FILE COPY

ESD-TR-75-87

DRI COLL NO. 8 357/ Copy No. 1 of 2 cys.

FINAL TECHNICAL REPORT LORAN D MULTIPLE TOWER TRANSMITTING ANTENNA STUDY AND MODEL TESTING PROGRAM

Sperry Gyroscape Sperry Rand Carporatian Great Neck, New Yark

June 1975

Appraved for public release; distribution unlimited.

Prepared for

DEPUTY FOR CONTROL AND COMMUNICATIONS SYSTEMS ELECTRONIC SYSTEMS DIVISION HANSCOM AIR FORCE BASE, MA 01731

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any purpose other than a definitely related government procurement operation, the government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

"This technical report has been reviewed and is approved for publication."

HIAWATHA COTTON, CAPT, PROJECT ENGINEER

KURTAK, LT COL USAF CHIEF. GROUND ENGINEERING BRANCH TACTICAL LORAN SPO

FOR THE COMMANDER

DENNIS C. SMITH, COL, USAF SYSTEM PROGRAM DIRECTOR TACTICAL LORAN SPO

UNCLASSIFIED	
SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)	
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER ESD-TR-75-87	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (end Subtitie)	S. TYPE OF REPORT & PERIOD COVERED
LORAN D MULTIPLE TOWER TRANSMITTING ANTENNA STUDY AND MODEL TESTING	August 1975
PROGRAM	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(#)	8. CONTRACT OR GRANT NUMBER(*) F19628-74-C-0200
Edgar Tenenbaum	Exhibit A (CDRL Item A002)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Sperry Gyroscope	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Sperry Rand Corporation Great Neck, N. Y. 11020	
11. CONTROLLING OFFICE NAME AND ADDRESS Electronic Systems Division	12. REPORT DATE August 1975
Air Force Systems Command, USAF L.G. Hanscom Field, Bedford, Mass 01730	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Ollice)	15. SECURITY CLASS. (of this report)
	Unclassified
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release. Distribution Unl	
17. DISTRIBUTION STATEMENT (of the abattect entered in Block 20, if different iro	om Report)
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse elde il necessary and identify by block number) Loran D Transmitting Antenna Multiple Tower Antenna Array Slant Feed Antenna	
20. ABSTRACT (Continue on reverse side II necessary and identify by block number) The use of multi-tower arrays for Loran C and since increased power, decreased physical vulu antenna voltages can be realized. The test was models with a size reduction factor of 100. The reduced to antenna and interface information pr suitable antenna array, composed of 400-foot to elements forming an umbrella.	nerability, and decreased performed on antenna e measured test data was ractical for selecting a
DD 1 JAN 73 1473 EDITION OF 1 NOV 55 IS OBSOLETE UN	IC LASSIFIED

FOREWORD

This final technical report has been prepared as required by item A002 of Exhibit A (Contract Data Requirements List, Item 0002) of Contract Number F19628-74-C-0200, under which Sperry Gyroscope Division, Sperry Rand Corporation, Great Neck, New York, is conducting a study of multiple tower transmitting antennas for Loran D.

The multiple tower antenna study and test program was performed to investigate the feasibility of utilizing multi-tower arrays for Loran C and D antennas. The use of arrays is deemed advantageous since increased power, decreased physical vulnerability and decreased antenna voltages can be realized.

The test of this program was performed with antenna models utilizing a size reduction factor of 100. An open field adjacent to the Sperry plant was utilized as the test site. The tests were performed from October 1974 through May 1975.

Measured test data has been reduced to meaningful antenna parameters yielding antenna and interface information, practical for the selection of a suitable antenna array.

i/ii

TABLE OF CONTENTS

Paragraph		Page
	FOREWORD	i
	SECTION I. INTRODUCTION	
1	Present Antennas	1
2	Objective of Program	1
3	Program Plan	3
	SECTION II. PRE-TEST PHASE	
1	Model Studies	5
2	Model Construction Techniques	5
3	Site Selection	6
	SECTION III. TEST PHASE	
1	Purpose	9
2	Test Set-Up and Procedures	9
	a. Impedance Measurements	9
	b. Field Strength Measurements	11
3	Configurations	12
	SECTION IV. ANALYSIS AND DATA REDUCTION	
1	Determination of Antenna Reactances from Impedance	
	Measurements	17
2	Radiation Resistance from Field Strength Measurements	18
3	Intrinsic Bandwidth for Various Configurations	24

TABLE OF CONTENTS (cont.)

Paragraph		Page
4	Resonant Frequencies	28
5	Harmonic Radiation Efficiency	28
6	Shut-Down, Shot-Down Modes	29
	SECTION V. DISCUSSION AND CONCLUSIONS	
1	General	31
2	Intrinsic Bandwidth	31
3	Optimum Configuration	33
4	Input Reactance	35
5	Input Resistance	36
6	Partial Operation (Shut-Down, Shot-Down Modes)	37
7	Directional Effects	38
8	Antenna Voltages	38
9	Ground Plane	40

SECTION VI. RECOMMENDATION 41

.

REFERENCES

TABLE OF CONTENTS (cont.)

APPENDIXES

Appendix		Page
I	Wide-Band Current Transformer Specification	I-1
II	Field Intensity Meter and Loop Antenna Factors	П-1
III	Derivation of Antenna Capacitance and Inductance	Ⅲ –1
IV	Power Field Formula	IV-1
v	Derivation of Intrinsic Antenna Bandwidth	V-1
VI	FCC Authorization	VI-1
VII	Reproduction of Log 1 and Log 2 Original Data	VII-1

LIST OF SYMBOLS

LIST OF ILLUSTRATIONS*

Figure

1	Present Single-Tower Antenna, Elevation View
2	400-foot, 4-Tower Antenna Array
3	Model Antenna Construction
4	Photograph of 4-Tower Array Model
5	Photograph of a Model Tower (Close-Up)
6	Photograph of Insulator Bushing
7	Photograph of Radials
8	Map of East Field
9	Photograph of Instrumentation Table
10	Photograph of Instrumentation Table Interior (Sides Removed)
11	Impedance Measurements Test Equipment Set-Up
12	Field Intensity Measurements Test Equipment Set-Up
13	Plot of Input Reactance vs Frequency, Configurations 6 and 7
14	Plot of Input Reactance vs Frequency, Configurations 9 and 10
15	Plot of Input Reactance vs Frequency, Configuration 13
16	Plot of Input Reactance vs Frequency, Configuration 14
17	Plot of Input Reactance vs Frequency, Configuration 15

- - - - - - -

*Illustrations are grouped at the rear of this report.

LIST OF ILLUSTRATIONS* (cont.)

Figure	
18	Plot of Input Reactance vs Frequency, Configuration 21
19	Plot of Input Reactance vs Frequency, Configuration 22
20	Plot of Input Reactance vs Frequency, Configuration 23
21	Plot of Input Reactance vs Frequency, Configuration 29
22	Plot of Input Reactance vs Frequency, Configuration 31
23	Field Intensity Pattern, Single 4-ft Tower, Configuration 3
24	Field Intensity Pattern, Single 4-ft Tower, Configuration 10
25	Field Intensity Pattern, Two-Tower Array, Configuration 13
26	Field Intensity Pattern, Two-Tower Array, Configuration 14
27	Field Intensity Pattern, Two-Tower Array, Configuration 15
28	Field Intensity Pattern, Four-Tower Array, Configuration 21
29	Field Intensity Pattern, Four-Tower Array, Configuration 22
30	Field Intensity Pattern, Four-Tower Array, Configuration 23
31	Field Intensity Pattern, Four-Tower Array, Configuration 29
32	Field Intensity Pattern, Four-Tower Array, (1.5-foot) Configuration 31
33	Induced Voltage and Current Measurements, Three-Tower Antenna Array
34	Two-Tower Array, Configuration 15, Top View
35	Four-Tower Array, Configurations 29 and 32, Top View
36	Antenna Tuning, Schematic Diagram
37	Two-Tower Array, Configuration 15, Top View of Ground Plane
38	Four-Tower Array, Configurations 29 and 32, Top View of Ground Plane
*Illustrat	 ions are grouped at the rear of this report.

*Illustrations are grouped at the rear of this report.

vii

LIST OF TABLES

Table		Page
1	Scale Factors	7
2	Antenna Configurations	13
3	Antenna Parameters from Field Data (Full-Scale Values)	15
4	Antenna Impedance Measurements Summary	19
5	Calculated Antenna Model Parameters	23
6	Field Intensity Measurements Summary	25
7	Harmonic Radiation Efficiency	29
8	Antenna Tuning	39

SECTION I

INTRODUCTION

1. PRESENT ANTENNAS

The typical low-frequency Loran D antenna employed has been the top loaded monopole consisting of a guyed tower supported on an insulating base. A capacitive top loading umbrella is utilized to increase bandwidth and radiation efficiency. For tactical reasons the antenna is constructed of light weight metallic sections guyed with non-metallic cabling. Top loading elements consist of 0.312-inch diameter plastic cables covered with metallic braiding and extending 300 to 400 feet toward the ground.

The new AN/TRN-39 Loran D Transmitter will utilize such an antenna, i.e. a 400-foot tower with 12 top loading elements. The single tower antenna is shown in figure 1.

2. OBJECTIVE OF PROGRAM

The multiple tower transmitting antenna study and model test program has as its objective the study and the testing of the effects of combining 2 or 4 monopole antennas of the types presently in use.

The expected advantages of multi-tower operations are:

- Increased radiated power from a given transmitter.
- Lower antenna height for the same radiated power.
- Decreased physical vulnerability through redundancy.

- Increased reliability by permitting partial shutdown without causing loss of on-air time.
- Decreased antenna voltage to increase reliability and permit higher power operation.
- Provide a tactical replacement for larger permanently installed antennas such as the USCG 625-foot Loran C antenna.
- Modular procurement of antenna arrays.
- Simultaneous erection of all towers to reduce total erection time.

The proposed 2 or 4-tower array consists of standard single antenna towers in which the metallic portion of one top-loading element has been extended to a point near the ground. The towers are so arranged that the top loading extensions meet at a central point which is the input to the antenna array.

The proposed 4-tower arrangement, shown in figure 2, is attractive because it fits into the area occupied by a standard USCG 625-foot antenna. Also, the 600-foot distance specified for separation of transmitter and antenna for the AN/TRN-39 will permit placing the transmitter equipment in one of the cusps between top loading guy circles. The 12 top loading elements are interleaved so that no guy is shielding another guy. The lower level support guying (not shown) will also be interleaved and arranged to be mechanically separate.

Either of the diagonal pairs of towers can be used by itself, permitting erection of only two towers or the shutdown of two out of four for maintenenace purposes.

In the proposed arrays, each tower is mechanically and electrically independent. Specifically, the array under study was one which avoids networks of wire between towers either overhead or on the ground.

The proposed antenna configurations were to be tested with the use of well known scale model techniques. These techniques require construction of antenna models, reduced in size by 100/1 from the actual antennas. All the pertinent electrical tests are to be conducted with these models, and the resultant data evaluated. The results are then scaled up to reflect actual full size antenna parameters.

3. PROGRAM PLAN

The multiple tower transmitting antenna study and model test program was directed into four phases:

- Generation of a test plan, fabrication of the required model antennas and the selection of a test site.
- Model testing of existing single towers and multitower arrays. Optimization of various multitower arrays and connections.
- Analysis, data reduction and data evaluation.
- Preparation of a final technical report with conclusions and recommendations.

٠

•

.

SECTION II

PRE-TEST PHASE

1. MODEL STUDIES

Model testing to determine the electrical characteristics of large tower antennas is considered the most desirable approach for antenna analysis. It is preferred to mathematical analysis which is complex, and to full size antenna construction which is costly. It also permits a flexible approach permitting modifications to be easily accomplished. In addition, model measurements allow the performance of field strength measurements in a compact small area of uniform ground conductivity relatively close to the location of the model antenna. The latter of course simplifies circular pattern measurements.

The scale factor selected for the program is 100 to 1, requiring the scaling up of the model test frequency from 100 kHz to 10 MHz. To be able to analyze even the largest of the models as a "short vertical radiator" the model must be smaller than 1/8 the wavelength employed $(\lambda/8)^*$. Since the tallest antenna employed is 6-1/4 feet and the wavelength is 98.4 feet, the "short antenna" requirement has been met. The relations between actual size and model parameters have been tabulated in table 1.

2. MODEL CONSTRUCTION TECHNIQUES

During the pre-test phase, Sperry constructed six (6) antenna models, four representing the 400-foot tower to be utilized with the AN/TRN-39 transmitter and one each representing the USCG 625-foot tower and the 300-foot AN/TRN-21 antenna.

*See reference 1, pages 5 and 9.

At a later stage of the program, the program scope was enlarged and four additional models representing 150-foot towers were fabricated. The construction of each model is illustrated in figure 3 and by the photographs in figures 4 and 5. With exception of the top loading and guying element all dimensions have been scaled 100 to 1 from the real antenna dimensions.

A two-foot circular plexiglass base forms the support of the structure. Central to this base is a 3/8-inch diameter brass rod representing the tower. Its lower end is terminated by a BNC connector recessed into the plexiglass base, such that connection to the rod is convenient. The upper end of the rod is hollow, as shown by figure 6, and accommodates either the plastic or the brass bushing shown. The radials or top loading elements shown in figure 7 are soldered to the radial junction plug. When assembled, the bushing, either plastic or brass, fits into the rod and the plug holding the radials fits into the bushing. The tension of the radials guarantees a tight fit. The top loading elements (radials) are AWG 30 beryllium copper wires which terminate in fishing swivels. Nylon fishing line ties the swivels to legs which are attached to the circular base at the required angular spacings. Attachment of the legs to the base is by hinges to permit the folding of the legs for easy transportability.

Scaling of the top loading elements or radials in a 100 to 1 ratio requires 0.00375 diameter wires (AWG 38), deemed too fragile for outdoor model studies. AWG 30 (.010 diameter) wires were therefore used for all models, except for two tests which employed smaller wires.

3. SITE SELECTION

To achieve consistent and meaningful results the site selected for antenna measurement must meet these requirements:

- The field must be large enough such that omnidirectional measurements can be taken several wavelengths away from the antenna location.
- The area must be void of buildings, trees, bushes or other structures which could cause signal bounce or reflections.
- A good ground plane must be provided.

Sperry selected an area approximately 300 by 400 feet, the former site of an extension building which had been demolished in 1972. The location, designated the east field, is adjacent to the engineering offices and meets all the criteria listed above. A map of the field is given in figure 8.

To ascertain that the site was electrically "quiet", field intensity measurements were made at various locations. These indicated interferences at least 30 dB below the expected model field intensity levels.

Parameter	Actual Antenna	Model Antenna
Linear Dimensions	1	1/100
Frequency	f	100f
Wavelength	λ	λ/100
Capacitance	С	C/100
Inductance	L	L/100
Reactance	Х	х
Radiation Resistance	R _r	R _r
Input Resistance	R_i	Indeterminate
Intrinsic Bandwidth	$\bigtriangleup \mathbf{f}$	100∆f

TABLE	1.	SCALE	FACTORS

.

SECTION III

TEST PHASE

1. PURPOSE

"Short" vertical radiators of the type being investigated exhibit electrical properties described by the equivalent series RLC circuit shown below.

The circuit is shown driven from current generator I_a via a tuning inductor L_T , the latter augmenting L_a in establishing a resonant condition at the operating frequency. Each antenna configuration is fully characterized by parameters L_a , C_a , R_r , R_L . Two types of tests are necessary to measure these quantities: an input impedance measurement to derive L_a , C_a and $(R_r + R_L)$, and field strength measurements to yield the quantity R_r . Accordingly, the test phase consisted of making these measurements on every configuration and variation thereof showing promise.

2. TEST SET-UP AND PROCEDURES

a. Impedance Measurements

Impedance measurements were performed by situating the antenna models on top of a wooden table. The table top or platform, 16×16 feet, was surfaced with

1/16-inch aluminum sheets joined to form an integral metallic ground plane (figure 9). The impedance measuring test equipment was located under the table to shield the antenna from test equipment radiation and to permit close proximity of the RF bridge employed in the measurement to the antenna input terminal (see figure 10). The set up utilized for impedance measurements is illustrated in block form in figure 11. A General Radio Impedance Bridge Type 916A was connected to the antenna input, physcially located above it, via a hole in the table. Bridge Oscillator GR 1330 provided the measuring signal whereas Field Intensity Meter NF105 was the nulled signal detector. Frequency measurement was performed with Hewlett-Packard Counter HP 5245L.

During the earlier stages of the test phase a Hallicrafter receiver with loudspeaker was utilized as the null detector. It was discovered that the field meter, being an extremely sensitive frequency selective voltmeter, provided superior visual null indication. Consequently, the NF105 was substituted for the radio receiver.

The General Radio Type 916-A Radio Frequency Bridge is a nulling device utilizing a series substitution method. A measurement was made by first balancing the bridge with the ''unknown'' terminal short circuited, then rebalancing with the short circuit removed and the antenna connected to the ''unknown'' terminal. The unknown reactance and resistance are then equal to the change in reactance or resistance dial readings. The reactance dial reading was divided by the frequency in MHz, while the resistance reading was directly read from its dial. Accuracy for reactance is specified as $\pm(2\% + 1 \text{ ohm} + 0.0008 \times R \times f)$ where R is the measured resistance in ohms and f is the frequency in MHz.

To minimize errors, the unknown terminal must be as close as possible to the antenna input, and the position with respect to ground of the short connecting wire between bridge and antenna must not change between the two nulling operations. Input impedance was measured as a function of frequency for all the important antenna configurations. It will be shown later that the slope and input reactance at 10 MHz are the important parameters required to determine the antenna capacity and inductance. Minimum and maximum readings are required to determine series and parallel self resonance.

b. Field Strength Measurements

The radiation efficiency expressed by radiation resistance R_r is determined by injecting a known quantity of 10 MHz r-f current into the antenna configuration and measuring at some distance the amount of radiated field present. Figure 12 illustrates the set-up of the test equipment to perform field strength measurements. The antenna model is situated near the center of the test site on the ground. It is driven from a Type 230-A Boonton Amplifier situated 125 feet away via a coaxial line. Input to the amplifier is from GR Bridge Oscillator 1330A. Constant frequency is monitored with Frequency Counter HP 5245L.

Antenna current is measured with a Model 110 Pearson Wide-Band Current Transformer by passing the antenna input wire through the current transformer and observing the secondary voltage generated (proportional to the antenna current) with a True Rms Voltmeter Ballantine Model 323 located 110 feet from the antenna. The current transformer is further described in Appendix I.

Located at a measured distance from the transmitting antenna model is Field Intensity Meter Model NF105 with its loop antenna LP-105. When rotated in line with the transmitting antenna, the loop picks up the transmitted signal, which is conducted to the main frame via a 30-foot coaxial cable. The electronics in the main frame of the field intensity meter amplify and measure the received signal. To this measurement are added the loop antenna and cable loss factors. The resultant number is the field strength at the loop antenna location. Calibration curves for the devices are given in Appendix II.

Field Intensity Meter NF105 is self calibrating, inasmuch as it contains a known reference voltage used to adjust the gain prior to each field intensity measurement.

Computation of radiation resistance requires the measurement of antenna current, field strength and distance from transmitting to loop antenna. Determination of the radiation pattern requires these measurements to be made at a constant distance and constant current, but from a different direction. Measurements from eight directions (every 45°) were generally made to establish the radiation pattern. Performance of the field strength measurements required authorization from the FCC to radiate at 10 MHz and at specified harmonics. This authorization was duly received and is included in this report as Appendix VI.

3. CONFIGURATIONS

Impedance and radiation measurements were made for the various antenna configurations tabulated in table 2. Initially the standard tower configuration for the 3-, 4- and 6.25-foot antennas were measured and the results compared with the known full scale parameters, table 3. When this comparison proved correct, the results were used as a base line and confidence factor to proceed with the multiple tower configurations. All multi-array configurations in table 2, with the exception of 24, 29, 30, 31 and 32 are arranged as in figure 2. In configuration 24, each antenna was moved toward the center or feed point; in configurations 29, 30, 31 and 32, each antenna was moved away from the center feed point.

	Remarks	Std. 3-ft antenna	Std. 6.25-ft antenna	Std. 4-ft antenna			#41 wire top loading	#41 wire top loading	Feed into 2 radials	Feed wire is #41 for impedance	Feed wire is #41 for impedance	9 1-1/2-ft radials	9 1-1/2-ft radials				Induced measurements	Induced measurements
Radiation	Data ole Log ^a	2-11	1-38	2-11	1-46	2-13	I	ı	1-45	I	2-12	2-12	2-12	2-7	2-13	2-14	I	T
Radi	Table	9	9	9	9	9	ī	ī	9	T	9	9	9	9	9	9	Т	ĩ
Impedance	ta Log ^a	1-18	1-19	1 - 40	1-41	1-41	2-21	2-20	1 - 42	2-17	2-17	I	1	2-5	2-4	2-24	T	ī
Impe	Data Table	4	4	4	4	4	4	4	4	4	4	į.	ı.	4	4	4	ı	I
Rod Connection	Top to Radials	cond ^c	cond	cond	ins	cond	ins	ins	ins	ins	ins	cond	ins	ins	cond	ins	cond	ins
Rod Cor	Base to Gnd	ins ^b	ins	ins	cond	ins	ins	cond	cond	cond	ins	ins	ins	cond	ins	ins	ins	cond
	Feed	rod	rod	rod	slant	slant	slant	slant	slant	slant	slant	slant	slant	slant	slant	slant	slant	slant
Number of	Active Antennas	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	1	1
	Number of Antennas	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	7
Antenna	Height (ft)	3	6.25	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	No.	1	2	လ	4	5	9	7	8	6	10	11	12	13	14	15	16	17

TABLE 2. ANTENNA CONFIGURATIONS

13

^aLog 1-2 means log 1, page 2 (Appendix VII). ^binsulated ^cconducting

		Remarks	Input to inactive antenna grounded		Induced measurements				Close proximity	2 diagonal tower feeds open	2 diagonal tower feeds grounded	2 adjacent tower feeds grounded	2 diagonal tower feeds grounded	22-ft dia circle	20-ft dia circle	8.25-ft dia circle	8.25-ft dia.circle
ation	to 1	Loga	2-7	I	ī	2-9	2-8	2-22	2-10	ı	2-9	I	I.	2-29	I	2-31	2-32
Radiation	D	Table	9	ł	ï	9	9	9	9	i.	9	1	I.	9	ī	9	9
Impedance	a	Loga	2-4	2-5	ı	1-48	2-4	2-26	ī	1-48	1-49	1-49	2-4	2-28	2-28	2-30	ı
Impe	Data	Table	4	4	ī	4	4	4	Т	4	4	4	4	4	4	4	ı.
nection	Top to	Radials	cond ^c	ins	ins	ins	cond	ins	cond	ins	ins	ins	cond	ins	ins	ins	cond
Rod Connection	Base to	Gnd	ins ^b	cond	ins	cond	ins	ins	ins	cond	cond	cond	ins	ins	ins	ins	ins
		Feed	slant	slant	slant	slant	slant	slant	slant	slant	slant	slant	slant	slant	slant	slant	slant
Number of	Active	Antennas	2	2	2	4	4	4	4	0	7	2	7	4	4	4	4
	Number of	Antennas	ę	3	3	4	4	4	4	4	4	4	4	4	4	4	4
Antenna	Height	(ft)	4	4	4	4	4	4	4	4	4	4	4	4	4	1.5	1.5
		No.	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32

TABLE 2. ANTENNA CONFIGURATIONS (cont.)

^aLog 1-2 means log 1, page 2 (Appendix VII). ^binsulated ^cconducting

TABLE 3.	ANTENNA	PARAMETERS	FROM	FIELD	DATA
	(FUL	L SCALE VAL	UES)		

Configuration	X _i (-j ohms)	R _i (ohms)	Ca (pf)	La (mH)	f _{sr} (kHz)	R _r (ohms)	Δf (kHz)
300-Foot Loran-D Antenna	334	4.1	3,900	121	275	0.49	0.120
400-Foot Loran-D Antenna	207	4.0	5,600	122	215	1.07	0.376
USCG 625-Foot Loran-C Antenna	25	2.5	11,000	190	107	2.10	1.727

.

.

.

SECTION IV

ANALYSIS AND DATA REDUCTION

1. DETERMINATION OF ANTENNA REACTANCES FROM IMPEDANCE MEASUREMENTS

Antenna reactances, and therefore capacitance and inductance for each configuration, have been computed from input impedance bridge measurements. With the assumption of a series RLC circuit the capacitive reactance is (see Appendix III):

$$X_{c} = \frac{f_{o} \left(\frac{dX_{i}}{df}\right)_{f_{o}} - X_{o}}{2}$$
(1)

The inductive reactance is:

$$X_{L_a} = X_0 - X_{C_a}$$
(2)

where

 $\begin{array}{ll} \frac{dX_i}{df} & = \mbox{ input reactance slope of the antenna, ohms/Hertz, at 10 MHz} \\ X_O & = \mbox{ input reactance of the antenna, j ohms at 10 MHz} \\ XC_a & = \mbox{ antenna capacitive reactance, j ohms at 10 MHz} \\ X_{L_a} & = \mbox{ antenna inductance reactance, j ohms at 10 MHz} \\ f_O & = \mbox{ 10 MHz} \end{array}$

Antenna capacitance and inductance are then calculated from the standard formulas:

$$C_{a} = \frac{1}{2\pi f X_{C_{a}}}$$
(3)

and

$$L_{a}^{=} \frac{X_{L}}{2\pi f}$$
(4)

The input impedance measurement results are listed in table 4 for all the configuration of interest. The input reactance for a number of these has been plotted in figures 13 through 22. The antenna capacitance and inductance calculated from the data have been tabulated in table 5.

2. RADIATION RESISTANCE FROM FIELD STRENGTH MEASUREMENTS

Radiation resistance has been computed utilizing the formula for radiated power at a point d miles from the radiating source:

$$P_{kW} = \left[\frac{(Ed)}{(186.4)}\right]^{2} (see Appendix VI)$$
(5)

where E is in millivolts/meter

d is in miles

 P_{kW} is radiated power in kilowatts

186.4 = conversion factor (see Appendix VI)

Since Power
$$P = I_a^2 R_r$$
 watts (6)

where

 $R_r = radiation resistance in ohms$

 I_a = Antenna input current, in amperes

it follows that

$$I_a^2 R_r = \left[\frac{(Ed)}{(186.4)}\right]^2$$
 (7)

and

$$R_{r} = \left[\frac{(Ed)}{(I_{a} \ 186.4)}\right]^{2} \ 10^{3}$$
(8)

TABLE 4. ANTENNA IMPEDANCE MEASUREMENTS SUMMARY

		E.	. 35		75		9		1	9	1.85			с С							
	14	R. L			-200 .75		-114 .6		3 1.	0 1.6	1.			1 3.3							
			5 -306						-56	-30	-2			+61							
	13	ж. Г			-190 .5		.75		1.3	1.6	1.9			2.6						11.0	
		×		_	-190		-107		- 44	-20	0			+67					;	+235	
	0	Ч.		5.8		-325 6.4		7.5	6.3	9.8	11.2				22	28.5					
	10	×		-575		-325		-156	-94	-40	+15				+233	+300					
	6	R.		-525 6.4		6.9		8.2	9.4	10.5	11.6				21.5						
	0,	X.		-525		-267		-112.5 8.2	-55	0	+50				+280						
		R.							2.	1.0	1.2			5							
	8	X.							127.8	-95	-70.4			0							
		22 ⁻		8.8		7.5		8.4	9.2 -				14.7		20.1						
	2	X.								5 10	11									- 00	
uo		1		9 -595		8 -327		4 -168	0 -100	0 -45	0		5 +105		+233					+400	
Configuration	9	R.		3 7.9		0 7.8		3 8.4	0.0		11.0		14.5		5 20			-			
Conf		X		-688		-370		-206	-137	-80	-35		+70		+175			+320			
	5	R.							2.4	3.6	3.1										
		X							-100	- 45	0										
	4	R.							2.2	3.6	3.0										
		X.							-86.7	-38	+9.1										
		R.							0	0	0										
	3	X.							-211	-180	-150										
		$\mathbf{R_{j}}$							-		3.6										
	2	X _i							-37	-16	+10										
		R,																			
	-									57 ≈1											
		×							-26	-257	-22										
	FRE	(ZHM)	3.75	4	5	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20	22

۰ ·

values are in ohms.

