
"\ 

AD-A017 374 

BIOCYBERNETIC FACTORS IN HUMAN PERCEPTION AND 
MEMORY 

David C. Lai 

Stanford University 

Prepared for: 

National Aeronautics and Space Administration 
Advanced Research Projects Agency 

September 1975 

DISTRIBUTED BY: 

KTlJl 
National Technical Information Service 
U. S. DEPARTMENT OF  COMMERCE 

  





r 
—„ _ 

I 

The views and conclusions contained in this 
document are those of the authors and should 
not be interpreted as necessarily representing 
the official policies, either expressed or 
implied, of the Advanced Research Projects 
ARency or the U. S. Government. 

V 
- - - -■  ■ -■• 

. ^.- ^ 



SKL 7r>-()21 

1 INAL IMPORT 

for  the Advanced  Research Projects  Agency 

of   the  Department  of Defense 

BIOCYBERNETIC   FACTORS   IN  HUMAN  PERCEPTION  AND MEMORY 

PRINCIPAL INVESTIGATOR: 

Dr.   David C.   Lai 

Contract  No.   DAHC15-72-C-0232 

ARPA Order  No.   2190 

September  1975 

Technical   Report  No.   6741-5 

D D C 

W   NOV 19  1S7 

fc 

"5 ! 

u SBEinrEiliJ 
A 

- 
■ 

Department of Electrical Engineering 
Stanford Electronics Laboratories 

Stanford University  Stanford, California   94305 

« 
( 

__K__ 



^^"■■■■•W 

KHüWORD 

This   is  the   final   report  of our  research on  biocybernctic   factors 

in  human perception  and memory which was  begun   in   1972  at   Stanford 

University  and was  supported  partxaliy  or  fully  by   the Advanced  Research 

Projects Agency  of  the  Department  of Defense under contract  DAHC15-72- 

C-0232,   which  is  now   terminating.     This   report  presents  a  brief  summary 

of   the objectives  and  a description  of  the  accomplishments of  the 

project. 

Since   its   inception,   this project  has  been   the  result  of  the 

collaborative efforts  of  many   individuals.     Most  of  the  staff members 

contributed   to  the  writing  of  this   report. 
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Biocybernctic   Kactors   in  Human Perception  and  Memory 

SUMMARY 

The objective of  his research project is to develop biocybernctic 

techniques lor use in the analysis and development of skills required 

for the e'lhan.ement ot concrete imager u the "eidetic" type.  The scan 

patterns of the eye during inspection oi scenes are treated as indicators 

of the brain's strategy lor the intake of visual information.  We 

attempt to determine the features that differentiate visual scan patterns 

associated with superior imagery I iom scan patterns associated with 

interior imagery, and simultaneously, to differentiate the KEG features 

correlated with superior imagery I iom those correlated with inferior 

imagery.  lor this purpose, we have designed a closely-coupled man-machine 

system to generate image enhancement and to train the individual to 

exert greater voluntary contijl over his own imagery.  The nodels for 

KEG signals and saccadic eye movement in the m'in-machine system have 

been completed.  These models are used for monitoring and prediction of 

EKG signals and eye posit ions, hi    this moment, all parts but the feedback 

path of the man-machine system have been implemented.  We shall descrioe 

in this report the details of these models and dieuss their usefulness. 

We have assumed that the strategy of an individual with superior 

visual memory is to fixate his eyes at the optimal locations of the 

visual scene at the optimal time instants in relation to KKG.  Through 

the KKG model, we have concluded that the KEG signals play the role 

of timing mechanisms for visual information acquisition and processing. 

By using our characterization oi scan patterns, we are able to show that 
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the scan pattern is more consistent lor individuals with high scores 

obtained Irom the Marks' Visual-Memory Task than those with lower BCW« 

These results tend to confirm our assumption and help guide us it. 

outaining a firmer grip of these optimal locations and time instants.  We 

have also developed and implemented a technique for presenting any part 

ol a scene at a specified foveal location at a specified instant of 

time.  It the specified locations and time instants are optimal, we 

expect that the image will be enhanced.  Prediction techniques have 

been developed for both saccadic eye movements and EEG waveforms so 

that lead times may be provided for the presentation of appropriat»! 

visual cues (stimuli).  We shall present and discuss many of these 

in this report. 
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I.  INTKODUCTION 

This project has been aimed at the development and use of biocyber- 

netic concepts and techniques lor analyzing and developing skills that 

are essential for the enhancement of concrete images of the "eidetic" 

type.  We have concentrated on the problem of achieving biocybernetic 

expansion of visual memory by using a closely-coupled man-machine system 

which performs real-time monitoring, analysis, and feedback of spatial 

and temporal cues that serve as keys to human memory encoding and 

recall.  There is strong evidence that these cues are heavily depended 

on in memory encoding and retrieval by human nervous systems.  The closely- 

coupled man-machine system is used for the measurement and prediction 

of human mnemonic performance to determine the spatial and temporal 

cues as well as for the control and enhancement of mnemonic skills. 

Such a man-machine system for visual memory tracking and training has 

been designed and is depicted in Figure 1.  This system is capable of 

delivering optimal sequences of sensory s,imuiation conditionally 

related to eye position and brain stat ;, and thus to explore systematically 

their relation to visual memory retrieval. 

It is seen from the man-mac line system that we emphasize the real- 

time monitoring and prediction of central nervous activities through 

the EEC signals and through the tracking of eye movement and eye fixations. 

Employing these real-time techniques, we have attempted to determine 

the temporal and spatial cues for human memory encoding and recall by 

monitoring of brain states and eye positions.   Again, through this closely- 

coupled man-machine system, we utilize *his information to arrange the 

desired coincidences between various brain states, eye positions, and 
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Figure 1  Block diagram of the 
closely-coupled man-machine system 

for monitoring and training of visual memory skills 

the delivery of visual stimulation.  The visual stimuli have been 

presented on projection sceen or oscilloscope displays for binocular 

or monocular viewing.  The eye movement was measured with the Biometries' 

Eye Movement Monitor, Type SG; it is now measured with the Stanford 

Research Institute's (SRI) Cornsweet Eye Tracker.  The brain states 

have been monitored through the EEC signals.  It is expected that 
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greuter control of Image persistence and image dissipation can be 

obtained by combining these real-time monitoring and prediction 

techniques with a feedback scheme to close the control loop as depicted 

in the block diagram of the man-machine system.  In other words, we 

strive to use the computer system to supplement and strengthen those 

deficiencies in human memory that ordinarily result in image 

dissipation based on the assumption that a superior scan pattern of 

visual Inspection that results in a superior memory is more consistent 

and also less probable of natural occurrence than a visual Inspection 

strategy that is less consistent.  To summarize, we attempt to steer 

the subject toward improved encoding and decoding strategies for memory 

by using the techniques which have been developed and Implemented on 

this mar-machine system. 

The closely-coupled man-machine sys,em utilizes computer-based 

models in the system configuration to predict the kind of stimuli which 

should be used in order to produce the desired future responses.  The 

EEC signals and the eye-movement measurement are shown as the responses 

which are closely controlled since the computer-based models are designed 

to mimic the actual physiological processes in regard to their stimulus- 

response relations.  To be more specific, since the visual cues (stimuli) 

must be presented at appropriate locations in the visual field at the 

right instants of time, monitoring and prediction on real-time basis 

of both eye movement and EEG signals are essential.  These models have 

been developed for the purpose of monitoring and prediction.  We have 

completed the work on the computer-based models which will be described 

in detail in the following sections.  These models have also been 

- - - - ■ ■■-■ ■■-— ■ ■ 



implemented on the PDP-15.  All of the man-machine system, except the 

interface electronic devices, can be realized on the PDP-15 computer. 

At the close of this project, we have impl3merited all but the feedback 

path of the man-machine system. 

In order to determine the visual cues which serve as keys to 

both memory encoding and decoding, we have to characterize the scan 

patterns of observers during the inspection of scenes.  With this 

quantitative characterization, we will then be able to differentiate 

quantitatively a superior scan pattern of visual inspection that 

results in a superior memory from an inferior one.  This quantitative 

description is intended lor use in the determination of those vital 

visual cues.  We have developed and implemented a statistical method 

for the characterization of visual scan patterns.  Our experimental 

results have established that observers with good visual memory, as 

scored by Marks' Visual-Memory Task, have a more consistent eye scan 

pattern in quantitative terms than those with poor visual memory.  The 

characterization of the visual scan pattern and the related eye-movement 

measurement techniques will be discussed in Section IV. 

Last, but not least, we will present a technique for the presentation 

of the visual cues (stimuli) at appropriate locations in the visual 

field at the right moments.  Since our ultimate goal of this project is 

t.e visual memory enhancement through biocybernetic techniques, once the 

visual cues are determined, they can then be presented to the observer 

or trainee using our technique.  In other words, this computer-implemented 

technique will enable us to deliver visual stimulation to coincide with 

the desired brain states and eye positions since it controls, in real-time 
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the monocular field of view of an observer inspecting outline drawings 

of visual scenes on a graphical CRT dlf.play.  The details will be discussed 

in Section V. 

In Section VI, we shall summarize our accomplishments and maku 

concluding remarks.  Some of these accomplishments have been published 

or presented in international scientific conferences.  The list of 

publications relevant to this research project is included in 

Appendix B. 

In summary, we have designed a closely-coupled man-machine system 

for the purpose of developing and use of biocybernetic techniques for 

analyzing and developing skills that are essential for the enhancement 

of concrete images of the "eidetic" type.  This man-machine system has 

been implemented except the feedback path.  In this system, we have 

developed models for EEC signals during visual stimulation and lor 

eye movement during inspection of stationary scenes, respectively.  These 

models are then used for the purpose of monitoring and prediction of 

various brain states and eye positions so that the desired coincidences 

between various brain states, eye positions, and the delivery of 

visual stimulation can be arranged.  This arrangement of the desired 

coincidences can be carried out by a technique we developed and implemented. 

