AD-A017 400

DAMAGE PROFILES IN SILICON AND THEIR IMPACT ON DEVICE RELIABILITY

G. H. Schwuttke

International Business Machines Corporation

Prepared for:

Advanced Research Projects Agency

1 July 1975

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE ADA017400

DAMAGE PROFILES IN SILICON and THEIR IMPACT ON DEVICE RELIABILITY

328162

G. H. Schwuttke, Principal Investigator (914) 897-3140 International Business Machines Corporation System Products Division, East Fishkill Laboratories Hopewell Junction, New York 12533

TECHNICAL REPORT No. 6 July 1975

Contract No. DAHC15-72-C-0274 Contract Monitor: Dr. C. M. Stickley

Sponsored by Advanced Research Projects Agency ARPA Order No. 2196, Program Code No. P2D10

DISTRIBUTION STATEMENT A Approved for public release Distribution Unlimited >

NATIONAL TECHNICAL INFORMATION SERVICE U & Deportment of Commerce Springfield VA 22151

Kikuchi Map of (001) Silicon. (Left) Computer generated. (Right) Micrograph taken with 200 keV electrons.

) Unclassified

DOCUMENT C	ONTROL DATA - R&D								
(Security classification of title, body of abstract and index	ung unnotation must be ente	ered when	the overall report is classified)						
I. ORIGINATING ACTIVITY (Conjugate author) International Business Machines Corporation System Products Division, East Fishkill Hopewell Junction, N.Y. 12533		2a. ne Un 26. gr	PORT SECURITY CLASSIFICATION ICLARSIFIED OUP						
3. REPORT TITLE		-							
DAMAGE PROFILES IN SILICON AND THEIR IMPACT ON DEVICE RELIABIL	ЛТҮ								
DESCRIPTIVE NOTES (Type of report and inclusive dates) Scientific 1 January 1975 to 30 June	1975								
G. H. Schwuttke									
& REPORT DATE	TOTAL NO. OF PA	GES	74 NO. OF REFS						
1 July 1975	65		23						
DAHC 15-72-C-0274 b. project, task, work unit nos.	94 ORIGINATOR'S REPORT NUMBERS) T'R-22.1921								
C. DOO ELEMENT	9b. OTHER REPORT assigned this report	NG(S) (Any	other numbers that may be						
10. OISTRIBUTION STATEMENT									
11. SUPPLEMENTARY NOTES	12 FPONSORING MIL	TARY AC	TIVITY						
	Advanced Re	search	Projects Agency						

June 30, 1975. It describes work dealing with improvements of advanced measurement techniques. Chapter 1 deals with the computer generation of Kikuchi patterns needed for complex structural analysis of crystal defects in silicon. The program is applicable to a large variety of problems and can be used to generate Kikuchi maps for different crystal structures, each desired crystal orientation, and electron energy. The program can also be used to generate channeling patterns for scanning electron microscopy application. The report provides a complete set of computer-generated Kikuchi maps for silicon and 200 keV electrons. A complete program in Fortran IV using an IBM 1800 computer is also given. The second part describes the application of MOS C-V and MOS G-V measurements for the evaluation of epitaxial films on silicon or inculator substrates. It is shown that the presence of an underlying junction requires important precautions with use of the MOS C-V measurement technique. The junction requires an increased number of components in the equivalent network, which impedes the analysis. This chapter shows how to solve the problem. Values for MOS dot diameter, layer and substrate resistivity, oxide thickness, etc. are given and refer to ranges wivere meaningful lifetime measurements can be carried out.

Unclassified

Security Classification

Unclassified

i.		LIN	K A	LIN	ĸø	LIN	ĸc
	KEY WORDS	ROLE	wr	HOLE	WT	ROLE	wī
Silicon							
Defect anal	ysis						
Kikuchi pat	terns						
Transmissi	on electron microscopy						1
Epitaxial la	vers						1
Litetime m	easurements						
					· · · ·		1
					1		1
							i
			1				
			1				1
			1				1
							1
			1				
			1				
					1		
		1					
			1	1			
			1 .			1	1
			1				
						1	
					1		
							1
				1.1			
	ia		Unc	lassifie	sd		

.

IBM Reference No. -- TR 22.1921

CT

CONTENTS	FAGE
List of Investigators	ii
Summary	iii
Chapter 1	
Computer Generation of Kikuchi Maps for Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) Investigations	
by H. Kappert	
Introduction	1
Geometry	2
Orientation	6
The Program	17
Selection of Diffraction Planes Transition to Desired Orientation Rejection of High Index and High Order Planes Calculation of Coordinates Determination of Radius and Center of Kikuchi Circle Provision for an (x,y) Array for the Plot Plotting Section	
Plotting the role map	21
Results	
References	24
Appendix: Program in Fortran IV for IBM 1800 Computer	25

Chapter 2

Electrical Characterization of Quasi MOS Structures on Silicon

by W. R. Fahrner, E. F. Gorey, and C. P. Schneider

Introduction	38
Analysis of Equivalent Network	39
Spreading Resistance vs. Dot Diameter	48
Range of Quasi MOS Capacitance Technique	50
Comparison With Other Techniques	51
Results and Discussion	52
Summary and Conclusions	55
References	56

LIST OF INVESTIGATORS

The project is supervised by Dr. G. H. Schwuttke, principal investigator. The following people contributed to the work in this report:

Dr.	W.	Fahrner	-	Investigator (Visiting Scientist)
Dr.	н.	Kappert	-	Investigator (Visiting Scientist)
Dr.	G.	H. Schwuttke	-	Principal Investigator
Mr.	E.	F. Gorey	-	Technical Support
Mr.	c.	P. Schneider	-	Technical Support
Mr.	н.	Ilker	-	Technical Support

1

i i

SUMMARY

This report summarizes work done during the contract period of January 1, 1975 to June 30, 1975. It describes research programs dealing with improvements of advanced measurement techniques. Such improvements became imperative during the course of the contract work and are needed for subsequent structural and electrical characterization of impact sound stressed (ISS'ed) silicon wafers before and after oxidation and epitaxy.

The first chapter advances the analytical capabilities of transmission electron microscopy through the application of computer-generated Kikuchi patterns. Kikuchi lines in electron diffraction patterns are used for complex crystal defect analysis based on two-beam orientation of the specimen. Since our Hitachi microscope permits seeing only about 4° of a diffraction pattern it is impossible to index Kikuchi lines without a detailed Kikuchi map. Therefore it was necessary to computer-generate Kikuchi plots. A program for the generation of such plots was written. The program was used to generate Kikuchi maps for the three main orientations (001), (011) and (111) for Si and 200 keV electrons.

An additional benefit of this computer program is that it is applicable to a large variety of problems. By changing proper parameters the same program can be used to generate maps for all kinds of crystal structures, each desired crystal orientation, electron energy, crystallographic order and maximum index-number of lines. The program considers also parameters such as map-scales and camera length of the microscope.

In addition the program can be used to compute and print out channeling patterns used for crystal orientation analysis in the scanning electron microscope. The report provides a complete set of Kikuchi maps for silicon and 200 keV electrons as well as the complete program to generate other patterns.

The second part of the report describes the application of MOS C-V measurements to the evaluation of epitaxial silicon films on silicon or insulator substrates. It is shown that the presence of a semiconductor junction under the MOS structure requires certain considerations to be made if meaningful measurements are to be obtained. The junction requires an increased number of components in the equivalent network, which impedes the analysis.

iv

A solution to this problem is given. If one side of the junction is oridized, a quasi MOS structure is obtained. The equivalent network of such a structure is discussed and the conditions for MOS C-V and G-V measurements are given. When the MOS admittance can be measured the following information can be obtained:

- Surface-state density, the corresponding capture cross sections, the charge density in the oxide, and deep energy levels.
- 2. The doping concentration.
- 3. The minority carrier lifetime.

The discussion concentrates on the measurement of minority carrier lifetime in epitaxial silicon films. Values for layer and substrate resistivity, dot diameter, oxide thickness, etc., are given to establish the range for this "Quasi MOS Capacicance Technique."

Chapter 1

COMPUTER GENERATION CF KIKUCHI MAPS FOR TRANSMISSION ELECTRON MICROSCOPY (TEM) AND SCANNING ELECTRON MICROSCOPY (SEM) INVESTIGATIONS by H. Kappert

INTRODUCTION

Electron diffraction patterns of samples of very good crystalline perfection and of a thickness such that inelastic scattering of electrons is fairly high, show a distinct line structure superimposed on the background intensity. This line pattern is known as the Kikuchi pattern. A similar pattern (known as Coates or channeling pattern) appears in the SEM when the intensity of the backscattered electrons is recorded as an angular dependence of the incoming beam in reference to the sample orientation.

Several applications of the TEM technique such as Burgers vector determination, crystal orientation determination, and indexing of unknown spot pattern make use of such Kikuchi patterns (1-8). For such applications it is convenient to have Kikuchi maps which show the geometrical configuration of the pattern and give the indices of all lines in it.

One way to obtain such maps is to take many images in the TEM of overlapping parts of the diffraction pattern for different tilt angles of the specimen and assemble these images in a composite map. Another way is to generate plots of indexed

Kikuchi maps through a computer. The advantage of the second way is that once a program is available it is very easy to select any desired crystalline structure, sample orientation, different wavelength of electrons or even x-rays, scale of map, or order of bikuchi lines, just by changing some parameters in the program.

To generate Kikuchi maps very good instructions can be found in the literature (4,7,9). We followed mainly the recipe given by C. T. Young and J. L. Lytton (9).

GEOMETRY

Kikuchi lines are originated by inelastically scattered electrons in the specimen. The energy losses of these electrons are small enough that they still can be considered coherent, but they have changed direction in reference to the primary electron beam. Therefore, in spite of the primary beam being off Bragg angle θ for a certain set of net planes, a particular fraction of the inelastically scattered electrons makes a Bragg reflection at these planes, e.g., (h, k, l) in Fig. 1. This can be regarded as a virtual incoming electron beam for each set of net planes, which is split below the specimen into a transmitted and a diffracted part. We find this situation not only in the plane that corresponds to the plane of the drawing in Fig. 1 but in all directions whenever the Bragg

Fig. 1. Geometry for formation of Kikuchi lines.

condition is satisfied for the (h, k, 1) plane. Therefore all the directions of the particular fraction of elastically scattered electrons in Bragg conditions for a certain set of net planes (h, k, 1) are represented by a cone (Fig. 2), where the cone axis is in the direction of the plane normal (h, k, 1) and the half opening angle is 90°-0 (Kossel cone). The same geometry can be used for channeling pitterns in the SEM. In the SFM the primary beam itself has to be tilted along a cone surface to get a signal of the backscattered electrons with less p more intensity than for the background intensity that appears as dark or bright lines on the TV display.

The real Kikuchi line patte n is the intersection of all the cones produced by the different sets of net planes, with the image plane in the TEM below the specimen. The real channeling pattern is the intensity modulation of the backscattered electrons above the sample, as seen by the collector and displayed on the TV screen, dependent on the tilt angle of the primary beam in reference to the sample orientation.

The usual way to generate Kikuchi and channeling maps is to make a stereographic projection of all the cones, which are thus represented as circles on the projection sphere (Fig. 2). This may be done because the projection keeps the angles between intersecting lines or circles on the sphere constant, results in only small distortions of the distances especially

Fig. 2. Geometry of Kossel cones and their intersection with the projection sphere.

close to the center pole , and has the advantage that standard stereographic pole maps can be used for indexing purposes. The stereographic projection of the intersecting lines of the diffraction cones with the projection sphere appears as circles in the projection plane, which are called Kikuchi circles. The radius and center of each Kikuchi circle has to be calculated. Subsequently the part of the circle that is within the plotting area has to be determined and to be drawn.

ORIENTATION

Standard stereographic projections are made from G to O and are observed from the top, as shown in Fig. 3. The channeling patterns in the SEM are observed in the same way. To find the correct orientation between standard stereographic pole maps, channeling map and channeling pattern on the screen, we have only to consider which lenses are used to focus the primary beam onto the sample surface and how the tilt angle is related to the TV display.

The G to O direction of the standard stereographic projection, as shown in Fig. 3, is just the opposite to the direction in which the electrons go in the TEM to form the Kikuchi pattern on the screen. One gets around this orientation problem

 \triangleleft

by turning the projection upside down (1). Therefore standard stereographic projections have to be inverted for indexing purposes. Another possibility is to use the standard stereographic projection without inversion. This requires an adjustment of the Kikuchi maps such that the indexed reflections in the diffraction pattern correspond to the planes in the crystal. From the geometry shown in Fig. 2, one can see that the cone representing the directions of diffracted electrons intersects the projection sphere at the lower hemisphere as well as at the upper hemisphere. A downward projection--that is, the unconventional projection from 0 to G (Fig. 3)-would result in the real Kikuchi map as seen on the TEM screen.

