

>f!P««|i|«W«IPP«BIBWWrw,wppi»^ipppjiIJWIw»^»»^"^™™'^ -^il. .^ii-M^UP ., . |...^ . -,- .—.. P i. ii uumiamimm** < ni^MMmntmmm i np..i «.r J

(. r

l l ilBM

* •» »

 "■■ ■" :^^. ■- .,...,^,.^-**,..
^d

.ii jipipiiimianpinpa^p ' ~ ' ■ ■' "W^PK ■««■^ni^WW^I^^P»!.! J ..

%~~ V^

^'^"''»"■''"■"iiiiPimp

FINAL REPORT

Software Tools for Climate Simulation

AFOSR grant 74-2732

Principle investigator: John Gary
Computer Science Department

University of Colorado
Boulder, Colorado 80302

Our objective was the design and implementation of software

tools to aid in the programming of atmospheric simulations based on partial

differential equations. In the course of this project we designed three

such software tools.

1) A macro preprocessor.

2) A vector extension to Fortran intended either for serial

or parallel computers.

3) A finite difference extension to Fortran.

These are described in three CU technical notes which are

included with this report.

We did produce these initial designs, but we failed to imple-

ment much of it. A lexical scanne, of about 700 lines was written and

mostly debugged. A skeleton of the finite difference operator extension

was written (around 2000 lines of Fortran), however it is not complete.

It became clear that we needed to improve the methods we were using to

implement these designs. Our intention is to drop the code we did pro-

duce and start over using a syntax-directed compiler generator. There are

several possibilities for such a generator, and we have not yet selected

one. It will take us some time to redesign our software to use the

compiler generator and to become familiar w.th the generator. Therefore

we will probably not resume the implementation until the summer or Fall

of 19/6.
-- I ÜH

WM 1 «IP HI" I ■ I J J " < WI IPii WI^PMMIMMPMMP "P'"1 ■ i' ^'HU- I U " ' I "HI

This summer I designed and programmed a software package (HYPPACK)

for the solution of a class of partial differential equations common in

atmospheric simulation. I have not given up on the three software tools

mentioned above. Within the next two or three years I hope to at least

complete a first version of the macro preprocessor and the vector exten-

sion. The HYPPACK package will give us a good program package to which

these tools can be applied and permit comparisons to be made. Also we

wanted to have some tangible output during the rather lengthy period

required to learn how to apply the compiler generator to our problem.

This software package is designed to solve a system of prog-

nostic equations coupled with a single elliptic equation. Examples of such

systems are the Navier-Stokes equations, an anelastic cloud model, or a

vorticity-stream function model. The code allows a second or fourth

order finite difference approximation to be used in space. A second

order leapfrog or fourth order Runge-Kutta-Fehlberg ODE solver can be

used for the time discretization. We use a code written by John Adams

at NCAR, which is based on deferred corrections, to solve the elliptic

equation. His is in turn based on the package of Sv/eet and

Swartztrauber for the direct solution of elliptic equations. The user

of this package need only program some simple subroutines which define

the coefficients in the differential equations in order to solve these

equations. One of the main problems with this code is the proper

specification of the boundary conditions for the prognostic equations.

We have enclosed a fourth CU technical note which deals with this question.

Another problem is the computational efficiency of the code which I

suspect is now not too good due to the generality of the code. We plan

to attempt to solve this problem by the use of a macro-preprocessor,

— i i (aMH „^^ mm - ^^i r

»"(■«■■^•^"•»»»WWfpw^WWiiWPPpi IB^<IW»'"W»""*IP""^^^IWPiipii»l«IipWHItl"«>IIW»"'P"<»WBWP^»Pi^^

initially IFTRAN or M0RTRAN2, eventually our own. We also plan to use

the macro-processor to generate two versions from a single program, one

using LCM variables and another using variables contained in central

memory. One, two and three dimensional versions could also be generated

from this same basic program. Although there are several interesting

programming questions connected with the development of this package,

the most serious problems will probably be of a numerical nature. The

code is currently .unning although we have not checked out the elliptic

equation solver and the graphics output is not yet included. Also

considerable cleanup of the code is required and the users manual must

be greatly improved. The code I wrote is about 1800 lines currently,

and the elliptic equation solver from NCAR is around 2000 lines. Both

are written in Fortran and should be reasonably portable.

i

,...-..—.^■^■■. ..„^ ...—. _.„„. •--:-"-"—"- —'— -^—- -■ ^mttttiajmmtämmimhamtm

np<iM^Mw^an^iP«mpiNw«iiMp<iMnmn<snqivi ■ ■ Mii«imwv|M|mV'1 mpi PW» fftfimmmm im»nmi mi

A Macro Preprocessor for a

FORTRAN Dialect

John Gary

Department of Computer Science
University of Colorado

Boulder, Colorado
80302

August 1975

This is a revision of Report #CU-CS-054-74, August 1974.

This design was performed under ARPA Grant AFC3-74-2732.

,^...^„^ ,.,.,._ ..,„ ..—^—~—.—.— —.

"i" i i '■',l ■'"■ i' i a- rmm^^mnu i . ■pmuj n , n »■»»■«-n, n I^II ■ ifwwfpp^i^nwvprT^ampi^^wvwaMiP'i" ■ ' ■-^^.—^■^—

0. Introduction. Our objective is to provide a macro preprocessor

for a language similar to FORTRAN. This is a "mesh operator" language

(PDELAN) intended for the construction of finite difference codes for

partial differential equations. It is described in a companion report

[8]. The PDELAN compiler generates a FORTRAN object program. These ideas

have not been implemented at the time of this writing.

The macro preprocessor could be used with a modified version of

FORTRAN in which blanks are delimiters and certain "keywords" such as

IF, FORMAT, DO, etc., are also reserved words which cannot be used as

names by the user. The syntax of the macro preprocessor is intended to

be natural to a FORTRAN programmer. Its most frequent application,

such as the propagation of COMMON declarations throughout subroutines,

should be easy to remember and use. It would place the error messages

from the PDELAN compiler in the original source code. PDELAN contains

structured control statemfits such as the following [13]

IF ... THEN ... ELSE ... ENDIF

REPEAT ... UNTIL ... ENDREPEAT

The macro preprocessor permits long names (up to 29 characters) which are

shortened to 6 characters on output (with name conflicts avoided). It

also permits, through conditional macro expansion, the generation of code

which is more machine independent. It is not intended to allow user

defined language extension, except trivial extensions. It seems to us

to be too difficult to include good error diagnostics in a macro extension.

Also the macro extensions are probably too slow. Thus we place the pro-

cessor for the MflN language in a compiler which follows the macro prepro-

cessor. This compiler for the PDELAN language is described elsewhere [8].

 ■*****^- ■. ^ - -—■- — ^ --

M ■ ""I" ■ mt im ill« ■" ■•■ '■' , I «><«<•> '"■" I IIIIIRWII.HIHIII

r <
This is a continuation of work started at NCAR in 1970. A first

version of PDELAN for solving partial differential equations was

developed by Gary and Helgason [1]. A set of graphics commands was

added to PDELAN by iocs and Gary [2]. This code is in light use at

NCAR (fewer than 10 people use it). However Helgason wrote an improved

version of the macro preprocessor called FRED which has been further

improved by Dave Kennison [5]. FRED contains macro capability, sub-

scripts bounds checking, a "TIDY" feature to renumber and indent a

deck, and other features. However, it does not contain difference

operators or graphics commands. Here we propose a macro facility somewhat

different from FRED. It will not have the subscript bounds checking or

the TIDY feature. It will have the capability to modify and generate

tokens, perform conditional macro expansion, and execute macro-time

expressions. It will be based on the PDELAN language in which blanks

are delimiters and the keywords are reserved. PDELAN contains many

FORTRAN features such as COMMON, SUBROUTINE, the same type of data

structures (or lack of them), and the same I/O structure. However, it

does have structured conditional and repetitive statements such as the

PASCAL language or the preprocessors RATFOR, FLECS, MORTRAN, IFTRAN

[14].

One of our main objectives is to make the macro syntax appear nat-

ural to an experienced FORTRAN programmer. Thus the macro definitions

are similar to subroutines and the macro calls are similar to a FORTRAN

function call. The macro-time statements and conditional compilation

are similar to FORTRAN although we did use the IF ... THEN ... ELSE

 — -

»wm '"HP"1-- i*—*mmmmBmmm^m*r***mm^mmnm u mw
—*r**n*' -■ ^

construction. We feel our macro preprocessor is easier for a FORTRAN

programmer to learn and remember than the macro preprocessor for

FORTRAN called MP/1 by Macleod [6] or the preprocessor imbedded in the

LLL FORTRAN [3]. MP/1 is more powerful since it is a pattern matching

macro and it has a good set of macro-time commands. The LLL macros do

not have much macro-time capability. The macro processors designed

for FORTRAN (FLECS. MORTRAN. IFTRAN. RATFOR) that we are familiar with

do not ha'e enough macro-time commands or sufficiently flexible macros.

u^-^^^^u hUfc^^^MM^^-JIfc-..-.- .„■^■^■. .^M^m^mtdutt^äätlm. ^.-^ --:- -: ^ j^Jha^ifciMk^AJBM^Ah^i.

mm iij ii i mmmmmm

-IIJ I »I III

■«— n« i» ' UUJ Jilli.llMPUUWHIiipiJiMpi Pl^f ■

1. The syntax. In order to simplify the macro preprocessor

a modified FORTRAN syntax is used in which blanks are delimiters and

the keywords are reserved. Tokens can be recognized by a lexical scan

ahead of the macro expansion and thus also ahead of the syntactical

analysis. Macro calls are recognized by the appearance of a macro

name with no special delimiting character or pattern matching required.

The syntax of a macro definition is similar to that of a FORTRAN

subroutine or function. The macro definitions can be stored as a string

of tokens rather than a character string which should permit a more

compact internal representation. The token types include integer and

real constants, identifiers, and the operators or delimiters +-*/**

..:()=. The delimiters $ # and ' are also used. The first two are

used in conjunction with the macros, the last is used to delimit

character strings. The last three characters have a different form on the

keypunch than the teletype form given here. Various periott-delimited

operators are also used (.LE. .LT. .GT. .NE. .EQ. .AND. .OR. .NOT.

.NULL.). Boolean constants (10B) and Hollerith constants ("ABCD"

4HABCD) are also used. Format specifications must be included as tokens

(for example, 2E10.3,2P,2PE10.3). A nonblank character in column six

denotes a continue card, which is almost the standard FORTRAN convention.

Columns 1 thru 5 can be used only for statement labels.

In order to use a compiler writing system such as that described

by Cohen [(5], we might allow only identifiers, integers and character

delimiters as tokens. These tokens can be recognized by a lexical

scanner built into the compiler writing system.

 ,„
. „.■.,. . . -. - - . —^ _.. .

 J ' ,..,.., d. I,UM. ,.. . MKpnnipiMaipaRpnmiiiimtHMnMiPMPViBP«

The statements are almost "free-form". They may start anywhere

on the card after column bix. Column six it used to mark continuation

cards. Only statement labels may appear in Columns 2 thru 5. The

statement termination ";" can be used to place more than one statement

on a card. The added statements can be labeled. If the first token

of the statement is an integer constant, then this constant is a

statement label. In order to produce better error diagnostics,

it was decided not to attempt to make the macro preprocessor independent

of the lanqaqe syntax. It is also an advantrqe if the macro preprocessor

can recognize statement labels. Eventually we will even partially

parse the input ahead of the macro explansion in order to indent the

input source proaram according to the nestinq level of the source

statements.

2. The macros and macro-time statements. All the "macro-time"

statements are preceded by a name which starts with the delimiter "%"

or by the delimiter "%" itself. The character used for this delimiter

is system dependent, it does not exit on the KRONOS timeshjre system.

These delimiters can be easily altered. There are two types of macro,

a statement macro and an expression macro. The body of the statement

macro consists of one or more statements. Such a macro name can

be used as a statement in the PDELAN language. The macro name is an

abbreviation for the macro body which replaces it prior to compilation

of the PDELAN program. ror example, consider the following abbreviation

of a subprogram header block.

%MACR0 COMMONBLKA
COMMON A,E,C,D,U
COMMON /B/ H,DLX,DLY
INTEGER HX,UX

%ENDMACR0

iBMMMH^

l»«1 «w1» ■ ' "■ PI-'HWi' "-' P^^WBPiW'^WIIB

The body of the second type of macro is an expression, «oth types

of macro may have arguments. The following is an example of an expression

macro definition and usage.

The definition is

%EXPMACR0 FN(F,X) • EXP(F(X))

An example of the usable is

T = FN(SIN,W+1.)

The second statement would expand into

T + EXP(SIN(W+1.))

The definition of this type of macro is a single statement and

therefore does not require the %ENDMACR0 statement. More than one

expression macro may be defined in a single statement. For example

%EXPMACR0 UT ■ U(N1), U2 ■ U(N2)

Macro calls may be nested, that is a macro definition may contain

a call to a macro. Recursion is allowed, that is a macro may call

itself. However, a macro definition may not contain another macro

definition. A statement number may be placed on a statement macro call,

for example

100 INITIALIZE

In this case a CONTINUE statement is generated ahead of the body of the

macro INITIALIZE.

The scope of the macro definitions. When a macro definition

is encountered the name of the macro is placed in the symbol table

and its body is placed on a "definition stack." To avoid cverflow

of this stack it is possible to limit the scope of a macro definition.

The command %MACR0BL0CK indicates the start of a "block." All

—- -. ■ ■ —'- __.. __. __

*mmmm**^ '"* '"" '»"'•-"-^■np«««wi^pp^pv i ii wi i i ii »I twmmmmmmm "*'•"• •-

I

macros defined within the block are reqarded as local to the block.

When the command %ENDMACR0RL0CK is encountered all these local macros

will be removed from the symbol table and their definitions popped from

the definition stack. Macros not within such a block are reqarded as

qlobal and cannot be removed from the definition stack. In addition,

macros defined within a subproqram are available only within that

subproqram. The WOOBLOCK and %ENDMACR0RL0CK commands cannot

occur within a subproqram.

Macro formal parameters are local to the definition and can

be used as names elsewhere in the source deck. A macro definition

must appear ahead of its first usaoe or call.

•*. Macro-time statements. These are declarations, expressions

and the conditional control of macro expansion. These statements are

executed at "macro-time," that is, when the expansion is performed.

In this first version only intener variables can be declared at macro-

time, and these variables must be nlobal, they cannot be declared within

a macro definition or a macro block. An example of a macro-time

declaration of an integer variable is the following

^INTEGER N,M

There must net be a blank following the %, it is part of the identifier.

Expressions involving the operators + - * / and integer variables

are allowed. For example

% M ■ (N+l)/2

The % alone denotes a macro-time replacement statement.

l:.^..^!A^.-^.-J.... ■ ■> .W- . . ^^1^*10,11**^****^.^^-*****^^*^-^^ —

I

.