The electronic interface systems in the man-machine system serve 

a very important role in data acquisition and monitoring of the brain 

states and eye positions.  These electronic interface systems consist 

of EEC recording machines with Grass preamplifiers, eye-ir.ovement measuring 

instrument VSRI Eye Tracker) and related interfacing hardware and 

software.  We shall cover some of the unique features of the interface 
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systems in Appendix A.  This report will conclude with Appendix B 

which includes:  (1) a list of the names ol those who have contributed 

to this project; (2) a list of all relevant papers that have been or 

are to be published; and (3) a list of lectures and talks given. 
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II.  ANALYSIJ AND MODELING OF EYE MOVEMENTS 
DURING SCENE INSPECTION 

In the closely-coupled man-machine system depicted in Figure 1, 

we have two boxes, each labeled as computer-based model; one is for eye 

movement and the other is for EEG signals.  These computer-based models 

are used for monitoring ind prediction of eye positions and various brain 

states, respectively.  The monitoring of the eye positions is necessary 

for the determination of the spatial cues that serve as keys to visual 

memory encoding and retrieval and the prediction of eye position is 

essential for the presentation of these cues at the desired locations 

of the visual field.  In this section, we shall discuss the development 

of such a model for eye movements during inspection of two-dimensional 

scenes. 

1-     An Algorithm for Automatic Identification of Fixations a.id Saccades 

Eye movements during inspection of two-dimensional stationary scenes 

consist mainly of two components:  fixations and saccades. The first step 

in our analysis of eye movements is to senarate the data into these two 

components.  We need to determine the beginning and end points of the 

fixations and saccades. This helps us to determine the sequence of 

fixations during a volitional scan of a two-dimensional scene. The 

separation of saccades from fixations is useful for the modeling 

to be described later.  In the past, the delineation of fixations 

and saccades and the scoring of the fixation sequences has been done 

by hand.  We have developed an algorithm which does this automatically 

and can thus reduce large amounts of raw eye-movement data to a sequence 

fl 
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of fixation points very quickly.  With m 'ifications, the algorithm can 

perform in real time.  In addition, it gives us an objective method of 

data analysis as opposed to the earlier methods. 

The detection of saccade onset is essentially a problem of signal 

detection.  We can .onsider the movemtnts during fixation as noise and 

the saccade as the signal.  At any instant, we compute the quantities 

k k 

x   if , i i1    y   ' f   . , 1*1" 
i^l Ul 

where  (x.,y.) are sampled values of the horizontal and vertical components 

of the raw data; (X . Y„) is the location of the fixation; and fttl ) is 
r  r l i 

a weighting function of length k .  The algorithm indicates the onset 

of a saccade at  t = 0  if either  R > T  or  R > T , where T  is a x y 

preset threshold value; otherwise, the weighting window  [« J  is moved 

forward.  The threshold  T  is a parameter of the algorithm which 

depeno on the noise level in the measurement, the size of the smallest 

saccade that has to be detected, the amount of tlelay (k) allowed before 

detection, etc.  This approach is essentially equivalent to using a 

matched filter since the weights  (u). )  are determined using the saccade 

model to be described later.  Based on this model, we can determine the 

error probabilities for different size saccades and set T accordingly. 

We use a slightly different approach to determine fixations since 

the end of a saccade is usually much slower than its onset. Now we 

compute 

n = # |J:,XJ " i?igiXil <Ts A ^J ' i?!^' <T* ' l*J ^J 
where  [g ) is an empirically determined weighting function and T  is 

i s 

a threshold value depending on the noise variance.  In effect, we are 

a_-_a_a_«^__aaaMMaaaaa_aaa^ 



computin;, the number of points in a sample window of length l    which 

falls within a square of size T  around the window weighted mean 

Y.  g^x. . E Kiyi) •  The algorithm moves to the fixation state if n 

exceeds a preset value  ns(< £) ; otherwise, the sample window is moved 

forward.  In practice, a simple averaging function is found to be adequate 

tor ig.} . 

We have wiitten a program to implement this algorithm.  The program 

reads raw eye-data from the magtapi and uses the algorithm to determine 

the fixation points.  These are plotted and numbered.  The program also 

outputs the starting and ending times and the standard deviations of 

each of the fixations.  An example is shown in Figures 2, 3,   and 4. 

Figure 2 shows the raw eye-movement data.  Figure 3 shows the sequence 

of fixation points obtained from this algorithm, and Figure 4 shows the 

fixation points superimposed on the actual stimulus used.  It is clear 

that a considerable data reduction has been achieved and the result is 

easier to understand and analyze.  Other advantages of this algorithm 

include easy adaptation to different noise levels and/or measuring 

instruments by changing some parameters, and a quantitative estimation 

of error probabilities.  In fact, the algorithm has been used quite 

successfully during the course of this project on data obtained from both 

the Biometrics unit and the SRI eye trucker by simply changing tte 

thresholds. 

2.  Modeling of Saccadic Fyc Movement 

The next step in the analysis of eye movements is the investigati 

ol saccadic movement.  We need to be able to monitor and predict the 

on 
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Figure 2  Raw eye movements for 
a 20-second sea". Scale - 2.5 deg/inch 
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Figure 3   Fixation sequence for the scan in 1igure 2 
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Figure 4  Stimulus overlaid by the fixation 
sequence in Figure 3 
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saccado duration and length in order to present visual cues (stimuli) 

at the appropriate locations in the visual lield at the desired momers. 

Thus, the detailed dynamics ol the saccadic movement areol interest to 

us.  Hence, our approach is iirst to develop an appropriate model which 

embodies the dynamic characteristics ol the saccadic system.  This model 

is then utilized lor monitorinR and prediction ol the saccadic movement. 

The human faccadic eye-movement control system has been of great 

interest to researchers m neurophys iolo^y and bioenfjineering.  The 

general shapes ol the position, velocity, and acceleration curves of the 

eye movement have been reported extensively.  We have attempted to fit 

the model responses to empirical data by classical least-squares 

techniques.  This enables us to estimate certain parameters of the model. 

These parameters which will be used lor predictinK the final eye positions 

have only been determined by indirect means in the reported models.  We 

have also made important modifications to the model so that its output 

will accurately characterize the obs ;rved responses.  We shall describe 

and discuss the model modifications, the parameter estimates, the curve- 

fittin,, results, and the use in monitoring and prediction. 

lor the present, we are concerned with horizontal eye movements 

only.  lor this purpose, an experiment for the study of horizontal 

saccades his been designed and used.  A row of LKDs equidistantly 

located, only one of which is lighted at any given time, is used as 

stimulus.  We will refer to the leftmost position as the rest position 

and the other six as the target positions.  The target signal is supplied 

by a digital computer.  The subject is instructed to follow the light 

spot, which repeatedly jumps from the rest position to one of the target 

13 
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positions and back.  The successive target positions are chosen from a 

table ol random permutatxons to avoid anticipation by the subjects.  An 

interval of at least 1 second is provided between each position chan^j. 

Kye movements are recorded and stored as described elsewhere in this 

report. 

Using the algorithm described above, we first mark the starting points 

of the saccades.  Then the saccade position and velocity are plotted 

and equal length saccades are averaged with each sample lined up at the 

start.  As an example, we show position and velocity plots of a typical 

saccade in Kigure 5 and the averaged plots from 25 saccades of one 

subject in Figure 6.  The saccades observed agree with those reported 

by other researchers in all aspects such as duration, overshoot, 

response delay, etc. 

In order to monitor and predict the saccadic eye movements, we intend 

to fit the model output to the saccade position data by estimating the 

model parameters from the data.  The endpoint of the saccade can then be 

predicted from the model output by using these parameters. 

Let the horizontal position x.  at time  t  after the onset of 
i i 

the saccade be 

x. ■ e(a1,a2,...,ak;t.) + n. (1) 

where  a ,a ,...,a  are the model parameters and n  is the noise 
I     Z k i 

term which represents the errors introduced by the instrument, the data 

collection errors, the inherent random nature of the biological system, 

etc.  Wc shall use the least-squares estimation to determine a ,a ,..., 
1. £ 

14 
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ak   *     They  are detcrmined  by minimizing  the moan-square  error 

n  I l2 

where n  is the number of samples observed; i.e., by solving the set of 

equations 

dS 

(2) 

aai 
-   u 

öS 
■   0 

Cia2 
• 
• 
• 

OS 
■   0 

ö\ 

In the case when |  is a linear function of the parameters  a ,a  .....a , 

Eq. (2) is reduced to a set of linear equations which can be solved to 

obtain the parameter estimates.  If e  is nonlinear, then an iterative 

process has to be applied in order to solve for a ,a ,...a  . 

If we assume the noise n. to be white Gaussian, the least squares 

estimates are known to be identical to the maximum likelihood estimates 

which are unbiased, consistent, and asymptotically efficient.  With the 

above assumption, we can also estimate the varian  s of th  parameters 

2 
and use X -test and t-test for goodness of fit.  This gives us a 

quantitative measure of the goodness of our model. 

The functional form for e  is determined by the particular model 

used.  It undoubtedly relates to the dynamics of the eye-movement 

system.  We have chosen to use Robinson's model for its simplicity. 

This model is block diagramed in Figure 7. 
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Figure 7  A model characterizing 
dynamic properties oi saccadic 

eye movement 

Here we have shown the dynamic part of the model only; the conti^ller 

part is left cut.  The input to the system is a pulse of height  h anJ 

width 1 .  This produced a saccade of amplitude equal to the area under 

the pulse; i.e., hi .  HI is the neural integrator and ML! the medial 

longitudinal fasciculus which is a feed forward path in parallel with 

the integrator and provides a lead network to compensate for the plant 

lag,  R represents the oculomotoneuron firing rate.  For a pulse input, 

we see that  R  is a pulse step as desired.  The plant is a second- 

order over-damped system with time constants T  and T  .  Robinson 

chose the MLi gain T ■ T  .  However, ho suggested that in order to 

produce the observed overshoots and undershoots T > T  and T3 < T^ • 

respectively, should be used.  For our purpose, we have decided to 

retain T,  as a separate parameter.  The output 9  is the eye position. 

The complete transfer function is then 

T s + 1 
6   _3        1  
V ~    s      OyflXT^s+l) 

For  the  assumed  pulse   input,   the output    9(t)   becomes 

! 
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The position and velocity curves given by the above lor h = .5 deg/ms 

and  T = 20 ms  corresponding to a |0 saccade are shown in Figure 8. 

