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PREFACE 

One widely used philosophy of simulating warfare that 

involves tactical aircraft has as its central concept the 

assignment of aircraft to missions on a game-theoretic basis. 

Alternative philosophies of simulation attempt either to model 

the decision processes of a commander or simply to require the 

analyst to supply mission assignments as input.  Since results 

are very sensitive to mission assignment, this issue is 

important.  Recently, game-theoretic models that go well beyond 

those discussed in the operations research literature in the 

1950s and '60s have been implemented on computers. 

Computer-implemented models that should be noted are the 

TAG CONTENDER model developed by the U.S, Air Force (Ref, [3]), 

the DYGAM procedure developed by Control Analysis Corporation 

(Refs, [7] and [8]), the sequential-game procedures included in 

the Lulejian ground-air model [11], and the OPTSA model treated 

in this paper.  Also, KETRON, Inc., is currently developing a 

model for the Arms Control and Disarmament Agency, 

The present paper describes a new OPTSA model, which is a 

revised version of the OPTSA II model described in References 

[4] and [9].  The revisions focus on (1) speeding up the game- 

solving procedure, which enables an order-of-magnitude reduction 

in computation time, and (2) elaborating the assessment pro- 

cedure, which enables additional aspects of tactical air warfare 

to be represented, '  ' 

It is appropriate to note the contributions of several 

individuals to our work.  The development of TAG CONTENDER 

motivated all the other recent models.  Lt, Gen, Glenn Kent, 

V . -   , 



USAF(Ret.), was the principal proponent; Louis Finch, Leon 

Goodson, and Scott Meyer developed the model.  Our colleagues— 

Jerry Blankenship, James Falk, and Alan Karr—made significant 

contributions to the development and understanding of the whole 

class of sequential game models.  James Falk, Louis Finch, and 

Frederic Miercort reviewed this paper. 

Finally, it should be noted that the revised OPTSA model 

has been used in two studies.  An interim version was used in 

a study that examined quantity-quality trade-offs of general- 

purpose aircraft [6].  The version documented in this paper was 

used in a study analyzing the cost and effectiveness of NATO 

aircraft shelters and air defenses [5]. 

^ 

; 

VI, 



Chapter I 

FEATURES OF THE REVISED OPTSA MODEL 

OPTSA determines percentage assignments of general-purpose 

aircraft to missions by period, where assessments of occurrences 

during the war are performed for certain numbers of days within 

each period.-^  The overall model Is a zero-sum, two-person 

sequential game, with simultaneous moves each day.  There are 

two Input lists of feasible assignments of Blue and Red general- 

purpose aircraft to missions; the solution to the game provides 

strategies for choosing assignments from these lists to optimize 

a desired measure of effectiveness.  A choice of aircraft 

allocation Is made by each side from Its list of assignments at 

the beginning of each period.  The choice may be made In a 

randomized manner and can depend on what choices each side has 

made in previous periods.  However, once an assignment is 

chosen, it must be played all the days in the period.  The 

number and extent of the periods is the same for both Blue and 

Red. 

The measure of effectiveness, which becomes a payoff entry 

in the game, is found by fighting a ground-air war.  The three 

missions that the aircraft may fly are combat air support (CAS), 

airbase attack (ABA), and Intercept (INT).  Aircraft may be of 

four types:  general-purpose (GP), special-purpose (SP) CAS, 

SP-ABA, and SP-INT.  The model optimally assigns only the GP 

^Hereinafter, "OPTSA" refers to the model originally called OPTSA II. "Day" 
is used throughout; however, no specifically dally features (e.g., light 
and dark) are simulated. A day can represent any kind of subperlod, but 
each subperlod must have the same characteristics. 



aircraft; assignments of the SP aircraft are fixed.  Aircraft 

assigned to INT destroy enemy CAS and ABA attacking aircraft 

before they perform their attack missions.  Aircraft assigned 

to ABA destroy enemy aircraft on the ground.  Therefore, there 

Is a trade-off between assigning one's aircraft to attack the 

enemy battlefield or alrbase versus preventing the enemy air- 

craft from attacking.  There are three types of ground units on 

each side, differentiated only by firepower per unit.  Total 

firepower (consisting of firepower contributed by ground units 

plus firepower contributed by CAS) Is used In forming force 

ratios for calculating casualties to ground forces and FEBA 

movement. 

In the original model, three measures of effectiveness 

(MOEs) could be used: 

(1) PEBA position. 

(2) Cumulative Blue minus Red total (ground plus air) 
firepower. 

(3) Cumulative Blue minus Red air firepower. 

These MOEs are all available In the revised model.  In addition, 

there are two new MOEs, explained In detail In Chapter III of 

this volume (below): 

(4) Weighted sum of surviving Blue minus surviving Red 
aircraft (by type)—using an Input set of weights. 

(5) Generalized air measure. Involving the difference 
between weighted sums of Blue and Red cumulative air 
firepower, surviving aircraft (by type), and levels 
of quick reaction alert (QRA) aircraft—using an Input 
set of weights. 

Though all these MOEs can be calculated for any specified day of 

the war, the last day of the war Is usually used.  As mentioned 

In the original model description [4], the same input data 

optimized on different MOEs can yield widely different optimal 

strategies.    , 



Table 1 summarizes the Important differences between the 

game structures of the original and the revised models.  The 

nature of adaptive, nonadaptlve, and behavioral games Is 

described In References [4] and [9]; the original model's 

solution procedure. In Reference [4].  The solution procedure 

used In the revised model Is described in detail in Chapter II 

of this volume (below).  A main feature of behavioral games is 

that the game value of a matrix game at stage k becomes a 

payoff entry in a matrix game at stage k-1.  The most interesting 

difference between the old and new models is that. In the former, 

all payoff entries are computed and then all matrix games are 

solved; in the latter, only those matrix games needed to generate 

a payoff entry for a previous-stage matrix game are solved; a 

payoff entry for a matrix game at any stage is generated only if 

there Is a reasonable possibility that the corresponding 

strategies are active in the solution, and the computation of 

payoff entries and solution of matrix games are intermingled. 

Also, when a payoff entry must be computed, the number of daily 

assessments performed is kept as small as possible by computing 

assessments period by period. I 

The reason for developing the new game-solving method is 

that the computer time of OPTSA's assessment routine is 

practically all spent in computing payoff entries; hence, the 

running time of the model is essentially equal to the number of 

daily assessments computed times the time per daily assessment. 

Increasing the complexity and richness of the assessment routine 

results in a somewhat longer time per daily assessment.  There- 

fore, to prevent the total running time from increasing, the 

number of daily assessments computed is reduced.  It is not 

clear exactly how these two opposing factors together affect the 

running time.  (Some of the computational experience with the 

model to date is discussed in Chapter IV, below.) 



Table 1.  REVISIONS TO OPTSA GAME STRUCTURE 

Original Model 

All payoff entries computed, 
regardless of whether they are 
needed to solve the game. 

Combat simulation in first 
period repeated for computa- 
tion of all payoff entries 
having the same first-period 
al1 ocati on . 

One subroutine "GAME" to set 
up games and ask for appro- 
priate payoff entries and one 
subroutine "SIMPLEX" to solve 
an arbitrary matrix game. 

Must be exactly three decision 
peri ods . 

Notation   seemed to allow Red 
and Blue to make allocation 
decisions on different days. 

Extremely long computer print- 
out. 

Long running time, 

Three MOEs available for pay- 
off entries. 

Revised Model 

Most payoff entries not needed 
to determine a game solution 
are not computed . 

Assessments performed only for 
period in which a game is 
being solved; results from 
previous periods are stored for 
1 ater use. 

Three 
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c i s i 0 n s 
the beginning 
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, including optimal 
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, without payoff 
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Somewhat shorter running time 
(much shorter game solution, 
but expanded simulation). 

Five basic MOEs; by varying a 
set of input weights, a wide 
variety of combat measures can 
be used. 

« 



Figure 1 lists the new features of the assessment routine, 

which are Incorporated into each daily assessment.  SAMs and 

quick-reaction-alert (QRA) aircraft have been introduced; more 

detailed and accurate attrition equations have been developed; 

and aircraft shelters can be destroyed by being bombed from the 

air.  There are two alternative ways of determining attrition 

in the air-to-air war.  In the air-to-ground interaction, four 

different methods of ABA are possible for each side.  These and 

the many other added features allow a much more accurate combat 

simulation.  However, the decision variables in the model 

remain the proportions of GP aircraft assigned to the three 

missions; the other data are all input.  (The algebra of the 

assessment procedure is described in the appendix to this 

volume; the revisions and additions to it are explained in 

detail, with somewhat different notation, in Chapter III, 

below.) 



New features of the OPTSA assessment routine are listed 
in the order in which they occur in the assessment routine 
Unless specifically noted, they apply for both sides (i.e., 
there can be separate numbers for Blue and Red). 

Setup at Beginning of Day 

New inventory of aircraft shelters computed at beginning of 
each day. 

Quick Reaction Alert (QRA) aircraft. 

A portionof the GP aircraft need not be assigned to missions 
but may sit home on the airbase, if the proportions in an 
allocation sum to less than 1. 

Sortie rates by aircraft type (GP/SP) and mission. 

Sortie rates can change once during war on an input day. 

Air-To-Air Interaction 

A number of identical air-to-air combat regions can be 
piayed , each side. 

Two alternative methods of determining attrition--not for 
each side individually (i.e., a method is chosen and that 
method is used to compute casualties to both sides). 

Both detection and kill parameters are used. They can vary 
with shooter and target type (GP/SP) and mission; averaging 
occurs only over target type. 

