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ABSTRACT 

A two server  loss system is considered with    N    classes of Poisson 
arrivals, where the service distribution  function and server prefer- 
ences are arrival class dependent.     The stationary state probabjlities 
are derived and found to be independent of the  form of the servire 
distributions. 
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I. 
AN EXTENSION OF ERLANG'S LOSS  FuRMUU 

by 

Ronald W.  Wolff and Charles W.   Wrightson 

Introduction 

Emergency  service systems have been modeled and analyzed as systems 

with multiple servers  in parallel  for which no queue  is allowed   [1,3]. 

The classical model   for this type of system  is the Erlang loss model  which 

assumes Poisson arrivals and general  independent  service, where  arrivals 

finding all  servers busy dep rt without  receiving service.     For this 

model  it  is well-known that the limiting  (stationary)  state probabilities 

satisfy Erlang's  formula independent of the  form of the service distribu- 

tion fanctlon   [6]. 

Carter,   Chalken and Ignall  [1]   considered the problem of designing 

response areas  for two emergency service units with the dual objectives of 

minimizing The average response time to calls   for service and equalizing 

the workload between the two units. 

Chalken and  Ignall  [2] derived the  theoretical results  for the  par- 

ticular queueing model used in  [1]   to determine the response arejs   f •>»•  the 

emergency units.     Specifically,  Chalken and  Ignall assumei1  an M/C'2 model 

with no queue allowed   (a two-server Erlang loss system) vhere arrivals 

have preference  for particular servers.     There are two arrival   classes, 

j   c  {1,2}   , where the classes form independtnt  Poisson streams  at  rates 

X      and    X-   ,   respectively.    Class    j    arrivals choose server    j     if  the 

system is empty.     Service times are  independent and identically distri- 

buted   (the same distribution for both classes  of arrivals).    Under  those 

conditions they derived expru^ions  for the stationary probabl1ities 

P..    and    PQ.   ,  where 
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P.-. ■  Prob   (server  1   ib busy,   server 2   is   free), 

I'      ■  Prob   (server   1   Is  free,   server  2   is  busy),  and 

P.0+f'     «I'    ■  Probability that one server  is   free. 

This paper  generalizes  their  Jesuits  as   follows:     (1)  an arbitrary 

number of  arrival  classes  is considered;   (2)   each  arrival  class   is  allowed 

to have  its own  service  distribution  function;   and   (3)  server  preferences, 

which  still  depend on  the arrival  class,   are expressed probabilistically. 

In addition,   the method of proof  is  simpler. 

In  reference  to  the original  problem of  designing response areas   for 

emergency service  units,   it  is  reasonable  to expect   that  calls  for emergency 

service  from different   sections of  an urban  area will  have different  dis- 

tributions   for  the  length of time  required  to service  the calls.     Thus,   this 

generalization of  the  above model would be  expected  to extend  the  applica- 

bility of  the basic  approach and  to  improve  the  accuracy of  results. 

Basic  Model  and  Notation 

The basic model   is  that of the M/G/2  queue with  no queue allowed.     That 

is,  there are  two  servers,   identically distributed  exponential   interarrival 

times,  and  identically distributed service times,  where these random 

variables are mutually   independent. 

Enumerate arrival  classes    1,2,   ...,  N    where   for class    j    arrivals 

we define: 

X  = the arrival  rate of all j^bs,   i.e.,   the reciprocal of the 

mean interarrival time, where    0 <  >,   < »  , 

q    =  the  probability an arrival belongs  to  class    j     (assumed 

independent of the interarrival  times and the classification 

N 
of other  jobs),    £    q    = 1   , 

j=l    * 
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X    - \q    ,  the rate of j-arrlvals, 

G.  ■ the service distribution of a j-arrival, 
J 

S    - the service time of a J-arrlval,    P(S    < t)  «■ C (t)   , 

"j ■ "j E(s], ■ 

N 
G " I ^\G\   » t^e  8ervice distribution, 

J-l 3 ■' 

S - the service time, i.e., a random variable with distribution 

G . 

N 
p - I P.- X E(S) , 

j-l J 

a ■ the probability that a j-arrlval chooses server ] if the 

system is empty upon arrival, 

1-a ■ the probability that a j-arrlval chooses server 2 if the 

system Is empty upon arrival, 

(l,j) ■ state of system, 1-0 means server 1 is free, 1=1 means 

server 1 is busy, j"0 means server 2 is free, j«l 

means server 2 is busy, 

P  (t) = Prob (system is in state  (i,j)  at time t) , 

P  ■ stationary probability of system being in state (i,j) * 

Um P^t) . 
t-K»     J 

if exactly one server is available upon arrival, the arrival is served 

by that server regardless of the arrival class. Arrivals finding both 

servers busy depart immediately and are not served. 

Main Results 

The main results In this paper are described in the following 

Theorem■ 

For the model described in the previous section. 
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1/(1 + .-+. '/2) , 

■'oo l ji, ,)". + .2/2| /(l + .) , 

'oolj, a-Vj--2^/"-». 