The values of the other parameters used are T ■ 15Ü ms  and  T - 7 ms. 

(These values are suggested by Robinson.)  Curves are shown for T ■ 190 ms, 

150 ms, and 110 ms.  Note the overshoot and undershoot for T > T  , 

and To < T, > respectively. 

Note that there are four unknown parameters,  h , T  , T  , and T  . 

For estimation, we have to solve tq. (2) for k = 4 .  However, from the 

theoretical evaluation of the parameter variances, we found that the 

estimate of T  will have a very large variance.  Thus, the estimate 

will not be very meaningful and hence, a fixed value of T ■ 150 ms 

will be used.  As will be seen later, this does not affect the 

results significantly.  We have also found that, lor reasons of numerical 

calculation, it is better to estimate T /T  than T   itself.  Thus, 

three parameters  a = h , a - T  , and a = T/T  were estimated by 

using the data from  t   to  t  t 1 , where  t   is the time of the onset 

of the saccade and 1     is the input pulse width which is estimated from 
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the laccade velocity by noting that thv  velocity reaches a maximum at 

t  t i     Mi  shown in Figure H.  The estimated parameters are then 

substituted into Kq. CO to obtain the complete saccade curve and the 

prediction ot the linal position is made simply by extrapolation. 

Typical results Iram  the parameter estimation and prediction 

schemes n-e shown in Figures 9 and 10.  The model output matches the 

actual data quite closely.  The goodness of fit has been tested usint; the 

X^-test on the sum of the squares of the residuals,  S , and the t-test 

on the individual residuals at significance level  P ■ .05.  Note that 

the estimates of  Tr  are 10.9 ms and 13.6 ms as opposed to the value 

suggested by Kobmson.  This result LI typical and the mean value of 

t       is  about 13.0 ms, although it varies between subjects.  It is, 

however, significantly different from 7 ms.  T.,/T1 > 1  is observed in 

most cases, although the difference is not significant as far as 

the final value prediction is concerned.  The values of  h  and  I 

depend on the saccade size which implies that the size is controlled 

by both the amplitude and the width of the pulse.  The exact relationship 

is being investigated. 

In most responses, an overshoot of the final position was observed. 

This overshoot is not produced by the model, as can be seen in Figures 

9 and 10.  Kvcn if we vary T, , the overshoot could not be produced. 

This is because fo-  T, > I  , the overshoot decays with a time constant 

I  , whereas the actual overshoot decays much faster (at about the same 
1 

rate as the initial rise).  In addition, we could not fit the model 

response beyond  1  to the observed data within the chosen significance 

level P - .05.  This indicates that the model must be modified to 
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produce the right response.  The laet that the overshoot decays with a 

time constam ol about  I  and the input to the agonist and the antagonist 

muscles used by Clark and Stark suggests that the input to the model 

consists of a combination of pulses rather than a single pulse.  A 

study of the velocity curve in 1-igure 6 also suggests that a positiv, 

pulse followed by a negative pulse can produce the desired output. 

Thus, our model input is changed to two pulses as shown below: 

\_>-1: 
^2 

2 

where the saccade amplitude - h^ ¥  h^ . ^lore generally, we can use p 

pulses with saccade amplitude equal to 

E  M.   • 
i=l 

i i 

In practice, we found that no more than three pulses were ever necessary. 

The results ol this modification are seen in Figures 11 and 12. 

tor all multi-pulse input fits,  ^ . Tj ■ 150 ms was assumed.  Figure 

11 shows the results of estimation from a single pulse ii.put.  Figure 12 

shows the same saccade with the model output from a two-rulse input 

keeping other parameters the same as before.  The fit in the second 

case is clearly much better.  Figure 12 also shows the fit of the 

velocity curves from the data and from the i,<odel.  Thus, excellent fits 

are obtained to both the position and velocity curves with this model. 

Figure 13 shows a much more dramatic result where a three-pulse input 

to the model is used.  The Justification for using such an input can be 

clearly seen from the velocity curve which first rises to a maximum 
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Figure  11      Actual  and model  simulated 
saccade position 

t    ■  20 ms,   T 150.0  ms,   T     ■   13.1  ms, 
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value,   then  approaches  a steady  positive  value,   followed by a  rapid 

fall   to a negative maximum and decay  to  zero.     This   identities   four 

distinct   regions,   suggesting   four different   input   levels or three pulses 

(one  level being zero).     In  fact,   for  the   fitting,   the pulse widths  are 

identified  by   the   instants where  the  velocity  signal changes character. 

This would  be  easier  to  identify on a more  noise-free  system where  the 

second derivative or acceleration  can be observed.     However,   it   is 

clear  that   the   input   is more complex  than  a  single pulse.     At present, 

we  are  trying   to   investigate   the  relationships  between  the heights  and 

widths of   the  various   input   levels   for different  saccade   lengths   for  the 

purpose of prediction.     Similar responses   are observered   for equal 

length  saccades which  indicates  that  some   identifiable  relations  exist. 

We are  also  trying  to extend  the  results   to  vertical and oblique  saccades. 

The  above  approach  is  useful   for prediction of  the   final position 

of  the  saccade,   given  a part  of  the  saccade;   i.e.,   we  can use  it   for 

prediction only  after a certain  time has  elapsed  since  the onset of 

the  saccade.     However,   we  also need  to know when  a saccade will occur 

in  response   to  a  stimulus.     Normally,   there   is  a delay of between  150 

ms  to 250 ms   from  the presentation of  the  stimulus  to  the  saccadic 

response.     If we can predict   the actual delay,  we can predict  the 

course of  the eye movements  following  the presentation of the stimulus 

by using  this  delay   in conjunction with  the  above model.     We decided 

to use  information  in   the EEC alpha  rhythm  to predict   the onset of the 

saccade.     Gaarder et   al.   have shown  that   fixation  saccades  are  initiated 

during a particular phase of  the alpha.     This   is  in accordance with 

Wiener's hypothesis  that  the alpha cycle  serves  as  a clock which 
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provides timing  tor  the data BatherinK and proCMSing portions of the 

visual system.  This result was obtained from microsaccades occurring 

during lixation.  We want to determine if it applies for the large 

saccadic movements as well.  If so, we can use an KKG-alpha-wave 

predictive scheme to predict the phase of the waveform and then use 

this information for estimating the onset of the saccade. 

The same experiment as described earlier for studying horizontal 

saccades and in addition to record simultaneously the KEG signals collected 

as described in subsequent sections has been performed.  The EEC was 

filtered in the alpha range.  Two methods were used to determine the 

relation between the saccade onset and the alpha phase.  First, the 

quadrant of alpha during which the saccade started was determined. 

2 
The K  -test was used to test the distribution of saccades in each of the 

four quadrants, which was found to be significantly different (p < .05) 

from a uniform distribution.  This test is identical to the one used by 

Gaarder et al.  In addition, the alpha was averaged with the saccade 

onsets lined up.  Results indicate that there is indeed a preferable 

phase of the alpha rhythm for onset of the saccade.  This fact can be 

exploited for the prediction of the onset of saccades if a scheme can 

be found for predicting the EEG alpha waveforms; espeically, their 

phasic variations.  Such a method will be described in the next section. 
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III.  MODELING OK EEG SIGNALS 
DURING VISUAL STIMULATION AND PREDICTION 

OF EEG ALPHA WaVEFORMS 

In order to determine the temporal cues that are important in visual 

memory, it is necessary to understand the relation between the temporal 

structure of visual perception and the EEG alpha cycle.  To this end, 

we have investigated the changes produced in the EEG signal by simple 

visual stimuli.  In particular, we are modeling and investigating the 

various EEG entrainment phenomena caused by periodic photic stimuli. 

and the phasic changes in EEG due to photic stimuli.  This will enhance 

our knowledge in several areas:  it enables us to unify several seemingly 

different EEG phenomena under one principle, provides a model for the 

phase-dependency of stimulus efficiency, and enables us to study the 

phase-dependencies of onset times of saccades.  A number of researchers 

have suggested that the alpha cycle is phase locked with a clock signal 

which provides the time base for a sampled-data system consisting of 

the eye, its control mechanism, and the visual cortex.  The evidence 

for this has been accumulated slowly; it is known that visual perception 

times and reaction times are on the order of one alpha cycle and dependent 

upon the phase of the stimulus.   n addition, some recent work has 

shown that a saccade is most easily initiated on certain phases of the 

alpha rhythm, which coupled with the fact that vision is blocked 

during a saccade, suggests that the alpha cycle delineates visual data 

sampling and processing periods. 

The above discussion outlines the motivation for modeling the EEG 

signal during simple visual stimulation; the modeling efforts to date 

have been based on a simple nonlinear oscillator which is amenable to 
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analysis and simulation. 

1.  A Nonlinear Mathematical Model lor Enlrainment ot KEG Signals by 

Periodic Photic Stimulation 

The model is a van der .'ol oscillator represent in« the behavior o! 

a subject's EEC during periodic visual stimulation by a stroboscope or 

a set ol LED noi;gles.  The stimuli arc delivered lor 20 seconds at 

some lixed irequency followed by a 10-second stimulus-olf period.  This 

sequence is repeated for each desired stimulus frequency. 

The van der Pol oscillator can be represented by 

x -^1 - x-jx V   .()x >  „MO 

where  x(t)  denotes the EEC signal;     is the unstimulated alpha 

frequency;  E(t)  is the external excitation (stimulus); and ^  is the 

nonlinear coupling coefficient. 

When E(t)  is ■ sinusoid, a lirst approximation to the solution 

x(t)  can be made by a classical technique, such as harmonic balancing. 

The possible solutions can be classified in the following way when 

E(t) - Eosin(.1t i Eü): 

(1) natural oscillation (E  is small): 

x(t) ■ A sin(J t + *) ; 

(2) harmonic entrainment  ( ,, " ■,)'• 

x(t) = A(t ) sinC^t t- 0{t)); 

(3)  mth-order subharmonic entrainment  (m-  =   ): 

x(t) - A(t) si in (_i_ t  , 0(t))    ; 

(4)     nth-order superharmonic  entrainment     (*'    ■  nw ): 

x(t)  = A(t)   llBCw^.t  + HD); 
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(5)     combined   frequency  oscillations   (all other cases): 

x(t)  = Ao(t)   sinCu^t + OQU))   + Ai(t)   sin^t + «1(t)). 

