n 
dt

1 'U-    =  2g^^ + 2TTCOS2Trt at x=0 

(21) 

du-, f>       du0 n 
dt

1'u   = ^^   + 2TTCOs27r(b+t)       at x=b 

The derivative du2/dt on the right can be computed from the hyperbolic 

system using one sided differences and then used in the user supplied 

routine to compute du-j/dt by equation (21) above. 

As our results show neither of these methods given by equations 

(20) and (21) work satisfactorily.    They both specify the inflow character- 

istic variable.    The outflow characteristic should be computed using 

one sided differences.    In equation (20) the inflow characteristic is 

specified by the boundary constraint.    However, there is certainly error 

in the computed value of u2 used on the right side of the boundary 

-- -     ^^Ä^^^|^^^|^^gia^hj«^^^taa-^^^^^^^^Mfcj^^^»jrtj^^^_MB_^B^fc—^^^^^-^^^^^^^^JJJ^J^-^^-^^^fc^j 
- ■        ■---*-■ *■■■■ - - ■--■ — -*-— 
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constraint.    This error can be transmitted to the other boundary and 

reflected back.    The boundary condition probaoly should not allow much 

error in the incoming characteristic. 

We tried a third type of boundary condition obtained by differen- 

tiating the boundary constraint and combining it with the equation for the 

outgoing characteristic variable obtained from the hyperbolic system. 

That is, at   < = 0 

du,  n       dup Q 
1,0 + 2_^U „ _21TCOS27rt 

dt dt 

^M     du2,0 _ 
dt       " dt 

F1,0"F2,0  • 

Here F,  0 is an approximation to 

39u-|      45u2 

ax 3X 

and F 2,0 

23U1        3au. 

3X 9X 

obtained using one sided differences. These equations yield 

du-,  n 
«JJH = 2F,  n-2F9 n-2TTCOs2TTt 
Qt ''0          Z'0 

(22) 

du 2.0 F,   n-F0 n-2TrCOS2Trt 
dt 1'0   2'0 

There are errors in computing F1  0 and F2^0, but these will cancel  out 

in the computation of the time derivative of the inflow characteristic 

(v=2u?-u1) when this boundary condition is used.    Perhaps this is the 

reason for the superior performance of condition (22) over (20) and (21). 

However, we do not have a solid theoretical  understanding of these results. 

-- -. mmmm   -     - 
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5.    Some computational results.    These results all refer to the 

solution of equation (17) using a fourth order centered finite difference 

approximation in the interior and third order one sided differences 

near the boundary to approximate the spatial  derivation 3/^x.    The 

Runge-Kutta-Fehlberg [5] method was modified to allow use of the 

"constrained" boundary condition (20).    The "derivative-constrained" 

condition  (21) and the "derivative-characteristic" condition  (22) were 

also used.    The parameter c refers to the error tolerance used in the 

Runge-Kutta-Fehlberg.    The variable J is the number of mesh points, and 

x=b is the right boundary.    The results depend on b, probably because 

of the way the error is reflected between the two boundaries.    The 

error is the relative error in the computed solution at the indicated 

time t,=T.    The parameter N.. is the number of evaluations of the time 

derivative required in the integration.    Each time step requires 6 

evaluations (5 if it follows an unsuccessful   step). 

There seems to be little difference between the results for the 

constrained-boundary (20) and the derivative-constrained method (21), 

except for a flight difference in the number of functional evaluations. 

This difft -ence can be largely eliminated by omitting the error estimate 

for the constrained boundary variables - at least this was our experience 

for the single equation (1).    Only ehe characteristic derivative method 

(22) is free from the error growth which is probably due to multiple 

reflections from the boundaries.    Note that the severity of the error 

growth depends on the length of the interval   (the parameter b).    The 

error reinforcement upon reflection is probably dependent on the phase 

angle which in turn depends on b.    Of course, these results are based on 

a single, simple test case and may not apply to a given problem. 

. M^^^^^^^ii ^^^^^^^^.^^jyj^^^^a^^M*^.,    ,        . 
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\ 

These computations were performed on the CDC 6400 at the 

University of Colorado. 

MuttMittiiiilai  --"  
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Max X |A|I 

Inconsistent 2nd 
order scheme  (A), 

6 

n 
21 

0.0 

0.0 

0.0 

50. 

