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FOREWORD

This is the final report of our research on biocybernetic factors
in human perception and memory which was begun in 1972 at Stanford

University and was supported partially* or fully by the Advanced Research

Projects Agency of the Department of Defense under contract DAHC15-72-

C-0232, which is now terminating. This report presents a brijef summarvy

of the objectives and a description of the accomplishments of the

project,

Since its inception, this project has been the result of the

collaborative efforts of many individuals, Most of the staff members

contributed to the writing of this report,

*Partial support for this project was provided from 1972-1973 by
NASA/Ames Research Center under Grant NGR 05-020-575,
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Biocybernetic Factors in Human Perception and Memory

SUMMARY

The objective of this research project is to develop biocybernetic
techniques for use in the analysis and development of skills required
for the enhancement of concrete images o. the "eidetic" type. The scan
patterns of the eye during inspection oi scenes are treated as indicators
of the brain's straiegy for the intake of visual information. We
attempt to determine the features that differentiate visual scan patterns
associated with superior imagery from scan patterns associated with
inferior imagery, and simultaneously, to differentiate the EEG features
correlated with superior imagery from those correlated with inferior
imagery. For this purpose, we have designed a closely-coupled man-machine
system to generate image enhancement and to train the individual to
exert greater voluntary contiol over his own imagery, The models for
EEG signals and saccadic eye movement in the man-machine system have
been completed. These models are used for monitoring and prediction of
EEG signals and eye positions, At this moment, all parts but the feedback
path of the man-machine system have been implemented, We shall descrioe
in this report the details of these models and diccuss their usefulness.

We have assumed that the strategy of an individual with superior
visual memory is to fixate his eyes at the optimal locations of the
visual scene at the optimal time instants in relation to EEG. Through
the EEG nodel, we have concluded that the EEG signals play the role
of timing mechanisms for visual information acquisition and processing.

By using our characterization of scan patterns, we are able to show that
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the scan pattern is more consistent for individuals with high scores

obtained from the Marks' Visual-Memory Task than those with lower scores,
These results tend to confirm our assumpgtion and help guide us in
outaining a firmer grip of these optimal locations and time instants, We
have also developed and implemented a technique for presenting any part
of a scene at a specified foveal location at a specified instant of

time. If the specified locations and time instants are optimal, we
expect that the image will be enhanced. Prediction techniques have

been developed for both saccadic eye movements and EEG waveforms so

that lead times may be provided for the presentation of appropriate
visual cues (stimuli). We shall present and discuss many of these

in this report.
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I. INTRODUCTION

This project has been aimed at the development and use of biocyber-
netic concepts and techniques for analyzing and developing skills that
are essential for the enhancement of concrete images of the "eidetic"
type. We have concentrated on the problem of achieving biocybernetic
expansion of visual memory by using a closely-coupled man-machine system
which performs real-time monitoring, analysis, and feedback of spatial
and temporal cues that serve as keys to human memory encoding and
recall., There is strong evidence that these cues are heavily depended
on in memory encoding and retrieval by human nervous systems. The closely-
coupled man-machine system is used for the measurement and prediction
of human mnemonic performance to determine the spatial and temporal
cues as well as for the control and enhancement of mnemonic skills.
Such a man-machine system for visual memory tracking and training has
been designed and is depicted in Figure 1. This system is capable of
delivering optimal sequences of sensory siimulation conditionally
related to eye position and brain stat: and thus to explore systematically
their relation to visual memory retrieval.

It is seen from the man-maciine system that we emphasize the real-
time monitoring and prediction of central nervous activities through
the EEG signals and through the tracking of eye movement and eye fixations.
Employing these real-time techniques, we have attempted to determine
the temporal and spatial cues for human memory encoding and recall by
monitoring of brain states and eye positions, Again, through this closely-
coupled man-machine system, we utilize *his information to arrange the

desired coincidences between various brain states, eye positions, and

1
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Figure 1 Block diagram of the
closely-coupled man-machine system
for monitoring and training of visual memory skills
the delivery of visual stimulation, The visual stimuli have been
presented on projection sc.een or oscilloscope displays for binocular
or monocular viewing., The eye movement was measured with the Biometrics'
Eye Movement Monitor, Type SG; it is now measured with the Stanford

Research Institute's (SRI) Cornsweet Eye Tracker. The brain states

have been monitored through the EEG signals, It is expected that
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greater control of image persistence and image dissipation can be

obtained by combining these real-time monitoring and prediction
techniques with a feedback scheme to close the control loop as depicted
in the block diagram of the man-machine system, In other words, we
strive to use the computer system to supplement and strengthen those
deficiencies in human memory that ordinarily result in image
dissipation based on the assumption that a superior scan pattern of
visual inspection that results in a superior memory is more consistent
and also less probable of natural occurrence than a visual inspection
strategy that is less consistent. To summarize, we attempt to steer
the subject toward improved encoding and decoding strategies for memory
by using the techniques which have been deveioped and implemented on
this mar-machine system.

The closely-coupled man-machine system utilizes computer-based
models in the system configuration to predict the kind of stimuli which
should be used in order to produce the desired future responses. The
EEG signals and the eye-movement measurement are shown as the responses
which are closely controlled since the computer-based models are designed
to mimic the actual physiological processes in regard to their stimulus-
response relations. To be more specific, since the visual cues (stimuli) k

must be presented at appropriate locations in the visual field at the

right instants of time, monitoring and prediction on real-time basis

of both eye movement and EEG signals are essential, These models have ‘
been developed for the purpose of monitoring and prediction. We have
completed the work on the computer-based models which will be described

in detail in the following sections. These models have also been
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implemented on the PDP-15, All of the man-machine system, except the

interface electronic devices, can be realized on the PDP-15 computer,

At the close of this project, we have impl2mented all but the feedback
path of the man-machine system,

In order to determine the visual cues which serve as keys to
both memory encoding and decoding, we have to characterize the scan
patterns of observers during the inspection of scenes, With this
quantitative characterization, we will then be able to differentiate
quantitatively a superior scan pattern of visual inspection that
results in a superior memory from an inferior one. This quantitative
description is intended for use in the determination of those vital
visual cues., We have developed and implemented a statistical method
for the characterization of visual scan patterns, Our experimental
results have established that observers with good visual memory, as
scored by Marks' Visual-Memory Task, have a more consistent eye scan

pattern in quantitative terms than those with poor visual memory. The

characterization of the visual scan pattern and the related eye-movement
measurement techniques will be discussed in Section IV,

Last, but not least, we will present a technique for the presentation
of the visual cues (stimuli) at appropriate locations in the visual
field at the right moments., Since our ultimate goal of this project is
ti.e visual memory enhancement through biocybernetic techniques, once the
visual cues are determined, they can then be presented to the observer
or trainee using our technique. In other words, this computer-implemented
technique will enable us to deliver visual stimulation to coincide with

the desired brain states and eye positions since it controls, in real-time

b s st e bbb
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the monocular field of view of an observer inspecting outline drawings
of visual scenes on a graphical CRT display., The details will be discussed
in Section V,

In Section VI, we shall summarize our accomplishments and make
concluding remarks. Some of these accomplishments have been published
or presented in international scientific conferences, The 1list of
publications relevant to this research project is included in

Appendix B,

In summary, we have designed a closely-coupled man-machine system
for the purpose of developing and use of biocybernetic techniques for
analyzing and developing skills that are essential for the enhancement
of concrete images of the "eidetic" type. This man-machine system has
been implemented except the feedback path. In this system, we have
developed models for EEG signals during visual stimulation and for
eye movement during inspection of stationary scenes, respectively. These
models are then used for the purpose of monitoring and prediction of
various brain states and eye positions so that the dcsired coincidences
between various brain states, eyv positions, and the delivery of
visual stimulation can be arranged. This arrangement of the desired
coincidences can be carried out by a technique we developed and implemented.
The electronic interface systems in the man-machine system serve
a very important role in data acquisition and monitoring of the brain
states and eye positions. These electronic interface systems consist
of EEG recording machines with Grass preamplifiers, eye-movement measuring
instrument ,SRI Eye Tracker) and related interfacing hardware and

software, We shall cover some of the unique features of the interface




systems in Appendix A, This report will conclude with Appendix B
which includes: (1) a list of the names of those who have contributed

to this project; (2) a list of all relevant papers that have been or

are to be published; and (3) a list of lectures and talks given,




II. ANALYSI3 AND MODELING OF EYE MOVEMENTS
DURING SCENE INSPECTION

In the closely-coupled man-machine system depicted in Figure 1,
we have two boxes, each labeled as computer-based model; one is for eye
movement and the other is for EEG signals, These computer-based models
are used for monitoring ~nd prediction of eye positions and various brain
states, respectively. The monitoring of the eye positions is necessary
for the determination of the spatial cues that serve as keys to visual
memory encoding and retrieval and the prediction of eye position is
essential for the presentation of these cues at the desired locations
of the visual field. In this section, we shall discuss the development
of such a model for eye movements during inspection of two-dimensional

scenes,

1. An Algorithm for Automatic Identification of Fixations aad Saccades

Eye movements during inspection of two-dimensional stationary scenes
consist mainly of two components: fixations and saccades., The first step
in our analysis of eye movements is to senarate the data into these two
components, We need to determine the beginning and end points of the
fixations and saccades, This helps us to determine the sequence of
fixations during a volitional scan of a two-dimensional scene, The
separation of saccades from fixations is useful for the modeling
to be described later., In the past, the delineation of fixations
and saccades and the scoring of the fixation sequences has been done

by hand. We have developed an algorithm which does this automatically

and can thus reduce large amounts of raw eye-movement data to a sequence




of fixation points very quickly. With m~7ifications, the algorithm can
pcerform in real time, In addition, it gives us an objective method of
data analysis as opposed to the earlier methods,

The detection of saccade onset is essentially a problem of signal

detection. We can consider the movements during fixation as nolse and

the saccade as the signal., At any instant, we compute the quantities

k k
Ry = Xp = El“’ixil B = Ty El“’iyi‘
where (xi,yi) are sampled values of the horizontal and vertical components
of the raw data; (XF'YF) is the location of the fixation; and [mi] is
a weighting function of length k . The algorithm indicates the onset
of a saccade at t = 0 if either Rx > T or Ry >T , where T is a
preset threshold value; otherwise, the weighting window {wi] is moved
forward., The threshold T is a parameter of the algorithm which
dependa- on the noise level in the measurement, the size of the smallest
saccade that has to be detected, the amount of delay (k) allowed before
detection, etc., This approach is essentially equivalent to using a
matched filter since the weights [wi} are determined using the saccade
model to be described later, Based on this model, we can determine the
error probabilities for different size saccades and set T accordingly.