Some Initial data have been collected with a set of specially 

constructed LED goggles which provide a sinusoidally modulated intensity, 

and the results agree well with the above solution classes.  However, 

since the experimental stimulus ii  often a train of flashes, we have 

developed an analysis technique for approximating Ihe solution of the 

van der Pol equation when E(t) is a pulse train. 

We assume that the unperturbed oscillation  (E(t) = 0)  is correctly 

represented by 

x(t) ■ a  sin 9(t) 

where the angular displacement can be written in terms of frequency and 

phase: 

e(t) - u t + •Kt) . 

We wish to examine the result of E(t) being a series of impulses of 

strength  q  at a frequency  U. . 

Following a method due to Blacquiere, we can assess the perturbation 

caused by one impulse.  At an angular displacement 

"n   On 

we apply the nth impulse.  Its effect will be seen directly in 3c(t) , 

causing a small step change 

t +At 

AX=/ x(T)dT = quj 
0 

over  time    At   .     However,     x    will  be continuous,   so    Ax =  0   . 

To a  first  approximation,   we can expand    Ax    and    Ax    as  below: 

Ax ■ A»  sin 0     + a A*   cos 9     =0 nü n 
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Ax = ^au) cos 9  - » u A^sin g  = qto 
u     n   o O       n    0 

where A» represents the change in amplitude and A1* represents the 

change in phase of the system. Solving the above equations simultan- 

eously for Aa  and A* , we obtain 

Aa = qw cos 9 
0     n 

and 
qcj 

A* ■ 0 
sin 9   . 

n 

In Figure 14, we demonstrate the amplitude and phase perturbations as 

a result of an impulse falling on angular displacement ft  . 
n 

A a (0 ) 
n 

A 4)(e ) 
n 

qw cos 0 
0     n 

QH, 
sin 0 

Figure 14 Phase and 
amplitude perturbations 

The unperturbed solution would have followed the dashed line, and the 

perturbed solution follows the solid line. 

In order to deal with a series of these impulses,  ^a will be 

assumed to be negligible.  This is reasonable since a more detailed 

analysis shows that the amplitude change decays exponentially with 

time.  L«t T = —-^ and T, =  be the alpha and stimulus periods, 

_______ 



respectively.  Then relerr.n. a.ain to Figur. M. we see that apply.., 

the nth pulse at displacement  ^  results in a new displacement 

en ^nen) .  Since the pulses are spaced  ^  seconds apart, the 

(n+l)th pulse will arrive at displacement 

6n+1 - en *-tH%n) ^Tj   . 

dearly,   tor entrainment   to occur,   we must   have   the congruence  relation 

enrl    ;9n     (,n0dl110 V 

or 

en +A*(e|1) + TI ^en   (modulo T()) 

Hence 

fCJ   ♦ Tj       k T0   »  k. 0.   1,   2  

**n     k - 0 . we have the unUkely situation ol resetting the phase of 

oscxllatxon; the requ.red phase change ^^      is very large.  We will 

not consider this case here. 

^or k . 1 , the solution is called harmonic entrainment, and for 

k ^ 2 , it is called k  -order supcrharmonic entrainment, where  k 

represents the number o. alpha periods elapsed per stimulus impulse.  It 

is .asy to show that this is stable near 

0 , 
mod 

0 

as   one   would   expect   from   the   iorm  of     A4. 

In a  similar   fashion,   lor subharmonic  entrainment   to   occur, 

e n tm I.     (modulo T   ) n o 
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or 

n+m-1 
9  + E A^Ce.) + mT ■ o  (modulo T ) 
n^       i     l0n 0 

Hence, 
n+m-l 
E ^♦(•1) + mT1 = T   . 
x = n 

th 
When m = 1  we have harmonic entrainment again, and for m 2 2 , m 

order subharmonic entrainment occurs.  The stability of this solution 

is currently being investigated, but it appears that for m ~ 2  a 

small stable range exists. 

In summary, when the stimulus frequency is near the alpha frequency, 

harmonic entrainment is possible.  When the alpha frequency is near an 

integer multiple of the stimulus frequency, superharmonic entrainment 

is possible.  And when the stimulus frequency is near an integer multiple 

of the alpha frequency, subharmonic entrainment is possible. 

When the stimulus frequency is not in one of the above ranges, 

combined frequency oscillations exist.  Thus, we have the same five 

solution classes for both sinusoidal and impulsive stimuli.  The major 

differences lie in »he amplitudes required to produce the various effects, 

and in the fact that the impulsive stimulus will produce integer harmonics 

* of its fundamental frequency due to its inherent harmonic content. 

Results obtained from EEC data on the model are described and compared 

in the next section. 

i 
2.  Model Simulation 

It is necessary to simulate the nonlinear oscillator model to 
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obtain reasonably accurate solutions since nonlinear analysis is by 

nature approximate.  We are usin^ a variable order differential equation 

solver (DVDQ) which has an Adams-laulkner predictor and an Adams- 

Moulton corrector.  It provides lor up to twentieth order interpolation 

of output values positioned independently of the changing stepsize, 

which greatly facilitates signal processing of the simulated solution 

by allowing a constant sample period. 

The sine wave stimulus is handled in a straightforward fashion, but 

the impulse train is treated specially.  Since it is known analytically 

2 
that the exact change in x(t)  is q   (by integration) at the time 

an impulse is called for, the state vector is perturbed and the integration 

restarted.  The management of impulse arrival and sample output is 

perlormed by a discrete event-queuing scheduler on a priority basis; 

impulse arrival has priority over all events to avoid frequency shifts 

in the impulse train.  Error propagation as a result of restarting 

the integration is linear with the requested error tolerance and 

adequately small, 

Mgures 15 and 16 show the phase and amplitude perturbations caused 

by a single flash landing on phases of 0 , IT/2 , n , and 3n/2 radians. 

The simulations match the lirst order approximations developed in the 

previous section very well.  These perturbations produce appropriate 

entrainment phenomena, as seen in the spectra of Kigures 17 and 18; 

there is one spectrum for each stimulus frequency, representing 5.12 

seconds ol impulse driven simulation at a 10n-Hz sampling rate.  The 

five phenomena predicted in the previous section can be clearly seen; 

viz., harmonic entrainment, subhannonic entrainment, superharmonic 
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entrainment, combined 1requency oscillations, and stimulus harmonics. 

These effects can aKain be seen in Figures 19 and 20 which are spectra 

from 5.12 seconds »f sine wave driven simulations.  These spectra will 

be compared with those obtained from experimental data in a section 

below; the next secti. , discusses data collection and processing. 

ii.     Data Collection and Processing 

The data collected to test the model have been obtained from a 

very simple, experimental paradigm.  Subjects are presented a series of 

siroboscope Hashes or sinusoidally modulated intensities through closed 

eyelids; the stimulus is delivered for 20 seconds at some fixed frequency, 

followed by a lü-second rest period.  This sequence is repeated for each 

desired frequency, typically .5 Hz through 25 Hz in .5 Hz steps.  The 

frequency pattern can be selected arbitrarily.  The EEC signals are 

obtained Iron, left and right occipital electrodes referenced to yoked 

earlobes; the ground electrode is on the mastoid.  The Grass preamp 

bandpasses the signal between 1 Hz and 300 Hz, and the A/D analog 

prefilter is a 6-pole Hessel with a lüO Hz lowpass cutoff frequency. 

Digitizing is at 1000 Hz, and subsequent filtering is done by a trans- 

versal filter to avoid further phase distortion.  Power spectra are 

computed by hast Fourier Transform on 5.12 seconds of the data, forming 

the power spectrum and then averaging three such spectra 4.0  seconds 

after the start of the stimulus.  This procedure substantially reduces 

the noise, which is further reduced for viewing aesthetics by the non- 

causal recursive filter 

H(z) = z  f 2z + 1 
4z 
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Th.  result 1„B spectra may  be  superimpi,äed  wlth  hldden  ^  ^^  ^ 

cussua. Braphlcs  .ech„lques; a s.all an,„u„t „, l^«.«« „^ be 

saved after each spectrum Is plotted. 

The stroboscopic  stimuli  are produced  h,  a Crass PS-2  strohe  lamp 

in  a sound-proof enclosure.     ,t   is driven  by  a  relay contact.     The 

sinusoldally modulated  intensity stimuli are produced by a pair of 

hemispherical  goceles     carh  r-™*^ goggles,   eacl   contairung  ten  LEDs,   driven by a current 

source controlled  by  a D/A convertcM- on  the PDP-15       Th.       .. 
me ioiH-is.     The  voltage  supplied 

is proportional   to    exn   (<iin       i\ 
exp   (S1n   .^t)     S1nce  the   LED amplitude  is   linear 

with current   and  sinusoidal   intensity  is desired       Both   *4     i- j   i° ueairea.     Both  stimuli  are 

delivered  through closed  eyelids  to ensure  a mm4* j     iua   *• ensuie  a unilorai visual   field. 

4-       Sattagg o^ Wedel  Simulation,  and t-xperimentn,   n.,^ 

The comparison  of model  simulated  results with experimental  results 

is  object   to difficulties  arising  from  the  noise  in  the data and  the 

random nature of much of  the KKG  signal.     The  alpha   frequency  is not 

ti**  and   is   in   fact   nonstationary;   it   is  influenced  by  the  subject's 

level  of alertness  and  other uncontrollable   factors.     The  response 

of  the EEC  to a  stimulus   is  only measurable   in  the  average,   since 

individual  responses  are masked or corrupted  by noise.     Averaging    can 

also mask certain characteristir« nf *^. 
ractenstics of the response,   depending uron  the 

scheme used. 