Binomial (not exponential) attrition equations are used 
(Equation (17'), Ref. [10]). 

The following quantities are computed in the second attrition 
method:  attacking aircraft engaged by interceptors, 
attacking aircraft that fly back to their own side, aircraft 
that do not fly that day. 

Ground-To-Air Interaction 

A ground-to-air interaction is played. 

Four input parameters for each side representing proportions 
of GP-CAS, GP-ABA, SP-CAS, and SP-ABA aircraft (resp.) 
destroyed by enemy SAMs. 

Planes on INT are not vulnerable to SAMs. 

(continued on next page) 

Figure 1.  BRIEF LISTING OF NEW FEATURES OF OPTSA 
ASSESSMENT ROUTINE 



Air-To-Ground Interaction (ABA) 

An input number of notional but identical airbases can be 
played, each side. 

An input fraction of aircraft shelters hit by a munition are 
destroyed. 

The "shell game" is used throughout (i.e., an occupied air- 
craft shelter is indistinguishable from an empty one). 

QRA aircraft are sheltered before anything else. 

Option exists not to shelter Red SP-ABA aircraft. 

Other aircraft are sheltered proportionally by kind of air- 
craft. 

Only an input fraction of the aircraft are on base.  The 
remaining aircraft are out flying missions.  However, the 
assessment procedure first assigns aircraft to shelters, 
then reduces both the sheltered (excluding QRA) and 
nonsheltered aircraft by the input fraction.  Therefore, there 
are practically always some empty shelters. 

The fraction of aircraft on base can change when the sortie 
rates do. 

Each ABA sortie makes an input number of passes, 
can be different for GP- versus SP-ABA aircraft, 

The number 

Each side has four different modes of attacking the enemy 
airbase (unlike the air-to-air interaction, one side can use 
one mode and the other another): 

(1) 

(2) 

(3) 

Point fire, nonsheltered aircraft on parking areas; 
attackers shoot at what they detect. 

Point fire, nonsheltered aircraft on parking areas; 
attackers allocated in advance (by an internal optimiza- 
tion) to sheltered or nonsheltered aircraft. 

Point fire, sheltered and nonsheltered aircraft on 
parking areas; attackers shoot at what they detect. 

(4) Area fire.  An internal optimization is done to determine 
the proportion of attack planes that load up with anti- 
shelter vs. anti-nonsheltered-aircraft munitions. 

In the point-fire attack modes, binomial (not exponential) 
attrition equations are used.  Separate parameters for 
detection and kill are input to the model.  The input param- 
eters depend on shooter type (GP/SP) and target type 

(concluded on next page) 

Figure 1 (continued) 
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(she!tered/nonsheltered).  Average detection and kill para- 
meters are formed by averaging over shooter type and used as 
input to the attrition equations. 

The FEBA advance function is forced to be logarithmically 
symmetrical.  If the force ratio x is less than 1, the value 
F(l/x) is computed by interpolation and F{x) is set equal to 
-F(l/x); therefore, the function values of abscissa break- 
points less than 1 are ignored. 

There are separate variables for Red and Blue to indicate 
whether all or none of the ground casualties are replaced. 

Figure 1 (concluded) 



Chapter II 

GAME-SOLVING PROCEDURE 

The running time of OPTSA is essentially proportional to 

the number of daily  assessments   that are computed--as practically 

all of the time Is spent In calculating payoffs, rather than In 

simplex operations.  Therefore, the objective of revising the 

game-solving procedure Is to minimize (or, at least, reduce) the 

number of daily assessments that must be calculated to solve the 

game.  Two avenues of approach have been used.  First, in order 

to solve the game, it is not necessary that all payoff entries 

of a matrix game be known.  The new procedure generates columns 

of payoff entries as they are needed, finds intermediate solu- 

tions, and stops when an intermediate solution is also a solution 

for the whole game (the method is proved in Section B and 

illustrated In Section C of this chapter).  Second, assessments 

are computed period by perlod--storlng assessment results at the 

last day of each period and using them later (as Is explained in 

Section D).  Note that the first improvement is unrelated to the 

fact that OPTSA is a multistage behavioral game, while the second 

is directly related to the order in which payoff entries are 

computed in a staged game.  The first Improvement can be util- 

ized in a staged game in such a way that each first-period payoff 

entry that need not be computed eliminates the need for solving 

many games at the latter stages.  This Is the major factor in 

reducing the amount of computation in OPTSA. 



A. SUMMARY OF PROCEDURE OF THE ORIGINAL OPTSA MODEL 

Consider a three-period game representing a war of D days 

with d-^, d^, and d^ days (resp.) in each period, with a list of 

n possible aircraft allocations in each period for each side. 

Therefore, there are n  possible allocation-choice pairs for 

each period (a "choice pair" meaning a choice of allocation bv 

each side), and (n )^ = n different possible combinations of 

allocations for the three-period war.  For each of these alloca- 

tion combinations, the assessment routine is performed to find 

a specified payoff measure (e.g., FEBA position at the end of 

day D).  Therefore, n  payoffs are computed.  These payoffs are 
4     2 2 

organized into n  = (n )  n x n matrix games—one game for each 

combination of first- and second-period allocations by each 

side.  These games are solved by the simplex method to determine 

optimal third-period (max-min) Blue and Red strategies, given 

the corresponding allocations made the first and second periods. 

The resulting n  game values become the payoffs for n^ n x n 

second-period games—which are solved to give the optimal 

second-period strategies, given the allocations made the first 
2 

period.  The n resulting game values are the payoffs for one 

first-period game, which is solved to determine the optimal 

strategies for Red and Blue for choosing a first-period alloca- 

tion.  Therefore, n +n +1 games are solved—each game n x n. 

The assessment routine, which makes D daily assessments for each 

campaign, is called n  times (i.e., n D daily assessments are 

performed). 

The original model was unable to play two-period wars; but 

by using the analogous procedure, a two-period war would require 

n D daily assessments. 

B. REVISED METHOD OF SOLUTION OF MATRIX GAMES 

Let us consider first a new procedure for solving a (one- 

stage) n X n matrix game, paying attention to how many payoff 

10 



entries a., (both i and j=l to n) need to be computed.  Blue Is 

the row player; Red, the column player; and a.., the payoff to 

Blue when Blue chooses pure strategy i and Red chooses pure strat- 

egy j.  Let Red start by choosing (arbitrarily) pure strategy 1. 

Against this declared Red strategy. Blue's best strategy is to 

choose strategy i., , where a.  -, is the largest entry in column 
1        1 -| , 1 

1.  Compare all the payoff entries a.-,, i=l to n; and take i-,, 

the argument of the largest, as Blue's initial strategy.  It is 

possible that a.  -, is actually a saddle point of the whole 

game—which can be tested by computing all the entries a.  ., 

j=2 to n.  If a.  -,—which we already know is equal to or 

larger than a.^ for i=l to n—is also equal to or smaller than 

a.  . for J = 2 to n, then a.  -, is a saddle point of the whole 

game.  Thus, the optimal strategies and value have been found 
2 

by determining only 2n-l payoff entries, instead of the full n . 

What if a.  -, is not a saddle point?  Then there is at 

least one j where a.  -, > a.  ..  Let us call the J such that 
1-13-'-        1-ljJ 

a.  . is the smallest  jp.  Let jp enter as a new constraint; 

that is, allow Red to play two  pure strategies, ^-^=1 and j^j 

which was just found.  What are the max-min strategies for Blue 

and Red for this new game?  They are found by using the dual 

simplex method of linear programming.  Set up the first part of 

the procedure (when the payoff entries a^^. of column 1 were 

computed) as the two-constraint linear programming problem (LP): 

maximize a 

s.t.   a <_ ^Y]^\  "*" ^21^2 "*" ^31^3 '•'•••■'■ ^nl^n ' 

n 
y   x. = 1 . 

i=i   ^ 
The X. form the Blue randomized strategy, and the first con- 

straint contains the payoffs for column 1 (i.e., constraints 

correspond to Red pure strategies).  In the computer program, 

11 



this LP Is put into standard form at optimality.^  The variable 

X.  is basic at 1.0; the other x.   are zero; and o  =  a The 
1 ^ il>l 

dual variables give y. = 1.0 as Red's strategy. 

Now let Red also be able to play pure strategy Jp.  Add the 

constraint 

c^ 1 a. . X  + a„ . x„ + a, . x„ + . . . = a  . x 
^>32 ^5J2      J3J2 -' ^'Jp   ^ 

n 
(i.e. , a <  ^  a  X    j=j" ) . 

i = l  ^-J ^      ^ 

to the above LP.  To do so, the payoff entries a. . , 1=1 to n, 

must be computed.  The entries form a column (j" ) in the game 

matrix but become a row of the LP.  When this new constraint is 

pivoted into the previous LP, which was optimal and in standard 

form, the solution to the previous LP becomes Infeasible for 

the new LP, as the new constraint is violated.  The dual simplex 

method Is used to reoptimize and find a solution x* and game 

value a  to this three-constraint LP.  The dual variables 

corresponding to the constraints j=l and j=j„ yield Red's 

probabilities for j=l and j=j^  in the optimal Red strategy.  No 

other Red pure strategy is used. 

The original basic variable x.  generally (but not neces- 
^1 

sarily) stays basic.  It is possible that it remains the only 

active Blue strategy and that only the Red strategy changes 

(e.g., if there is a saddle point at a.  . ).  Let 1 be the set 

{i|x* > 0}. ' 

Does   this  new  Blue   strategy  violate  any  constraints 
corresponding  to  Red   strategies   that  were  not   considered   in 
finding  the  Blue   strategy?     More  precisely,   if  the  game   is 
formulated  as  a   linear  program   (as  above),   we  have 

^This statement is not precisely true; the computer program adds an input 
value to all payoff entries to make them positive and then solves the 
LP min Tu.   s.t.  1 < Ta..u.  for jeJ, where u.  = x./a. 