We use a slightly different approach to determine fixations since
the end of a saccade is usually much slower than its onset. Naw we

compute

L 4
A J:|"J - i§131x1| SO ‘YJ g 1Z=>1giyi| Ty P IRy ES

where [gi] is an empirically determined weighting function and TS is

a threshold value depending on the noise variance. In effect, we are

8
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computin; the number of points in a sample window of length ¢ which
falls within a square of size TS around the window weighted mean

CE g%, ¥ giyi) . The algorithm moves to the fixation state if n
exceeds a preset value nSG< £) ; otherwise, the szample window is moved

forward. In practice, a simple averaging function is found to be adequate

We have written a program to implement this algorithm. The program
reads raw eye-data from the magtapc and uses the algorithm to determine

the fixation points, These are plotted and numbered, The program also

outputs the starting and endirg times and the standard deviations of
each of the fixations, An example is shown in Figures 2, 3, and 4.
Figure 2 shows the raw eye-movement data. Figure 3 shows the sequence
of fixation points obtained from this algorithm, and Figure 4 shows the
fixation points superimposed on the actual stimulus used. It is clear
that a considerable data reduction has been achieved and the result is
easier to understand and analyze. Other advantages of this algorithm
include easy adaptation to different noise levels and/or measuring
instruments by changing some parameters, and a quantitative estimation
of error probabilities. In fact, the algorithm has been used quite
successfully during the course of this project on data obtained from both
the Biometrics unit and the SRI eye tracker by simply changing the

thresholds,

2, Modeling of Saccadic Eye Movement

The next step in the analysis of eye movements is the investigation

of saccadic movement. We need to be able to monitor and predict the

b e i
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a 20-second scan,

Figure 2 Raw eye movements for
Scale = 2,5 deg/inch
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Figure 3 Fixation sequence for the scan in lFigure 2
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Stimulus overlaid by the fixation

sequence in Figure 3

Figure 4

12




saccade duration and length in order to present visuai cues (stimuli)
at the appropriate locations in the visual field at the desired momer*s,
Thus, the detailed dynamics of the saccadic movement areof interest to
us. Hence, our approach is first to develop an appropriate wmodel which
embodies the dynamic characteristics of the saccadic system., This model
is then utilized for monitoring and prediction of the saccadic movement.
The human faccadic eye-movement control system has been of great
interest to researchers in neurophysiology and bioengineering. The
general shapes of the position, velocity, and acceleration curves of the
eye movement have been reported extensively. We have attempted to fit
the model responses to empirical data by classical least-squares
techniques, This enables us to estimate certain parameters of the model.

These parameters which will be used for predicting the final eye positions

have only been determined by indirect means in the reported models. We
have also made important modifications to the model so that its output
will accurately characterize the obs:rved responses. We shall describe
and discuss the model modifications, the parameter estimates, the curve-
fitting results, and the use in monitoring and prediction.

For the present, we are concerned with horizontal eye movements
only. For this purpose, an experiment for the study of horizontal
saccades has been designed and used. A row of LEDs equidistantly
located, only one of which is lighted at any given time, is used as
stimulus. We will refer to the leftmost position as the rest position
and the other six as the target positions., The target signal is supplied
by a digital computer., The subject is instructed to follow the light

spot, which repeatedly jumps from the rest position to one of the target

13
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positions and back. The successive target positions are chosen from a

table of random permutations to avoid anticipation by the subjects. An
interval of at least 1 second is provided between each position change,
Eye movements are recorded and stored as described elsewhere in this
report,

Using the algorithm described above, we first mark the starting points
of the saccades., Then the saccade position and velocity are plotted
and equal length saccades are averaged with each sample lined up at the
start, As an example, we show position and velocity plots of a typical
saccade in Figure 5 and the averaged plots from 25 saccades of one
subject in Figure 6, The saccades observed agree with those reported
by other researchers in all aspects such as duration, overshoot,

response delay, etc.

In order to monitor and predict the saccadic eye movements, we intend
to fit the model output to tho saccade position data by estimating the
model parameters from the data. The endpoint of the saccade can then be
predicted from the model output by using these parameters,

let the horizontal position xi at time ti after the onset of
the saccade be

xi = e(a ,a ,-no,a

1’92 i fyd * (D

where al,az,...,ak are the model parameters and ni is the noise
term which represents the errors introduced by the instrument, the data

collection errors, the inherent random nature of the biological system,

etc, We shall use the least-squares estimation to determine al,az,...,

14
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a . They are determined by minimizing the mean-square error
n 2
S: = s 00 H
Z|x; - etaay, gt
J=i]
where n is the number of samples observed; i.e,, by solving the set of

equations

Oa (2)

In the case when ¢ is a linear function of the parameters al,az,...,ak,
Eq. (2) is reduced to a set of linear equations which can be solved to
obtain the parameter estimates., If 8 1is nonlinear, then an iterative
process has to be applied in order to solve for al,az,...ak .

If we assume the noise ni to be white Gaussian, the least squares
estimates are known to be identical to the maximum likelihood estimates
which are unbiased, consistent, and asymptotically efficient, With the
above assumption, we can also estimate the varian s of th parameters
and use X2—test and t-test for goodness of fit. This gives us a
quantitative measure of the goodness of our model.

The functional form for § is determined by the particular model

used. It undoubtedly relates to the dynamics of the eye-movement

system. We have chosen to use Robinson's model for its simplicity.

This model is block diagramed in Figure 7.
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Figure 7 A model characterizing
dynamic properties of saccadic
eye movement

Here we have shown the dynamic part of the model only; the contioller
part is left cut. The 1nput to the system is a pulse of height h and
width 1 ., This produced a saccade of amplitude equal to the area under
the pulse; i.e., ht . NI is the neural integrator and ML} the medial
longitudinal fasciculus which is a feed forward path in parallel with
the integrator and provides a lead network to compensate for the plant
lag. R represents the oculomotoneuron firing rate, For a pulse input,
we see that R is a pulse step as desired., The plant is a second-

order over-damped system with time constants T and T

. i S
1 2 Robinson

chose the MLIF gain T3 = T1 . However, he suggested that in order to

produce the observed overshoots and undershoots T3 >-T1 and T3 < T1 ]

respectively, should be used. For our purpose, we have decided to

retain T,

3 as a separate parameter. The output § is the eye position,

The complete transfer function is then

T3S el 1

s (Tls+1)(Tos+1) :

<@

For the assumed pulse input, the output @(t) becomes




T =T -t/T
¢(t) = mjt + |E, =T, =T +MT¢:/1+
3 2 1 T_=T 1
12
T =T ) -
_(Ls_”t/%] i
=T %
T2 1 2
T, -T -t/T -(t- T
(T)-T4) 1, =te=v)/1,
=hT+—'T—_T——T1 e =e +
1 2
T - - -(1-1
{T,-T5) t/t, - )/Tz) .
TTTZO - e y G el e (3)
2 1
The position and velocity c¢urves given by the above for h = ,5 deg/ms

and 7 = 20 ms corresponding to a 10° saccade are shown in Figure 8.
The values of the other parameters used are T1 = 150 ms and T2 = 7 ms,
(These values are suggested by Robinson.) Curves are shown for T3 = 190
150 ms, and 110 ms. Note the overshoot and undershoot for T3 >-T1 3
and T3 < T1 , respectively,

Note that there are four unknown parameters, h , T1 g T2 , and T3 .
For estimation, we have to solve Eq. (2) for k = 4 . However, from the
theorectical evaluation of the parameter variances, we found that the
estimate of T1 will have a very large variance. Thus, the estimate
will not be very meaningful and hence, a fixed value of T1 = 150 ms
will be used, As will be seen later, this does not afrfect the
results significantly. We have also found that, for reasons of numerical
calculation, it is better to estimate T3/T1 than T3 itself, Thus,
three parameters a_ =h , a_=T_, and a_ = T3/T1 were estimated by

1 2 2 3

using the data from tO to tO t 1, where t0 is the time of the onset

of the saccade and T 1is the input pulse width which is estimated from

19
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the saccade velocity by noting that the velocity reaches a maximum at

; 10 + 1 as shown in Figure 8, The estimated parameters are then
i substituted into Eq, (3) to obtain the complete saccade curve and the
f prediction of the final position is made simply by extrapolation,

Typical results i{rom the parameter estimation and predict:ion

schemes are shown in Figures 9 and 10, The model output matches the

actual data quite closely. The goodness of fit has been tested using the
Xz-test on the sum of the squares of the residuals, S , and the t-test
on the individual residuals at significance level P = .05. Note that
the estimates of T2 are 10.9 ms and 13.6 ms as opposed to the value

suggested by Robinson., This result 1s typical and the mean value of

T2 is about 13,0 ms, although it varies between subjects, It is,
however, significantly different from 7 ms. T:/T1 > 1 is observed in
most cases, although the difference is not significant as iar as

the final value prediction is concerned. The values of h and 1

depend on the saccade size which implies that the size is controlled

by both the amplitude and the width of the pulse. The exact relationship
is being investigated.