Note: X_1 values are in j ohms; R_1

• 1

19/20

1

i i

(cont)
SUMMARY
MEASUREMENTS
IMPEDANCE
ANTENNA
TABLE 4.

		.н.		0		0		0	0	0	0	0		0		0.2		1.0		1.2	2.1
č	31	X.		-400		-250		-177	-150	-130	-114	-98		-75		-56		-39		-25	2-
		R _i X _i		8.		.6		1.3	1.7	2.0	4.5	3.1		5.0			7.1			15.0	26.5
	30	X.		-150		-75		-38	-19	-2	+13	+21		+54			+81			+165	+227
	6	R.	-						2.2	2.8	2.8										
č	29	X							-11	+7.6	+17										
r	26 27	R.	0		°.		9.		1.1	1.7	2.4			3.4							
č		x.	-293		-200		-107 .6		-44	-22	+1			+70							
c		а.	с.		90 .35		• 2		1.1	1.7	1.5			2.6							
c		X.	-280		-190		-100		-44	-20	+5			+70							
L	Ð	ж.	.6		.6		8.		1.3	1.6	1.9	2.4			4.4					11.5	
Configuration	25	.х.	-280		-190		-100		-44	-20	+2	+26			+120					+240	
Config	23	.я		.70		. 85		1.3	1.6	2.0	2.2	4.6		3.8		5.6		7.6		6 。1	17.0
c	22 & 28 2	X.		-155		-92		-50	-33	-15	+2	+13		+40		+58		+92		+121	+177
		я _.	.6		. 45		.7		1.05	1.4	1.75			2.85							
000	27.	X.	-171		-116		-64		-28	-15	+2			+375							
I	21	ы.	.4		. 48		.		.95	1.15		1.75			3.2					8.0	
C	.71	X	-160		-110		-57		-22	-10		+18			+51				·	+125	
c	19	R.	. 55		. 55		.6		1.35	1.65	1.85			2.55							
		×	-280		-190		-107		- 44	-25	-2			+68							
C T	18	ц,	. 35		.75		.60		1.1	1.6	1.85			3.3							
		X.	-306		-200		-114		-56	-30	-5			+61							
L	15	R.		.6		1.1		1.6	2.0	2.4	2.9	4.2		4.9		7.9	6.8	4.5	6.4	15.5	T
_		X.		-288		-158		-81	-56	-25	0	+18		+61	-	+109	+132	+172	+221	+240	+262
	FREQ	(MHz)	3.75	4	2 2	9	2	80	6	10	11	12	13	14	15	16	17	18	19	20	22

21/22

Note: X_i values are in j ohms; R_i values are in ohms

•

ι

• L

i > , , ,

Δf (relative to std. 4-ft antenna)	0.28	5.16	1	0.38	0.60	0.65	1.15	1.42	1.51	1.50	1.84	1.97	3.30	0.17
Δf (kHz)	10.8	197.8	38.3	14.7	23.1	24.8	43.9	54.4	57.9	57.4	70.3	75.6	126.6	6.5
$\frac{R_{r}}{(ohms)}$	0.32	2.48	0.93	0.38	0.63	0.73	0.53	0.76	0.87	0.41	0.58	0.70	0.84	0.10
(MHz)	28.0	10.9	19.5	10.9	11.0	10.7	11.0	11.0	11.0	10.5	11.0	11.0	9.7	22.0
La (μH)	0.61						1.59	1.75	1.99	0.97	1.07	1.23	1.17	0.39
C_{a} (pF)	54	127	65.5	61.6	58.4	54	132	114	106	223	193	172	240	103
R _i (ohms)	1.0	2.0	0	3.6	3.6	9.8	1.6	1.4	2.4	1.15	1.40	2.0	2.8	0
X _i (ohms)	-257	-16	-180	-38	-45	-40	-20	-30	-25	-10	-15	-15	+8	-130
No. of Towers	1	1	1	1	1	1	2	2	2	4	4	4	4	4
Height (ft)	°	6.25	4	4	4	4	4	4	4	4	4	4	4	1.5
Config. No.	1	2	က	4	5	10	13	14	15	21	22	23	29	31

TABLE 5. CALCULATED ANTENNA MODEL PARAMETERS

Note: X₁ values are in j ohms.

Formula (8) is applied for each field intensity measurement by substituting in it:

- The measured distance in miles between the model antenna and field intensity meter
- The field meter reading modified by the meter and loop correction factors. The loop correction factor including cable loss is 42 dB at 10 MHz. The field intensity in dB above one microvolt per meter is converted to millivolts per meter.
- The current transformer output voltage divided by the factor 47 mV per ampere which yields the antenna current in amperes. The factor 47 mV/amperes includes a cable loss of 1.5 dB.

For the significant antenna configurations, measurements were made at varying distances d to establish that operation actually was taking place in the far field. Circular measurements were then made at constant radius d, with a constant antenna current $(\pm 5\%)$ and at eight different azimuths. These measurements in terms of field strength (dB above one microvolt per meter) are given in figures 23 through 32 and indicate the omnidirectional reception pattern which can be expected.

Field strength and computed radiation resistance for each direction are listed in table 6. To arrive at the final radiation resistance for each configuration, the individual resistance values were averaged and are listed in table 5.

3. INTRINSIC BANDWIDTH FOR VARIOUS CONFIGURATIONS

For Loran pulse systems the intrinsic bandwidth Δf is the important antenna criterion, for it determines the ability of the antenna to radiate maximum sampling point power, and it is to be maximized. The intrinsic bandwidth is derived from single series tuned circuit theory in Appendix V:

$$\Delta f = \frac{2 R_{r}}{\frac{dX_{i}}{df(f_{O})} - \frac{X_{i}}{f_{O}}} = 2 \pi f_{O}^{2} R_{r} C_{a}$$

Values for Δf have been calculated from the capacitance and resistance for each important configuration and appear in table 5.

Antenna Configuration	Azimuth (degrees)	Input Current (amps)	Distance (ft)	Field Intensity E (dB above 1 µV/meter)	Field Intensity E (µV/meter)	Radiation Resistance (ohms)
1	90 135	0.146 0.146	200 200	82.5 81.8	13.34 12.3	0.35 0.29
2	45	0.046	205	80.8	11.0	2.48
3	0 45 90 135 180	0.238 0.236 0.236 0.236 0.229	200 200 200 200 200	90.2 92 91.4 90.5 89.9	32.36 39.81 37.15 33.50 31.26	0.76 1.17 1.02 0.83 0.76
	225 270 315	0.229 0.240 0.240	200 200 200	91.2 90.6 91.7	$36.31 \\ 33.88 \\ 38.46$	1.03 0.82 1.06
4	45	0.270	208	88.0	25.12	0.38
5	0 45 90 135	0.226 0.227 0.226 0.226	200 200 200 200	89.5 89.2 88.9 88.1	29.85 28.84 27.86 25.41	0.72 0.66 0.63 0.52
8	45	0.172	208	83.5	15.2	0.35
10	0 45 90 135 135 135 135	$\begin{array}{c} 0.229 \\ 0.229 \\ 0.232 \\ 0.234 \\ 0.234 \\ 0.234 \\ 0.234 \\ 0.234 \end{array}$	200 200 200 200 200 150 250	89.5 90.2 90.0 89.4 89.6 91.9 87.7	29.85 32.36 31.62 29.52 30.20 39.35 24.27	0.69 0.82 0.77 0.66 0.69 0.66 0.69
11	45 90 135	0.240 0.240 0.242	200 200 200	91.1 91.0 90.5	35.89 35.48 33.50	0.92 0.90 0.79
12	45 90 135 135	0.234 0.234 0.234 0.234	200 200 200 250	91.4 91.4 90.8 89.0	37.15 37.15 34.67 28.18	1.04 1.04 0.91 0.94
13	0 45 90 135 180 225 270 315	0.242 0.238 0.240 0.236 0.244 0.244 0.240 0.244	200 200 200 200 200 200 200 200	88.3 88.5 88.6 88.9 88.8 89.8 87.9 89.2	26.01 26.61 26.92 27.86 27.54 30.90 24.83 28.84	$\begin{array}{c} 0.48\\ 0.51\\ 0.50\\ 0.57\\ 0.52\\ 0.66\\ 0.45\\ 0.57\end{array}$

TABLE 6. FIELD INTENSITY MEASUREMENTS SUMMARY

,

Antenna Configuration	Azimuth (degrees)	Input Current (amps)	Distance (ft)	Field Intensity E (dB above 1 µV/meter)	Field Intensity E (µV/meter)	Radiation Resistance (ohms)
14	0 45 90 135 180 225 270 315	0.238 0.244 0.242 0.242 0.238 0.238 0.238 0.238	200 200 200 200 200 200 200 200	90.0 90.4 90.2 89.2 90.2 90.7 90.2 90.9	31.62 33.11 32.36 28.84 32.36 34.28 32.36 35.08	$\begin{array}{c} 0.73 \\ 0.76 \\ 0.73 \\ 0.58 \\ 0.76 \\ 0.85 \\ 0.76 \\ 0.89 \end{array}$
15	0 45 90 135 180 225 270 315	0.232 0.232 0.234 0.234 0.229 0.229 0.229 0.232 0.232	200 200 200 200 200 200 200 200	89.7 91.0 90.9 89.7 90.6 90.8 90.2 91.4	30.55 35.48 35.09 30.55 33.88 34.67 31.99 37.15	$\begin{array}{c} 0.71 \\ 0.96 \\ 0.93 \\ 0.70 \\ 0.89 \\ 0.94 \\ 0.78 \\ 1.05 \end{array}$
18	0 45 90 135 180 225 270 315	0.232 0.234 0.234 0.229 0.229 0.229 0.229 0.229 0.229	200 200 200 200 200 200 200 200	88.8 88.0 88.1 87.9 87.3 88.8 86.9 90.0	27.5425.1225.4124.8323.1727.5422.1431.62	0.58 0.48 0.49 0.48 0.42 0.59 0.38 0.80
21	0 45 90 135 180 225 270 315	0.232 0.240 0.232 0.232 0.232 0.232 0.232 0.232 0.232	200 200 200 200 200 200 200 200	87.6 87.4 87.3 86.7 87.0 87.6 86.7 88.1	23.99 23.44 23.17 21.63 22.39 23.99 21.63 25.41	$\begin{array}{c} 0.44\\ 0.39\\ 0.41\\ 0.36\\ 0.38\\ 0.44\\ 0.36\\ 0.36\\ 0.50\\ \end{array}$
22	0 45 90 90 135 180 225 270 315	$\begin{array}{c} 0.242 \\ 0.244 \\ 0.244 \\ 0.244 \\ 0.244 \\ 0.244 \\ 0.244 \\ 0.244 \\ 0.244 \\ 0.244 \\ 0.246 \\ 0.242 \end{array}$	200 200 150 200 250 200 200 200 200 200	89.0 89.4 90.9 89.0 88.1 88.8 88.9 89.2 88.6 90.5	$28.18 \\ 29.51 \\ 35.08 \\ 28.18 \\ 25.41 \\ 27.54 \\ 27.86 \\ 28.84 \\ 26.92 \\ 33.50 \\ $	$\begin{array}{c} 0.56\\ 0.60\\ 0.48\\ 0.55\\ 0.69\\ 0.52\\ 0.54\\ 0.57\\ 0.49\\ 0.78\end{array}$

TABLE 6. FIELD INTENSITY MEASUREMENTS SUMMARY (cont.)
Antenna Configuration	Azimuth (degrees)	Input Current (amps)	Distance (ft)	Field Intensity E (dB above 1 µV/meter)	Field Intensity E (µV/meter)	Radiation Resistance (ohms)
23	0 45 90 135 135 135 135 135 180	$\begin{array}{c} 0.240 \\ 0.240 \\ 0.240 \\ 0.240 \\ 0.244 \\ 0.244 \\ 0.244 \\ 0.244 \\ 0.244 \end{array}$	200 200 200 200 200 250 300 200	89.7 90.0 90.1 89.2 89.6 87.5 85.7 89.8	30.55 31.62 31.94 28.84 30.20 23.75 19.28 30.90	0.67 0.71 0.73 0.59 0.65 0.61 0.57 0.66
	225 270 315	0.240 0.240 0.240	200 200 200	90.9 88.3 90.8	35.08 26.01 34.67	0.88 0.48 0.86
24 26	135 0 45 90 135 180	0.244 0.244 0.244 0.244 0.244 0.244	200 200 200 200 200 200	89.0 87.0 87.2 85.2 85.0	28.18 22.39 22.39 22.91 18.20 17.78	0.54 0.35 0.35 0.36 0.23 0.22
29	0 45 90 135 157.5 180 225 270 315	$\begin{array}{c} 0.234 \\ 0.234 \\ 0.234 \\ 0.234 \\ 0.234 \\ 0.234 \\ 0.234 \\ 0.234 \\ 0.234 \\ 0.234 \\ 0.234 \end{array}$	200 200 200 200 200 200 200 200 200	90.1 90.6 90.1 89.6 90.3 91.0 91.2 89.8 91.0	31.99 33.88 31.99 30.20 32.73 35.48 36.31 30.90 35.48	0.77 0.87 0.77 0.69 0.81 0.75 0.99 0.72 0.95
31	0 45 90 135 180 225 270 315	0.238 0.238 0.238 0.238 0.238 0.238 0.238 0.238 0.238	200 200 200 200 200 200 200 200	81.5 81.2 80.5 80.6 80.2 81.4 81.6 82.1	$11.89 \\ 11.48 \\ 10.59 \\ 10.72 \\ 10.23 \\ 11.75 \\ 12.02 \\ 12.74$	$\begin{array}{c} 0.103\\ 0.096\\ 0.082\\ 0.084\\ 0.076\\ 0.100\\ 0.105\\ 0.118\\ \end{array}$
32	0 45 90 135 180 225 270 315	0.238 0.238 0.238 0.238 0.238 0.238 0.238 0.238 0.238	200 200 200 200 200 200 200 200	81.3 80.3 80.1 79.5 80.0 81.7 81.3 81.8	$11.22 \\10.35 \\10.12 \\9.44 \\10.00 \\12.16 \\11.62 \\12.3$	$\begin{array}{c} 0.092 \\ 0.078 \\ 0.074 \\ 0.065 \\ 0.073 \\ 0.108 \\ 0.098 \\ 0.110 \end{array}$

TABLE 6. FIELD INTENSITY MEASUREMENTS SUMMARY (cont.)

4. **RESONANT FREQUENCIES**

Each antenna configuration exhibits two resonant frequencies, series and parallel. The significant one of these is the series resonant frequency, f_{sr} , which is obtained from antenna input reactance bridge measurements. At f_{sr} , $X_{La} = X_{Ca}$, thus the input reactance is zero. It is important that the antenna model resonate above 10 MHz (100 kHz full scale), otherwise the antenna must be driven via a capacitive element. Driving the antenna in this manner causes transmitter energy transfer not only to the antenna, but also to the capacitive drive element in which, in effect, it is wasted. Consequently, for a given capacitance the inductance must be held to a level at which resonance occurs above 10 MHz. Preliminary measurements and prior studies (reference 3) indicated that the inductance of the top hat is negligible and that the inductive term of the input impedance is due entirely to inductance of the conductor from the feed point to the junction of all top loading elements. Because it was not practical to correctly scale the slant feed wires for all configurations, a single slantfed tower with AWG 41 wire (0.0025" diameter) was measured and the series resonant frequency obtained was used to study the inductance effect for the more complex configurations. The actual measured series resonant frequencies as read from the reactance graphs in figures 13 through 22 are presented in table 5 for all the configurations of interest. The resonant frequencies measured and listed in table 5 have only been used for interpretation and guidance, whereas the actual resonant frequency will be based on a calculation of the actual slant-feed cable employed with the full size antenna.

Attempts were made to establish the parallel resonant frequencies of the antenna models, but these fell outside the direct reading range of the impedance bridge. The range of the bridge was then extended by means of an auxiliary capacitor to readings up to 30 MHz. At 23 MHz the integrity of the test set-up started to deteriorate as evidenced by poor nulls. Readings were, therefore, only taken up to 23 MHz, in order to devote more attention to the primary objectives of the program.

5. HARMONIC RADIATION EFFICIENCY

Harmonic frequency testing was limited to radiation measurements at the second and third harmonics of the 10 MHz model frequency. Beyond these frequencies, the one-eighth wavelength ($\lambda/8$) of the excitation frequencies begins to exceed the

antenna dimension, complicating the analysis in terms of radiation resistance. Harmonic radiation resistance is calculated in the same manner as for the fundamental frequency, described in section IV paragraph 2. For 20 and 30 MHz, the loop antenna factor is 40 and 38 dB respectively, and the loop antenna cable loss equals 0.6 and 0.7 dB respectively. Results are listed in table 7.

6. SHUT-DOWN, SHOT-DOWN MODES

Two modes of partial down times are expected when operating with a 4-tower array - the shut-down mode in which two antennas are shut down for maintenance, and the shot-down mode in which one tower has been shot down or has not yet been erected. In the latter case the third opposing antenna is expected to be shut down to preserve the phase center of radiation. While not utilized for radiation, the inoperative antenna nevertheless is in the induction field of the other two antennas. To determine the voltage and currents in the inoperative tower, the situation shown in figure 33 was set up. As illustrated, the two opposing towers east and west were transmitting, while measurements were made in the north tower. Voltage measurements were made at the end of each radial; these voltages, designated E1 through E9, were approximately equal to voltage E_a , the input to the east and west antennas. Current measurements were made of radial currents I1 through I4; these indicated attenuated currents down 37 to 38 dB from the antenna current I_a flowing into the east and west antennas.

TABLE 7. HARMONIC RADIATION EFFICIENCY

Config. No.	Height (Ft.)	No. of Towers	Radiation Fundamental	Resistance 2nd Harmonic (Ohms)	Resistance 3rd Harmonic (Ohms)
22	4	4	0.58	2.66	12.94
23	4	4	0.70	3.60	8.26

.

.

-

SECTION V

DISCUSSION AND CONCLUSIONS

1. GENERAL

This antenna study and model testing program has as its objective the selection of one or more antenna arrays composed of two or more standard tower antennas to achieve increased radiation and power transmission. It has long been recognized that antenna design and comparison for the Loran pulse system must not only consider the efficiency based on cw or steady state measurements; dealing with a narrow pulse system, the antenna must also be analyzed on a transient basis involving its bandwidth. The analysis of "short" antennas for Loran based on simple series RLC circuit theory has therefore been made in terms of bandwidth and efficiency. These will be briefly reviewed here.

The antenna will be represented by its equivalent series circuit shown below:

2. INTRINSIC BANDWIDTH

For the equivalent antenna circuit shown above, the bandwidth is:

$$\Delta f = \frac{2R}{\frac{X_{i}}{f_{0}} + \frac{dX_{i}}{df(f_{0})}} = 2\pi f_{0}^{2}C_{a}R \qquad (references 2, 5) \qquad (9)$$
and appendix V

and the radiation efficiency of the antenna is defined as:

$$\eta_{\rm A} = \frac{\rm R_r}{\rm R_r + R_L} \tag{10}$$

where

 R_r = radiation resistance

 $R_{T_{i}}$ = total heat loss resistance of antenna system

If R in equation (9) is defined as the radiation resistance Rr then Δf equals the intrinsic or 100% efficiency bandwidth:

$$\Delta f = 2\pi f \frac{2}{0} C_a R_r$$
(11)

The bandwidth-efficiency product however is defined as:

$$f = \eta_A \Delta f = \eta_A 2 \pi f_0^2 C_a R_r$$
(12)

Equation (12) has generally been employed to analyze the entire antenna system including the ground plane and transmitter interface, since the heat loss resistance is composed of ground plane resistance, transmitter coupler loss resistance and antenna loss resistance. In the program performed here, these losses cannot be directly scaled to actual full-size antenna values for various reasons. As previously noted, the top loading and radial feed wires are not scaled correctly, nor was it practical to duplicate the actual transmitter tuning coil. The ground plane resistance while satisfactory, may not be a duplicate of the actual installation.

In view of the foregoing, antenna arrays will be analyzed primarily in terms of the intrinisic or 100% efficiency bandwidth Δf and will be discussed separately.

It has been shown (reference 4) that for Loran, the sampling point power is directly proportional to the efficiency bandwidth product and in view of the above discussion, to the intrinsic bandwidth. Computer network simulation of the Sperry SCR transmitter indicates that for a fixed transmitter configuration and variable antenna coupling arrangement, the available reactive energy in the antenna at the pulse peak or sampling point $(I_a^2 X_{C_a})$ is a constant. Thus if:

$$I_a^2 X_{C_a} = K = \frac{I_a^2}{2 \pi f_0 C_a}$$
 (13)

$$I_a^2 = K 2 \pi f_0 C_a$$
 (14)

and since power transmitted is:

$$P = I_a^2 R_r$$

then:

$$P = K2 \pi f_{o} C_{a} R_{r}$$
(15)

It is thus evident that maximizing the intrinsic bandwidth (or the antenna capacitance and radiation resistance) will result in the maximum transmitted power.

The objective of the study therefore was primarily concerned with the measurement and optimization of C_a and R_r . These quantities as well as the intrinsic band-width have been tabulated in table 5 and can now be studied.

To enable a better comparison with the standard 4-foot tower antenna employed with the AN/TRN-39 (configuration 3) all values of Δf have also been normalized with respect to that antenna.

3. OPTIMUM CONFIGURATION

Examination of the normalized values of Δf clearly indicates the superiority of configurations 15 and 29 for 2-tower and 4-tower arrays, respectively, as illustrated in figures 34 and 35. Both these configurations employ double tower insulation, that is the tower top is insulated from the top hat and from the ground plane. Both these configurations also require physical separation between each component antenna of the array. The intrinsic bandwidth and its normalized value for each configuration are represented below:

CONFIGURATION	Δf^*	Δ f RELATIVE TO STANDARD ANTENNA
2-antenna array (#15)	57.9	1.51
4-antenna array (#29)	126.6	3.31
*Divide by 100 for full scale	antenna.	

The superiority of these arrays is of course due to maximizing C_a and R_r . The conditions under which these terms have been found optimum are:

- Radiation resistance increases by insulating the tower structure from both top hat and ground base. This held true for a single slant-fed antenna or an array of 2 or 4 antennas. It is believed that by permitting the central tower structure to be an integral part of the top hat, a downward current is allowed to flow which causes partial cancellation of the current injected into the upward slanted-feed radial.
- Radition resistance increases by adequate separation of the component antennas. It was found that the arrangement shown in figure 2, which confined the four antennas into the guy anchor circle of the USCG 625-ft antenna, prevented the most efficient radiation of each component antenna, inasmuch as it did not allow for field fringing at the umbrella ends facing each other. Thus the 4-antenna array shown in figure 2 did not provide as much radiation resistance as a single antenna. The proximity problem did not exist in the 2-antenna array where two diagonally opposite antennas were used.
- Antenna capacitance has been found optimum for a grounded tower operation (configuration 4) inasmuch as this connection extends the ground plane up to the tower top. This connection however is not optimum for radiation resistance as discussed above. Insulating the tower at both ends (configuration 10) exacts a penalty in antenna capacitance, but maximizes △f. Therefore the insulated tower connection is recommended.
- Separation of component antennas is required to achieve the correct addition of individual antenna capacitances, for the same reason as noted above for the optimization of radiation resistance. The total top hat or umbrella area including allowance for field fringing for the array must equal the umbrella area of a single antenna multiplied by the number of these employed in the array. For the 2-antenna array which employs any 2 diagonally opposite antennas in figure 2, no additional separation was required. For the 4-antenna array shown in figure 2, an additional 2-foot

separation between each antenna and its feed point was required. The total diameter of this array is consequently increased from 18 to 22 feet (1800 to 2200 feet full scale).

In the recommended configuration, the antenna tower structure is isolated from ground and thus vulnerable to static charging. To prevent this buildup of charges a bleeder resistance on the order of 1000 ohms must be connected across the base of the antenna.

At the outset of the project it was expected to realize twice as much bandwidth for a 2-antenna array and four times as much for a 4-antenna array compared to a single standard 400-foot full scale antenna. These multipliers would permit an increase in radiated power of 2 and 4 times respectively. Analyzing the data presented, it is concluded that an approximate shortfall of 10% each in radiation resistance and in antenna capacitance have caused a 20% bandwidth or power reduction in the models studied to this point.

4. INPUT REACTANCE

Another consideration which must be carefully adhered to in the selection of the optimum antenna is the input reactance. For efficient energy transfer, the reactive components of the input impedance must be negative, that is the capacitive term must dominate. In the customary series resonant antenna circuit, there is optimum power transfer when all capactive energy is utilized in charging the antenna capacitance and when the circuit resonates at 100 kHz. This series resonance is effected by augmenting the antenna inductance (L_a) with a driving inductance (L_T) in the transmitter. A portion of this driving inductance is made variable to permit fine tuning of the antenna, allowing for slight variation in antennas and antenna installation.

When remoting the transmitter, the driving inductance also includes the distributed inductance of the driving coaxial cable. Sperry utilizes a special cable for the AN/TRN-39 with an equivalent 45 microhenry inductance for a 600-foot length. Allowance must consequently also be made for this inductance.

In summary, the antenna input reactance must be sufficiently negative to permit inductive tuning of the antenna, making allowance for the drive cable inductance and antenna tolerances.

In analyzing and testing the antenna configurations it becomes apparent that for slant-fed configurations, the antenna inductance (and resistance) is primarily a function of the slant-feed wire which conducts the current to the top hat. In lieu of utilizing the measured inductance values, which have been shown to be incorrect because of the impracticality of exact wire scaling, inductance calculations have been performed for the actual slant-feed cable. These calculations were performed using the selfinductance formulas by Grover (reference 6) for various lengths of feed wire. Since the antennas are essentially operating in parallel in the 2- or 4- tower arrays, inductance values are divided either by 2 or 4.

It is of interest to examine the probable output configuration for tuning and matching the antenna array, as shown in figure 36. Listed in table 8 for the two optimum configurations is the total inductance required for resonance at 100 kHz, the cable inductance and the transmitter tuning inductance, the latter two reduced by the square of the matching transformer ratio (see lines 1 and 2 in the table).

It is apparent that the antenna in the two models, in combination with the cable and tolerancing inductance, exceeds the required inductance and that alternative feed configurations or connections need to be examined. One possible solution here is to parallel the slant-feed wire with one of equal diameter spaced 2 to 3 feet from it. The antenna inductance L_a reduces then to 139 and 89 microhenries, respectively, as shown in lines 3 and 4 in the table.

Another possible approach is the modification of the top hat configuration to one with shorter top loading elements. The relationship between radial length, capacitance and radiation resistance has been documented by Devaney et al (reference 1). Applying these relations to the 4-foot top loaded antenna it can be shown that a reduction in top loading length from 4 to 3 feet should reduce antenna capacitance by 25%and reduce bandwidth by 7.5%. The bandwidth will then suffer only a slight decrease, while the 25% decrease in capacitance increases the required total inductance to 299and 132 microhenries respectively, comfortably larger than the calculated inductances (see table 8, lines 5 and 6, and Section VI).

5. INPUT RESISTANCE

It has previously been noted that the proper scaling of the heat loss resistance was neither practical nor possible. Various measurements and testing have confirmed

that the bulk of the antenna loss resistance is that of the slant-feed wire, as was the case for the antenna inductance. In lieu of model measurement, the approach followed was to measure and calculate the AC resistance at 100 kHz of the type of wire actually employed with the full scale antenna.

At the present time, Times Wire and Cable of Wallingford, Connecticut is producing under subcontract the top loading wire for the antenna to be utilized with the AN/TRN-39. The wire is manufactured by placing a double layer of braiding over 0.312 diameter phyllystran cable. The cable resistance at 100 kHz has been measured at Times Wire and Cable and reported to be 2.5 ohms per 1000 feet.

The expected cable loss resistance for 4 parallel antenna feed wires 763 feet long is therefore 0.48 ohms and for two parallel feed wires 600 feet long it is 0.75 ohms. The values are well within the total loss resistance tolerances specified for the AN/TRN-39 (4.8 ohms maximum) or those measured with AN/TRN-21-A equipment (normally 4 ohms). The total loss resistance, of course, includes the ground plane resistance which contributes the major part of the losses.

6. PARTIAL OPERATION (SHUT-DOWN, SHOT-DOWN MODES)

During partial operation, two of the antennas in the 4-antenna array are inoperative either due to maintenance, partial erection of the array, or casualty. The following conclusions regarding continuing transmission during such a phase are presented.