12 J 



maximize a (the game value) 

s. t. a < 
n 
I 

1 = 1 
3. , . X , 
ij 1 

J=l,2, ,n 

n 

1=1. 
1=1 

We have found a solution vector x  to the relaxed problem 

maximize a 

s. t 
n 

o  1 I 
1=1 

a. .x. 
ij 1 

JeJ , 

n 
1=1, 

1=1 

where J Is a subset of {l,2,...,n}.  For the three-constraint 

LP (above), J = {l,j' } 

constraints 

If X  also satisfies the n-o(J) 

n 
o  1 I 

1 = 1 
a. .X. 
ij 1 

j eJ'={lj2,. ..,n}-J , 

It will be an optimal solution to the original game.  The 

optimal value of a  for the relaxed problem Is known.  Compute 

the payoffs a. . for 1 e I = {11 x. 7^ 0} and j e J^;^ and compute 
_ M it it 

for each j e J' the quantity )     a..x. - a .  Since x. = 0 for 
lel   '^ 

1^1, this sum Is Indeed the right-hand side of the constraint 

for j In the full-game problem with the current x .  If this sum 

Is nonnegatlve for each j , the solution x  to the relaxed pr.oblem 

Is the optimal Blue strategy for the whole game.  The dual 

variables provide Red's optimal solution.  This procedure has 

Involved computing no more than o(l)o(J') new payoff entries. 

jt    ^ 

a..X. - a  < 0, choose the J for 
ij 1 

If  for   some  J   e  J^,      I 
lei 

which  this   quantity   Is  most   negative   to   enter  as  a  new  con- 
straint.      In  the   example  above,   call   this   fourth  constraint   j"    , 

^The program keeps track of payoff entries that were conputed at a prior 
step and does not reconpute them. 
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allowing Red to choose among the three pure strategies J-,=l, J 

and j" .  Compute the payoff entries in column j" , and pivot the 

new constraint into the tableau.  Since the current solution is 

now infeasible, use the dual simplex method to reoptlmize and 

find the new game value and max-mln Blue and Red strategies. 

Then test Blue's solution to see whether it violates any of the 

remaining constraints—continuing as above until an optimal 

solution to the whole game is found.  Termination must occur, as 

eventually J' will be empty.  Usually, many fewer than n^ payoff 

entries need to be computed.  Figure 2 is a flowchart of the 

procedure for solving the one-stage matrix game. 

The number of rows (Blue pure strategies) r that have to 

be computed varies between r* (the number of active Blue 

strategies in the solution to the game) and n.  Similarly, c 

(the number of columns that have to be computed) varies between 

c* (the number of active Red strategies in the solution to the 

game) and n.  Experience with OPTSA so far indicates that r* 

and c* never exceed 3 and rarely exceed 2; and, in general, 

r = r* to r*+2 and c = c*+l or c*+2—regardless of n.  Given r 

and c, the number of payoff entries that have to be computed is 

(r+c)n-rc. 

Note that, in all this discussion, the initial choice of 

pure strategy 1 as the first Red pure strategy to try was com- ■ 
pletely arbitrary.  If there is a strong possibility that Red 

pure strategy 1 will not be active in the solution but that 

another pure strategy on the Red list will be, then (if this 

other strategy is chosen first) a column of unnecessary compu- 

tation might be saved.  Therefore, the computer program allows 

an input pure strategy from the Red list to be tried first. 

(Unless specifically indicated otherwise, pure strategy 1 will be 

used.)  The input pure strategy can be different for matrix games 

occurring at different stages of the behavioral game. 
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Enter routine 

I 
Red chooses allocation 
as a pure strategy. 

T 
Blue computes payoff entries a|| for i = 1 to n (i. e., 

payoff when Blue plays allocation i and Red plays allocation 1 .) 

1 
Blue chooses allocation yielding largest entry as a pure 

strategy. 

( 

I 
Set up this first solution as an (optimal)   LP tableau. 

Test if LP solution to current problem with only some constraints 

(Red pure strategies) violates any additional constraints. 

For each Blue active strategy (that is basic in LP solution) 

compute a    for each I and then the sums   2   a .x.,  for 
^        i| iel   i| I 

each j, where I is the set of active Blue strategies and x. 

form the currently optimal randomized Blue strategy. 

Are  all  these sums  larger than  the  current game  value? 

^ 
NO YES 

The i corresponding to the sum 
that is most smaller than 

the current game value enters 

We have solved the 
Output or store all 

relevant results. 

game. 

the LP as a lew constraint. 

I 
Compute a., for the above i and al 

'I        . 
i,  i = 1 to n.    Pivot the constraint 

into the current LP tableau, which 

now becomes infeasible. 

I 
Use the dual simplex method to resolve the LP 
to yield a new optimal strategy for Blue, given 

Red's allocation choices.    The dual variables 
form Red's optimal strategy. 

1-20-75-3 

Figure 2.  ONE-STAGE GAME-SOLVING PROCEDURE 
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C.   EXAMPLES OF THE REVISED SOLUTION PROCEDURE FOR MATRIX 
GAMES 

To clarify the new matrix game-solution procedure, this 

section presents two examples--showlng how the calculations 

proceed and exactly which payoff entries must be calculated. 

The first example Is a 3 x 3 matrix game with a saddle point. 

The second has four pure strategies for Blue and six for Red 

(i.e., a 4 X 6 payoff matrix).  Though the formulas for running 

time that are derived In Chapter IV (below) assume square payoff 

matrices (as will usually be the case In actual practice), the 

method still works for nonsquare payoff matrices.  In both 

examples, the effects on the amount of computation—with, first. 

Red picking pure strategy 1 to start and, second, an Intelligent 

guess by Red for a starting pure strategy—are illustrated. 

These examples are somewhat typical of payoff matrices 

encountered In OPTSA, where (for one side or the other) one 

pure strategy dominates most or all of the others and Is found 

early on.  Then It Is easy for the other side to optimize against 

It. 

The first example has the following payoff matrix: 

Rl R2 R3 
Bl 1. 3. 2. 

B2 4. 6. 1. 

B3 5. 4. 3. 

By looking at the whole payoff matrix. It Is evident that 

element (B3,R3)=3 is a saddle point.  However, If no payoff 

entries are known at the outset, how can the solution be found? 

Each step In the following sequence represents the operations 

performed by one of the game-solving subroutines In the computer 

program. 

Step 1 - Initial Setup.  Arbitrarily, Red chooses pure 

strategy 1 to be tried first.  Column Rl of the matrix must be 
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computed—resulting  In  the  following   (a  circle  around  a payoff 

entry   Indicates   that   it   has  been  computed): 

Rl R2 R3 
Bl © 3. 2. 

B2 ® 6. 1. 

B3 ^ 4. 3. 

Blue   solves   the  relaxed  game   or   subgame:' 

Rl 

Bl 1. 

B2 4. 

B3 5. 

This   is   equivalent   to   finding  the   largest   element   in  column  Rl. 

This   is   element   (B3,R1)=5-     Therefore.   Blue's   solution  to   the 
first  relaxed  game   is  pure   strategy  B3,   with  the   game  value 

equal  to   5. 

Test  whether   strategy  B3   is   a   solution  to   the  whole   game— 
by   computing  row  B3   of  the  matrix,   yielding— 

Rl R2 R3 

Bl 

B2 
© 
® 

3. 

6. 

2. 

1. 

B3 (5) (4.) (2) 

Is   the   current   game   value   (5)   less   than   or   equal   to   each   element 
in  row  B3?     No.      The   smallest   element   in  row  B3   is   3,   corres- 
ponding  to  Red  pure   strategy  R3• 

Step   2.     Red  pure   strategy  R3   (as  well  as.Rl)   must   be   con- 

sidered  as  a  possibility   for  Red.     Column  R3   of   the  payoff 
matrix   is   computed,   yielding— 

^The terms "relaxed game" and "subgame" are synonymous.    The latter term 
reflects the fact that the payoff matrix for the subgame is a submatrix of 
the whole game matrix; the former, that solving the subgame involves a 
relaxed LP  (i.e., an LP with fewer constraints than the whole-game LP). 
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Rl R2 R3 

Bl    © 3. © 
B2    © 6. © 

B3    © © 

Blue solves the subgame: 

Rl R3 
Bl    1 2 

B2     4 1 

B3    5 3   . 

In the program this is done by starting at the (now Infeasible) 

Blue solution for the previous   relaxed game: 

Rl 

Bl 1 

B2 4 

B3 5 

and using the dual simplex method.  Here, it is evident from 

inspection that element (B3,R3)=3 is a saddle point of the 

subgame.  Thus, Blue pure strategy B3 remains the optimal solu- 

tion, but the Red strategy changes—corresponding to a change 

of basic slack variables in the LP.  The game value is now 3— 

not 5—which, not surprisingly, is worse for Blue, since a new 
option for Red was added. 

Test whether strategy B3 is a solution to the whole game. 

Since row B3 has already been computed, all that now need be 

done is to check whether 3 (the new game value) is less than or 

equal to each element in row B3.  This is the case; hence, the 

solution to the game is the saddle point (B3,R3), with game 

value 3—which can be stored or output.  By looking back at the 

first matrix in Step 2, we see that only 7—not the full 9— 

payoff entries needed to be computed. 