The best comparison of model-produced results and data for entralnment 

Phenomena ,. a comparison of their power spectra.  This alloms the data 

»pectru. to be relatively free of noise by avera.ln. successive spectra 

iro. the same stimulus epoch.  Examples of strobosooplcally stl.ulated 
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data spectra may be seen in Kigures 21 through 24.  Note the excellent 

match overall with the simulated spectra discussed previously.  The 

last subject has virtually no alpha rhythm, but exhibits all of the 

entrainment phenomena i redicted, so the model accounts surprisingly well 

for extreme cases.  Fj ires 25 and 26 show spectra for a sinusoidally 

stimulated subject.  Note the reduction in harmonic amplitude as predicted 

by the simulation.  Some detailed comparisons of each type of phenomena 

follow.  Kigure 27 shows the unslimulated case with the model parameters 

adjusted to match the subject (records were selected from figures 21 

and 22 ).  Kigure 28 illustrates harmonic entrainment, with subharmonic 

and superharmonic entrainment treated in figures 29 and 30.  Kigure 31 

is an example of combined frequency oscillation.  The model simulations 

agree well with the data.  Additional comparisons may be found in 

previous reports, 

further comparisons are in progress, especially the comparison of 

phase and amplitude changes induced by the stimuli. Preliminary results 

indicate that the model predictions are reasonable first order approxima- 

tions to the data, but that revisions in the model will likely be 

necessary to fully account for the observed phenomena.  The excellence 

of match in the frequency domain bcirs out the goodness of the phase 

shift predictions for small phase shifts, but it appears that larger 

shifts are occurring than predicted for certain cases. 

In sum, a nonlinear model for the behavior of the EEG during visual 

stimulation has been analyzed and compared with actual EEG data.  The 

model accounts for several phenomena well in a unified fashion, and 

suggests other phenomena of interest.  The model specifies a trigonometric 
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Figure 21       EEC  spectra  from subject   L.  M.   for 
flash   frequencies   .5 Hz  to  12.5 Hz 
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FRCOUOCY IN HZ 
Figure 26       EEC  spectra  from subject  R,   S,   for 

sine   frequem H'S   13  Hz  to 25 Hz 
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lorm for tlic excitability of the KEG as a function oi phase, which 

explains well the various entrainment phenomena seen in EEG data. 

Detailed phase analyses are in progress which indicate that the model 

prediction is good to a first degree, but needs some revision.  One 

possibility at this point is th« existence of an excitability function 

at hall the alpha frequency.  The phase-dependency of the model response 

has considerable bearing on the phase-dependency of saccade onset. 

5.   Prediction oi EEC Alpha Waveforms 

In order to present the visual stimuli to coincide with the most 

favorable brain state and to predict the onset of saccadic eye movement, 

it is necessary to have the capability to predict the KEG alpha waveforms, 

in particular, their phasic features.  In conjunction with the EEG model, 

we have developed and implemented an EEG-waveform predictive scheme by 

using autoregressive processes.  The development and implementation of 

this scheme will be described in detail.  Our discussion will be 

centered around the modeling of EEG data by an autoregressive process 

and its use for forecasting. 

The fitting of time-series models to EEG signals has been treated 

in the literature.  They have been specifically applied to EEG analysis 

in the following areas:  use for EEG spectral analysis; use of the 

mixed model to define certain parameters for describing the stationary 

parts of the EEG signal; and use of the one-step ahead prediction 

error to compare two different models.  Our interest lies in the prediction 

of the alpha activity in the EEG for a lonner lead time. 

Although autoregressive processes have been used for prediction 
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of time series in Keneral, they have not been used for prediction of 

EEC data.  In those general cases, the signal or time series is assumed 

to be stationary.  EEC signals are, in general, nonstationary.  For 

expedience, they may be considered piecewise-stationary; i.e., stationary 

over short intervals o  time.  Hence, in our application, we are 

restricted to limited sample lengths.  This restriction creates certain 

problems which we shall discuss later. 

To model a discrete time series  X. , i = l, 2 by an auto- 

rogressive process ol order p , we may write 

Xi   B aiXt T+aX+.-.+aX^   fe t    1 t-1   2 t-J p t-p   t 

where  ■,»*«»».»i a  are the parameters of the process to be estimated 

and  et  is a zero-mean white Gaussian noise.  It is generally assumed 

that the process X^  has zero mean; otherwise, the mean is subtracted 

from the entire series.  In general, the autocorrelation function of an 

autoregressive process consists of two components; viz., decaying 

exponential and damped sinusoidal waveforms.  It has been recognized 

that the real roots of the characteristic equation of the autoregressive 

process, i.e.. 

2 n 
1 - a B - a B  - ... - a Bp = 0  , 

ft     9 p 

give rise to the decaying expoentials and its complex-conjugate-root 

pairs are responsible for the damped sinusoids in the autocorrelation 

function.  We show in Figure 32 the autocorrelation function of an EEC 

sample filtered in the alpha range.  It is seen that the EEC autocorrelation 

function may be well approximated by a sum of decaying exponentials and 

damped sinusoids.  In Figure 32 , we superimpose the autocorrelation 
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Figure 32       Autocorrelograms:     solid 
curve   from  a  typical  EEG  alpha MtWfOfll  and 
dots   from  an  autoregressive  process   fitted 

to  the  data 
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lunction of an autoreKressive process fitted to KEG data to show our 

assertion.  This leads naturally to the temptation of modeling EEC signals 

by autoregressive processes.  Since autocorrelation function is not 

a unique process, there i re other processes which will give rise to 

the same autocorrelation function.  We chose an autoregressive process 

based on its simplicity in implementation. 

To accomplish our aim in prediction, we have broken down the problem 

into two parts: 

(1) Estimation of the autoregressive parameters; 

(2) Generation of "good' forecasts according to some criteria 

using the above estimation. 

Since the EEG process is considered piecewise stationary, the parameter 

estimates have to be updated continuously.  Thus, a scheme is needed 

for updating the parameter estimates as new data arrive.  For estimation 

of the parameters, we have used the least-squares principle.  These 

estimated parameters are then used to generate the minimum mean-square 

error forecasts for a specified lead time.  We developed a new modified 

scheme for this purpose. 

To furnish the basis for our modified scheme, we shall describe a 

scheme ordinarily used.  The development and implementation of a modified 

scheme to suit our needs will then be presented.  Results have been 

obtained by applying our scheme to real EEG data.  We will present these 

results to show the utility of our prediction method. 

We will concentrate our discussion to a parameter estimation 

method.  Later we will present our modifications to this method in 

order to improve  the performance for our purpose.  Lit us consider 
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th 
the  p     -oiiler process 

Xt   =   arXf   i   + a9X.   9 ^  ...   + * Xt       + et t 1   (-1 2   t-2 p   t-p t 

where  •   is white Gaussian noise.  The order of the autoregressive 

process is estimated by successively fitting models with higher order 

to the data and deten ining when the last parameter  a  becomes small 
P 

enough. 

The least-square estimates of the parameters can be shown to satisfy 

the following set ot linear equations 

-Q, aQ       +aQ       +.,.   -faQ 
K22 2^23 P   2,p+l 12 

aiQ23+a2Q33   f  '••   ^apQ3.P+l=   -Q13 

aiQ2.pa   '   a2y3.p.l   f  '••   + VVl.lH-1 "   -Q1.P+1 

where   the    Q     's  are  given by 
ij 

and 

Qll =   r,   I i-1 

(      - -fx X 
U \   1   , 

f XX + ...   + X       ^x 
J 2 j t-1 n-.i+l  n' 

Q X X.  -t  X       .X.   ,   +  ...   + \ 
i    j i+1   J+l n-j rl n-i+1 

Knowing    Q     's   ,   we  solve  the  set  of equations   to obtain  the   least- 

square  estimates  of  the  parameters     a   ,   a  ,   ...,   a     .     The   least- 
12       p 

square estimate of the noise variance is given by 

^2 
g 
" e ir- Ki+ iQi2'Qi3 Qi,P-fii iai'a2"-'aPr) 

Previous discussions furnish us a numerical procedure for estimation of 

the parameters  a , a  a  and g       in the least-square sense from 
l      z p e 

the data  (X , X , .,., X ) ,  Based on this procedure, one can model 
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a weakly stationary process by a plh-order autoregressive process. 

Since EEC data exhibit nonstationarity, this method has to be modified 

for our problem.  Besides, our interest is in the use of the parameter 

for prediction rather than modeling. 

Having obtained the estimates of the parameters, we turn our 

attention to the problem of prediction.  We need a scheme whereby the 

prediction can be made for a certain lead time and then when a new 

data point becomes available, the forecast can be updated without 

repeating the original process all over again. 

We wil] consider here minimum mean-square forecasts only.  Denote 

the estimation of *    obtained at time  t  by X        At time 

t , the values of the samples up to time  t  are known.  The minimum 

mean-square error forecast is given by (using the projection theorem): 

Vilt ■ Vmlt + a2Xtf£-2|t + '•• + VWpIt  ■ 

which provides the forecasts in the form of a difference equation. 

Given the sample values XX Y       ,.,« „ H    xu    t   t-1 ' **"  t-n+l '       progressively 

calculate Xt+1|t , xt42jt . ... by using the above equation.  Using 

this procedure, we can generate forecasts for any lead time utilizing 

the parameters estimated earlier.  However, the forecasts at each point 

have to be updated as soon as the sample X^  becomes available. 

It is rather cumbersome to do in the above form.  Hence, a different 

approach is required. 

Instead of writing the original equation as 

Xt = aiXt-l+a2Xt-2+-" +ap
Xt-p+et ' 

we will express  X   in a weighted infinite sum of e  . e as 
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xt ■ E bJet-J • 
j=Ü   J        J 

where  the    b  's    can  be expressed as 

bo= 1 

b
1 

= aibo 

b2  =   aibl   + a2b0 

b.  ■  a,bJ   ,   + a  b +  .,,   + a b .    1 ^  n 
J 1  J-l 2  ,j-2 *• puj-p   '   J 2  P   • 

The minimum-mean-square-enor  lorecast   is 

X^|t^ ^Vt+X-j (4) 

This form lends itself easily to updating.  This can be demonstrated 

by    Xt+Jj|t+1 after 1    arrives.  We may write 

and hence 

Ct+£|t+l = j.^.^jVi-J 

Xt+i|t+l " Xt+i|t = b/.-iet+l   ' (5) 

Thus, at time  t + 1 , the forecasts for lead lengths up to i - 1 

can be easily obtained from the predicted values at time  t  for lead 

lengths up to I  by using Eq, (5) and by recognizing 

et+l = Xt+1 " Xt+l|t ' 

This provides a convenient scheme for updating forecasts as more 

data become available. 