199. 

798. 

Consistent 2nd 
order scheme (B) 

! 

6 

n 
21 

0.0 

0.0 

0.0 

2.6 

3.3 

4.4 

4th order with 
3rd order boundary  (c). 6 -0.04 2.5 

n     ! -0.03 3.6 

21 0.0001 4.4 

4th order with 
4th order boundary  (T)), 6 -0.54 5.8 

11 0.26 10.1 
21 0.26 15.9 

Table    I.    Behavior of the matrix A 
of the semidiscrete scheme ^'=Au+£. 
Here x denotes the real  part of an 
eigenvalue of A. 

■■amiiiiimiiii - - ■ -- - --    ■- -  - 
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J T=6.28 T=62.8 T=1256. 

(A)   Inconsistent, RKF 
ODE solver. 11 9.44 665. unstable 

(B)  Second order spatial, 
RKF ODE  solver. n 0.056 0.057 0.058 

(C)  Fourth order 
spatial.     Fourth 
order Ru.ige-Kufcta 
with fixed \=:bfj&x= 
1.8.    Third order at 
boundary. 

6 

11 

21 

0.061 

0.0059 

0.00039 

0.069 

0.0067 

0.00042 

0.070 

0.0068 

0.00042 

(D)  Fourth order spatial. 
Fourth order Runge- 
Kutta with fixed At. 
Fourth order at 
boundary. 

6 

11 

0.052 

0.0031 

0.066 

0.0038 

0.069 

0.0039 

(C) Fourth order spatial. 
RKF ODE solver. 
Third order at 
boundary. 

6 

11 

21 

0.012 

0.0043 

0.00024 

0.016 

0.0043 

Ü.00J24 

0.015 

0.0043 

0.00025 

(D)  Fourth order spatial. 
RKF ODE solver. 
Fourth order at 
boundary. 

6 

11 

0.033 

0.00069 

0.025 

0.0047 

1 

unstable 

Table   II .    Error for various schemes 
applied to equation (16) 
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J 1=6.28 T-lOl T=201 •M02 T=804 

(E)  Second order, solved 6 0.21 0.99 1.13 1.57 2.18 
by RKF 11 0.065 0.33 0.56 0.88 1.39 

INI =1.14 llujl =1.31 Hull =1.65 l|uli=2.27 

21 0.015 0.10 0.18 0.35 0.72 

(F)  Fourth order, solved 6 0.043 0.20 0.23 0.26 0.30 
by RKF, 3rd order at 11 0.0022 0.012 0.020 0.034 0.052 
body 

IN =i-oo 1 uj =1.00 | uf =1.01 u | =1.0 

21 8.4E-5 6.1E-4 1.1E-3 2.2E-3 4.7E-3 

Table    III.    Error for the solution of 
equation (21).    Here T=time, 
and   Hull    is the maximum norm of 
the solution. 

— — -■-- - 
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J b e T NE Error 

Constrained boundary 1.0 0.01 1.0 348 0.052 
(20) 1.0 0.01 2.0 684 0.14 

1.0 0.01 4.0 1344 0.33 
1.0 0.01 10.0 3312 0.27 
1.0 0.01 20.0 6600 0.63 

6 0.5 0.01 1.0 354 0.011 
6 0.5 0.01 4.0 1350 0.031 
6 0.5 0.01 10.0 3312 1.16 
6 0.5 0.01 20.0 10122 213.00 

Deri vati ve-constrai ned 11 1.0 0.01 1.0 318 0.052 
(21) 11 1.0 0.01 2.0 6.2 0.14 

6 0.5 0.01 1.0 318 0.011 
6 0.5 0.01 4.0 1194 0.031 

Characteri sti c-deri vati ve 11 1.0 0.01 1.0 174 0.047 
(22) 11 1.0 0.01 2.0 342 0.061 

11 1.0 0.01 4.0 666 0.060 
11 1.0 0.01 10.0 1638 0.060 
11 1.0 0.01 50.0 8094 0.060 

11 0.5 0.001 1.0 606 3.1E-3 
11 

1 

0.5 0.001 20.0 11592 3.1E-3 

. 

Table IV. Error for solution of equation (17) 
with various boundary conditions. 
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