Conditional expansion. A Boolean expression can be evaluated

at macro-time to control macro expansion. For example

UP N .LT. 0 THEN
PRINT 250, X,Y,Z
KC ■ KC+1

%ENDIF

If the Boolean is true then these two statements will be included

in the code to be compiled, otherwise they will not. Note that THEN

is a reserved word. The %IF THEN %ELSE %ENDIF compound statement

must not overlap a macro definition, it must be completely within or

completely outside a macro definition.

The Boolean expression can involve relational operations on

macro-time integer expressions. Comparisons(.EQ. or .NE.) between

character strings are allowed. For example

%MACR0 M(X)
KIF X .EQ. A THEN CALL SUB(A): %ENDIF

8

XENDMACRO

If the actual argument of a macro call of this macro M is the token

A, then the code

CALL SUB(A) ;

will be added to the output. These conditional statements can be

nested. Note that %ELSE and %ENDIF must be used and not ELSE or ENDIF.

4. Generated symbols. Statement, labels distinct from any used

in the source code may be generated by use of the symbols #L(3) or #L{N)

where N is a macro-time integer variable. Within each macro call

#L(3) represents the same statement label different from the label

generated by #L(3) on other calls of this macro. The label generated by

§l(H) will depend on the value of N within a given call of the macro, and

 - - - - -- —■ -- - ■ - ■- ■ ■— -- •—-—*■

KW *mmm ' ••«■■l» — — - ■
»f^W^!"W, J l I ll ll II l

9

will also be different on different calls of the macro. As an example

conside*'

%MACR0 SUM(S,A,N)
S=0,
DO i (1) K-1,N
#L(1) S=S+A(K)
^ENDMACRO

A generated name, distinct from other names in the program, which

starts with "I" is obtained from #1(1) or #I(N). For names starting

with "E" the symbols #E(1) or #E(N) are included. These can be used

to generate "local" variables within a macro call.

In addition the macro preprocessor wil1 shorten 'onq identifiers

to 6 characters. This will be done by truncation provided no conflicts

arise, otherwise the last character or characters will be modified

until a unique name is obtained. This modification is carried out for

each subprogram. Therefore external names should not exceed 6 characters

 - ■ ■ .^„^^^Jt^jMM—IlM

« ""> imminn. i im nmi. »mm ■1HPP"^W,",^^W"

10

5. Commands to control expansion. These are identifiers

whose first character is %. They constitute a complete statement in

PDELAN. Mot all of these will be implemented initially.

XNOLIST -

%LIST -

%NEWPAGE OR
%NEWPAGE(ID)

cease listinq source code

list source code

skip source listinq to new paqe. Print identifier ID on

top of page,

%L0NGNAMES - at end of preprocessor source listinq print lonqnames and

their shortened form

.'ItAMEMAP - list line numbers where each identifier is used

:.'FINUS - end of source check

%-MACROMAP - list line numbers where macros are definied or used.

XMACROBLOCK - indicate start of a block of macro definitions

%ENDMACR0RL0CK - indicates the end of a block of macros. When this

command is encountered the macros in the block will be

popped from the macro definition stack. Therefore

macros within the block are not defined following

this card. This permits the use of "local" macros

and may prevent overflow of the macro stack.

LL ■ !■ — I II !■! I * " •" "—

i^pw'i" mufinim«! ippr-»- iwpupwwpwwir" 1' '■■wi -«-' ,'r" ■""■'

11

6. Error diagnostics. When an error is detected we will print

the error message with the listing of the original source. If the error

is inside a nested set of macro calls, then the error message will be

printed after the innermost macro call. However, the name of each macro

called mithin the nested set will be printed along with the line number

from which it was called. We will try lo print the innermost line of code

along with a pointer to the token at which the scanner stopped, and of

course a message to indicate the type of error. The error recovery will

try to resume at the next statement inside the Innermost macro. Ue are

jsing recursive descent to parse the PDELAN variant of FORTRAN, and

we may have some difficulty achieving good error recovery.

Note that good error messages and recovery probably requires the

compiler which follows the macro expansion to be designed together with

the macro preprocessor. Errors which the compiler finds should

probably be printed in the original source code which is input t .,e

macro preprocessor and not in the input to the compiler which is tne

output from the macro preprocessor. We regard the output of good error

messages in this context as a difficult problem. Note that our mesh

operator variant of FORTRAN (PDELAN) produces FORTRAN code as output

which must then be input to a FORFRAN compiler. The code passed to

the FORTRAN compiler by the mesh langage compiler should never contain

any undetected errors. The user should not be required to inspect the

FORTRAN output any more than a user need look at assembly langage

output from a FORTRAN compiler.

gUttgjatMtti^^^MÜli^ii ^^^^^^^^^^g^^j^^ä^gUIgm^l^l^^^tl^k. -----■■■ , ^^^gl^M^j^^M^J

ii ■ ii tmimmm^mm* W^l"liP"iP»WiW^"»"«P>"*^W"l"'l < I '« u

12

7- Desirable additions. We should allow array % variables and %

variables of real or double precision type. For example

%REAL ARRAY A, B(10)

^INTEGER XM(10)

The usual FORTRAN functions should be available within the % statements.

Also, X variables could be initialized within their declarations. For

example

%REAL CPI " 4.*ATAN(1.)

DATA PI/CPI/

The DATA statement in the output program sets the value of PI to ir.

Note that a % variable which appears outside a % statement is transformed

to a character string in the output program. Thus, CPI becomes 3.1416...

using the number of digits carried by the machine.

A macro-time repetition command. This is the

%REPEAT ... % UNTIL ... %ENDREPEAT

command. The Boolean expression following %UNTIL is the same type as

that used with the %IF command. Note that we have not included labeled

% statements or a %G0T0. This is probably a mistaken position from

which we will have to retreat.

The & macro formal parameter marker. A formal parameter in a

macro definition can be indicated by an identifier as in a FORTRAN

subroutine. An integer constant or an INTEGER variable prefaced by a

& could also be used. For example &(1) or &(N). This type of notation is

found in many macro processors. For example suppose the macro has

d variable number of arguments and is to generate a subroutine call for

each argument.

 __

p. i.jupjiiiwimpilipqiMvvjüuijiiii.. jinnp|i^in«J.«i>iiiiiJuii Jimiinfui mi iiwmi^ypipppnpp^pMHrwppipppmiw^vnBpi^ivmw mP^IIIHIIipillliaill. PIII1IMIH! lill

13

^INTEGER N
%MACRO PLOTV

% N=1
%REPEAT

CALL PLTr{&(N))
% N=N-n

%UNTIL &(N) .EQ. NULL
%ENDMACR0

Then the macro call

PL0TV(U,V)

would generate the statements

CALL PLOT(U)
CALL PLOT(V)

Note that we have added a macro-time repetition command

%REPEAT mriL

We have also added a reserved word to represent the null token,

namely NULL.

Symbol table information. Our macro preprocessor is coupled

to the compiler for PDELAN. This compiler has a symbol table containing

information such as arithmetic type, array dimensions, etc. This infor-

mation should be available within % statements. This can be done by

providing another function call for the % statements (a suggestion of

Tom Wright from NCAR). For example

% Nl ■ ARITHTYPE (&(1)

% N2 ■ DIMEN(&(1))

% N3 - DIMEXTENT(U,2)

The macro actual parameter substituted for &1 must be a single token

which is an identifier. If the variable U is declared

RiAL U(20,30,10)

and &(1) ■ U, then N2 = 3 and N3 = 30.

IfMlliMiMÜtlill ■ -...■.^,*- ,.... ^-^ ■■■...:,—■-I.. i....... ..,...,.— . .c.^... ..:—■,..... ,.,.

•^■m>q^nipnMP««mPPl,™*WM««n>K"IPP ■IN i IK WH mm ■gpMmMfHRVT^^ntV .pai^fl1-

■

14

A parenthesized list could be used as an actual argument.

For example, consider the macro call

MAC(X,(A,B),Y)

In this 1(1) would be replaced by X, 1(2} by A,B. The parentheses are

dropped. Also 1(2).1 is A and &(2).2 is B. A similar construe is

used in the macro preprocessor of Macleod [6].

A second type of expression macro. This type of macro allows

macro-time conditional statements to be used to select the expression

which defines the macro. A new type of statement is allowed which

permits a concatenation of tokens. This statement is defined by

occurrence of the macro name on the left of the "=" with a string of

tokens separated by blanks on the right. The macro name can also

appear on the right. The macro name represents a string of tokens

which is null when the macro is entered. The contents of this string

can be changed by the concatenation statement as the sequence of

macro-time statements within the expression macro are executed. Only

macro-time statements are allowed in the body of this expression macro.

The contents of the string when the %RETURN is executed define the

macro. For example consider the following definition of an A format

specification. Here NWORD is a global %INTEGER variable. This type

of macro is distinguished from the previous %EXPMACR0 by the absence of

the "=" in the %EXPMACR0 statement.

%EXPMACR0 AFORM
tlf NWORD .FQ. 4 THEN

% AFORM - 20A4 %ENDIF
IIF NWORD .EQ. 10 THEN

% AFORM = 8A10 %ENDIF
% AFORM ■ FORMAT (AFORM)
%RETURN

%ENDEXPMACRO

1. ^m .. .^, A .. , ._.

" ■ •«! vmmrvmn-rnm^rmm^mmmmmm^Bfjufma^m

15

The following macro may not produce the same result as the one

above.

%EXPMACR0 AFORM
%INTEGER N
IN« 80/NWORD
% AFORM ■ F0RMAT(N A NWORD)
%RETURN $

%ENDEXPMACRO

When a macro-time %INTEGER variable appears in the expression macro

string it is replaced by the character string which represents its

value. If NWORD ■ 4, then the token string (N A NWORD) consists of

5 tokens (20 A4). If these tokens are converted back into a character

string before the output is given to a compiler, then this %EXPMACR0

should produce the same result as the first macro. If the tokens are

input directly to the syntactical scan of a compiler, then these two

macros might not yield the same result. They would certainly output

different token strings.

Macro-time string variables might be included which could incre«*:-

the power of this second type of expression macro.

A pattern matching macro. It should be possible to insert a

pattern matching macro into the preprocessor ahead of the lexical

analysis which produces the tokens. If no pattern macros are defined,

then the pattern matching could be suppressed. Pattern matching and

token generation with symbol table lookup are said to cost about

the same [11]. The pattern macro could be modeled after those in

M0RTRAN2 [14] which is fairly easy to understand and implement and

probably provides sufficient power.

■i liMMMmr-——

""^■^■"WWWWWP'IPW'WWPilipillWPUPPP ■» |" ' IJ pnpppm^^Hm^- mpupnppwpm

REFERENCES

[I] J. Gary and R. Helgason, "An Extension of FORTRAN Containing Finite
Difference Operators", Software-Practice and Experience, 2, 1972,
pp. 321-336.

[2] G. Locs and J. Gary, "A FORTRAN Extension for Data Display", to appear
in IEEE Transactions on Computers.

[3] J. Martin, R. Zwakenberg, S. Solbeck, "LTSS Livermore Time-Sharing
System", Computation Department, M-026, Lawrence Livermore Laboratory,
Livermore, California.

[4] S. Mandil, "A General Purpose 'Problem-to-Program' Translater",
Comp. Bull. 16, 1972, pp. 492-497.

[5] D. Kennison, "FRED, A FORTRAN Editor", NCAR Scientific Library,
National Center for Atmospheric Research, Boulder, Colorado, 80302,
1973.

[6] I. Macleod, "MP/1 - A FORTRAN Macroprocessor", Comp. Jour., 1970.

[7] H. Mills, "Topdown Programming in Large Systems", in "Debugging
Techniques in Large Systems", Rustin(ed), Prentice Hall, 1971.

[8] J. Giry, "PDELAN* A Mesh Operator Variant of FORTRAN", Department
of Computer Science, University of Colorado, Boulder, Colorado, 80302.
1974.

[9] P. Brown, "The ML/I Macro Processor", Comm. ACM, Vol. 10, pp. 618-
623, 1967.

[10] W. Waite, "A Language-independent Macro Processor", Comm. ACM.
Vol. 10, pp. 443-440, 1967.

[II] P. Brown, "A Survey of Macro Preprocessors", Annual Review in
Automatic Prograrrming, pp. 37-88, 1969.

[12] S. Pollack and T. Sterling, "A Guide to PL/I", Holt, New York, 1969.

[13] D. Knuth, "Structured programming wiU1 GOTO statement" Computing
Surveyr,, 6, pp. 261-301 (1974)

[14] Workshop on FORTRAN preprocessors for numerical software. Jet
Propulsion Laboratory, Pasadena, Calif., Nov. 1974.

[15] J. Cohen, "Experience with a conversational Parser Generating System",
Software-Practice and Experience, Vol. 5, pp. 169-180 (1975).

I
-■ -— ■ -

._.

I-

mmaHnMMqBRHnpmuiinj j,ti,iuiuiipww«in iiinMrnnMrnHRpntm*! '"■," ' nmmwimmf*

A VECTOR LANGUAGE FOR THE SOLUTION

OF PDE PROBLEMS

by

John Gary
Department of Computer Science

University of Colorado
Boulder, Colorado 80302

Report #CU-CS-068-75 April 1975

This research was supported by an ARPA grant AF0S-74-2732

VLAA-I-~. -„—..— .»-..-..- ^i.aM^*-^.

ii*^«q!i^jii>.uiiiiiiuiiiii««^^nim«iiP^<T^npiii*nnn*f'^w^< 1immmmmm*mt*mm"- f'mm,m,mmmKm!mm

»—«K

1. Introduction. We are mainly concerned with the inclusion

of a vector capability within a higher level language used to construct

codes for the solution of partial differential equations. The vector

constructs are modeled after those in APL, exc pt that we impose

restrictions in order to produce efficient programs on a parallel

computer such as the Texas Instruments ASC, the Cray computer, or a

new version of the Illiac IV. The language should be designed so

that it is easy for the user to differentiate between those constructs

which can be compiled efficiently and those which can not. We should

also impose restrictions so that implementation of an efficient com-

piler is not too difficult. The language should be designed so that

it can be implemented on a serial computer by a preprocessor which

generates an object FORTRAN program.

2. Vector definition. The usual scalar variables and ex-

pressions are included. The scalar types are logical, real, complex,

double, integer. Arrays can be declared with fixed dimensions, for

example

REAL ARRAY A[10,20], B[-10..10.30]

Note the use of the brackets. A[10] is equivalent to A[1..10]. The

language could permit dynamic storage allocation, and perhaps recursive

procedure calls. If so, then an efficient static storage allocation

should be included for scalar operations involving arrays.

Vectors rap be defined explicitly as follows //3., X+2.,Y,0.//

Unlike APL the // is used to explicitly bracket vector definitions.