An upward projection--that is, the conventional stereographic projection from G to O (Fig. 3)--results in the same map, except that this one is rotated by 180° in reference to the real Kikuchi pattern on the TEM screen. To do it this way was recently proposed by Head et al. (10). We decided to use this method because a rotation of 180° is more convenient than a mirror inversion, and we can use standard stereographic projections as in x-ray studies.

The correct orientation between the sample, the TEM micrograph, the diffraction pattern, standard pole map and Kikuchi map is found as follows:

Fig. 4. (001) map for Si 200 keV, xo = yo = 11cm, R = 11cm, RMN = 2, SMSQ = 5.

Fig. 5. (001) map for Si 200 keV, $x_0 = y_0 = 20$ cm, R = 32cm, RMN = 4, SMSQ = 9.

Fig. 6. (011) map for Si 200 keV, $x_0 = y_0 = 12$ cm, R = 11cm, RMN = 4, SMSQ = 5.

Fig. 7. (111) map for Si 200 keV, xo = yo = 12cm, R = 11cm, RMN = 2, SMSQ = 5.

Fig. 8. (001) map for Si 200 keV, $x_0 = y_0 = 12$ cm, R = 32cm, RMN = 4, SMSQ = 9.

Fig. 9. (001) map for Si 30 keV, xo = yo = 12cm, R = 32cm, RMN = 4, SMSQ = 9.

Fig. 10. (011) map for Si 200 keV, $x_0 = y_0 = 12$ cm, R = 32cm, RMN = 4, SMSQ = 9.

Fig. 11. (111) map for Si 200 keV, xo = yo = 12cm, R = 32cm, RMN = 4, SMSQ = 9.

- Consider the rotation between micrograph and diffraction pattern that depends on the number of lenses used and their excitation.
- Orient the Kikuchi plot the same way as the TEM Kikuchi pattern and take negative values of the pole indices as plotted in the map.
- 3. Rotate a standard stereographic pole map with the same center pole as the Kikuchi plot by 180° in reference to the pole map plotted within the Kikuchi map.

To avoid any other inversion or rotation we have to use both negatives and prints of the micrograph as recorded in the TEM on the screen.

THE PROGRAM

The program is written in Fortran IV for an IBM 1800 computer. The time used to generate one plot depends on the number of lines that have to be plotted. For example, the plot shown in Fig. 4 takes less time than the plot shown in Fig. 6, where higher order and higher index lines appear. The time for the plot in Fig. 6 was about 50 min. The attached program was used for this plot. Figures 6-11 show different plots generated with the same program when parameters used are as described in each figure caption.

Steps of the program:

1. Selection of diffraction planes

The usual structure factor equation:

$$F = \sum_{j=1}^{n} f_{j} \exp \left[2 \gamma_{i} \left(u_{j} h + v_{j} k + w_{j} 1 \right) \right]$$
(1)

is used to calculate the structure factors for silicon so that the planes can be selected which give the Bragg reflections. For this calculation the coordinates u, v, w of the position of the 8 atoms in the Si unit cell have to be put into (1). The Bragg equation is used in the form

$$\theta_{hkl} = \frac{\lambda}{2a} \sqrt{h^2 + k^2 + l^2} = 0.0023 \sqrt{h^2 + k^2 + l^2}$$
(2)

for 200 keV electrons and Si samples to calculate the Bragg angles θ_{khl} for each plane.

Transition to desired orientation with coordinates X31, X32, X33

The coordinate transformation

$$\begin{pmatrix} XH \\ XU \\ XL \end{pmatrix} = \begin{pmatrix} h_1/\sqrt{s_1} & k_1/\sqrt{s_1} & l_1/\sqrt{s_1} \\ h_2/\sqrt{s_2} & k_2/\sqrt{s_2} & l_2/\sqrt{s_2} \\ h_3/\sqrt{s_3} & k_3/\sqrt{s_3} & l_3/\sqrt{s_3} \end{pmatrix} \begin{pmatrix} XHS \\ XUS \\ XLS \end{pmatrix}$$
(3)

is used where $(h_3, k_3, l_3) = (X31, X32, X33)$. The other vectors (h_1, k_1, l_1) and (h_2, k_2, l_2) have to be chosen in accordance with a right-handed Cartesian system. $s_i = h_i^2 + k_i^2 + l_i^2$.

3. Rejection of high-index and high-order planes

Planes of high-index numbers larger than a maximum number SMSQ = $\sqrt{h^2 + k^2 + 1^2}$ have to be rejected; the same is true for planes of higher order than maximum order RMN.

4. Calculation of coordinates in the projection plane

The coordinates of one intersection point of the diffraction cone with the projection sphere have to be calculated. For this purpose spherical polar coordinates are introduced. Then the calculation of the coordinates within the projection plane has to be performed by the equation

$$P_{x} = 2R \quad \tan \gamma/2 \frac{P_{x}'}{(P_{x}'^{2} + P_{y}'^{2})^{1/2}}$$

$$P_{y} = 2R \quad \tan \gamma/2 \frac{P_{y}'}{(P_{y}'^{2} + P_{y}'^{2})^{1/2}}$$
(4)

where $\gamma = \cos^{-1} (P_z'/R)$, as can be seen from Fig. 3.

5. Determination of the radius and center of the Kikuchi circle

From Fig. 3 it can be deduced that the radius of the Kikuchi circle is

$$\overline{CA} = 1/2 (\overline{BO} + \overline{OA})$$
(5)

and the coordinates of the circle center C are

 $CX = P_{X} (\overline{CO}/\overline{PO})$ $CY = P_{V} (\overline{CO}/\overline{PO})$

6. Provision for an (x,y) array for the plot

Only a small part of the Kikuchi circle in an area with radius RI=SQRT (XO \times XO + YO \times YO) around the center pole has to be plotted. Therefore it has to be checked whether a particular Kikuchi circle has a part of it inside this area. Then the circle equation

$$[X - CX]^{2} + [Y - CY]^{2} = R^{2} = [\overline{CA}]^{2}$$
(6)

is used to provide an array of 50 (x,y) pairs for the plotter.

7. Plotting section

A final check is made to find out which values of the array are inside the plotting square given by XO and YO. The slope of the lines near the border of this square is determined in order to plot the indices of this Kikuchi line pair at the end of the line with the same slope.

8. Plotting the pole map

An extra program was written to produce pole maps of the same scale as the Kikuchi map. The steps are essentially similar to steps 2, 3, and 4 above.

RESULTS

The size of each plot is about 24 x 24 cm², which is the maximum usable size of the plotter used. The numbers inside the map represent the indices of the pole where the location is indicated by a +. The numbers outside the map represent the indices of a certain Kikuchi line pair. The indices are plotted at one end of the respective Kikuchi line with the same slope as the lines at this end. Figures 4, 5, 6, and 7 represent (001), (011), and (111) Kikuchi maps with the same scale for Si with 200 keV electrons. Figures 8, 10, and 11 again represent (001), (011), and (111) Kikuchi maps for Si with 200 keV electrons but for about three times larger scale and with higher-order and higher-index lines. Figure 5 is a larger scale plot of the lower-right quadrant of Fig. 4; and Fig. 9 is the same plot as Fig. 8 but with 30 keV electrons and can be used as a map for channeling pattern for the SEM. Figure 12 gives several examples of Kikuchi poles as shown on the maps and in the TEM.

Kikuchi Patterns 21

(001) pole

(114) pole

Fig. 12. Kikuchi poles of Si with 200 keV electrons as shown on the map of Fig. 5 and in the Hitachi TEM.

(116) pole

(115) pole

Fig. 12. Kikuchi poles of Si with 200 keV electrons as shown on the map of Fig. 5 and in the Hitachi TEM.

Kikuchi Patterns 23

ACKNOWLEDGMENT

The author wishes to thank R. Anderson and G. Das for helpful discussions

REFERENCES

- P. B. Hirsch et al., <u>Electron Microscopy of Thin Crystals</u>, Butterworths, 1965.
- S. Amelinckx et al., <u>Modern Diffraction and Imaging</u> <u>Techniques in Material Science</u>, North Holland, 1970.
- 3. L. E. Murr, <u>Electron Optical Applications in Materials</u> <u>Science</u>, McGraw Hill, 1970.
- 4. E. Levine et al., J. Appl. Phys. 37, 2141 (1966).
- 5. P. R. Okamoto et al., J. Appl. Phys. <u>38</u>, 289 (1967).
- 6. M. V. Heimendahl, Phys. Stat. Sol. (a) 5, 137 (1971).
- 7. J. C. Bomback and L. E. Thomas, J. Appl. Cryst. 4, 356 (1971).
- 8. W. K. Wu and J. Washburn, J. Appl. Phys. <u>45</u>, 1085 (1974).
- 9. C. T. Young and J. L. Lytton, J. Appl. Phys. <u>43</u>, 1408 (1972).
- 10. A. K. Head et al., Computed Electron Micrographs and

Defect Identification, North Holland, 1973.

K [KU0010 K [KU0012 K [KU0014 K [KU0016 K IKU0020 K IKU0022 K 1KU0000 K 1KU0001 K IKU0090 KI KU0095 K [KU0110 KIKU0117 K IKU0002 K1KU0023 K IKU0024 K1KU0025 K1KU0050 KIKU0060 K IKU0061 K1KU0070 K 1KU0080 KIKU0085 KIKL J100 KIKU0105 K IKU0106 K1 KU0107 K IKU0118 K1KU0119 K 1KU0120 K IKU5207 K1KU5208 K1KU0122 K I KU0051 K IKU0071 RI#RADIUS OF PLOTTING CIRCLE, X0, YO PLOTTING SQUARE INTEGER H.HI,HIA,HA DIMENSION U(8),V(8),M(8),CX(2),CY(2),RKC(2), 1X(50),Y(50),XP(50),YP(50),SF(17,17,9) // JOB ·} Y Z 02 JAN 70 20.331 HRS // FOR PROG 02 JAN 70 20.331 HRS *IOCSICARD, 1443 PRINTER) A=6.28+(U(M)+H1+V(M)+K1+W(M)+L1) YSCAL=XSCAL Call SCALF (XSCAL, VSCAL, 0.0,0.0) DD 20 H=1,17 DD 10 1=1,8 REAO (2'7) U(1),V(1),W(1) 7 FORMAT (3F6.2) 10 CONTINUE CALCULATE STRUCTURFACTOR READ R OF STERED SPHERE PRODUCE (H,K,L) VALUES qLT(X0+X0+Y0+Y0) F=ROUND(F1++2+F2++2) READ LATTICE PARAMETER F2= F2+SIN(A) READ (2,8) R 8 FORMAT (F6.2) *LIST ALL " F1=F1+C0S(A) **#ARITHMETIC TRACE** DO 29 K=1,9 K1=K-1 DO 39 L=1,9 00 50 M=1,8 00 19 H=1,9 SF(H,K,L)=F XSCAL=0.39 +10CS (PLOTTER) ***TRANSFER TRACE** F1=0.0 F2=0.0 THET=0.0 CONT INUE 39 CONTINUE 29 CONTINUE 19 CONTINUE X0=12.5 Y0=12.5 H1=H-1 1-1=11 20 000 υυυ 000 υυ 000 J

0

O

0

Kikuchi Patterns

25

Ø

0

APPENDIX-FORTRAN IV PROGRAM

K IKU0305 K I KU0310 02 JAN 70 PAGE 002 K 1KU0200 K 1KU0205 KIKU0125 K1KU0195 K1KU0300 **KIKU0123** K [KU0123 KIKU0124 K 1KU0125 K IKU0126 K 1KU0127 K I KU0128 K IKU0129 K1KU0190 K 1KU0320 K IKU0360 K IKU0364 K1KU0127 K1KU0362 K1KU0365 K IKU0366 K1KU0367 K1KU0369 **K IKUU370** K1KU0380 K 1KU0368 K1KU0372 K IKU0375 K1KU0376 K IKU0377 K1KU0378 K IKU0379 K IKU0381 K1KU0382 K 1KU0363 K1KU0385 K1KU0371 K IKU0372 TRANSITION TO DESIRED ORIENTATION WITH COORD. X31,X32,X33 BRAGG ANGLE 200 KV LAMBDA=0.0251 AE,SI A=5.4308 AE CALCULATE COORDINATES ON STERED SPHERE F=SF(H1A,K1A,L1A) IF(F-1.) 4C,40,60 S0=S0RT(FL0AT(H1*H1+K1*K1+L1*L1)) S1=50RT(X11+X11+X12+X13+X13) S2=50RT(X21+X21+X22+X23+X23) S3=50RT(X31+X31+X32+X33+X33) XH=A11*XHS+A12*XKS+A13*XLS SELECT PLANES OF LOW INDEX IF(SMSQ-SQ) 40,40,140 140 IF (SQ-0.5) 40,40,141
141 XHS=R*H1/S0
XKS=R*K1/S0 FOR POL NAL, KI, KI, LI) HIA=IABS(H1)+1 DO 30 K=1,17 KIA=IA8S(K1)+1 D0 40 L=1,17 L1A=1ABS(L1)+I THET =0.0023#50 XL S=R *L 1/50 A11=X11/S1 A12=X12/S1 A13=X13/S1 A21=X21/52 A22=X22/57 A23=X23/S2 A31=X31/S3 A32=X32/53 A33=X33/S3 ×23=-1. SHS0=5. 1=1-9 K1=K-9 H1=H-9 X11=1. X12=0. X21=0. ×13=0. X22=1. X31=0. X33=1. X32=1. 99 141 U υU 000 υυ U J