In most responses, an overshoot of the final position was observed. ;
This overshoot is not produced by the model, as can be seen in Figures ;
9 and 10, Even if we vary T3 , the overshoot could not be produced,

This is because fo: T3 >»T1 , the overshoot decays with a time constant 1
T1 , whereas the actual overshoot decays much faster (at about the same

rate as the initial rise). In addition, we could not fit the model

response beyond 1T to the observed data within the chosen significance

level P = .05, This indicates that the model must be modified to
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produce the right response. The fact that the overshoot decays with a
time constant of about T and the input to the uagonist and the antagonist
muscles used by Clark and Stark sugpests that the input to the model
consists of a combination of pulses rather than a single pulse., A

study of the velocity curve in Figure 6 also suggests that a positive

pulse followed by a negative pulse can produce the desired output,

Thus, our model input is changed to two pulses as shown below:

hl ‘*——‘11 i

12 . |
h
2
where the saceade amplitude = thl ar hoTo . More generally, we can use P

pulses with saecade amplitude equal to

p
i§1 hot, -

In practice, we found that no more than three pulses were ever necessary.

The results of this modification are seen in Figures 11 and 12,
For all multi-pulse input fits, 'l‘3 = T1 = 150 ms was assumed. Figure
11 shows the results of estimation from a single pulse input. Figure 12
shows the same saccade with the model output from a two-rulse input
keeping other parameters the same as before. The fit in the second
case is clearly much better. Figure 12 also shows the fit of the
velocity curves from the data and from the wodel, Thus, excellent fits
are obtained to both the position and velocity curves with this model.
Figure 13 shows a much more dramatic result where a three-pulse input

to the model is used. The justification for using such an input can be

clearly seen from the velocity curve which first rises to a maximum
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value, then approaches a steady positive value, followed by a rapid

fall to a negative maximum and decay to zero, This identifies four

distinct regions, suggesting four different input levels or three pulses

(one level being zero). In fact, for the fitting, the pulse widths are

identified by the instants where the velocity signal changes character.

This would be easier to identify on a morc noise-free system where the

second derivative or acceleration can be observed. However, it is

clear that the input is more complex than a single pulse. At present,

we are trying to investigate the relationships between the heights and

widths of the various input levels for different saccade lengths for the

purpose of prediction, Similar responses are observered for equal

length saccades which indicates that some identifiable relations exist.

We are also trying to extend the results to vertical and oblique saccades,
The above approach is useful for prediction of the final position

of the saccade, given a part of the saccade; i.e., we can use it for

prediction only after a certain time has elapsed since the onset of

the saccade. However, we also need to know when a saccade will occur

in response to a stimulus. Normally, there is a delay of between 150

ms to 250 ms from the presentation of the stimulus to the saccadic

response, If we can predict the actual delay, we can predict the

course of the eye movements following the presentation of the stimulus

by using this delay in conjunction with the above model. We decided

to use information in the EEG alpha rhythm to predict the onset of the

saccade. Gaarder et al. have shown that fixation saccades are initiated

during a particular phase of the alpha, This is in accordance with

Wiener's hypothesis that the alpha cycle serves as a clock which
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provides timing for the data gathering and processing portions of the
visual system, This result was obtained from microsaccades occurring
during fixation., We want to determine if it applies for the large
saccadic movements as well, 1If S0, we can use an EEG-alpha-wave
predictive scheme to predict the phase of the waveform and then use
this information for estimating the onset of the saccade,

The same experiment as described earlier for Studying horizontal
saccades and in addition to record Simultaneously the EEG signals collected
as described in subsequent sections has been performed. The EEG was
filtered in the alpha range, Two methods were used to determine the
relation between the saccade onset ad the alpha phase, First, the
quadrant of alpha during which the saccade started was determined,

The Kz—test was used to test the distribution of saccades in each of the
four quadrants, which was found to be significantly different (p < .05)
from a uniform distribution. This test is identical to the one used by
Gaarder et al, 1In addition, the alpha was averaged with the saccade
onsets lined up. Results indicate that there is indeed a preferable
phase of the alpha rhythm for onset of the saccade. This fact can be
exploited for the prediction of the onset of saccades if a scheme can

be found for predicting the FEG alpha waveforms; espeically, their

phasic variations. Such a method will be described in the next section.
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III. MODELING OF EEG SIGNALS

DURING VISUAL STIMULATION AND PREDICTION
OF EEG ALPHA WAVEFORMS

In order to determine the temporal cues that are important in visual
memory, it is necessary to understand the relation between the temporal
structure of visual perception and the EEG alpha cycle. To this end,
we have investigated the changes produced in the EEG signal by simple
visual stimuli. In particular, we are modeling and investigating the
various EEG entrainment phenomena caused by periodic photic stimul:
and the phasic changes in EEG due to photic stimuli., This will enhance
our knowledge in several areas: it enables us to unify several seemingly
different EEG phenomena under one principle, provides a model for the
phase-dependency of stimulus efficiency, and enables us to study the
phase-dependencies of onset times of saccades. A number of researchers
have suggested that the alpha cycle is phase locked with a clock signal
which provides the time base for a sampled-data system con:isting of
the eve, its control mechanism, and the visual cortex. The evidence
for this has been accumulated slowly; it is known that visual perception
times and reaction times are on the order of one alpha cycle and dependent
upon the phase of the stimulus, 1 addition, some recent work has
shown that a saccade is most easily initiated on certain phases of the
alpha rhythm, which coupled with the fact that vision is blocked
during a saccade, suggests that the alpha cycle delineates visual data
sampling and processing periods.

The above discussion outlines the motivation for modeling the EEG
signal during simple visual stimulation; the modeling efforts to date

have been based on a simple nonlinear oscillator which is amenable to
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analysis and simulatioun.

1. A Nonlinear Mathematical Model for Entrainment of EEG Signals by
Periodic Photic Stimulation

The model is a van der ol oscillator representing the behavior of
a subject's EEG during periodic visual stimulation by a stroboscope or
a set of LED goggles. The stimuli are delivered for 20 seconds at
some fixed frequency followed by a l0-second stimulus-off period. This
sequence is repeated for each desired stimulus frequency,

The van der Pol oscillator ¢an be represented by

9 2 0
X -p(l - x“):'( WX = A(‘;E(t)
where x(t) denotes the EEG signal; 0 is the unstimulated alpha
frequeney; E(t) is the external excitation (stimulus); and yu is the
nonlinear ecoupling coefficient.

When E(t) 1is a sinusoid, a first approximation to the solution
x(t) can be made by a classical technique, such as harmonic balancing.
The possible solutions can be classified in the following way when
Bty = Eosin(vlt 4 EO):

(1) natural oscillation (E0 is small):

x(it) = A sin(kot + o) ;

(2) harmonic entrainment (:0 = xl):

T

x(t) = A(L) sin(flt + (1))
(3) mth-order subharmonic entrainment (mub = ul):

'

x(t) = A(t) sin ( t + @(t)) s

\

(4) nth-order superharmonic entrainment (W, = nw_):

x(t) = A(t) sin(nmlt + o(t));
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(5) combined frequency oscillations (all other cases):
x(t) = Ao(t) sin(wot + ¢0(t)) + Al(t) sin(wlt + ¢1(t)).
Some initial data have been collected with a set of specially
constructed LED goggles which provide a sinusoidally modulated intensity,
and the results agree well with the above solution classes, However,
since the experimental stimulus i§ often a train of flashes, we have
developed an analysis technique for approximating Lhe solution of the
van der Pol equation when E(t) is a pulse train,
We assume that the unperturbed oscillation (E(t) = 0) 1is correctly
represented by
x(t) = a, sin 8 (t)
where the angular displacement can be written in terms of frequency and
phase:
g(t) = w.t + o(t) .

0

We wish to examine the result of E(t) being a series of impulses of

strength q at a frequency wl
Following a method due to Blacquiere, we can assess the perturbation
caused by one impulse. At an angular displacement
= Wt
en On =9

we apply the nth impulse., Its effect will be seen directly in X(t) ,

causing a small step change
tn+At
. 2
Ax = x(t)dt = v,

n
over time At , However, x will be continuous, so Ax = 0 ,
To a first approximation, we can expand Ax and AXx as below:

Ax = Aa sin en + a0A¢ cos en = 0
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: 2
AX = Aawo cos en - aowo A®sin en = qwo

wvhere Aa represents the change in amplitude and A% represents the
change in phase of the system. Solving the above equations simultan-

eously for ApAa and A¢ , we obtain

= w ’
pa = qu, cos o,
and
qw
A@ = = ao sin en .