Matrices like this, which have a saddle point, are 

extremely common in OPTSA.  The first Red strategy tried is not 



good; however, the correct Blue strategy Is found Immediately, 

and then it is easy to find the correct Red strategy.  With a 

good guess of the first Red strategy, the computation can be 

reduced further.  In this example, if R3 rather than Rl were 

tried first, the following situation would have resulted: 

Rl R2 R3 
Bl 1. 3. © 
B2 1|. 6. © 
B3 © €> © 

Payoff entries (B1,R1) and (B2,R1) did not need to be found; 

hence, only 5--not 7--entrles were computed. 

The second example (a nonsquare game) has the 4x6 payoff 

matrix (shown below).  There Is no saddle point.  In the series 

of steps presented, the actual solution of the subgames Is non- 

trlvlal; It Is omitted here.  In the computer program. It Is 

done by the dual simplex method. ■   I 

Rl R2 R3 R4 R5 R6 

Bl 5. 8. 1. 2. 4. 5. 

B2 5. 11. 3. I. 1. 7. 

B3 3. 3. 4. 6. 1. 7. 

B4 6. 10. 5. 4. 8. 6. 

Let probability vectors (b, ,b2 ,b^ ,b|^) and (r^ jr^jr^ ,r^ ,r ,rg ) 

denote the optimal Blue and Red randomized strategies for a 

subgame solved at some step; G, the value of the subgame.  As a 

check, the game was solved first by the regular simplex method— 

to yield G = 4|; 5* = (0,0,^,|); and r*   = (O,0,|,j,0,O). 

Step 1 - Initial Setup.  In the absence of any Input first 

guess, try Red pure strategy Rl.  Compute column Rl, yielding— 
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Rl R2 R3 R4 R5 R6 

Bl © 8. 1. 2. 4. 5. 
B2 © 11. 3. 1. 1. 7. 
B3 © 3. 4. 6. 1. 7. 
BH © 10. 5. 4. 8. 6. 

The largest element In column Rl Is (B4,R1) = 6.  Pure 

strategy B4 is Blue's solution to the first subgame; G = 6. 

Test whether B4 is the solution to the whole game.  Compute 

row B4, yielding— 

Rl R2 R3 R4 R5 R6      '   ■ 
Bl^  @ 8. 1. 2. 4. 5. 

82    (g) 11. 3. 1. 1. 7. 
B3'   0 3. 4. 6. 1. 7. 
B4    © @ © © © ©  . 

Is 6 £ element (B4,R1) for i=l to 6?  No, elements (B4,R3) and 

(B4,R4) are both less than 6.  The smallest of these is element 

(B4,R4)=4.  Hence, Red should also consider pure strategy R4. 

Step 2.  Compute column R4, yielding— 

Rl R2 R3 R4 R5 R6 

Bl © 8. 1. © 4. 5. 

B2 © 11. 3. © 1. 7. 

B3 © 3. 4. © 1. 7. 

B4 © @ © © © © 
Blue must solve the su 

Bl 

B2 

B3 

.bgame: 

Rl 

5 

5 

3 

R4 

2 

1 

6 

B4 6 4 • 

All payoff entries to this subgame are known.  The subgame solu- 

tion is bo = 0.4; b|, = 0.6; game value G = 3bo + 6^i^  = 
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R3 R4 R5 R6 

1. © 4. 5. 

3. © 1. 7. 

6b^ + 4bK =4.8.  B3 and B4 are the active Blue pure strategies— 

B^ has entered. 

Test whether this solution Is optimal to the whole game. 

To do so, the values In row B3 and B4 are needed.  Compute row 

B3, yielding— 

Rl    R2 

Bl    ©     8. 

B2     (D 11. 

B3     ® g)     ®    ©    ©    © 
B4     © (g)    ©     ©    ©     ©   . 

Then test whether the current game value, 4.8, is less than or 

equal to [0.4 x element (B3,R1)) + (0.6 x element (B4,Ri)), for 

i=l to 6.  This is already the case with Rl and R4 as they were 

in the subgame.  For the other columns, construct the following 

table: 

Entry       Entry 
0.4(B3,R1) + 0.6(B4,R1) 

(4.8) 

7.2 

4.6  M 

(4.8)  ■ '' 

5-2  . ' 
6.4    I 

4.8 is not   less than or equal to 4.6, the value from column R3• 
Therefore, Red pure strategy R3 should also be considered. 

Step 3.  The procedure is exactly analogous to Step 2 and 

uses the same section of the computer code. , 

Compute column R3, yielding— 

Entry Entry 
Column 1 (B3,Ri) (B4,R1) 

Rl (already satisfied) 

R2 3 10 

R3 4 5 
R4 (already satisfied) 

R5 1 8 
R6 7 6 
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Bl 

B2 

B3 
B4 

Rl 

© 
R2 R3 

© 
© 
© 

R4 

© 
©     © 

R5 
4. 

© 
© 

R6 

5. 

7. 

© 
© 

Blue must solve the subgame: 

Bl 

B2 

B3 
B4 

Rl 

5 

5 

3 
6 

The optimal solution is b-, = 4 

G = ^x4 + |x5 = ix 
3 

1 
3' 

R3 

1 

3 
4 

5 

^ = 

R4 

2 

1 

6 

4 

2 T-; game value 

+ f X 4=4- 
^3' The Blue active 

strategies remain B3 and B4; however, the Red active strategies 
change from Rl and R4 to R3 and R4. 

Since rows B3 and B4 have already been computed and there 

are no additional Blue active strategies, no new payoff compu- 

tation need be done at this point.  Test:  is G = 4|- <_ 

(5- X element (B3,Ri)) + (o" x element (B4,R1)) for 1 = 1 to 6? 

Since columns Rl, R3, and R4 were in the subgame, the inequality 

will be satisfied for them.  The inequality is strict for Rl 

(as Rl is not active in the solution).  Equality holds for R3 

and R4, the active Red pure strategies.  For other columns, 
construct the following table: 
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Column 1 

Rl 

R2 

R3 

R4 

R5 

R6 

Entry 
(B3,Ri: 

Entry 
(B3,R1) 

(already satisfied) 

3 10 

(already satisfied) 

(already satisfied) 

1 8 

7 6 

^(B3,Ri) + |(B4,Ri) 

(5; 

7^ '3 

^3 

Since 4o- is   less than or equal to all the numbers in the last 

column, the solution to the current relaxed game is also the 

solution to the whole game.  In the computer program, the dual 

variables can be obtained from the simplex tableau to yield 

Red's optimal strategy.  Here a little bit of calculation shows 
2 1 

it to be r^ = :5- and r^, = ^.  Therefore, the solution to the 
3 

gam e is b  = (0,0,5-,o-) and r  = (0,0,5-,:^, 0,0) , with game value 

G = 45-.  The game matrix with all computed entries circled is 

shown below.  Rows B3 and B4 and columns Rl, R4, R3 were 

computed; only I8 (instead of the full 24) payoff entries were 

computed. 

Bl 

B2 

B3 

B4 

Rl 

5^ 

R3 

© 
(3: 

© 
© 

R4 

© 
© 
© 

R5 

4. 

1. 

© 

R6 

5. 

7. 

© 
© 

Though payoff column Rl was computed, it was not active in 

the final solution.  Suppose it was guessed that since, say, 

R3 would be active in the final solution, it was tried first. 

The series of computations would have been as follows: 

Step 1:  Compute column R3, where the largest element is 5 (in 
row B4).  Compute row B4.  5 is not a saddle point. 
The smallest element in row B4 is 4 (in column R4). 
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step 2:  Compute column R4, and solve the subgame for Blue.  The, 
solution Involves B3 and B4. 

This solution is optimal for the whole game.  Therefore, only 

the circled payoff entries (below) have been computed (i.e., 

only 16 of the 24 entries have been necessary).  This is a 

minimal number—as B3, B4, R3, and R4 are all active in the 

solution to the whole game.  However, the good first guess of 

R3 (rather than Rl) has eliminated the results for computation 

of two entries.  With larger matrices, a good first guess can 

result in much more substantial savings. 

(first 
guess) 

Rl    R2    R3    R4    R5    R6 ■ 
Bl 5. 8. Q Q 4. 5. 

B2 5. 11. ® Q 1. 7. 

B3 © © © © © © 
B4 © ^ © © © © 

Note, however, that if R4 were the input first guess (even 

though R4 is active in the final solution), column R5 would 

have to be computed along the way.  Since Red pure strategy R5 

is not active in the final solution, there has still been 

unnecessary payoff computation.  The point is that, while a good 

first guess sometimes will save considerable computation, what 

seems like a reasonable first guess often will not. 

D.   PROCEDURE FOR COMPUTING ASSESSMENTS PERIOD BY PERIOD IN 
MULTIPERIOD GAMES 

This second revision to shorten the running time of OPTSA 

operates independently of the game-solving procedure described 

in Section C (above).  It is best illustrated with an algebraic 

example. 

Suppose that there are three periods of lengths d-j^, d^, and 

d^ days, where d-, + dp + d-, = D, the number of days in the war. 
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Suppose that allocations for Blue and Red have been made for 

the first two periods; and, given this, we wish to find the 

optimal third-period strategies.  To do so, we must solve a 

third-stage game, which Involves computing a number of payoff 

entries.  But In the computation of each entry, the situation 

at the end of day d +dp Is the same.  Therefore, we can 

compute the outcome of the war at the end of day d,+dp and 

store the result (the aircraft Inventory, shelter Inventory, 

firepower, ground-force Inventory, FEBA position).  For each 

third-period allocation-choice pair, we can—starting with the 

situation at the end of the day d-,+dp—fight the war for the 

third period only and find the payoff entry.  When all the 

necessary entries are found, the game Is solved to find a 

second-period payoff entry.  Similarly, when the second-period 

allocation varies and the first-period allocation remains fixed, 

we can compute and store the outcome of the war at the end of 

day d  and start from there In computing payoff entries.  This 

procedure eliminates the duplication Involved In recomputing 

the first period for each payoff entry.  (The procedure In two- 

period games Is entirely analogous.) ' 

If this revision alone were Implemented In the original 

OPTSA model without the method of Section C (above), assessments 

required would be reduced from n D to n d^+n d„+n d^—a consid- 

erable savings.  For a two-period war, the reduction would be 
4     2    4 from n D to n d-,+n dp dally assessments. 