11 
P    12 J00 ' ^ ' 

independent of the form of the service distributions. 

To prove the theorem, observe that if arrival preferences and the 

distinction between servers are ignored, the system can be viewed as an 

Erlang loss system with two servers, Poisson arrivals at rate  i , and 

identically distributed service times with distribution function C . 

For this system it is well-known that the stationary probabilities for 

the number of busy servers satisfy Erlang's formula [6]: 

P 

P, = 

Um P0(t) 
t—■ 

lim P (t) 

lim P2(t) 
t-«0 

= 1 /(I + r + .2/2)   , 

= ./(I + c + r /2) , 

c2 2(1 + c   + . 2/2) , 

where P.(t) = Prob (j  servers busy at time  t) , j = 0,1,2 .  Thus, 

''(in = ^n ' ''n = ^2 ' an^ t:^e Pro'3le,n ^s  reduced to finding P.« and 

P01 . where P^ f P^ = P1 . 

For the above system with different classes of arrivals and server 

preferences, one quantity of interest is the proportion of time each server 

is busy.  This quantity is dependent upon the arrival rates, service dis- 

tributions and server preferences of the arrival classes.  Clearly, 
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p  ■ p  + p 
si  UO  *11 

P  ■ P  + p 
82  K01  rll 

where P . ■ the proportion of time server j  is busy,  J * 1,2. 
8J 

The approach used in this paper to derive P.0 and P0.  is based 

o.i two veil-known facts in queueing theory.  First, the proportion of 

time that a server is busy serving a giveu stream of arrivals is equal 

to the product of the arrival rate and the expected service time for that 

arrival stream. This can be viewed as a corollary of L ■ \V  [4). 

Second, the stationary probabilities have a time average interpretation: 

P  • the proportion of time the system is in state (i,j)  in 

steady-state. 

and. In steady-state, the system behavior found by Polsson arrivals is 

identical with the time average behavior, i.e., the proportion of Poisson 

arrivals that find the system in state  (i,j)  is equal to the proportion 

of time the system spends in state (i,j) [5,6,7].  Similar approaches 

have been employed to derive other quantities of interest in various 

types of queues with Poisson arrivals [5,7], 

The proportion of time server 1 is busy can be divided into the propor- 

tion of time server 1 is busy serving each of the different classes of 

arrivals [^).  For class j , the proportion of time server 1 is busy 

equals the product of:  (1) the rate of class j arrivals served by server 

1, >     .    say, and (2) the expected class j  service time.  Thvir, 
J »i 

P 
s i   J-l J'1 
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where \. .  is simply \      times the proportion of J-arrlvals that 

served by server 1. 

Therefore, 

are 

N 
P s i" A V

P
OI
+
YOO

)E(S
J
: 

N 

" pP01 + P00 J,  ajcj • 
j"l J J 

We also know that 

p
8i " 

pio + pii ' pi - P0] + Pll ' 

Solving for P.. , we obtain 

P 

N 

'l + Pll " P00 I    "j^j 
j'1 

'01 1 + p 

Substitucioü of the values for P0(
p
00) t P, . and P,(P .) from (1) 

yields P.. in the theorem. From Pin s ^i " Pni • we 0^ta^n Pin • 

This concludes the proof. 

Consideration of Various Extensions 

For a two server loss system with Poisson arrivals, arrival classes 

with different server preferences, and service time distributions which 

depend only on the arrival class (arrival-dependent service times), 

we obtained simple results which are independent of the form of the arrival 

class service distributions.  Can Erlang's formula be extended further? 
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Certain obvious extensions were investigated: 

(a) three or more servers, 

(b) server-dependent service times, and 

(c) preference-dependent service times, e.g., in the two server 

pure preference (non-probabilistic) case, the service time 

distribution depends on whether the arrival is served at the 

server of first choice. 

For (a), Erlang's formula will still hold for the distribution of 

the number of busy servers.  Thus, the same approach is feasible; 

however, there are insufficient equations to solve for all of the state 

probabilities.  In addition, it wa verified that the state probabilities 

depend on the form of the arrival class strvice distributions.  For 

three servers, numeric?.! silutions for the state probabilities under 

exponential service were found to be different from those under hyper- 

exponential service. 

Erlang's formula for the distribution of the number of busy servers 

does not hold for cases (b) and (c).  Also, it was verified that ;.he state 

probabilities are distribution dependent (again, by comparison of ex- 

ponential and hyperexponential service distributions). 

In conclusion, none of the extensions considered in this section are 

valid, i.e., results do depend on the form of service distributions.  This 

is unfortunate because of numerous applications for these models and other 

variations on loss systems.  Exact results will almost certainly be hard 

to obtain and will dei end on service distributions in complicated ways. 

However, in some cases, partial results do hold and are easily obtained. 
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e.g., for case (a). Furthermore, (limited) numerical experience indicates 

that dependence on the form of service distributions is small. If this 

is true, numerical results under exponential service may be good approxi- 

mations.  Of course, it would be desirable to be able to quantify this 

last assertion. 

. 
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