In Figure 14, we demonstrate the amplitude and phase perturbations as

a result of an impulse falling on angular displacement en .

x

Aa (Gn) = qu_ cos Gn

A ¢(6n)
Figure 14 Phase and Y
amplitude perturbations

The unperturbed solution would have followed the dashed line, and the
perturbed solution follows the solid line.

In order to deal with a series of these impulses, Aa will be
assumed to be negligible. This is reasonable since a more detailed
analysis shows that the amplitude change decays exponentially with

time. Let T = —2% and T. = —2%

0 wo 1 1

be the alpha and stimulus periods,
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respectively. Then referring again to Figure 14, we see that applyis
the nth pulse at displacement en results in a new displacement
en + Am(en) + Since the pulses are Spaced T1 seconds apart, the
(n+1)th pulse will arrive at displacement
= + 7T .
en+1 en ) A¢(9n) 11

Clearly, for entrainment to occur, we must have the congruence relation

6n+1 E en (modulo TO)

or

en + AO(GH) + Fl = en (modulo TO)

Hence

b ) + T = kT, , k=0,1, 2 ... .

When k = 0 » we have the unlikely situation of resetting the phase of
oscillation; the required phase change Ao(en) is very large, We will
not consider this case here,

1 , the solution is called harmonic entrainment, and for

*
o]
=
=
]

t
k=2, it is called k h-order superharmonic entrainment, where k
represents the number of alpha periods elapsed per stimulus impulse. It

is casy to show that this js stable near
0]
e

as one would expect from the form of A® .

0 H

In & similar fashion, for subharmonic entrainment to occur,

) en (modulo TO)

n+m




or

n+m-1
= T "
oL+ En 89(9,) +mT =g (modulo 0)

Hence,
n+m-1

En M’(ei) + m'r1 = 'ro 6

When m = 1 we have harmonic entrainment again, and for m> 2 , mth-
order subharmonic entrainment occurs. The stability of this solution
is currently being investigated, but it appears that for m = 2 a
small stable range exists,

In summary, when the stimulus frequency is near the alpha frequency,
harmonic entrainment is possible., When the alpha frequency is near an
integer multiple of the stimulus frequency, superharmonic entrainment
is possible, And when the stimulus frequency is near an integer multiple
of the alpha frequency, subharmonic entrainment is possible.

When the stimulus frequency is not in one of the above ranges,
combined frequency oscillations exist, Thus, we have the same five
solution classes for both sinusoidal and impulsive stimuli. The major
differences lie in the amplitudes required to produce the various effects,
and in the fact that the impulsive stimulus will produce integer harmonics
of its fundamental frequency due to its inherent harmonic content,

Results obtained from EEG data on the model are described and compared

in the next section,

2. Model Simulation

It is necessary to simulate the nonlinear oscillator model to
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obtain reasonably accurate solutions since nonlinear analysis is by
nature approximate, We are using a variable order differential equation
solver (DVDQ) which has an Adams-Faulkner predictor and an Adams-~-
Moulton corrector, It provides for up to twentieth order interpolation
of output values positioned independently of the changing stepsize,
which greatly facilitates signal processing of the simulated solution
by allowing a constant sample period,

The sine wave stimulus is handled in a straightforward fashion, but
the impulse trajn is treated specially., Since it is known analytically

. 2
that the exact change in x(t) is gq.

o (by integration) at the time

an impulse is c¢alled for, the state vector is perturbed and the integration
restarted. The management of impulse arrival and sample output is
performed by a discrete event-queuing scheduler on a priority basis;

impulse arrival has priority over all events to avoid frequency shifts

T TN T

in the impulse train, Error propagation as a result of restarting

o

the integration is linear with the requested error tolerance and

adequately small,

-

Figures 15 and 16 show the phase and amplitude perturbations caused
by a single flash landing on phases of 0 , n/2 y T , and 3n/2 radians,
The simulations match the first order approximations developed in the

previous section very well. These perturbations produce appropriate

entrainment phenomena, as seen in the spectra of ligures 17 and 18;

there is one spectrum for each stimulus Irequency, representing 5.12 }
seconds of impulse driven simulation at a 100-Hz sampling rate. The

five phenomena predicted in the previous section can be clearly seen;

viz., harmonic entrainment, subharmonic entrainment, Superharmonic
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entrainment, combined frequency oscillations, and stimulus harmonics,
These effects can again be seen in Figures 19 and 20 which are spectra
from 5,12 seconds »f sine wave driven simulations. These spectra will
be compared with those obtained from experimental data in a section

below; the next secti:n discusses data collection and processing,

3. Data Collection and Processing

The data collected to test the model have been obtained from a
very simple experimental paradigm, Subjects are presented a series of
stroboscope f{lashes or sinusoidally modulated intensities through closed
eyelids; the stimulus is delivered for 20 seconds at some fixed frequency,
followed by a l0-second rest period. This sequence is repeated for each
desired frequency, typically .5 Hz through 25 Hz in .5 Hz steps, The
frequency pattern can be selected arbitrarily. The EEG signals are
obtained from left and right occipital electrodes referenced to yoked
earlobes; the ground electrode is on the mastoid. The Grass preamp
bandpasses the signal between 1 Hz and 300 Hz, and the A/D analog
prefilter is a 6-pole Bessel with a 100 Hz lowpass cutoff frequency.
Digitizing is at 1000 Hz, and subsequent filtering is done by a trans-
versal f{ilter to avoid further phase distortion. Power spectra are
computed by Fast Fourier Transfoim on 5.12 seconds of the data, forming
the power spectrum and then averaging three such spectra 4.0 seconds
after the start of the stimulus. This procedure substantially reduces
the noise, which is further reduced for viewing aesthetics by the non-
causal recursive filter

22 + 2z + 1
4z S

H(z) =
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Figure 19 Simulated FEG spectra for sine
frequencies from .5 Hz to 12.5 Hz
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Figure 20 Simulated EEG spectra for sine
frequencies from 13 Hz to 25 Hz
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The resulting Spectra may be Superimpoused with hidden lines removed by
classical graphics techniques; a small amount of information must be
saved after each Spectrum is plotted,

The Stroboscopic stimuli are pProduced by a Grass PS-2 Strobe lamp
in a sound-proof enclosure. It is driven by a relay contact, The
Sinusoidally modulated intensity stimuli are produced by a pair of
hemispherical goggles, each Containing ten LEDs, driven by a current
source controlled by a D/A converter on the)PDP—15. The voltage supplied
is proportional to exp (sin wlt) Since the LED amplitude is linear
with current and Sinusoidal intensity is desired. Both Stimuli are

delivered through closed eyelids to ensure a uniform visual field,

4, Comparison of Mcdel Simulations and kxperimental Data

——

The comparison of model simulated resuylts With experimental results
is subject to difficulties arising from the noise in the data and the
random nature of much of the EEG signal, The alpha frequency is not
fixed and is in fact nonstationary; it is influenced by the subject's
level of alertness and other uncontrollable factors, The response
of the EEG to a stimulus is only measurable in the average, since
individual responses are masked or corrupted by noise. Averaging can
also mask certain characteristics of the response, depending upon the
scheme used,

The best comparison of model-produced results and data for entrainment
phenomena is a comparison of their bower spectra, This allows the data
Spectrum to be relatively free of noise by averaging successive spectra

from the same stimulus epoch. Examples of stroboscopically Stimulated
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data spectra may be seen in Figures 21 through 24. Note the excellent
match overall with the simulated spectra discussed previously. The

last subject has virtually no alpha rhythm, but exhibits all of the
entrainment phenomena predicted, so the model accounts surprisingly well
for extreme cases, Fi uares 25 and 26 show spectra for a sinusoidally
stimulated subject. Note the reduction in harmonic amplitude as predicted
by the simulation. Some detailed comparisons of each type of phenomena
follow, Figure 27 shows the unstimulated case with the model parameters
adjusted to match the subject (records were selected from Figures 21
and 22). Figure 28 illustrates harmonic entrainment, with subharmonic
and superharmonic entrainment treated in Figures 29 and 30, VFigure 31
is an example of combined frequency oscillation, The model simulations
agree well with the data., Additional comparisons may be found in
previous reports,

Further comparisons are in progress, especially the comparison of
phase and amplitude changes induced by the stimuli, Preliminary results
indicate that the model predictions are reasonable first order approxima-
tions to the data, but that revisions in the model will likely be
necessary to fully account for the observed phenomena., The excellence
of match in the frequency domain bedrs out the goodness of the phase
shift predictions for small phase shifts, but it appears that larger
shifts are occurring than predicted for certain cases,