I 
The particular results that must be stored at the end of 

the period are— j 

• Blue and Red division Inventory, by type, at beginning 
of last day of period. 

• Blue and Red aircraft Inventory, by type, at beginning 
of last day of period. 

• Blue and Red shelter Inventory, by type, at beginning 
of last day of period. 

• Blue and Red divisions destroyed, ty type, on last day 
of period. 
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• Blue and Red aircraft destroyed, by type, on last day 
of period, 

• Blue and Red shelters destroyed, by type, on last day 
of period. 

• Blue and Red cumulative total firepower delivered, up 
to and including last day of period. 

• Blue and Red cumulative air firepower delivered, up to 
and Including last day of period. 

• FEBA position at end of last day of period. 

These variables are all set up In COMMON arrays in the computer 

program.  The arrays show the values of the variables on every 

day. 

E.   PROCEDURE OF THE REVISED OPTSA MODEL 

The revised game-solving procedure of OPTSA is described 

for a three-period war.  Since a separate subroutine for com- 

puting payoff entries and solving a game is required for each 

stage, the number of subroutines increases with the number of 

periods in the war.  Hence, some programming revisions are 

necessary to extend the model to process wars of four or more 

periods.  The program can process wars of one or two periods 

by using part of the procedure for a three-period war.  More 

specifically, a two-period war is treated as the last two 

periods of a three-period war with an arbitrary first-period 

allocation by both sides.  Similarly, a one-period war is 

treated as the last period of a three-period war. 

Figure 3 is a flowchart of the model for a three-period 

war.  As in the original OPTSA model, a payoff entry for a game 

at stage k is the value   of a game at stage k+1.  Hence, to 

generate a payoff entry for a stage-k game requires solving a 

game at stage k+1—which in turn requires finding payoff entries 

for this stage k+1 game, which means solving a stage k+2 game 

for each stage k+1 payoff entry, and so forth—until the last 

stage, where payoff entries are actual war outcomes.  (This is 

illustrated by diagrams in Chapter IV of Reference [4].) 
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Input the data 

Stage 1 
Follow one-stage game 
solving procedure. 

Is a payoff 
entry to be 

computed ? 

YES 

NO 

Set appropriate 
allocations (Blue 

and Red) for 

period 1 and per- 
form assessment 

routine for all 
days in period 1. 
Store results at 

end of period 1. 

^y 
We have solved the 
game.   Output opti- 
mal value and strategy. 

Stage 2 ■ 
Follow one-stage game 

solving procedure. 

Is a payoff 
entry to be 

computed? 

YES 

NO 

Set appropriate 

allocations for 

period 2 and per- 

form assessment 
routine for all 
days in period 2. 

Store the out- 
come at end of 

period 2. 

Current LP solution is 

optimal.   Game value 

becomes a payoff in the 

first-stage game. 

Stage 3 
Follow 
solving 

one-stage game 

procedure. 

Is a payoff 
entry to be 
computed? 

■v/ 

YES 

NO 

To find 
payoff entry, 

solve a 

second-stage 

game. 

\r' 

To find pay- 
off entry, 

solve a 
third-stage 

game. 

\r 
Set appropriate 
allocations for 

period 3 and per- 
form assessment 

routine for all 
days in period 3. 

The payoff is the 
outcome in the selected MOE 

at a specified day of the war. 

Current LP solution is opti mal.    Game value 

becomes a payoff in a second-stage game. 

Figure 3.  PROCEDURE FOR A THREE-PERIOD WAR 
USING THE REVISED OPTSA MODEL 
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The game begins at stage 1.  Red arbitrarily chooses alloca- 

tion 1 (or. If Input, another allocation from the list) for the 

first period; and. In order for Blue to choose his best strategy, 

the first-period payoff entries must be computed for each of 

Blue's allocation choices.  First, compute the entry where Blue 

plays allocation 1 the first period.  The assessment routine Is 

fought for the first period, and the result at the end of day d 

Is stored.  The payoff entry Is the value of a stage-two game In 

which Blue and Red play allocation 1 In period 1 and play 

optimally  from  then  on.     To determine this value, call the 

second-stage game-solving routine, which will assess the payoff 

of the war for various second-period strategies and determine 

the best one.  To compute payoff entries, the second-stage game- 

solving routine will assess the outcome at the end of day d +d„ 

by using the appropriate second-period allocation, storing the 

outcome, and then calling the third-stage game-solving routine 

to solve a game whose value is the payoff entry for the second- 

stage game.  Payoff entries for the third-stage games are merely 

the outcomes of the war in a specified payoff measure (e.g., 

FEBA position at the end of the war) when appropriate combina- 

tions of flrst-y second-, and third-period aircraft allocations 

are used. 

Each third-stage game is solved by using the one-stage game- 

solving routine (which only generates payoff entries when 

necessary), and its game value becomes the appropriate payoff 

entry for the second-stage game.  The second-stage game is 

then solved—computing more payoff entries (i.e., solving more 

third-stage games) as they are needed.  The value of the second- 

stage game then becomes the first-period payoff entry when Blue 

and Red both play allocation 1 the first period.  The optimal 

second- and third-period strategies can be printed if desired. 

Then go through the whole procedure again, to compute the first- 

stage game-payoff entry when Blue plays allocation 2 the first 

period and Red plays allocation 1.  Continue to solve the 
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first-stage game by the one-stage game-solving method—going 

through the whole procedure (above) to compute each needed first- 

stage payoff entry.  When the first-stage game is solved, the 

game value and optimal first- and second-period strategies can 

be output.  Third-period strategies for all third-stage games 

solved can also be output. 

In a two-period war, the procedure is very similar.  Two 

one-stage game-solving routines are used.  Payoff entries for 

second-stage games are war outcomes (e.g., FEBA position).  The 

values of second-stage games become payoff entries for the first- 

stage game; payoff entries are computed only as needed. 
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Chapter III 

ASSESSMENT PROCEDURE i 

This chapter describes the changes made to the assessment 

procedure of OPTSA, to Incorporate more detail In some activities 

and to Improve the mechanism for representing other activities. 

This description Is methodologically oriented.  A detailed docu- 

mentation of the entire new assessment procedure Is Included as 

an appendix to this volume (below).  Throughout this chapter, the 

assessment procedure of the original version of OPTSA Is con- 

trasted with the assessment procedure of the revised version of 

OPTSA. - 

A.   QRA AIRCRAFT 

The original version of OPTSA could not play Quick Reaction 

Alert (QRA) aircraft (except by assuming that all QRA aircraft 

are In sanctuary as a justification for not playing them).  OPTSA 

can now play QRA aircraft, as follows:  An Input number of Blue 

GP aircraft are assumed not to fly any missions on each day and. 

Instead, to stay on the alrbase.  For example. If there are to 

be 100 Blue QRA aircraft, then each day 100 of the Blue GP air- 

craft do not fly any mlsslons--provlded that there are at least 

100 Blue GP aircraft.  If there are less than 100 Blue GP air- 

craft, then none of these aircraft fly any missions.  (The same 

holds for Red.) 

Note that there Is no explicit assumption that the Initial 

QRA aircraft actually are GP aircraft.  For example, suppose that 

Blue has 1,000 GP aircraft and 200 SP-ABA aircraft—100 of which 

are designated to be QRA.  Then the Inputs to OPTSA should be 
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that Blue has 100 SP-ABA aircraft and 1,100 GP aircraft—100 of 

which are QRA.  The assumption that OPTSA makes Is that QRA 

losses due to enemy ABAs are replaced with GP aircraft. 

If there is a shortage of shelters, all QRA aircraft are 

assumed to be sheltered before other aircraft are allowed to be 

sheltered. 

B.   AIR-TO-AIR MODIFICATIONS 

1 .   Sortie Rates 

The original version of OPTSA did not play sortie rates 

(i.e., it assumed essentially that all aircraft always had a 

sortie rate of 1.0).  The new version of OPTSA allows different 

types of aircraft on different missions to have different sortie 

rates, and these sortie rates can change once during the war 

(the day on which the change occurs need not be the same for the 

two sides).  Playing sortie rates (other than 1.0) is a basic 

change that affects more than just the air-to-air combat (e.g., 

a higher ABA sortie rate will result in more air-to-ground 

kills).  Since this Is a basic change, and since this change 

affects air-to-air combat significantly, this section describes 

how OPTSA plays sortie rates. 

There are a total of 24 different sortie rates that can now 

be input into OPTSA (i.e., 12 for Blue and 12 for Red).  The day 

on which Blue first begins to use his sustained sortie rates is 

also input, and six of the Blue sortie rates are surge rates 

that apply up to that day; the remaining six (sustained) sortie 

rates apply from that day on.  The six rates apply to— 

(1) GP aircraft on CAS missions; 

(2) GP aircraft on ABA missions; 

(3) GP aircraft on INT missions; 

(4) SP-CAS aircraft; 

(5) SP-ABA aircraft; and 
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(6) SP-INT aircraft. 