- When diagonally opposite antennas are selected as the active units there will be no shift in the electrical phase center of the transmitted signal
- The omnidirectional character of the transmission will be maintained, as verified by directional field intensity measurements.
- Tuning lends itself to parallel tuning coil arrangements or transformer tap changes. The antenna capacitance is halved when only two antennas are driven and the required tuning inductance then must be doubled.
- Any part of the non-active antennas, being in the near field of the active units, will charge up to a voltage high enough to be dangerous to personnel. It there is therefore recommended that no maintenance activities involving personnel be performed during signal transmission.

• The tests performed on the partial configuration indicate that the preferred method of operating with inactive towers is to float the antenna (except for a tower bleeder resistance), that is, not to ground either the tower, radials or feed wire. If this precaution is not taken, circulating currents will cause a significant reduction in transmitted power.

7. DIRECTIONAL EFFECTS

The top loaded monopole antenna has previously been shown by investigation and actual use to be omnidirectional. This characteristic is not modified by paralleling individual towers to form multitower arrays, primarily because dimensionally each array is still much smaller than a 100 kHz wavelength. The circular tests performed during this program on most of the antenna configurations have shown variation of only 1 to 2 dB and these were found to be more a function of the actual spot where a measurement was performed than the configuration employed.

8. ANTENNA VOLTAGES

In each antenna configuration, high voltages will appear at various points on the antenna requiring that the insulating portion withstand these potentials. Of specific interest in the recommended antenna configurations are the potentials at each top hat since the tower structure must be insulated and the input voltage at the slant-feed radial is driven from a coaxial cable.

Examining the circuit in figure 36, and considering that the antenna inductance is primarily the inductance of the slant-feed wire, it can be concluded that the potential between A and ground is the top hat voltage E_{TH} , which exists across both insulating ends of the tower structure. Voltage E_{TH} is simply the product $I_a X_{Ca}$ where I_a is individual antenna current and X_{Ca} is the capacitive reactance of each single antenna. Table 8 shows the top hat potentials expected for each of the configurations listed in that table.

The slant-feed potential E_i is the product $I_a X_i$ where X_i is the parallel input reactance of the antenna array and I_a is the total input current. Since X_i is small, the antenna being self resonant near 100 kHz, the expected input voltage is relatively low. This simplifies insulation requirements for the transmitted output circuitry especially for the 600-foot transmission line. The values for E_i are shown in table 8.

Calculated Top Hat Voltage E _{TH} (volts, peak)	57.4K	38.0K	57.4K	38.0K	65.9K	43.8K
Calculated Input Voltage E _i (volts, peak)	ı	I	24.3K	6.3K	23.0K	8.8K
Tuning Inductance (micro- Henry)	10	5	10	വ	10	വ
Cable Inductance (micro- Henry)	23	12	23	12	23	12
Calculated Antenna Inductance (micro- Henry)	210	114	139	89	210	114
Required Inductance (micro- Henry)	239	106	239	106	299	132
Antenna Capaci- tance (pf)	10,600	24,000	10,600	24,000	7,950	18,000
Calcu- lated Antenna Current* (Amperes, peak)	380	570	380	570	328	493
Configuration	1. 2-Antenna (15)	2. 4-Antenna (29)	3. 2-Antenna (15) Parallel Feed	4. 4-Antenna (29) Parallel Feed	 2-Antenna (15) Reduced Top Loading (Estimated) 	6. 4-Antenna (29) Reduced Top Loading (Estimated)

TABLE 8. ANTENNA TUNING

.

.

*When driven by Loran D Transmitter AN/TRN-39

9. GROUND PLANE

Consideration has been given to the relative merits of establishing a single central ground plane for the entire antenna array, versus single ground planes associated with each antenna. Because the low-Q wide-band antenna does not require an optimum ground system the investigation has been largely governed by:

- Keeping the present electrical characteristic, that is, a ground loss resistance of the order of a few ohms.
- Simplicity and rapid installation techniques.
- Material cost and weight factors.

For the present Loran-D antenna the ground system is formed with aluminum ground radials connected to a central ground point. Continuing with this approach and ruling out the crossing of ground radials, the choice is between a radial installation with the central feed point as the center, or the prior technique with each tower base as the radial center. It was found that for the same linear footage, an installation from the central feed point would provide insufficient coverage below the outer top loading elements of each tower and would provide coverage in the area of the cusps where it is not required.

The recommended ground plane configuration, shown in figures 37 and 38 therefore contains four individual ground planes, each associated with use of the component antennas and attached to the antenna base plate. A ground wire then connects each base plate to the matching unit.

The system proposed is concentrated under each top hat where maximum tophat-to-ground capacitance is achieved, and it further makes use of all the simplifying techniques developed for the Loran-D system. Among these is the ability to supply the ground wires precut in one or two sizes and packaged on reels.

SECTION VI

RECOMMENDATION

The tests of the model 150-foot towers, even with a 4-tower array, show an intrinsic bandwidth, Δf , of less than one-fifth that of a single 400-foot tower. The use of 150-foot towers, despite the ease of erection, should not be given further consideration.

2

The tests so far conducted with the model 400-foot towers have shown that it is necessary to utilize a 2200-foot diameter circle for the antenna array, providing the maximum Δf , or power output, with the top loading configuration described. Reducing the active length of the top loading elements should be explored by further studies to determine if the circle can be reduced in area while maintaining a high Δf . The reduction in top loading length will also raise the antenna resonant frequency, simplifying antenna tuning and permitting the use of a single-feed conductor per antenna.

The investigation of non-uniform top loading arrays also seems indicated. The measured non-directional characteristic of the 2-tower array suggests that the top loading elements running away from the center of the array may be lengthened to increase Δf . Non-uniform top loading arrangements had not originally been considered due to an apprehension of a non-uniform radiation pattern.

*

REFERENCES

- Low-Frequency Top-Loaded Antennas T. E. Devaney, R. F. Hull,
 W. E. Gustafson, 1966, U.S. Navy Electronics Laboratory, San Diego, Cal.
 NEL Report 1381
- Analysis of the Characteristics of Electrically Short Top-Loaded Antennas of the Umbrella Type - Harry F. Hartley, Westinghouse Electric Corporation, Baltimore, Maryland
- Loran D 400-Ft. Antenna Modification and Configuration Study, Volume 1, Sperry Gyroscope Division, Sperry Rand Corporation, Great Neck, N.Y., March 1972
- Project W-324, Test and Evaluation of Scale-Model Antennas Final Report (not in general distribution), U.S. Coast Guard, Electronics Engineering Center, Wildwood, N.Y., 13 Sept. 1968
- The Characteristics of Electrically Short Umbrella Top-Loaded Antennas A. F. Gangi and G. R. Dunn, IEEE Transactions in Antennas and Propagation, Volume AP 13, No. 6, November 1965
- Inductance Calculations Frederick W. Grover, V. Van Nostrand, New York, 1946

. •••

APPENDIX I

WIDE-BAND CURRENT TRANSFORMER SPECIFICATION

.

-

WIDE BAND CURRENT TRANSFORMER

Precision

PULSE CURRENT TRANSFORMER

Model 110

This current transformer is flat from 1 Hz to 35 MHz (3 dB points). It is useful for audio, video, rf and pulse measurements. Current being measured can be in a conductor at low or very high voltage, or a beam of charged particles.

• SPECIFICATIONS

68.60

- Output Voltage/Ampere 0.1 (+1%, -0%, initial pulse response).
- Rise Time 20 nanoseconds for a step-function current pulse.
- Droop 0.5% per millisecond for top of a square wave or pulse.
- Pulse Iτ 0.6 ampere second max. (small bias current in secondary needed for values approaching this max.).
- 5. Frequency Response 1 Hz to 35 MHz at 3 dB points.
- 6. Sine Wave I/f 2.5 amps peak per Hz.
- 7. Current 5,000 amps peak, 50 amps rms maximum.
- 8. Insertion Resistance 0.0002 ohm.
- Voltage between Center Conductor and Case 30 kV flashover in air for 3/4" diam bare center conductor.
- 10. Capacity Added to Circuit 4 pF in oil, 2 pF in air, for typical installation.
- 11. Output Connection BNC receptacle.
- 12. Cable 50 ohm cable such as RG-58C/U.
- Cable Termination typical oscilloscope input (e.g., 1 megohm and 20 pF in parallel).
- 14. Overall Dimensions 4" OD x 1" thick, 2" ID.

FEARSOR ELECTRONUCS, NOC

ا در این میکند. این اور به میکند به میکند از این . . .

I - 3/I - 4

.* -

•

APPENDIX II

FIELD INTENSITY METER AND LOOP ANTENNA FACTORS

.

-

· ·

Test In	istr.: Noice / Fieu	ENTRAL II.			<u>- 064 E. 4</u>	SIDAC No.	027	244
No T	Dei		17		2 - 0			
MIT.: [-	MUNE DEVICES	Model A	11105	S/N:	1208-	I-C/R Upec,	/Proc	
	. NAT'L CIL SERVICE	<u>S</u> Date:	26 75					
SP/PROC PAR. #	FUNCTION	NOMERATIL	LOWIR LIMIT	MEASURED	Urfla LIMET		COT ui IUL.	REMARKS
503753	INPUT ATTENUATOR	SUBJECT	· · · · · · · · · · · ·	STA JDARD		CORRECTION	•.	
		(15)		(26)		(26)		
		60.0		80.0				
		60.0		60.1		-0.1		
		40.0		40,1		-0.1		
		200		20.2		-0.2		
		0.0		19.8				
·	SUBTRACT 1005	= 10.0	odb					
	SKA. INPUT TRACKING							
	(METER)	SUBJECT		STANDARD.		CONTETION		
· · · · · · · · · · · · · · · · · · ·		(26)		(22)		(6)		
		20.0		20				
		18.2		18		-0.2		
		16.2		16		-0.2		
		14.3		14		-0.3		
		12.3		12		-0.3		
		10.0		10				
		7.9		8		+0.1		
		5.8		6		+0.2		
		3.7		4		+0.3		
		+		2		+0.3		
		20.0						
503254	TUNING HEA	D - T-A/	NE 10:	5 SIDA	C# 0	03112		
	EAND	SETFRE	2	ATTEN.		IF GAIN		
	52-12.7MHZ	10.0	1	20.000		76.000		
	12.7 - 30 MHZ	20.0		20.005		76.Zdb	. .	
	П	30.0		20.005		76.3 Jb		
	IF GAIN : 10	0,000	MICRO	VOLTS A	T 80	0.0 db.		
					•			

II-3

73 SOUTHFIELD AVENUE STAMFORD CONN 06902 PHONE (203) 327-9668

n

ANTENNA "FACTOR" FOR LOOP ANT LP-105

·	FREQ	DB		FREQUENC	CY	DB
	150 kc	43.0		2.4 mc		28.5
	175 kc	41.8		2.7 mc		28.0
	200 kc	40.7		3.0 mc	•	27.5
	225 kc	40.2		3.4 mc		27.0
	250 kc	38.6		3.7.mc		26.5
	275 kc	38.5		4.0 mc		25.5
	300 kc	38.0		4.4 mc		24.5
	325 kc	38.0		4.7 mc		24.0
	360 kc	37.5		5.2 mc		23.5
	400 kc	. 38.5		6.0 mc	· · ·	25.0
	450 kc	38.0		7.0 mc	1	24.0
	500 kc	37.5		8.0 mc		23:0
· ·	560 kc	36.5		9.0 mc		22.5
	620 kc	36.0		10.0 mc		21.5
3	700 kc	35.0		11.0 mc		20.5
1	760 kc	34.0		12.0 mc	•	20.3
*	820 kc	33.0				
	870 kc	32.0				
	000 1	0 F F		10 7	· · · · · ·	
. '.	900 kc	35.5		12.7 mc	•	21.5
	1000 kc	34.5		15.0 mc		20.5
,	1.1 mc	33.5		29.0 mc		20.0
	1.3 mc	32.0		21.0 mc		19.5
	1.5 mc	31.0		24.0 mc		19.0
	1.7 mc	29.0		27.0 mc		18.4
	1.9 mc	28.0		30.0 mc		18.0
	2.1 mc	27.5	•	•		

For substitution measurements add 20 db to the above factors.

Warranteed Instrument Calibration, Repair, & Renovation.

. . . .

. **П-4**

APPENDIX III

DERIVATION OF ANTENNA CAPACITANCE AND INDUCTANCE

Equivalent circuit for antenna input impedance

Let reactive part of $\mathbf{Z}_i = \mathbf{X}_i$

Then

$$X_{i} = X_{L_{a}} - X_{C_{a}}$$
(1)

$$X_{i} = 2\pi f_{L_{a}} - \frac{1}{2\pi f C_{a}}$$
 (2)

Differentiating with respect to f

$$\frac{dX_{i}}{dF} = 2\pi L_{a} + \frac{1}{2\pi f^{2} C_{a}}$$
(3)

and

$$f\left[\frac{dX_{i}}{df}\right] = 2\pi fL_{a} + \frac{1}{2\pi f C_{a}}$$
(4)

Subtracting (4) from (2)

$$X_{i} - f \left[\frac{dX_{i}}{df}\right] = \frac{-2}{2\pi f C_{a}} = -2 X_{C_{a}}$$
(5)

$$X_{C_a} = \frac{f \frac{dX_i}{df} - X_i}{2}$$
(6)

$$\mathbf{X}_{\mathbf{L}_{a}} = \mathbf{X}_{i} + \mathbf{X}_{\mathbf{C}_{a}}$$
(7)

and

.

APPENDIX IV

POWER FIELD FORMULA

Assumptions:

or

- Far field
- No losses
- Flat, perfectly conducting earth
- E-field measured at low elevation angle $\theta_e = E_M$
- Cos θ_{e} field dependence
- Z_0 = free space impedance = 377Ω

• Measured
$$E_M$$
 means $E(\theta_e) = \begin{cases} E_M \cos \theta_e , \theta_e > 0 \\ 0 , \theta_e < 0 \end{cases}$

Total power radiated at transmitter site, measured by E-field at distance d from transmitter:

$$P \text{ (watts)} = \int_{0}^{\pi/2} \frac{\left(E_{M} \cos \theta_{e}\right)^{2}}{Z_{0}} \underbrace{2\pi d^{2} \cos \theta_{e} d\theta_{e}}_{\text{area element}}$$
$$= \frac{E^{2}_{M}}{Z_{0}} 2\pi d^{2} \int_{0}^{\pi/2} \cos^{3} \theta_{e} d\theta_{e} = \frac{E^{2}_{M}}{Z_{0}} \frac{4}{3}\pi d^{2}$$
$$P = \left[\frac{E_{M}}{9.487}\right]^{2} \cdot d^{2} \text{ (watts)} \text{ or } \left[\frac{E_{M}}{300.0}\right]^{2} \cdot d^{2} \text{ (kW)} \left\{ \begin{cases} E \text{ in volts/length unit} \\ \text{in same length unit} \\ d \text{ in same length unit} \end{cases}$$
$$P_{kW} = \left[\frac{E_{M}}{186.4}\right]^{2} \cdot d^{2} = I^{2} R_{r}$$
$$R_{r} = \left[\frac{E_{M} d}{186.4 I}\right]^{2} \cdot 1000$$

IV-1/IV-2

. *

APPENDIX V

Equivalent Antenna Circuit

Let the bandwidth of the single tuned circuit shown $=\Delta f$

$$\Delta f = \frac{f_{0}}{Q} = \frac{2 R_{r}}{\frac{dX}{df}(f_{0})}$$
(1)
(see reference 2)
Where f_{0} = resonant frequency
 Δf = 3 db amplitude bandwidth

$$\frac{dX}{df(f_{0})} = \text{reactance slope at } f_{0}$$

$$R_{r} = \text{Radiator resistance}$$
Also $Z_{i} = R_{i} + jX_{i}$
 $X = X_{Lt} + X_{La} - X_{Ca}$ (2)
 $X_{i} = X_{La} - X_{Ca}$
Where X_{Lt} = Reactance of tuning inductor
 X_{La} = Reactance of antenna inductance
 X_{Ca} = Reactance of antenna capacity
Differentiating $\frac{dX}{df} = 2\pi L_{t} + \frac{dX_{i}}{df}$ (3)
At resonance $f_{0} | X_{i} | = | X_{Lt} |$
and $\frac{dX}{df(f_{0})} = \frac{X_{i}}{f_{0}} + \frac{dX_{i}}{df(f_{0})}$ (4)

Substituting equation (4) into (1)

$$\Delta f = \frac{2 R_r}{\frac{dX}{df(f_0)}} = \frac{2 R_r}{\frac{dX_i}{df(f_0)} - \frac{X_i}{f_0}}$$
(5)
the intrinsic bandwidth

Since
$$X_i = X_{L_a} - X_{C_a} = 2\pi f_{L_a} - \frac{1}{2\pi f_0 C_a} = \frac{(2\pi f_0)^2 C_a L_a - 1}{2 f_0 C_a}$$
 (6)
$$\frac{dX_i}{df(f_0)} = 2\pi L_a + \frac{1}{2\pi C_a f_0^2}$$

$$=\frac{(2\pi f_{0})^{2} L_{a} C_{a} + 1}{2\pi C_{a} f_{0}^{2}}$$
(7)

Substituting (6) and (7) into (5)

$$\Delta f = \frac{2 R_{r}}{\frac{(2\pi (f_{0})^{2} L_{a} C_{a} + 1}{2\pi C_{a} f_{0}^{2}} - \frac{1}{f_{0}} \frac{(2\pi f_{0})^{2} - 1}{2\pi f_{0} C_{a}}}{\Delta f}$$

$$\Delta f = 2\pi f_{0}^{2} R_{r} C_{a}$$
(8)

the intrinsic bandwidth

APPENDIX VI

.

FCC AUTHORIZATION

. a FCC Form 450-D June 1966

UNITED STATES OF AMERICA FEDERAL COMMUNICATIONS COMMISSION EXPERIMENTAL

EXPERIMENTAL (DEVELOPMENTS ECIAL TEMPORARY AUTHORIZATION

K.C.2.X.E.J. S-6591-ED-74-1

EXPERIMENTAL XD FX

NAME SPERRY BAND CORPORATION SPERRY GYROSCOPE DIVISION

Lake Success (Nassau) New York - Lat. 40 45 18 N; Long, 73 42 35 W.

(Location of authorized remote control point)

Special Temporary Authority is hereby granted to operate the radio transmitting apparatus described below:

Frequency	Emission Designator	Authorized Power (Vatts)	Special Provisions
19.0-19.98 MHz	AO	1.0	
20.03-21.00 MHz	AO	1.0	
21.45-21.50 MHz	AO	1.0	
29.70-29.89 MHz	AO	1.0	
30.56-31.50 MHz	AO	1.0	

This special temporary authorization is granted upon the express condition that it may be terminated by the Commission at any time without advance notice or hearing if in its discretion the need for such action arises. Nothing contained herein shall he construed as a finding hy the Commission that the authority herein granted is or will be in the public interest heyond the express terms hereof.

This special temporary authorization shall not vest in the grantee any right to operate the station nor any right in the use of the frequencies designated in the authorization heyond the term hereof, nor in any other manner than authorized herein. Neither the authorization nor the right granted hereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934. This authorization is subject to the right of use of control by the Government of the United States conferred by Section 606 of the Communications Act of 1934.

This authorization effective August 7, 1974 and

will expire 3:00 A.M. EST February 7, 1975

F.C.C. . WASHINGTON, D. C.

, Ben F. Wafte Secretary.

FEDERAL COMMUNICATIONS COMMISSION

FCC Form 450-D June 1966	UNITED STATES OF AMERICA FEDERAL COMMUNICATIONS COMMISSION	
EXPERIMENTAL (DEVELOPMENTA (Nature of service) SP	L) EXPERIMENTAL ECIAL TEMPORARY AUTHORIZATION	KC2XFL (Call eign)
EXPERIMENTAL XD FX (Class of station)		S-6592-ED-74-2 (File number)
NAME SPERRY R	AND CORPORATION	
Islip (Suffolk) New Yo	ork - Lat. 40 47 52 N; Long. 73 06 29	Ψ.
	(Location of station)	

(Location of authorized remote control point)

Special Temporary Authority is hereby granted to operate the radio transmitting apparatus described below:

Frequency	Emission Designator		Authorized Power (Watts)	Special Provisions
19.0-19.98 MH:	z AO		1.0	
20.03-21.00 M	Hz AO		1.0	
21.45-21.50 M	Hz AO		1.0	
29.70-29.89 M	Hz AO	•	1.0	
29.91-29.97 M	Hz AO		1.0	
30.56-31.50 M	Hz AO		1.0	

Special Condition:

(1) The station identification requirements of Section 5.152 of the Commission's Rules are waived.

This special temporary authorization is granted upon the express condition that it may be terminated by the Commission at any time without advance notice or hearing if in its discretion the need for such action arises. Nothing contained herein shall he construed as a finding by the Commission that the authority herein granted is or will be in the public interest heyond the express terms hereof.

This special temporary authorization shall not vest in the grantee any right to operate the station nor any right in the use of the frequencies designated in the authorization heyond the term hereof, nor in any other manner than authorized herein. Neither the authorization nor the right granted hereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934. This authorization is subject to the right of use of control hy the Government of the United States conferred by Section 606 of the Communications Act of 1934.

This authorization effective April 2, 1975 and

wiil expire 3:00 A.M. EST September 2, 1975

FEDERAL COMMUNICATIONS COMMISSION

Ben F. Walle Secretary.

F.C.C. . WASHINGTON, D. C.
	2				5 N +
FCC Form 450-B	Ut	NITED STATES OF AMER	LIC A		
September 1972	FEDERAL	COMMUNICATIONS C	OMMISSION		
		EXPERIMENTA	1		
	PADIO ST	ATION CONSTRUC			
EXPERIMENTAL (I			TION PERMIT		VET
(Nature of servic		AND			
•• *****		LICENSE			
EXPERIMENTAL XI				<u>6591-</u> E	
(Class of sistion		•		(File num	•
NAME	SPERRY RAND CO	RPORATION, SPER	RY GYROSCOPE	DIVISION	******
				•	
Lake Succes	ss (Nassau) New			. 73 42 35 W.	*****
		(Locstion of statio	n) .	•	
***************************************	(Locs	tion of authorized remote	control point)		***********
Subject to the prov	isions of the Communicati	ions Act of 1934 subservu	anitrasting start trai	and all regulations t	paratofora ar
hereafter made by this Com					
of is hereby authorized to u	use and operate the radio	transmitting facilities her	einafter described for	radio communication.	1.3 3.5
-	Emission	Authorized	Special		
Frequency	Designotor	Power (Watts)	Provisions		
9.5 - 9.99 MHz	AO	1			
10.010 - 10.5 MHz	AO :	er 1 - Photos	the set there is the	ful Horsts	
	······	e di Terlerian		1	· · · ·
Equipment: (1)	Experimental	Sec. Brown Sec. Sec.	a i se ie-		1.1.1.1.1.1.1
Frequency Toler	ance: .005%				
Hours of Operat	ion: Daytime o	A State of the second second	a da se eteração - Co	to the sub-two in the	1
nours of operat	Ton: Daycine 0.	nity			
• • • • •					
Operation: In	accordance with			mission's Rule	es.
			a seat i		
· · · · · · · · · · · · · · · · · · ·	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	99. S. M. 1917	a dan sana sa	1. T. P. G. P. P.	10.11
	States to a fill	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	and the second	-1 (A P 1	1,1900.00
			••••		
1.	1. 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 19	经日本 计算法	1	den source sel	
1		1	Sec. 2. 2. 2. 2	14 M A	S and
200					
		and a second			
	parte de la composition de la	Manager Marches	 2.5 Trip strip 	 a fit a fit 	· · · ·
		S. Spiritent			1.111
÷	•				
•					
The nbove fro	equencies are assign	ed on a temporary ba	sis only and are s	ubject to change	at any time
without hearing.					
	zation is granted subj				
other station or servic		led at any time witho	out hearing if, in t	he judgment of th	e Commission,
such action should be	is issued on the lice		- that the stateme	ate contained in	liconcolo
application arc true n	18 issued on the lice nd that the undertaki	nsee's representatio	d, so far as they a	are consistent her	cwith, will
be carried out in good	faith. The licensee	shall, during the ter	m of this license.	, render such serv	icc as will
serve public interest,					
This license	shall not vest in the	licensee any right to	a operate the stati	ion nor nny right i	in the use of
the frequencies design	nated in the license	beyond the term here	of, nor in any othe	or manner than au	therized
herein. Neither the li lation of the Communi	conse nor the right g	ranted hercunder sha This license is sub	II be assigned or	otherwise transfe	the Govern-
ment of the United Sta					g the overlie

ł

F.C.C. . WASHINGTON, 8. C.

.

۰.

FEDERAL COMMUNICATIONS COMMISSION. Ban 7. Windle

Secretary.

1. Upon completion of the station, in accordance with the terms of this permit, the grontee shall, on the forms ond in the manner prescribed from time to time by the Commission, make it appear to the sotisfaction of the Commission that all the terms, conditions, and obligations set forth in the application and in this permit have been fully met, and shall apply for a radio station license; upon such showing and application, and upon a finding by the Commission that since the granting of this permit no cause or circumstance has arisen which, in the judgment of the Commission makes the operation of the station against the public interest, a radio station license will be issued by the Commission for the operation of the station. The license will contain the conditions are the Commission may prescribe.

2. This permit shall not vest in the grantee any right to operate the station, nor any right to alicense authorizing the use of the particulor frequency or the omount of power, or the time of operation herein specified. The Commission, in issuing this permit, reserves the right to assign whatever frequency, power, or time of operation it deems best calculated to serve public interest, convenience, or necessity. The terms of said license as to frequencies, power, emission, time of operation, and scope of communication ore expressly made subject to the exercise of said reserved right.

101-141

Le - inal

3. Nothing contained herein shall be construed as a finding by the Commission on the question of marking or lighting of the antenna system should future conditions require. The permittee expressly agrees to install such marking or lighting as the Commission may hereafter require under the provisions of Section 303 (q) of the Communications Act of 1934.

4. This permit shall become outomotically forfeited if the soid stotion is not ready for operation within the time obove specified, unless prior to the expiration of soid permit the Commission shall have granted an extension of time. Upon proper showing, made to it by the grantee, prior to the expiration of such period, the Commission may grant an extension if it finds that the grantee was prevented from completing the construction of soid station by causes not under grantee's control.

5. Neither this permit nor the right gronted herein shall be assigned or otherwise transforred to ony person, firm, company, or corporation without the written consent of the Commission.

VI-6

SHINGTON, D.

APPENDIX VII

REPRODUCTION OF LOG 1 AND LOG 2 ORIGINAL DATA

VII-1/VII-2

.

* .