In sum, a nonlinear model for the behavior of the EEG during visual
stimulation has been analyzed and compared with actual EEG data, The
model accounts for several phenomena well in a unified fashion, and

suggests other phenomena of interest. The model specifies a trigonometric
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Figure 22 EEG spectra from subject L, M, for
flash frequencies 13 Hz to 25 Hz
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Figure 24 EEG spectra from subject F, M, for
flash frequencies 13 Hz to 25 lz
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Figure 26 EEG spectra from subject R, S, for
sine frequencics 13 Hz to 25 Hz
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form for the excitability of the EEG as a function of phase, which

explains well the various entrainment phenomena seen in EEG data,
Detailed phase analyses are in progress which indicate that the model
prediction is good to a first degree, but needs some revision. One
possibility at this point is the existence of an excitability function
at half the alpha frequency. The phase-dejendency of the model response

has considerable bearing on the phase-dependency of saccade onset,

S Prediction of EEG Alpha Waveforms |

In order to present the visual stimuli to coincide with the most 1
favorable brain state and to predict the onset of saccadic eye movement, l

it is necessary to have the capability to predict the EEG alpha waveforms,

P, T

in particular, their phasic features. In conjunction with the EEG model,

we have developed and implemented an EEG-waveform predictive scheme by

using autoregressive processes, The development and implementation of
this scheme will be described in detail, Our discussion will be
centered around the modeling of EEG data by an autoregressive process
and its use for forecasting.
The iitting of time-series models to EEG signals has been treated
in the literature, They have been specifically applied to EEG analysis
in the following areas: use for EEG spectral analysis; use of the
mixed model to define certain parameters for describing the stationary
parts of the EEG signal; and use of the one-step ahead prediction
error to compare two different models, Our interest lies in the prediction

of the alpha activity in the EEG for a longer lead time,

Although autoregressive processes have been used for nrediction 4
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of time series in general, they have not been used for prediction of
EEG data, In those general cases, the signal or time series is assumed
to be stationary. EEG signals are, in general, nonstationary. For
expedience, they may be considered piecewise~stationary; i,.e,, stationary
over short intervals of time, Hence, in our application, we are
restricted to limited sample lengths, This restriction creates certain
problems which we shall discuss later,

To model a discrete time series Xi y 1 =1, 2, ..., by an auto-

regressive process of order p , we may write

X =aX +aX 2280 O X +
t 1 t-1 a2 t-2 o ap t-p et

where al,az,..., ap are the parameters of the process to be estimated
and e, is a zero-mean white Gaussian noise, It is generally assumed
that the process Xt has zero mean; otherwise, the mean is subtracted
from the entire series, In general, the autocorrelation function of an
autoregressive process consists of two canponents; viz., decaying
exponential and damped sinusoidal waveforms, It has been recognized

that the real roots of the characteristic equation of the autoregressive

process, i,e,,
b

1 = a B aBP =0
- a = = oele = =
1 2 P

give rise to the decaying expoentials and its complex-conjugate-root
pairs are responsible for the damped sinusoids in the autocorrelation

function. We show in Figure 32 the autocorrelation function of an EEG

sample filtered in the alpha range., It is seen that the EEG autocorrelation

function may be well approximated by a sum of decaying exponentials and

damped sinusoids, In Figure 32 , we Superimpose the autocorrelation
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Figure 32 Autocorrelograms: solid
curve from a typical EEG alpha wavefoim and
dots from an autoregressive process fitted
to the data
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function of an autoregressive process fitted to EEG data to show our
assertion, This leads naturally to the temptation of modeling EEG signals
by autoregressive processes, Since autocorrelation function is not

a unique process, there :re other processes which will give rise to

the same autocorrelation function. We chose an autoregressive process
based on its simplicity in implementation.

To accomplish our aim in prediction, we have broken down the problem
into two rarts:

(1) Estimation of the autoregressive parameters;

(2) Generation of "good' forecasts according to some criteria

using the above estimation.

Since the EEG process is considered piecewise stationary, the parameter
estimates have to be updated continuously. Thus, a scheme is needed

for updating the parameter estimates as new data arrive. For estimation
of the parameters, we have used the least-squares principle., These
estimated parameters are then used to generate the minimum mean-square
error forecasts for a specified lead time. We developed a new modified
scheme for this purpose,

To furnish the basis for our modified scheme, we shall describe a
scheme ordinarily used, The development and implementation of a modified
scheme to suit our needs will then be presented. Results have been
obtained by applying our scheme to real EEG data. We will present these
results to show the utility of our prediction method.

We will concentrate our discussion to a parameter estimation
method. Later we will present our modifications to this method in

order to improve the performance for our purpose. Let us consider
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th
the p =-order process

C = aX . +aX _+ ...+
R B L Upaprtby

where et is white Gaussian noise. The order of the autoregressive
process is estimated by successively fitting madels with higher order

to the data and determining when the last parameter ap becomes small

enough,

The least-square estimates of the parameters can be shown to satisfy

the following set of linear equations

+c +...+t = =
)9, t 8,05, 9%, p41 = 2
+ +Qll+ F =
Q3 * 3%, a9 oh = Y3
a '+( +...+ = =
1%,p41 ¥ 0% 0 %+, pr1 T "%, phl
where the Q 's are given by
ij
n
- 3 e
Qll ‘;,X
i=1
=-XX +Xx +...+X X)
Qlj ( ) )| 2 jtl n-j+l1 n
and
=X X, +X X + oo + Y X
Qij i i+17 §+1 n-j+l n-i+1 '

igl1, jzl

Knowing QiJ's » We solve the set of equations to obtain the least-

square estimates of the parameters al, 32, O ap . The least-
square estimate of the noise variance is given by

2 )}
e n (911 t |Q12'Q13""’Q1,p+1

)

Previous discussions furnish us a numerical procedure for estimation of

‘altazyn--;ap

the parameters a a

1’ fgr e ap and O in the least-square sense from

the data (le X

g? cee Xn) + Based on this procedure, one can model




th
a weakly stationary process by a p -order autoregressive process,

Since EEG data exhibit nonstationarity, this method has to be modified
for our problem, Besides, our interest is in the use of the parameter
for prediction rather than modeling,

Having obtained the estimates of the parameters, we turn our
attention to the problem of prediction. We need a scheme whereby the
prediction can be made for a certain lead time and then when a new
data point becomes available, the forecast can be updated without
repeating the original process all over again,

We will consider here minimum mean-square forecasts only, Dencte

the estimation of Xt obtained at time t by X

A '
+ t time

tHglt °

t , the values of the samples up to time t are known. The minimum
mean-square error forecast is given by (using the projection theorem):

+ a X

Peegle T A g T2 thg-g[t T vee T8

X

p tHg-p|t ’

which provides the forecasts in the form of a difference equation.
Given the sample values Xt g Xt_1 ) slerslhy xt-p+1 » We can progressively
calculate xt+1|t ’ Xt+2 EEREY by using the above equation, Using
this procedure, we can generate forecasts for any lead time utilizing

the parameters estimated earlier, However, the forecasts at each point

have to be updated as soon as the sample Xt+1 becomes available,

It is rather cumbersome to do in the above form. Hence, a different

approach is required.
Instead of writing the original equation as

X = axXx 3o 1aeX + e, R Fae Y
p t-p t

we will express Xt in a weighted infinite sum of e
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X = i}b e 5
t o d td

where the bj's can be expressed as

b0 =1
= a
bl 1b0
b =ab +ab

b =ab +ab + see + @b > @
J 13-1 "2 j-2 p'g-p * 2P

The minimum-mean-square-error forecast is

»

z

J=4

This form lends itself easily to updating. This can be demonstrated

by after Xt+ arrives, We may write

xt+1,| t+1 1

[+
xt+!,| t+l - =§_1bjet+£-J

J

and hence

Xerg) 11 - Yoot = Ppor®enn e

Thus, at time t + 1 , the forecasts for lead lengths up to £ -1
can be easily obtained from the predicted values at time t for lead

lengths up to £ by using Eq. (5) and by recognizing

= - X
*er1 = Xern T Fene

This provides a convenient scheme for updating forecasts as more
data become avajlable,

The variance of the forecast error may be easily obtained from

Eq. (4). Since the Z-step ahead forecast error at time t is given by
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£-1

“t+elt T Xers ™ Xt+ﬂ|t - ;Eg bi€iig-y *

The variance V(£) may then be expressed as

£-1
V(£) =

cz (6)
J=0

N

This variance gives us a measure of the goodness of fit for the model.
Since we have assumed the e's to be normal, the conditional probability
density function P(X

s X ) 1is normal with mean X

t+ﬁ‘xt t-1 °°* t+2]t

and variance V(£Z) . Based on this information, we can obtain confidence

intervals for the forecasts, For example, 95% of the normal distribution
mass lies within + 1,96 0 of the mean where ¢ is the standard deviation.
Hence, Xt+2|t & 1.96v/;—-is the 95% confidence interval for the forecast,

i.e., the probability that the actual value will lie in that range is

«99,

The previous formulation gives the forecasting procedure to predict
values 4 samples ahead from any time t . In order to increase the
lead time for forecasting, one has to increase the value of £ o, It ifEy
however, evident from Eq. (6) that the error variance becomes larger
as £ increases and the confidence interval for a giveh level of

confidence will also ircrease accordingly. Another way to increase

the lead time would be to increase the sampling interval and thus keep
the value of £ as low as possible so that the level of performance

of the predictor may be maintained, However, the sampling rate or

sampling interval for a signal is determined by the bandwidth of the

signal, If the signal is furnished in digital form, then one has

little choice in altering the sampling interval, One could, of course,
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increase this interval by dropping every kth block of data points., In
any event, the increase in sampling interval means reduction in the
number of data points in a given interval of time. This reduction in
data points leads to a higher variance for the estimates, Besides,
the number of data points may be so much reduced, since the EEG signal
is considered stationary only for a short period of time, that the
estimates are not statistically significant, For these reasons, we
reformulate the autoregressive model in a more general form as