The variance of the forecast error may be easily obtained from 

Eq. (4).  Since the i-step ahead forecast error at time  t  is given by 
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£-1 

The variance  V(i)  may then be expressed as 

i-1  2  2 

.1=0 J e 
(6) 

This variance gives us a measure of the goodness of fit for the model. 

Since we have assumed the  e's  to be normal, the conditional probability 

density lunction  P(X   |X , X    ... )  is normal with mean X  „, 
t-M1 t  t-1 t<fi(t 

and variance  V(i-) .  Based on this information, we can obtain confidence 

intervals for the forecasts.  For example, 95%  of the normal distribution 

mass lies within + 1,96 g of the mean where a  is the standard deviation. 

Hence, X^ | t + 1.96v/V  is thß 95$  confidence interval for the forecast, 

i.e., the probability that the actual value will lie in that range is 

.95. 

The previous formulation gives the forecasting procedure to predict 

values  I  samples ahead from any time  t .  In order to increase the 

lead time for forecasting, one has to increase the value of i ,  It is, 

however, evident from Kq. (6) that the error variance becomes larger 

as £     increases and the confidence interval for a given level of 

confidence will also increase accordingly.  Another way to increase 

the lead time would be to increase the sampling interval and thus keep 

the value of  I  as low as possible so that the level of performance 

of the predictor may be maintained.  However, the sampling rate or 

sampling interval for a signal is determined by the bandwidth of the 

signal.  If the signal is furnished in digital form, then one has 

little choice in altering the sampling interval.  One could, of course, 
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increase this interval by dropping every kth block of data points.  In 

any event, the increase in sampling interval means reduction in the 

number of data points in a given interval of time.  This reduction in 

data points leads to a higher variance for the estimates.  Besides, 

the number of data points may be so much reduced, since the EEG signal 

is considered stationary only for a short period of time, that the 

estimates are not statistically significant.  For these reasons, we 

reformulate the autoregressive model in a more general form as 

Xt = aiX. , + »A 0. + ... + a X    + e «    1 t-k   2 t-2k p t-pk   t 

which, when  k = 1 , reduces to the case discussed earlier.  This is 

equivalent to un  autoregressive model for the time series 

^f Xt-k' Xt-2k •'• )  ' 

The least-square estimates of the parameters can be obtained by a 

logical extension of the earlier results; viz., 

aiQ22 + a2Q23 + -+apQ2,p+l
=-Q12 

1-   43 2  33 p S.p+l     13 (7) 

aiQ2.p+l + a2Q3,p+l + '•• + ap
Qp+l.P+l 

= "Ql,p+1 

where the Q. 's  are now redefined as 
■ J 

i=l 

Q1J = "(XlX(j-l)k+l 
+ '•• + Xn-(j-l)kXn) 

Qij : X(i-l)k+lX(,j-l)k+l + ••' + Xn-(j-l)kXn-(i-l)k ' 

i / 1  , S j I   > 

The least-square estimates are the solutions of this new set of equations 
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The lorecast equations are modifleld in a similar manner to gi give 

- a.X + a X 
t+kXlt "  iAt+k(i-i)|t r 2 t+k(i;-2)|t 

+ ... 

+ apXt+k(^-p)|t 

and Kq. (•)) becomes 

Xtrki|t " ^VtW-j) 

with the  b.'s  defined in terms ol the  a.'s  as before.  In essence, 

the scheme processes the available data in such a regrouped fashion by 

resampling the data, in  k multiples of the original sampling interval 

that the level ol performance is not degraded.  The performance of this 

scheme on KKG data will be discussed next.  The usefulness of the scheme 

is demonstrated by our results. 

We developed a computer program to implement an algorithm for 

recursive estimation of parameters and forecast of future values by 

using the new modified scheme.  The program was written in TORTRAN for 

a POP-IS computer.  As an example for illustration, we applied our 

scheme to real KEG data, which were recorded while the subjects with 

closed eyes were stimulated by stroboscopic flashes for 50 seconds at 

the rate of 10 flashes per second, then no stimulation for 50 seconds, 

then another 50 seconds of stimulation, etc.  The slgi.ils were sampled 

at an interval of 1.2 msec.  Since we are mainly interested in the 

alpha component of the EKG, the data were filtered to obtain the 

components around the alpha range (7-13 Hz) through a transversal filter. 

The computer program reads this EEG data as its input.  Other required 

information such as the number of sample points N  lor which the process 

is considered stationary, the order of the process P , the resampling 
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value  K , the prediction lead length  L and the window width NWND 

for updating the parameters are also read in as input.  (For efficiency, 

the parameters are not updated with each new data point, but only after 

NWND new data points have been read in.)  A flow chart of the program 

is shown in Figure 33.  As soon as the above variables and the initial 

N  points are entered, the program computes the least-square estimates 

of the parameters by solving the set of linear equations (7).  The error 

2 
variance ae  is also estimated.  These estimates are then used to 

generate minimum mean-square error forecasts up to L steps ahead; 

i.e., forecast of  t + KL is obtained at time  t .  The variance of 

the forecast errors and the confidence interval for a certain significance 

level are also calculated.  At this time, the next data point is read 

in; the residual is calculated as the difference between the actual 

value and the forecast; and the forecasts for the remaining points are 

updated by using Eq. (5).  A new forecast for the value  L steps 

ahead is produced.  This process is repeated until  NWND new points 

have been exhausted.  The procedure will repeat again starting with 

the recalculation of the parameter estimates. 

Results of the prediction for various lead times are shown in 

Mgures 34 through 38.  m order to compare the predicted wrv.forms with 

the actual EEC, we plotted the predicted waveforms and then superimposed 

the actual EEC on top of them.  The order of the autoregressive process 

was chosen as p = 7 by examining the partial autocorrelation function 

of EEC data for k = 10 .  The effective lead time in seconds is 

kiT where  T  is the sampling interval and  i  denotes the lead time 

in number of samples.  In Figures 34 through 38, the waveforms were 
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Read   in 
N,P,K,L,NWND 

Read  N  points 

Obtain  parameter 
estimates   and 

forecasts  up  to 
L ahead 

Read  next 
point 

Update   forecasts, 
generate  a  new 

forecast 

No 

Yes 

Update  parameter 
estimates   and 

obtain   forecasts 

Figure  33       A   llowchart   lor  the  realization 
of  the  prediction  scheme 
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EEG 

predicted 
actual 

L= 2 

Figure 34   Actual and predicted waveform 
lor lead time of 24 msec. 

• n   EEG 
predicted 
actual 

4ti 

L=  4 

Figure 35       Actual  and  predicted waveform 
lor  lead  time of 48 -nsec. 
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predu tod 

ui luul 

L=  5 

Figure  3(5       Actual   and   predicted wavelorm 
lor   lead   time  ol   60 msec. 

EEG 

prt-d u-11 d 
ac tua1 

imire 37   Actual and predicted wavelorm 
lor lead (ime ol 96 msec, 
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1    EIEG 
... .   predicted 

actual 

L= 10 

Figure 38      Actual   and  predicted  wa'eform 
lor   lead   time of  120 msec. 

VU)/E(X2) 

a» -i» 

O      O 

-* o~ 
-1 

igure 39      Prediction error variance 
vs.   lead  time 
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plotted against the sample numbers and the lead time  J was indicated 

at the lo'ver right corner.  For instance, in Figure 36, I ■ S means 

a lead time of 10X 5 X 1.2 = 60 msec., siu-e k = 10  and T ■ 1,2 msec; 

hence, the length indicated for i  -  5    represents 60 msec.  The amplitude 

scale is relative.  The solid curves represent the actual EEC and the 

dotted curves are the predicted waveforms.  In Figure 34, we see that 

for a :ead time of 24 msec., the two curves practically coincide with 

each other.  This indicates a prediction with little error.  We progressive- 

ly increased the lead time from 48 msec, in Figure 35 to 120 msec, 

in Figu-e 38.  It is observed from this series of figures that the 

coincidence of the predicted and the actual waveforms worsens.  This 

indication of increasing error as lead time increases is expected. 

For a quantitative comparison, we computed the prediction error variance, 

which is used as a performance measure of the prediction scheme, for 

various lead times.  This forecast error variance is shown in Figure 39. 

2 
The vertical scale ^ives V(i)/B(s )  which represents the prediction 

error variance relative to the variance of LL« signal to be predicted. 

For example, for i = 5 (i.e., a lead time of 60 msec.) the error 

variance is l1^ of the signal variance.  This gives a measure of how 

close the predicted values will be to the actual values.  We can see 

at a glance from Figure 39 that the performance deteriorates as let.d 

time increases,  la using this scheme, one can determine a maximum 

lead time for any given tolerance level.  For our purposes, this 

scheme is satisfactory. 
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IV.  CHAIiACTKIUZATION OF SCAN PATTKR.NS 

One ol the important aspects ol the research done in this project 

has been the development of techniques and tools for the automatic 

analysis, characterization and d^piay of scan patterns.  In visual 

tasks, the sequence ol fixations usec' in scanning? the visual target 

it called the "scanpath", and we will refer to a "scan pattern" as a 

collection of information about the properties of one or more scan- 

paths recorded by one or several different observers.  Naturally, 

to be able to differentiate a superior scan pattern which results in 

superior visual memory from an inferior one, we must first be able to 

characterize a scanpath in some terms other than just a list of (X,Y) 

fixation coordinates. 

A graphical illustration of a sequence of the foveal fixations 

is shown in Figures 40 and 41.  Figure 40 shows the outline drawing 

of a still life scene which was inspected by a subject with his scanpath 

superimposed.  In Figure 41 we have plotted a sketch of the visual 

stimulus impressed on the fovea for each fixation point shown in 

Figure 40.  The sketches show a visual field of 6° in diameter, a 

region which includes all of the fovea under practically any definition. 

