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ABSTRACT

A two server loss system is considered with N classes of Poisson
arrivals, where the service distribution function and server prefer-
ences are arrival class dependent. The stationary state probabilities
are derived and found to be independent of the form of the service
distributions.




AN FXTENSION OF ERLANG'S LOSS FURMULA
by

Ronald W. Wolff and Charles W. Wrightson

Introduction

Emergency service systems have been modeled and analyzed as svstems
with multiple servers in parallel for which no queue is allowed [1,3].

The classical model for this type of system is the Erlang loss model which
assumes Poisson arrivals and general independent service, where arrivals
finding all servers busy dep.rt without receiving service. For this

model it is well-known that the limiting (stationary) state probabilities
satisfy Erlang's formula independent of the form of the service distribu-
tion function [6].

Carter, Chaiken and Ignall (1] considered the problem of designing
response areas for two emergency service units with the dual objectives of
minimizing the average response time to calls for service and equalizing
the workload between the two units.

Chaiken and Ignall [2] derived the theoretical results for the par-

ticular queueing model used in [1] to determine the response arcas f»r the
emergency units. Specifically, Chaiken and Ignall assumed an M/C/2 model
with no queue allowed (a two-server Erlang loss system) where arrivals
have preference for particular servers. There are two arrival classes,
j e {1,2} , where the classes form independent Poissoun streams at rates
Al and AZ , respectively. Class J arrivals choose server j 1if the
system is empty. Service times are independent and identically distri-
buted (the same distribution for hoth classes of arrivals). Under these
conditions they derived exprec-ions for the staticnary probabilities

P and P01 , wWhere
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PIO = Prob (server 1 {s busy, server 2 i{s free),
l’ol = Prob (server ] is free, server 2 is busy), and

Y 4P =P =P : o < 0.
’lO !01 'I Probability that one server is free

This paper generalizes their results as follows: (1) an arbitrary
number of arrival classes s considered; (2) each arrival class is allowed

to have its own service distribution function; and (3) server preferences,

which still depend on the arrival class, are expressed probabilistically.
In addition, the method of proof is simpler.

In reference to the original problem of designing response areas for
emergency service units, it is reasonable to expect that calls for emergency
service from different sections of an urban area will have different dis-

tributions for the length of time required to service the calls. Thus, this

generalization of tle above model would be expected to extend the applica-

bility of the basic approach and to improve the accuracy of results.

Basic Model and Notation

The basic model is that of the M/G/2 queue with no queue allowed. That
is, there are two servers, identicaliy distributed exponential interarrival
times, and identically distributed service times, where these random
variables are mutually independent.

Enumerate arrival classes 1,2, ..., N where for class j arrivals 1

we define:

A = the arrival rate of all j.bs, i.e., the reciprocal of the i
mean interarrival time, where 0 < } < o |
= the probability an arrival belongs to class j (assumed

independent of the interarrival times and the classification

N
of other jobs), z q, =1,
1




ﬁ—————.—, ; = o o~ e —
)

!
3
Aj = qu , the rate of j-arrivals,
Gj = the service distribution of a j-arrival,
SJ = the service time of a j-arrival, P(SJ <t) = Gj(t) ’
p, = A, E(S)) ,
h| J 3

N
| G = Z quj , the service distribution,
J

S = the service time, i.e., a random variable with distribution

G,

N
o= ) o, =XE(S),
j=1

a, = the probability that a j-arrival chooses server ] if the

system is empty upon arrival,

l1-a, = the probability that a j-arrival chooses server 2 if the

system is empty upon arrival,

L (1,j) = state of system, i=0 means server 1 is free, 1=1 means
server 1 is busy, j=0 means server 2 is free, j=1
means server 2 1is busy,

P,.(t) = Prob (system is in state (i,j) at time ¢t) ,

1]

Pij = stationary probability of system being in state (i,j) =

lim Pij(:) .

t+oo \W
If exactly one server is available upon arrival, the arrival is served ’

by that server regardless of the arrival class. Arrivals finding both

servers busy depart immediately and are not served.

Main Results

The main results in this paper are described in the following

Theorem.

For the model described in the previous section,
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independent of the form of the service distributions.