~

1 SECURITY CLASSIFICATION (THIS PAGE) _ LOG NUMBER SYSTEM SERIAL NUMBER EQUIPMENT LOG FOR MULTIPLE TOWER STUNY (Subsystem, Major Unit, Etc EQUIPMENT SERIAL NUMBER(S) TIME TYPE OF AND OPERATION JRS OF (3) STANDAY ON CUMULATIVE OPERATING TIME DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY STANDBY ON (1) 10/25/74 FABLE AND INSTALL GROUND PLANE AC CABLE IN FIELD TEST SITE EAST OF AC FOWER COMPLETED 10/28/14 ELECTRICAL HOOKUP aton - 470'-> REPLACE CORIZIDOIZ VARMC - REWIRE FPARALLEL TO 115 FOR STEP-UP BLUWER/HEADER VARIAL output 120 volt 2 CAMP CONNELT GROUND TO TABLE (500' TO FIELD INTENSITY METER CABLE) - 1.90 VOLT DROP USING UAR/AC. USE UARIAC IN FUTURE WILL NOT FIELD INTENSITY MEASUREMENTS UNCORRECTED IS TOHRS FREQ DIAL SETTING E (db - inv hard) - D:6 9.0 9.6 12 11.1 10/29/74 Mova unterna on Table set up TEST Equipment line drop Tubician LEFT Early 8 vocts 10:30 AM

3 SECURITY CLASSIFICATION (THIS PAGE) LOG NUMBER SYSTEM SERIAL NUMBER MULTI-TOWER STUDY (Subsystem, Major Unit, Etc.) EQUIPMENT LOG FOR EQUIPMENT SERIAL NUMBER(S) TIME AND HOURS OF OPERATION CUMULATIVE OPERATING TIME DESCRIBE OR REFERENCE TYPE OF OPERATION OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY STANDBY ON Field Intensity E 300' East E= 54.5 + 36.5= 91 db = 35.5 mulm 10:30,014 Rn = (35:5 30% 280)= 3.752 Recheck ok OBSTRUCTION WITHIN 10 FT & F loop Antenna Effects data + : 9,932 MHz I'm = 5 cump pr Reading 54 db with + without Fuble ground strips Taped in Table f: 9,932 MHz CONNECT SPEACKER AJERANGE MENT-Excellent Zin impedance; Ein= & voit pp in f-10,000 MHZ Xc = 4000-2470 = 153 2 Ground AT Bridge 10.00 = 153 2 Ground AT Bridge at Bridge XC = 4000-2410 = 1595 NO Ground ON CONDECTOR GROUND AT BRIDGE Xc = 4000-2350 = 16/52 GROUND ATCONNECTOR AT BRIDEE Xc= 16/52= 7760 C = 1 107 111 = 989pf should be to 20 752 togt

SECURITY CLASSIFICATION (THIS PAGE) LOG NUMBER SYSTEM SERIAL NUMBER EQUIPMENT LOG FOR MULTI TOWER TUDV (Subsystem, Major Unit. Etc.) EQUIPMENT SERIAL NUMBER(S) DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY TYPE OF OPERATION (3) STANDBY ON STANDBY ON (1)GROUND STRIPS PERMANENTLY FASTERED UISIN TO GRUYND PLANE FABLE (WATER PROCESSED) GROUND TIED WIRES SUPPORTS TO TABLE TOP RADIALS WERE 3X4" TOULONG, FIXED RADIAL LENGTHS. PUT LOOP 1 TO METER 5 = 9.929 MHZ Im = .04 cump PP=. 28 cumprus Vinz 45 UPP REading WRONG 36.51 14.5 06= 11,2mr 300' .057 Meter TO side of loop Rn: 19 36.5 + 45,6 =12.6 300 .057 Meter behind loop 36.5 + 41.3 = 7.94 250,047 11 RA -36,5+47.1=15.8 2001 .039 WITH METER MUST GROUND CART ALL PREVIOUS FIELD INTENSITY PATA NG. 25 mv-PP/50 mv/amp (-707) = 0177 amp hous In= D R'n E UNCORRECTED E CORPECT +D DB +36126 ET. DB MV/m R +36.5 48.5 350 85.0 17.8 1.28 86,1 20.1 300. 49.6 1,20 88.2 12100 51,7 25.6 250 1.35 40,0 93.2 1.31 53.5 31.6 200 56.7 47.0 1.64 59.0 95.4 1115 58.9 102.0 0,86 50 68.6 105.1

LOG NUMBER	SYSTEM SERIAL N	UMBER			
EQUIPMENT LOG FO	DR MULTI-TOWER	STUDY			
	(Subsystem	, Major Unit, Etc)		1
EQUIPMENT SERIAL	NUMBER(S)				
	SCRIBE OR REFERENCE	TIME AND HOURS OF	TYPE OPERA (3	OF	CUMULATIVE OPERATING TIM
	AND SIGN EACH ENTRY (1)	OPERATION (2)	STARCEY	ON	STANDBY O
	ann na shuaranna a annar sa ar to annar an an annar U annar U an an t-air ann Nuaireana. A' a annar u				11/6/74
Zin MEASUR	EMENTS				
10 1110	4000-2480				
/0 HH 2	4000-2480 = 15252 =	Xc			
91900	9000-2500 = 151.5 R				
0.0 -					
9.500	4000-2500 = 157,9J 9,5				
10,1	4000-2680 : 130.7	. ?			
	10,1				
10,5	4000-2500 142.9.	r			
10.0	4000-2500				
	$\frac{4000-2500}{1000} = 150.0.$	12			
I'm = 25 mu pr	/50 mV famp (-70) = MHZ	0.177 au	pras		11/7/14
f= 9.43 Distance	MHE		2		
ft.	E dbumor dbcor, Hu,	in n	r		
W150 6	8.3 -136.5 = 104.8 db: 102	0	,86		
100 59	5,5 46.0 63,	1 1	31		
0 (150) 5	7.0 93.5 47. 5 50,0 3/.		64		
250 51.			19		
	6 87,1 22	6 1.3	Fol		
		8 1.1	4		
400 48.	7 85.2 18.	3 117			
				-	
			1		
		1			
				1	-

SECURITY CLASS	SIFICATION (THIS P	A(75)				6
LOG NUMBER _		SYSTEM SERIAL	NUMBER			
	G FOR MULT	I-TOWER	<u>STUDY</u> tem, Major Unit, Etc.))		
EQUIPMENT SE	RIAL NUMBER(S)					
	DESCRIBE OR REFERENTENANCE TEST AND OTHER DATE AND SIGN EACH (1)	PERTINENT INFORMATION	TIME AND HOURS OF OPERATION (2)	TYPE OF OPERATION (3) STANDEY ON	CUMULATIN OPERATING T (4) STANDBY	IME ON
8 MHZ U		ENT ZERO-B		-7110 G	11/14	
8 14H Z	5000-32	270 = 223.x=)	<c rm="</td"><td>36 r</td><td></td><td></td></c>	36 r		
814/42	3000-185	- 143 r.	-Ye Rin	3 3		
8 MHZ	4000-2	160 = 230=	$x_c = e_c$	· 33		
firef	Xin Reading	XCR	Rimz	-		
8.0 8.5 9.1	2160 2210	230 211 192 -	33 38,2			
9.5	2270 2380 2350	171	36 41,2 40,5			
10.5	2490 2610	143	44,5 39,5			
11.5 12.0 12.5	z 730 3890 2 380	110 902 11+130	47.5 75.6 88.0	27		
Re-d 12.5 15.0 16.0	2650 2840 3210	10 8 77 50	70,5 67.8 70.5	11/8/7 Radiu Poise Marke	4 ls-sayged spokes ibecause or	F
		205 fest c		WIND.	- Tie Down with taps ad radials	2
	<u>\</u> 5 ·					

G NUMBER	I	SYSTEM SERIAL NU	JMBER		
UIPMENT LOG	FOR MULTI	- TOWER	STUDY		
		(Subsystem,	Major Unit, Etc.))	
UIPMENT SERI	AL NUMBER(S)				
	DESCRIBE OR REFERENCE			TYPE OF	CUMULATIVE
	TE AND SIGN EACH EN		AND HOURS OF OPERATION (2)	OPERATION (3)	OPERATING TIM
	(1)				1.1.1
W -					18/19
W -	48,0 +36,3	5 84.5 X- 820 May	A 12 =	. 10% err	or
	475	84.0	14,100		
S	47.5	84.0	MAX A=	1.4 1.7 %	1 db
0	47,4	83.9		83.3	0
	47.1	83.6 MAX	Repeatable	lity Europe	5
E	46.9	83,4	84.5 -8	2.8	
	416,7	83.2	83.	= 2%	
	45.9	82.4	8330	6 = 14,6 mg	m
N	46.6	83.1	C	(20×17	2
	46,3	82.8	Rn =)14	6 (5280)	1.20 -
	47,3 46.1	83.8 82.6 E	1.08	5×1864	= 1.28 5
W	46.3	82.8	6		
		AV = 83.3			
	Tim= 1.7 cm			(.707)	100 10 1
	Jon Joc m	10 10m (11)	5 0 m V/aug	21	.08 Samp Mms
205 EF	IST f29,929	M H2			
	amplins Ell	Edy	Altak	11	12/74
30	217 58.8	95.3	##		
25 .)	56.8	93.3 A 6,2db	A ca	vient The	
20	1 55.0	91.5 7		ns former Not	•
15 .1 10 .d	p6 52.6	89.1.30 5.8		ed FOR	1
5 1	49,2	85, J A 5.4		BRATION-	
.95	SHO TANKI			s-scofe)	
TRIED	451NG CESC	O REFLECT	METER	CONNEC	TED
DIRECTLY	TO AN	JENNA- NO	9 SEA	'ES Rieson	IMHB
,			pare	illel Reson -	23,33 MHZ
USE XFM	R, Disconnor	JOHNSON	MATC	H BAN	PEAKEN
CURPENT	Q 14.1 M	Hz (series reso	al al	32.3 14 4	5 modellel

8 SECURITY CLASSIFICATION (THIS PAGE) LOG NUMBER SYSTEM SERIAL NUMBER MULT-TOWER STUDY (Subsystem, Major Unit, Ktc.) EQUIPMENT LOG FOR EQUIPMENT SERIAL NUMBER(S) DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY (1) a 10 MHZ $X_{L} = 2\pi f L - \frac{1}{2\pi f C} = \frac{(2\pi f)^{2} L C - 1}{2\pi f C} = -165\pi \left(\frac{\text{should be}}{-200\pi}\right)$ $\frac{dx_i}{df} = 2\pi L + \frac{1}{2\pi f^2 C} = \frac{(2\pi f)^2 L C}{2\pi f C} = \frac{230 - 110}{115 - 20} = 34.3 \times 10^{-6} SV$ 6 T f)2 LC = -165 (2T f c) +1 (should be 3 G D ALFER scaling 34.3×10-6= [465(27fc)+1]+1 34.3 ×10-6 (2 T f 2) - -165 (2 T f C) + 2 21,500 ×106 C = -10,360 ×106C+2 34,900 ×106C=2 C= 52 G1×10-12 2 Ce = 5269 pfd \$100 (scale mp) 2 Ce = 5269 pfd \$ 5600 pfd should be Xc= 1 + C = 2 + 107 5269×10-12 Xc = 302 Xc = 284 should be -165=271 fL-1 271 fc 277 fL= 302-165=24 137 L= 2.48 ×10-6 ×100 scale mg L= 218 µh = 122µh should be fo = 1 VI = 1 20 VIC = 20 V2.18 × 10-6 × 52 69×10-12 fo = 1\$, q × 106 HZ = 1\$9 MHZ resonance 149 the KHZ resonance should be 185 KHZ

SECURITY CLASSIFICATION (THIS PAGE) LOG NUMBER SYSTEM SERIAL NUMBER MULTI-TOWER STUDY EQUIPMENT LOG FOR __ (Subsystem, Major Unit, Etc.) EQUIPMENT SERIAL NUMBER(S) TIME AND HOURS OF OPERATION CUMULATIVE OPERATING TIME DESCRIBE OR REFERENCE TYPE OF OPERATION (3) OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY STANDRY ON STANDEY ON (2) (1)Fin measurements 11/13 74 mpay R Xr 158r 10 VPP 2420 60 G 63 2590 141 #6 2650 135 65 24 2600 140 2 0 6 2570 143 2 INPUT VOLTAGE IMPEDANEE BRIDGE using fug R XR Xr L- connector 110 78 145 2400 10 160 83 9 174 70 2430 10 145 No 11 2400 L-connector 10 2390 161 9 2410 177 161 Report 10 88 2390 Measure 1-connector impedance -6ridge 11/14/74 150 pfd Mira Cap. across Usug 9.95 MHZ Bride imp 2800 $X_{c} = 120.6 = \frac{1}{2\pi} f c$ 6 4p 2 800 10 2800 C=(27) 9.95 XIV 6 (120.6) = 133 ff) 11 70 From nominal 2800 20 30 2800

OG NUMBER/	SYSTEM SERIAL N	UMBER		
QUIPMENT LOG FOR	14LTI- TOWER	STUD)		
		, Major Unit, Etc.))	
QUIPMENT SERIAL NUMBE	R(S)			
DESCRIBE OR I OPERATING, MAINTENANCE TEST AND DARTE AND SLOW	OTHER PERTINENT INFORMATION	TIME AND HOURS OF	TYPE OF OPERATION (3)	CUMULATIVE OPERATING TIME (4)
DATE AND SIGN (1)	EACH ENIRI	OPERATION (2)	STANDEY ON	STANDBY ON
				11/14/74
10 Vp	pinput			
f Reading	Ri Xi			
8,5 2340	60 195			
	65 176			
9,5 2360	69 173			
10.0 2390				
10.5 2430				
,,,,	60 143			1
11.5 2350	59 ,40			
$X_{i} = -16$	1			
$\frac{\chi_i}{d_f} = -16$	5×10-6			
	-6 1/1/ 0			
(277 f°C) 16.5	-x10-6= -16/2#f - 101.1 x108 C + 2 97.7 pfd	972		1
103,6×10°C =	- 101,1 x10° C + 2	-		
C =	77.77.50			
	$\frac{1}{2\pi fc} = -163$			1
-16/ = 25	TFL -163			1
L =	TfL -163 0,032 Mh			/
			11/151	ny i
TRIED VARIOUS GROU	ne not consected	TO sta	und pos	T-stale,
TRIED VARIOUS GROU	INDING ARRANGE	TENTS		11/18/74
REMOVE BRAIDED	GRUUNDS FROM	BRIDGE	, OSCILL	ATOR
CONNECT froum	d Table top Braid nect Scope al	10 run l	O ON BR	n'ogen
masiminen , com	men scope a	anya gi	ounos	
BIGGEST Effe	t on Builde Null	- Table Br	aid to.	Bridge Dirutte
J	8			8 7

SECURITY CLASSIFICATION (THIS PAGE) LOG NUMBER SYSTEM SERIAL NUMBER EQUIPMENT LOG FOR MULTHTOWER STUDY (Subsystem, Major Unit, Etc.) EQUIPMENT SERIAL NUMBER(S) TIME TYPE OF AND OPERATION URA OF (3) ERATION STANDAY ON (2) DESCRIBE OR REFERENCE CUMULATIVE OPERATING TIME AND HOURS OF OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY STANDEY ON (1)Measure standard Cap from instant 11-18-74 Calibration Pept 100 pfd 4000-2270 = 173 = 175 = C= 72pfd 8 70 Low F VRNidge Reading Supar X 11H7 Vpp 11 6 2550 10 6 2380 X Rin Reactance Bridge Volt SEMS= r 132 22.5 162-159 = .75 54 162 142 14.0 184 2340 9 was 5,75 0/V 11 10 2530 134 21.0 10 10 159 15.5 2410 183 14,2 10 9 2350 Xi = -162 => 207 Bridge readings correct Bridge readings Xi = 149 2 <u>dxi = 164 - 121</u> <u>dxi = 164 - 121</u> = 24.0 MHZ dri = 18 -132 dr = 11-5 = 25.5 =) 35 data F/AHZ 24 × 10-16 (27 f c)= -149(20 fc) +2 $25.5 \times 10^{-16} (2\pi f^2) = -162(2\pi f_c) + 2$ 151 ×108 = - 44 ×108 +2 160 . 1108C = -102 × 108 C + 2 C = 76 p f d = 56 p f d $V_C = \frac{1}{2\pi f} \frac{1}{76 \pi r^{0}} = 210 = 284$ C = 82 pfd ⇒ 56pfJ Xc=277f 82×10-12 = 194=>284 -162 = 277 fL -210 -149=2#FL-194 L=Q72mh=\$ 1,22 L= 0.76 uh = 1.22

SECURITY CLASSIFICATION (THIS PAGE)			
LOG NUMBER / SYSTEM SERIAL NU	IMBER		
EQUIPMENT LOG FOR MULTHOWER STUD	the second se		
	Major Unit, Etc.)	
EQUIPMENT SERIAL NUMBER(S)			
DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION	TIME AND HOURS OF	TYPE OF OPERATION (3)	CUMULATIVE OPERATING TIME (4)
DATE AND SIGN EACH ENTRY (1)	OPERATION (2)	STANDBY ON	STANDBY ON
DATA FROM BOB FRANK LAD	NOTEBO	HK	11-18-74
f Rin Xi	1		
$QU = 3, 4 - 243$ $K_1 = 207 \pi$ $IUU = 4, 0 - 207$ $dK_1 = 25 \pi h_1$			
100 4,0 -207 dxi = 35 x/xx	ke		
			4
3,5 × 10 3 (27 f ² C) = -207 · (27 f) C +2			
C 22,0 + 109 1300×105 C +2			
Yc= 2πf 57 ×10-12 = 270	= 5	600	
1C 27 f 57 x10-16 = 270	9 =>1	289	1
-207 - LEFL -279		J	ł
L = 1,15 mh			6
For Topload feed vertical a	p from	fround	
100 KH2 - to - 1 Vic	dxi .	555	
100 1011 = 10 2 T N/ C	dxi	OKHZ	Rin=zon
6.55 ×10-3 = 2716 + 271f2C			
628K - 1		•	
. 39 ×1012 = 1			
6.55×10-3 = 27 C.39×10'2 + 27 f	2 C		1
6.55×10-3 = (1.6×10-" + 1.60,	10-") 1	,	<u>e.</u>
$C = \frac{3.2 \times 10^{-N}}{6.55 \times 10^{-3}} = 4900$			
L = 4, gax 10-12 (,35 x1012)			
L= ·52 ruh			
L - D C AUN		4	*

13 SECURITY CLASSIFICATION (THIS PAGE) LOG NUMBER SYSTEM SERIAL NUMBER EQUIPMENT LOG FOR <u>MULTI- TOWER</u> <u>STUDY</u> (Subsystem, Major Unit, Etc.) EQUIPMENT SERIAL NUMBER(S) TIME AND HOURS OF OPERATION CUMULATIVE OPERATING TIME DESCRIBE OR REFERENCE TYPE OF OPERATION OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY ÓN STANDBY ON (1)11/19/2 $\frac{c.c.c.c.late}{100} = 106 = 2\pi f 150 \times 10^{-12}$ X = 29402 X = 29402 X = 24102 ± -D190 100 pf : 4000- = 159 = 2060r 82pf; 4000-x = 194 K set Null on Bridge using 150pfd <u>Null</u> <u>Reading</u> 4000 2500 check 100pfd -0.2410 r 3800 2630 204200 3060 check 82pfd -72040 r STB -2940 4100 5 MHZ attinna measurements f Reading Rim Xe 2190 21.9 329 5.5 2200 28,0 360 5.0 2200 32.0 400 4.5 Xi =-360 dx/df = 71 71 x10 6 /2 T f c) = -360(2Ffc)+2 11147×106= -11304×106C +2 2245/NOC = 2 C = 87pfd, Xc = 3582 4=0 t.

SECURITY CLASSIFICATION (THIS PAGE)			TA	
LOG NUMBER / SYSTEM SERIAL NUI	MBER			
EQUIPMENT LOG FOR <u>MULTI-TOWER</u> STUDY (Subsystem, M	fajor Unit, Etc.)	, <u>,</u> .		
EQUIPMENT SERIAL NUMBER(S)				
DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION	TIME AND HOURS OF	TYPE OF OPERATION	CUMULATIVE OPERATING TIME	
DATE AND SIGN EACH ENTRY (1)	OPERATION (2)	STANDBY ON	STANDBY ON	
Bridge input vortuge 6 vort p Null 4100 r f Read Rim Xi 27110-6(27,fč) 11 2700 1A.6 118 169108c	= -140 (2 = -88×19	nfc)+2 8c+2	11/19/74	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			7	
dxi -139	$md_{i}d at$ $f^{2}c) = -86$ = 80 pf $= 2\pi f c$ c = 0.95 pc	139 12nf c X/08 c + Cd, Xc = -199	2 + 2	
Braid To Top connector, #16 w Bridge Null 4100, 60 mpp 11 2776 19.9 112 291 10 2600 13.0 140 18 9 2470 13.3 170 dki/1f = 29 ×10 ⁻⁶ ×: 2-140 RAIN CONNECTOR connector directly at entry #10 wire used To ground connect	2 10 C C = 70 140 = 27 L = 1	=-88 x10 4 pfd, X 7 fL -21 2 u h 11/2	0/74	

SECURITY CLASSIFICATION (THIS PAGE)	
LOG NUMBER SYSTEM SERIAL NUM	MBER
EQUIPMENT LOG FOR MULTI- TOWER (Subsystem, M	STUDY Lajor Unit, Etc.)
EQUIPMENT SERIAL NUMBER(S)	
DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY (1)	TIME AND HOURS OF (2) TYPE OF OPERATION (3) OPERATION (3) OPERATION (3) OPERATION (4) OPERATING TIME (4) ON STANDBY ON (4) ON (4
Groundig Bridge to grounded connecte F Reading Rin Ke	Bridge E = SVPP
11 2570 717 130 10 2470 810 153	X: =-153 FL AX: TF = 23.5 52/AHZ
9 2410 11.5 177 Groundjug Bridge at Bridge ground To	Null
11 2620 10,2 125 10 2580 11.0 142 9 2430 14.0 174	Xi=742 SC dxi/df = 24.5 J/MHZ
AT $23.5 \times 10^{-6} (2\pi f^2 c) = -153 (2\pi f c)$ commute $148 \times 10^8 c = -96 \times 10^8 c$ $c = 82 \rho f c$ $-153 = 2\pi f c - 154$ L = 0.65 M h	$x_{c}^{*} = -194 p_{c}$
at Buidge 24.5 $\chi 10^{-6} (2\pi f^2 c) = -142 (2\pi f^2 c) = -142 (2\pi f^2 c) = -89 \times 10^{4} c^{-8} c^{-8} = -89 \times 10^{4} c^{-8} c^{-8} = -142 = 2\pi f c^{-1} - 192 c^{-1} + 192 c^$	$X_{c} = -192 R$
205' West of antinna Field I = 25 and pp/50 mm/amp	mensurement 2 = . 177 auprovis
Reading 48.5 /b $E = 48.5 + 36.5 = 85 db = 17.8 MV/ R_{T} = \frac{(17.8)^{205} 5100}{.177 \times 186.4} = 0.44$	n R
L .111 × 186.4 J	4/20)

EQUIPMENT LOG FOR $MALTI-TOWSE STUDY (Subartum, Marker Unit, Etc.) EQUIPMENT SERIAL NUMBER(S) DEPENDENT ON OTHER FRANCING (Subartum, Marker Unit, Etc.) OPERATING, MAINTERPORT AND OTHER FRANCING (MARKER) DATE AND SIGN EACH ENTRY (1) DATE AND$	OG NUMBER/	SYSTEM SER	IAL NUMBER	······	
(Subsystem, Maker Unit, Exc.) EQUIPMENT SERIAL NUMBER(S) DEBORING ON REFERENCE DEBORING	COLUMENT LOG FOR MI	12 TI-TOWER	STUDY		
DEPEndence on neurone prequires information Dependence that and other permittent information DATE and SIGN EACH ENTRY (1) DATE and SIGN EACH ENTRY (1) (1) (1) (1) (1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1		(Su	bsystem, Major Unit, Et	c.)	
OPERATING. MAINTENDER THE THE DATE AND STAND CALL ENTRY DATE AND STON EACH ENTRY (1) DATE AND STONE (1) DATE AND STONE (1) (1) (1) (1) (1) (1) (1) (1)	QUIPMENT SERIAL NUMBE	R(S)	final contraction of the second second	at we ar war at	
(1) (2) TT J ENNOR ON (1) 11/22/74 liceswired version and bridge Balance Reacting 5000 n Null beneture 5000 n Null beneture 5000 n Null beneture 5000 n Null beneture 5000 n (1) Resisting less then 25 n be to distinct public estimation for the scope NI/25	OPERATING, MAINTENANCE TEST AND	OTHER PERTINENT INFORMATIO	N HOURS OF	(3)	CUMULATIVE OPERATING TIME (4)
Balance Revoltance <u>5000</u> n Null Bencture <u>5000</u> n ul 1950 MHZ Resolution less then 25 n be to chalitat mult pm n Strong VIVM Scope XFR ZSON VIVM current ZSON VIVM current ZSON VIVM current ZSON VIVM current ZSON VIVM current ZSON VIVM current ZSON VIVM scope SVOITS trus across 50 R resiston of amp RMS SCOPE 18 MV pp multer 6.5 MMV pp Multer 18 MV pp Multer 18 MV pp Multer 5.5 MV vives Culib Aution 18 MV pp/ Jacopp = 5.5 MV vives/Jacopp				SIANUST ON	STANDBY ON
Balance Revoluna <u>5000</u> n Null Benchina <u>5000</u> n ul 1950 MHZ Resolutiona less then 25 n be to chalitat mult PMP VIVM Scope NFR ZSUR VIVM current ZSUR VIVM current ZSUR VIVM current ZSUR VIVM current ZSUR VIVM current ZSUR VIVM current ZSUR VIVM scope NIZS SCOPE 18 MV PP Multer 6.5 MMV pp Multer 18 MV PP/ Jacays = 6.5 MV MUS/ Jacays					11/ 22/74
Balance Revoltance <u>5000</u> n Null Bencture <u>5000</u> n ul 1950 MHZ Resolution less then 25 n be to chalitat mult pm n Strong VIVM Scope XFR ZSON VIVM current ZSON VIVM current ZSON VIVM current ZSON VIVM current ZSON VIVM current ZSON VIVM current ZSON VIVM scope SVOITS trus across 50 R resiston of amp RMS SCOPE 18 MV pp multer 6.5 MMV pp Multer 18 MV pp Multer 18 MV pp Multer 5.5 MV vives Culib Aution 18 MV pp/ Jacopp = 5.5 MV vives/Jacopp	prevent vin anyther to	unce frequincy of bridge	f artenna,	system is	& GVB/B
Amp souillety John Stope State Joon Wind curpent Joon Wind curpent Joon Wind curpent Joon Wind curpent Joon Wind curpent Thans former Store how across 502 resistor of amp runs scope 18 mV pp meter 6.5 mV runs cuteb ration 18 mV pp/ Jacup = 6.5 mV runs/ Jamp					
Amp souillety John Stope State Joon Wind curpent Joon Wind curpent Joon Wind curpent Joon Wind curpent Joon Wind curpent Thans former Store how across 502 resistor of amp runs scope 18 mV pp meter 6.5 mV runs cuteb ration 18 mV pp/ Jacup = 6.5 mV runs/ Jamp	Null Deacture	5 <u>000</u> n ul	1950 MA	13	
swillety XPR JSUR VIM current JSUR VIM current JSUR VIM current JSUR VIM current JSUR VIM current JSUR VIM SVOITS HUS across SOR resistor ·I amp rus SCOPE IS MV pp metter 6.5 mV runs culib ration ISmV pp/ 1000 = 6.5 mV runs/.1000000	Resostince	less then 25 n	but to dis	that rule	
suillety XPR JSUR VIM current JSUR VIM current JSUR VIM current JSUR VIM current JSUR VIM current JSUR VIM SVOITS HUS across SOR resistor · 1 amp rus SCOPE 18 MV pp metter 6.5 mV runs culib ration 18 mV pp/ 1 amp = 6.5 mV runs/.1 amp			VIVM		& Tononlow
5 voits runs across 502 resistor · 1 amp runs scope 18 mv pp meter 6.5 runvrans calibration 18mv pp/ amp = 6.5 mv runs/ 1 amp	Am P Scillata D D XFR curpent	+,	scope		11/25
elamp Mus scope 18 mv pp metter 6.5 mv rans calibration 18 mv pp/ 10 mp = 6.5 mv runs/ 10 mp	culibreta C	writent Trans	former		
metter 6.5 mvrms calibration 18mvpp/ 1000p = 6.5 mvrms/ 100p	5 Voits hms	across 50s. up rms	Nes istor		
	milter	6.5 mvrms			
	Calib sal	ion 18mNp	P/ lamp =	6.5 m V	uns/lamp
(1) Mus Cist wort	12:25 MUR (1) 139 mp Rr.	1/22 = J 17.8 x 205/5	280 0.7/52		
	(1 / Mars		-		

.