These drawings, then, represent a time sequence of snapshots which are 

the visual input to the observer who must create a unified picture of 

the scene being viewed 1 rom the sequence of picture Iragments shown in 

the sketches. 

One observation which has often been made is that the fixation 

points tcni to be grouped around certain features or areas of the 

visual image, and are relatively sparse elsewhere.  Thus, we can measure 

7:\ 

■ ■ - ■ 



'— '■■, " l,p' ■■'' ' iu ' ' 

Si 
IS 

in 
CO 
M 
m 

rv 
\Q «so: 
co<r 
inz 

<r 

CD 

m o 

CO 
m 
u 
Q 

i/i 

V) 

■v o 
0 

E 
•H 
U 
| a 
3 I 
r c 
-P u 
rt   ü 
a vi I 
I iH 
U    rt 
m   C 

•n 
•C be 
>   u 

■H 0 
fa 
0 •< 
•a o 
fa m 
+J v 
3 a» 
a .* 1 M 

o 

3 

74 



RETINAL   PLOT   -   3.0   DEC.   DIAMETER   FIELD 

-fc e ^ 
10 

2    O    &    'r- 
11 12 13 14 15 

id    ii    ©    P 
16 17 18 19 2C 

/ Ö 

21 22 23 24 25 

Cv     ^ ^ 

26 27 28 2? 30 

d     <!>•    P 
FigUM 41   Sequence ol loveal fixations 
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the nearness of one fixation point to another and assign a similarity 

fieasure to the two points based upon this distance.  The ability to 

tfroup or cluster a set of fixation points is an important step in the 

characterization of a scanpath, and several different techniques have 

been useü to measure point similarities and to assign points to clusters. 

The use of a "point similarity function" for clustering fixation 

points has been reported earlier and will not be reviewed here. 

We have also used two alternate algorithms for selecting cluster 

centers, each with its own particular advantages and disadvantages. 

These algorithms are known as "iSODATA" and "Minimum-Spanning-Tree-Clustering" 

or MSTC. 

In the ISODATA method, the number of clusters desired is given 

an input variable, and the algorithm partitions the fixation points 

into subsets such that the total distance between the fixation points 

in a cluster and the cluster center is minimized for all clusters. 

The cluster center starting points are usually selected randomly, and 

the algorithm keeps moving the cluster centers until the above 

criterion has been reached. 

The MSTC algorithm automatically determine the number of clusters 

in the data and assigns fixation points to the clusters.  Three 

variables given as input may be adjusted to change the criteria by 

which clusters are selected. 

The chief advantages or disadvantages of these two algorithms are 

summarized below: 
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ISOUATA 

(1) Kequired the desired number of clusters, which usually is not 

known, 

(2) Solutions often are not unique, but vary with starting conditions. 

(3) The iterations can require a substantial amount of computing. 

(4) Many points can be easily accommodated. 

MSTC 

(1) The solution is unique, and the number of clusters is automatically 

determined, 

(2) The compu ation is quite fast. 

(3) Many points requires a large amount of storage. 

Our approach to characterizing scan patterns is based on 

the following two assumptions: 

(a) There are a discrete number of "lixation centers" in the scene 

being viewed and each fixation point in the scan can be assigned 

to c>ie ol the fixation centers.  This process of assignment or 

clustering is done using the MSTC algorithm described above.  The 

center of the clusters should be in close agreement with the 

centers of the fixation.  Due to the random nature of the fixation 

points, in any repetition (cycle) of the scanpath, the fixation 

points do not always coincide, 

(b) A scanpath then becomes a sequence of transitions from one 

cluster center to another.  Any saccade with starting and ending 

points in the same cluster is discarded. 
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From the set ol all saccades leaving a given cluster center, we 

can find the transition or transitions which have the highest probability, 

these tränst ions are termed the "most probable-saccades".  . ;if "most- 

probable-scanpath" is then defined to be the set of all most-probable- 

saccades.  The most-probable-scanpath depends on how the clusters are 

chosen, and is not necessarily a closed path through the cluster centers. 

Its usefulness is that it concisely summarizes the most important aspects 

of the scanpath used by the observer in viewing the j;iven visual target, 

A scan pattern is some set of most-probable-scanpaths lor a ^iven observer 

viewing the same or different targets, or for several observers viewing 

the same target, etc. 

figures 42 and 43 illustrate how these methods may be employed to 

reduce scanpath data to a more concise form.  Kigure 42 is a «rnph of a 

scanpath superimposed upon a line drawing representing the still life 

scene which the observer was viewing.  The first recorded fixation 

(1) is in the center of the avocado.  The last fixation (45) is in the 

middle of the carrot.  The viewing time required to create this 

scan totaled 20 seconds.  Figure 43 represents the same data after 

processing by the MSTC program.  The program partitioned the fixation 

points into 11 subsets or clusters (using certain criteria supplied by 

the programmer) and then computed the most likely transitions from 

cluster to cluster.  Clusters containing only one fixation point were 

ignored.  The resulting plot shows the most likely saccades between areas 

containing large numbers of fixations, and presents the original data 

in a highly condensed format. 

In order to compare one set of fixations or one scanpattern 
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against another, criteria must be established which can be used to 

evaluate subtle differences in the folTowing characteristics: 

(1) Total nuniLer of clusters - The MSTC algorithm partitions 

all the fixation points into some number ol clusters, very 

rarely will the number of clusters in two different scans be 

the same.  Rules must be established for eliminating or merging 

clusters which complicate the analysis.  lor example, clusters 

containing a single point can usually be remo/ed. 

(2) Similarity between clusters - The geometrical center of 

two clusters will ....mlly be different, and yet it may seem 

obvious that both clusters are associated with or centered on 

some feature of the picture, 

(.i)  The most probable saccades between clusters will often be 

different in two scans, even if the cluster centers are nearly 

alike.  The similarity ol two scans is judged by their transition 

probabilities. 

The above criteria are dependent upon the type of experiment bein^   run 

and no 1ixed set of rules will be suggested here.  Based on the above 

criteria and using statistical methods, we are able to show from our 

preliminary results that the scan patterns of the same visual material 

by the same subject who scored very high on Marks' Visual-Memory Task 

are consistent. 

„____ ^n». ^.M 



V.     TKCtLNigil S   gPH THE   I'RKSKNTATIUN  Oi   VISUAL CUES 

Th«  measmemcnt   Mui  pr«llctl0ll   Oi   eye  MVMMtl   and   related   EBG 

potent K.ls   are   necessary   prerequ^,tes   lor   the  control   Of   visually 

dlsplayed  .Ofriol  rtlch  CM   onhanee   an   obs..rver's   porcoptlOO  or  memory 

Ol   a   scene   or   vtsnal   env.ronnunt.      Thl«   1   .tlOO   describes   some  means 

to   couple   the   measurement   ol   eye   movements   with   the   control   ol   I 

computer-driven   graphical   display. 

The   task   undertaken  was   to  provide   a   1aci1ity   lor  dynam.cally 

eontrolling   the   toveal  or  porlphonH   rUM  Ol   »lOO  ol   an   observer.      Such 

,   tacUity  would   prov.d-    ■   U.-xible   ,nethod   lor   studymn   interaction 

b(.tween   eye   pOOitlOO   and   changes    in   .he   OiOUOi   Held.      Some   ol    the   ob- 

jecl ives   ol    this   r<: . ari h   a t < : 

(a) to  develop   techniques    lor   dynanucally   Controlling   the   Visual 

l.eld   in   humans   without   any   restrictive  mechanical   attachment    to 

the  eye; 

(b) to  obtain   a   subjective   leelin^   lor  perception  without   use   ol 

the   noimal   visual   li'ld;   and 

(c) to quantitatively measure changes in the observer's pertormance 

(and scanpath characteristics) as a lunction ol Held six.e and type. 

The   system  works   as   lollows:     At   the   start   ol   each   relresh  ol   the 

display   (90   ..mes   per   second),   the   position  ol   the  eye   is  measured   and 

the   correspondin«   point   on   the  display   is  computed.     Parameter,   within 

,he   pro-am  determine  what   portion  ol   the  visual   Held  will   be  displayed- 

.ovea  only,   periphery  only,   and   fcl*   size  ol   the   Held   in  either  case. 

Then,   each   point    m   the  display   list   is  checked,   and   H   it  is within   the 
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rvquiivd   Meld, it is displayed.  KiKures 44 and 45 depict the stimuli.« 

lor the two modes ol display.  The box (which was used instead ol a 

tirclc to simplify computations) remains centered on the lovea, „o matter 

where on the screen the observer looks. 

The visual scene; used in these experiments were outline drawinKS 

ol simple, still scenes.  No text or highly detailed pictures were 

involved. A  new scene could be entered into the computer through use 

ol a «.al/pen digitizer.  Once entered, the points in the picture we.e 

stored by X,Y position, and a display list was created for later use 

by the real-time interactive program. 

After adjusting the eye tracker and calibrating the instrument, 

the observer would be presented with a field of view which could be 

either a tovea-only presentation or a periphery-only presentation. 

The size of the field (width of box boundary) was also adjustable, Iron. 

less than one degree to the maximum width of the display.  Use of thi- 

program has produced, so far, these results: 

Impaired perception for fovea-only vision - If only a two or three degree 

wide foveal field is displayed (when the display itself spans twenty 

or more degrees), the observer finds it difficult, if not impossible, to 

perceive the display.  What the observer sees are short linr segments, 

and sometimes .junctions between line -egme-its.  The only .vay to perceive 

an object is to consciously follow the contours and mentally reconstruct 

the path followed.  Simple objects take several minutes to detect.  lew 

observers -et a complete idea of the entire fcene.  Kar more use of 

peripheral visual information is made than was anticipated.  Urge 
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saccades must be forced, and the observer becomes very conscious of having 

to manipulate his own eye movements. 

Perception with peripheral vision - If the foveal region is blanked, 

little perceptual loss occurs until the window size approaches roughlv 

10 , that is, the scent is still perceived even when the window is 

quite lar^e.  Our stimuli did not include text or other material where 

high visual acuity was essential.  This result is somewhat p irprisinjr 

in view of the general assumption of the importance of foveal-hig;' 

acuity field.  The peripheral field apparently makes an imponant 

contribution to the overall perception of a scene, even the visual 

acuity may be quite low in the outer regions. 