---- 26

G

0

0

0 • •

()

0

o n o

0

02 JAN 70 PAGE 003 K1KU0387 K IKU0386 KIKU0393 K IKU0396 KI KU0399 K 1KU0400 K IKU0403 KIKU0404 K IKU0406 K1KU0407 K IKU0408 KIKU0409 K 1KU0410 K IKU0390 K IKU0392 K IKU0394 K1KU0395 K1KU0397 K IKU0398 K1KU0402 K [KU0412 KIKU0413 K IKU0415 KIKU0416 K1KU0418 K IKU0419 KIKU0420 KIKU0450 K1KU0391 KIKU0411 K IKU0417 K IKU0440 K 1KU0444 KI KU0446 K1KU0448 K IKU0453 K 1KU0455 K1KU0457 K [KU0459 KIKU0460 KIKU0422 K IKU0425 K I K U0442 K IKU0451 KIKU0452 KIKU0454 K IKU0421 K IKU0461 130 %11=10000.*(HIA-1)+100.*(KIA-1)+(LIA-1) COORDINATES FOR DIFFR.CONE ON SPHERE XI2=N#(10000.*[H1+100.*[K1+1L1) IF(IH1+IK1+IL1) 100,100,101 XK=A21¢XHS+A22¢XKS+A23¢XLS XL=A31¢XHS+A32¢XKS+A33¢XLS IF(XL) 40,130,130 REJECT PLANES OF HIGHER ORDER IF(AR0X-0.1) 45,45,46 IF(R0XI) 100,45,110 RMN=RUNO(RN/RM) IF(RMN-4.) 252,252,40 PHI = AT AN (A1) + 3. 141 593 IF(FH-1.) 111,111,41 (XK) 257,256,256 IF (XH) 253,254,255 F (IG) 111,111,43 FH= SF(IH5, IK5, IL5) IF (XK) 258,260,258 ARDX=APS(ROXI) G= IH1+IK1+IL1 00 100 IL=1,5 00 110 N=2,8 00 80 [H=1,5 D0 90 IK=1,5 IK1=IK-1 RDXI=X11-X12 00 111 M=1,8 RN=FLOAT (N) PHI=ATAN(A1) IK5=IK1#M+1 IL5=IL1#M+1 [+H=[H]=2H] RM=FLOAT(M) GO TO 261' Gn TO 259 GO TO 259 G0 T0 261 HX/ XX=1V A1=XK/XH 1-1=111 CONTINUE CONT INUE CONT I RUE CONT INUE SO CONTINUE [-H]=[H] C=0. S=1. C=0. THE 43 1100 24 111 254 256 257 253 101 14 06 252 255 000 ں U C

Ð

Kikuchi Patterns

0

0

0 27

O

K1KU0474 K1KU0475 PAGE 004 K1KU0462 K 1KU0463 K1KU0464 K 1KU0465 K1KU0466 K 1KU0466 K1KU0467 K 1KU0468 K1 KU0469 K 1KU0470 K1KU0473 K IKU0473 KIKU0480 K1KU0490 K 1KU0500 K1KU0510 K IKU0560. KIKUC611 KIKU0613 K 1KU0472 KIKU0473 K 1KU0485 K IKU0495 K1KU0505 K1KU0500 K1KU0471 K1KU0515 K1KU0520 KIKU0525 K1KU0530 K 1r U0535 KIKU0550 K1KU0565 K 1KU0555 K1KU0570 K1KU0575 K 1KU0580 K 1KU0545 K1KU0585 K1KU0606 K1KU0608 K 1KU0609 K 1KU0605 K 1KU0607 CALCULATE COORDINATES IN PROJECTION PLANE GAM12=(3.141593-ATAN(A12))/2. 2710 GAM12=0.785398 273 TAN12=SIN(GAM12)/COS(GAM12) A12=SQRT((R/XL12)**2-1.) If(XL12) 271,2710,272 A2=-S0RT((R/XL)++2-1.) ARG11=TH+1.570796+THET ARG21=TH-1.570796+THET ARG12=TH+1.570796-THET ARG22=TH-1.570796-THET A2=SORT((R/XL)++2-1.) IF (XL) 265,262,263 TH=1.570796 IF(TH) 266,266,264 GAM12= ATAN(A12)/2. 266 TH=TH+3.141593 S11=SIN(ARG11) C11=COS(ARG11) \$12=\$IN(ARG12) S21=SIN(ARG21) C12=C05(AKG12) C21=C05(ArG21) S22= SIN (ARG22) C22=C05(ARG22) XH12=R+C+S12 XK12=R+S+S12 XH21=R#C#S21 XK21=R + S + S 21 (H=ATAN(A2) XH11=R*C*S11 XK11=R + S + S11 XH22=R#C*S22 XK22=R+5+522 FOP. DIFFR. CONE (H=AIAN(A2) C=COS(PHI) (IHd) NIS= XL12=R+C12 XL21=R*C21 XL11=R*C11 XL22=R+C22 G0 T0 259 GO TO 264 G0 T0 264 60 10 273 G0 T0 273 260 C=-1. S=0. 259 261 263 265 262 264 271 272 U U J J 0000 0 7 0 0 8 Q 0 0 0 0

28

;

02 JAN 70 PAGE 005	K IKU0620 KI KU0625 K IKU0630	K 1KU0635 K1 KU0636 K 1KU0637 K1 KU0638 K1 KU0638	KIKU0639 KIKU0641 KIKU0643 KIKU0645 KIKU0648 KIKU06550 KIKU06550	K IKU0660 KI KU0661 KI KU0662 KI KU0664 KI KU0668 KI KU0668 KI KU0670 KI KU0675 KI KU0675 KI KU0675 KI KU0685	K IKU0690 KIKU0691 KIKU0693 KIKU0693 KIKU0694 KIKU0696 KIKU0698 KIKU0700 KIKU0700 KIKU0710 KIKU0715	KIKU0720 KIKU0725 KIKU0730 KIKU0735 KIKU0755 KIKU0760 KIKU0770 KIKU0775 KIKU0775
	F12=2。*R*TAN12/SORT(XH12*XH12+XK12*XK12) A1X=XH12*F12 A1Y=XK12*F12	274 GAM21=50RT(1R/XL21) ⁴ +2-1.) 1F(XL21) 274,2740.275 274 GAM21=(3.141593-ATAN(A21))/2. 60 TO 276	275 CAM21= ATAN(A21)/2. 60 TO 276 2740 GAM21=0.785398 2740 GAM21=0.785398 2740 GAM21=0.785398 2740 GAM21=0.785398 81X=XH21=F21 81X=XH21=F21 81X=XK21=F21 6	All=SQRT((R/XLI1)**2-1.) F(XLI1) 278,2780,279 278 GAM11=(3.141593-ATAN(All))/2. GO TO 280 279 GAM11= ATAN(All)/2. GO (O 280 2780 GAM11=0.785398 2780 GAM11=0.785398 2780 GAM110.785398 2780 GAM11=0.785398 2780 SAM11=0.785398 2780 SAM11=0.785338 2780 SAM11=0.78538 2780 SAM11=0.78538 2780 SAM11=0.78538 2780 SAM11=0.78538 2780 SAM11=0.78538 2780 SAM11=0.78538 2780 SAM11=0.78538 2780 SAM11=0.78538 2780 SAM11=0.7	A22=50RT((R/XL22)**2-1.) IF (XL22) 281,2810,282 281 GAM22=(3.141593-ATAN(A22))/2. 282 GAM22= ATAN(A22)/2. 282 GAM22= ATAN(A22)/2. 2810 GAM22=0.785398 283 TAN22=51N(GAM22)/COS(GAM22) F22=2.*R#TAN22/SORT(XH22*XH22+XK22*XK22) 82X= XH22*F22 82Y=XK22*F22 62Y=XK22	C ABCJEBIX-AIX BBXJ=BIX-AIX BBY1=BIY-AIY ABY2=B2X-A2X ABY2=B2Y-A2Y C RKC(1)=0.5*SORT(ABX1*ABX1+ABY1*ABY1) CX(1)=(AIX+BIX)/2. CY(1)=(AIX+BIX)/2. CY(1)=(AIX+BIY)/2. CY(1)=(AIX+B1Y)/2. CY(2)=(A2X+B2X)/2. HRITE (5.6968) Hi.Kl.LI.RKC(1).CY(1).GY(1).RKC(2).GY(2).

•

О

Kikuchi Patterns 29

PAGE 006

K IKU0999 K IKU0890 K I K U 0 9 4 0 K IKU0954 K1KU0956 K 1KU 0970 K IKU0990 KIKU1000 K 1KU0820 K IKU0830 KIKU0840 K IKU0850 K1KU0860 K IKU0870 KIKU0930 K IKU0950 **KI KU0952** K IKU0958 KI KU0960 K1KU0980 KIKU0982 K 1KU0983 KIKU0984 K IKU0985 KIKU0986 K IKU0987 KIKU0988 K IKU0990 K1KU0992 K IKU0994 K1KU0995 K IKU0996 KIKU0997 K IKU1001 K1KU0810 K1KU0823 KIKU0880 KIKU0900 K1KU0902 K IKU0920 **KIKU1002** K IKU1003 KIKU1004 K IKU0841 K1KU0842 K IKU0843 K IKU0401 K IKU0931 SCH1= (CY(I) *CY(I) *R1*R1- SCH*SCH)/R11+(SCH*CX(I)/R11)**2 SCH= \$5*{R1*R1+CX(1)*CX(1)+CY(1)*CY(1)-RKC(1)*RKG(1)) R11=CX(1)+CX(1)+CY(1)*CY(1) Y2=SURT(R1*R1-X2*X2) T1=RKC(I)-SORT((X1-CX(I))++2+(Y1-CY(I))++2) T1A=ABS(T1) T2=RKC(I)-SQRT((X2-CX(I))++2+(Y2-CY(I))++2) CHECK INTERSECTION OF PLOT CIRCLE WITH KC ALF1=ATAM(Y1S/X1S)+3.141593 ALFI=ATAN(YIS/XIS)+6.283186 ALF2=ATAN(Y2S/X2S)+6.283186 IF (T2A-0.01) 441,441,440 6968 FORMAT (2X, 313, 2X, 6F12.2) IF(T1A-0.01) 430,430,420 IF (SCH1) 401,410,410 X1= SCH+CX(I)/R11 + S0S X2=SCH+CX(I)/R11-SQS IF (SCH2) 40,410,402 SCH1=0.0 Y1= SORT(R1#R1-X1#X1) IF(XIS) 505,510,515 IF(YIS) 517,516,516 ALF1=ATAM(YIS/XIS) IF(X2S) 525,530,535 IF(Y1S) 520,523,526 ALF1=1.570796 IF(Y2S) 537,536,536 IF (RY) 449,449,450 CALCULATE INTERSECTION ALF2=ATAN(Y2S/X2S) RY=ABS(Y1-Y2)-0.1 SCH2= SCH1+5.E-5 505=50RT(SCH1) ALF1=4.712389 x25=x2-Cx(1) Y15=Y1-CV(1) XIS=X1-CX(I) Y2S=Y2-CY(1) DO 500 1=1,2 T24=A85(T2) G0 T0 5450 G0 T0 528 GO TO 450 GO TU 528 GU TO 528 GO TO 528 GO TO 528 ALF1=0. 440 Y2=-Y2 Y2=-Y2 420 Y1=-Y1 515 510 526 520 535 410 430 675 450 517 523 441 505 528 536 537 402 401 J U U J J 5 30