■MMM^dÜM . 1 mmtMttMtamat^ _ _

mi^^^**mmmmm^i^^*** mm •-JP*»P m IM mm mi '"««"""^ppHmpHPW . pf|i.ü|LMi'W*""T1' "^T^"

An Increment vector can be defined as 2. .13. .2 which has the

vector value //2,4,6,8,10,12//. This definition was suggested by

Gerry Fisher of the Burroughs Corporation. It is similar to a con-

struct used in TRANQUIL. This vector is intended for use as an

array subscript. It would probably have a different internal representa-

tion than the other vectors. It permits efficient access to the com-

ponents of a vector. The increment vectors are declared as follows.

INCJECTOR IV,JV

and can be set as indicated below. Here N,M, and I can be integer

valued expressions.

IV=N..M..I

The only arithmetic operation which can be performed with these vectors

is addition or subtraction with a scalar integer expression, for

example,

IV=(2..37) + 5

Then IV has the value 7..42, or 7. .42. .1. A vectjr may be created

from an array by use of a vector subscript. For example,

REAL ARRAY A[-10..10] , B[30]
INCJECTOR IV
IV=1..21
A[IV-n] = B[IV]

Here we deviate from APL, since the origin of the subscripts need

not be zero or one. Also we allow array declarations in order to

obtain efficient computation with scalar array elements.

The rank of a vector is defined as in APL to be the number

of (vector) subscripts. The rank could be obtained from a RANK

function within a program. For example,

- --— - - „ ,-»..-■-. ^-.--..J^-^ufcaJtoHMMi MliiÜilMlMtfMÜiMl

-■—-■ • I II '■ UP ■ mmm********"** IMURI! WP I

REAL ARRAY A[20,2Q,10]
INCJECTOR IV.JV
JV = 1..5
IV = 1..10
N = RANK(A[IV,1,JV])

For a declared array, whose rank is fixed, we might allow RANK(A),

which would yield RANK(A) = 3. In this case N would have the value

2, since there are two vector subscripts. The "dimension1 of a

vector V is another vector with rank one whose components are integers

equal to the number of components in each vector subscript of V.

In the above example, the dimension of the vector A[IV,1,JV] is

//10,5//. The. dimension could be obtained by a function call

DIMEN(A[IV,1,JV]). This is essentially the same as in APL. Perhaps

the dimension should be //10,1,5// in this case, but we prefer to

ignore scalar subscripts.

Storage can be allocated to dynamic vectors, that is vectors

whose dimensions, and hence the storage space required, vary during

the computation. This may not be necessary for most PDE codes. These

vectors are declared by means of a block declaration. Perhaps this

block name could then be put in COMMON. For example,

VECTOR BLOCK VBUF[2000]
REAL VECTOR VA,VB,VC
INTEGER VECTOR VN.VM

END_VECTOR_BLOCK

This construct could be inefficient, particularly for short vectors

and certainly if these vectors are used in scalar expressions, that

is with a subscript containing a "FOR" index. Perhaps arrays with

dynamic storage allocation for subroutines or procedures is better,

particularly if recursive calls are not allowed, and the dynamic

allocation can be overridden to create a static allocation. The

I

MbtfUHMMMIM ■i^^Mi ■ ■i^Mlil» I MIMIMfc ■■ mmm --.— ^jalfc^^j^^.—J—^^^^—njgjl

^mmmmm^***1 .iiUMWL.ii .im■ jii. i<u iKi^ipippiimipp«)«^! .mil imm^^mfumm mpn^MV^m^OM^'J!1-111"1111" «"l1-"!!.

dimension of a dynamic vector is set when the vector appears on the

left of a replacement statement (which could occur within a subroutine

call). For example,

VA = //I.,2.,3.//

A vector of type LOGICAL can be used as a subscript, in which

case the vector is regarded as a bit vector in the sense used on the

Illiac IV. For example,

LOGICAL ARRAY IV[5]
REAL ARRAY A[5] , B[5]
IV = //1,0,1,1.1//
A[1..5] ■ //I.,2.,3.,4.,5.//

In the above 1 is assumed equivalent +o true and 0 to false. Then the

vector A[IV] is equivalent to //1,3,4,5// , that is the subscript

values corresponding to zero in IV are dropped. This gives a vector

similar to the "monotone" vector in TRANQUIL. If a vector is defined

by means of a general vector subscript, there may be no way to effi-

ciently access the components on a vector computer. The components

may all be in the same memory bank, or the location of the components

may be too random for the vector access mechanism on the parallel

comouter. The use of a logical vector as a subscript should permit

efficient computation on a vector machine, provided the percentage of

zeros in the logical vector is not too high. This depends on the

flexibility of the vector access on the computer.

3. Basic vector operations. The usual arithmetic operations

are performed component-wise on vectors. This requires the vectors

to have the same dimension, that is they must be conformable in the

sense of APL. Comparisons may bo made between arithmetic vectors to

form logical vectors of the same dimension. For example.

_. _**. - t^mmmmmimmäm^mm — - -- .--- -

IIIPIPPPPPPIIPPPMPPP..IW liJPIM« l'l . «U<lil*lll IIIB.ll . II II .1 .11 ■ÜPPP^" ■^

REAL ARRAY A[100] , B[100], C[100,20]
INC VECTOR IV
LOGICAL ARRAY LV TOO
IV ■ 1..100
LV ■ A[IV] < 0.
B[LV] = 1.
BC-LV] ■ 0.

Here ^ represents the logical operator "not". For simplicity in the

lexical scanner, and for ease of typing, blanks should probably be

delimiters and reserved words should be used. In tnis case the opera-

tors -, and < might be represented by NOT and LT. Note that the vectors

on the left and right side of an assignment statement must have the same

dimension. Again, there can be difficulty with the use of general

vectors as subscripts. For example the following should be prohibited.

A[//l.l//] ■ //I.,2.//

since the storage assignment is not well defined. Perhaps subscript

vectors should be restricted to increment vectors and logical vectors.

A vector can be created from an array by using "*" as a

subscript. In the above code segment C[M] would be a vector of

dimension 100.

4. indexed vector expressions. This is a construct which is

not included in APL. We include it because it seems particularly well

suited to mesh calculations for the solution of PDE problems. The

following are some vector calculations which seem to us to be awkward

using the APL notation for vectors.

a. . = b. .*C. for 1 S 1.J S H
ij iJ J

ai ■ b..*Ci for 1 < i ^ n

., _ - --»i ■ IM^ fc- i •^-..- «——^- ___ MMMM —

PI», ^i. HUHKJUIIJIIII wuw.i.wu II^WIUHPW«IWIJ«IW"«™I»III.«I'.II im^^^^mmmimmfri**mm**mmiiimmm*'miiii'»'

In APL the following operations

I «IN
J = IN
A[I;J] - B[I;J] - B[J;I]

yield

A[I;J] l 0

which is not what the notation suggests.

We allow arrays and vectors to use subscripts which have been

flagged as "index" vectors. Operations involving such indexed vectors

are performed componentwise by matching the indices; that is, the

operations are performed pairwise on the components with the same

index subscript. Only logical or increment vectors may be declared

index vectors. Arrays or vectors with such vectors used as subscripts

are treated differently from the usual vectors. For example,

INC VECTOR IV.JV
SETJNDEX IV,JV
REAL ARRAY A[100], B[100,100]
IV = 1..100
JV = 1..100
B[IV,JV] = B[IV,JV]* A[IV]

Note that if IV ana JV are not indices, but only vectors, the operation

B[IV,JV]* A[IV]

is not allowed since the vector operands do not have the same dimension

When index vectors are used the expression

.$•(B[IV,JV] - B[IV,JV])

yields the skew symmetric part of B.

An indexed expression has an associated index list. The

index list associated with an array consists of all the index vectors

which appear as subscripts of the array. The index list associated

with a simple binary arithmetic operation consists of the union of

1 —- .-~-~^*~*~-m~m*~~*~~*~*-~~~~* ^^^.^^^j—,,^*^^ I—MnilnWlllMl—iia^l

■IIK in um •i< ■ 11 in- ■■ ii^,. .,i,.ii(jn mpni ii L.>L «jiKT^iMnnmMRpnpinpim^pnipniappivMa^ —— WuiHiiiuuiMniiiw

the index lists of the two operands. For example, the index list

of the expressions

A[IV], B[IV,JV]* A[IV] , B[IV.l]* A[JV]

are the following

IV, (IV,JV), (IV,JV).

Note that the last operation is really a direct product. If one

subscript of an array or vector is an index, then we require that all

vector subscripts be declared index vectors. If one operand of an

expression is an indexed expression and the other is a vector in which

no Indices are used, then the operation could be carried out by

regarding the first operand as a vector. Then the dimensions of the

two vector operands must be the same. This provides a sort of mixed

mode which permits indexed vectors to be converted into vectors.

In a replacement statement each index of the expression on

the right must appear on the left, however, those on the left need

not appear on the right. For example, an indexed array may be equated

to a scala-, however a scalar variable can not be equated to an

indexed vector. A notation is available which allows the entire range

of an array subscript to be identified as an index. Note that B[*,l]

is a vector, whereas B[*l,l] is an indexed vector since the vector

subscript is identified by a number and thus indexed. For example,

B(*l,*2] = B[*2,*l] * A[*2]

Vectors can be removed from the set of index vectors by the comnand

DROPJNDEX IV,JV

As an example of the use of index vectors in a finite difference type

of computation, consider the following

■aAUilllMMIIIiHdU ^m^^^M^mimmiti im i —■ ---
 --'■-■■■' ■ — ■ -- -

jiinumiM.ipjjui^M>MPHniBi HIM, - i .1 w~~m^m^^^ I mmjl' ifwmtmn« w II»I uia i.<i> tm

WC VECTOR 1.0
SET_INDEX I,J
REAL ARRAY U.V,W[64,-16..16,2], C[-16..16]
I ■ 2..63
J ■ -15..15
Nl ■ 1
N2 = 2
U[I,J,N2] = U[I,J,N1] + DT*C[J] * (U[I+1,J,N1] - U[I-1 ,J,m])/DX

It will be easy to forget to include vectors in a SETINDEX

statement. The intended indexed operations using these vectors might

be syntactically correct as vector operators. It might be desirable

to build some redundancy into the language at this point by using

special symbols for the indexed arithmetic operations. For example,

+!,-!,*!»/!.**!• However, the use of special characters is trouble-

some because character sets differ widely from one system to the next,

and they have an awkward appearance.

5. The INDEX_IF conditional statement. This statement allows

a computation to be restricted to that portion of a mesh for which a

Boolean expression is true. The mesh points are identifed by index

vectors. For example,

INC VECTOR I,J
SET INDEX I,J
REAL VECTOR U,V,W[100,100],X,Y[100]
INDEX I« X[I]*Y[J] f 0. THEN

W[I,J] ■ l./X[I] + l./Y[J]
ELSE

W[I,J] = EXP(V[I,J])
ENDJNDEXJF

In this case the first replacement statement is executed only for

those values of I and <1 for which X[I]*Y[J] ^0. The second replace

ment statement is executed for the complementary set of values of I

and J. The index list of each expression within the scope of an

INDEXJF is extended to include the index list of the Boolean expression

of the INDEXJF. Thus the expression l./X[I] in this example is

 - -■ ■ ■ ■ - - — tM*kt^**Mmt^lktim»ät^mi* ! !

^■•W*iWpi'WWPfHH»l*"Wlf«imPW»' ■ "■>" "•' iwmi mw^mmimimmm wmmmmnmmmm^mmi i jwtmmmv wi

evaluated over a different set of values of I depending on the value

of J. If an index from the INDEXJF Boolean appears on the left side

of a replacement statement, then so must all indices which appear in

the Boolean. We say that the members of index list associated with the

Boolean expression of an INDEXJF are "linked". In the above example

I and J are linked within the scope of the INDEXJF.

Expressions within an INDEXJF must be extended to contain

all the linked indices. This conditional statement should compile

reasonably efficiently on a well designed parallel computer.

6. Additional vector operators. APL includes many operators

which can be applied to vectors. Perhaps a mesh language does not need

quite so many. Also it may be better to include these operators in

the form of internal functions, since the names may be easier to read

and recall, particularly with a restricted character set. Therefore

we do not use special symbols as does APL.

The compress and expand operators of APL are included as

vector valued functions with two arguments. The first argument of

compresses a logical vector and the second is an arithmetic vector.

These vectors must be of rank one. The value of the compress function

is another vector of the same arithmetic type as the second argument

whose dimension equals the number of ones in the logical vector. For

example,

LOGICAL ARRAY L[100]
REAL ARRAY U[100], A[100,100]
VECTORJLOCK VBUF[1000]

REAL VECTOR V,W
END_VECTOR_BLOCK
INCJECTOR I,J
SETJNDEX I,J
I = 1..100
L[I] = U[I] < 0.
V = COMPRESS(L.U)

j-lB^^—j^^üj^^»^lj^^-^-^^i^^^ö4u^^—^^^^jl^lg^l Mi|||dMlg£|ittiMMilMi«MMIIiUM^iMM^MMl "-'-■- - '-- ■ ■- -- ---- ■■■

■■ ""■"'" m» «IP ii •im '■ .-.I^I». .- — m^*m*mmi<>' J" V '?" i ■w.pi^.i.M

■Piw»«y—"^

10

In this example the vector V consists of the negative components of

U. It is awkward to have the result of the compression be an indexed

vector since the index as well as the vector must be set. If we allow

V[J] = C0MPRESS(L[I],U[I])

then the notation would not be consistent with that used previously

since both V and J would be altered. The EXPAND function is defined

in a similar manner. The result vector has the same dimension as the

logical vector. For example, if the following statement is added to

the above program segment

W ■ EXPAND(L[I],V)

then W is obtained from the vector ll[I] by zeroing out the positive

components of U.

A reduction or inner product operator is included. In this

case we do use a special symbol, namely •♦. If both operands are

vrctors, then the last vector subscript of the first operator is

reduced by taking the inner product with the first vector subscript

of the second operand. This corresponds to matrix multiplication,

and is the convention used in APL. If both operands are indexed

expressions, then the reduction is carried out over all repeated

indices. If the reduction is to be restricted to specified indices,

then these indices are specified within brackets. For example, con-

sider

A[I,J]*+U[J]
A[J,I]*lU[J]
A[J,I]n[J]U[J]
A[*l,*2]*iU[*l]
A[I,J]MJ]A[I,J]
v n v

If we assume that I, J, and V are vectors, then the first expression

multiplies the matrix A with the vector U. the second multiplies the

 - -- ■■ ■ - -■- - .. - - - ^ ^^ —

i. ijjj i.ii«nipyi.)..,ipf™Mpp^».MWJip n w^mrmrvmw ^imm^m^mmmmmmin'''^m'm^ ■■■"-"■■"""■" M mi IM I .M

11

matrix A with the vector U, tKe second nuUtpUes the transpose of

the matrix A by the vector U, the third and fourth are the same as

the second, the fifth computes the inner product of the rows of A

with themselves, and the last computes the inner product of the vector

V with itself. If the reduction is to be carried out along specific

subscripts of vector operands (not indexed vectors), the subscripts

can be indicated by their sequence number in the subscript list. For

example,

A[*,*] •♦[2:2] A[*,*]

This yields the same computation as the fifth example given in the

group above.