(The same structure also holds for Red 

Alr-to-alr attrition In the original version of OPTSA was 

calculated as follows:  If there were S shooters, T targets, and 

an alr-to-alr probability of kill of k, then the number of 

targets killed was given by 

T = T(l-exp[-^]) . 

An Intermediate version of OPTSA was constructed. In which 

T = f(S,T,d,k) , (1) 

where d Is the probability of detection and 

f(S,T,d,k) = T(l-exp[-^(l-exp[-dT])]) 

In the new version of OPTSA, the functional form of f has been 

changed and new functions have been added as options.  (These 

functional changes are discussed In Subsection 3 of this section, 

below.)  For the time being, let f^ denote one of the new 

attrition functions In OPTSA.  Then Instead of computing 
I ■ 

T = f'(S,T,d,k) , j 

OPTSA now computes that the number of target sorties killed T 

Is given by 

T^ = f^(r^T,r^S,d,k) , (2) 

where r  Is the sortie rate of the shooters and r. Is the sortie s t 
rate of the targets; and then the number of targets killed Is 

computed by . 

T = 
s' If r^ < 1 ; 

If r^ > 1 (3) 

That Is, one aircraft with a sortie rate of 2.0 Is treated as 

though It were two aircraft; and It Is assumed that. If the 

sortie rate Is less than 1.0, then a sortie killed results In 
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an aircraft killed—while if the sortie rate is greater than 1.0, 

then the percentage of sorties killed equals the percentage of 

aircraft killed. 

This method for considering sortie rates other than 1.0 is 

the same as is used in IDAGAM I (see Refs. [1] and [2]) and 

appears to give reasonable results.  However, it cannot be 

theoretically Justified for sortie rates greater than 1.0, 

because OPTSA (and IDAGAM I) assesses attrition once per day, 

while multiple sorties per day imply that attrition can occur on 

the first sortie (which would affect the outcome one way) or on 

later sorties (which would affect the outcome a different way). 

If further research indicates that this variance in outcome is 

significant, then attrition should be assessed more frequently 

than once per day.  For the time being, note that, if the number 

of sorties killed as given by Equation (2) is correct, then 

(for r, > 1) Equation (3) would give a lower bound on the number 

of aircraft killed—because, if less than T /r  aircraft are 

killed, then the number of sorties killed would be less than T , s' 
even if all aircraft are killed on their first sortie.  On the 

other hand, for r, > 1, Equation (2) might overestimate the 

number of sorties killed—because some aircraft on both sides 

would be killed on their first sortie; and so there would be, on 

the average, less than r,T, targets and less than r S  shooters. '=' ' t t    '^ s s 

2.   Air-To-Air Probabilities of Kill 

In the original version of OPTSA, the air-to-air probabil- 

ities of kill could be only partially a function of mission and 

of shooting type of aircraft—and not a function of the type of 

target.  This limitation could be significant, because there can 

be a considerable difference between the capability of inter- 

ceptors to kill GP-ABA aircraft and their capability to kill 

SP-ABA aircraft.  Accordingly, 32 probabilities of kill are 

now input:  Red GP-INT killing Blue GP-CAS, GP-ABA, SP-CAS, 
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and SP-ABA (and vice versa); Red SP-INT versus the same four 

types of attackers; and the same for Blue Interceptors of each 

type versus the four types of Red attackers. j 

3.   Air-To-Air Attrition Equations 

To determine alr-to-alr attrition, the original version of 

OPTSA used a one-parameter exponential attrition equation.  The 

Intermediate version of OPTSA averaged out the probability of 

kill of the various types of aircraft and used Equation (1) with 

the average probability of kill.  Equation (1) Is an approxi- 

mation to another equation that can be derived from basic 

assumptions (as In Ref. [10]).  In the new version of OPTSA, 

Equation (1)—which Is a homogeneous, exponential equation—has 

been replaced with a heterogeneous, binomial equation.^ 

For example, let 

I-, = number of Blue GP-INT aircraft; 

'  Ip = number of Blue SP-INT aircraft; 

A-^ = number of Red GP-CAS aircraft; 

A^ = number of Red GP-ABA aircraft; 

A^ = number of Red SP-CAS aircraft; and I 

AK = number of Red SP-ABA aircraft. '• 

Let r"-,-!} ^-[p>   ^pi ' ^?2'   ^?'^'   ^^'^  ^24 ^^ sortie rates corres- 
ponding (resp.) to the six categories above.  Let d.. be the 

probability that a type-1 Interceptor (1=1,2) detects a type-J 

attacker (j=l,2,3,4), given that they are both In the same air 

combat area; and let k.. be the same for the probability of 
ij 

kill, given detection. Finally, let N be the number of air 
combat areas (I.e., If N = 2, one-half of the attackers are 

assumed  to  be  attacking  through  each  of  the  two  areas  and 

^In terms of Reference [10], we have replaced an exponential approximation 
to Equation (l8) with Equation (17') of that reference.    If any binomial 
attrition expression would Involve exponentiating a negative number,  zero 
Is used instead. 
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one-half of the interceptors are defending In each area).  Then 

the number of type-J attacking sorties killed, A. , Is now 

computed In OPTSA by the equation 

A,-, = r„.A. (■ ■ J. 1 iJ- l-(l-d, )   ^ 
L    A^/NV 

4 

r„^A.   and d.   - 'L^    . 
A 

s 

IVN) 

(4) 

4 
where A^   =     I     r^^A. and d, = ^^^ ^1^ .  As discussed in 

J=l 
I 

Subsection 1 of this section (above), the number of type-j 

attacking aircraft killed. A.., is then given by 

M^,    if r   > 1 . 
\ '^2j "'^ 

(Equations for Red interceptors killing Blue attackers are com- 

pletely analogous.) 

Analogous equations are also available to calculate the 

number of Interceptors killed by attackers; however, as an 

option, an alternative method for calculating the number of 

interceptors killed by attackers has been added to OPTSA.  This 

new method assumes that aircraft on CAS and ABA missions are not 

interested in engaging enemy interceptors and will do so only if 

they are engaged by them.  If an attacking aircraft is not 

engaged by an interceptor, it never attacks an interceptor but 

always continues on toward its primary target.  An input percent 

of the attackers (which can depend on the type of aircraft--GP 

or SP—and on mission) that are engaged by enemy interceptors 

are assumed to jettison their ordnance and engage the inter- 

ceptors; the remainder are assumed to keep their ordnance--not 
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shoot at the interceptors—and, If they are not killed by the 

Interceptors, to continue toward their primary target.' 

For example, let 1.^, 1^,   k^,...,A^^,   v^^, . . . ,r ^^^,   N, A ^, 

and d. be as defined above; and let k.. be the probability that 

a type-j attacker kills a type-1 Interceptor, given that he Is 

engaged by enemy Interceptors.  Then, If the new method for 

computing air attrition Is selected, the number of attacker 

sorties engaged by type j, A. , Is given by 
J s ,  I  ■ 

A.  = r„.A. Il - 
2 
n 

1 = 1 
1 - ri=(—.'■'")] 

A /N\1^11^l/N 
s 

(5) 

and the number of type-1 Interceptor sorties killed, 1. 5 Is 

given by 

I. 
IS 

4 
I A . (1-a . )k1, p, , 

JS   j  jk'^l 
(6) 

where a. = the fraction of attackers which, when engaged by 

enemy Interceptors, continue toward their primary target, and 

Pi = 

r,.I.d. 
li 1 1 

y r, . .1. .d. , 
^  li  1  1 

The number of attacking aircraft sorties that go on toward their 

primary target, A. , Is given by 
J s 

A' 
JS 2s"j 

A.   -   A?     +   a.(A?„-A 
JS j      J s     J s 

(7) 

The  attacking  aircraft   that  were  engaged  and   that  jettisoned 
their   ordnance—but   that  were  not   killed  by   Interceptors—are 

assumed  to  return  to  their  home  alrbase. ! 

'if equations analogous to Equation (4) are used to calculate the number of 
Interceptors killed by attackers, then all attacker sorties not killed by 
Interceptors are assumed to continue toward their primary target. 

^Thls Is the correct version of the erroneous formula given on page B-8 of 
Reference [5]. 
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C.   GROUND-TO-AIR MODIFICATIONS 

1. Order of Calculations 

In the original version of OPTSA, ground-to-air attrition 

(due to SAMs and AAA) was not played.  In the Intermediate 

version, this attrition was played and was assessed before alr- 

to-alr attrition (due to Interceptors).  Inverting this order, 

the new version of OPTSA now first assesses attrition to 

attackers (CAS and ABA) caused by Interceptors and then assesses 

attrition caused by SAMs. 

2. Different Rates of Attrition to CAS and ABA Aircraft 
Due to SAMs 

In the Intermediate version of OPTSA, one attrition rate 

that gave the fraction of Blue attacking aircraft (both CAS and 

ABA) that suffered attrition to Red SAMs (and AAA) was input. 

Now, four different fractions can be input, so that the attrition 

rate of attack aircraft to enemy SAMs can depend on the mission 

(CAS or ABA) that the attack aircraft is flying and on whether 

the aircraft is GP, SP-CAS, or SP-ABA.  (The same structure 

holds for Red attackers and Blue SAMs.)  This structure allows 

the attrition caused by SAMs to ABA aircraft, which have to 

penetrate farther into enemy territory, to be higher than that 

to CAS aircraft.  Also, it could allow heavy, slow, SP-ABA 

aircraft to be more easily shot down by SAMs. 