+a X . it o 1 4
t - Tk T B2 t-ok o t-pk T St

which, when k = 1 , reduces to the case discussed earlier., This is
equivalent to an autoregressive model for the time series

(X,, X

t' ook’ Teegk 00 ) o

The least-square estimates of the parameters can be obtained by a

logical extension of the earlier results; viz.,

3%, T 8,25 +.0e + 8%, p+1 = 2
+ oo = =
293 * a0, + * A s~ S (7)
+ a i ool Gt = -
1%, pt1 * %%, o1 oo+, pt1 = %, ph
where the Qij's are now redefined as
n
2
.= LK
- 25
Y TN AP )
9 ( *(-1kh gl alNn A
Q + X

ij - x(i-l)k+1x(j-1)k+1 ¥, vinge n-(J-l)kxn-(i-l)k :

LEY & I8

The least-square estimates are the solutions of this new set of equations, 1
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The forecast equations are modifield in a similar manner to give

xt+ki|t a alxt+k(2-1)|t s azxuk(ﬁ-z)h T

+ apxt+k(i-p)|t
and Eq., (4) becomes
> <}
Xerke|t = jz_:ﬂbjet+k(£-J)

with the bj's defined in terms of the aJ's as before. In essence,
the scheme processes the available data in such a regrouped fashion by
resampling the data in k multiples of the original sampling interval
that the level of performance is not degraded, The performance of this
scheme on EEG data will be discussed next. The usefulness of the scheme
is demonstrated by our results,

We developed a computer program to implement an algorithm for
recursive estimation of parameters and forecast of future values by
using the new modified scheme. The program was written in FORTRAN for
a PDP-15 computer, As an example for illustration, we applied our
scheme to real EEG data, which were recorded while the subjects with
closed eyes were stimulated by stroboscopic flashes for 50 seconds at
the rate of 10 flashes per second, then no stimulation for 50 seconds,
then another 50 seconds of stimulation, etc. The sigi.:ils were sampled
at an interval of 1,2 msec., Since we are mainly interested in the
alpha component of the EEG, the data were filtered to obtain the
components around the alpha range (7-13 Hz) through a transversal filter,
The computer program reads this EEG data as its input., Other required
information such as the number of sample points N for which the process

is considered stationary, the order of the process P , the resampling
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value K , the prediction lead length L and the window width NWND

for updating the parameters are also read in as input, (For efficiency,
the parameters are not updated with each new data point, but only after
NWND new data points have been read in.) A flow chart of the program
is shown in Figure 33. As soon as the above variables and the initial

N points are entered, the program computes the least-square estimates
of the parameters by solving the set of linear equations (7). The error
variance 02 is also estimated. These estimates are then used to
generate minimum mean-square error forecasts up to L steps ahead;
i.e., forecast of t + KL is obtained at time t . The variance of

the forecast errors and the confidence interval for a certain significance
level are also calculated, At this time, the next data point is read
in; the residual is calculated as the difference between the actual
value and the forecast; and the forecasts for the remaining points are
updated by using Eq, (5)., A new forecast for the value L steps

ahead is produced, This process is repeated until NWND new points
have been exhausted. The procedure will repeat again starting with

the recalculation of the parameter estimates,

Results of the prediction for various lead times are shown in
Figures 34 through 38, 1In order to compare the predicted weviforms with
the actual EEG, we plotted the predicted waveforms and then superimposed
the actual EEG on top of them. The order of the autoregressive process
was chosen as p = 7 by examining the partial autocorrelation function
of EEG data for k = 10 . The effective lead time in seconds is
kT where T 1is the sampling interval and £ denotes the lead time

in number of samples, 1In Figures 34 through 38, the waveforms were
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Figure 33 A flowchart for the realization
of the prediction scheme
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for lead time of 24 msec.

<

= 7 e eess predicted

o~ actual

-

- =

|

. T T 1
‘ [ ] ] ar [ ] ) 400

TEHE

®

® -

-

- L= 4

- -

~

Figure 35 Actual and predicted waveform

for lead time of 48 msec,
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plotted against the sample numbers and the lead time £ was indicated

at the lower right corner., For instance, in Figure 36, £ = 5 means

a lead time of 10X5 X 1,2 = 60 msec,, Sin"e k = 10 and T = 1,2 msec;
hence, the length indicated for £ = 5 represents 60 msec. The amplitude
scale is relative, The solid curves represent the actual EEG and the
dotted curves are the predicted waveforms. In Figure 34, we see that

for a lead time of 24 msec., the two curves practically coincide with
cach other, This indicates a prediction with little error., We progressive-
ly increased the lead time from 48 msec. in Figure 35 to 120 msec,

in Figure 38, It is observed from this series of figures that the
coincidence of the predicted and the actual waveforms worsens, This
indication of increasing error as lead time increases is expected,

For a quantitative comparison, we computed the prediction error variance,
which is used as a performance measure of the prediction scheme, for
various lead times. This forecast error variance is shown in Figure 39.
The vertical scale 3zives V(Z)/E(xf) which represents the prediction
error variance relative to the variance of tle signal to be predicted.
For example, for £ = 5 (i.,e., a lead time of 60 msec.) the error
variance is 1% of the signal variance, This gives a measure of how

close the predicted values will be to the actual values. We can see

at a glance from Figure 39 that the performance deteriorates as leud

time increases, In using this scheme, one can determine a maximum

lead time for any given tolerance level., For our purposes, this

scheme is satisfactory,
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1V, CHARACTERIZATION OF SCAN PATTERNS

One of the important aspects of the research done in this project
has been the development of techniques and tools for the automatic
analysis, characterization and dic<play of scan patterns. In visual

tasks, the sequence of fixations usec in scanning the visual target
g

is called the "scanpath", and we will refer to a "scan pattern” as a

collection of information about the properties of one or more scan-
paths recorded by one or several different observers, Naturally,
to be able to differentiate a superior scan pattern which results in
superior visual memory from an inferior one, we must first be able to
characterize a scanpath in some terms other than just a list of (X,Y)
fixation coordinates,

A graphical illustration of a sequence of the foveal fixations
is shown in Figures 40 and 41. Figure 40 shows the outline drawing
of a still life scene which was inspected by a subject with his scanpath
superimposed. In Figure 41 we have plotted a sketch of the visual
stimulus impressed on the fovea for each fixation point shown in
Figure 40, The sketches show a visual field of 6° in diameter, a
region which includes all of the fovea under practically any definition.
These drawings, then, represent a time sequence of snapshots which are
the visual input to the observer who must create a unified picture of
the scene being viewed from the sequence of picture fragments shown in
the sketches,

One observation which has often been made is that the fixation
points tecnd to be grouped around certain features or areas of the

visual image, and are relatively sparse elsewhere. Thus, we can measure
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the nearness of one fixation point to another and assign a similarity
ricasure to the two points based upon this distance, The ability to

group or cluster a set of fixation points is an important step in the
characterization of a scanpath, and several different techniques have
been used to measure point similarities and to assign points to clusters,

The use of a "point similarity function'" for clustering fixation
points has been reported earlier and will not be reviewed here,

We have also used two alternate algorithms for selecting cluster
centers, each with its own particular advantages and disadvantages.
These algorithms are known as "ISODATA" and "Minimum-Spanning-Tree-Clustering'
or MSTC,

In the ISODATA method, the number of clusters desired is given

an input variable, and the algorithm partitions the fixation points

into subsets such that the total distance between the fixation points
in a cluster and the cluster center is minimized for all clusters,
The cluster center starting points are usually selected randomly, and
the algorithm keeps moving the cluster centers until the above
criterion has been reached.

The MSTC algorithm automatically determine the number of clusters
in the data and assigns fixation points to the clusters. Three
variables given as input may be adjusted to change the criteria by
which clusters are selected.

The chief advantages or disadvantages of these two algorithms are

summarized below:
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ISODATA

MSTC

(1) Required the desired number of clusters, which usually is not
known,

(2) Solutions often are not unique, but vary with starting conditions,
(3) The iterations can require a substantial amount of computing,

(4) Many points can be easily accommodated.

(1) The solution is unique, and the number of clusters is automatically
determined,
(2) The compu'.ation is quite fast.

(3) Many points requires a large amount of storage.