SECURITY CLASSIFICATION (THIS PAGE)	10
LOG NUMBER SYSTEM SERIAL NU	MBER
	Major Unit, Etc.)
EQUIPMENT SERIAL NUMBER(S)	
DESCRIBE OR REFERENCE	TIME TYPE OF CUMULATIVE
OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY	AND HOURS OF OPERATION (2) OPERATION (3) OPERATION (3) OPERATION (4) OPERATION (4) OPERATION (4)
Remova 4'model, install	to the second
Expected results 300° ft $\chi_{L} = -344_{SL} = \frac{d}{d}$ $R_{T} = 0.492$	Vi = 425 N/KHZ Ri=4,152
Field Mater 205 fort u E= 43.8db + 36.5 = 80.	3,16 = 10,4 mV
Input 10 minuts; sen In = -154 ampril	si = 6.5 m 4/.1 amp
$R_{R} = \int \frac{10.4 \times 205/528}{.154 \times 186.4}$	
Distance Reading Courseted West EFEEEE	R
ft db db mv	R
150 44.1 8016 10,7	
200 42.6 79.1 9.0	0.19
250 41,7 78,2 8.2 300 39.5 76,0 6.3	0.17
350 38.6 75.1 5.7	0.17
+ Reading Ki Ri	
MHZ MORN R	
9 1420-287 m 10 1430-257 =	$X_{i} = -25/2$
11 1580 -220 = 1	af = 33,52
33,5TNT2TT+C)=-25-7(2TT+C)+2 11 47.5×10-6(2T	$f(c) = -344(2\pi f c) + 2$
$2/0 \times 10^{8} C = -16/\times 10^{8} C + 2$ 298×108	$C = -2/6 \times 10^{10} C + 2$
$C = 54pfd X_C = 29552 \qquad C$ - 257 = 277 fL - 295 $-344 = 2$	=39 pfu Xc = -408 77 FL -408
$L = 0.61 \mu h$	1.0 uh

19 SECURITY CLASSIFICATION (THIS PAGE) LOG NUMBER. SYSTEM SERIAL NUMBER EQUIPMENT LOG FOR MULTI- TOWER STUDY (Subsystem, Major Unit, Etc.) EQUIPMENT SERIAL NUMBER(S) DESCRIBE OR REFERENCE TIME CUMULATIVE OPERATING TIME AND OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY STANDES (1) 3 model, install 6.25' mode RENOLE 625 FT should be Xi = -25 2 dYi = 26 2/KHZ Ri= 12.52 Rr# 22 [C=110 pfd] L= 1.9 uh $26 rip^{6} (2 + fc) = -257 \mu fc) + 2$ F Reading Xi Rin 1/17 R R R 9 3670 -37 1 - 162×108C=-18,108C+2 C=112pfd, Xd=14202 MHZ 3670 9 -16=277fL -142 3 840 -16 10 2 Zouh 4150 +14 11 2 3.6 +10 115 11 Using dxi AC = 23.5 MAH $X_i - -16$ 23.5 (2#f²C) =-10(27fC) 148 NOSC 2 -10 10 148 × 10 -16 +297 fL- 12 154 amplins 10 MV in put L= 1.7µh E E Ê Pr Distance west uncorr. con Cor db 15 FT MU 56.3 92,8 44.1 205 55.3 91,8 12 250 39.1 89.4 52,9 300 25.1 - with Thick in 300 53.2

SECURITY CLASSIFICATION (THIS PAGE)

LOG NUMBER _____

/______SYSTEM SERIAL NUMBER ______

EQUIPMENT LOG FOR <u>MULT-TOWER</u> <u>STUDY</u> (Subsystem, Major Unit, Etc.)

EQUIPMENT SERIAL NUMBER(S)

OPERATING, MAINTENANC		OTHER PERT		ATION	TIME AND HOURS OF	TYPE OF OPERATION (3)		CUMULATIVE OPERATING TIME (4)	
DATE A	ND SIGN I	EACH EN	IRI		OPERATION (2)	STANDBY	ON	STANDBY	ON
Relatito	4'	400'	з′	300'	6.25'	625		11/29/14	
Model	Ac T.	-	54	20	107				
Cap-Zeiv ptd	82 0.65	56 1,2	0.61	39 1.0	127	110			
Rin J2	9	4	71	4,1	72	2.5			
Rr r	0,5	1.07	0.18	0.49	3.5	2,1			
fo MHZ	21,5	19	28	27.5	10.9	10,7			,
Rrr	1,0	1,07	0.52	0.49	10	21	pe	w calibout	in
								i	

SECURITY CLASSIFICATION (THIS PAGE) _____

LOG NUMBER ______ SYSTEM SERIAL NUMBER _____

EQUIPMENT LOG FOR	(Subsystem, Major Unit, Etc.)							
EQUIPMENT SERIAL NUMBER(S)	larent							
DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFO DATE AND SIGN BACH ENTRY (1)	ORMATION	TIME AND HOURS OF OPERATION (2)	TYPE OF OPERATION (3) BIARSY ON	CUNULATIVE OPERATING TIME STANDBY ON				
1. 625' MODEL DAMAGED IN REPAIRIN	RAIN STO	RM, NIGH	T OF dec	12/2/14				
2. ERECTED 300'MOULL T IS JUITABLE FOR MERIUREMEN FOUND POOR SENSITIVITY AN WELL. COULD NOT PETERMINE	NT AS A NI (OULD	CHER WI NOT NULL	THE RE	716.4 BRIAGE				
3. REMOVED BOJ' MODEL.								
1. INSTALLED 625 MODEL BUT CON LIEMENTS AND GUY DUE TO	HIGH WINDS	STALL TO	· LUDDING	12/3/74				
2. MEASURED INPUT IMPEDANCE RESULT : AT IO MHZ $X = 5000 - 1/00 = 340Z = 5000 - 1/00 = 340$		i						
OFR YILLDED 2-2 AT IU,	MHZ (see	page 19)						
OTE: BOTH 400' AND 625' A SUSPECT BRIDGE IN ERRO		AU NEAT	8 10-2	Now.				
		ł						
			• •					
		1	. 1					

SECURITY (CLASSIFICATION (7	THIS PAGE)			
LOG NUME	3ER	SYSTEM SERIAL NU	JMBER		
EQUIPMEN	T LOG FOR		Major Unit, Ibte		
EQUIPMEN	IT SERIAL NUMBI		Hajor Unit, 1998		Rosenbur
OPERATIN	DESCRIBE OR IG, MAINTENANCE TEST ANI DATE AND SIGN	REFERENCE D OTHER PERTINENT INFORMATION	TIME AND HOURS OF OPERATION	TYPE OF OPERATION (3)	CUMULATIVE OPERATING TIME
s	(1		(2)	STANDEY ON	STANDBY ON
PERFORMED	BENCY MEASU	REMENT WITH 4167BRIDG			12/4/74
INPUT TO BRIKE	FREQUENCY	U.U.T	BRIL MEASURE		D.C. METUR
1.4Vp/p pure sinit	10,002.6	10-2 CARBON RESIGNA	10,	5-r	10.62
GVP/P SUME VISTURTION	10,002,6	10-2 (AR BUN' RESSAR	10	6-2	10.6-2
¥	10,001.3	55.3 BNC RESISTUR	41 6	a.5 ~	70-2
¥	10,002.6	50.0 4 41	42 6	8.0 -	66.7~
V	10,002.6	36pf MICA (AP	-j R	890 - 0	CALCULATION 408PF
V	10,002.6	150 pFMILA (AP	-j 1	00 =0	CALCULATION 159.24 g F
V	10,003	300 MODEL WITHUUT TOP LUADING ON MOTAL SHILLD		; 231	
K .	10,003	400 MODER WITHOUT TUP LUNDING UN METM		j 200 R=12	
V	10,003	2 OTHER 400' MODELS N	WR USD		
1				R= 0-1-1	

K 10,000 625' MODEL ON RASE X-j200 NO FOR LUMING R= 4-2 SUSPECT THOSE UNIT WHICH WERE IN RAIN HAVE HIGH R

SECURITY CLASSIFICATION (THIS PAGE)

LOG NUMBER .

SYSTEM SERIAL NUMBER

EQUIPMENT LOG FOR .

(Subsystem, Major Unit, Etc.) EQUIPMENT SERIAL NUMBER(S) TIME AND URS O ERATIO DESCRIBE OR REFERENCE TYPE OF OPERATIO NOI OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN BACH ENTRY ST. IS ON STANDEY . (1) 12/4 FOR SURIES N=12n, SURIES XC = -1200- und C= 80pf $\mathcal{T}\left[1 + \frac{1}{2\pi}\right] = 12\left[1 + \frac{1}{2\pi}\right]$ PARALLEL R = Inspect wooden have causing high impedance short between rived and table top. Will replace one base with planighers have, 12/5/1974 Recalibrate Field intensity Meter's loop at INCAL @ 10 MHZ 215 db ; add 20 db for substitution the measurements had CIONHE change To 0.5 db from a2 db 3'antenna install In = 0.154 any 1ms Visit prime Mayor Hariba. USAF 12/1/174 En Distance West E Ecore. E db Fr ds mV r 38.0 91,6 0.63 49,6 100 150 45.9 87.9 24.5 0.55 . 16.3 42.4 84.4 0.46 200 13.8 40,7 82,7 0,52. 250 78,9 8,9 032 300 36.9 G 205 Wast 42.5 db + 420 8 4,9 db cured = 17,6 mv , Rn = 0,54 Reading Top bushing TO Post solder E & 205' West 42.9+42.0=84.9 db correct = 17.6mu, = Rr = 0.542 NO EFFECT IMPEDANCE CHECK $27.5 \times 10^{-6} (2\pi f^2) = -252 (4\pi f^2) + 2$ 94HZ Yi=1410 Ri= 0 Yi= -288R 172×108 C =-15+ ×10°C +2 10MH2 1480 20 - 2527 C=61pfd XC=-261 -252=22FL -295 11 MHZ 1440 20 - 23352 dx: II = +27.5 MMHZ NO EFFECT of SOLDERING TOP BUSING

 $\mathbf{23}$

SECURITY CLASSIFICATION (THIS PAGE)

Í

LOG NUMBER ____

_____ SYSTEM SERIAL NUMBER __

MULTI-TOWER STUDY EQUIPMENT LOG FOR ____ (Subsystem, Major Unit, Etc.)

EQUIPMENT SERIAL NUMBER(S)

DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION	TIME AND HOURS OF	TYPE OF OPERATION (3)	CUMULATIVE OPERATING TIME
DATE AND SIGN EACH ENTRY (1)	(2)	STANDBY O	N STANOBY ON
see page 20 calculate Er based on New calibra			12/1/74
datat from 11/27/74 6.25' antenna 205'; E= 56.3 + 42 = 98.3 db = 8 C 300'; E = 52.9 + 42 = 94.9 db = 3 datat from "/26/74 9 antenna	З <i>тү</i> 6.тV	$R_{r} = 1$	122
G 205; E=48.5 + 42= 90.5 db = (300; E=44.0++2=86 db = 20m	33.5ml	R. R. R. R. R. R. P. r. = 1.	= 2.0 L
install 6.25' autenna; I: 0.154 aug west @ 250; E: 54 26 uncorrected		12	16/74
notate Field loop 90° 1 To E = 15 db uncorrected notate loop back 5406 uncorre		ar	
Place durie du many load (se E reading 0.0 db no effectuele-?	ofd & sauct;	e Rosistin	
impledance 4 signal xi Ruding Ri + C 7 3820 2.4 - 44 10 3800 3.5 -20 11 4200 [] 5,7 + 18 an L sinding 11 140 (-) 9.6 +13	193)	56/27,f2c) 108C 5	= -20(27fc)+2 -126 (105C +2 17 pfd; Kc=228 238
6.25 Antenna Distance E Ear E Rr West ft db db MNV r 205 56.3 98.3 72 9.5 250 54.4 96.4 65 10.0 300 52.1 94.1 50.5 11.3 350 51.2 93.2 46 11.5		4 = 3 47,	

SECURITY CLASSIFICATION (THIS PAGE)	25
log number / system serial n	NUMBER
EQUIPMENT LOG FOR	STUDY
(Subrystem	n, Major Unit, Etc.)
EQUIPMENT SERIAL NUMBER(S)	
DISCRIBE OR REFERENCE	
OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY	HOURS OF OPERATION OPERATING TIME
(1)	(2) ON STANDBY ON STANDBY ON
	12/9/73
Ii = . 154 any Mms ; NO Mac Dist Rud-E Econ E RA	dials just The 6.25" post
Dist Rod-E Econ E RA	
205 wist H4,1 db 86.1 20 MV .7 300' 40.9 82,9 13.9 ,76	R I
300' 40.9 82,9 13.9 ,76	6
Repeut-	
200 44.0 46 20 .6 250 42.5 84.5 17 .7	
	8 expect 1.4
300 south-west 40.0 & 12.0 .6	
Repeat with	Mr. J. K. Frank
Repeat with 6.25 center post add 12 - 4	I'mp redials 106.25 base
205 wist 54,5 96,5 67 8, 300 51.4 934 47.5 8.	9
Impedduce Measurements	
Impeddance Measurements frig & Ri Ki	
MHR R R R dYi: 29.	S Mar 11
7 7700 011 176 011	
10 2570 1.4 149 110 29.5 ($(2\pi f^{2}c) = 149(2\pi f c) + 2$
11 2480 2.0 137 18	5 X108C 7 94 X108C +2
C	= 72pfd X=-2212 2752 - 221
- 149 -	2752 - 221
L =	- II Uh
t 2 NIC 211	1 11.1/1 72.p. 27
$f = \frac{1}{NLC} 2\pi$ f = 17.5 M	11.11 120
f= 17.5 14	1.02
	1

					26
SECURITY CLASSIF	ICATION (THIS PA	AGE)	<u> </u>		·····
LOG NUMBER	/	SYSTEM SERIAL	NUMBER		
EQUIPMENT LOG	FOR MULTI	TOWER STOLY		-Ei)	Terestin
		(Subsyste	m, Major Unit, Etc.	.)	
EQUIPMENT SERI	AL NUMBER(S) _				
	DESCRIBE OR REFERENCE IANCE TEST AND OTHER I 'E AND SIGN EACH (1)	PERTINENT INFORMATION	TIME AND HOURS OF OPERATION (2)	TYPE OF OPERATION (3) STANDBY ON	CUMULATIVE OPERATING TIME (4) STANDBY ON
					12/10/74
		without top low lativeen 18:30 AM ty at 200's		1	= .154 4
2. Added 12 Radiabai Meanweit	tructials 41 from 1:30 pm t relat internets	to 625' antern to 3:30 pm al at 200' SW	.43 n.4 56.16	mű I=	,154 A
Repeat of step tremoved from	2 mit tul stake j st	ble ground and the 56 clb.	all intrument	strup g	wind
isingun: Confre	wration for 1	stould yrield 1.	6-1 per Ve n) 1.85 on 2.	rang et a 96 par leur	y frigure 20
<i>F</i>	$h = \frac{22 \times 2}{.154}$	Field internet $\frac{1}{2KO}\left[\frac{1}{186.6}\right]^2 = \frac{1}{186.6}$	8411		
Enlandeted	rignell for 2	R _R = 11 the performence or	1.12-	E= 56	42 = 98 db bove 1/1 V
3. Repaired	lead in com	rector on 625',	pertel ct	prio	r te testing

,				
OG NUMBER / SYSTEM SERIAL N	UMBER			
QUIPMENT LOG FOR MULTI-TOWER ST	nDY			
	Major Unit, Ibte	.)		
QUIPMENT SERIAL NUMBER(S)	1 A			
	TIME	TYPE OF	CUNUL	ATIVE
OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY	AND HOURS OF OPERATION	OPERATION	OPERATI	G TIME
	(2)		STANDBY	ON
		1	2-11-74	
6.25 centerpost 12 - 4' Rudial	s			
Field measurements @ 9.93 MH ?	Ti-	0.154a	mprins	
(1) VSWR = 8 (Q IL=22, 2 gm/ m Bz	Rente:		1	
Ii = 154 aunpeud (10mi) Q'23		E= 528	15 - 14.825	
Rn= 8,2 r			Sanc 1	
(2) @ 9,14 MHZ		0	_	
VSWR= 4.5 With Ii = 16.4 and	n Ball.	2 E= 51.6d	16 P.	
@ 250 west Ic= .154 E= 55.5 db 97	506 = 75m	V ; Rn=1	sr.	
(3) Report 1 E. 52.9	1 (2)		1	
(4) Remove (worent XFMR	= 52.3	. 1		
(5) Kemove coupler	5 2.3	1	•	
(2) Remark Matched Tradition		I	•	
 (4) Remove (worent XFMR (5) Remove Coupler (6) Replace Current XFMR (7) Remove Matchboy Ii = initelly 6. Set 10mv E = 5. 	2.3			
(8) Replace Matchbor & coupler.			1	
it if a life is	0		•	
sattota lumu E	= 52-8		1	
Move center post 7.8 in below ;	Table		:	
set I's istanprus ground with	4 com No.	centrololy	connecto	2
E= 50,3+42= 92.3 df = 4/11				
$R_{r} = 4.6 \Sigma$	NOAR		•	
clip lead ground to swormt	2 - 97	+ · ·		
Pull ground off at center	41-1115		· ·	
Er 56.5 db. 61 m	W Rr	-122	,	
Mora anterpost down To get 1. 15 100 205 'While E = 49.7 db 91.7 db 3 Flace shirld on around center post of E-487 + 84.7 db 354	\$ Tower	world		
[2. 15 Have @ 205 'wess], E = 49.7 db - 91.7 abor 3	9 mil Rr	= 0285	<u>.</u> .	
Flace shill an around center post &	elow Ta	fle		
E=48.7 + 8017db 35mm	HA - Z.2.	2.		
		i		

 $\mathbf{28}$ SECURITY CLASSIFICATION (THIS PAGE) LOG NUMBER SYSTEM SERIAL NUMBER TOWER MULTI-SILD EQUIPMENT LOG FOR (Subsystem, Major Unit, Etc.) EQUIPMENT SERIAL NUMBER(S) DESCRIBE OR REFERENCE TYPE OF OPERATION (3) AND OPERATING TIME OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION HOURS OF DATE AND SIGN EACH ENTRY STANDRY ON STANDE ON (1)Ffact platform com Fluce al shuts on The Table Top Before @ 205' west Ii: .15 40 proms E = 54.1 db Afran @ E = 54.4 db @ 205' # Southwest E2 53.9 dl @ 205' South E= 53.8 dt NO apparent effect 12/12/74 4 center Town only II= , 154 aug Trans, plastic base Pr= 0,23 r f = 15.5 MHz equivalent to 6.25' toor E-45.8 + 41 = 86.8 db - 21.9 MNV = Rn= 0.88 /2 add 4'- 12 Top Loud 2/3 MENTS f= 9.9 MHZ, E= 56.6+42 - 98.6df 85 mV f= 15.5 MHZ E= 56.4 +41= 97.44278 MU Q 9.43 MHZ E = 50,1 db Q 15,5 MHZ E = 56 db Place auglifies on top of Table card (a 9.93) MHZ E= 19.9 db (a 15.5' MHZ E 57.1 No Effect Apparteur

29 SECURITY CLASSIFICATION (THIS PAGE) LOG NUMBER SYSTEM SERIAL NUMBER MULT-TOWE STUD EQUIPMENT LOG FOR (Subsystem, Major Unit, Bt EQUIPMENT SERIAL NUMBER(S) R REFERENCE TING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATIO DATE AND SIGN BACH ENTRY II- 154anp ms 205 W15T 12/12/74 6 4' Tower with top loading changes F= 9.934 KZ E= 50,2db Remore ground strup & 50,3 Som post Removie ground strap from cart & 50.3 dl. 15:5MHE E: 59 db. connect ground strap to curt E = 59 dt innect ground & Trap to ground stele R = 59. db W.E. Gustafson of U.S. Navy Electronics Laboration artina or The table to account for the high values of mediation resistance stake on comment. with will place tist symp ment planote form antenna 12-18-74 Place d'antienna 12 - 4'radials on ground- gement Distance E E Rr db (s.T) fT. counted mul EST) 49.2 +42 = 91.2 1,04 6.95 (134) 136 36 (.81 (180) 186 87.6 24 0.90 45.6 (230) 236 437 0.9 85.7 19.3 15.9 0.90 (280) 286 41.0 8HIU (, 16

SECURITY CLASSIFICATION (THIS PAGE) _____

LOG NUMBER _____ SYSTEM SERIAL NUMBER _____

EQUIPMENT LOG FOR MULTI- TOWER STUDY (Subsystem, Major Unit, Etc.)

EQUIPMENT SERIAL NUMBER(S)

DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION			TIME AND HOURS OF OPERATION	TYPE OF OPERATION (3)	CUMUL OPERATII	CUMULATIVE OPERATING TIME	
D	ATE AND SIGN EACH ENTRY (1)		(2)	STANDBY ON	STANDBY	ON	
Distance FT 2 180 2 180 2 180 2 180 2 180 2 230 2 180 2 230 2 180 2 230 2 180 2 230 2 180 2 230 2 180 2 230 2 180 2 30 2 30 2 30 2 30 2 30 2 30 2 30 2 3	47.9 + 22 = 87.9 50.3 + 21 = 91.3 45.2 + 21 = 81.6 56.5 + 41 = 97.5	E f mv MHz 27.0 11.0 30.4 12.0 31.3 13.0 36.7 14.0 27.0 14.0 74.9 16.0 74.9 16.0 75.4 15.5 10 ~ 15.5	4,4 4,8 5,2 5,6 5,6 6,4	R.n. 1.03 1.03 1.4 1.9 1.7 8.5 9.5 8.5	2 - 18 - 74 $R - 18 - 74$	glet	
Distance fr (130) 136 (180) 186 (230) 236 (280) 286	57, 1 +41 × 100. 1 10 56.8 87.8 7 54.8 95.5 6 52.8 93.5 4	442 15.5 8 15.5 6 15.5 6 15.5	5.7 R_{λ} $(\pi)^{n}$ (7,3) (8,2) (7,2)	4,2 8,1 9,2 8,6 7,6 12-19-7	1		
WITH H'awA SREG MHZ IONHZ ISSAMZ Meason HOVE During	F CURRENT TPH ton T GROUND BO y I=ROM CER Distance Edb fre T db - 186 47,2+ 186 51,2+4 246 51,2+4 iddistances accu Equipment ing/ resistu load 84140 SEnsitiv eudug Sitimv	42 = 89,2 25 With anter With anter	Rr Rr 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 XFM/R	4 compron	A Calil	post	

31 SECURITY CLASSIFICATION (THIS PAGE) LOG NUMBER SYSTEM SERIAL NUMBER EQUIPMENT LOG FOR MULTI- TOWER STUDY (Subsystem, Major Unit, Etc.) EQUIPMENT SERIAL NUMBER(S) TIME AND HOURS OF OPERATION DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY STANDEY (1) (2) 12/19/74 R : 4.8 = 138 ma Reading = 10mV sensitivity @15.5MHZ Using Two Terminations one at antenna 8- 12/20/74 one at meter 10MHZ a 5 Vacross 34,72 I = 144 ma XFMRReading = 9.1ml current XFMR SENSITISTY .063 1/2 Q 15.5 MHZ 7.95 V across 3471 I = 229 ma XFMR Reading = 14,6mV current xFMR sensitivity .064 V/a 4' +2 rudiul antenna udgro und plane screen (16x 13' mesh) - runde driving XFMR at Gase 4' lead of mata 4' lead to matchboy (0. 186 dig. : 154 amp runs in @ 10 MHZ E=51. 2+42= 93.206, 46 mg R2=352 @ 15.5 MHZ E=57.1+41=98.146,80.4 MIU Rr = 9.82 Terminate remote cable with 5012 @ 15.5 MHZ E=555+41=96.5, 67my RT=6.81 Returne with different cuble positions (match box / Dantenna) Ii = 10,5mv = : 162amprens E = 56+42 = 98 db 79. Fmv Rr=8.62 Ii = 85MU = : 131ampreus E = 53 +41 = 84 dt 50.1mv Rr=5.21

32SECURITY CLASSIFICATION (THIS PAGE) LOG NUMBER SYSTEM SERIAL NUMBER MULTI- TOWER STUD EQUIPMENT LOG FOR (Subsystem, Major Unit, Etc.) EQUIPMENT SERIAL NUMBER(S) TIME AND HOURS OF OPERATION TYPE OF OPERATION DESCRIBE OR REFERENCE CUMULATIVE OPERATING TIME OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY STANDBY ON STANDBY ON (2) (1)6.10 und center post cable at center To sceen @ 15.5 MHZ E = 56,7 + 41=97.7 db Mmv K @ '0.0 MHZ E = 49,1 + 42 = 91.1 db 36 mv R -20 Remove screen @ 10MHZ E=47.8+42 = 89.8 db 31mu @ 15.5 HHZ E=56.3+41=97.3 db 74mu more 45° to West 206'and E=5-4,5+41=55.5 db \$9.5 cable (coop to fidd mater) forler 9.5 m tolen upaire 3ª H 6 at stile grounded AT 9.93 MAE 154 amp rems E df Location Rr (r) Distance Direction Emv 15.2+42= \$7.2 205' 45°NW 0.97 1 23,0 W 45,4 \$7.4 101 23.3 2 206 3 \$35 From W 44,3 \$6.3 0.83 210 20,1 S60 from W 87,2 4 45,2 210 102 23,0 0.93 5 5 44.9 86.9 209 22.1 6 206 E 30 from S 1,60 47.6 89.6 29.7 E 45 From S 1.24 1 205 46.2 \$1.2 26,0 41.0 \$20 0.91 8 E 204 22.4 NAS from É 0.95 9 200 \$7,4 23,3 45.4 86.4 0.8 44.4 10 21,1 203 45°NW 45.2 0.91 1 205 23,0 \$7.2 @15.5 MITZ @ 205' (45)N-W E= 52.5+41=935 db 48 mV RJ=4.2
SECURITY CLASSIFICATION (THIS PAGE) _____

LOG NUMBER _____ SYSTEM SERIAL NUMBER _____

EQUIPMENT LOG FOR <u>MULTI- TOWER</u> STUDY (Subsystem, Major Unit, Etc.)

EQUIPMENT SERIAL NUMBER(S) _____

DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION				HOUR OPER		OPER	E OF ATION	CUM	ULATIVE TING TIME	
	DATE AND SI	GN EACH ENTR (1)	Y		OPER (2	ATION 2)	STANDBY		STANDBY	(4) ON
	and a second	Add a	2 minut	Ander		a de la competición de	AT 180, 7 11, 74 11		12-23-74	
Lo catin	Distance	Ourer	round	Edf-	E	mv	F	ro		
- uun	PISICACE	0.000	in			mu		5000	J	
1	205	(45°)N-	W 48	8.2442=9	0.3	33	0	2,	0	•
2	210	W	4	18.5 9	0.5	5	.5	2,	2	
34	211	5 45 fz	mw	47,7 8	5.7	30	.5	1.	3	e
5	2/1	S			0.1		1.9	2.	0	6-9
6	206	E 30 f			71,2	36	.5	2	-	6 9 8 8
7	205	E 45 f	^		91.7	1	8,2	21	2	
8	20/	E		111/	70,1		1.9	11	·	
9	,98				91,4		7.5		.1	
10	700	was for	mt	48.2	90,2			2	9	1
1		N			1	Ŭ	2.6		2	arran .
	205	(450) NI	A VEN	48.2	50.2	3K	2.6	2.)	74
,	1,25-1 Must 12-	pround currs 4 Radials	NT FIMIK	, at its c	ase a	locato	10 1 01	est gro	my tous	
b	125 12-	4 Radials	I =	.15 4 cu	pras s	6 10	@ 9.9	3 M	oscille	m
	Kin		ascillator Vi	" = 4º Vpp					1 Vin 1	6Vo Jpp
Location	Distance E+42	e Edb E	with		6 +42	- E16	EA	nv	lr.	
			14,	sh	Ì				with 1425L	
1	206 52.6	94,6 53	.8 5.4	5	7.3	48	3	12.4	12.6	4
2	209 53.2	95.2 57	0 6.2	- 5	6.1	48	1	804	12.3	
3a	211 51.9	93.9 49.	5 4.8		74.4	964	4 1	6.2	8.5	
5	210 51.8	93.8 49,	0 4.6		5.3	97	13 -	13.2	10.3	
6	205 53.9	95.9 62	5 7.2		56.5	91.	5	84.4	13.1	
7	205 53.1	95,1 56,	9 5.9		6.2	98.	2	81.4	12.2	1
8	201 51.7	93.7 48.	· · · ·		5.7	97	.7	77.0	10,5 10,3 16,3 13,5	
9	199 54.8	96.8 69.5			1.7	92	7	77.0	10,3	8
10	201 53.8	95.8 62.0		5	5:7 1.6	92	6	71.2	16.3	1
1	206 53.0	15.0 56,2			4	90		-4	13.5	1
·		1310 7012		р	0.0	n AL		o' '	/0	-
Though		1 1 t.	1 Larla	12 1		:+1	-	10	ID 3 MIL	2
GIGGO	Add small coil	for mial c	n 604 (*	mm	curcu	~ (une	Ø	1013014	
C 7.7 2	MHZ I=	3. cm U=	G IL	2117 mil	0.0					1
(220)	6' F= 45.	7716281	Idr =	~7.1 MUV						
	バル・	-11.2 p			-			!		