Other internal functions or operators might be desirable.

The RANK and DIMEN functions have already been discussed. A function

to find the maximum and another to find the minimum of the components

of a vector should be included (ceiling and floor in APL). These

might be VMAX and VMIN. The usual FORTAAN functions such as SIN,

EXP, ate. should be extended to vectors without change of name.

7. Vector valued functions. The user needs the ability to

define functions whose value is a vector which can be used in vector

expressions. Subroutines may also communicate arguments which are

vectors. A FORTRAN-like syntax could be used for this. A vector

block could be placed in COMMON to provide another manner to communicate

vectors Netween separate subprograms. In addition to separately

compiled subroutines procedures in the style of ALGOL could be included

in the language. This would provide global variables. If a subprogram

argument is an indexed vector expression, then it must be converted to

|MM illlliBilM(iggMIMtiagM ^^ — -

—^. mm nw^|Wi*m^<"w^»»^fip*iwm^?WPBi™ipp"wwB»» mamwi """""■-" ' ■' noppn» MÜH

12

a vector for transmission to the subprogram. The following is an

example of a function

REAL VECTOR FUNCTION FN(X)
REAL VECTOR X
COMMON VBUF.NMAX.EPS
VECTOR BLOCK VBUF[1000]

REAL VECTOR TA.TB
END_VECTOR_BLOCK
REAL EPS
INTEGER NMAX.N
FN=1.+X
TA=X
N=l
WHILE (VMAX(ABS(TA)) GT EPS) AND (N LT NMAX) DO

N=N+1
TA=TA*X/N
FN=FN+TA

END_WHILE
ENDJUNCTION

In this example the storage for the vector result FN would have to be

declared in the calling program. It might be necessary to require that

FN appear in a VECT0R_BL0CK declaration in the calling program.

8. Some comments on the design of a vector language. Perhaps

most users would be adequately served by vectors formed from arrays

using increment vectors. Thus the vector declaration could be elim-

inated which would certainly simplify the compiler. However, we do

not see a reasonable way to transmit vector arguments to subprograms,

return a vector valued function, or to define compress and expand

operations if this restriction is made. Therefore we feel it is

desirable to include variables of vector type.

The structures and types allowed in the language should be

considered more carefully. Should a more general type of structure

be allowed as in ALGOL 68, or a record structure as in PASCAL? Should

we allow the value of a function to be any structure permitted in the

■Mi .
,„.,-„ — ,-- - —- MMÜtetfiü .-J.4^*riU.L ■^a.a

i" "■"'■" 'I11*' *~m HMi|pp«wnwia>«jmiPRnp|m^)mwii «i

.-»TJJ-

13

language? What seems natural to the average scientific programmer

should be considered here as should the cost of implementation and

the effect on run-time efficiency.

The control structures used in the language should be re-

designed taking into account the ideas of Knuth, Wirth and others.

This is a very active area in Computer Science at the moment; perhaps

the design of a good set of control commands will be easier in the

future.

We have not included any I/O features which is a bad omission.

We especially need to include format-free I/O, good graphics commands,

the ability to handle a memory hierarchy, etc.

The design of a vector language raises optimization questions

which may be different from those which arise with a scalar language.

The parse tree now contains vector operands and this should allow

better optimization.

-- ^—-*■■- —^^—. - -- - ■-■ -— —"*

«
lpiKlllp«nMpgmRsnn wii liiiiiiii |i ui

REFERENCES

[1] N. Wirth (1972), "The Programming Language PASCAL", Eidgenönische
Technische Hochschule Zurich.

[2] IVTRAN (1973), "The IVTRAi' Manual", Massachusetts Computer
Associates, Wakefield, Mastachusetts, 01880.

[3] D. Lawrie (1973), "Memory-Processor Connection Networks", PH.D.
thesis, University of Illinois, Comp. Sei. Rep. 557.

[4] P. Budnik and D. Kuck (1969), " A TRANQUIL Programming Primer",
Department of Computer Science, Rep. 816, University of Illinois.

[5] H. Katzan (1970), "APL Programming and Computer Techniques",
Van Nostrand, New York.

[61 Löcs and Gary (1974), "A FORTRAN Extension for Data Display",
r.EEE Trans, on Comp., 1257-1263.

[7] M. Wilson, "Flexible Subarray Facilities for Classical Pro-
gramming Languages", IBM Houston Scientific Center Technical
Report No. 320-2426, IBM Corp., 6900 Fannin Street, Houston,
Texas, 77025.

[8] A. Haberman (1973), "Critical Comments on the Programming Language
PASCAL", Acta In^ormatica, 3, 47-57.

......... ./.—■^a^.M-a-^^imt. ■^ ■-■— -^'-"-— - ■ .--.....^.-^...^

\

—- vfmmmmmfm*'m***'^^mmm***i**~~r

PDELAN: A MESH OPERATOR VARIANT OF FORTRAN

John Gary

Department of Computer Science
University of Colorado
Boulder, Colorado 80302

Report #CU-CS-049-74 August 1974

This design was performed under an ARPA Grant AF0S-74-2/32

--:^-.^- . ■■ a.i.^^^iMM^iMBiilh - . ,_,._.-- ^ ^ - - — . — lUA^^^^^^^M^ ^^^^

—»w i. ..|i p.« .i>.._..ap«l ,„mmm - .■ .. mmmm^mmmmmaiK luwm^^mf^m*'1 "ll'111 m'mimu** m ■ im mt

1. Introduction. The objective of this language, which we call PDELAN.

is to facilitate the coding of finite difference schemes for partial differ-

ential equations. The aspect of these codes which we have emphasized is the

difference equations. An operator notation is provided so that the equations

can be written as the numerical analyst frequently invites them prior to

translation into a program. That is

U2 - Ul + DLT * DXX(Ul)

where DXX represents the operator

(Ui+l-
2Ui+Ui-l)/Ax2

and DLT - At. Implicit difference schemes can also be written in this opera-

tor notation. The set up and solution of the resulting linear systems will

be handled automatically. This treatment of implicit schemes is the most

powerful facility within PDELAN.

The language is a dialect of Fortran rather than an extension. The

conditional and iteration commands are taken from PASCAL and thus allow a

better structured programming style than Fortran. These Include

IF ... THEN ... ELSE ... ENDIF

REPEAT ... UNTIL ... ENDREPEAT

The language is coupled with a macro preprocessor which allows a topdown program-

ming style [41. The language is implemented as a preprocessor to Fortran.

This is similar to the approach taken by Gear for a PL/I like language [5].

An earlier version of PDELAN was implemented at NCAR in 1971 [1]. The

finite difference language has received only light use; however, we feel this

may be due to deficiencies in the earlier version which we can eliminate.

Also, implicit schemes could not be treated with the previous version. In

any case a language like this is intended for a specialized use and will apply

ui^*t^^^m^a^^^^m^mtim t^^mma*

mfwm^umm^mmm^t^mK 1 •■ «■■ " mi^w~mm^*—m MI I.IIIMII i IPI. II u

to a small percentage of jobs even in a computing center which does much

continuous simulation.

Graphics and file management capability should be provided in a language

for PDE problems. The earlier version doe. contain a sophisticated set of

high level graphics commands, but no file management commands [2]. However,

our effort concentrates on the difference equations and the macro preprocessor.

2. The basic language. In this section we describe the basic set of

instructions available in PDELAN. The syntax is somewhat different than in

FORTRAN. The declarations are nested. For example, variable declarations

are placed within the scope of a COMMON block in order to declare them as

COMMON variables. The conditional statements are similar to those in PASCAL.

The I/O statements are similar to FORTRAN. An end-of-card is an end-of-

statement unless the statement is continued. Our objective is to provide a

structured base for the mesh operator constructs, but with minimal departure

from FORTRAN. We proceed to a description of the features of the language.

2.1 The lexical scan. The PDELAN syntax is restricted so that a

compatable macro preprocessor can operate ahead of the PDELAN translator [4].

Therefore, blanks are delimiters. Furthermore, the PDELAN keywords such as

IF, DO, FORMAT, etc. are all reserved words and may not be used as variable

names. Long Identifiers, up M 29 characters, may be used. Two continuation

modes are allowed. The first uses column six punch as in FORTRAN. The

second uses the two characters ;+ to terminate reading of one card and indi-

cate that the statement is to be continued to the next card. Statements may

be separated by ";" which is an end-of-statement marker. A statement ends

in column 72 unless it is explicitly continued to the next card. We think

it better not to require that every statement be terminated by 'V'. An

occasional use of the continuation ";+" seems preferable to this hardened

FOR/RAN programmer who tends to forget the ";" in PL/I and PASCAL. Blocks

- . . , . Mini „ ^^^** ^dttlg^ ^^^Ä^-^w-.
■---- -- — .. . - maul« i ■» II i id

^•ww-^»i ■ inu*^^mm**^*mm*m ■ .I ii.iii u. i I.I.III!B »iM<pppia*nR immmimmiM^mmiwm™*^*'

are all terminated by special terminators such as ENDIF, ENDCOMMON, etc.

This is done for readibility and also to reduce doubt about when a ";"

is required. If a statement starts with an integer constant, then the inte-

ger is a statement label. A statement, including the label can start any-

where in columns 2 through 72. Names which start in column one are instruc-

tions for the preprocessor.

Comments can be defined by a "C" in column one as in FORTRAN, or by the

"brackets" */.../* as in PL/I. The "*/" delimiter is an end-of-statement

marker, so this type of comment cannot be imbedded within a statement. This

restriction allows all comments to be conveniently output to the object

FORTRAN program.

Some examples of statements are:

C SAMPLE DECK

IF X.LT.Y THEN

W(I) - X*A(I)

ELSE

W(I) = Y*A(I)

ENDIF

CASE K OF 2

1: I - 1 ; 20 A(I) =I*K;I-I+1

IF I.LE.M THEN GO TO 20 ENDIF

2: FOR I = 1 TO M DO A(I) = 0. ENDFOR

ENDCASE

U(l) - U(2) + A(M) * (U(3) - U(2))* ;+

(C/B(M)) * (W(3) - W(2)) »/LEFT BOUNDARY/*

2.2 Declarations. The declarations are nested. A COMMON block of

declarations can be declared in whose scope variable declarations may be

^Myd^o^ngMu^^^^ Jl^fcmj;.!.^-..^^-..:^ j. ...■-.■.I^^M.J^J^:.J.IJJ.^1—^s^-^-^^-ja^L. .^J. - — ------^ ^..^.*^. - ■- - - -—*■

W.lippp^OTII

*mimKm"~*T^~ -mm

«PH^Manpnnm^wwiiiiiiiiMiiJiiiiwww'ii' " ■» ■ ■

placed. This same type of nesting can be used to declare mesh variables

and to declare groupings of variables for convenient I/O. For example,

consider the following declarations of blank and labeled COMMON

COMMON

REAL X, Y, T

INTEGER A, B, C

ENDCOMMON

COMMON LAB

DOUBLE XD, YD

ENDCOMMON

The arithmetic modes are INTEGER, REAL, DOUBLE, COMPLEX, LOGICAL. The

only variable structure is the ARRAY. Vrriables may be declared as having

array structure in two ways

REAL X, Y, U(20,30), Z, V(20,31)

REAL ARRAY T, P(20,30), Wl, W2(20,31)

In the first statement X, Y, and Z are sealer variables, and U and V are

arrays. In the second statement T and P are declared arrays of dimension 2

and extent (20,30). If more variable types were allowed, then the PASCAL

declaration style would be more appropriate. The declarations would then be

grouped together as follows

DECLAREVAR

COMMON LAB

X, Y, Z I REAL

U, T, P : ARRAY(20,30) OF REAL

V, Wl, W2 : ARRAY(20,31) OF REAL

ENDCOMMON

ENDDECLARE

■ lUlllfc <■ - ■- --.-■■ " ■- - ■jjMiMinini i — - — .- --■ - -n , „ .- mam.

■■■■ w»-iw«~n

5
t

PASCAL permits the user to declare types and assign these types names. The

PASCAL record type and sealer type could be useful in finite difference codes.

It would sometimes be useful to pack flags and indices into a single word.

However, the CDC 6000 version of PASCAL is about a factor of two slower than

FORTRAN on matrix codes, and FORTRAN is of course more common than PASCAL.

Therefore we prefer to base the language on FORTRAN in spite of the superior

design of PASCAL.

2.3 Statement labels. If the first token of a statement is an integer,

that integer is a statement label. An optional colon can follow the label

to improve appearance. For example

10 : X - Y ; 20 W = A(l)

IF X.LT.0. THEN GOTO 10

The GOTO statement is included. There are some restrictions on the GOTO.

Jumps into the scope of a FOR loop from outside the loop are not allowed.

A second type of statement label uses an alphanumeric label, for example

LOOPA : ENDF0R

This is discussed below.

2.4 Control structure. We have taken our control statements from PASCAL.

These are

IF . . . THEN . . . ENDIF

IF . . . THEN . . . ELSE . . . ENDIF

REPEAT . . . UNTIL . . . ENDREPEAT

WHILE ... DO ... ENDWHILE

Some examples are

Müaai^aitfiniii i i —■■-'- ^—...■^..■■..-^.^:-.M^.. ^ -^. —- -^- ..-^--^ ■J^^_^_„^^..^^MlMi^^u«fc.td^M.

^mmmmmm l-,l,,MI"1 ^■^«»•i^wwWB^w»—^»■)IIW1P1.11.«U,.L.I W"^..,-W M.-

IF X.LT.O. THEN X - -X ENDIF

IF A.LT.B THEN

REPEAT A = A + H UNTIL A.GE.B ENDREPEAT

ELSE

A - B

CALL SET

ENDIF

Use of matched end-of-block markers (ENDIF, etc.) provides redundancy

in the language which allows improved error diagnostics. This useage may

also produce more readable code.

As case statement of the following form is included

CASE K OF 2

1 : X - SIN(T)

2 : X - SINH(T)

ENDCASE

These statement labels are local to the CASE block. The followinti code will

probably be allowed (hopefully, no one writes this way, and perhaps it should

not be allowed)

CASE K OF 2

1 : X - 1.

2 : Y - 1. ; GOTO 1

ENDCASE

2.5 Iteration and more on statement labels. The iteration statement

is illustrated by the following

FOR K - M + 1 TO NA(N)**2 + 2 DO B(K) - K ENDFOR

FOR L - 1 STEP N - 3 TO 20 DO

B(L) - C(L)
F(L) - L**L

ENDFOR

^^^^^g^^^^-l , ^.M^fc^ii

1

I -

mmm*^mmm^mm**^*m ii v<a,l"l"l*iaiB,lll>i ''- "^^»mmmmmmmiBm

The expression following STEP can be negative. If this expression Is a posi-

tive integer constant such as STEP 2, then FOR will be translated into a DO

statement. Otherwise FOR becomes a loop terminated by an IF statement contain-

ing the test on the Iteration parameter.