Our approach to characterizing scan patterns is based on

the following two assumptions:

(a) There are a discrete number of "{ixation centers" in the scene
being viewed and each fixation point in the scan can be assigned

to oue of the fixation centers. This process of assignment or
clustering is done using the MSTC algorithm described above. The
center of the clusters should be in close agreement with the
centers of the fixation, Due to the random nature of the fixation
points, in any repetition (cycle) of the scanpath, the fixation

points do not always coincide,

(b) A scanpath then becomes a sequence of transitions from one
cluster center to another. Any saccade with starting and ending

points in the same cluster is discarded.
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From the set of all saccades leaving a given cluster center, we
can find the transition or transitions which have the highest probability.
These transtions are termed the "most-probable-saccades". :1e "most-
probable-scanpath” is then defined to be the set of all most-probable-~
saccades, The most-probable-scanpath depends on how the clusters are
chosen, and is not necessarily a closed path through the cluster centers.
Its usefulness is that it concisely summarizes the most important aspects
of the scanpath used by the observer in viewing the given visual target,

A scan pattern is some set of most-probable-scanpaths for a given observer
viewing the same or different targets, or for several observers viewing
the same target, etc,

Figures 42 and 43 illustrate how these methods may be employed to
reduce scanpath data to a more concise form, Figure 42 is a graph of a
scanpath superimposed upon a line drawing representing the still lite
scene which the observer was viewing. The first recorded fixation
(1) is in the center of the avocado. The last fixation (45) is in the
middle of the carrot, The viewing time required to create this
scan totaled 20 seconds, Figure 43 represents the same data after
processing by the MSTC program, The program partitioned the fixation
points into 11 subsets or clusters (using certain criteria supplied by

the programmer) and then computed the most likely transitions from

cluster to cluster, Clusters containing only one fixation point were
ignored. The resulting plot shows the most likely saccades between areas |
containing lavge numbers of fixations, and presents the original data

in a highly condensed format,

In order to compare one set of fixations or one scanpattern
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against another, criteria must be established which can be used to

evaluate subtle differences in the following characteristics:

(1) Total numuer of clusters - The MSTC algorithm partitions
all the fixation points into some number of clusters, very
rarely will the number of clusters in two diffcrent scans be

the same, Rules must be established for eliminating or merging

clusters which complicate the analysis, lor example, clusters

S

containing a single point can usually be removed.

(2) Similarity between clusters - The geometrical center of
two clusters will . .ually be different, and yet it may seem
obvious that both clusters are associated with or centered on

some feature of the picture,

(3) The most probable saccades between clusters will often be
different in two scans, even if the cluster centers are nearly i

alike. The similarity of two scans is Jjudged by their transition

probabilities.

The above criteria are dependent upon the type of experiment being run

and no fixed set of rules will be suggested here. Based on the above
criteria and using statistical methods, we are able to show from our {

|
preliminary results that the scan patterns of the same visual material

by the same subject who scored very high on Marks' Visual-Memory Task

are consistent,
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V. TECHNIQUES FOR ThHE PRESENTATION OF VISUAL CUES

The measurement and prediction o1 eye movements and related EEG
potentials are necessary prerequisites for the control of visually
displayed material which can enhance an observer's perception or memory
of a scene or visual environment, This s t«tion describes some means
to counle the measurement ol cye movements with the control of a
computer-driven graphical display,

The task undertaken was to provide a facility for dynamically
controlling the toveal or peripheral field of view of an observer. Such
a tacility would provide a flexible method lor studying interaction
hetween eye position and changes in the visual field. Some of the ob-
jeetives of this rescearch ares

(a) to develop techniques for dynamically controlling the visual

field in humans without any restrictive mechanical attachment to

the cye,;

(b) to obtain a sub jective Yeeling for perception without use of

the normal visual field; and

(¢) to quantitatively mecasure changes in the observer's performance

(and scanpath characteristics) as a tunction of field size and type.

The system works as follows: At the start of cach refresh of the
display (30 times per second), the position of the cye is measured and

the corresponding point on the display is computed, Parameter. within

the program determine what portion of the visual field will be displayed--

fovea only, periphery only, and the size of the ltield in either case,

Then, cach point in the display list is checked, and if it iswithin the
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required field, it is displayed., Figures 44 and 45 depiet the stimulus

for the two modes of display. The box (which was used irnstead of a
circle to simplity computations) remains centered on the fovea, no umatter
where on the screen the observer looks.

The visual scenes used in these experiments were outline drawings
of simple, still scenes, No text or highly detailed pictures were
involved, A new seene could be entered into the computer through use
of a graf/pen digitizer, Once entered, the points in the picture were
Stored by X,Y position, and a display list was created for later use
by the real-time interactive program,

After adjusting the eye tracker and calibrating the instrument,
the observer would be presented with a field of view which could be
either a fovea-only presentation or a periphery-only presentation.

The size of the field (width of box boundary) was also adjustable, from
less than one degree to the maximum width of the display, Use of thi-

program has produced, so far, these results:

Impaired peiception for fovea-only vision - If only a two or three degree

wide foveal field is displayed (when the display itself spans twenty

or more degrees), the observer finds it difficult, if not impossible, to
perceive the display, What the observer Sees are short linr segments,
and sometimes junctions between line ~egmeuts, The only way to perceive
an object is to consciously follow the contours and mentally reconstruct
the path followed, Simple objects take several minutes to detect, tew
observers et a complete idea of the entire scene, Far more use of

peripheral visual information is made than was anticipated. Large
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saccades must be forced, and the observer becomes very conscious of having

to manipulate his own eye movements,

Perception with peripheral vision - If the foveal region is blanked,

little perceptual loss occurs until the window size ~pproaches roughly
10°, that is, the scene is still perceived even when the window is
quite large. Our stimuli did not include text or other material where
high visual acuity was essential, This result is somewhat sarprising
in view of the general assumption of the importance of foveal-higa
acuity field. The peripheral field apparently makes an important
contribution to the overall pcrception of a scene, even the visual

acuity may be quite low in the outer regions,

Importance of closed contours - If the fovea-only visual field is being

displayed, little improvement in perception of objects within the

field occurs until the window size is large enough to include the complete,
closed contour of an object, The absolute size of the foveal region seems
to be less importent than the fact that complete objects are visible,

at least for the line drawings we used. This result supports another
observation we have made, which is that fixations tend to be centered

on the main surfaces of a simple object., and are not as often bound on

the edges or corners of the object,

Appearance of a phantom window - After about ten seconds of viewing, and

especially for the fovea-only condition, a phantom window with pronounced
grey-black edges appears, The subject sees a grey background with a
black window cut in the center, through which the white lines may be

viewed, The window, of course, is fixated on his eye like an afterimage.
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Two causes for the window are evident, Only the foveal region receives

stimulation, and the rods and cones adapt to a higher ambient light
level than in the periphery, which adapts to "visual grey", Also, the
sharp truncation of many contours along a straight line reinforces the

perception of an edge. Similar effects have been noted before by Yarbus,

These preliminary experiments with an eye-movement controlled
visual display have proved quite interesting and useful. The next step
is to incorporate the predictive algorithms discussed in other previous
sections of this report to present the visual cues at the desired

locations of the visual field at the desired moments.
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VI, CONCLUSIONS

Our aim has been to develop and use biocybernetic techniques for the
enhancement of visual memory. To this end, we have designed a closely-
coupled man-machine system fwr implementation, We have developed and
completed the models for saccadic cye movements and EEC signals in this
man-machine system, The models are used for monitoring and prediction of
eye positions and brain states, With the continuously up-dated information
concerning the eye position and brain state for adjusting the stimulus

parameters and the monitoring and prediction schemes, we can guide the

eyes to fixate at the specified locations of the visual field at the
specified instants of time through a technique we developed, If these
specificd locations and instants are the optimally required for superior
visual memory, then the vividness and persistence of the desired
after-image will be enhanced. We have approached the problem of
determination of these optimal locations and time instants by monitoring
eye movements and EEG signals through the models which we have developed.
Through the EEG model, we have obtained a better assessment of EEG's
role as the timing mechanism for visual information acquisition and
; processing. We have also shown that the scan pattern is more consistent for
individuals with good visual menory (as scored by Marks' Visual-Memory
Task) than those with poor visual memory., This comparison is made possible
by our method of characterization of scan patterns, With these results,

it is pussible to determine the optimal locations in the visual field

p—

and the optimal time instants for presenting visual stimuli. We conclude
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that the approach for visual memory enhancement as proposed is a feasible
one, At the termination of this project, we have implemented all of
the parts shown in the closely-coupled man-machine system but the
feedback path.

Significant accomplishments made during this research have been
published or presented in international or national scientific conferences

and two Ph.D, dissertations are near completion,
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APPENDIX A

ELECTRONIC INTERFACE SYSTEM

We shall describe here the interface system for eye-movement data
acquisition only, We are presently using a double Purkinje image eye
tracker developed at Stanford Research Institute (SRI) for measuring
€yc movements, It relies on measuring the motion of the reflections
from the front surface of the cornea and from the back surface of the
lens of the eye (the first and fourth Purkinje image ). The instrument
is discussed in an article: "Accurate two-dimensional eye tracker
using first and fourth Purkinje images", by T, N. Cornsweet and H, D,

Crane in the Journal of the Optical Society of America, vol. 63, no. 8

PP. 921-928, August, 1973. Figures A.1 and A.2 show the set up of this
eye tracker,

The first and fourth Purkinje images are generated by positioning
4 narrow beam of infrared light on the subject's pupil. The image of
the eye and its attendant Purkin je image reflect off the infrared mirror
in front of the subject, through two large collimating lenses and on to
a movable mirror. A four-quadrant photodetector senses the position cf
the first Purkinje image, Signals from these four quadrants are used
to drive two high-speed servo motors to detect the movable mirror in
altitude and azimuth, The function of this servo System is to position
the image of corneal reflection when the eye moves so that the reflection
is always in the same position; thus, a stable reference of the eye is
provided. As the eye moves, the image reflected by the movable mirror
will remain stationary, A second optical system in tandem consisting of

another movable mirror and quadrant photodetector tracks the feurth
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Figure A,1 View of subject in the head
positioner with eye-tracker electronics

Figure A.2 View of eye-tracker
optics and subject
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Purkinje image and measures its movement relative to the first image.
The two-dimensional motion of this image derived from the position of
this mirror system is used as the output signal) of the sutject's eye
movements. The system is designed to measure eye movements with an
accuracy of up to two minutes of arc. The overall system has a flat
frequency response of up to 100 Hz,

To assure the proper use of the eye tracker requires elaborate
procedures for alignment of subjects and calibration of the eye tracker,
The calibration is done through a computer program (MAP) we developed.
This calibration program serves to:

(1) provide a way of relating the output voltages of the instrument

to the stimulus positions;

(2) give an estimate of the size of the visual field over which

the instrument is able to trac: the eye movements; and

(3) indicate whether the eye tracker is correctly adjusted.