02 JAN 70 PAGE 007	KIKU1005 KIKU1006 KIKU1008 KIKU1009 KIKU1013 KIKU1015 KIKU1015 KIKU1015	KIKU5000 KIKU5000 KIKU5000 KIKU5005 KIKU5005 KIKU5010 KIKU5020 KIKU5020 KIKU5020 KIKU5020 KIKU5020 KIKU5120 KIKU5220 KIKU5220 KIKU5220 KIKU5220 KIKU5220 KIKU5220 KIKU5220	KIKU5310 KIKU5312 KIKU5314 KIKU5316 KIKU5316 KIKU5320 KIKU5320 KIKU5330 KIKU5330
,	•		
		88	5 -
		H-1))+CVC	
	46 5452 5453 5454 5454 5458 6 50 50	502 LF1-DALF+(LF1-DALF+(550 580 580 10, YP(J)) (J), YP(J))	7010 •141593 5EL)
	50 540,543,5 50 50 50 50 50 5451,54515551,5451 5551,5451,5451,54510551,545100000000000000000000000000000	(1)*5501,5 (0],5501,5 (1)*5501,5 (1)*5501,5 (1)*51N(A (M)) (M) (M) (M) (M) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	-YP(J-2) -YP(J-2) -YP(J-2) (DY/DX) 20 20 (DY/DX)+3 +0.5*COS(1
	GO TO 54 ALF2=1.5 GO TO 54 GO TO 54 ALF2=1.5 GO TO 54 ALF2=4.7 GO TO 54 ALF2=ALF IF(Y1S) IF(Y1S) IF(Y1S) IF(Y2S) ALF1=ALF ALF1=ALF ALF1=ALF	$\begin{array}{c} J=0\\ D=0&0&0\\ M=M&1&5\\ G=0&10&55\\ G=0&10&55\\ M=51-M&1&55\\ M=51-M&1&55\\ M=51-M&1&55\\ M=1&10&55\\ M=1&10&55\\ M=1&1&1&5\\ M=1&1&1&2\\ J=1&1&1&2\\ J=1&1&1&2\\ J=1&1&1&2\\ J=1&1&1&2\\ J=1&1&2&1\\ J=1&1&2&2\\ J=1&1&2&2&2\\ J=1&1&2&2&2\\ J=1&1&2&2&2\\ J=1&1&2&2&2\\ J=1&1&2&2&2\\ J=1&1&2&2$	DY=YF(J) DX=YF(J) DX=YF(J) DEL=ATAN GD TO 70 GD TO 70 GC TO 70 GC TO 70 DEL=ATAN XB=XF(J)

0

-

Kikuchi Patterns 31

		6	4						- 1			•				* e	G	-	•	Court		0		Q)		>		0		•		Q			
								•												1500-1	1=1516	1=162/	= 164]=1648)=1654)=1672)=167E)=1684	1=1642)=16AE)=1634)=1602	1=1605)=16EA)=1656	
															2					or Uxo	RIR	THETTR	X13(P	X33(R	413(R	RDXICR	A1 (R	ARGIZIR	ARGILLA	ARG221R	GAM12(R	FIICR	82X(R	SCHIR	X2 (R	LAIR
																			٠	7200-	-0100		۰.													
	÷.	Č.	ų,					G		8		9								.4500-	=1610-	=1628	=1640	1=164C	=1658	+001=	=1670	=1688	=1640	= 1 6 AC	-1668	=1600	=1600	=1568	=16F4	00/ T=
														•							SFIR	F2(R	. X12(R	#32(R]	AIZIR	XI2(R)	RMN(R)	AZIR	XI 21 (R)	XLII(R)	XL22(R)	TANII(R)	F22(R)	ABY2(R)	XI(R)	1 2121
K I K U 5 3 4 1 K I K U 5 3 4 2 K I K U 5 3 4 3	K1KU5345 K1KU5345	K1KU5351 K1KU5360	K IKU5361 K I KU5362	K 1KU5363	K 1KU5366	KIKU5367	K1KU5369	K 1KU5370	KIKU5372	K1KU5375	K IKU5376	KIKU5377	K1KU5378	KIKU53A0	K1KU5381	K IKU53CC	KIKU5400 KIKU5500	K1KU5600		0500-0500-1)=01CA-0168)=1626 1-1422)=163E)=164A)=1656)=166E)=167A)=1686)=10/2)=16AA)=1686)=16CE)=160A)=1666 .)=16F2	J=10rc
																					YP(R	FICR	X11(R	X31(R	AIICR	XILLR	RMCR	THIR	XK21(R	XK11(R	XK22(R	GAM11 (R	TANZZIR	#BX21R	SOSIR	TAIK
			•						• .											0000-3000-	=0166-0104)=1624)=1 (-3C	=1648	1=1654	= 166C	=1678	= 1684	=1690	=1648	=1684	=1600	= 1608	=16E4	=16F0	-Iorc
i																		•		0	XP(R)	RI (R)	XLS(R)	X23(R)	S3(R)	XL(R)	PN(R)	S(R)	XH21(R)	XHII(R)	XH22(R)	BIY(R)	SAM221R)	ABYI(R)	SCH2(R)	I TIK
	, DEL)		2																·		=0102-0040)=1622)=163A)=1546	= 1652)=166A)=1676	= 1682	169A	= 1 646	=1682 -1485	=16CA	= 1606) = 1 6 E 2)=16EE	FIOLA
	•1•12	נרו)	ווש						7060	11911	7070	· Y82)	3,YB3)	1287.4	· Y84)					0777	X R A	Y0(R	XKS (R	X 22(R	S2 (R	XKIR	FHIR	210	C21 (R	CILLR	C22(R	BIXIR	AZYIR	18X1 (R	CH1(R	121K
(H) (K1)	HAR(X8,Y8, 1,7099) HI	(311) 0.35*SIN(I	0.35*COS(DEL)	5+SIN (DEL	+0YB	+2.*DX8	+2.*078 +3.*0X8	+3.≑DY8	7061,7060		7071,7070	LOT(-2, X82	LOT(-1, X8.	UB1 40 40 40	LOT(-1, X84	ш	шц	ц Ш	11	CATIONS	9E-003C	20	28	44	20	63	74	08	100	44	00	000	50	E0 4	0	D L
A= I A85 A= I - 85 A= I A85	A-L FC ALL FC RITE(1	0.8MAT B1=X8-	B1=YB+ XB=0.2	YB=0.2	82=Y81	83=X81	18X=481	84=YB1	F(H1)	ALL FP	F(K1)	ALL FP	ALL FP	LILI FP	ALL FP	UNT INU	UNT INU	UNI TNO	ALL EX	E ALLO	R)=00	R)=16	R)=16	R)=15	R)=16	R)=16	R]=16	R)=16	8]=16	R]=15	R)=16	a)=16	2)=15	3)=16	3)=16	01=1 Y
IX	ΣŪL	1099 FI	YO	0	хř	×	××	7		1 1001	7060 I	7071 C	0.01	7081 6	U U	500 CI	40 0	20 02	ບພົ	ARIABL	X	Jox	I) SHX	X21(1	510	I) HX	ARDXU	Hd	1215	SIL	522 (I	F21(1	AZXII	82Y (1	RIIC	1111

in in effikelse meile Pastelsen an un sin einer

-

6	9	Ø	0	0	00001000000000000000000000000000000000	•	0.0	4 9 NUI	016	• •
	=171A	=1726 =1732	1756				A MA	02=176 01=177 01=177 00=178	11=1	
	(के) X	3(R)			14000404000		SUBX		J	
	8	XOX			+		н Z	• 230 • 1000 • 350	1=179	
					2011 2011 2011 2011 2012 2012 2012 2012		FSUB FLOA CARD	68 74 80	ŝ	
)=1718)=1724)=1730)=1743)=1749)=1746)=1755)=1758		=1873 =1847 =1847 =1846 =1846 =1846 =1846 =1846 =1846 =1846 =1846 =2010 =22065		FADDX Miar Ebprt	E 01=17 E 00=17 E-04=17 € 00=17	0=1798	
	DVIR	Y81(R Y83(R HA(I	IKI (I ILS(I LA(I		0005600866 0005600866		DD ATN	000000	ŝ	÷ .
70					=1844 =1844 =1844 =1880 =1880 =1880 =1880 =2001 =2058 =2188		PRAC PRAC		46L 1	
02 JAN PAGE 0	:1716	1722 1726	1746 1746 1754		265 265 265 265 265 265 265 265 265 265		FCHAR MFAR HOLEB	00=1766 03=1772 00=177E 02=178A	ö	
	AY(R)=	(B1(R)= (B3(R)= (B3(R)=	L1(1)= IK(1)= KA(1)=		=17764 =17764 =1830 =1830 =1830 =17764 =18693 =176693 =2004764 =20		FPLOT FAXI FCHRI	90000E 90000E 85398E 00000E	5=1799	
		~~1			100000000000000000000000000000000000000		A NAN R	w w		
	1714	1720 1720 1720	1747 1740 1753		9 =174 =1836 =1836 =1836 =1836 =1836 =1836 =1836 =1836 =1836 =1836 =1836 =1836 =1836 =1836 =1748 =1836 =1748 =174		S RX FA SC SN	1=1764 5=1770 1=1770 1=1788	17=1798	
	R)=]	R () = ()			222222222222222222222222222222222222222		FAB FSB SUB	000E 0		
	AX	Y81 Y82 (H1(2 =174A =1820 =1820 =1880 =1680 =1669 =1003 = =2030 = =2030 0 = 2287		IABS FSBR MIOI	• 62800 • 1000 • 20000	7971=9	
					0000149 0005500 00055300 00055300 00055300 00055300 0000 0000 0000 0000 0000 0000 0000 0000		ALF 0F 0F	762 766 777 792		0
	=1712	=171f =172/ =174(=1746 =1752 =1758		= 178 = 178 = 178 = 1788 = 17888 = 17888 = 17888 = 17888 = 17888 = 17888 = 17888 = 178		N I SC	00=1 00=1 01=1 01=1 01=1	=1796	2662
	DALFIR	X8(R X62(R H(I			1 6968 2 141 8 201 2 273 2 273 2 275 2 275 2 275 2 275		ROUND FLDX MIOFX	000000E 500000E 157079E 471239E 300000E	N	ROG COMMON GRAM
				ATTONS	ATIONS = 1911 = 1911	RE D S S S	MS FSIN. FLD MCOMP	50480 50480 50480	S 8=1795	S FOR P INSKEL 84 PRO
)=1710)=171C)=1728)=1734)=1745)=1748)=1748)=1751)=1757	T ALLOC	7 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SUPPORI E TRACE I IC TRACE I INTEGE	JBPROGRA FCOS FDIV MWRT	STANTS DE 02=17 DE 01=17 SE 01=17 SE 01=17 DE 00=17	ONSTANT 94	IREMENT 0 ES 59
	ALF2 (R	DEL (R DYB (R Y34(R		VIATEMEN	27 A T 5 2 4 4 1 5 2 4 4 1 5 2 4 4 1 5 2 4 4 0 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FEATURES TRANSFEI ARITHMET ONE WORD	CALLED SI FSORT FMPYX MRED	REAL CON: .:25000 .50000 .314159 .314159 .250000	INTEGER C 1=17	CORE REGU Common Variar
					6					-
	·							Kikuel	ni Patt	erns 22

G

0

Ø

U

U

O

0

END OF COMPILATION

۰.,

11

0

K1KU6000 K 1KU5000 K IKU6020 K [KU6010 KIKU6030 K 1KU6040 K IKU6046 K 1KU6048 KIKU6049 K 1KU6050 **KIKU5902** K I KU6045 K I KU6047 K1KU6051 K IKU6052 KIKU6056 KIKU6058 K IKU6059 K I KU6060 K IKU6063 K I K U6065 K IKU6068 KIKU6069 K 1KU6070 KI KU6073 K IKU5901 KIKU6041 K IKU6055 K IKU6057 KI KIJ6062 **K IKU6066** KIKU6067 K IKU6072 K IKU6061 KIKU6071 TRANSITION TO DESIRED ORIENTATION WITH COORD. X31,X32,X33 S0=S0RT(FL0AT(HZ1+HZ1+KZ1+KZ1+LZ1+LZ1)) S1=S0RT(X11*X11+X12*X12+X13+X13) S2=S0RT(X21+X21+X22*X23+X23) S3= S0RT(X3]*X3]+X32*X32+X33*X33) CALL SCALF(XSCAL, YSCAL, 0.0,0.0) 02 JAN 70 20.079 HRS SIZE OF MAP 2#X0#2#Y3 CM#CM INTEGER HZ, HZI, HZII, HZA IF(SMSQ-SQ) 320,320,329 329 [F(S0-0.5) 320,320,351 351 FZ=R/S0 RADIUS R OF PROJ. SPHERE REJECT HIGH INDEX POLES *IOCS(CARD, 1443 PRINTER) DO 300 HZ=7,17 00 310 KZ=7,17 DO 320 LZ=7,17 *ONE WORD INTEGERS *ARITHMETIC TRACE YSCAL=XSCAL XH2S=H21#F2 XI 75=L21+F2 XK 2 S=K 2 1 *F 2 A12=X12/S1 A13=X13/S1 XSCAL=0.39 A11=X11/51 A21=X21/52 122=X22/52 N23=X23/52 * JOCS (PLOTTER) *TRANSFER TRACE H21=H2-9 K21=K2-9 L21=L2-9 SMS0=4 . x23=-1. X0=11. Y0=11. X21=0. X31=0. X11=1. X12=0. ×13=0. (22=1. X32=1. X33=1. II FOR PROG R=11. *LIST ALL U C) U 000 000 UUU E 1 0 C 34 0 0 0 9 0 C 0 0 0 0 0 0 Ø G