An alphanumeric label of the following form is allowed

LOOPA : FORK - 1 TO 10 DO

A(K) » 1.

B(K) - K

LOOPA : ENDFOR

This permits use of the EXIT statement. A statement of the form

EXIT LAB

causes control to drop through the control block containing the EXIT LAB

statement until an END statement labeled by LAB is found. Execution then

starts innediately after this labeled END. It is not necessary to label the

beginning of the control block. The EXIT never refers to the beginning of

a control block. However, if the beginning is labeled, then the end must

also be labeled with the same label. Only alphanumeric labels can be used

with the EXIT. Alphanumeric labels may not be used with a GOTO. An alpha-

numeric label must be followed by a colon.

2.6 Subprogram headers. These are identical to those In FORTRAN. Namely,

PROGRAM NAM(INPUT, . . .)

SUBROUTINE NAM . . .

FUNCTION NAM . . .

BLOCKDATA . . .

ENDPROGRAM

Mi ■-■

i.iiM ,m.*m,mwm.im> ■mim* immmmirmmimi l.ilim imim MI n ——^ I"'1 ' iNjiwiipiw^iPPwiwpipwiww^wppil

ENDSUBROUTINE

The PROGRAM statement is a CDC variant of FORTRAN. The usual subroutine and

function calls are allowed. The ENTRY and EXTERNAL statements are also

included.

2.7 I/O statements. The preprocessor will allow the following five

statements which are identical with FORTRAN

READ(nc,nf)

WRITE(nc,nf)

READ nf,

PRINT

nf FORMAT(. . .)

2.8 PASSTHRU blocks. These are blocks of statements which are passed

directly to the Fortran compiler which compiles .ae abject code produced by

the preprocessor. If a statement is not placed within such a block, then

the preprocessor will rttempt to parse it as a statement in PDELAN and fail-

ure will produce an error diagnostic. Most such non PDELAN statements will

probably be I/O commands such as BUFFERIN to do buffered I/O, or commands

to handle extended core. We could require the user to handle such commands

by means of a subroutine call. However, this would not allow addition of an

EQUIVALENCE statement, for example. An example of a PASSTHRU block is

PASSTHRU

EQUIVALENCE (A,X)

IMPLICIT REAL*8 (A - H, 0 - Z)

ENDPASSTHRU

..-.».■ -., J...^-J.—-, - -*-• -- -.-.U -. L-i miMu.^M . M^^^Mk^MflaMMMiMafe^MMM^^^HMM^MI

mm
■ —

mmmmmm *mm^r~~ • " i""'1« ■" '■

3. Finite difference equations. The primary motivation for this prepro-

cessor, is the simplification of finite difference codes arising from the

solution of partial differential equations. For example consider the simple

heat equation

0 < x < 1 * .A u = u(x.t)
6t 6x

u(0,t) - u(l,t) - 0

0 < t

The problem is made discrete by use of a mesh in x and t, x^ - jAx, 0 i j < J,

Ax - 1/J. Using the notation U* % •{My t^), then the difference scheme

might be

At ix2

.n+1
This can be written as a "marching" scheme which computes values ÖJ on the

new time level t .- from the known values on level tn, namely

un+1 . yn + At (un . 2un + ,*) 1 < j , J-l

J J Ax J J J

«r1 ■ üJ+1 -o

If U11"4"1 is stored in the array U2 and Un in the array Ul, then this algorithm

is written in Fortran as follows (U* stored in Ul(j+1), JT - J+D •

U2(l) - 0.

U2(J + 1) = 0.

DO 100 K = 1, J

100 U2(K) = U1(K) + (DLT/DLX**2)*

X (U1(K + 1) - 2.*U1(K) + U1(K - 1))

Frequently the numerical analvst writes the difference scheme in operator

notation as follows

,.n- 1 „n
U

,nN Un + At D^U")

where 0(1^ - (Uj+1 - 2^ + U^/Ax .

piiii I-. !.« i '■iiP.uiiiiJViii«uinmMiM«iipipiw*ppppvn*nfwv.w>mv^^

10

PDELAN permits the same type of subscript free, operator notation.

It is possible to declare meshes, variables on these meshes, and finite

difference operators which map variables or expressions from one mesh to

another. The above problem would be written in PDELAN as follows (assume

J - 128)

MESH MS(128)

REAL Ul, U2

ENDMESH

OPERATOR DXX(W)

FROM MS TO MS(I = 2..127)

(W(I + 1) - 2.*W(I) + W(I - 1))/(DLX**2)

ENDOPERATOR

U2(l) - 0.

U2(128) - 0.

FORMESH MS(J - 2..127)

U2 - Ul + DLt*DXX(Ul)

ENDFORMESH

Note that the mesh variables need not be subscripted within the scope of a

FORMESH, we write U2 Instead of U2(J). Mesh operators, such as DXX, can be

applied only within the scope of a FORMESH. The operators can be used in

a fairly complex way. For example, if DX and AX are mesh operators, then

the following expression involving mesh variables U and V might be used

DX(C * AX(U) * DX(U + V)).

An earlier version of PDELAN was Implemented at NCAR in 1971 111« We

refer to the paper and documentation describing this version for a more com-

plete definition and explanation of these operators. The earlier version had

a different syntax and was rather awkward to use. The version described here

 .— ,.-^ ..^~^.^.~....^^..^.^.^^— —^ -^-..-. .^^^^^^^^—^.^^.^^^^ m

1 ' '■""■-• — i wmmmmmmmmmm*

11

should be a considerable improvement over the first one. Also the new

version allows implicit difference schemes to be written in operator notation.

This is certainly its most powerful and useful feature. An example of an

Implicit scheme is the Crank-Nicolson scheme for the heat equation

.n+1 „n . At ^/„n+1 . „n,. ir~.^ + *|»qr* + jf).
.n+l

We regard this as an equation for the unknown vector U . This is a tri-

. n+l
diagonal system of equations for the unknown components ot U

3.1 Mesh and variable declarations. This is a nested block of state-

ments which name a mesh and assign its extent. The block also contains

declarations of variables on this mesh. These variables are arrays with

the same extent as the mesh. No memory space is required for the mesh,

only for variables declared on the mesh. For example,

MESH UVTMESH(6A,32)

REAL U, V, T

ENDMESH

In this case the variables U, V, T are arrays of extent (6A,32). The mesh

name UVTMESH is entered into the symbol table and its associated information

stored with it.

A mesh variable may be in addition an array. For example,

MESH UVTMESH(64,32)

REAL ARRAY U, V, T(3)

ENDMESH

In this case U, V, and T are arrays of extent (64,32,3). To each point in

the mesh (i,j) there are 3 values assigned. Each of these arrays can be

regarded as three mesh variables U^^, U^j^' and Ui,j,3- We wil1 Say

more about this later.

^^a^^^-ku^^^h^. _ . .-^-. —^—^-.■.

I

«mt^mmimmW'

12

An additional type of mesh variable, a PROJECTION variable, can be

declared. For example,

MESH UVTMESH(64,32)

REAL ARRAY U,V,T(3)

REAL PROJECTION CS(,*)

ENDMESH

In this case CS is an array of extent (32). At each point (i,j) the mesh

variable CS has the value CS(j). (Here 1 .< i ^ 6A, 1 $ j < 32). The "*"

indicates the subscripts which are not removed.

3.2 The mesh operator declaration. An example of a mesh operator declar-

ation is the following

MESH MUV(64)

REAL U1,U2

ENDMESH

MESH M(63)

REAL SG

ENDMESH

OPERATOR DX(W)

FROM MÜV TO M(I = 1..63)

(W(I + 1) - W(I))/DLX

FROM M TO MUV(I • 2..63)

(W(I) - W(I - 1))/DLX

ENDOPERATOR

A graphic representation of the meshes is

• x • x •
112 2 3

. x .
63 63 64

The MUV points are "." and the M points "x". The meaning of the DX operator

 ——-- - - ■ .*_*

pp»- imm*m**w^^~*^^m«^ ^pw^ —' *^**mmmmmm

13

Is to difference values at the surrounding points on the MUV mesh to obtain

an approximate derivative at a point on the M mesh. If E is an expression

on the MUV mesh, then DX(E) can be thought of as an expression on the M mesh.

That is, DX(E) has a velue at each point j on the M mesh, namely

DX(E)j - (Ej+1 - E^/DLX

For example, if E is Ul+ U2, then

DX(U1+ U2)(I) = ((U1(I + 1)+U2(I + D) - (U1(I)+U2(I))/DLX

The expression on the right is evaluated on the MUV mesh.

3.3 The FORMESH block. This is the means y which finite difference

expressions are evaluated. For example, consider the parabolic equation

IT- fc^> + «-"
u(05t) - u(l,t) - 0

The difference scheme might be

VTI+1 mV* + At6 (o6 (u")) + f (un)

where the difference operator 6^ is

Sx(U)J+l/2"
(Vl-VMX

y^j= (VI/2-UJ-I/2)/AX

Use the mesh, variable, and operator declarations given above in section 3.2.

Then this difference scheme is written:

U2(l) = 0.

U2(64) - 0.

FORMESH MUV(I - 2..63)

U2 - Ul + DLT*DX(SG*DX(U1)) + F(U1)

ENDFORMESH

^^^Jl^yjU^^^l^^^^^g^ jto^tta -- —^—~*~ ^^^^^....... .. _ ^

■'■I " ll1" i iiiiBiiiiiii ii imt^mr^^^t ■ ■..-....

t

14

Here F is a Fortran function subprogram, U and U are stored in U2 and

Ul, and a is stored in SG.

The replacement statements within the scope of a FORMESH are evaluated

for each value of I in the indicated range, in thi.3 case 2 through 63. The

evaluation is performed in "parallel" in order to be compatible with parallel

computers such as the Texas Instruments ASC or Seymouv Cray's proposed new

machine. This means that the right side is evaluated for all values of I

before storage into the left side. Thus the evaluation is not the same as

a conventional Fortran DO loop. For example

FORMESH MUV(I = 2..63)

U2 - DX(DX(U2))

ENDFORKESH

is equivalent to

DO 100 I - 2,63

100 T(I) - (U2(I + 1) - 2.*U2(I) + U2(I - 1))/(DLX**2)

DO 101 I - 2,63

101 U2 I) - T(I)

Here T is an array used for temporary storage of intermediate results. If

there are two statements within the scope of a FORMESH, the computation for

the first will be completed for all values of the index before computation

is started on the second statement. This is completely different than a DO

loop. The first version of PDELAN uses a DOMESH instead of this FORMESH. The

DOMESH scope is executed in the same manner as a DO loop. The DOMESH does

not execute in parallel. Also the syntax of the DOMESH resembles the DO. It

uses a statement number termination instead of the block structure.

Next consider a difference operator which does not have a uniform defini-

tion throughout the mesh. For example.

ttontimätmimtm — MM^^MMI^MHMiliMigMgallHiltla

iiyiapui.win^n^wpqppinnnv^minOTOT. iaoaii ^Pi" WW '■ '"

15

MESH MUV(128)

REAL U1,U2,U3

ENDMESH

OPERATOR DX(W)

FROM MUV TO MUV(I = 128)

(W(I - 2) - 4.*W(I - 1) + 3.*W(I))/(2.*DLX)

FROM MUV TO MUV(I - 2..127)

(W(I + 1) - W(I - 1))/(2.*DLX)

ENDOPERATOR

U3(l) = 0.

FORMESH MUV(I = 2.

U3 -= Ul - DLT*DX(U2)

ENDFORMESH

This operator has a different definition at I = 128 than it does in the

interior of the mesh, 2 ^ I < 127. The evaluation of the FORMESH cannot use

DO loops from 2 to 128, the calculation must be broken down according to th«;

definition of the operator. Therefore the FORMESH can be translated as

follows (note that U3 does not appear on the right side of the replacement

statement).

U3(128) - Ul(128) - DLT*

(U2(126) - 4.*U2(127) + 3.*U2(128))/(2.*DLX)

DO 100 I - 2,127

100 U3(I) - U1(I) - DLT*(U2(I + 1) - U2(I - 1))/2.*DLX)

The previous version of PDEIAN cannot handle a mesh operator unless it has

a uniform definition within the range of a D0MESH. The removal of this

deficiency is an important improvement.

3.4 Implicit difference schemes. This allows the user to write

implicit schemes about as easily as explicit ones. This is probably the most

h*M —- ■-- ^^^_i_^M^^^Jja»JiMJ«_^i^>^1]1^_^^ ' "■" — - - ■ -—-——-

—^—-»—^iw^-w— " i:>."." mm**^^mm '^v^immm

16

useful and certainly the most powerful feature of PDELAN. To illustrate the

method consider an Implicit scheme for the following equation:

3u
at

3 / / x3Uv

u(0,t) = u(l,t) - 0

u(x,0) = f(x)

The implicit scheme is

.n+1
U, - u:

At

„n+l

a(xi+1/2) Ax -ö(xi-l/2)V 5 //
Ax

1 ^ i ^ M

Un+1 - 0

Ax - 1/(M + 1)

„rri-l. n+1
This is a tridiagonal system in the unknown vector {l^ }. We can write

this equation in operator form as follows

U2 - Ul + DLT*DX(SG*DX(U2))

Here the declarations are given in section 3.2 above. The meshes are MÜV

and M. The variable SG is on mesh M. DX is defined on both meshes. If

U2 is regarded as a vector Uciknown, then this equation defines a linear

system of equations for the unknown U2. Because difference schemes are

frequently nonlinear we will not attempt tc ,olve the linear system directly,

instead we will ■110» the user to write out a linear difference equation in

an unknown W and use this system to define a Jacobian matrix. Then this

Jacobian matrix is used to solve a possibly nonlinear system by iteration.

In order to illustrate the definition of this Jacobian we use this same

linear parabolic problem. The following block defines the Jacobian for this

example

---—-^<M - ■ -
- - ^■.-^——

— i im vmtmi n I—>-^^^l^^^^^ -^n——^-———• mmmmmm^n "«|

17

SETJACOB AJ(W) ON MUV(I = 2..63)

W - Ul - DLT*DX(SG*D':(W))

ENDSETJACOB

The unknown vector is {Vi } with components in the range 2 $ i ^ 63.

The expression defines a linear system of equations for W of the following

form

v=l

c, W... + f, - 0
i.v i+k i

v

For this example the system is

Ci.lWi-l + r-i.2Wi + Ci.3Wi+l
+ fi " 0

That is, k - -1, k- - 0, k- - 1. This can be written as a matrix equation

AW - f_

Where A is given by

'13

Jo ,*!♦
c,, J - i + k
i,v J v

The SETJACOB block generates code to compute the entries in the matrix A.