It has been a major problem to relate the measured eye positions
to the actual locations on the scene. This difficulty arises mainly
from the distortion introduced in measuring eye movements, To alleviate
this difficulty, we have developed and implemented a scheme which maps
automatically the eye fixations onto the scene without distortion, This
is achieved by expressing both the fixations and the line drawing of
the inspected scene in terms of visual degrees relative to a calibration
slide. Since both are on the same coordinate system, they can be easily
superimposed without any fear of distcction,

Our scheme consists of the following computer programs: MAP,

FIXFIL, OVIAY, and PFIX. MAP produces a calibration file relating
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eye tracker voltage with the visual angle subtended by the eye. FIXFIL
analyzes tne data collected by the DIGIT program. It reduces the data
into fixations and, with the aid of the calibration file produced by
MAP, it translates the location of these fixations into units of visunl
angle, The origin of this visuai coordinate system s assumed to be

the center point of the calibration slide, OVIAY is a variation of the
DRAW program which uses the graf/pen to digitize pictures. OVIAY is
used to digitize an outline of the inspected scene on a slide, Some
additional data are added to the file to enable it to be eventually
translated into units of visual angle with the exact coordinate system
used by FIXFIL, PFIX plots the fixations and Superimpose the outline of
the scene. This can easily be done since the fixation locations and the
outline are expressed in the same visual angle coordinate system,

To illustrate the effectiveness of this scheme, we show an example
in Figures A,3 and A,4, The observer was asked to fixate at those
circled points of a scene as shown in Figure A.3, The eye-movement data
taken were then processed by the mapping scheme, The result was plotted
as shown in Figure A4, It is seen that the measured eye fixations
correspond very closely io those circled points in Figure A,2 in the
right sequence,

It should be emphasized that the process described is fully automatic
and will compensate for differeiit subjects and any of the permissible
variations iii the experimental set up cuch as size of stimulus, distance
between the screen and the observer, etc. With this system, we are

capable ¢f processing massive amounts of eye-movement data with relative

ease,
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APPENDIX B

(1) LIST OF PERSONS WHO HAVE CONTRIBUTED TO THIS PROJECT

Since the inception of this project in 1972, the following persons
have participated in this rescarch project. Their present addresses
are indicated,

Dr. J. E. Anliker, Research Scientist, NASA/Ames Research Center,
Moffett Field, California

Mr., T, E. Attwood, Scientific Programmer, CMX, Sunnyvale, California

Ms. K, Cilley, Project Secretary, Stanford University, Stanford,
Czlifornia

Dr, M. Ein-Gal, Research Associate, Information Systems Laboratory,
Stanford University, Stanford, Calijifornia

Mr. R. Floyd, Graduate Student Research Assistant, Neuroscience
Program, Stanford University, Stanford, California

Mr, A, Huang, Scientific Programmer, Stanford University, Stanford,
California

Mr. K. H, Jacker, Computer Science Consultant, Environmental
Protection Agency, Chapel Hill, North Carolina

Dr. H. S. Magnuski, Engin-ering Manager, Gamma Technology, Palo
Alto, California

*Mr. J. R, Nickolls, Craduate Student Research Assistant, Electrical
Engineering Department, Stanford University, Stanford, California

*Mr, A. Shah, Graduate Student Research Assistant, Electrical
Engineering Department, Stanford University, Stanford, California

Mr. M. Stauffer, Engineer, Time-Data, Inc., Palo Alto, California

Mr. L. D. Stricklan, Scientific Programmer, Stanford University,
Stanford, California

Mr, A, Yang, Student Technician, Stanford Unjversity, Stanford,
California

*Ph,D, dissertations on topics velevant to the project are near
completion,
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APPENDIX B

(2) LIST OF RELEVANT PAPLRS PUBLISHED DURING THE PROJECT

(1] "Applic~tion of Frequency Discrimination Technique to the Anulysis
ot Electroencephalog.aphic Signals", D, C, Lai and K. L. Lux,
Proc, National Electronics Conterence, vol, 27, pp. 80-85, October, 1972,

[2] "A Model for the Photically Stimulated Electrocneephlographic
Siguals", R. V. Floyd, J. E. Anliker, and D, ¢. Lai, Proc. 1973
San Diego Biomedical Symposium, FFebruary, 1973.

[3] "The Graphics Software DEC Forgot to Include", K. Il. Jacker,
Proc, of the DECUS Spring Symposium, May 2, 1973,

(4] "Estimating Signal and Noise in Coherent Time Averages of EEG Data"
J. E, Anliker, D, C, Lai, T. Rimmer, and W, Finger, Proc. 1973
Annual Conference on Engineering in Medicine and Biology, October,
1973,

5] "Real-time EEG Analysis and Monitoring Using In-phase and Quadrature
Yy
Components', M. Ein-Gul and D. C, Lai, Proc. 26th ACEMB, p. 401,
October, 1973.

[6] "Error-fiee EEG Signal Representation', M. Ein-Gal and D, C. Lai,
Proc, IEEE International Conference on Systems, Mun, and Cybernetics,
Pp. 242-743, November, 1973,

[7] "Phase Contingent Expansion of the Visual Evoked Response (VER)",
R. V. Floyd and J. E., Anliker, Proc, 1974 San Diego Biomedical
Symposium, February, 1974,

[8] "Computer Determination of Eye Fixations and Saccades", A, Shah
and D, C. Lai, Proc, 27th ACEMB, p. 103, Cctober, 1974,

(9] "A Nonlinear Model of EEG Entrainment by Periodic Photic Stimulation"
J. R. Nickolls, D. C, Lai, and J. E, Anliker, Proc. 7th Annual
Meeting of the Neuroelectric Society, pp. 13-14, November, 1974,

[10] "Remark on Algorithm 479[2]", M. S. Magnuski, Communications of the
ACM, vol, 18, no. 2, p. 119, February, 1975,

[11] "Prediction of EEG Alpha Waveform by Using an Autoregressive Model",
A, Shah, D, C. Lai, and J. E, Anliker, Proc, 1975 San Diego
Biomedical Symposium, February, 1975,

[12] "Computer Control of the Foveal and Peripheral Visual Field",
H. S. Magnuski and D, C, Lai, Proc, 28th ACEMB, September, 1975,

{13] "Modeling the EEG Entrainment Process", J. R, Nickolls, D, C, Lai,
and J, E. Anliker, Proc, 28th ACEMB, September, 1975,
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[14]

[15]

[16]

"Monitoring and Prediction of Saccadic Eye Movement'', A, Shah
and D. C, Lai, Proc, 1975 IEEE International Conference on

Systems, Man, and Cybernetics, September, 1975,

"A System for Monitoring and Prediction of Eye Movements During
Perception of a Two-dimensional Stationary Scene", Ph.D. Thesis
to be submitted, A, Shah,

"A Nonlinear Model for Human EEG During Photic Stimulation',
Ph,D, Thesis to be submitted, J, R, Nickolls.
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(3) LECTURES AND TALKS

The following list gives thronologically the lectures and talks
relevant to the work performed under this research project,

1. D. C, Lai, "Measurement of the Entrainment of EEG Alpha Rhy t hm
in the Human Brain by Frequency Discrimination Technique", at
the 1972 IEEE International Symposium on Information Theory,
February, 1972.

2. D, C, Lai, "The Effect of Photic Stimulation in Human EEG
Signals", SEL-ISL Affiliates Meeting, Stanford University,
February, 1973,

3. D, C. Lai, "The Phase-uncertainty Model for the Photically
Stimulated EEG Signais", EE Seminar, Stanford University, April, 1973,

4. H. S, Magnuski, "Summary of Recent Work on the Relationship
Between Eye Movement and Visual Imagery", EE Graduate Seminar,
Stanford University, May, 1974,

5. Arun Shah, "An Autoregressive Scheme for Prediction of the EEG
Alpha Rhythm', SEL-ISL Affiliates Meeting, Stanford University,
February, 1975,

6. J. R. Nickolls, "A Nonlinear Model of Human EEG Entrainment by
Periodic Photic Stimulation", SEL-ISL Industrial Affiliates
Meeting, Stanford University, February, 1975,

7. H., S. Magnuski, "Scanpaths and Theory of Vision", EE Graduate
Seminar, Stanford University, May, 1975,

8. J. R, Nickolls, "Nonlinear Models of the EEG Signal During Visual
Stimulation', Ph,D, Seminar, Stanford University, July, 1975,

9. Arun Shah, "Analysis and Modeling of Eye Movements During

Perception of Scenes'", Ph.D, Seminar, Stanford University,
August, 1975
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