20	2 2 4 2 2 1 0 0 5 4 2 2 1 0 0 5 4		000000000000000000000000000000000000000	55	50		\$ \$ \$	56 57 58		0 2 4	0	22 30 35	38 40	00	5 2	58	20
PAGE OF	VIKU600 VIKU600 VIKU600 VIKU600 VIKU600 VIKU600 VIKU600 VIKU600		K IKU60 09UXIX K IKU60 K IKU60 K IKU60	K1KU60 K1KU60 K1KU60	K IKU60 KI KU60 KI KU60	KIKU60	KIKU60	K IKU60 K IKU60 K IKU60		K IKU61 K IKU61 K IKU61	KIKU61	K IKU61 K IKU61 K IKU61	KIKU61	KIKU61	KIKU61	KIKU61	K1KU61
			١.		j.						1						
		,															
		•												211	*.		
	4××25+A13*×LZS *××25+A13*×LZS *××25+A33*×LZS 301	DLES	00.*KZA+LZA		•	344,342,344 1+100.*!K1+IL1)	343		PROJECTION PLANE	*2−1。) •352 An(AZ))/2°		DS(GAMZ) Z+XKZ*XKZ)	9, 359, 355 RA			166.026.	
	81=X31/53 82=X32/53 83=X33/53 83=X33/53 83=X33/53 83=X32/53 82=A12 22=A31=XHZ5+A32 22=A31=XHZ5+A32 22=A31=XHZ5+A32	T HIGH DRDER PO	[A=1 ABS(HZ1) [A=1 ABS(KZ1) [A=1 ABS(LZ1) [A=1 ABS(LZ1) [1=10000.+HZA+1]	1=14-1 341 [K=1,5 (1=1K-1) 342 IL=1,5 .1=1L-1 . 343 N=2.8	H1+100000.*1H1)	(1=X11-X12 -(RX1) 342,320.)NT INJE	DNT INUE	JLATE CCORD. IN	Z=SQRT({R/XLZ)* F (XLZ) 354,353* M2=(3,14193-AT	AMZ=ATAN(AZ)/2.	AM Z=0.785398 AN Z=SIN (GAMZ)/C(DR A= SORT (XHZ +XH)	<pre>c (SORA-0.5) 35' Z1=2.*R*TANZ/S0'</pre>	XZ=XHZ*FZ] YZ=XKZ*FZ]	0 TG 358 KLZ=ARS(XLZ)	0.055 1C.0-2.1X4 1-	rz=0.0 2xz=ABS(Pxz) 2vz=ARS(Pyz;