To prove the theorem, observe that if arrival preferences and the
distinction between servers are ignored, the svstem can be viewed as an
Erlang loss system with two servers, Polsson arrivals at rate ) , and
identically distributed service times with distribution function C .
For this system it i< well-known that the stationary probabilities for

the number of busy servers satisfv Erlang's formula [6]:

Py = Lim P (t) = 1/(L +c + 22y,

t—.il

PL= Mm P (e) = /(L4 4 ek

-

P, = lim P,(t) el ol + o+ 222

t-—tn
where Pj(t) = Prob (j servers busy at time t) , ;) = 0,1,2 . Thus,

P P., = P2 , and the problem is reduced to finding plO and

00~ ForFp
+ = c
Po1 , Where PlO POl P1
For the above system with different classes of arrivals and server
preferences, one quantity of interest is the proporiion of time each server

is busy. This quantity is dependent upon the arrival rates, service dis-

tributions and server preferences of the arrival classes. Clearly,
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where st = the proportion of time server j .s busy, j =1,2,

and P is based

The approach used in this paper to derive PlO 01
oa two well-known facts in queueing theory. First, the proportion of
time that a server is busy serving a givei stream of arrivals is equal
to the product of the arrival rate and the expected service time for that

arrival stream. 7This can be viewed as a corollary of L = W [4].

Second, the stationary probabilities have a time average interpretation:

Pij = the proportion of time the system is in state (i,j) in

steady-state, i

and, in steady-state, the system beh~vior found by Poisson arrivals is
identical with the time average behavior, i.e., the proportion of Poisson
arrivals that find the system in state (i,j) 1is equal to the proportion
of time the system spends in state (i,j) [5,6,7). Similar approaches
have been employed to derive other quantities of interest in various
types of queues with Poisson arrivals [5,7].

The proportion of time server 1 is busy can be divided into the propor- 1

tion of time server 1 is busy serving each of the different classes of

arrivals [4]). For class j , the proportion of time server 1 is busy
equals the product of: (1) the rate of class j arrivals served by server

1, )j 1 say, and (2) the expected class j service time. Thus,
1]
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where Aj,l is simply Aj times the proportion of j-arrivals that are
served by server 1.
Therefore,
b
N
A jzl AJ(POI + ajPOO) r:(sj)
N
= oPo1 + POO Z ojcj .
j=1
We also know that
L Ps1 " Pro* Pr1 m Py "By Py ’
i
Solving for P, , we obtain i
N
Pl + Pll - POO jzl ajoj
b =
01 1l +p

Substitucion of the values for PO(POO) s P1 , and PZ(Pll) from (1)

yields Pol in the theorem. From PlO = P1 - POl , we obtain PlO o

This concludes the proof.

Consideration of Various Extensions |

For a two server loss system with Poisson arrivals, arrival classes
with different server preferences, and service time distributions which
depend only on the arrival class (arrival-dependent service times),
we obtained simple results which are independent of the form of the arrival

class service distributions. Can Erlang's formula be extended fur:her?




Certain obvious extensions were investigated:

(a) three or more servers,

(b) server-dependent service times, and

(¢) preference-dependent service times, e.g., in the two server
pure preference (non-probabilistic) case, the service time
distribution depends on whether the arrival is served at the

server of first choice.

For (a), Erlang's formula will still hold for the distribution of
the number of busy servers., Thus, the same approach is feasible;
however, there are insufficient equations to solve for all of the state
probabilities. In addition, it wa. verified that the state probabilities
depend on the form of the arrival class service distributions. For
three servers, numerical s»>lutions for the state probabilities under 3
exponential service were found to be different from those under hyper-

ﬁ exponential service. : |

Erlang's formula for the distribution of the number of busy servers
does not hold for cases (b) and (c¢). Also, it was verified that ‘he state i
probabilities are distribution dependent (again, by comparison of ex- ;
ponential and hyperexponential service distributions). !

In conclusion, none of the extensions considered in this section are
valid, i.e., results do depend on the form of service distributions. This
is unfortunate because of numeronus applications for these models and other
variations on loss systems. Exact results will almost certainly be hard
to obtain and will dejend on service distributions in complicated ways.

However, in some cases, partial results do hold and are easily obtained,




e.g., for case (a). Furthermore, (limited) numerical experience indicates
that dependence on the form of service distributions is small, If this
is true, numerical results under exponential service may be good approxi-
mations. Of course, it would be desirable to be able to quantify this

last assertion.
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