SECURITY CLASSIFICATION (T	HIS PAGE)		34
LOG NUMBER/	SYSTEM SERIAL	NUMBER	
EQUIPMENT LOG FORM		em, Major Unit, Etc.)	
EQUIPMENT SERIAL NUMBE	R(S)		
DESCRIBE OR F OPERATING, MAINTENANCE TEST AND DATE AND SIGN	EACH ENTRY	TIME TYP AND OPER HOURS OF OPERATION (2)	E OF CUMULATIVE ATION OPERATING TIME 3) (4) ON STANDEY ON
9:53 HHZ (2) 9:53 HHZ (2) (1) (1) (1) (1) (1) (1) (1) (1	Remul.065 5 5 mill 7. Cmv/.065 5 5 3 mv will I 10 100 - 100 - 100 V-22.24 V	6. crian Finan	12/27/74
	mi screen mesh m rarms E= 10.5+ Rr	42. 82.5 db = 13,300 2.2 2	V 2-30-74
4'center Tower @ 206' NW	,		
-	2 48 marms = 32.8 0.56 N	42=74.8 db = 5.4 m	V
	47 manns, E= 57.7+41= 8 01555	0.7810.5mV	
Rupent @ 15.5 HAZ : Re = 0,73 J @ 15.5 MHZ I = 4:75 =	2 Reposition	TEST Equipmen	1
shor Fin meter @ 15.5 MHZ 1	cable from 10 = 2.5mv 38 marin Pr= 2.0 r	15 E= 37.3+4/=	
@ 9.93 MHZ I= R==	2.5-24 NW = 38-40 0.82- 0.74 N	marms E= 32.5	+42 = 74.3 db = 5.2 m
Bling FEST E 44	ip ment R anten I=2.5= 38.5 marm	na anground s Ez 33.3442.	g'anang 75.3 ill = 5.8 ml
E= 32 +42= 74 Al	0.9952 aut with 3-260 f=5.0 MW	to the plug	
@ 15.5 Atta I= 2.5	76 r		9.7 mm/
		1	

SECURITY CLASSIFICATION (THIS PAGE) SYSTEM SERIAL NUMBER LOG NUMBER Multy Tower Study EQUIPMENT LOG FOR Subsystem, Major Unit, Etc.) 4 Insente. EQUIPMENT SERIAL NUMBER(S) TYPE OF OPERATION (3) DESCRIBE OR REFERENCE TIME AND OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION HOURS OF DATE AND SIGN EACH ENTRY STANDRY STANDBY ON (1) (2) OPERATION AT 9.90/1742 1-2-75 14.30 to 15:45 Erected 6.25 ft rod unterna millout rachials, fed from anything loca bed appr. & from antenna. Measured coverent flow and governet transformer, around road above base - I = (2.5 mV) 1 ang = ,038 A Mensweed field strength 205 feet away NW. Field strength is = 46-48 at + 47 clb = 40 db or 30 mV. This absormatly high yielding Rn = 30 n Decided to remote anyther ayan 0915 to 1200 1-3-75 OPENATION 1-7 9.930 /2 4/2 Remote anyly or and current miniter 223/V livrent miniter lon for 110 fact of R6 PHz alle is 1.65 db or 20% Read $V_i = 2.5 \text{ nv} + 20\% = 3 \text{ nv}$ $I = \frac{3}{63} \frac{1}{63} = .048 \text{ A}$ At 205 feet Ecv = 40 ab + 42 = 82 al cha / uv = 12,5 mv RN= 2,94 n. The expected meters RN= 1.6 ohm Rain terminated testing 13,00

SECURITY CLASSIFICATION (THIS PAGE)			36
LOG NUMBER/ SYSTEM SERIAL N	UMBER		
EQUIPMENT LOG FOR MultiTimer Stuch	, Major Unit, Etc.	.)	
EQUIPMENT SERIAL NUMBER(S)		40)	perba-
DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY (1)	TIME AND HOURS OF OPERATION (2)	TYPE OF OPERATION (3) STANDEY ON	CUMULATIVE OPERATING TIME (4) STANDEY ON
1-6-75 OPERATION AT 9.930MH2.	845-1315		1. 2011 N. 2011 N. 2011 N. 2011 N. 2011
6.25 ROD NO FOR LUAVERS $I_W = 2.5 \text{ mVA}$ $E_{FIELD} = 40DE$ $R_{\chi} = 2.94$	B 20 Same a	p in 1/3	/75
With same current (2.5 mv rm) ruchicles were frield strong to recorded., Q = 205 fl	arteled 2	at a tra	e und . Rr alahtet
a) 2 ruchines NW fucing loop of		41.3ilb	4.3 2
b) 2 muchunds SW facing loop *	E=	41.6 clf	4,6
(c) 4 rudiads	E=	42, 4 ch	5,58-
di 6 ruduls	E=	43, 2df	6.64-
le 8 tradiales	E=	43.2.ll	6,64~
		1	
			1

SECURITY CLASSIFICATION (THIS PAGE)			37
LOG NUMBER SYSTEM SERIAL NU	MBER		
EQUIPMENT LOG FOR Mult Tower Stricty (Subsystem, 1	Major Unit, Etc.)	
EQUIPMENT SERIAL NUMBER(S)		- 50	esertin
DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY (1)	TIME AND HOURS OF OPERATION (2)	TYPE OF OPERATION (3) STANDEY ON	CUMULATIVE OPERATING TIME (4) STANDBY ON
1-7-74 OPERATION AT 9,4300 MHz ALG	11:15 to 3:15	run lal	l 40°F
6.25 ft Model NO TOPLOADERS, I = 25 where (-0577) = 2460	E=41 dt	7.0-1	ulc = 4,01
10 TOP LUAVERS I = 2.5 mm +lon	E= 43.3d	L 142 18.4 m	Ry = 6,94
12 TOP LUAVER I -L. FROM	E :43,20	(L+V2 18 mm/	$R_{n} = 6.79$
12. TOP LOADERS, LARGE SWIVELS	I=2, 5, AW	E= 43.10 +42	
1-8-74 OPERATION AT 9.9.300 MHz	9:15		warm e dry
6.25 PL ANT NO TOP LUMORS I= 2.5 AV	E= 40.00	UL = 125 AV A	2n = 3.2
4 fl ANT NO TUPLUAVORS I=1.5 MV+201, =(.028A)	E= 31dh +4	= 4.5 AV	$l_{\mu} = 1.12$
4 \$\$\$ ANT 12 TOP WAVOR I = 2.5 AV 120 I=(1046)	40 E= +42	36.8.UL = 8.7	R= 1,55-2
			1

1-9-74 RAIN RECHECKED CALIBRATION OF FIELD INTENSITY METER (NF 105 29244) AND FOUND READING HIGH BY 3.5DB CORRECT READING ARE ACHILIVED BY SETTING IMPULSE ATTENUATOR TO 76 DB INSTEMU OF 72.5 UB AT 10 MHHz. THIS DISCOVERY MEANS THAT ALL PRIOR READINGS ARE NOW LOWER BY (23,5DB) = X1.5 AND RAVIATION ROSISTANCE COMPUTED BY 7DR OR 2.25. THUS THE DATA TAKEN \$6 AND \$6/7 CHLCULATES TO THESE NEW RDS:

6.25	NO TOP LUMPS	1,422	4' NO TUP LUAUS	- ,55n
6.25'	12 TOP LUAPS	3.02~	4' IL TOP LUADS -	.69-2

SECURITY CLASSIFICATION (THIS PAGE) LOG NUMBER SYSTEM SERIAL NUMBER MultiTower Starty EQUIPMENT LOG FOR (Subsystem, Major Unit, Etc.) EQUIPMENT SERIAL NUMBER(S) DESCRIBE OR REFERENCE AND HOURS OF OPERATION OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY STANDEY STANDE (2) (1)14-15 1-10-75 OPERATION AT 9.9.300 MHz 9:30 -12:30 13:30 -15:30 Measurement of Field internty for 4' Morlet on top of tille (writent rauling: 1.5 mV EINT = 30 cl 1.5 mV EINT = 24 cl TUP loud 25 mV EINT = 33.8 dl d=250' repeat () to top low OTOpland : 25mV EINT = 33.8 df From the duta R_{R} NO TOP LOAD = 1.54 n expected .65 R_{R} 12 TOP LOAD = 1.72 n expected 1.07 13:30-16:00 V 1-14-75 OPERATION AT 44300 TH2 Meunvienent of Field intensty with 6.25' ported HO ft from tible, acris L neurwid at table via 110' transformer cuble -24 top loaders. At 45° point Current Reading 2.5 mV = .046 Amperes Field strong & 38.8 dl + AF 42 ch = 80.8 = 11 mV distance : 205 pt R= 2.48-2 Catilon Shut-down of NTesting Phase as of 1-20-75 because of whether conclutions, personnel absence and general cost effectiveness until 2-18-75

39 SECURITY CLASSIFICATION (THIS PAGE) LOG NUMBER SYSTEM SERIAL NUMBER MULTITOWLR STUDY EQUIPMENT LOG FOR (Subsystem, Major Unit, Etc.) EOUIPMENT SERIAL NUMBER(S) DESCRIBE OR REFERENCE ATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY (1) Gerenbur J-Hansen Reculibration of Current Transformer with 110 ft lable load ROD 3'CABLE / 110' ACTUAL CABLE 1 F= 9.9307 +Hz (K) BALLANTWE MODEL 323 SIGNAL 49.6-2 GENERMOR SIDAC WPUT SET AT 2.25 VALAS 3455 3 mr scale 11000 44,6-2 49,58 and load VIVM resistor 3 V Bcale HP 410B Sillac 031462 I = 2.25v = 0.04536 Approves 49.6 Voltage adress 49.58 2 lowel : 2.46 mV m & 3' calle 2.10 mV m & 110' calle used is installation Loss Rutio 2.46 = 1.1714 or 1.3 db (Voltage a orons a 66.7 tornination = 3 mV mt 3/alle recleck prior data 255 m - the 114'alle. Transformer Rutio when neumoning willo' alle: 2.1 mV = 0021 V = .0463 V and Lavisy 49.58 lond reprotor With 50,5 Bullentine load K = 1.02 (46.3) = 47.2 = 46.3 MV = K

LOG NUMBI	ER	/	SYSTEM	SERIAL NU	MBER		
EQUIPMENT	LOG FOR	3	MULTI	TOWER	STUNY		
-				(Subsystem,]	Major Unit, Etc)	A Tores lun
EQUIPMENT	SERIAL I	NUMBEI	R(S)	tering to de tit un	a) in staan sectaan j	are en la	M. Westun
	DATE AN	ND SIGN I	eference other pertinent infori EACH ENTRY		TIME AND HOURS OF OPERATION (2)	TYPE OF OPERATION (3) STANDBY ON	a la
3/28/15	Clair wi	sely :	235°F 4'	Mailel ins	talled on	talle.	in internet in the second
3/31/75	lleur,	Wails 1	235°F 4' 10-20 mpH, Te	mp 350	- 40°1= ,	4' portel	with 12 type low
Impedince	Recourses	ents n	with 4/14 and ull detector a	terna 1	12 top le	allers,	
Brily rec	ulibrated	, N.	ull detector a	5 field	intern 5	heter.	
.M READINGS							
		R	Xi Δ	NULL AT	5000 n 13	BETTER	•
f XalNULL	XR		XN-YR		i	1	а Т
9 * 5000	3000		5			1	i.
10 5000			18251 28		•	1 1	а с 1
11 5000	3300	10 -j.	1825 [28 154,5] 28		1	1	
9 × 4000	2050	Ú - 4	2167 / 207			6	ð
10 4000	2190	0 -j 0 -1	181.0 1 217			1 1	
4000	2380	0 - j	147,3 33.7		1		
READINGS					•) }
5000	3100	0 -12	211.1 6 341]				
5000	3200	0 -j	211.1 (31.1) 180 (30.0) 150 (30.0)	1			
5000	3350	0 31	50)				1
BEST UNSISTE	NT PATA	IS PM.	BASED UNTHIS	: X _C = j	Fider - XI	= 10 (20,5)	+180 = 242,5
				X _L =	Xi-XC	= - 180 +	242,5 = 62,5
				or (=	65.6pF	L = U.99	n H
					, -, -, , ,		
					1		

SECURITY CLASSIFICATION (THIS PAGE)			41
LOG NUMBER/ SYSTEM SERIAL N	UMBER		
EQUIPMENT LOG FOR MULTI TOWER STONY (Subsystem,	Major Unit, Etc.	.)	
EQUIPMENT SERIAL NUMBER(S)		E ieres	l'a-
DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY (1)	TIME AND HOURS OF OPERATION (2)	TYPE OF OPERATION (3) STANDEY ON S	CUMULATIVE OPERATING TIME (4) TANDBY ON
3/31/75 continued 4' Antonna, 12 typ baders 4.5 ft from have Slant feedbay interna, bottom plate insulated. 9 5 Xation X R Xi D 9 Xation X200 2,2 -188.9 44.4	Culchatim:	(=60,2pf-	
10 5000 4600 33 -j'to 58.2 11 5000 x 5200 2.0 rj.18.2 4-1-75 Weather, clear to cloudy, 407to 55°F, w	bused in INUS (ALA	L = 3,57 A.H. 48.9. shipe	
(ONTINUED SLANT FED IMPEDANCE MEASUREMENT. AM/ 9 5000 4200 2.2 - j88.9 L 48.9 10 5000 4600 2.4 - j4003 10.5 5000 4800 3.6 - j14.0 Fat 10.805 5000 5000 103.8 0	1		
Réfined impattorialial (not urapped around eye-bolt)			
9 5000 4100 2,4 -j100 3,55 (al 10 5000 4550 3,6 -j45 10,805 5000 4900 2,5 -j9.25 45 52 11,000 5000 5000 3,1 0	Calubia bc C = 51 L = 3r	med in slipe $(4) pF$ $(-j)^{27}$ $(2) \mu H$ $(j2)^{27}$	= 50 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Familating bushing and grounding mast	1 1 1		
9.0 5000 4220 2,2 7867 (4.8.7 10.0 5000 4620 3.6 738,0 Avorage she 10.9 5000 5000 3.6 0 (41 11.0 5000 5100 3.0 + j9.1)	1,9 t_= t_=	$\frac{479}{2} + \frac{38}{5} = \frac{1}{5}^{2} 5$	4,5, C-61.45 = 210.5 L=3.51 mH

			42
SECURITY CLASSIFICATION (THIS PAGE)			
LOG NUMBER / SYSTEM SERIAL NUM	MBER		
EQUIPMENT LOG FOR MULTIPLE TOWER STUD (Subsystem, M	∀ iajor Unit, Etc.		
EQUIPMENT SERIAL NUMBER(S)		4 Oure	aban
DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY (1)	TIME AND HOURE OF OPERATION (2)	TYPE OF OPERATION (3) STANDEY ON	CUMULATIVE OPERATING TIME (4) STANDBY ON
4/1/15 continued 42/41	x _C = ,3 X _L = - tema L = 30,9 = 4,4my	2 = 84pf 95 +194 = ell, Curro chota	5 calabetal = 24pF = 189 - 24 = 60pF 912 L= 1.45 MH at actor 1.54 av a 205 ft

SECTIDITY OF ASSIDICATION (THE DAGE)					43
LOG NUMBER SYSTEM SERIAL NUL	MBER				
EQUIPMENT LOG FOR MULTIPLE TRAVER ANTE					
	lajor Unit, Etc.)	1.1	- 1	
EQUIPMENT SERIAL NUMBER(S)		Ľ	جول/	estan	
DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY (1)	TIME AND HOURS OF OPERATION (2)	TYPE OPERA (3 STARDEY		CUMU OPERAT STANDBY	LATIVE ING TIME
4/2/75 CLEAR, -MOSTLY, (ALM WINDS 40-500)	=				direk fak "o ar" saarkkraar oos
D STD 4' ANTENNA ISSET UP FOR RADIATION MEASUREN REMOTE GENERATOR AND METER.	ENT - I	2 RM	VIAL	CENTER.	FULD
Field Match: $31.40B$ Ant Fuctor: 47.0 $\overline{73.4at} = 4.7av$ $\overline{73.4at} = 4.7av$					
DISTANCE REMEASURED IS METUDLEY 208,	$R = \begin{pmatrix} 4, 1 \\ 52 \end{pmatrix}$	×208 0 ×.03	4 /	rc.r) ² =.	85-2
Q SLANT FEEDING INTO UNE RAPIAL EXTENSED T	0 6754	DOK,		-	
First attempt CT is on ground open and through it.	motre fe	eiting,	ral	al pu	rej
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R =	.23-1			
least attenut of in in dished for	1 = 208 [†]		= 4.1	75 = . 101 /	1
ulator Caul MADY 400G 1M	R= ,	1052			
4/3/75 RAIN, WINDY, 40°F AM					
NO DUTSIDE TOSANG					
MANUFACTURED 2 - 12-RAPIAL TUB L	CANINGS	NITH	#4	GAU65	WIRKS

SECURITY CLASSIFICATION (THIS PAGE) SYSTEM SERIAL NUMBER LOG NUMBER EQUIPMENT LOG FOR MULTIPLE TOWER ANTENNA (Subsystem, Major Unit, Etc.) GTizenba EQUIPMENT SERIAL NUMBER(S) DESCRIBE OR REFERENCE TIME AND HOURS OF OPERATION (2) STANDBY ON OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY ON STANDBY (2) ON (1) RAMATION TEST - RAMATED M 949.7 Muz 4/4/15 8:30 AM - 12:00 NOW 13:30 - 16:00 PN WEATHER: 35-38°F, WINDY, CUSTS 60 MPH, ANTENNA MODEL SLIGHTLY UAMAGED IN WIND; REMOVED 6' COAX USED PRIOR FOR BASE FLEDING SLANT FEEDING INTO UNE RADIAL AND RADIATING AT 9. 897 MHZ (URRENT TRANSFORMER OPENLY WITH WIRE FEDDING RADIAL PASSING THRONG IT. $i = \frac{6.9 \text{ V}}{47} = .147 \text{ A}$ (1) ANTENNA FLUATING e= 34 dbless .2.06 culibration plus 42.0.04 contenna factor 80.8.06 = 10.96 m.v $R_{2} = \frac{10.46 \ 208'}{147 \ 5140 \ 164'} = .25-2$ e= 3/db $e = 31 dt - \frac{2}{10} cul = 4.4 mV = \frac{47}{105} = \frac{47}{105} = \frac{2}{100} \frac{100}{100} = \frac{100}{100} \frac{10$ C+ 2.35AV 054 2. ANTENNA GROUNDED

OG NUMBER / SYSTEM SERIAL N	UMBER			
QUIPMENT LOG FOR MULTI TOWER STUDY				
(Subsystem,	Major Unit, Etc.	h Tu	0	
QUIPMENT SERIAL NUMBER(S)		4 1.6	sontar-	
DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY (1)	TIME AND HOURS OF OPERATION (2)	TYPE OF OPERATION (3) STANDEY ON	CUMUL OPERATIN (4 STANDBY	ATIVE
4/7/15 WEATHER: 350-40°F, WINDOW (LEAR			L 17 - 78L
RADIATION FROM 9:00 AM TO 12 NOUN LOUP AT 45° POINT	13:15 TO	16:00	AT 9993	MH
SLANT FED ANTENNA INTO ONE RAPIAL, NO ;				
LUAX GROUND IN STAKE GRUUNI, LURRENT		ER SH162	O GROUN	V
ALSU TU STAKE, TOWER BASE GROUNDES. UT &= 49.5 al lut CALIB + 42.0 AF = 91.4 al			4	
(D = 17.5 kg = .71 kg	12 4			
$\mathcal{D} = \frac{17.5 \text{ kV}}{47} = .312 \text{ A} \qquad R = \left(\frac{37 + 208}{.312 \times 5280 \times 186}\right)$	¥ = · · ·			
Repeated with slorter ground between feeder				
(2) $e = 47 db + 42 db AF = 39 db = 28 mV$ $I = \frac{12.8 mV}{47} = .27 A \qquad R = \left(\frac{28}{.27} + \frac{208}{5280}\right)$	$\left(\frac{1}{1767}\right)^2 = 0$	18 n.		
(3) Repeated 4) mth base insuluted e= 41.5 db + ,2 + 42 = 83.7 il = 15,2 mV				
$I = \frac{7.6 \text{ kV}}{47} = .162. \qquad R = \left(\frac{15.2 \times 208}{.162} + \frac{1}{.162}\right)$	$\int \int z = -3$	9-2		
(4) Rejent 12 mt base inpulated and 2 M e= 450l+, 3+42= 87.3 ch= 26mV	udwal fee. L			
$I = \frac{13.5 \text{ mV}}{47} = .287 \qquad R = 10000000000000000000000000000000000$	26 20× 227 540 k	P(y) ²	372	
(5) Repeat (2) buse grounded and 2 trached $C = 41,5 = 15,2 + V$ $R = \begin{pmatrix} 15,2 \\ 172 \end{pmatrix}$ $I = \frac{g_{11}}{27} = .172$	lee 1 201 - 520 - 186.4	2 .35	r	
77			•	

- 7

SECURITY CLASSIFICATION (THIS PAGE)	System serial n	UMBER				
EQUIPMENT LOG FOR	(Subsystem	n, Major Unit, Etc.)			
EQUIPMENT SERIAL NUMBER(S)		·	li	O.e.	sealar	m
DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTIN DATE AND SIGN EACH ENTE	and the second	TIME AND HOURS OF OPERATION	TYPE OPERA (3 STANDBY	OF	CUN OPER/	ULATIVE ATING TIME (4) ON
4/0/15, WWDY, 35-45°F,	, CLEAR					
RAVIATION FROM 8:30 AM TO	13:00 AT	9.943 p.	42	A	: 45°	OUNT
SLANT FED TEST INTO ONE RAD	DIAL OR 2 RA	PIALS - NIC	MAT	H BO	X	t
) 2 RADIALS, GROUNDED BASE, E , RI	?= 4/db, i r culculated =	292 E	at send	ny en	1 20VP	lp
27 A SINGLE RADIAL , GROUNDED BASE	e = 46.06-, i =	12,7 AV ,	Rn cu	lable	a ,38_	æ
3) SINGLE RADIAL, INBULATED BALL	e = 4/dL	> 8AV	RA CO	le.	= 132~	E=35Vpp
	l = 35.4 db	1= 44 AV 1	Roca	c =	.28n	E 200pp
+) WUBLE CUNDUCTOR (2×.010), SINC	E= 40 db,	$C = \frac{6.9 \text{ mV}}{47}$	F = 2	000/1	= ,3	le
(5) DOUBLE (UNDUCTORS, SINFLE)	RANAL, GROUND E= 46. Vict,	W BASE (=13, E 47, E	2000)	pk	Calc=	An
	e = 46.5					
E, at transmission line ie ispat to asterna	ontput = 280 ct feed	$ \rho _{P} = 10.0$	Vrms	3	si llosco	nie en t
$Z = \frac{E_1}{i} = \frac{99.2}{.26A} = 38.15$	-n . Note to in page Agat 10.	lat fum in 41 for the $mH_2 = -j^2$	pechno ground 38.0 T	2 he 2.6-1	unvena use cert	Lywre ton
The current personent hors		4				

47 SECURITY CLASSIFICATION (THIS PAGE) LOG NUMBER SYSTEM SERIAL NUMBER MULTI TOWER STUDY EQUIPMENT LOG FOR (Subsystem, Major Unit, Etc.) Gilesentre EQUIPMENT SERIAL NUMBER(S) TIME AND HOURS OF DESCRIBE OR REFERENCE TYPE OF OPERATION (3) CUMULATIVE OPERATING TIME OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY OPERATION STANDEY ON STANDBY ON (2) (1)No testing today - Erection and usenly of 4-tower array 4/9/15 Wanter : Clear, misily, 40-50°F. 4/10/75 Weather; clear, culm, 40-5507 AM - Continued creation of 4-tower arrivy on shelled table is field. Array is per d'ayram in proposal. Ead antenna mast is grounded. Radfals are insulated. Impediate Meconiclosests: Null X R. X: $X_{c} = \frac{12Q + 10}{2} = \frac{165n}{2}$ Slipe F 1,05 1,25 9m42 500 -414800 -j²² -j'lu 0 . XL = -1.0+165+1 55 12 10mHz 50er 4400 $L = .875 \mu H$ C = .245 pF1.45 5000 10.5 +HZ 5000 Fr .55 -j160 .5 -j96 4400 3.750 500 32 5.15 5000 4450 150 SCALING C= 113pf X = - 110 + 1140 = - 120 20

LOG NUMBE	R/	SYSTE	em serial 1	NUMBER				
EQUIPMENT	LOG FOR	1ULTI TOWER	STOPY					
			(Subsyster	n, Major Unit, Etc.	.)	li	Til	
EQUIPMENT	SERIAL NUMB	ER(S)					1620000	
OPERATING, I	DESCRIBE OR MAINTENANCE TEST AN DATE AND SIGN	REFERENCE D OTHER PERTINENT IN I EACH ENTRY	FORMATION	TIME AND HOURS OF OPERATION	TYPE OPERA (3) STANDBY	OF FION	CUM OPERA	ULATIVE TING TIME (4)
14-11-75	(1) May Hop clo	vr culm	40-55°E	i (2)				is an over
7-11-15	reason, cee	il, cam	10 55 4			Į		1
Impellance	Meusiver	at with 4	tower - ar	ray install	al in	title	tope ; 1	lases
gronneled				0				
· • • •		P V.I	di			ŧ		
F NU	LL X	R Xik	44		! .	-		
3.7.5 50	00 4400	.4 -j/60	C			•		1
5.00	4450	.48 -; 110		Slope at 1	0 m4,	= 4	0 13.3	3
7.00	4600	.5 -: 57		1		-		
9.00	4800	195 -; 22		X = -j/	33 +10	$\frac{1}{2}$	- 171,5	, (=23p)
10.00	4400	1.15 -j 10		1	1 2	4		
10.0	00 5000	1.4 0	C	X_ = TJ	76.5 -	r uli	j'61,5	1 L = . 47 1 H
12,00	0 215	1.75 + 18	Ĺ				-	1
15.00	0 760 0 2,500	3.2 Fj 5/				ŧ		1
	0 2300 00 4700	8.0 + 125 14.0 + 183		1	!	1		
6,000 0			L	1	· · ·			*
Sume as about	e but signal	is feel into op	powry tower	(tew),	Nesi	re	open	
3,75 50	-	:6 -1280	Ć	1				
5.00	4050	16 -1190	1	Slope at 11	AnH2	= 2	23.3	1
7,00	4300	18 -1100			1			
9.00	4600	1.3 -j 44		te = -j'(2	33+20	1=7	1265 n	(= 126pf
	4800	1.6 -j 20	C		. 2			:
) 55505.		L	Ve dae	1 - 120		AC C	1 110
nilo () <u>315</u>) 1800	2.4 + 26 4.4 + 120		$X_{L} = \int 26$	10	-]!	U0.) n	L: 1.67 MH
15,00		/	1	1	1	:		•
20.00 20	5000	11,5 rj 240	L	•	! .			•
						1		

SECURITY CLASSIFICATION (THIS PAGE)			49
			·
LOG NUMBER / SYSTEM SERIAL N	NUMBER		
EQUIPMENT LOG FOR MULTI TOWER STUD	γ		
(Subsystem	a, Major Unit, Etc.)	16	- 11
EQUIPMENT SERIAL NUMBER(S)		40,	2 alar
DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY	TIME AND HOURS OF OPERATION	TYPE OF OPERATION (3) STANDBY ON	CUMULATIVE OPERATING TIME (4)
(1) 	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (STANDBY ON
4-11-75 dute continued	<u>.</u> .		
SLANT			
SIGNAL INTO ECH DIAGUNAL AND NoS ARE	GROUNDLY,	BASIS GRU	UNERP
	Results are to	time us	Previous run
5.00 4050 .35 -1190 C		× 6	
700 4300 J - 1100 C	, 4	i ,	
9.00 4600 1.1 - ; 44 C			
10.00 5000 4800 1.6 -j 20 C	. 1		200
	• •	· ·	
14.00 0 475 2.7 tj 70 L	1 .		
SIGNAL INTO NOW (ANJACENT), GOS MR	E GROUNDEN	BASES GO	RUUNDED
3.75 5000 3400 O - j293 C Are	rays slipe 2	2	
5.00 5000 4000 13 - 1200 C	Je side a		
7.00 5000 4250 .6 -5107 C XC	= :220 +2	2 -1/21	(=131pF
900 5000 4600 1,1 - 44 C	7 2	-)	1
	= 1/2/-1	22 = 199	L=1.57 MH
1100 0 16 2.4 24.1 L		J	
14.00 0 475 3.4 24, 70 L			