PLOT ADD WMBER (H21,K21,L21) AT CORDINATES (F22,FY2) 234 CALL FOLT (321	IF(X0-APXZ) 32(IF(Y0-APYZ) 32(0,321,321					K I K U 6 I 7 2 K I K U 6 I 7 3	2			•
33.4 CALL FOLD (-2, FX7.4*Y) X(100.182) X(100.182) CALL FOLD (-1, FX7.4*Y) X(100.182) X(100.182) CALL FOLD (-1, FX7.4*Y) X(100.182) X(100.182) V111=1455(X12) X(100.11) X(100.11) X(100.11) V111=1455(X12) X(100.11) X(100.11) X(100.11) 23.5 CALL FOLD (-1, FX7.4*Y) X(100.11) X(100.11) X(100.11) 30.6 CLL FOLD (-1, FX7.4*Y) X(100.11) X(100.11) X(100.11) 31.6 CLL FOLD (-1, FX7.4*Y) X(100.20) X(100.20) X(100.20) 31.7 CLL FOLD (-1, FX7.4*Y) X(100.20) X(100.20) X(100.20) 31.8 (X(1) 1366, 55) X(100.20) X(100.20) X(100.20) X(100.20) 31.8 (X(1) 1366, 55) X(100.2		T + AND NUMBER	(HZI+KZ	1.LZ1) AT CO	DORD INATE:	(PXZ, PYZ)					3	
RT11-1435(RT1) RTM00119 RTM00119 RT11-1431(RT1) RTM00119 RTM00119 RT11-1431(RT1) RTM00129 RTM00129 RT11-1411 RTM11910 RTM00229 RT11-1411 RTM02290 RTM02290 RT11-1411 RTM02390 RTM02390 RT11-1411 RTM02390 RTM02390 RT11-1411 RTM02390 RTM03300 RT11-1411 RTM03300 RTM03300 RT11-1411 </td <td>324 (</td> <td>CALL FPLOT (-2.</td> <td>PXZ.PYZ</td> <td></td> <td></td> <td></td> <td>, ,</td> <td>K IKU6182 K IKU6184</td> <td></td> <td></td> <td></td> <td></td>	324 (CALL FPLOT (-2.	PXZ.PYZ				, ,	K IKU6182 K IKU6184				
XXIII XXIIII XXIIIII XXIIIIIIIII XXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		CALL FPLOT (-1 HZ11=1A8S(HZ1)	PX2,PY2					KIKU6186 KIKU6175				
25 GALL FENAL (FLAL) FILUE1371 KIRUE187 39 FILUE1371 KIRUE195 KIRUE195 30 FLAL FUDT (-1) FX2-0.40; W72-0.24) KIRUE205 KIRUE205 301 FLAL FUDT (-1) FX2-0.40; W72-0.24) KIRUE205 KIRUE205 301 FLAL FUDT (-1) FX2-0.40; W72-0.25) KIRUE205 KIRUE205 301 FLAL FUDT (-1) FX2-0.40; W72-0.26) KIRUE205 KIRUE205 301 FLAL FUDT (-1) FX2-0.40; W72-0.26) KIRUE205 KIRUE205 301 FLUT (-1) FX2-0.40; W72-0.26) KIRUE205 KIRUE205 301 FLUT (-1) FX2-0.40; W72-0.26) KIRUE205 KIRUE2205 301 FLUT (-1) FX2-0.40; W72-0.26) KIRUE205 KIRUE2205 301 FLUT (-1) FX2-0.40; W72-0.26) KIRUE2205 KIRUE2205 301 FLUT (-1) FX2-0.26) KIRUE2205 KIRUE2205 302 GALL FUDT(-1) FX2-0.26) KIRUE2205 KIRUE2205 303 FLUL FUDT(-1) FX2-0.26) KIRUE2205 KIRUE2205 304 GALL FUDT(-1) FX2-0.25) KIRUE2205 KIRUE2205 305 FRUE11136 KIRUE2205 KIRUE2		KZ11=1ABS(KZ1)						KIKU6176 KIKU6177				
325 CALL FERR (FX-0-005X5CAL, FY2CAL, 1.121.1571) FIRU6188 330 CALL FULT [-1:7X2-0.400, FY2:0.400, FY2:0.40		IF (APX2-0.1) 3	26,326,3	25				K1KU6187				
30 FININ TITIT FININ TITIT FININ TITIT 30 FININ TITIT FININ TITIT FININ TITIT 31 FININ TITIT FININ TITIT FININ TITIT 32 FININ TITIT FININ TITIT FININ TITIT 33	325 (CALL FCHAR (PX	Z-0.06*X	SCAL , PYZ+0.1	I+YSCAL++	112.1.571		K1KU6188 K1KU6194				
341 CALL FLOT (-2, PX2-0.46, PY2-0.24) 371 CALL FLOT (-2, PX2-0.46, PY2-0.25) 371 CALL FLOT (-1, PX2-0.46, PY2-0.25) 372 CALL FLOT (-1, PX2-0.46, PY2-0.25) 373 CALL FLOT (-1, PX2-0.46, PY2-0.25) 373 CALL FLOT (-1, PX2-0.46, PY2-0.25) 374 CALL FLOT (-1, PX2-0.46, PY2-0.25) 375 CALL FLOT (-1, PX2-0.46, PY2-0.26) 376 CALL FLOT (-1, PX2-0.46, PY2-0.26) 371 CALL FLOT (-1, PX2-0.46) 371 CALL FLOT (-1, PX2-0.46) 371 FLOT (-1, PX2-0.46) PY2-0.44) 371 FLOT (-1, PX2-0.46) PY2-0.44) 372 CALL FLOT (-1, PX2-0.56) PY2-0.44) 373 CALL FLOT (-1, PX2-0.56) PY2-0.44) 374 CALL FLOT (-1, PX2-0.56) PY2-0.44) 375 CALL FLOT (-1, PY2-0.56) PY2-0.44) 375 CALL FLOT (-1, PY2-0.56) PY2-0.44) 375 CALL FLOT (-1, PY2-0.56) PY2-0.56) 375 CALL FLOT (-1, PY2-0.56) PY2-0.5	390	FORMAT (311)	741174	1177411				K1KU6195	•	•		
371 Call Fridy (1-1) X7-0.40, PY740.25) X [U06210 371 Call Frug (1-1) X7-0.40, PY740.25) X [U06220 371 Call Frug (1-1) X7-0.40, PY740.25) X [U06220 371 Call Frug (1-1) X7-0.40, PY740.25) X [U06230 371 Call Frug (1-1) X7-0.40, PY740.25) X [U06230 371 Call Frug (1-1) X7-0.40, PY740.26) X [U06230 372 Call Frug (1-1) X7-0.40, PY740.26) X [U06230 373 Call Frug (1-1) Y7-0.20, PY740.40) X [U06230 374 Call Frug (1-2) PY240.21, PY240.41) X [U06230 375 Call Frug (1-2) PY240.41) X [U06330 375 Call Frug (1-2) PY240.41) X [U06330 375 Call Frug (1-2) PY240.41) X [U06330 375 Frug (1-1) PY240.250 PY240.41) X [U06330 375 Frug (1-1) PY240.410 X [U06300 375 Frug (1-1) PY240.410 X [U06300	145	TF (HZ1) 361,36	0+360 - PX7-0-41	0-247+0-041		٠		K 1 K U 6 2 0 0 K 1 K U 6 2 0 5				•
310 GALL FRUD 71:2: PX2-0.40. P77:0.501 311 GALL FRUD 1:: PX2-0.40. P77:0.501 313 GALL FRUD 1:: PX2-0.40. P77:0.501 313 GALL FRUD 1:: PX2-0.40. P77:0.501 314 1: 1: 10.301 1:: PX2-0.40. P77:0.501 315 GALL FRUD 1:: PX2-0.40. P77:0.501 316 GALL FULT 1:: PX2-0.40. P72:0.501 317 FULT 1:: PX2-0.40. P72:0.501 316 GALL FULT 1:: PX2-0.40. P72:0.501 316 GALL FUDI 1:: PX2-0.501 317 GALL FUDI 1:: PX2-0.501 316 GALL FUDI 1:: PX2-0.501 317 GALL FUDI 1:: PX2-0.551 316 GALL FUDI 1:: PX2-0.551 317 GALL FUDI 1:: PX2-0.551 316 GALL FUDI 1:: PX2-0.551 317 GALL FUDI 1:: PX2-0.551 317 GALL FUDI 1:: PX2+0.551 318 GALL FUDI 1:: PX2+0.51 317 1:: PX2+0.551 1:: PX2+0.51 318 CALL FUDI 1:: PX2+0.51		CALL FPLOT (-1	PXZ-0-4	0, PYZ+0.24)				K 1KU6210				
311 CALL FTUD 1-2, PXX-0-46, PYY:0-201 312 CALL FTUD 1-1, PXX-0-46, PYY:0-201 312 CALL FTUD 1-1, PXX-0-46, PYY:0-201 312 CALL FTUD 1-1, PXX-0-46, PYY:0-201 312 CALL FTUD 1-1, PXX-0-46, PYY:0-201 311 CALL FTUD 1-1, PXX-0-46, PYY:0-201 312 CALL FTUD 1-1, PXX-0-46, PYY:0-201 311 CALL FTUD 1-1, PXX-0-46, PYY:0-201 312 CALL FTUD 1-1, PXX-0-46, PYY:0-201 XIXU6320 314 FLU1 1-1, PXX-0-46, PYY:0-201 XIXU6330 315 FLU1 1364, 575, 375 XIXU6330 316 CALL FPU01-2, PXX-0-25, PYY:0-41 XIXU6330 316 CALL FPU01-2, PXX-0-25, PYY:0-41 XIXU6330 316 CALL FPU01-2, PXX-0-25, PYY:0-41 XIXU6330 317 FLU1 1364, 375, 375 XIXU6330 318 FLU2 1364, 375, 375 XIXU6330 317 FLU2 1364, 375, 375 XIXU6330 318 FLU2 1-1, XZ10, 00, PYZ40, 41 XIXU6330 317 FLU2 1364, 375, 375 XIXU6330 318 FLU2 11 XIXU6330 318 FLU2 11 XIXU6330 318 FLU2 11 XIXU6330 318 FLU2 11 XIXU64	360	IF (KZ1) 371,3	70,370	130 0.170 0				KIKU6215		·		
310 11 <t< td=""><td></td><td>CALL FFLOT (-)</td><td>PX7-0-4</td><td>105-0+214.0</td><td></td><td></td><td></td><td>F1416225</td><td></td><td></td><td></td><td></td></t<>		CALL FFLOT (-)	PX7-0-4	105-0+214.0				F1416225				
381 Call Fluit 1-2: PX-0-64: PY240.55) 381 Call Fluit 1-2: PX-0-64: PY240.55) KIU0556 326 Call Fluit 1: P30: Distribution 81 KU0550 KIU0550 326 Call Fluit 1: P30: Distribution KIU0550 KIU0550 356 F[K121] 36: 355 35 S5 PY240.4) KIU0550 365 F[K121] 36: 355 35 S5 PY240.4) KIU0550 365 F[K121] 375; 375. 24: PY240.4) KIU0550 KIU0550 365 F[K121] 375; 375. 25: PY240.4) KIU0550 KIU0550 365 F[K121] 375; 375. 25: PY240.4) KIU0530 KIU0530 365 F[K121] 376; 375. 375. 772.0.4) KIU0530 KIU0530 375 F[L121] 380; 25: PY240.4) KIU0530 KIU0530 375 F[L121] 380; 25: PY240.4) KIU0530 KIU0530 375 F[L121] 380; 25: PY240.4) KIU0530 KIU0530 375 F[L11] 380; 26: PY740.4) KIU0530 KIU0530 375 F[L11] 380; 26: PY740.4) KIU0530 KIU0530 372 K[R11] 28: P1001 KIU0530 KIU0530 <td< td=""><td>370</td><td>11 (171) 341,3.</td><td>022.02</td><td></td><td></td><td></td><td></td><td>014011111</td><td></td><td></td><td></td><td></td></td<>	370	11 (171) 341,3.	022.02					014011111				
2.6 CALL FPUOT 1-1,727,0-00,720,06×35,521,071,030 301 (COTTO 320 0.710 330 0.710 330 0.710 330 0.710 330 3.6 CALL FEUDT1-1,727,0-0.39,7240,41 0.710 330 0.710 330 0.710 330 0.710 330 3.6 CALL FEUDT1-2,722,0.03,7710,41 0.710 330 0.7111366,355,315 0.710 330 0.710 330 3.6 CALL FEUDT1-2,722,0.03,7710,41 0.71104530 0.71104530 0.71104530 3.6 CALL FEUDT1-2,722,0.55,772,0.41 0.71104530 0.71104530 0.71104530 3.7 CALL FUDT1-2,772,0.55,772,0.41 0.71104530 0.71104530 0.71104530 3.7 CALL FLUD11-2,772,0.40 0.71104530 0.71104530 0.71104530 3.7 CALL FLUD11-2,772,0.40 0.71104530 0.71104530 0.71104530 3.7 CALL FLUD11-1,722,0.40 0.71104530 0.71104530 0.71104530 3.7 CALL FLUD11-2,772,0.40 0.71104530 0.71104530 0.71104530 3.7 CALL FLUD11-1,722,0.40 0.71104530 0.71104530 0.71104530 3.7 CALL FLUD11-1,722,0.40 0.71104630 0.71104530 0.71104500 3.7 CALL FLUD11-2,772,0.41 0.7111104 0.711041040 0.711114000 3.7 CALL FLUD11-2,772,0.41	. 381 (CALL FRUIT (-2	14 -0-7Xd.	0, PYZ+0.55)			•	KIKU6235				
32 CCUL FCHAR(PX2+0.06+XSCAL, PY2+0.1*YSCAL1.210.0) KIKU6510 391 FF(H211)=911H/211.K211.L211 KIKU6530 395 FF(H211)=911H/211.K211.L211 KIKU6530 396 CALL FPLOT(-2, P22+0.24, PY2+0.44) KIKU6550 365 FF(K211)=911.FUCT(-2, P22+0.24, PY2+0.44) KIKU6550 365 FF(K211)=91.75, PY2+0.54) KIKU6550 375 FF(K111)=91.75, PY2+0.54) KIKU6500 375 FF(L211)=96.720, 220.200 KIKU6500 375 FF(L211)=96.720, 220.200 KIKU6500 375 FF(L211)=96.720, 220.200 KIKU6500 375 CALL FPLOT(-2, PY2+0.54) KIKU6500 375 FF(L211)=0.01 KIKU6500 375 CALL FPLOT(-2, PY2+0.54) KIKU6510 370 CONTINUE KIKU6500 370 CONTINUE KIKU6500 370 CONTINUE KIKU6510 370 CONTINUE KIKU6510		CALL FPLUT (-1	+ × / -0 . 4	108-0+71400				K1KU6250				
91 FORMAT(3)1, 391/HZ11, KZ11, LZ11 KIXU6310 KIXU6310 95 FIK/21)366, 365, 365 55, 365 KIXU6300 KIXU6300 95 FIK/21)376, 375, 375 55, 365 KIXU6300 KIXU6300 95 FIK/21)376, 375, 375 55, 365 KIXU6300 KIXU6300 95 FIK/21)376, 375, 375 KIXU6300 KIXU6300 KIXU6300 95 FIK/21)376, 375, 375 KIXU6300 KIXU6300 KIXU6300 95 CALL FPLOTI-: PXZ+060, PYZ+04) KIXU6510 KIXU6510 KIXU6510 355 FIL/21)36, 375, 375 KIXU6500 KIXU6500 KIXU6500 KIXU6500 355 FIL/21)36, 375, 77404) KIXU6500 KIXU6500 KIXU6500 KIXU6500 355 FIL/21)36, 375, 375 KIXU6500 KIXU6500 KIXU6500 KIXU6500 355 COUNTINUE GALL FAUT KIXU6600 KIXU6600 KIXU6600 310 CONTINUE KIXU6600 KIXU6600 KIXU6600 KIXU6600 310 CONTINUE KIXU6600 KIXU6600 KIXU6600 KIXU6600 310 CONTINUE KIXU6600 KIXU6600 KIXU6600 KIXU6600 310 CONTINUE KIR KIXU6600	326 (CALL FCHAR(PYZ	+0 ° U & * X * 9	CAL, PY2+0.14	+YSCAL 1	12.0.01		K 1KU6300				
1 FF(HZ11)366,365,365 KIKU6330 KIKU6330 365 FLKZ11376,375,375 KIKU6350 KIKU6350 355 FLKZ11376,375,375 KIKU6350 KIKU6350 355 FLKZ11376,375,375 KIKU6350 KIKU6350 355 FLKZ11376,375,375 KIKU6350 KIKU6350 355 FLL FLUT1-2, PX240,55, PY240,43 KIKU6330 355 FLL FLUT1-2, PX240,55, PY240,43 KIKU6330 355 FLL FLUT1-2, PX240,55, PY240,43 KIKU6330 355 FLL FLUT1-2, PX240,55, PY240,43 KIKU6300 356 GALL FLI FLU1-1, PX240,60,79 KIKU6300 357 FLL FLU1-1, PX240,64,43 KIKU6300 KIKU6300 350 GALL FLU1 FLU1 KIKU6300 KIKU6300 350 GALL FLU1 FLU1 FLU1 FLU2 350 GALL FLU1 FLU1 FLU2 KIKU6000 KIKU6000 350 GALL KIKU6000 KIKU6000 KIKU6000 KIKU6000 KIKU6000 310 G	1 105	WRITE(11,391)H.	Z11, KZ11	, LZ 1 1		·		KIKU6310 KIKU6320				
36 CALL FPLOT(-1, PX2-00.03, PY2+0.4) 365 F(KL1)376, 200, 25, PY2+0.4) 375 CALL FPLOT(-2, PX2+0.25, PY2+0.4) 375 CALL FPLOT(-2, PY2+0.25, PY2+0.4) 375 CALL FLUNCATIONS 300 CONTINUE 300 CONTINE 300 CONTINE 300 CONTINE 300 CONTINE 300 CONTINE 300 CONTINE 300		IF(HZ1)366,365	,365					K1KU6330				
365 F(KZ1)376,375,375 375 F(LL FPLOT(-2,FX2+0.25),PY2+0.4) 375 F(LL FPLOT(-2,FX2+0.25),PY2+0.4) 375 F(LL FPLOT(-2,FX2+0.25),PY2+0.4) 375 F(LL FPLOT(-2,FX2+0.25),PY2+0.4) 375 F(L FLOT(-2,FX2+0.55),PY2+0.4) 375 F(L FLOT(-2,FX2+0.55),PY2+0.4) 375 F(L FLOT(-2,FX2+0.55),PY2+0.4) 375 F(L FLOT(-2,FX2+0.55),PY2+0.4) 375 F(L FLOT(-2,FX2+0.56),FY2+0.4) 375 F(L FLOT(-2,FX2+0.56),FY2+0.4) 376 CALL FPLOT(-2,FX2+0.56),FY2+0.4) 370 CONTINUE 310 CONTINUE 311 F(L FLOT(-1,FX2+0.60),FY2+0.4) 311 F(L FLOT(-2,FX2+0.50),FY2+0.4) 311 FOLL 311 FOL	366	CALL FPLOT(-2,	PX 2 +0 •03	,PY2+0.4)				K 1KU6340 K1KU6350			•	
375 Call FPLOTT-2, PX240.25, PY240.4) 375 Gall FPLOTT-2, PX240.50, PY240.4) 375 FT(12)1960; 220, 320 375 FT(12)1960; 220, 320 375 FT(12)1960; 220, 320 375 FT(12)1960; 220, 320 320 CONTINUE 320 CONTINE 320 CONTINUE 320	365	IF(K21)376,375	375				•	K IKU6360				
375 Ff(LZ1) 386, 200, 320 375 Ff(LZ1) 386, 200, 320 375 Ff(LZ1) 386, 200, 320 375 CALL FPLOTC-7, 7240, 65, PY240, 4) 370 CONTINUE 310 CONTINUE CALL EXIT KIKU6002 CALL EXIT 300 CONTINUE ALL FLUE 301 FOUNE 302 CALL EXIT S000 XSCAL(R) =0000 XR(R) =0000 XSCAL(R) =00010 XR(R) =0000 XZS(R) =00012 SMSC(R) =0000 XZS(R) =00012 XR(R) =00010 XZS(R) =00012 XR(R) =00010 XZS(R) =00012 XR(R) =00010 XZS(R) =00012 XR(R) =00010 XZS(R) =00012 XR(R) =00012 XZR(R) =0012 XR(R) =00013 XZR =00012 <td>376 (</td> <td>CALL FPLOT(-2,</td> <td>PX2+0-25</td> <td>PY2+0.4)</td> <td></td> <td></td> <td></td> <td>K1 KU6370 K1KU6380</td> <td>•</td> <td></td> <td></td> <td></td>	376 (CALL FPLOT(-2,	PX2+0-25	PY2+0.4)				K1 KU6370 K1KU6380	•			
375 fALL FPLUTT-2, 272.40.55, PV2:0.4) KINU6400 320 CALL FFLUTT-1, 2X2.40.60, PV2:0.4) KINU6410 320 CALL FFLUTTNUE KINU6001 310 CONTINUE KINU6001 320 CONTINUE KINU6001 310 CONTINUE KINU6001 310 CONTINUE KINU6001 310 CONTINUE KINU6001 300 CONTINUE KINU6001 300 CONTINUE KINU6001 300 CONTINUE KINU6001 300 CONTINUE KINU6001 301 CONTINUE XINU6001 301 CONTINUE XINU6001 301 CONTINUE XINU6001 <td>375</td> <td>IF(LZ1)386, 320</td> <td>,320</td> <td></td> <td>d.</td> <td></td> <td></td> <td>K1KU6390</td> <td></td> <td></td> <td></td> <td></td>	375	IF(LZ1)386, 320	,320		d.			K1KU6390				
320 CONTINUE 320 CONTINUE 310 CONTINUE CALL EXIT END CALL EXIT END CALL EXIT END CALL EXIT END CALL EXIT END CALL EXIT END CALL EXIT END CALL EXIT END CALL EXIT END CALL EXIT CALL EXIT C	335	CALL FPLOT(-7.	25-0+2.40 -55	PY2+0.4)				K IKU6400 K IKU6410				
310 CONTINUE 300 CONTINUE CALL EXIT END CALL EXIT END VARIABLE ALLOCATIONS XARIABLE ALLOCATIONS XARIA = 00006 XZ21R = 00026 AZ1R = 00056 AZ1R = 000	320 (CONTINUE	r46+11.eU					K IKU8000				
Columnation Social (R) Social (R) </td <td>310</td> <td>CONT INUE</td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>KIKU8001 KIKUB002</td> <td>•</td> <td></td> <td>,</td> <td></td>	310	CONT INUE					•	KIKU8001 KIKUB002	•		,	
Variable allocations voir blocations voir blocations voir blocations voir blocations source voir blocations voir blocations source voir blocations voir blocation		CALL EXIT										
SMSG(R) = 000G XHZS(R) = 0010 XKZS(R) = 0012 XLZS(R) = 0014 X11(R) SMSG(R) = 0001B X13(R) = 0016 X22(R) = 0012 XLZS(R) = 0014 X11(R) X12(R) = 001B X13(R) = 0016 X22(R) = 0012 XLZS(R) = 0020 X11(R) X12(R) = 001B X13(R) = 0016 X22(R) = 0012 X23(R) = 0020 X11(R) X12(R) = 00124 X12(R) = 00024 X21(R) = 00024 X22(R) = 0020 X11(R) X12(R) = 0014 X12(R) = 00034 X22(R) = 0024 X21(R) = 0036 X11(R) A12(R) = 0014 X12(R) = 0004 X21(R) = 0042 X21(R) = 0044 X11(R) A12(R) = 0014 R21(R) = 0046 K21(R) = 0044 X11(R) = 0044 X11(R) A12(R) = 0048 R21(R) = 0046 K21(R) = 0044 X11(R) = 0044 X11(R) F21(R) = 0046 R21(R) = 0046 K21(R) = 0046 K21(R) = 0056 SQRA(R) F21(R) = 0054 P21(R) = 0066 H21(R) = 0056 K71(R) = 0056 K71(R) F21(R) = 0056 P21(R) = 0066 H21(R) = 0056 K71(R) = 0056 K71(R) F21(R) = 0056 H21(R) = 0057 H21(R) = 0056 K71(R) = 0056 K7	VARIABI	LE ALLOCATIONS	XCLAL LD	1-0003	VECALID	1=0004	alox	1=000A	VOLR	1=0008	Sc	(a)
x12(R) = 0018 x13(R) = 001A x21(R) = 001E x23(R) = 0020 x31(R) x32(R) = 0024 x33(R) = 0026 51(R) = 0028 52(R) = 0024 53(R) = 0020 x31(R) x32(R) = 0024 x32(R) = 0024 52(R) = 0024 53(R) = 0020 x31(R) a31(R) x32(R) = 0074 x12(R) = 0034 x22(R) = 0036 a23(R) = 0036 a31(R) a31(R) a12(R) = 0074 x12(R) = 0034 a22(R) = 0042 x22(R) = 0042 a31(R) a31(R) a32(R) = 0074 a31(R) = 0046 a21(R) = 0046 a21(R) = 0042 x11(R) a0044 x11(R) x12(R) = 0054 a21(R) = 0046 ax2(R) = 0046 ax12(R) = 0056 apy2(R) a04(R) F21(R) = 0054 px2(R) = 0056 apy2(R) = 0056 apy2(R) = 0056 apy2(R) apy2(R) = 0056 apy2(R) H21(R) = 0054 h21(R) = 0056 h21(R) = 0056 apy2(R) = 0056 by2(R) = 0056 by2(R) apy2(R) = 0056 by2(R) apy2(R) = 0056 by2(R)	SMSC	(R)=000C .	FZIR) =000E	XHZS (R)=0010	XKZSIR)=0012	XLZSIR	1=0014	XII	2
X32(R) = 6024 X33(R) = 0026 S1(R) = 0028 S2(R) = 0024 S3(R) = 0026 A11(R) A12(R) - 13(R) = 0032 A21(R) = 0034 A22(R) = 0036 A23(R) = 0038 A31(R) A32(R) = 0050 A33(R) = 0032 A21(R) = 0034 A22(R) = 0042 XL2(R) = 0044 X11(R) A32(R) = 0050 A31(R) = 0044 A21(R) = 0046 XK2(R) = 0042 XL2(R) = 0054 X11(R) X12(R) = 0048 RX1(R) = 0046 A72(R) = 0046 A72(R) = 0046 X21(R) = 0050 SQR4(R) F21(R) = 0054 PX2(R) = 0056 PY2(R) = 0056 A72(R) = 0056 K71(1) E0056 K71(1) H21(1) = 0056 H21(1) = 0050 K71(1) = 0056 H21(1) = 0056 K71(1) E0166 K71(1)	x12	(R)=0018	X131R	A100=(X211R)=001C	X22(R)=001E	X23(R)=0020	X31	2
A12(K, 0.00) A13(K)=0035 A21(K)=0035 A21(K)=0035 A21(K)=0035 A21(K)=0035 A21(K)=0035 A21(K)=0042 A21(K)=0044 X11(R) A32(R)=0034 A33(R)=0044 A21(R)=0046 XKZ(R)=0042 XLZ(R)=0044 X11(R) X12(R)=0048 RX1(R)=0046 AZ1(R)=0046 AZ1(R)=0046 AZ1(R)=0046 X11(R) F21(R)=0054 PX2(R)=0056 AY2(R)=0056 AY2(R)=0056 APY2(R)=0056 APY2(R) H21(1)=0066 H21(1)=0066 K21(1)=0056 K21(1)=0056 K21(1)=0056 K21(1)=0056 H21(1)=0066 H21(1)=0056 H21(1)=0056 K21(1)=0056 K21(1)=0056 K21(1)=0056	X32	(R)=6024	X33(R)=0026	SILE) = 002B	2125	A200=(X155	1=0030		x
XIZ(R) = 0048 RXI(R) = 0044 AZ(R) = 004C GAMZ(R) = 004E TANZ(R) = 0050 SQRA(R) FZ1(R) = 0054 PXZ(R) = 0056 PYZ(R) = 0056 PYZ(R) = 0056 APYZ(R) = 005C APYZ(R) FZ1(R) = 0054 PXZ(R) = 0056 PYZ(R) = 0056 APYZ(R) = 005C APYZ(R) HZ1(I) = 006A HZ1(I) = 006C HZ1(I) = 006C HZ1(I) = 006E K71(I) HZ1(I) = 005A HZ1(I) = 006C HZ1(I) = 005C APYZ(R) = 005C APYZ(R)	A12	(R)=00%	ALSIA)=003F	XH7 (3	1=0034	XK718	1=0042	XLZIR	9500=1		2
F21(R)=0054 PXZ(R)=0056 PYZ(R)=0056 AXLZ(R)=0050 APXZ(R)=005C APYZ(R) HZ(I)=006A HZ(I)=006B HZ1I(I)=006C HZA(I)=006B KZI(I) I HZ(I)=005A HZ(I)=006C HZA(I)=005C HZA(I)=005C KZI(I) I HZ(I)=005A HZIII=006C HZA(I)=005C HZA(I)=005C I IIII IIII	X12	[R]=0048	RX1(R)=004A	AZER	1=0040	GAMZ (R)=004E	TANZIR)=0050	SORA	(8)
1/11 1-0000 1/111 1-0000 1/1111 1-0000 1/111 1-0000 1/111 1-0000 1/111 1/10000 1/111 1/10000 1/111 1/111 1/111	FZI	(R)=0054	PXZIR)=0056	PY2ik)=0058	AXLZIR) = 00 5A	APXZ(R)=005C	APYZ	8
	N N	1 1=000A	11121	1=000B	111174	1000-1	11421	1=0000	1174	2000-1		3