D.   AIR-TO-GROUND MODIFICATIONS 

1.   Red SP-ABA Aircraft and Shelters 

If there were more aircraft than shelters, the original 

version of OPTSA sheltered aircraft by type proportionately to 

the number of aircraft of that type; and if there were enough 

shelters, then all aircraft were sheltered.  The new version 

still does so for Blue (except for the preference given to QRA 

aircraft) and can do it for Red.  An option has been added, 
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however, to allow no  Red SP-ABA aircraft to be sheltered.  Other 

types of Red aircraft are then sheltered proportionally (by 

type), and they fill up the available Red shelters. 

2. Fraction of Aircraft on Ground 

The original version of OPTSA assumed that all aircraft on 

each side were on the ground when the bombs from enemy airbase 

attackers hit the airbase.  A simple improvement is to assume 

that a fixed percentage of the aircraft are out flying their 

missions when the attack occurs.  (This percentage could depend 

on an average sortie rate, on average flying-time per sortie, 

and on the length of a "working" day.)  OPTSA now allows such a 

fixed percentage (for each side), which is used in the following 

manner:  If there are 125 aircraft and 200 shelters on an air- 

base and if an average of 80 percent of the aircraft are assumed 

to be on the ground at any one time, then OPTSA treats this case 

as if there were 100 aircraft and 200 shelters.  If there are 

400 aircraft and 200 shelters and 8o percent of the aircraft are 

assumed to be on the ground, then OPTSA "assigns" 200 aircraft 

(other than Red SP-ABA) to the 200 shelters; and the other 200 

aircraft cannot use the shelters (that day).  Thus, when the 

attack occurs, OPTSA assumes that there are 160 aircraft in the 

open, l60 aircraft in shelters, and 40 empty shelters.  (Note 

that OPTSA assumes that, if an aircraft is assigned a shelter 

and the attack occurs while that aircraft is on the ground, then 

that aircraft is always in its shelter--not outside the shelter— 

being rearmed, refueled, repaired, etc.  On the other hand, OPTSA 

assumes that an aircraft not assigned a shelter cannot use a 

shelter left empty by an aircraft out flying its mission—as the 

example above indicates.) 

3. Shell Game 

In the original version of OPTSA, if there were 100 aircraft 

and 200 shelters on a notional airbase, then the number of 
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targets for enemy airbase attackers was 100 (I.e., the alrbase 

attackers knew which shelters were occupied and which were not; 

and they attacked only occupied shelters).  In the new version, 

occupied shelters are indistinguishable from empty shelters. 

Thus, if there are 125 aircraft (all of which could fit into 

shelters) and 80 percent of them (100 aircraft) are on the 

ground, and if there are 200 shelters, then the attackers would 

have 200 targets.  And if x percent of these shelters are 

successfully hit (say, 10 percent or 20 shelters), then it is 

assumed that x percent of the aircraft (or 10 aircraft) are 

destroyed. 

4.   Number of Passes per ABA Sortie 

The original version of OPTSA used a one-parameter exponen- 

tial attrition equation to compute the attrition of nonsheltered 

aircraft due to enemy airbase attackers.  The equation used by 

the intermediate version of OPTSA to compute this attrition is 

^n = ^^^n'^'^n'^n^ = ^n(l-^^4" ^'"^''P^'^n^n^ ^J j ' 

where T  is the number of nonsheltered aircraft, S is the total 
n 

number of airbase attackers that have penetrated the interceptor 

and SAM barriers, q is the fraction of attackers that attack 

nonsheltered aircraft, and d  and k^ are weighted averages of 

the probabilities of detection and kill of a nonsheltered air- 

craft.  The new version of OPTSA has changed the functional form 

of f for this attrition calculation and has added new functional 

forms as options (these functions are discussed in Subsections 

5 and 6 of this section, below).  In the new functional form, 

the number of attackers is not qS, but pr^qS, where r^ is the 

average sortie rate for airbase attackers (as discussed in 

Section B.l of this chapter, above) and p is the number of 

passes per ABA sortie.  Corresponding changes were made in the 

calculation of attrition of shelters. 
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The reason for adding a factor to account for the number 

of passes per sortie is as follows.  If 

T  = f(T ,r qS,d ,k ) , n      n' s^ ' n' n  ' 

with the same form for f as in Equation (4), then each of the 

r^qS attacking sorties can kill at most one target, even if 

dj^ = k^ = 1.0.  Yet it is possible for one sortie (1) to make p 

passes over the airbase and to drop 1/p of its ordnance on each 

pass, (2) to make one pass but shoot at p targets on that pass 

and drop 1/p of its ordnance on each target, or (3) to have any 

combination of passes and targets per pass that results in p 

targets.  Based on the fraction of ordnance dropped on each 

target, the value for k^ could change, but, since the change in 

k^ may not be linear (and even if it were, T  is not a linear 

function of k^), there may be a significant difference (if p > 1) 

between ' 

and 

T  = f(T ,r qS,d ,k ) 
n      n  s    n  n 

T  = ffT ,pr qS,d ,k (p)] , n    *- n"^   s^ ' n' n '^ -' ' 

where k (p) is the appropriate probability of kill per pass for 

an aircraft dropping 1/p of its ordnance per pass.  OPTSA now 

uses the latter expression (above), where the form of f is as 

discussed in Subsection 5 of this section (below), p must be 

input, and k (p) must be input in place of k  (k  is not auto- 

matically computed in OPTSA as a function of p).  This is the 

same structure as used in IDAGAM I for multiple passes per 

aircraft. 

5.   Revised ABA Air-To-Ground Attrition Equation     ' 

The ABA air-to-ground attrition equation was revised in the 

new version of OPTSA along the same lines as the revisions to 

the air-to-air attrition equations.  That is, the exponential 

form of the equation was replaced with the binomial form and 
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the number of alrbases on each side was Included In the air-to- 

ground equations In the same manner as the number of air-combat 

areas was Included In the alr-to-alr equation.^  Just as In the 

original version of OPTSA, the air-to-ground equations are homo- 

geneous equations that use weighted averages of the probabilities 

of detection and of kill, each of which Is Input as a function of 

type of aircraft (GP or SP-ABA). 

In addition, two more changes to the air-to-ground attrition 

equations were made.  First, a procedure was added that allows 

an ABA aircraft that Is shooting at a particular nonsheltered 

enemy aircraft on the ground to kill other nonsheltered aircraft 

In the same general area.  Specifically, suppose that each air- 

base has M different areas on which nonsheltered aircraft can be 

parked and that, if an alrbase attacker shoots at an aircraft on 

a parking area, then the probability that he kills any particular 

nonsheltered aircraft on that parking area is k , Independent of 

the rest of the attrition process.  If there are B alrbases and 

there are more nonsheltered aircraft on each alrbase than there 

are parking areas, assume that there are (T /B)/M nonsheltered 

aircraft on each parking area (I.e., the nonsheltered aircraft 

are uniformly distributed on the B alrbases and on the M parking 

areas contained in each alrbase).  If there are fewer nonshel- 

tered aircraft than there are parking areas, assume that there , 

is one nonsheltered aircraft on each of T^/B parking areas and 

none on the others.  Based on these assumptions and changes, the 

new version of OPTSA computes the number of nonsheltered aircraft 

killed as 

^n = \[^-[^   -  mln(M?VB)(^-^^-^n^""  ;J 

pr^qS/BN 

(8) 

^As a result, d^ Is no longer defined as the probability that an alrbase 
attacker detects a particular nonsheltered aircraft on any alrbase in the 
theater, but is now defined as the probability that an alrbase attacker 
who is attacking a particular alrbase detects a particular nonsheltered 
aircraft on that alrbase. 
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Note that, if It Is desired not to play these parking areas, 

then this can easily be done by Inputting a very high value for 

M—which Is equivalent to assuming that at most one nonsheltered 

aircraft can be killed per pass.  It Is assumed here than at 

most one sheltered aircraft can be killed per pass. 

The second change to the air-to-ground attrition process is 

as follows:  The original version of OPTSA computed the value 

for q (the fraction of ABA aircraft that attack nonsheltered 

aircraft) by making it proportional to the number of targets. 

That is, since attackers could distinguish occupied shelters 

from the unoccupied shelters in the original version, q equaled 

the number of nonsheltered aircraft divided by the number of 

aircraft on the ground.  The new version of OPTSA now computes 

a value for q that maximizes the total number of aircraft killed 

on the ground each day.  The total number of aircraft killed on 

the ground, T, is given by 

-n("t mln( i-[i-d„] 
T /B n )] 

pr qS/B"* 

pr(l-q)S/B 

). (9) 

where T S, B, M, d^. and k  are as defined above; n n^ P' ^s' ^' 
T  is the total number of sheltered aircraft: H is the total 
s 

number of shelters; d  is the probability that an aircraft 
s 

attacking a particular airbase detects a particular shelter on 

that airbase; and k  is the probability of killing an aircraft 

in a shelter, given that the shelter is attacked.^  The value 

for q that maximizes T such that 0 <_ q <_ 1 is as follows:  Let 

n 
n 

min(M,T /B) ' n 

/       T /B\ (i-[i-v" y, 

^Note that d^, k^, dg, and kg are actually weighted averages of these 
probabilities. 
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pr S/B 
K  = [K']  ^ n    n 

K  = s 

K = 

'o 

1 - n 
H/B 

(^-[X-.3]H/B); 
DP S/B 

s 

T K  log (K ) n n  '^   n 
T3 log (K^) and 

1 - log K 

Then q = { 

0, 

log K  + log K 
^  s    '^  n 

If q  < 0 ; ^o ' 

if 0 < q < 1 

if q  > 1 . ^o 

Note that this maximization assumes essentially that occupied 

and empty shelters are indistinguishable to an attacker. 