SECURITY CLASSIFICATION (THIS PAGE)			50
LOG NUMBER / SYSTEM SERIAL NU	MDED		
EQUIPMENT LOG FOR MULTI TOWER STUDY			
(Subsystem,) EQUIPMENT SERIAL NUMBER(S)	Major Unit, Etc.	-904	senter-
			-
DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY	AND HOURS OF OPERATION	TYPE OF OPERATION (3)	CUMULATIVE OPERATING TIME (4)
	(2)	STANDBY ON	STANDBY ON
4-14-75 WEATHER CLEAR, (ALM, 35-50°	IF		
RADIATION MEASUREMENTS - RADIATION AT	9.443 ML	12 9:00,	AM 1200 NOUN
TE(HNICIAN MEDICAL EXAM - 2:30 PM - NO A.	FIRNUON	TESTING	1
RAPIATION FROM 4-TOWER ARRAY, BASES GROU ANTENNA FACTOR = 42DB AZIMUTHI CES LANT EANT WOUT OLA C			0°.
60° 49.4 37 17.5 mv(.37A) 5Vp/p 300 60° 50.8 47 17.5 mv 5Vpp 250 60° 53.3 56 1 200	,43 ,91		
10 53,3 56 200	.95	7.	•
90° 53.2 55 120° 52.3 50	.75	1 /	
150° 52.4 51	,78		•
180° 522 49 V	.72	Shar 2	.82 n
210' 532 56'	.91	1 1 .	•
240° 52.6 52 710° 53.1 55	.81	+ .	4 <u>4</u>
		- 1 -	*)
300 53.3 56 330 51.3 50	.75		ι.
360' 52,0 48	.69	12	
30° 51.7 47 17.5m 5Vp/p 200	.67	1	
		1	

	Assification (TH) 2				
LOG NUMBER		SYSTEM SERIA			<u>_, _, _,</u>
EQUIPMENT I	\log FOR/	LTIPLE TOWER STE (Subsy	stem, Major Unit, Etc.)	
EQUIPMENT	SERIAL NUMBER	R(S)		40	osenbur_
OPERATING. M	DESCRIBE OR RE	IFERENCE OTHER PERTINENT INFORMATION	TIME AND HOURS OF	TYPE OF OPERATION (3)	CUMULATIVE OPERATING TIME
	DATE AND SIGN E		OPERATION (2)	STANDBY ON	(4) STANDBY ON
4-15-75	AM; CLOUD	Y, 40-50°F,	CALM, RAIN	LATE AFTE	RNOON
IMPEDANCE ,	MEASUREMENT	S			
FREiblict (242	NULL X	R X: C/L			
		WSULATED, TUP GRO	UNDED		
3,75	/	6 0.60 - 111 C	(long =	15	
5.00	4360	0,45 -116	$X_{C} = 1$	0 +15 +15	= 82,5
7.02	4.550	0.70 - ; 64			6
9.00	4750	1.05 - 28 1.40 - 15 $1.75 r_1 - 2$	C = 19	pt	Å
COU 1.00	5000 5020	1.75 r/ 2 C			
14.00	0 525		ł		8
//	0 23	2.00 105.00 0	1		1
4-TOWER-ARI	RAY BASE IN.	SULATED, TOP GROU	NDED FEED E-V	V, GRUUND	WRTTON-5
375	5000 3850	NIS _1 306 C			
5.00	4000	030 -; 200	Slope = 2 $X_c = 2$	7.5	ø
7,00	4200	0.40 - 114	$X_{c} = 2$	15+30 15	25 C= 104pf
9.00	4550	1.10 -1 50	i	2	
10.00	4700	1,40 - 30			4
11.00	5000 4450	1.60 1j 5 C			
14.00	0 850	3.30 +j 61 L	ł	1	
			a) rise in i	10,11,12	
3-70WOR AL	CRAY, BASE 1	NSULATED, TUP GROUND	D, FEED E-W,	GROOND INP	TON. SOF
3.75	5000' 3850	0.35 -1306 C 0.75 -1306 L	1 ilma - 3	A	
5,00 7,00	4000	0.55 2,200	ilone - 3 X - 30	6,30 1	in Gaber
9.00	4500	/ ·	1. 1(> 30	2	114 n F
1205	4700	1.10 -156 1.60 -130	,		
				e	
11.00	5000 4950	1.85 -15 C			

LOG NUI		2		STEM SER		IBER			
EQUIPM	ent log f	OR MUL	TIPLE TO	WLP ST	JDY				
				(S1	ıbsystem, Ma	jor Unit, Etc.	.)	- 0	
EQUIPM	ENT SERIA	L NUMBER	(S)				41	soli-	
i i i internet i primeta	i ann an Stationairte I		FERENCE		an and a second se	TIME	TYPE OF	CUMU	LATIVE
OPERA	TING, MAINTENAL DATE	AND SIGN E		T INFORMATIC	N	AND HOURS OF OPERATION	OPERATION (3) STANDBY ON	OPERAT	NG TIME
		(1)				(2) 	+		=
IMTEDAN	CL MLAS	URI MI UT	(JNT U		4 -18-1	5	i i		
r 111	LL X	D	V.	11.	i		9 B	1	
J 1001		K.		14	:			i t	
SAUL	AS (3)	RUT TI	WIR FA	I LRO	OIGNU	TP	WILL TED		
		507 70	WIR UN.				TED	· 1	
15 50	100 :150	55	-1200	(i	1	14	•	
00	4050	0.55		Ī		- 1			
7.00	4250	0.60				4	120 1 32	5 (2)	11 at
100	4600	1.25	- j 167 - j 44 - j 25				2		
(0.0)	4750	1.65	- 125		,	-			
1.00 50	100 5010	185	-12	Ċ				1	
) 37	1.15	+ j 3	L					
	950	2.55	+ j68	4					
)		1				
					1		. ,		
2-70	WER ARR	AT (VIA	CONAL)	6 ROUND	U BASI	ICP 1	NSUL TL	1	
			/		1	/		• •	
	5000 3100		- j 243	C	1.	link ??			
5.00	4050	0.50	- 170			t	i i	•	
7,00	4250		- 107		• •	K -40	1= 120	. c= 12	4;5
9.03	7600	1.30	-; 44			2			
10.00	4,100	1.60	- 20	/			h i i	. ,	
	200 5001	1.40	0	C		6	10-20=1		
	0 140		j 67	L	4	4	+ 1.5PAH	. ,	
20.00	0 4700	11.0	8 235	L			· ·	i	
								9	

ţ

6 SECURITY CLASSIFICATION (THIS PAGE) LOG NUMBER SYSTEM SERIAL NUMBER EQUIPMENT LOG FOR MULTI TOWER STUDY (Subsystem, Major Unit, Etc.) 9 Teresta EQUIPMENT SERIAL NUMBER(S) TYPE OF OPERATION OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY CALM, WARM 50-60"F APRIL 16 1975 MEASURE FIELDSTRENGTH WHILE RADIATING 9.993 AHZ FROM DUAL ARRAN (1, 1 4 -TOWER ARRAN) FIRST FROM TABLE, THEN FROM GROUND LUCATION. TOWERS GROUNDED. 1. TABLE $R = 4 \overline{E} \overline{E} = 50.2 \text{ cl}, \quad T = 11.3 \text{ nV} \quad (1 = 200 \text{ pt} = \overline{E} = 30 \text{ p/p} \text{ neusward was calle$ 47 from anyliferCuladation: RZ= STA 1.28 2. GRUND e=46.001, i= 11.5mv, d=2001t E=300pp numered in sending poil of 110' fine Culculation Rr = 1200, 57-2 APRIL 17 1475 CALM, WARM, 50-70°F Repeat of April 16 neumrement, but E is neumred with scope probe at feed point (rudsed) 1/ TABLE $i = \frac{11.3}{47}$ $E = 8V_p/p$ Galindations $R_n = 19n$ 2 = 11.82nC= 49.0 ,U 2/ GROUND l= 45.8 clf i= 11.3 mV Calculations Rr = . 45-2 Z = 14.72 E- 10/p/p

	I SERIAL NUI	MBER		
EQUIPMENT LOG FOR		lajor Unit, Etc.)	
EQUIPMENT SERIAL NUMBER(S)				Winerbur
DESCRIBE OR REFERENCE	ene muder an un and	TIME	TYPE OF	CUMULATIVE
OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INF DATE AND SIGN EACH ENTRY (1)	RMATION	AND HOURS OF OPERATION (2)	OPERATION	OPERATING TIME (4) STANDBY ON
PRIL 21 1475 WINDY,	40-50°F, J	UNNY	nu - 2	
RAVIATING AT 8993 MHZ 4:30 AM	70 16:0	Ø		
FIELD INTENSITY OF 2-TOWER	ARRAY	BASE	S GROUN.	OED
O. N THE THE	5 180°	d = 2	a'	
0 // // >	180			
	- cachenhited	E	db abou 1 pm 88.3	AV
	48 .57			26.01 28.84
47,2 11.5 315° 45,8 11.3 270°	.45		89,2 87,9	24.83
47,8 M.5 225°	.66 .5	3.	89.8	30,90
46.8 11,5 180	,52	AV	88.8	27,54
46,9 11,1 135	,57		88.9	27,86
	50		88.6	26.92
46.4 11.2 45°	5/		88,5	26.61
later bases			•	
47.0 11.0 450	60		89.0	2818
	65		89, 5	24.85
47,0 11.0 135	60		89.0	28.18
mlited base with 3rd timer EAST	gronded	input		
10,0 100	. //	J	88.1	25.41
	48		87,9	24,83
45.2 N.Y 180 46.8 10.8 225°	. 42 59		81,3 88.8	23,17 2 7 ,54
	38		86.9	22,14
48.0 10.7 315°	80		90.0	31,62
46.8 10.9 0.	,58		88.8	27,54
45.9 11.0 45	. 48		88.0	25,12

SECURI	FY CLASSI	FICATION (THIS PA	GE)			8
LOG NU		2	SYSTEM SERIAI	NUMBER		
FOITD	AENT LOC	FOR MULTI TO	OWER STUDY			
EQUIEN			(Subsys	stem, Major Unit, Etc.		û
EQUIPM	MENT SER	IAL NUMBER(S)			41 Horan	in m
OPER		DESCRIBE OR REFERENCE ENANCE TEST AND OTHER PE ATE AND SIGN EACH E. (1)		TIME AND HOURS OF OPERATION (2)	TYPE OF OPERATION (3) STANDBY ON	CUMULATIVE OPERATING TIME (4) STANDBY ON
4-22-7	7,5	MOD. WINDY, C	LÆPR, 40-60	1°F	ters sec	
4 - TOW	ER ARI	/	SULATED ON		RADIATIN	GAT 9.93 Alz
, , , , , , , , , , , , , , , , , , , ,		S	- = XA'SS 6105			
		1 D	×1	0	3	
	Ë		W 100	BLDG >		
			~ 1		• • • •	
				1		
0	/	En E	AZIMUTU	Rr	d	1
ldb	CAV	Ell E When Inv AV		calculated	4	
49	11.5	90.9 35,08	90°	. 48	150	1
46	11.5	88,1 25,41	90° 90°	.69	2 59'	
47,4	11,5	89,0 28,18 89,4 29,51	450	60	200	
46.8	11.5	88.8 27,54	1350	,52	V.	
46.9	11.5	88,9 27,86	1800	.54 AV		
47.2	11.5	89,2 28,84	125°	.57		
46.5 48.5	11.6 11.4	88.6 26.92	270° 315°	.49	Y .	
47	11.4	90,5 33,50 89,0 28,18	00	56	2001	
						,
	cenfr gurut	4 28.97 mHz	2. 1. 11.0.	41 158 r	in this	Elloulin Env
50 Mail 39,5	0.6	la chitike	SAJ HARMO 450	11.87 XI.18	- 2001	Elbahr Env T8,000 T. 94
41.0	0,315		450 244	10.98 ×146	100_1	77.6 955
34.2	0,375		450 10	1	2501	724 4.17
38.9	0,6	29.97 .4,	450	15.80 +1.46 2.34 ×1.08		79.3 7.33
40.0 46.8	2,4 5,45	19.97 my	450	2.34 ×1.08 2,25 ×1.08		80,5 10.6 87,4 23.44
51.0	5.45	,	450 1.60	3.71 +108	200	91.5 37.58
56.0	5.45	1001.44	450	2.80 ×1.08	100	96.3 65.31
47,0	4.5	19.97 + 13	00	2,22 +128	200	87.6 23.99

LOG NUMBER	2	SYSTEM S	SERIAL NUN	MBER			
FOUDMENT LOC	FOR MU	LTI TOWER ST	104				
LQUITMILIAT LOC			(Subsystem, M	ajor Unit, Etc.	11 1	1	
EQUIPMENT SEF	IAL NUMB	ER(S)			Li ().	seaban	
		REFERENCE D OTHER PERTINENT INFORM I EACH ENTRY)	ATION	TIME AND HOURS OF OPERATION (2)	TYPE OF OPERATION (3) STANDBY ON	CUMUL OPERATI (4 STANDBY	
4-23-75 G	ilm, cle	wr, 50 - 65°,	E				
RADIATING A	T 9.93 M	2 INTO 4-TOWE	R ARRA	Y			
INAUT VOLTAGE	MIASURED W	174 OS(ILLOSCUPE C	PRUPE R	AN INSULAT	12.5	Velo	
					$I = \frac{110}{47}$		1
		2			47	- , , ,	
		ISASE	S GROU	NOB) T	6.4Vp/	pmu	
			4	1	6.4Vp/ = $\frac{10.8}{47}$ =	230 A	
PATTERN MEA	SUREMENT	- 4-TOWER A	4 4 9				r
eile nu	ENE	AZIMUTH	RA	alc.			
	abore/per 87,6 2	AZIMUTH MV 3.99 O:					
	87,6 2 87, 4 2	3,99 O' 3,44 45°	.4	4 0		:	
45.2 10.9		3,17 90°	د، 4				
44,6 10.9		,63 135	,4 .3 .3	6 Mar	=.4/m	1	
44.9 10.4		39 1800	, 3	8			
45.5 10.9		.99 2250	.4			200 A	
44.6 10.4 46.0 10.9	•	,63 270° ,41 315°	3	5	• • •	•	
76.0 70.7	00,1 2'		12	V		:	
45.0 10.6	87,1 22	.65 450	. 49	On luc	tomer 2 rul	dials trail	tige the
			9 8 8	ti- svan	tote my h	rulicob	
SHUT-DOWN MODE	TEST E	RW NOT FED, BU	T BASE GNO	EV. 7 NES	FEU RASE	S INSULA	TEU
64.8 14,5	87.0 22	.39 0) .3	5		1	
44.8 11.5	•		(201 3:	5		2	
45.0 11.5 43.0 11.5		2.91 90 1.2 135	.3	6 3 12			
42.8 11,5		1.2 195°	1 .4	í).		1	

LOG NUMBER	2		SERIAL NU	JMBER		
EQUIPMENT LOG FO	R _//////	IOWER 31	(Subsystem,	Major Unit, Etc.)	
EQUIPMENT SERIAL	NUMBER(S)			· · · · · · · · · · · · · · · · · · ·	ester.	contain_
OPERATING, MAINTENANCI	CRIBE OR REFEREN E TEST AND OTHER ND SIGN EACH (1)	PERTINENT INFOR	MATION	TIME AND HOURS OF OPERATION (2)	TYPE OF OPERATION (3) STANDBY ON	CUMULATIVE OPERATING TIME (4) STANDBY ON
4-23-75 Continues	an interaction of the second sec	- 1941 - 2017 - 2017 19	. *	-		
RINGING TOWERS INSULATED BASE				Meuma	el a L 1350	, 20011-
NURMAL	<u>e</u> 46,8.14	<u>i</u> 11.5mv	lit			
) East 12" Coloner	47,0	11.5 KV		No das	ge mitil.	
) ERW-11" close lad		11.5 mV				
E, W, N -12" closer	470	11.5 AV				
Rocked of Single	tower slas	t fed , in	soluted	bise	• 5.	
<u>e</u> 47dt	Lat E 89 Zr	18 /1.Uny	<u>A</u>	21110TH 1350	Rule	
	1			÷		

IME I TYP	Thents Thents STION STION STON ST	CUMULATIVE OPERATING TIME (4) TANDBY ON
IME TYP ND OPER Res of Ration STANDED 2)	E OF RATION 3)	CUMULATIVE OPERATING TIME (4)
IME TYP ND OPER Res of Ration STANDED 2)	E OF RATION 3)	CUMULATIVE OPERATING TIME (4)
IME TYP ND OPER R8 OF 2)	E OF RATION 3)	CUMULATIVE OPERATING TIME (4)
ND OPER RS OF RATION STANDA 2) /	S)	(4)
	- 100	1941 - M
& Bartal		
	tower	un teren
W 93 n		
a shared on the second s		

SECURITY CLASSIFICATION (THIS PAGE)

LOG NUMBER _____ SYSTEM SERIAL NUMBER _____

EQUIPMENT LOG FOR _____

L	DESCRIBE OR REFI ITENANCE TEST AND OT DATE AND SIGN EA (1)		NERS EIGENLES 1.5	u na carata	ante statement sur et		the second	and the destination of the	
4-25-75			INFORMATION		TIME AND HOURS OF OPERATION	TYPE OPERA (3	OF TION	CUMU OPERATI	LATIVE ING TIME
	, 50-70°F, ,	HUMID,	(ALM		(2) 				
TRANSMITTIN	IG AT 99.	43 x 42	11:00	to	15:45	-			
1 4-FOOT	SLANT FED	SINGLE ,	ANTENNA	INSI	VLATON	TOP	e Be	TTOM	
AZIMUTH	lelle Inv	d lill	b above for	E	Real	k	é		
	47,5 10.8 48.2 10.8		89,5 90,2	29.85	.69	7			
1 -	48,2 IU.8 48.0 IU.9	200 200	90.0	32.36 31,62	.82 .77	Rav .	73.	- 1	
	47.4 11.0		89.4	29.51	.66	1		1	
	47.6 11.0			30.20	.69	·		1	
	50.0 11.0 45.6 11.0	150 250	41. 9 87. 7	24.27	, 66				
A INSULAT	TW BOTTUM	UNLY	OTHER	WUSE 1	45 D				
1350 4	17,2 11.2	200	84.2	28-54	.6	7		1	
4-FOOT S	LANT FOU	SINGLE	ANTENNA	w^{\dagger}	<i>174 9</i>	- 1.	SFT	ROUAL	LS
45° 49	95 1.0 5 11.0	200	91,4	37,15	- 1,0 - 1.0	4	1 - 1	OUBLE IN	
90° N 49		200	91.4	1				OUBLE IN	
135° 48. 135° 41.		200 250'	90,8 89,0	346				DUBLE H	NSUL
45° 49		200	91,1	358	9.9	27		INFLE IN.	SULE
90° × 49,	,1 //.3	200	91,0	35.40	8.9	of m	1	- "	
1350 48	5 11.4	200'	90,5	33,5		91	434	"	
				ì					

* TOP BRASS

LOG NUMBER	2	SYSTE	M SERIAL N	UMBER			
		MILLITI TANUR	TUNY				
EQUIPMENT	log for	MULTI-TOWER	(Subsystem,	Major Unit, Etc	.)	- 7	
EQUIPMENT	SERIAL NUME	BER(S)			400	abu-	
		RREFERENCE	NET CENTRAL CONTRACTOR		TYPE OF		2.11.11.2171
OPERATING, M	DATE AND SIG	ND OTHER PERTINENT INF	ORMATION	AND HOURS OF OPERATION	OPERATION (3) STANDBY ON	OPERAT	ING TIME
4-28-75	tions to the fulfillence where the	-70°F, SUNNY	e na maine antre na negat	(2)			
		/			-		
RADIATION	AT 99.9	3 R 42 8:15	TO 15:4	5			
FIFIN STR	KNIGTH ANI	ASUREMENTS A	To POD ET	CALCIE	VALT E	D ANTH	dal A
	ON TOPEL		12000		ICAN TE	1	
			d e	Walne Inx	1= 29,51	Rale	
45 #	8 47.4 dt	I 10.8 my 201	gft	89.4	29,51	.68	
1.							
/ INSULATION	1 BUTTOM	ONLY					
450	47.7.11	10.7 hr 2	w/t	89.2	28.44	66 2	R
0°	47,5ch		1	\$9.5	28.14 29.85 2786	.66 .72 (.63 (; 63
40°	46.9dt	10.6	1	88.9	2786	.63	
1350	46.1 d	10.6 2	oufi		25.41	.52)	
BS							
TWO-ANT	TENNA ARRAY	- INSULATIO	N BOTT	ON ONIN	(EAW)		
135°	46.1		UU / L	88.1	25.41	51	
135°	46.1	West Current 5.2	200	88.1	25.41	×	
1350	46.1	EastCannel 5.9	100	28.1	25.41	×	
1	New Run			1.0.2		=0	
135	47,2	11.4	200	89.2 90.2	28.84	58	
180° 225	48.2 48.7	11. 2 11. 2		90,7	32,36 34,28	85	
270	48.2	11.2		QU.L	32.36	.76	
315	48.4	(1. 2.		90.9	35.08	189 R	IV
0	48.0	11. 2		90. U	31.62	.73	0,76
45	48.4	11.5		90.4	3311	.76	
900	44.2	11.4	200	90.2	3236	73/	

SECURITY CLASSIFICATION (THIS PAGE)			14
LOG NUMBER Z SYSTEM SERIAL NU	MBER		
EQUIPMENT LOG FOR MULTI TOWER STUDY			
EQUIPMENT LOG FOR(Subsystem, I	fajor Unit, Etc	.)	
EQUIPMENT SERIAL NUMBER(S)		Geren	ban
DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY	TIME AND HOURS OF OPERATION (2)	TYPE OF OPERATION (3) STANDEY ON	CUMULATIVE OPERATING TIME (4) STANDBY ON
(1) 4-28-75 ant/d			
		1	. ,
(4) THO ANTENNA ARRAY - TOPEBUTTOM IS INSU	LATED	Es	W
AZM Relf I de Edbahulher Enr			
A2M Rel I de Edbahulper Env 0° 47,7 10,9 200 39.7 30.55	Frea .7		2
450 49.0 10.9 1 91.0 25.4			
40° 48.9 11.0 90.4 35.09	.97		
1350 47.7 11.0 89.7 30.5	5 .70) -	
180° 48.6 10.8 90.6 33.8.			
225° 48.8 10.8 90.8 34,6	1	¢	
270° 44.2 10.9 40.2 31.9	4 .78		1.47
315 49.5 10.9 200 91.4 37.15	1.05	/ Raw -	.87
	1		
INDUCTION TESTS: TWO ANTENNA ARRAN INSULATED. FEEDING E	IN SULA	TO BASE	TOPNOT
	AST ANTEN	WA CALY, I	LIT IS LEFT
OPEN.			
CURRENT FLOW INTO EAST SLANT WIRE 3	GAV = 1	77 Ampere	S
CURRENT MEASURED IN TROWER, GROUND	N OR UN	CRUUNDED (OF WOLT
$\frac{NNTENNA}{47} = \frac{.97AV}{.021} A clb$.77 = 3	6 on 3,1.3d	χ.
47 AT 1350 1001 E= 56.50			
	,	1	4 4
VOLTAGE MEASURENES WITY BALLANTING	MUTER	WPCI NO	i i
THRMINATED :	1		
INPUT TO EAST; 40V			1
AT ONE RADIAL INSULATIR OF LISS AT ROD OF WEST	1		a a
	20 Vm	. u	• •
ALL VOLTAGES WR TO GND.	•	1	
		1	t i
			1
			\$ 5

			15
SECURITY CLASSIFICATION (THIS PAGE) LOG NUMBER 2 SYSTEM SERIAL NUI	MBER		
EQUIPMENT LOG FOR			
	lajor Unit, Etc.		0
EQUIPMENT SERIAL NUMBER(S)	<u></u>	40 sen	burn
DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY (1)	TIME AND HOURS OF OPERATION (2)	TYPE OF OPERATION (3) STANDBY ON	CUMULATIVE OPERATING TIME (4) STANDBY ON
4-29-75 CLOUDY, 45-550F, WINDY		provide the second s	a dia an
ROMATING AT 9.493 nHz 9:00 TO 15:45	+		
Recheck of grounded luse operation for 2 este	hna arra	y (sen	/)
1350 44,9 db 11,2 m 87.1, db 22.65 mm		1	
Repeat above mill 3rd as terman prected but	not ever	gized.	•
135° 45.4 db 11.2 mv 87.5 db 23.71 mv (compare	Real =	.412	-e)
Renoved ground, il clouble insulation	e mol deto	195 1. pr 13	
135° 47,4 db 10.4 89.4 24.51m (ompure		.73 - te pg:14 pm	1350)
Inclustion Meuswepents			8 4 4
1. Dual anterna gronnded rocks, Mayver E & Could	nerts on	respinder	and the and
VOLTAGE MERSURENENT, SCOPE PROBE! VIN EDW: 21VP/P ERADIAL AT INSULATORS (LOWER) 15° RAT 45° VOLTAGE AT ROV: 13VP/P 105° 105°	21	VPIP E VPIP E VPIP E	i 3 4
(HVITENNA CURRENT 242V 225° FIBLO STRENGTA Q135° 53 W 255° 345° 163°	2 2 2	vpp E vplp E velp velp	5

SECURITY CLASSIFIC	2			DED				
LOG NUMBER		SYSTEM SE						
EQUIPMENT LOG F	OR MULTI-	TOWER STU	0 Y					
		(Subsystem, Ma	jor Unit, Etc.) A	P. x		
EQUIPMENT SERIAI	L NUMBER(S)				1	10	eachter	<u></u>
operating, maintenan DATE	ESCRIBE OR REFERENC NGE TEST AND OTHER PI AND SIGN EACH E (1)		ION	TIME AND HOURS OF OPERATION (2)	TYPE OPERAT (3) STANDBY	OF TION ON	CUMUL OPERATI (4 STANDBY	ATIVE G TIME
4-29-75 costil	anna an 1997 ann an 1997 an	and the second stand of the second second	a start bers mins	aan ee sa sarah				
DUCTION MEASURE FIELD STRENGTH	MENT, DUAL 56.8 db	ANTENNA	GROUNDE	N ROD		A	CURRENT	
CURRENT TRANS	FORMOR MEASUR	REMENT, EA	(4 RADI	AL OI	N			
$/5^{\circ} = ,6$ $75^{\circ} = .7$ $255^{\circ} = .7$ $315^{\circ} = .6$	DAV II Nav II Wav II SAV IY	INPUT TO 1017AGE ON	D E/W RADIAL	; 35 V 180° ; 75° ; 45° ; 202' ;	P/P 334 444 444 221	ilp elf elf lelr		
FEED TWO DOUBL MEASURG VOLTAG			,					
CURRENT INTO INDUT VULTAGU								
RAMAL: 0	15° E 45°	= SUV p/p		8.5				
	75° 105°		I= Inv				•	
	345° 5 Rop	UVPP	I= INV .4AV		1		1	
WITH METAL TOP LOANING			U.YAV				4 t 1 1	
VITY METAL TOP LUAVING & GROUNDED	ROD		0.900				, , ,	
			1					

LOG NU	MBER _	2		SYSTEM	SERIAL N	UMBER				
EQUIPM	ENT LC	G FOR	MULTI-	TOWER ST	TUDY					
FOIIDM	ENT CI	ERIAL NUM	DED(C)		(Subsystem,	Major Unit, Etc.	.)	G(Teres ba	
						TIME				
OPERA		DESCRIBE NTENANCE TEST DATE AND SI	GN EACH F	ERTINENT INFOR		AND HOURE OF OPERATION (2)	TYPE OF OPERATION (3) STANDEY ON		OPERAT (ILATIVE ING TIME 4)
1-30-75		50-60%	(1) = , (LE	AR, CA	LM					arriance a real
			,	,		FARRICATU		0.0	IF TAP	
WAVING	ASSE	NBLY W	41(4 H,	AS A 1	#41 LED	FABRICATIC D-IN RAVIA	L (UA	.00275)
						ļ				
PM: 11 GROUND	HP EDAN ED	TOP INS	REMENT.	s - J4	VELE SL	AT-FED, P	41 2	Em J	N HASE	
	. /		2		,			-		
F	NUL	LX					1			
42	5000	2900	6.4	-j'SLF -j267 -j1125 -j'SF 0	C	slope =	50		1	
6	5000	3400	6.4	- j267_	С	slope = X _C =	10 (50)	- 2	50-2	
8 9	5000	4100 4500	64	-j'/25	C	C= .6	2	r		
9 10	5000 5000	5000	10.5	-15	C C	L= -6	3.1 P	H		
11	D	550	11.6	tj:50	L					
15	D	4200	21.5	1,280	L	•	•			
5-1-75	AM .	50-60°F	CLOUD	Y CALL	51		1			
	PM	50-60°F RAIN	(2007)		,	1	•			
REPEAT	CF	ABOVE	BUT	BASE IS	INSULA	7 (1)	1			
	5000	2700	5,8	-1.575	C		1			
4 6	5000	3050	64	-1325	С	Slope =	55			
8 1	5000	3750	7,5	-j156 -j94	C	sige = KC =	550+	40 =	1295	
	5000 5000	4150 4600	G. 3 9.8	J 94	C	(= 54	<u></u>			
2 	000	160	11,2	- j'40 + j' 15	L					
5		3500	22	+ 1233	L	×L= L=	295 -4	YO a	1255	
6	0	4800	28.5	+j'300	L	. L=	4,06	иН		
	5000	5000	10.2	0	С	1	t		ST, RE	