02 JAN 70 PAGE 004

L211([)=007C

T

=02C	•	FLP &	1=008€€)=0394 0=60A0	e,	•	0
*02C2 340 =0365 324 =04A1 376		FOIV FCHRI	.100000E 0 .100000E 0 .240000E 00	=0082		
341 321 365		FHPY SNR	86 92 95	11		
=0289 =0354 =0475		FSUB MID1	E 00=00 E 00=00 E-01=00	0=0081		
342		ADO	500000 785398			
=028(=034(=044F		L L	4008 4008	8=008		
5 343 0 357 1 326		FCH MUR	01=00 01=00 01=000	u.		
= 028 = 034 = 042		POINT MFIF	00000E	2=004		
14 344 16 359 15 381		FLOT	4040	E	•	
1 =02 5. =03 0 =04 0		BS P	00=008 01=008 01=009 00=004	2=00		
26 30 02 35 60 37		F F F	00000E 14193E 57100E	DAC		
		FC05 MIAR	00.00	1= 00		
011F 39 02FE 39 0503 31		F S I N MF A R	00=0080 03=0080 00=0098 00=0098	-00AC	0	•
329 353 360		FATAN FAXI	390000E 100000E 120000E 550000E	9.	COMHON COMHON	
TTIONS =0086 =0265 =0386 =0386	TE O SRS	I ABS FUVR CARON	07E 03A 096	rs 1/=00AB	IS FOR P INSKEL 126 PRC	
ALLOCA 3391 3372 352 352 352 352 352 352 352 355 355 35	UPPORT TRACE C TRAC	PROGRI Sort Srr BPRT	ANTS 02=00 -01=00 -01=00	NSTAN'	IREMENT 0	
CEMENT 0 = 008 = 028 = 039	TURES S ANSFER THMET I WORD	LED SUE TO F	L CONSI 1000005 500006	EGER C(7=001	E REGUL	
STA1 39(35(375	PEAT ARI OND	CAL PRO	д	INI .	RO2 COR	

0

END OF COMPILATION

Kikuchi Patterns 37

Ü

Chapter 2

ELECTRICAL CHARACTERIZATION OF QUASI MUS STRUCTURES ON SILICON by

W. R. Fahrner, E. F. Gorey, and C. P. Schneider

INTRODUCTION

Junctions are present in important devices, e.g., in buriedchannel charge-coupled devices (CCDs) or in silicon on sapphire (SOS)-based integrated circuits. In order to optimize the performance of such a device--speed, transfer efficiency, etc.-the characterization of the electrical properties of the material is desirable. For homogeneous silicon, there are some standard techniques based on metal oxide semiconductor (MOS) capacitance measurements for this purpose. The presence of underlying junctions requires important precautions to be made with the use of MOS-CV measurement techniques.

Owing to the junction, the number of components of the equivalent network increases and the analysis is impeded. It will be shown in this paper how this problem can be solved. When one side of a junction described above is oxidized, a quasi MOS structure results. The equivalent network of such a structure is discussed in this paper, and the conditions for MOS C-V and G-V measurements are given. In the case where the MOS admittance can be measured, the following information can be obtained:

 The surface-state density N_{SS} (1), the corresponding capture cross sections (2), the charge density in the oxide (3), and deep energy levels (4).

2. The doping concentration N_D.

3. The lifetime of the minority carriers (5).

Measurements on epitaxial junctions according to (3) have already been carried out (6) without an adequate the retical basis.

In this investigation, we are primarily interested in the measurement of lifetime, since this parameter is more sensitive to defects and impurities in the crystal than any other electrical parameter (7). Thus, in the section "Range of Quasi MOS Capacitance Technique," the values for layer and substrate resistivity, dot diameter, oxide thickness, etc., refer to ranges in which such lifetime measurements can be carried out.

ANALYSIS OF EQUIVALENT NETWORK

In Fig. 1, a cross section of an oxidized n epitaxial layer on a p⁻ substrate is shown. The network of the structure consists of the oxide capacitance C_{ox} , the distributed layer resistance R of the n-layer, the distributed junction admittance $Y_J = G_J + j\omega C_J$, and the distributed substrate resistance R_s . A net consisting of buried layers each of 2.5 times 2.5 mm² area with a spacing of 8 mm is diffused into the substrate prior to epitaxy. The doping profiles underneath A (off the

Epi Characterization 39

Fig. 1. Cross section of a n-p⁻ junction. The n layer was grown by regular gas phase epitaxy. It is covered by 1200 Å thermal oxide.

buried layer) and B (on the buried layer) are obtained by the spreading resistance technique (Fig. 2). The C-V curves for two dots off the buried layer are shown in Fig. 3. The dots have areas of 0.01765 and 0.00196 cm². The same measurements are repeated for a <115> and a <100> oriented wafer with epitaxial layer resistivity of approximately 0.9 ohm-cm and of approximately 4- μ m epitaxial thickness. The substrate resistivity is 8 and 6 ohm-cm respectively (Fig. 4a,b). In these wafers, no buried layer is present.

The analysis of the data given in Fig. 3 reveals that the measured low-frequency capacitance in accumulation is identical with the oxide capacitance. This is confirmed through measurements on control wafers, by measuring the oxide thickness and the capacitances for different dot areas and comparing the ratios with the area ratios.

The dc voltage drop (v_J) across the junction is 0 since there is no dc current flow through the MOS structure.

The ac admittance is given by $G_J(v_J) + j\omega C_J(v_J)$ with $v_J = 0$. G_J can be derived as $G_J = dI_J/dv_J = I_0 \times (q/kT) \times exp (qv_J/kT)$. In anticipation of the results, the lifetime of the epitaxial layer (which is heavily doped compared with the substrate and can be expected to give the major contribution to the dark current) is measured now to be approximately 1 µsec. With this

Epi Characterization 41

Fig. 3. C-V curves for two dots off the buried layer (A in Fig. 1). Note that for the smaller dot no dispersion is seen.

Epi Characterization 43

Fig. 4a. The same C-V curves as in Fig. 3 for a (115) oriented substrate wafer. The epitaxial resistivity is three times larger than that in the samples characterized in Fig. 3.