Importance ot   closed contours - If the fovea-only visual field is beinp; 

displayed, little improvement in perception of objects within the 

field occurs until the window size is large enough to include the complete, 

closed contour of an object.  The absolute size of the foveal region seems 

to be less important than the fact that complete objects are visible, 

at least for the line drawings we used.  This result supports another 

observation we have made, which is that fixations tend to be centered 

on the main surfaces of a simple object, and are not as often bound on 

the edges or corners of the object. 

Appearance of a phantom window - After about ten seconds of viewing, and 

especially for the fovea-only condition, a phantom window with pronounced 

Krey-black edges appears.  The subject sees a grey background with a 

black window cut in the center, through which the white lines may be 

viewed.  The window, of course, is fixated on his eye like an afterimage. 

a—^^M^^—^^^^M—-—^_ 
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Two causes for the window are evident.  Onl;' the ioveal region receives 

stimulation, and the rods and cones adapt to a higher ambient light 

level than in the periphery, which adapts to "visual grey".  Also, the 

sharp truncation ol many contours along a straight line reinforces the 

perception of an edge.  Similar effects have been noted before by Yarbus, 

These preliminary experiments with an eye-movement controlled 

visual display have proved quite interesting and useful.  The next step 

is to incorporate the predictive algorithms discussed in other previous 

sections of this report to present the visual cues at the desired 

locations of the visual field at the desired moments. 

■^_ - ■- ^ - - - — - ■ 



VI.  CONCLUSIONS 

Our aim has been to develop and use biocybernetie techniques for the 

enhancement of visual memory.  To this end, we have designed a closely- 

coupled man-machine system l-.r implementation.  We have developed and 

completed the models for saccadic eye movements and BK signals in this 

man-machine sysletn.  The models are used tor monitoring and prediction ol 

eye positions and brain states.  With the continuously up-dated iniormation 

concerniiiK the eye position and brain state for adjusting the stimulus 

parameters and the monitoring and prediction schemes, we can guide the 

eyes to fixate at the specified locations ol the visual field at the 

specified instants of time through a technique we developed.  If these 

specified locations and instants are the optimally required for superior 

visual memory, then the vividness and persistence of the desired 

after-image will be enhanced.  We have approached the problem of 

determination of these optimal locations nnd time instants by monitoring 

eye movements and BIG signals through the models which we have developed. 

Through the EEG model, we have obtained a better assessment of EEC's 

role as the timing mechanism for visual information acquisition and 

processing.  W'e have also shown that the scan pattern is more consistent for 

individuals with good visual menory (as scored by Marks' Visual-Memory 

Task) than those with poor visual memory.  This comparison is made possible 

by our method of characterization of scan patterns.  With these results, 

it is possible to determine the optimal locations in the visual field 

and the optimal time instants for presenting visual stimuli.  W^ conclude 
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that the approach lor visual memory enhancemenl as proposed is a leasible 

one.  At the termination of this project, we have implemented all ol 

the parts shown in the closely-coupled man-machine system but the 

feedback path. 

SiKnilicant accomplishments made during this research have been 

published or presented in international or rational scientific conferences 

and two Ph.D. dissertations are near completion. 
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APPENDIX A 

ELECTRONIC INTERFACE SYSTEM 

I 
»e shall describe here the Interface system for eye-movement d.ta 

acquisition only.  We .re presently usi^ a double Purkinje imaKt ..ye l 

tracker developed at Stanford Research Institute (SRI) for measure I 

eye movements.  it relles on measuring the mot.on of ^ reflect.ons I 

from the Iront surface of the cornea and from the back surface of the I 

lens of the eye (the first and fourth Purklnje image ,.  The instrument I 

is dxscussed in an article: "Accurate two-dimensional eye tracker I \ 

mtm   tint   and fourth Purkinje xmaRes". by T. |. Cornsweet u*  H. Ü. i 

^^ ^ the Jgggi 01 ^eOptual Society of Am^^.  vol# |t| ^ 8> I 

PP. 921-928, August. 1973.  Hgures A.l and A.2 »ho* the set up of this I 

eye tracker. 

The first and lourth Purkinje images are generated by positioning I 

a narrow beam of infrared light on the subject's pupil.  The image of I 

the eye and its attendant Purkinje image reflect off the infrared mirror I 

I« iront of the subject, through two large collimating lenses and on to I 

a movable mirror.  A four-quadrant photodetector senses the position of I 

the first Purkinje image.  Signals from these four quadrants are used I 

to drive two high-speed servo motors to detect the movable mirror in I 

altitude and azimuth.  The function of this servo system is to position I 

the image of corneal reflection when the eye moves so that the reflection } 

is always in the same position; thus, a stable reference of the eye is j 

provided.  As the eye moves, the image reflected by the movable mirror j 

will remain stationary.  A second optical system in tandem consisting of I 

another movable mirror and quadrant photodetector tracks the /curth 
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Purkinje imaRe and measures its movement relative to the (irst image. 

The two-dimensional motion ol this image derived Irom tne position of 

this mirror system is used as the output signal of the subject's eye 

movements.  The system is designed to measure eye movements with an 

accuracy ol up to two minutes ol arc.  The overall system has a Hat 

frequency response of up to 100 Hz. 

To assure the proper use of the eye tracker requires elaborate 

procedures for alignment of subjects and calibration of the eye tracker. 

The calibration is done through a computer program (MAP) we developed. 

This .alibration program serves to: 

(1) provide a way of relating the output voltages of the instrument 

to the stimulus positioni; 

(2) give an estimate of the size of the visual field over which 

the instrument is able to .rac ; the eye movements; and 

(3) indicate whether the eye tracker is correctly adjusted. 

It has been a major problem to relate the measured eye positions 

to the actual locations on the scene.  This difficulty arises mainly 

from the distortion introduced in measuring eye movements.  To alleviate 

this difficulty, %e have developed and implemented a scheme which maps 

automatically the eye fixations onto the scene without distortion.  This 

is achieved by expressing both the fixations and the line drawing of 

the inspected scene in terms of visual degrees relative to a calibration 

slide.  Since both are on the same coordinate system, they can be easily 

superimposed without any fear of distcrtion. 

Our scheme consists of the following computer programs:  MAP, 

HXHL, OVLAY, and PFIX.  MAP produces a calibration file relating 
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eye tracker voltage with the visual angle subtended by the eye.  HXHL 

analyzes tne dnta collected by the DIGIT program.  It reduces the data 

xnto fixations and. with the aid of the calibration file produced by 

MAP. it translates the location of these fixations into u.uts of viMUl 

angle.  Tae origin of ,his viSuai t.C)0rdinate system ., „„^   to be 

the center point of the calibration slide.  OVLAY is a variation of the 

MM program which uses the graf/pen to digitize pictures. OVIAY   is 

used to digitize an outline of the inspected scene on a slide.  Some 

additional data are added to the file to enable it to be eventually 

translated into units of visual angle with the exact coordinate system 

used by KIXKIL.  PKIX plots the fixations and superimpose the outline of 

the scene.  This can easily be done since the fixation locations and the 

outline are expressed In the same visual angle coordinate system. 

To illustrate the effectiveness of this scheme, we show an example 

in Figures A.3 and A.4.  The observer was asked to fixate at those 

circled points of a scene as shown in Figure A.3.  The eye-movement data 

taken were then processed by tne mapping scheme.  The result was plotted 

as shown in Figure A.4 .  it is seen that the measured eye fixations 

correspond very closely co those circled points in Figure A.2 in the 

right sequence. 

It should be emphasized that the process described is fully automatic 

and will compensate for different subjects r.nd any of the permissible 

variations iu the experimental set up ^ch as size of stimulus, distance 

between the screen and the observer, etc.  With this system, we are 

capable of processing massive amounts of eye-movement data with relative 

ease. 
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APPENDIX  B 

(1)      LIST OF PERSONS  WHO HAVE  CONTRIBUTED TO THIS  PROJECT 

Since   the  inception of  this project   in  1972,   the  following persons 

have participated  in  this  research project.     Their present  addresaes 

are  indicated. 

Dr.   J.   E.  Anliker,   Research Scientist,   NASA/Ames Research Center, 
Moifett   Field,   California 

Mr.   T.   E.   Attwood,   Scientific  Programmer,   CMX,   Sunnyvale,   California 

Ms.   K.   Dilley,   Project Secretary,   Stanford University,   Stanford, 
Crlifornia 

Dr.  M.   Ein-Gal,   Research Associate,   Information Systems  Laboratory, 
Stanford University,   Stanford,   California 

Mr.   R.   Floyd,  Graduate Student  Research Assistant,   Neuroscience 
Program,   Stanford University,   Stanford,   California 

Mr.  A.   Huang,   Scientific Programmer,   Stanford University,   Stanford, 
California 

Mr.   K.   H.   Jacker,   Computer Science Consultant,   Environmental 
Protection Agency,   Chapel Hill,   North Carolina 

Dr.   H.   S.   Magnuski,   Enginiering Manager,  Gamma Technology,   Palo 
Alto,   California 

*Mr.   J.   R.   Nickolls,   Graduate Student  Research Assistant,   Electrical 
Engineering Department,   Stanford University,   Stanford,   California 

■"Mr.  A.   Shah,  Graduate St ident  Research Assistant,   Electrical 
Engineering Department,   Stanford University,   Stanford,   California 

Mr.   M.   Stauffer,   Engineer,  Time-Data,   Inc.,  Palo Alto,  California 

Mr.   L.   D.   Stricklan,   Scientific  Programmer,   Stanford University, 
Stanford,  California 

Mr,   A.  Yang,   Student Technician,   Stanford University,   Stanford, 
California 

*Ph.D.   dissertations on  topics  -elevant  to   the project are near 
completion. 
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APPENDIX B 

(2)  LIST OK RE^VANT PAPERS PU131ISIIKD ÜUItING [Hi: PROJECT 

[l] "Applir-tion ol Erequency Disc riminat ion Tt-chnique lo the Analysis 
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