SECUR	RITY CLASSIF		HIS PAGE)					18
LOG	NUMBER	2	8	SYSTEM SEI	RIAL N	UMBER			
EQUIF	MENT LOG	FOR M	ULTI TO	WER STUP	У				
	PMENT SERI		R(S)	(S	ubsystem,	Major Unit, Etc.	4.00	resbur	
DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY					ON	TIME AND HOURS OF OPERATION	TYPE OF OPERATION (3) STANDAY ON	CUMULATIVE OPERATING TIME (4)	
5/1/	RONTINU	(1) EV	1.2 88 * * 1.1	n maar oo oo oo		(2)		STANDBY	ON
			RANGE	WITH IC	Opf ((APACITUR	PARALLIZIA	6 ALTEN	νa
JUE IN	6 MEASUR	CMENT				а. В			
F 1-42	NULL	$\underline{\times}$	R	Xi	4L	Xi actual	* Re	marks.	
16	5000	3300	0	-j106	С	2 +1 260		PONLY	
16	5000 5000	2/50 3350	7,9 0	-1178	C I	1		P HANT . P UNLY	
20	Jul	3000	.6	-1'82.5 -1'100		9 +1712		" +ANT	
25		3650	. 6	-j'100 -j'54		G +1247	I CA	PUNLY F	
25		3350	0	-j'66	1		(Al	+ ANT	
30	5000	4200	0	-j·27 -j·27	C	(+j'	2/	PONLY .	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,) •••		0	1-1		J		1	
							, ,		
							• •	ţ	
							i i	1	
						ł			
						ł			

* NE TYPE 916A INSTRUCTION MANUAL PG & FIR FIRMULAS

SECURITY CLASSIFICATION (THIS PAGE)	~~~
LOG NUMBER SYSTEM SERIAL NU	MBER
EQUIPMENT LOG FOR MULTI TOWLR STUDY (Subsystem, I	fajor Unit, Etc.)
EQUIPMENT SERIAL NUMBER(S)	C. Josephan
DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND STON FACT FUTURE	TIME TYPE OF CUMULATIVE AND OPERATION OPERATING TIME HOURS OF (3) (4)
DATE AND SIGN EACH ENTRY (1)	(2) STANDBY ON STANDBY ON
5-2-75 RAINING	
CHE(KE) CALIBRATION OF BALLANTINE RAS	
TO PROPERLY EVALVATE HARMONIC MEAS CALIBRATED 585/82 TEXTR. OSCILLOSCOPE	URTMENTS. USED
SCUPE VOLTAGE RMS METOR VP/P Vring	FREWUENCY Mr. H2

0 / 0	,			
2,7	100 mV	•	IU.	
2,6	100 mV		20	
2.7	100 m/s		30	

LOG NUMBER	2	SY	STEM SE	RIAL NU	JMBER _				
EQUIPMENT LOG H	OR MUL-	TI TOW	ER ST	UDY					
			()	Subsystem,	Major Unit,	Etc.)	1.1	0	
EQUIPMENT SERIA	L NUMBER(S	5)				1	() port	ra-	
operating, maintena DATE	DESCRIBE OR REFE NCE TEST AND OTI AND SIGN EA		NT INFORMAT	ION	TIME AND HOURS OPERAT (2)	OF	TYPE OF DPERATION (3)	CUMUL OPERATIN (4	ATIVE
5-5-75	(LOUD)	1 , 50	0-60°F	, (A	100 am 170 m	n er sælan er er i	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	1.74
INSTALLED A CO	HPILTE	THEIT	MING	APPAN	C.P. I	DALES	TOWER	ALA DE	
WITH 41 AWG									
SLEEVING. IN									
ROD TOP IN							. 14		
r	/			~ /		1	Pri	MARHS	
1 10000	- X	<u>L</u> r	21	14	ţ		101	in man 1	
4 5000	2620	8.8	-1'595	1	1	;	1	1	
6 5000		75	-127	Ċ		(and an	- 50		
.		1.5	- 1 327	1		Stope -	In (co)	+45 - 127	20
8 5000 9 5000			1.		1	×4 =	10 001		2.2
			-1100	l	t	1-	58 pF	İ	
10 5000	4550 5000	10.0 11.2	175	C	i.			145 - 122	F
11 5000	1370	14.7	+1105	0	1	16 -	7/1/25	145 =j227	0
13 0 15 0		20,1	+ 223	L	, /	L 2	3,62 M	4	
	3400		-180	6	In DE	rap 1	uni 1		
20	-	0	-,100	C	100PF	i i		+ 1400	
	3000	0.4	A '	C	WOPF			(1000)	
25 5000	1860	0,3	-126	C	47PF	Chr	ONLY G	JIUCO	
25 5000	1400	0	-1144	5	47 PF	(AF +	ANI 1	+i 1009	
27 5000	1950	0		C	11205	(AT U	NLY }	9	
27 5000	1720	0	-j:121 -j:47 -j:100	C	47PF	(1957)	1	112/22	
30 5000	2100 2000	0	-171		4DDF	1100	ONLY Y	4)	
30 3000	2000	U	100	C	47PF	1 /10)		1	
RANGE EXTERS	ICN OF BA	21065	// CAP	Ka		ł		•	
VX.	RZVV	122)	7		pa j1	For	CONTIN	VOATION	
$X_{\chi} = -X_{q}$	ne rie	(xe-34)	ل	JU	12 -1	10!	Commi		
	Re2 + (Xe-	$-x_a) L$			*	1		1	
$i \mid R_{\ell} = c'$	X1= -X	a Xe				·			
1 1								1	

SECUR	RITY CLASSI	FICATION	(THIS PAC	GE)					21	
	NUMBER	2			ERIAL NUN	IBER				
EQUI	PMENT LOO	FOR M	ULTI TO	OWER STU	124					
EQUI	PMENT SER	IAL NUME	BER(S)		(Subsystem, Ma	ajor Unit, Etc.	40	3xobn_		
e (* 10		DESCRIBE O	R REFERENCE			TIME AND HOURS OF	TYPE O	F C	UMULATIVE	
		ATE AND SIG		RTINENT INFORMA NTRY		HOURS OF OPERATION (2)		ON STAND	(4) BY ON	
5/5/	75 (ONT)	INVED						4		
	T REPEA		BASE	OF ROD	INSULA	TED. RO	זו על	and 20	UBLE	
£	NULL	$\underline{\lambda}$	R	×i	4	12		ander of the second	1	
4	5000	2250		-j'688			ne = 51			
6 8	5000 5000	2780 3350	7,8 8.4	-1206		. X	c = 5/6	$\frac{1}{2} + \frac{1}{2} = \frac{1}{2}$	95n	
89	5000	3770	9.0	-1137	ć		= 54pf			
ы 11	5000 5000	4200 4620	[0.0 [1. 0	-135	4	2	= 3.42/	44		
13 15	0	920 2630	14.5 20.0	+j:70 +i175	4					
18	5000	3300	0	- 194	+ 320 0	1000	FCAPU.	NLY		
18 23	5000 5000	2600 3500	2.6 0	-j'133 J	C		FTAN	1		
23	5000	3200	.9	-, 78	y +1 340 0	100,	F CAP 5+ AN	T		
25	5000	1860	0.3	-j' 126	1841 0	ETPF	GPO	NLY	4	
25	5000	1300	0	-1148	G	47PF	e AN	7		
27 27	5000 5000	1950 1680	0	-1123 1	11309 C	4781 4785	+ AN	T		
30 30	5000	2/00 2000	0 0	-97 ? -j'100)	j3233 C	47 PH		LY		
50	J	2000	U) 100 /	C	,,,,				
									6	
									1	
					,			1		
		- AA		WER STU		MBER	<u> </u>			
-------------	---------------	----------------------	-------------	---------------------------	-----------	-------------------------------------	-------------------------	----------	---------------------------	----------------
				(Sub	system, M	lajor Unit, Etc.		Ten e	alim	
EQUIPME	NT SERIA					Lan The Contestion	-	naessis		E L. 15 (2122)
OPERATI	ING, MAINTENA		THER PERTIN	NENT INFORMATION		AND HOURS OF OPERATION (2)	OPERA (3) STANDBY	TION	OPERATIN (4 STANDBY	IG TIMI
-6-75	CLOUN	u antenneti en el es	- 6.5 0	a dha canadana a ta ƙasar		ntenan ana sanan		anel est		11 M
AVIATION	AT	9493 M.	42 579	ARTING 1	2.00					
				ER ARRA		OP AND	BOTTO	ng l	NSULATED	7
AZIMUTH	PB	Inv	d	Edbichne /no	Ē	er RI	culc			
0°	47,7	11.3	200	89,7		2.55	.67			
45	48.0	11.3		90.0	31	62	,71		D	
90 135	48./ 47, B	11,3 11,3		90.1 89 B		94 84	173		R 9V=.70	
180	47,8	11.5		89.8		.90	.66			
0	48.9 46.2	1,3 1.3		90.4 88.3		01	,88,			
315	48.8	11.3	200	90.8	2	4,67	.86			
135	47,6	115	200	89.6	30	20	.65			
135	45.5	11. C 11. S	250 300	875		7) 28	161			
						-	y,		E	
HARM 135	58.0 M	EASURE 11.0 × 10				3-	3.98		Rav = 3,6	
135	56,0	11.0.108	250	97,9 95.2	57	54	3,34		Kev = 3,6	-
135	54.0	11.1	8 300	938	78	98	3,48			
FIARA	HUNIC M	EASURICM	turs A	T 29.94	3 /142	4 4	P P	1	a	
135	505	2.571.16	200	38.8 3		154	8.22	ζ	Av 8.2	6
135	48.6	2.51116	250	86.9		14	8 29			
(د ۱		"29						1		

LOG NUMBER .

_____ SYSTEM SERIAL NUMBER

EQUIPMENT LOG FOR <u>MULTI TOWER STUNY</u> (Subsystem, Major Unit, Etc.)

GA minta EQUIPMENT SERIAL NUMBER(S) TIME AND HOURS OF OPERATION DESCRIBE OR REFERENCE TYPE OF OPERATION (3) OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY OPERATING TIME ON STANDBY (2) ON (1) 5-7-75 WARM, SUANY, COLM RAVIATION AT 9.993 MALA 10:00 4 TOWER ARRAY - DOUBLE INSULATION OF TOWER, FIELD STRENGTH: 1350 11nv 47.2,4 200' INFUT VOLTAGE WITH MAN INSIDE MERAY TO READ OSCILLOICORE Al porchary and Vellage = 28 Vp/p Removed extrusions from leads in avery floor 1350 105 MV 47.0 cll 2001

LOG NUME		MULTI TO	NER STUDY					: -
EQUIPMEN	I LOG FOR		(Subr	ystem, Ma	jor Unit, Etc.		<u> </u>	
EQUIPMEN	T SERIAL N	IUMBER(S)				Li!	Tesenton	
OPERATING	3. MAINTENANCE	RIBE OR REFERENCE TEST AND OTHER PER D SIGN EACH EN (1)	TINENT INFORMATION		TIME AND HOURS OF OPERATION (2)	TYPE OF OPERATION (3) STANDBY ON	CUMU OPERAT STANDBY	LATIVI
5- 8-75	WARM	I, SUNNY, CA	22M		n iv a marriamenti i a			ka tinggalat
IM PEDAN	CE MEA	SOREMENT	2-ANTENNA	. ann	14- L	INFORTL	TUP	
AND ROS	TTOM UP	TOWER	NSULATED					
f	NULL	XR	Xi	CL				
4	5000	3850 0.6		С	SLO.	PE = 56	27.5	
6		40.50 1,1		1		Z	110 10	
6 8 9		4350 1,6				K = 275	+25 = 1.50	
·		4500 2,0	-156		-	C= 10	L.C	
10	()()()	47.50 2		- /	11 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	L= 10	pf	
12	5000	5000 2. 220 4,						
14		850 4,9		L			-	
16		1750 7.9		L				
20	U	4100 15.	5 +1240	L				
2.5	5000	3500 0	-160 -4/30	6 C	100	OF LAP UN	ky .	
25		3200	-172	1		of Car +1		
25		1700	-172 -1/32 +139	io		F CAP ON		
2.5		0	-1200		47	of tant		
27		1850	-1117 +148 -11.54	r6		or an only		
27		810	-/1.57		47	of that	-	
30		2400	-187			470F M	CALY	
30		1800 C	-107 -14		L	TAE TAN		
Repine L				1				
1"/	5000	4900 09.	2.8 - 19	C				

)UT	PMENT I	OG FOF	M	ULTI TOW	ER STUD	γ			
	PMENT S				(Subsy	stem, Major Unit, Et	E) GATE	aunto.	
201		an an ann an			are - successions				a vraze v
0	PERATING, M	INTENANCE	D SIGN 1	eference other pertinen EACH ENTRY	T INFORMATION	AND HOURS OF OPERATION (2)	TYPE OF OPERATION (3) STANDBY ON	CUMU OPERAT STANDBY	LATIVE ING TIME 4)
	9-75	hiar	сан (1) Сал (1 Fac 1	ntan ilana ina consist ^A 1 IA				an terrier i i mus
	1	-V7 6		ltor, (12 6 101				
		,			AL ANTEN	NA- DOUGLE-	11. SUCATO	ON	
16	H FRE	GULLCY	Pel,	NIS					
	NULL	X	R	Xilie	c_{1}	V.	QEM	ARKS	
	0	1100	7	+ 106	L				
	0			+132	L				
	0			+172	L				
	0	4200	6.4	+ 221	L				
	0	4900	19.5	+243	L				
	5000	3300	0	- 77	C	+262	47pFCAT	2	
	Í	2600	1	- 109	1		4JoF (AP	TANT	
		3600		- 58	}	+ 218	47pf CAT. 47pf CAT. 47pf CAP 47pf CAP 47pf CAP		
		3/00		- 79		-	47pf (A)	9 TANT	
		3750	I	- 48		+ 1240	47, F (.2.	9	
	5000	3450	U	- 60	C		47pf (.2.		
	5000	1750	D	- 120	C	+ + 454	470 F (1	P	
	5000	.600	U	-/63	C		47FF(AI	TANI	
	5000	1900	Ü	-103	C	+-721	47 pt m	2	
	5000	1400	()	-120	C		4781- (11	tArt	
	5000	2006	υ	-/00	\leq	+766	47pHim	2	
)	row	1550	0	-115	Ć		47, = (14	FANT	
		750	0	-133	C	+902	27pf (AP	
		0	0	-156	×.		270Ft	ANT	
-		1400	0	-103		+1429	2)pf		
		1100	0	-/// -7.5			2)pF+	TH J	
)		2000	0			- 487	27AF	1	
		2400	0	- 31		1	27,0F+	YNT	
.5 ?.5		3400 4000	0 D	-23		- 58	27pF 77pF +	AUT	

SECURITY CLAS	SSIFICATION (THIS PA	(FE)				26
LOG NUMBER	2		SERIAL N	UMBER		
FOIIIPMENT L	OG FOR MULTIF	GUER STL	UY			
			(Subsystem	, Major Unit, Etc.)	l. A.	
EQUIPMENT S	ERIAL NUMBER(S)					Holzim_
OPERATING, MA	DESCRIBE OR REFERENCE INTENANCE TEST AND OTHER P DATE AND SIGN EACH E (1)		MATION	TIME AND HOURS OF OPERATION (2)	TYPE OF OPERATION (3) STANDEY ON	CUMULATIVE OPERATING TIME (4) STANDBY ON
5-12-75	WARM, (LEAR	, WIND	Y			
	MEASUREMENT - OF ROD	4 JOWE	R ANTU	NNA- INS	VLATION	TOP AND
J NULL	X R	Xi	C/L		Ren	rarks
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1		X	$= \frac{2}{163}$ $= \frac{95}{15}$ $= \frac{95}{127}$ $= \frac{185}{185} = \frac{92}{127}$ $\frac{185}{2} = \frac{92}{127}$ $\frac{185}{127} = \frac{92}{127}$ $\frac{1}{12}$ $= \frac{1}{12}$	

SECURITY (CLASSIFICAT	ION (THIS PAGE) .	·····				
LOG NUM	BER2	SY	STEM SERIAL N	UMBER			
EQUIPMEN	IT LOG FOR	MULTI TOU	VER STUDY				
	11 200 101	· ····································		Major Unit, Etc.	.)		
EQUIPMEN	IT SERIAL N	UMBER(S)				5 Deserbu	<u> </u>
2714 - 12 27 11 1. AL	DESC	RIBE OR REFERENCE		TIME	TYPE OF	CUN	RATIVE
OPERATIN	G, MAINTENANCE	TEST AND OTHER PERTINEN D SIGN EACH ENTRY	T INFORMATION	TIME AND HOURS OF OPERATION	OPERATION (3)		ING TIME
		(1)		(2)	t and an trackers	N STANDBY	ON TER VIEW SCIENCE
5-12	-75 in	timed					
F NULL	V	R X	di.				
5 5000	2800	6 -63		1 47 FIA	r ar ar ar br f f f f f f f		
r I	2250	e -! 74	Ć	47 pFT	ur 97	1311	
7	3100	o -j 79 o -j 49		420FC	or 1		
7 5000	2850	0 -158	(4ACF+	ANT ST	3/1	
7 5000	.450	0 -104	C	17050	0 6	101	
37 5000	340	0 -126	Ċ	2751+	105)		
1039	2100	0 -174	12.	1/443 27	PFCAP		
4 39	1950	0 -178			TTHANT		
40	2600	0 -160	11-	110 27	OF CAP		
40	2800	0 -:55		7	TOF FAT		
41	2000	0 -:73	2-1	480 2.	PECAT		
41	2400	0 -163			7PE FANT	-	
42 1	2400	0 -163	1 4-12	97 7	PFINA		
42 5000	2800	0 -1'52	C J	1 1	nrf tan	T	
		5	10 K (10 K)	(a			
				e. 1			
				1	1	1	

-

.

QUIPMENT LOG FOR MULTITOWER STUDY (Subsystem, 1) QUIPMENT SERIAL NUMBER(S)	Major Unit, Etc.)	4 Torenban
DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY	TIME AND HOURS OF OPERATION	TYPE OF OPERATIO (3)	
(1) 5-13-7.5 WARM 60-7.5°, (LUNDY, CAL,	(2) M		N STANDBY ON
IMPEDANCE MEASUREMENT 4-TOWER ARRAY IN SEPARATLY FROM NORMAL REF SLANT FEBD A TETAL DIAMETER OF 4 TOWER CIRCLE IS	CULATED PUINT BY	A 2	FEET,
ENULL X R_Xi 4/2			
	$r = \frac{28}{2} = 1$ $c = 140$		FER 66.2
ITENNAS WERE MOVED CLOSER V-DIA IS NOW	= 240 _p f 201,	, t ₂ = 7	4 7.6+66.2 ===================================
5000 4550 0,6 -j'75 C 5000 4100 1,3 - j38 C 5000 4830 1.7 -j'19 C	$r = \frac{32}{2}$ $r = \frac{162}{2}$ r = 81 - 2		(=197,pf (=1,26,all
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 = 81 -2	- 79	K= 1,26 ml
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			

٩,

SECURITY CLASSIFICATIO)N (THIS PAGE) _		·····		29
LOG NUMBER	<u> </u>	STEM SERIAL N	UMBER		
EQUIPMENT LOG FOR _	MULTI TOW	the STUDY	Major Unit, Etc.)	
EQUIPMENT SERIAL NU	JMBER(S)	(Dubsystell)	MAJVI CILLO, EIC.		Tesesta
OPERATING, MAINTENANCE TE	BE OR REFERENCE ST AND OTHER PERTINEN SIGN EACH ENTRY	T INFORMATION	TIME AND HOURS OF OPERATION	TYPE OF OPERATION (3)	CUMULATIVE OPERATING TIME (4)
- and the set of the second	(1) , WARM -75	°F, (ALM	(2)	STANDBY ON	STANDBY ON
RAVIATING AT TUP EBUTTUM - LUCATION OF ANTI	22 FT DIA				
	996 - 68	* = = = = = = = = = = = = = = = = = = =			
AZIMUTA DA I U° 48.6 45° 48.6	mv cl 11.0 mv 200	Edb abree 1MV 90.1 90.6	31.99 33.88	Rn culc .77	-
900 48,0		40.1	31.99	.77	
180° 49.D		89.6 81.0	30,20 35.48	.95	842
225° 49,2 270° 47,8		91.2 89.8	36,31 30,90	,99	
315° 49.0	11.0m/ 200	91. Ö 90. 3	35.48 31.73	.95_	
ECOND & THIRD HA				TUP	
135 55,2 180 55,2	8.2 200 8.2 200				19,993 1443
225 54,8	8.2 200				
135 39,2	1.55 200				
180 39.3 225 39.3	200				
225 41.2	1.50				
225 326 225 37.1	263				

LOG NUMBER	2	SYSTEM	I SERIAL NU	MBER				
EQUIPMENT LOG FO	DR MULT	I TOWER S	TUDIES				•	
EQUIPMENT SERIAL	NIIMBER(S)		(Subsystem, 1	Major Unit, Etc.) - Z	10	eserba	
				TIME	TYPE		CLINE CLINE	LATIVE
OPERATING, MAINTENAN		R PERTINENT INFO	RMATION	AND HOURS OF OPERATION (2)	OPERA (3 STARDBY	ON		ING TIMI 4)
5/15/75 REWO 5/16/75 REWO	the second s	MUDE25 TO MUDE25 TO	1.5' MOD 62	25 2625				
, ·								
5/19/75 IM	PEDANCE /	MEASUREMEN	T FUL	150 MUN	12 5	TALL	D IN I	
5/19/75 1M 1.5/4 EZEMENTS	- S	INGLE SL	ANT FED	ANTENN	A, U	UUBO	E INSULA	700
I <u>NULL</u> 9 5000 4 10 5000 (11 5000 (X X	<u> </u>	(General I	12 0	-		
1 5000 1	525 -14	38 0	C	Kope: 11	550	5 438	- 494	= 320
11 5000	700 - 1 -	391 0	C	$\chi_L = 5$	6	47	.89 14	P
5/20/75	4 - ANTER	NNA ARRA	Y .12		1	1 1	/	
5/20/75 INSULA	ATED. J	EPARATION	9" AVV.	TIUNAL P	R'an	TEN	A	
4 5000 3	400 -,'s	400 U	C				-	
		150 0		Slope =	18			
	500 -1	17 U 150 0		Xc= 180:	+120			07.1
10 3	700 -	130 0		2				0305
113	150 -t,	114 0 58 0		X_= 15	T-130	- 25	Len	1 m H
14 3	3950 -1	15 0		-		-		
16 4	100 75	6.2			2	p	DIM	W
18 4. 20 4	300 -j- 1500 -j'	1.0		an a a a a	Κ.,	ł	1 m	HES
12 5000 4		7 21	С	1	1			÷-
24 0 26 0 1 3	940 Fj 50 Fj	7 2.1 35 3.0 52 2.4	4	+ 40	+20	120	-20	*
	1	,			1	T		•
					1	20	1	

			MBER	LOG NUMBER 2 SYSTEM SERIAL NUM
			·····	EQUIPMENT LOG FOR MULTI TOWLR STUDIES
	estre_	E. Jese	fajor Unit, Etc.)	(Subsystem, M EQUIPMENT SERIAL NUMBER(S)
JLATIVE ING TIME 4) ON	CUM OPERA STANDBY	TYPE OF OPERATION (3) STANDEY ON	TIME AND HOURS OF OPERATION (2)	DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY (1)
	ATIUN			5-21-75 HOT, WINDY, CLEAR ASSEMBLED 4 - 1. SIFT ANTENNAS ON TEST, RAVIATED AT 9.443/442 13:1
			<u>(</u> 200 '	AS UN PAGE 30 RESULT. <u>AZIM</u> <u>1</u> <u>Eat</u> <u>Env/n</u> <u>Rculc</u> <u>180°</u> <u>11.2nv</u> <u>81</u> <u>11.22</u> <u>.09n</u>
	1 -	CRATION	CUNFIG TU 12:1	122/75 CIRCULAR MEASUREMENT FOR ABOVE RADIATION AT 9.915 M42 9:00 0 112mv 81.5 45 81.2 11.48 .096
	i e	= .0955 = .09 = .1	Rav	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
40Vpp	RUTTOM :		JUVpjp 110Vpjp	VULTAGE MENJUREMENTS VALPSCOPE INPUT:

i

SECURITY CLASSIFICATION (THIS PAGE)	32
LOG NUMBER 2 SYSTEM SERIAL NU	MBER
EQUIPMENT LOG FOR MULTI TOWER STUDY (Subsystem, B	YES Major Unit, Etc.)
EQUIPMENT SERIAL NUMBER(S)	Goodoban
DESCRIBE OR REFERENCE OPERATING, MAINTENANCE TEST AND OTHER PERTINENT INFORMATION DATE AND SIGN EACH ENTRY (1)	TIME AND HOURS OF OPERATION (2) TIME OPERATION COPERATION TANDBY ON STANDBY ON STANDBY ON STANDBY ON
5/22/75 WARM, WINDY	
REPEAT OF 1.5FT RADIATION TEST BV. CUNDUCTING - RADIATING AT 9.943,	T TOPS OF RUD ARE 1442 0900 - 15:30
AZIMUTH i Eily Eiler R culc ilig nv m ili	
0 11.2 39.2 84.0 11.22 .092 45 1 38.9 80.3 10.35 .078 90 38.5 80.1 10.12 .074	200 7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(R. N 0872
225 39.9 81.7 12.16 , 18 270 39.5 81.3 11.62 , 098	
31-3 11.2 40.0 81.8 12.30 .110	200
135 11.2 40.0 81.8 12.30 .062- 135 11.2 35.9 77.9 7.85 .070	150 250

LIST OF SYMBOLS

$\mathbf{x}_{\mathbf{i}}$	Input reactance of antenna	ohms
x _{Ca}	Antenna capacitive reactance	ohms
x _{L_a}	Antenna inductive reactance	ohms
R _i	Input resistance of antenna	ohms
R _r	Radiation resistance of antenna	ohms
R_{T}	Total antenna resistance	ohms
R_L	Antenna loss resistance	ohms
E	Field intensity	µv/meter
Δf	Intrinsic bandwidth, efficiency bandwidth product	kHz
d	Distance from antenna to field intensity measuring point	miles
Ia	RMS antenna current	amperes
Р	Power	watts
f	Frequency	Hz
fsr	Series resonant frequency	Hz
f _O	Center frequency	Hz
Ca	Antenna capacitance	farad
La	Antenna inductance	henry
L_{T}	Transmitter output inductance	henry
$\mathbf{E}_{\mathbf{TH}}$	Top hat voltage	volts
Ei	Antenna input voltage	volts
η_{A}	Radiation efficiency	

Figure 2. 400-foot, 4-Tower Antenna Array

Figure 6. Photograph of Insulator Bushing

Figure 7. Photograph of Radials

and the stands

-

•

.

...

Figure 12. Field Intensity Measurements Test Equipment Set-Up

¢.

Figure 33. Induced Voltage and Current Measurements, Three-Tower Antenna Array

Figure 34. Two-Tower Array, Configuration 15, Top View

Figure 35. Four-Tower Array, Configurations 29 and 32, Top View

Figure 36. Antenna Tuning, Schematic Diagram

Figure 37. Two-Tower Array, Configuration 15, Top View of Ground Plane

DISTRIBUTION LIST

No. of Copies

10	ESD/DCLE
1	ESD/DCLC
1	ESD/DCLP
15	DRI

-