Fig. 4b. The same C-V curves as in Fig. 3 for a '100' oriented substrate wafer. The epitaxial resistivity is three vimes larger than that in the samples characterized in Fig. 3.

value and the given wafer data, one obtains I $_{\odot}$ \sim 10 $^{-9}$ A, and thus $G_J \sim 4 \times 10^{-8} \exp (qv_J/kT)$ mhos. The capacitance $C^{~}_J$ is \sim 20 nf at 0 Volt and $\omega C^{~}_J \sim$ 10 $^{-10}$ mhos for a frequency of 2 x 10^{-3} Hz. (I_o and C_J have been calculated by means of Shockley's equation I = qA $(p_n \sqrt{D_p/\tau} + n_N \sqrt{D_n/\tau})$ and the depletion approximation $C_J = \varepsilon A \left(\frac{q}{2\varepsilon v_D} \cdot \frac{N_D \cdot N_A}{N_D + N_A}\right)^{1/2}$. v_D is the diffusion potential. The other symbols have the usual meaning.) The ac admittance is resistance-controlled up to \sim 1 Hz. Even in range f > 1 Hz, there is no influence of the junction admittance, since $\omega C_{J} >> \omega C_{ox}$. These considerations explain why a voltage-independent accumulation capacitance is measured over the usual frequency and bias range. The validity of the assumption on G (v_J) , C (v_J) , and the numeric values are found in good agreement with C (v_j) and differentiated I (v_j) curves measured after oxide removal and ultrasonic cutting (e.g., C_{T} = 35 and 40 nf for dots cut at A and B, respectively).

The bulk resistance R_s of the substrate can be neglected as long as the resistivity is not too large. Experimentally, the upper limit was found to be approximately 50-100 ohm-cm and is theoretically given by the comparison of the RC_{ox} time constant with the measurement frequency of 1 MHz.

From the data given in Fig. 3 (i.e.: $C_{ox} = 532 \text{ pf}$, C_{HF} (acc). = 415 pf), the lumped series resistance can be determined:

$$C_{\rm HF} (\rm acc) = C_{\rm ox} / (1 + \omega^2 \tau^2)$$
 [1]

 $\tau = RC_{ox}$ [2]

This gives R = 159 ohms. For the case of a buried layer underneath the dot, this value is reduced to R = 88 ohms. (Note that in Fig. 2 the buried layer extends into the epitaxial layer due to outdiffusion.) When the dot area is reduced to 0.00196 cm² and the capacitance to 58 pf, no dispersion is observed in accumulation up to 1 MHz. With the same values of R, one obtains now $(\omega \tau)^2 = (2\pi \cdot 10^6 \cdot R \cdot C_{ox})^2 =$ 3.4×10^{-3} and 1×10^{-3} , respectively; C_{ox} can be measured with 1 MHz.

Since the time constant of the surface states is usually observed in the kHz range, G(V) and $G(\omega)$ measurements (2) are also feasible. (A G(V) and a $G(\omega)$ curve is a plot of the total conductance G vs voltage or frequency at a fixed frequency or voltage respectively.) This is roughly checked by measuring G(V) in the kHz range. The typical peak due to surface states and its shift with frequency is observed.

From Fig. 4, one obtains R values of 220 ohms and 240 ohms for $N_D = 5 \times 10^{15}$ and 4.8 $\times 10^{15}$ cm⁻³, respectively.

SPREADING RESISTANCE VS DOT DIAMETER

For frequencies $\omega \leq 1/RC_{ox}$, the equipotential lines of the structure are schematically drawn in Fig. 5a. Therefore, one can assume a disk-like volume representing the epitaxial layer, in which the current flows (Fig. 5b). The voltage v_o is applied at the inner area $2\pi r_o \cdot d_{epi}$, d_{epi} being the epitaxial layer thickness; the outer area at r_1 is grounded. A voltage dv drops across a volume increment 2 r π dr $\cdot d_{epi}$:

$$dv = -i dR$$

 $(i_{o} \text{ is the current caused by } v_{o}).$ dR is defined by $dR = \rho \cdot dr/A(r) = \rho \cdot dr/(2 \cdot \pi \cdot r \cdot d_{epi})$ $dv = -i_{o} \cdot \rho \cdot dr/(2 \cdot \pi \cdot r \cdot d_{epi})$ $v = -(i_{o} \cdot \rho/2 \cdot \pi \cdot d_{epi}) \ln (r/r_{1}).$ Since $v(r_{o}) = v_{o}$: $(v_{o}/i_{o}) = R = -(\rho/2 d_{epi}) \ln (r_{o}/r_{1})$ [3]

As a result, one obtains an increase of the spreading resistance for smaller dot diameters. For the epitaxial wafers of Figs. 2 and 3, we are not able to observe this change, first because the spreading resistance is too small, second, because the existence of the junction and oxide capacitance heavily interferes with the assumption of a simple radial current. For the SOS wafers shown here, however, the effect is clearly visible. For an oxide of 1300 %, and an \sim 10-µm-thick epitaxial layer of 1 ohm-cm, one obtains R = 500, 1380, and \sim 2450 ohms for dots of 0.01765, 0.00196, and 0.00049 cm²,

Fig. 5a. Equipotential lines for frequencies $\ll 1$ MHz. The current flow in the epitaxial layer is practically radial.

Fig. 5b. The epitaxial layer in a simplified disk-like geometry. For $r < r_0$, the potential is assumed to be constant (= v_0). respectively. Since, for these structures, contact with the backside is made by overlapping Al at the edge of the wafer, the spreading resistance is measured without distortion by the junction capacitance. Though we do not observe an $R \propto (-\ln r_0)$ dependence but, rather, an $R \propto 1/r_0$ one, the model qualitatively describes the behavior of the spreading resistance.

RANGE OF QUASI MOS CAPACITANCE TECHNIQUE

In the preceding sections, we have shown that the contribution of the junction impedance can be neglected, if appropriate values for the resistivities, oxide thickness, dot diameter, etc., are selected. In the following, we give approximate ranges for those parameters. Within these ranges, the junction impedance is small compared with the interface, oxide, and layer impedance.

For a 5-µm layer of $\rho \sim 0.3$ ohm-cm resistivity and 1200 Å SiO₂, a dot of d \leq 0.5-mm diameter should be used. The substrate might have $\rho \leq 20$ ohm-cm. For other oxide thicknesses d_{ox}, d can be chosen to be d = $\frac{0.5}{1200}$ d_{ox}. For higher layer resistivities, the layer thickness should be increased according to the resistivity ratio. For epitaxial ρ values \geq 15 ohm-cm, care must be taken that the condition C_{ox} << C_J is still valid, e.g., by increasing the wafer area. For the insulator-silicon structure, with an oxide thickness of 1300 Å and a layer of $\sim 10 \ \mu m$ and N_D , $N_A \sim 1-2 \times 10^{16} \ cm^{-3}$, we consider a dot of 0.25-mm diameter as appropriate. The same changes in dot diameter and epitaxial layer thickness should be done for a variation in oxide thickness and layer resistivity. The diameter of the wafer should be at least 1-1/4 inches. Since these values refer to the oxide capacitance ($\tau = RC_{ox}$) and the lifetime measurements are carried out with the inversion and deep depletion capacitance (8), the accuracy increases by $(C_{ox}/C_f)^2$. (Cf. Eq. [1].)

COMPARISON WITH OTHER TECHNIQUES

Finally, this technique should be compared with some alternatives, namely, the MOS emitter device and the buried-layer SOS structure, described, for example, in Refs. (9) and (10). Though some restricting conditions are implied in our technique, such as dot diameter, epitaxial layer thickness, etc., its advantages are greater versatility and measurement without distortion of a conduction layer. For example, the technique of Jones and Barber (9) is restricted to lifetimes, whereas a buried conduction layer (10) might cause outdiffusion and thus a reduction of lifetimes even in the epitaxial bulk.

Measurements using a guard ring as a counterelectrode were made. The substrate was at the same potential as the guard ring. The equivalent network consists of the oxide and space charge capacitance, C_{ox} and C_{sc} , respectively, of the dot

Epi Characterization 51

in series with the oxide capacitance C_{oxR} , the space charge capacitance C_{scR} of the ring, and the spreading resistance of the layer. The network is shunted by the coupling capacitance C_{c} between the dot and the ring. (We neglect here the shunt to the substrate, because this has been discussed above.) The condition $C_{ox} \ll \frac{C_{oxR} \cdot C_{scR}}{C_{oxR} + C_{scR}}$ can be fulfilled by the appropriate choice of the ring area. The condition $C_{c} << \frac{C_{ox} \cdot C_{sc}}{C_{ox} + C_{sc}}$ is always valid since oxide thicknesses of 500...5000 Å are used. For a dot diameter of 60 mils, an oxide of 1000 Å, and a spacing of 150 μ m, one obtains $C_r = 10^{-4}$ pf. Thus dispersion-free C-V curves are feasible. This was confirmed by the experiment. However, a disadvantage is encountered: with the present state of the art, photoresist deteriorates the oxide and silicon properties, especially the lifetimes and the oxide stability. We observed reductions in lifetimes from 500 µsec to 0.1 µsec and flatband shifts. (The lifetime data of the paper were obtained by the technique given in Ref. 8.)

RESULTS AND DISCUSSION

The results of the measurements can be summarized as follows: Flatband voltages and surface-state densities are found in the usual ranges of $\sim -1V$ and $\leq 1.4 \times 10^{10} \text{ eV}^{-1} \text{ cm}^{-2}$, respectively.

Since the peak of the G-V curves is found at depletion surface potentials for frequencies in the kHz range, the capture cross ection can be expected to be 10^{-13} to 10^{-15} cm². No deviation compared with "normal" MOS structures can be seen. Lifetimes are measured to be 1 µsec in the epitaxial wafers, 10^{-3} µsec in the n-SOS wafers, and 0.1 µsec in the p-SOS wafers.

The SOS low-frequency curves for wafers of layer thicknesses between 1 and 10 µm do not show any trace of a donor or an acceptor level (Fig. 6). This is in contradiction to earlier reports (11, 12), where an acceptor and a donor level at $E_{c} - E_{A} = 0.25 \text{ eV}$ and $E_{D} - E_{v} = 0.30 \text{ eV}$ were published. This might be attributed to different measurement techniques. The densities of the levels are reported to be 10^{17} to 10^{18} cm⁻³. A good resolution for surface states (or bulk impurities seen as surface states) for the slow ramp technique is 10^{11} cm⁻². If this value is divided by an effective distribution width of 10 to 100 Å, one obtains bulk concentrations of 10^{17} to 10^{18} cm⁻³. The slow ramp technique, however, measures states localized at the surface, whereas the techniques used in Refs. (11) and (12) cover the total depth of the film. Thus, it might be concluded that the reported levels are located near the Si-Al₂O₃ interface.

Epi Characterization 53

Fig. 6. Enlarged portion of the low frequency C-V curve of a p- and an n- SOS wafer. No indication of a deep lying level is visible. For comparison, the ideal low frequency curves are shown too.

Another possible explanation is the fact that one deals with extremely deep levels. Their time constant is controlled by the surface potential u.:

$$\tau_{p} = (\sigma \cdot v_{th} \cdot N_{A})^{-1} \exp(-u_{s})$$

Since the levels are defined to be either acceptor or donor levels, they exchange carriers only with the valence or conductance band, respectively. With the given data and an assumption of a capture cross section $\sigma = 10^{-15}$ cm² and a thermal velocity $v_{th} = 10^7$ cm/sec, one obtains for the hole dispersion time constant in the n-type wafer $\tau_p = 2x10^2$ sec. This value is comparable to our measurement frequency of $2x10^{-3}$ Hz. Capture cross sections of 10^{-15} cm² have been measured (13); in this case, however, higher values are more likely, and the first explanation should be preferred.

SUMMARY AND CONCLUSIONS

The measurement of the admittance of an MOS structure over a p-n junction or on SOS devices is discussed. It is shown that by appropriate choice of the wafer data, the contribution of the junction to the total admittance can be neglected and lifetime measurement can be carried out.

No deep levels can be seen for the SOS system.

REFERENCES

- R. Castagne, C. R. Acad. Sc. (Paris), <u>267</u>, Serie B, 866 (1968).
- E. H. Nicollian and A. Goetzberger, Bell System Tech. J.,
 46, 1055 (1967).
- 3. D. R. Kerr, Int. Conf. on Properties and Use of MIS Structures, J. Borel, Editor, CNRS-LETI, Grenoble, 303 (1969).
- W. R. Fahrner and A. Goetzberger, Appl. Phys. Lett.,
 <u>21</u>, 329 (1972).
- 5. M. Zerbst, Z. Angew. Phys., 22, 30 (1966).
- P. Rai-Choudhury and D. K. Schroder, J. Electrochem. Society, <u>119</u>, 1580 (1972).
- 7. Technical Report No. 4.
- 8. W. R. Fahrner and C. P. Schneider, ESSDERC, Nottingham, England (1974).
- 9. J. E. Jones and H. D. Barber, IInd Int. Symp. on Silicon Materials Science and Technology, March 13-18, Chicago, 561 (1973).
- D. K. Schroder and P. Rai-Choudhury, Appl. Phys. Lett.,
 22, 455 (1973).
- 11. F. P. Heiman, ibid., <u>11</u>, 132 (1967).
- 12. D. J. Dumin, Solid-State Electron., 13, 415 (1970).
- W. Fahrner and A. Goetzberger, Appl. Phys. Lett., <u>17</u>
 16 (1970).