This matrix is stored in the mesh array AJ. The user must declare the array

AJ and it must be large enough to accomodate the matrix A. In this case

the declaration

REAL ARRAY AJ(3)

must be added to the MUV mesh block. The SETJACOB block will also generate

a subroutine call to perform the LU decomposition of the matrix A. The result

will be stored in AJ and the original matrix A will be lost. If pivoting

is desired, then the command SETJACOB(PIVOT) should be used. In this case

a larger AJ array must be declared.

i nnnnriMimMiiir n ■'-' -~-^ ■ mmmm IMUiliiHIliU

^m<*n?«n«aqn«pm«<ri.<. |.^^|.ll.B»w^^>lW■w"• IIII».I»UIM ""n J. i"> ■. ■»^»■»■ii.»i, u ■ ■ m.»-—

I

18

The Jacobian is used according to th< following example.

SOLVE JACOB AJ ON MUV (I - 2..63)

F(U2) - U2 - Ul - DLT*DX(SG*DX(U2))

ENDSOLVE

The expression in the SOLVE block defines a function of U2. The SOLVE

block generates code to perform a single step of a Newton iteration using

the Jacobian AJ. That is, the following equation is solved for 6W

A6W = -F(U2)

Here F must be a mesh variable declared on MUV by the user. The value of the

expression within the SOLVE block is stored in F. Code to obtain an updated

value of U2 from the solution 6W of the Jacobiar system,

U2 - U2 + 6W

is generated by the SOLVE command. Since the Jacobian AJ was defined for

2 < i < 63, the vector U2 is updated over the same range.

We only allow difference schemes which are implicit in one dimension.

This means that the mesh subscript list in the SETJACOB statement can have

only one vector subscript. A scheme which is implicit in two dimensions is

usually two expensive because the bandwidth of the Jacobian matrix is too

large. However, the Jacobian could be defined on a two dimensional array.

For example

MESH M(128,64)

REAL U2,U1

REAL ARRAY AJ(3)

ENDMESH

OPERATOR DXX(W)

, „in,, ... ^. -

»'".Wl V'—***'^**^* mm\ «.mm<iimn\n i ijnn iiin«m^OT«M«ii<* iuw.*>>^MIMmi^H^«^iMii.iii 1 n-^iwmilip«ip«

19

FROM M TO M(I - 2..127, J - *)

(W(I + l.J) - 2.*W(I,J) + W(l - 1,J)/(DLX**2)

ENDOPERATOR

OPERATOR DYY(W)

FROM M TO M(I - *, J = 2..127)

(W(I,J + 1) - 2.*W(I.J) + W(I. J - 1))/(DLY**2)

ENDOPERATOR

SETJACOB AJ(W) ON M(I - 2. .127, J = *)

W - Ul - DLT*(DXX(W) + DYY(Ul))

ENDSETJACOB

The Jacobian is still a tridiagonal matrix, but it is defined over a two

dimensional mesh and thus has order 127 x 64. The array AJ has extent

(128,64,3). Th6 term ^W^ indicates a scheme implicit in I.

The Jacobian matrix should allow for difference schemes which have the

same number of points in the stencil throughout the mesh but may be shifted

near the boundary due to one sided difference approximations. For example,

if the one sided approximation

i-3V1 + 4U2 - U3)/(2Ax)

is used along with the centered formula

<Ui+l-
Ui-l)/(2Ax)

then the Jacobian matrix would have the following structure

^^^M^^^^^M^^^^M^^^k^
.-^.■^.-.., ^. . ..:.^.~,J. ^-„^ ^±.>~i^...Mi^~~~~..J.~rt*J...^^.,^ ^-.....^-^-.^.^...^.-L;..^^..—A.. ■-^—■^■-

^HrmmnmmimmimmKmmnf^'^^wwii''''''^'iiwaimm^fmimi'>''ifi''''<l'ii,-.ii" '^^v^^^waMp^c^'' mammr*'
^ ! „

20

X X X o

X X X o

O X X X

X X X o

O X X X

O X X X

The AJ mesh array containing the Jacobian should have extent 3 in this case

(assume no pivoting).

The language should also handle implicit systems of equations. For

example, consider

R = ä7(o(u) r^ + aie

3u 3 , , v 3uv . d(u+v)
Jl ' 37 (0(v) ff + V

In this case the Jacobian might be block tridiagonal with 2x2 blocks.

Here we are not using the true Jacobian because we are not using the deriva-

tive of the function o(w). We assume SGF is a function subprogram.

MESH MUV(64)

REAL Ul,U2,v"l,V2, AJ(7)

ENDMESH

MESH M(63)

ENDMESH

OPERATOR DX(W)

FROM M TO MUV(I - 2.j63)

(W(I) - W(I - 1))/DLX

 —■■■ —- —- — — — -

piui. iMji..i.)aBi»ijnp^l^pip)nVippmiHHMBpHpi^i iiwiiii *>n„nu«,nimFmmmm*mimll , i. <<< •«•«i^aMPaiPfiiwaMaMnw^Rvin^iiiii lim . >—^mimmGlBim

I -

21

FROM MUV TO M(l - 1..63)

(W(I + 1) - W(I))/DLX

ENDOPERATOR

OPERATOR AX(W)

FROM MUV TO M(l = 1..63)

(W(I + 1) + W(I))*.5

ENDOPERATOR

SET JACOB AJ(U,V) ON MÜV(I ■ 2..63)

U-U1-DLT*DX(SGF(AX(U1))*DX(U)) + Al*ALP*EXP(Ul + V1)*U

V-V1-DLT*DX(SGF(AX(V1))*DX(V)) + A2*ALP*EXP(U1 + V1)*V

ENDSETJACOB

The SOLVE command is similar, except that the mesh function F required to

hold intermediate results is an array of extent 2.

4. Extensions. These are features that we would like to add after we

get the language described in the previous two sections running. For dif-

ference schemes which will not fit in fast memory, the following memory

allocation scheme is useful. The data for such schemes is usually transmit-

ted by blocks which consist of a "section" of a mesh. For example, in a

three dimensional problem such a section would be all points (i, j, k) with

k fixed and i and j ranging through all possible values. If the data for the

scheme consists of three variables U, V, W each of dimension (50, 50, 40),

then only a few sections will be in fast memory, perhaps four sections, the

rest will be located in bulk storage of some kind. The bulk store should be

accessed in large blocks. In this case the block would consist of one section

containing 7500 words. That is U(*, *, M. V(*, *, k), W(*, *, fc). Note that

U(*, *, K) represents 2500 words.

U(I, J, K) for 1 .< I ^ 50, 1 < J .< 50.

liiMim ii i — ^^^^^. ^^M^^^ ^M^^UtM^MlU^^JMIdÜAiag^Uui^üUgl

" ' ■'" mmmmmmmmm ^mm^^^m nun Ji ni .■.).!.Hü.-,.. P. vn. c -."infimr,.

22

The Fortran dimension statement

DIMENSION 0(50,50,4), V(50,50,4), W(50,50,4)

will not group this data properly. The variables in the section are not

stored contiguously. The following declaration will rearrange the data allocation

ASRAYBLOCK NAM(4,LEN)

REAL ARRAY U,V,W(50,50,*), ;+

CS,SN(50,*), TH(*)

ENDARRAYBLOCK

The "*" is replaced by the 4. The variable LEN must be an integer variable.

It will be set equal to the length of each of the 4 sections in a DATA state-

ment in the Fortran object code. In this case the section length is 7601.

The output will contain a DIMENSION statement of the form

DIMENSION U(200,50), 7(200,50), W(200,50)

X , CS(200), SN(200), TH(4)

If these variables are not within a COMMON block they will all be placed

in a labeled COMMON in order to be sure that they will be stored together.

That is

C0MM0N/TL0Ü01/U,V,W,CS,SN,TH

Then U(I,J,K) where 1 < K < 4 is accessed by

U(I + K*LEN - LEN.J)

where LEN is replaced by its constant equivalent to yield

U(I + 7601*K- 7601,J)

A block I/O transmission can then be given in the form (on the CDC system)

BUFFERIN(7,1)(U(1,1,K),TH(K))

- - —-—■-* ■———
nmimir'it i ii ■ ■■■- ' ii iMna ia. ■ ■■ ■ i i TIHI i i ii i i

"■"^ mmmmv***'*1"

23

Data initialization. This performs the same function as the Fortran DATA

statement and is Implemented by means of a DATA statement in the output object

code. However, the syntax is r.ore consistent with the repetition used in

FORMAT statements and avoids the use of * as a repetition indicator. This

permits the use of expressions involving macro time variables [41 in the

initialization. An example is

REAL ARRAY U(50,50) - (50(0.),50(1.),48(0.))

General array extent. We would prefer to have array declarations in

the form

REAL ARRAY U(-10..10,5)

This is equivalent to U(-10..10,1..5). The output for a reference of the

form U(I,J) would be translated to U(I + 11,J) and the dimension statement

would be of the form

DIMENSION U(21,5)

Since the CDC compilers only allow three subscripts, it would be desir-

able to allow more than three dimensions in PDELAN and reduce to three in

the output. For example if

COMPLEX CS(10,20,5,2)

then the reference CS(I,J,K,L) would become

CS(I,J,K + 5*L - 5).

We assume it is preferable to reduce to three subscripts rather than

one because some compilers will not optimize the complex one dimensional sub-

script« as well as the three dimensional especially if the inner DO loop

is over one of the first two subscripts.

Recursive procedures and dynamic storage allocation. Within a given

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ —^.^^^»^M^^^^J-. — - - - .. II^^M^^^^^^—^fclMt^^lM»^^^ M^UM^te^^g^^^^Aks

 " "ll" ' «! I '■ ■^•" ■■■■■■ '" ■"" "•" " mpMIRnPIMIVHm^1 I- ipwmiifii

24

subprogram a set of procedures can be defined. These can contain variable

declarations which are local to the procedure. These procedures allow

recursive calls and are implemented by means of a stack which is simply an

array in the containing Fortran subprogram. This provides dynamic storage

allocation, at least within the containing subprogram. The procedures can

be called only within this subprogram.

A format free I/O statement in the NAMELIST style. This would differ

from NAMELIST in that the variable list would appear in the I/O command

rather than in a separate declaration. A macro can be used to place the same

list in several different commands. Also, the input command can work in

two modes. If there are no identifiers of the form "ID-" on the input card,

only a list of numbers, then these numbers are input according to the I/O

list. If an identifier "ID-" appears, then the input will be governed by

the identifiers. These identifiers must appear in the I/O list within the

I/O command. For example

INLIST(7,NAM) X,Y,A(1..10,5..10),;+

B(*,3,2.

The input card might appear in the form

^NAM 1.2,3.7,B(1,1.2) = 37. $

or it might have the form

$NAM 1,7.,21,

gNAM A(l,7) - -21. $

A format free output is also included. For example

0UTLIST(6,NAM) ^8821',X.Y,B(1.1..20,7)

tii ■'"-:' ^. .-■.-^-..^--^■.^---■- ■■— -— ..^.:.l...- ^ ^■--..■.-. - ■ ■■ -.... ■■■..;■-.. ^-

mmmm****m™m**mmm*mmmmmmimmu ■ jii^wwpipppiwwBww^wPs^wp^PiBppwwpppwwipi^« ^"-■ "^upp^p^^^^w^

I
25

The output is labeled. That is, the values are printed in the form

OUTLIST NAM CASE 21 X - 1.2 Y - 3.7

B(l,1..20,7)

31.2 -21.7 8.IE +5

END OUTLIST NAM

A means to set the number of significant figures printed is provided. For

example

OU,rLlST(6,NAM,SIGNIF(E10.3,l6,Dl3.6)) . . .

File management and graphics. A very important aspect of a language for

PDE is the I/O facilities within the language. This should include an easy

way to generate graphs and contour plots from arrays. Such a facility is

included in the first version of PDELAN [2]. The graphics in this earlier

version should be improved in various ways. For example, the syntax of

these graphics commands should be Improved. Also the graphics commands should

be organized into a hierarchy most of which is machine independent. It should

be possible to output the graphs and plots in a form suitable for efficient

transmission over phone lines and output on a variety of graphics devices [6].

However, this is a large problem in its own right, and we have decided to

concentrate on the finite difference aspects of the language.

The design of a file management system and data structures suitable

for PDE codes is an important problem and should be a part of the language.

However, we have not put any effort into this part of the problem.

■ — ■^^-^- — ■ —-■—-^- --* ■ -■■. —- -- ■ ■■ .~,.-^-... ...- ^ .-. _.

>• •■ laui» wi iiuiN 11 «^*l«PIiiPllP«PP""W«^^""^W"PWiPlPWP*P«>!^(^W^WWP»"l»™^P"^«llPl.lJiiil i 1 l

REFERENCES

1. J. Gary and R. Helgason, "An Extension of FORTRAN Containing Finite
Difference Operators". Software-Practice and Experience, 2, pp. 321 33b

(1972)

2. G. Locs and J. Gary, "A FORTRAN Extension for Data Display" to appear in

IEEE Transactions on Computers

•^ H Mills "Topdown Programming in Large Systems", in "Debugging
3- TeZllles In'large Systerns".Austin(ed) , Prentice Hall, Inglewood

Cliffs, N.J. (1971)

4. J. Gary, "A macro preprocessor for a FORTRAN variant". Computer
Science Department, University of Colorado (1974)

5. W. Gear, "What do we need in programming languages". Proceed. Math

Software Conference, Purdue, (1974)

6. J. Adams and J. Gary. "Compact presentation o^four?^ for Phone
Line Transmission". Comm. ACM. Vol. 17. No. 6. 333-337 (1974)

HMlah^aiiUMHiiiHafeiilillM imi MiaiiiWfi T i

RpiMiLi«.Mnm^^p^^wMmnmnHH^«np. i m ii>,w «■^■iippBPBipmmpwww^ KWM

Boundary Conditions for the Method of Lines
Applied to Hyperbolic Systems*

by

John Gary
Department of Computer Science

University of Colorado
Boulder, Colorado 80302

TR #CU-CS-073-75 July 1975

* This research was supported by an ARPA grant AF0S-74-2732

1 '-'--'— —-- - -■ ■■■'—-——

lBIP«W!iPli*BP^*p^PP|pMBP!WipipB«PPPW!^^

mmmmmamt

ut+ux=0

1. Introduction. A fundamental problem in the numerical solution

of hyperbolic equations is the proper approximation of the boundary condi-

tions. For example, the leapfrog scheme applied to the following hyper-

bolic problem is unstable.

0<x<jf

u(0,t)=sin(-t) 0<t (1)

u(x,0)=sin(x)

The mesh for this scheme is X^JAX^TT/J for 0<j<J. The exact solution
y

is fin (x-t). If a second order difference approximation for the spatial

derivative is combined with a leapfrog scheme for time, then the following

scheme is obtained

un
0=sin(-tn)

U^Vj'^AtCUjVJ.^/aX

U^^^-Atlu^-U^^/AX l<j<J

This scheme is unstable. If the outflow boundary is modified as indicated

below, then the scheme is stable and has second order accuracy.

When the method of lines is used for the simple linear hyperbolic

equation (1) with periodic boundary equations, then the resulting differ-

ence scheme is stable, provided an ODE solver w:th automatic step-size

adjustment is used to solve the system of ordinary differential equations.

Even if the ODE solver uses an Euler forward time-step scheme, the inte-

gration will converge as the mesh spacing is taken Ui zero, since the

ODE solver will take the step time-step small enough as a function of

the mesh size to guarantee convergence. It will not be the case that

..
M _. . --— urn

^mmmmmm^mmmmmimmmmiii mpmimmmfmi>^*>*'mm mmmmmmn i MOT '"■"^'"

-2-

At=0(Ax). Note that the semi-discrete approximation produced by the

method of lines with periodic boundary conditions can be written in

the form

U=ALL LHU.J»-■ • .UJ_-|) X.-JTT/J

where the matrix A is

2AX

0 10.

-10 10

0-101

1

•1

0

0

0 -1 o

The solution of this differential equation is given in terms of an

exponential matrix as

u(t)=u(0)eAt

Since the matrix is skew symmetric and cyclic its eigenvalues are pure

imaginary and its eigenvectors are orthogonal. Therefore, the solution

is bounded independently of the number of mesh points. This implies

that the solution of this semi-discrete approximation will converge to

the solution of the original equation (1). Therefore any spatial

discretization which yields a skew symmetric, cyclic matrix will define

a convergent method of lines approximation. Stability in a

finite difference scheme for hyperbolic problems is in a sense associated

with the temporal discretization.

Unfortunately, the method of lines does not necessarily produce

a stable scheme when the boundary conditions are not periodic. However,

the method of lines dues seem to be more likely to yield a stable scheme

 -"-— — -—-—'^—-'—

■' ■'■,"
1 •"" 1 ■ '■ "I" ~*~~~^mmmrm

than a laapfrog time discretization.

Our purpose is an experimental study of some boundary difference

approximations for use on hyperbolic systems where the method of lines

is used for the temporal discretization. Our results will refer mainly

to the Runge-Kutta-Fehlberg ODE sol/er, althrjgh we intend to experi-

ment with the Adams method of Shampine [9] in the future. We have found

it important to include test cases for hyperbolic systems (more than

one independent variable) for which the characteristics lie on both sides

of the boundary. This is in agreement with comments by Chu [3] and

Sundstrom [10]. We are interested in boundary approximations which can

be incorporated into a general PDE solver to treat hyperbolic systems

in two dimensions. Such solvers for parabolic equations in one dimen-

sion are described by Sincovec and Madsen [11], Carver [2], Loeb [6],

Bowen [1], Hastings [12] and others. Because of our interest in

general hyperbolic systems, we cannot consider boundary approximations

stated ir terms of specific variables for specific equations. We can

only consider algorithms which can be presented in a general gramework.

We will test two such algorithms.

Of course, such a general algorithm requires the user to apply

it in such a way as to produce a properly posed hyperbolic problem.

We must allow the user the flexibility to set the boundary conditions.

Eventually, we might be able to supoly an optional check to see that

the boundary conditions are consistent with the hyperbolic system.

2. rnmpnt.at.ional results indicating stability and accuracy of

«^ttodoMfl»«. In this section we consider difference approximations

for the system (1). These are semi-discrete approximations of the form

- iiMniir ■ - - - - - - - . — - - ... ,^J^^J—^- — ■■ ■ - ^■. ■„■,-.... .,^- .■^-~

"'•u11- ■>■>•> ■ ' —T*mw^ --.Tppup^p "ilP»^"«l«PPPPPPWPPIiPW»|w»^Biil^PWi^WPIiP

u'=Au+f (2)

J . where u = u_(t) = (.. .u.(t)...) is a vector of mesh point values. In

this section we will look at the eigenvalues of A and the norm of the

exponential matrix

l|eA|l (3)

for four finite difference approximations. If this norm is bounded

independent of the spatial mesh, then the semi-discrete approximation

is stable. This follows from the integral form of the solution of (2)

u(t) ■ u(o)eAt+ f{x)e
A(t-T)

dt (4)

If the eigenvectors of A are orthogonal, then a bound for the norm of

the exponential matrix can be obtained from the eigenvalues of A.

Therefore, we compute these eigenvalues and also the norm (3) in order

to gain insight into the stability of the following four schemes.

A. An inconsistent scheme. Here a one-sided difference is used

at both boundaries in spite of the fact that the solution should be

specified at the inflow or left boundary. This must yield an unstable

approximation. The approximation is consistent, and if it were also

stable, then it would be convergent. That is, if the norm of the

exponential matrix

c

were bounded independently of the mesh spacing the approximation would

be convergent, which is impossible since no boundary condition has been

specified on the inflow boundary. The scheme is

i^Ä^^tt^-fci, . äät. - ,. ■ i.^ff- —■-■'--— ■ ■ «a^^^^M —-— ■ -*■

1 ■" ■

U^awnipifHiii* *«^^ -

-—"-"• •,"1"'" •" wi—i. ■■ii II

-5-

Uo(t) = -A-[-(u1(t)-u0(t))

uj-{t)=-2Tx(Vi(t)-uj-i(t))

^WWP

(5)

l<j<J

B. A second order scheme. This scheme is the same as the previous

one except

u0{t)=sin(-t)

It is only first o^der at the boundary, but the overall accuracy should

be second urder.

C. Fourth order with a third order boundary. This scheme is

given below. Öliger [7] has shown that subtle changes are reguir?d in

this spatial approximation when it is used with a leapfrog time dis-

cretization, in order that the resultant difference scheme be stable.

However, it seems to be stable without modification when it is used

with a variable step ODE solver.

u0(t)-sin(-t)

u](t)=-(2u0-3u1+6u3-u4)/6AX

uj(t)=-(2uj_2-l6iij._l+l6u.+1-2uj+2)/(24Ax)

UJ-l(t) = -(UJ-3-6UJ-2+3Vl+2UJ)/(6Ax)

Uj(t)=-(-2uJ_3+9üJ_2-l8uJ_1+lluJ)/(6Ax)

(6)

i I I lli\Mm »^-^ - "-"■^ i^-AU^.:.^.—-■■■-A. .-...^~ ■ ..-^.^:. ^ ■ ■ .-.-^. ^... ..■^ ^ ^^^ —. ^.- :-....-. ^ ..■.-■■ -

F"1 ■ "■■U1IW.I««»WJ mm^*mmn\ mi. M ,i«i«.w ■ i ^uiwp^w^pnnw mi i in H ■■^^^OT-^MIMW i L«■ iw»«^P^"*^^||lip V

D. A fourth order scheme with a fourth order boundary approximation

This is the same schere as the one above except that one-sided fourth

order differences are used at the boundary.

u^{t)-(-6u0-20u1+36u2-12u3+2u4)/(24Ax)

ui(t)--(6^.4-32UJ_3+72Uj.2-96uJ.1+50uJ)/{24Ax)

The above four schemes can all be written in the matrix form of

equation (2). The maximum of the real parts of the eigenvalues of

the matrix A for these four schemes are given in Table I. The eigenvalues

of A were determined by using the IMSL QR routine on the CDC 6400

at the University of Colorado. The exponential matrix was determined

by summing its series expansion. The norm is that induced by the vector

maximum norm. For the inconsistent scheme (A) the eigenvalues are all

pure imaginary with a double or triple root at zero iepending on whether

J is even or odd. The instability of this scheme is evident from the

norm of the exponential matrix but not from the eigenvalues.

Schemes (B) and (C) would appear to be stable from this analysis.

However, we might expect the solution of scheme (D) to show exponential

growth in time since its matrix has an eigenvalue with positive real

part.

In order to provide a more complete test of these four schemes

we wrote a code for these schemes applied to equation (1). This pro-

vides a direct test of the stability and accuracy of these schemes.

Table II shows the error obtained with the various schemes after

integration to the indicated value of t=T using the mesh resolution

uf^m-^^nB^dfa^AMi^-^fc^.. .■. .. ,__^_^t^Mäum^A^dt^äUimdLiai^miM

determined by J. Note that the number of intervals per wave is 2(J-1)

since the mesh runs from x=0 to X=TT and J+l is the number of mesh

points. Scheme (A) is clearly unstable. Schemes (B) and (C) seem to

be stable which is consistent with the results in Table I giving the

characteristics of the matrices corresponding to these schemes. Scheme

(D) seems to be weakly unstable when the system is solved with the RKF

ODE solver. However this scheme seems to be stable when the Runge-Kutta

scheme with a fixed ratio At/Ax is used.

3. A variable coefficient problem. A hyperbolic problem which

is more typical of many applications than equation (1) is the following

defined on the interval 0<X<T\.

u.+cos(t)ux=cos(x-t)(cos(t)-l)=r(x,t)

If cos(t)>p then u(0,t)=sin(-t) (8)

If cos(t)<0 then u(TT,t)=sin U-t)

u(x,0)=sin x

The solution of this problem is u(x,t)=sin(x-t). The mesh is x^jir/J,

for 0<j<J. In this problem the inflow and outflow boundary alternate

between the two endpoints of the interval. When cos(t)>p the left

boundary is the inflow point. This makes the use of an ODE solver

awkward if the method of equation (6) is used to define the system of

differential equations. When cos(t)>0 the unknowns are (u^t),... ,Uj(t))

and when cos(t)<0 the unknown vector has shifted to (u0(t),...,Uj_1(t)).

■--- J - ■

—- ...■-■ , ,„ „, .j!

.

^IPMPIPvqVW«^ •^^i^mppiwwp liPii"WIIW»Ji|!I|ill i.|.^iP^»w«»PP

-8-

(9)

Therefore we differentiate the boundary condition so that the system

of differential equations always contains the same unknowns.

E. A second order scheme for equation (8).

If cos(t)>0 then

u(l)(t)=^(sin(-t))=-cos(t)

otherwise

u^(t)=-(u1-u0)/Ax+r(0,t)

If cos(t)<0 then

u^{t)=^<sin(7r-t))=cos(t)

otherwise

Uj(t) = -{uJ-UJ_1)/AX+r(Tr,t)

This scheme uses a differentiated form of the boundary condition at an

inflow boundary and a one-sided first order difference approximation

to the differential equation at an outflow boundary. The definition

of the differential equation used to define the solution along the

boundary line varies depending on the inflow-outflow nature of the

boundary. However, the solution along these boundary lines is always

determined by a differential equation.

F. ^fourth order scheme for equation (8).

If cos(t)_Ü then

u^(t)=-cos(t)

otherwise

^ .Jt_^..,1,^
MttMMMMM ^^-g^gggMHUgggl

pvpM^miB.ui1 ■ u^iijiu .nimi.ji^iiiiiji.1 jinaiwiiiuii im iiJiiwm^np^ ^^■^^■ppp^pw^^rm^^l

He re Si is the third order difference approximation of u (0) using
3 Ä

(x ,xn,x0,xj. The equation for u'(t) is similar. The remainder of
o I 2 3 "J

the system is identical with that of equation (6).

The results of using these schemes to approximate the solution

of equation (8) is given in Table III. These results indicate that

these schemes are stable. The norm of the second order approximation

shows a slow linear growth with time. The error shows the expected

asymptotic behavior with J (approximately). The behavior of this method

on a more complex multidimensional problem awaits testing which we

hope to carry out in the near future.

4. General boundary approximation algorithms. In this section

we consider a program for the following, more general class of nonlinear

hyperbolic equations.

}f ■ ^(ä(u,x,t))+h(u,x,t)

or the nonconservation form

m* fAu,x,t)+h(u,x,t)

(11)

(11)

Here f, £, and h are general vector valued functions and u(x,t) is the

vector solution. We assume that boundary conditions are given at two

end points x=a and x=b. We consider two methods to specify these boundary

conditions.

The first method requires the specification of a subset of the

unknowns at each boundary point. Consider the left boundary x=a. The

unknowns are (uT(x,t),... ,uM(x,t)). The p unknowns (ML•1^) ^om

the set I = {p1,...,Pm> are specified as follows:

n iiiiM-ijjfli-rtMMiai,.
- — - ■

-^nmmmm^mmm m^mmmmmmmm IJIIIIIIIJ«||HMR NiHiiiMii i vwpnmmMPP

-10-

um (a,t) ■ ^(Ujjd.t),!)

urT1 (a,t) ■ S (j||I(t.t)»t)

(13)

Here UT = (um ,...,um) is the compliment of Uj = (u ,...,um). The
'n "l mM-p 1 , P

problem specification must include the integer p and the functions

S,,...^ at both boundary points. Note that p may depend on the time t.

The functions S. are used to set the values of Uj at the boundary. The

values of uTT are computed from the hyperbolic equation, using one sided

approximations for spatial derivatives.

For example, consider the variable coefficient problem given by

equation (8). At the left boundary (x=0), if cos(t)>0, then for the

number of boundary constraints we have p=l. The function S1(uII,t)=

S1(t)=-sin(t). Note that U|| is empty in this case. If cos(t)<0,

then p=0 at the left boundary and u. is empty. In this case the value

of LL(t) (here U.(t) denotes the approximation to u(x.,t) on the 'time
0 J J

line") is obtained from the differential equation

dU
dt
&■ -cos(t)6.(U)n+r(xn,t) 0

(14)

where 8. represents the onesided difference approximation.

When the ODE solver, such as the Runge-Kutta-Fehlberg is used,

there is a slight problem in implementing this algorithm. When the

characteristic slope cos(t) changes sign, the nature of the system of

ordinary differential equations changes. When cos(t)>0, the unknowns in

the system (8) are (l^,...,^), but when cos(t)<0 the unknowns are (UQ,. .. .Uj.-,)

^^^(g^i^^^^^^^i^,.., mi^^ ■ mi -.. .^^:^^^-^^—-^-^~^j-^-^^J^J^..-..i^^....^jto4.^i^fa^tli«äaa*J^i!i . ^— ._. mmM

«"■•I'll" I' I wmm im, mi iiiwunwppii» iminiiiuiiwiiw

-n.

The ODE solver always works with the full set of unknowns including the

boundary values, that is (tk»...•(!«). However, in computing the "right

side" functions in the Runge-Kutta steps the boundary constraints are

applied to set the boundary values for variables in the U. sets. If the

system of ODE's is written

dU.
(15)

and IL is in the constrained set Uj for t ■ tjVZtt, then the function

F (U , . U.,t +l/2At) used in the Runge-Kutta step is replaced by
J 0 j n

F.(S(UII,t.+l/?At),Ur...,UJ,t+l/2At). Also, at the end of the step the

value of U0 computed by the ODE solver is replaced by S(U0,t) provided

U is still in the constrained set U.. Obviously this requires modifi-

cation of the ODE solver. There is no guarantee that this method will

converge. In fact, as we will see shortly, it does not always converge.

The algorithm can be implemented as part of a PDE package once the user

has supplied the subroutines to evaluate p, the sets Up and the functions

The second method is a generalization of the differentiated

boundary conditions described in section 3 in equations (9) and (10).

In this case the user is allowed to reset the time derivatives used

by the ODE solver to compute the boundary values, that is

dUm,0 _ r fti c »1 anH m,J - -w W^'^ and
dt m,J nuiT-d -vJ

Here we assume a system of equations for the unknowns umj where there are

M unknowns (l<m<M) and the mesh points are XJ.(a=x0<x1< ...<Xj=b).

1
... ■.-.— ,._■.. ...

■ ■

Pipp^fwpp^r' ■'«I '■'»■>< <nMN!fppnp«p«pmwi>wiiipw I.I>IIIJ <■- """^MiipvnpvaMiiRWJiP.i. wn^amppnnMamwipiHipipinMpipi wu. ,11. iiiiiinmmppp

-12-

The vectors F« ■ (F^ 0.---'
F
Mjo)

T and ^0 are the tirne derivatives

obtained using one sided difference approximations in the hyperbolic

system at the boundary. The vectors U^,^ and the time t are supplied

to a user written subroutine which must then determine the set I and
dU n

return values for /' = F n, for pel. The remaining time derivatives

for pil are the values F n obtained from onesided differences in the p ,u
hyperbolic system. This method is going to be difficult to explain to a

user. However, it is the only method that hes, so far, worked reliably.

We will illustrate this method by the following example. This

is a system with characteristics of different sign. Chu [3] and Sundstrom

[10] have noted the difficulties of setting boundary conditions for such

systems.

DU-,

at

3Du1 43u2

3X

3U2 23u1 33u2

H 9x 3x

0<t

0<x<b

(17)

This system is derived from

3u 3u
3F = '3x " = VU2

3v
"5t 9x

v ■ 2u2-u-|

u1=2u+v

U2=u+v

Therefore the following boundary conditions are proper, since they

amount to a specification of the characteristic variable on the

inflow boundary.

at x=0 v=2u2(0,t)-u1(0,t)=-sin2Trt

at x=b u=u1(b,t)-u2(b,t)=sin2TT(b+t)
(18)

— ^. ~ ■ ■ »m - — . - -. - - - - immMttmmimim -■-- -

liPii^«wMMMKi»mnpMM*HMBtBnMH«R"MMMP<i^v" "»mmmmmfm. i^^mmmmm m^p-^pimijiiiiiiiipipi ^,iii..wi "in« ir'vy**m*-* ^i»'.;

-13-

We have chosen the boundary conditions to correspond to the following

solution

y.(x,t) " 2sin27T(x,t)+sin2Tr(x-t)

u2(x,t) = sin2n{x+t)+sin2Tr(x-t)
(19)

To use the first method of setting the bounda.-y conditions we must

specify the set U. at each boundary point. There is no unique choice

here, since neither u-, nor u2 are characteristic variables. We will try

to specify u, at each boundary from the given boundary conditions, namely

at x=0 u1(0,t)=2u2(0,t)+sin2TTt (2o)

at x=b u1(b,t) = u2(b,t)+sin27r(b+t)

In this case I ■ {1}, Uj ■ ttt,). H ■ (2), Uj, ■ {%), and p = 1 at

both boundary points.

A derivative rather than a constrained boundary condition can be

obtained by differentiation of the above equation, namely

du-, n du? n
dt

1 'U- = 2g^^ + 2TTCOS2Trt at x=0

(21)

du-, f> du0 n
dt

1'u = ^^ + 2TTCOs27r(b+t) at x=b

The derivative du2/dt on the right can be computed from the hyperbolic

system using one sided differences and then used in the user supplied

routine to compute du-j/dt by equation (21) above.

As our results show neither of these methods given by equations

(20) and (21) work satisfactorily. They both specify the inflow character-

istic variable. The outflow characteristic should be computed using

one sided differences. In equation (20) the inflow characteristic is

specified by the boundary constraint. However, there is certainly error

in the computed value of u2 used on the right side of the boundary

-- - ^^Ä^^^|^^^|^^gia^hj«^^^taa-^^^^^^^^Mfcj^^^»jrtj^^^_MB_^B^fc—^^^^^-^^^^^^^^JJJ^J^-^^-^^^fc^j
- ■ ■---*-■ *■■■■ - - ■--■ — -*-—

mmmmmmm - I,,, „.im 1 i l .iiwa^niMiwmi uWi'«m*.mvm~*mrmmmr*m '^———'—- IHHIIBIII.IIII.U.I Ulli)

■14-

constraint. This error can be transmitted to the other boundary and

reflected back. The boundary condition probaoly should not allow much

error in the incoming characteristic.

We tried a third type of boundary condition obtained by differen-

tiating the boundary constraint and combining it with the equation for the

outgoing characteristic variable obtained from the hyperbolic system.

That is, at < = 0

du, n dup Q
1,0 + 2_^U „ _21TCOS27rt

dt dt

^M du2,0 _
dt " dt

F1,0"F2,0 •

Here F, 0 is an approximation to

39u-| 45u2

ax 3X

and F 2,0

23U1 3au.

3X 9X

obtained using one sided differences. These equations yield

du-, n
«JJH = 2F, n-2F9 n-2TTCOs2TTt
Qt ''0 Z'0

(22)

du 2.0 F, n-F0 n-2TrCOS2Trt
dt 1'0 2'0

There are errors in computing F1 0 and F2^0, but these will cancel out

in the computation of the time derivative of the inflow characteristic

(v=2u?-u1) when this boundary condition is used. Perhaps this is the

reason for the superior performance of condition (22) over (20) and (21).

However, we do not have a solid theoretical understanding of these results.

-- -. mmmm - -

ppp»w^«wip*pp^w > ■" • ■•I1"'"" ' ' ' • "■"■•■ ii i \i ummm^mmmm^*^mm

-15-

5. Some computational results. These results all refer to the

solution of equation (17) using a fourth order centered finite difference

approximation in the interior and third order one sided differences

near the boundary to approximate the spatial derivation 3/^x. The

Runge-Kutta-Fehlberg [5] method was modified to allow use of the

"constrained" boundary condition (20). The "derivative-constrained"

condition (21) and the "derivative-characteristic" condition (22) were

also used. The parameter c refers to the error tolerance used in the

Runge-Kutta-Fehlberg. The variable J is the number of mesh points, and

x=b is the right boundary. The results depend on b, probably because

of the way the error is reflected between the two boundaries. The

error is the relative error in the computed solution at the indicated

time t,=T. The parameter N.. is the number of evaluations of the time

derivative required in the integration. Each time step requires 6

evaluations (5 if it follows an unsuccessful step).

There seems to be little difference between the results for the

constrained-boundary (20) and the derivative-constrained method (21),

except for a flight difference in the number of functional evaluations.

This difft -ence can be largely eliminated by omitting the error estimate

for the constrained boundary variables - at least this was our experience

for the single equation (1). Only ehe characteristic derivative method

(22) is free from the error growth which is probably due to multiple

reflections from the boundaries. Note that the severity of the error

growth depends on the length of the interval (the parameter b). The

error reinforcement upon reflection is probably dependent on the phase

angle which in turn depends on b. Of course, these results are based on

a single, simple test case and may not apply to a given problem.

. M^^^^^^^ii ^^^^^^^^.^^jyj^^^^a^^M*^., , .

«pm«pip*f< wiijmi wmmmvmnnpiii^nipwm^wanpaiwwv'jwi* ■ JI UJ i^« wp^ ^^P"W»IP HwpMmMPiMipwmppnn

■16-

\

These computations were performed on the CDC 6400 at the

University of Colorado.

MuttMittiiiilai --"

"PP^^WPIW^PiWPWi "W" "l"1" ■l"1 P !■■ 1 •■ •^mm^mmmiii mmmmmm
«■~- ■■♦■ v>». .. ■>.

References

[1] S. Bowen, "AMPLCT, A Numerical Integration Routine for Systems of
Stiff Differential Equations", Department of Meteorology, University
of Michigan, report #033390-2-1 (1971).

[2] M. Carver, "The FORSIM System for Automated Solution of Sets of
Implicitly Coupled Partial Differential Equations", in Advances in
Computer Methods for Partial Differential Equations, Vichnevetsky
(ed.), AICA, Rutgers University (1975).

[3] C. Chu and A. Sereny, "Boundary Conditions in Finite Difference
Fluid Dynamic Codes", Jour. Comp. Phys., V. 15, pp 476-491 (1974).

[4] T, Elvius and A. Sundstrom, "Computationally Efficient Schemes and
Boundary Conditions for a Fine Mesh Baratropic Model Based on the
Shallow Water Equations", Tellus, v. 25, pp 132-156 (1973).

[5] T. Hull and W. Enright, "A Structure for Programs that Solve
Ordinary Differential Equations", Technical Report #66, Department
of Computer Science, University of Toronto (1974).

I Ir

[6] A. Loeb, "Urers Guide to a New User-oriented Subroutine for the
Automatic Solution of one dimensional Partial Differential Equations",
in Advances in Computer Methods for Partial Differential Equations,
Ivchnevetsky (ed.), AICA, Rutgers University (1975).

[7] J. Öliger, "Fourth Order Difference Methods for the Initial Boundary-
Value Problem for Hyperbolic EquiaMons", Math. Comp., V. 28,
pp 15-25 (1974).

[8] A. Sunderstrom, "Efficient Numerical Methods for Solving Wave
Propagation Equations for non-homogeneous Media", C4576-A2,
Uppeala University (1974).

[9] L. Shampine and M. Gordon, " Computer Solution of Ordinary Differential
Equations", Freeman and Company, San Francisco (1975).

[in] A. Sundstrom, "Note on the paper, 'Boundary Conditions in Finite
Difference Fluid Dynamic Codes'", Jour. Comp. Phys., v. 17,
pp 450-454 (1975).

[11] Since, ec and N. Madsen, "Software for Nonlinear Partial Differential
Equations", Math. Software II Conf., Purdue University (1974).

[12] J. Hastings and R. Roble, "A Technique for Solving the Coupled
Time-Dependent Electron and Ion Energy Equations in the Ionosphere",
NCAR manuscript. Boulder. Colorado 80302 (1972).

ü^Mi^^MumiuiirfiilüiMlllKii

" *. """ i mimi uin^nmwnmppNPnwpmRntni MHini.u. wm^fmmmi'mmmm*mQtm ■IP^IIIPP'Wi'^^WWHPWIPISIiWIWPPiillJipi*. I ip"l"«il.""l«'JiJi!pilMW

Max X |A|I

Inconsistent 2nd
order scheme (A),

6

n
21

0.0

0.0

0.0

50.

199.

798.

Consistent 2nd
order scheme (B)

!

6

n
21

0.0

0.0

0.0

2.6

3.3

4.4

4th order with
3rd order boundary (c). 6 -0.04 2.5

n ! -0.03 3.6

21 0.0001 4.4

4th order with
4th order boundary (T)), 6 -0.54 5.8

11 0.26 10.1
21 0.26 15.9

Table I. Behavior of the matrix A
of the semidiscrete scheme ^'=Au+£.
Here x denotes the real part of an
eigenvalue of A.

■■amiiiiimiiii - - ■ -- - -- ■- - -

W^fmr^^^nrm^mw^mmfi^fnifmmiHI'lf^' i. iin i in^H^p^ inii^viipffPHvpiiPPMMMnniip

J T=6.28 T=62.8 T=1256.

(A) Inconsistent, RKF
ODE solver. 11 9.44 665. unstable

(B) Second order spatial,
RKF ODE solver. n 0.056 0.057 0.058

(C) Fourth order
spatial. Fourth
order Ru.ige-Kufcta
with fixed \=:bfj&x=
1.8. Third order at
boundary.

6

11

21

0.061

0.0059

0.00039

0.069

0.0067

0.00042

0.070

0.0068

0.00042

(D) Fourth order spatial.
Fourth order Runge-
Kutta with fixed At.
Fourth order at
boundary.

6

11

0.052

0.0031

0.066

0.0038

0.069

0.0039

(C) Fourth order spatial.
RKF ODE solver.
Third order at
boundary.

6

11

21

0.012

0.0043

0.00024

0.016

0.0043

Ü.00J24

0.015

0.0043

0.00025

(D) Fourth order spatial.
RKF ODE solver.
Fourth order at
boundary.

6

11

0.033

0.00069

0.025

0.0047

1

unstable

Table II . Error for various schemes
applied to equation (16)

 . - mm^ mmnmut ■ - ■ ^^^

■"''•~~"'-w'WPwi"»»",","lW"!W'IW«PW«l'l«'"W»«|WW*^wV

J 1=6.28 T-lOl T=201 •M02 T=804

(E) Second order, solved 6 0.21 0.99 1.13 1.57 2.18
by RKF 11 0.065 0.33 0.56 0.88 1.39

INI =1.14 llujl =1.31 Hull =1.65 l|uli=2.27

21 0.015 0.10 0.18 0.35 0.72

(F) Fourth order, solved 6 0.043 0.20 0.23 0.26 0.30
by RKF, 3rd order at 11 0.0022 0.012 0.020 0.034 0.052
body

IN =i-oo 1 uj =1.00 | uf =1.01 u | =1.0

21 8.4E-5 6.1E-4 1.1E-3 2.2E-3 4.7E-3

Table III. Error for the solution of
equation (21). Here T=time,
and Hull is the maximum norm of
the solution.

— — -■-- -
 „„^^^

p*1 immmmmm'mi —- " BP

J b e T NE Error

Constrained boundary 1.0 0.01 1.0 348 0.052
(20) 1.0 0.01 2.0 684 0.14

1.0 0.01 4.0 1344 0.33
1.0 0.01 10.0 3312 0.27
1.0 0.01 20.0 6600 0.63

6 0.5 0.01 1.0 354 0.011
6 0.5 0.01 4.0 1350 0.031
6 0.5 0.01 10.0 3312 1.16
6 0.5 0.01 20.0 10122 213.00

Deri vati ve-constrai ned 11 1.0 0.01 1.0 318 0.052
(21) 11 1.0 0.01 2.0 6.2 0.14

6 0.5 0.01 1.0 318 0.011
6 0.5 0.01 4.0 1194 0.031

Characteri sti c-deri vati ve 11 1.0 0.01 1.0 174 0.047
(22) 11 1.0 0.01 2.0 342 0.061

11 1.0 0.01 4.0 666 0.060
11 1.0 0.01 10.0 1638 0.060
11 1.0 0.01 50.0 8094 0.060

11 0.5 0.001 1.0 606 3.1E-3
11

1

0.5 0.001 20.0 11592 3.1E-3

.

Table IV. Error for solution of equation (17)
with various boundary conditions.

- - - ^mim i i i — -