6.   New ABA Air-To-Ground Attrition Equations 

In addition to the revised version of the ABA air-to-ground 

attrition equation given above, three new air-to-ground attrition 

equations have been added as options to OPTSA.  These three 

options are (1) not to allocate airbase attackers optimally 

between attacking sheltered and nonsheltered aircraft, but 

(Instead) to assume that each attacker will attack nonsheltered 

aircraft if he detects one (and he will attempt to attack shel- 

tered aircraft only if he does not detect any nonsheltered air- 

craft); (2) to assume that both sheltered and nonsheltered air- 

craft are located in the same "parking areas," so that, if a 

particular area is attacked, then any aircraft—sheltered or 

not—on that area might be killed; (3) to assume that area fire 

is used by all airbase attackers.  The equations for these 

options are described in turn (below), 

The total number of passes made by airbase attackers at a 

particular airbase is pr S/B.  If, on each pass, an attacker 
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attempts to kill a sheltered aircraft only If he does not detect 

a nonsheltered aircraft, then the number of sheltered aircraft 

killed, Tg, is given by 

T^ = T \1- s    s 

where the (1-d 

1 

T /B n 

-iw(l-tl-^s^"'')^l- d ) n 

T /E n 

^or S/b^ " s 

(10) 

-^, factor accounts for the probability that 

none of the nonsheltered aircraft on the base is detected on a 

particular pass.  The equation for the number of nonsheltered 

aircraft killed is the same as Equation (8) except that, Instead 

of assuming that q of the pr S/B passes attempt to detect and 

kill nonsheltered aircraft, all passes attempt to do so.  Thus, 

or S/B\ 
/B> " / k      /  '    T /B\ 

^n = ^nl^-|_l - min(M?T^/B)(^-^^A^ "  / (11) 

This option assumes a simpler command-and-control procedure 

(i.e., attack nonsheltered aircraft if you see one; otherwise, 

attack a shelter) than the making of optimal allocations based 

on the number of sheltered and nonsheltered aircraft.  Further, 

even though it is not "optimal," it might result in more aircraft 

killed on the ground, because each attacker has a chance to 

detect each target—sheltered or not.  The equations in the 

previous subsection assume that, once allocated to one type of 

target, an attacker cannot detect and attack the other type of 

target, even if he detects no targets of the type he is allocated 

against. 

The second new air-to-ground attrition option also assumes 

that attackers are not assigned in advance to attack either 

sheltered or nonsheltered aircraft.  A weighted average of the 

detection probabilities is used; and, if an attacker attacks an 

aircraft (sheltered or not) on a particular parking area, then 

he has a probability of k of killing any particular sheltered 
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aircraft on that parking area and a probability of k  of killing 

any particular nonsheltered aircraft on that area.  The equations 

used are 

n 

k 
1 - min(M,T/B) 

/  r   d T  + d Ef^'^W 
pr^S/B' 

(12: 

and 

T  - T s    s [: 1-   1   - 
k s 

mln(M,T/B) (.-[. 
d T  + d h"! 
n n s 

T    I 

T/B 

)] 
pr S/B^ '^   s 

,(13) 

where T = total number of targets = T  + H.  Here, the mix of air n ' 
munitions is not allowed to depend upon the number of enemy 

sheltered and nonsheltered aircraft. 

The two options (above) used no new inputs; the previous 

Inputs were just used In different ways.  The last option (area 

fire) requires new inputs. 

Area fire can be either perfectly coordinated, so that no 

two lethal areas overlap; perfectly uncoordinated, so that the 

center of the lethal areas are independently distributed over 

the area attacked; or somewhere in between.  The area-fire option 

in OPTSA allows both extremes--and any linear mix of these 

extremes—as follows:  Let a be an input such that, if a = 1.0, 

then the area fire is perfectly coordinated while, if a = 0.0, 

then the area fire is perfectly uncoordinated.  The other new 

inputs are 

b = area of a typical airbase on which aircraft might be 
located; 

a -   lethal area covered by one pass of an aircraft dropping 
^       "anti-nonsheltered" munitions against nonsheltered air- 

craft (this is taken as a weighted average by aircraft 
type GP or SP-ABA); 

a  = lethal area covered by one pass of an aircraft dropping 
^   "anti-shelter" munitions against shelters (which is 

also a weighted average); 
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k   = a reduction factor applied to a  when "anti-shelter" 
munitions are dropped on sheltePs; and 

k   = an expansion (or reduction) factor applied to ag when 
"anti-shelter" munitions are dropped on nonsheltered 
aircraft. . 

Note that it is assumed here that the targets (say, nonsheltered 

aircraft) are points and that the bombs have a lethal area (say, 

of a^).  At this level of detail, this assumption is equivalent 

to assuming that bombs are points and that targets have a vul- 

nerable area (which, in the above formulation, would be a  for 
' n 

nonsheltered aircraft).  The equations used are 

T„ = T min<1.0 
a(A a +A a k  ) n n  s s sn A A 

n n + (l-[l-x^] ''[l-s_] ^) n sn' (14) 

and 

T  = T mln<1.0,- s    s   J   ' 

a(A a k +A a ) n n ns  s s k A 
+   (l-[l-x^ 1 '^[1-x 1 ^) ns (15) 

where A  = qpr S/B; A  = (l-q)pr S/B; n 

n 

0.0, 

= ( 1.0 

sn 

(l-a)a n 

0.0, 

= ( 1.0, 

(l-a)a k s sn 

(l-a)a 
if 

if 

n 
b 

(l-a)a^ 

£ 0.0; 

> 1.0; 

otherwise; 

(l-a)a k 
if s sn < 0.0; 

(l-a)a k 
If  TT-^^  > 0.0; 

otherwise; 
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(l-a)a 

X 
s 

0.0, If  ^  < 0.0; 

1.0, 
(l-a)a 

If   ,  ^ > 1.0; 

(l-a)a^ 

b otherwise; and 

(l-a)a„k „ n ns 0.0, .. if  -i^ii^ < 0.0; 

(l-a)a k 
X   =( 1.0, if  ii-ii^ > 1 0- 

l-a)a k n ns 
otherwise 

7 .   Destruction of Shelters 

In the original version of OPTSA, shelters could not be 

destroyed.  The new version of OPTSA assumes that an input 

fraction (one for each side) of the shelters that are hit (in 

such a way that aircraft inside of them would be destroyed) are 

themselves destroyed.  The rest of the shelters (if any) that 

are hit are assumed to be reusable the next day. 

8.   Proportion of Aircraft Killed on the Ground 

The original version of OPTSA assumed that if there were 

10 GP, 10 SP-CAS, 10 SP-ABA, and 10 SP-INT aircraft on an 

airbase at the beginning of a day and that eight aircraft were 

killed on that airbase, then there would be two aircraft of 

each type killed on the airbase—no matter what happened in the 

air-to-air or the ground-to-air combat that day.  The new version 

of OPTSA assumes that if there are 10 aircraft of each type on 

the airbase at the beginning of the day and that five SP-CAS and 

five SP-ABA aircraft are killed in air-to-air and ground-to-air 

combat that day (and no GP or SP-INT aircraft are killed) so 

that, after air-to-air and ground-to-air combat is assessed, 
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there are 10 GP, five SP-CAS, five SP-ABA, and 10 SP-INT air- 

craft, and If eight aircraft are killed on the alrbase, then 

three GP, one SP-CAS, one SP-ABA, and three SP-INT aircraft would 

be killed on the alrbase. 

E. FEBA MOVEMENT FUNCTION ' 

Let X be the force ratio given by the Red (ground plus 

air) firepower divided by the Blue (ground plus air) firepower; 

and let f be a function mapping this force ratio Into the move- ■ 
ment of the FEBA.  Then the Input data (abscissa and ordlnate 

breakpoints) for OPTSA used so far have had the property that 

f(l/x) = -f(x).  However, this property Is not preserved by 

linear interpolation.  The new version of OPTSA explicitly 

requires that it be preserved.  Therefore, f(x) for x > 1 is 

input as before; but OPTSA now calculates f(x) for x < 1 by 

f(x) = -f(l/x), and OPTSA ignores any Inputs for the function 

f that affect FEBA movement for x < 1. 

F. NEW MEASURES OF EFFECTIVENESS 

1.  Weighted Number of Surviving Aircraft 

There are two new optional measures of effectiveness that 

are now available for use as the objective function for cal- 

culating the payoffs of the game that OPTSA plays.  The first 

new measure of effectiveness is the weighted number of surviving 

aircraft, where the weights are both by side and by type of air- 

craft.  Let B , B^, B^, and B^ be the number of Blue surviving 

aircraft of type GP, SP-CAS, SP-ABA, and SP-INT (resp.); and 

let R , R , R   and R  be the same for Red.  Then OPTSA now 

accepts the eight inputs a , 6 , y , &   ,   a^, 3^, Y^, and 6^; 

and OPTSA can calculate the payoff to Blue as 

a\  + 3^B^ + Y^B^ + &\   - a^R  - B^R^ - y^R^ - 6^R. . 
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2.   Comprehensive Air Measure 

The second new measure of effectiveness Is a comprehensive 

air measure that Includes (1) firepower delivered on CAS, (2) 

surviving aircraft, and (3) QRA levels.  Let B be the desired 

number of aircraft that Blue wishes to keep on QRA; and let R^ 

be the same for Red.  Note that. If B  (as defined In the 

previous subsection) Is greater than B , then B -B  Is the 

actual number of surviving Blue GP aircraft that can fly missions 

and Blue has enough surviving aircraft to meet his desired QRA 

level; if B  Is less than B , then Blue has no surviving GP 
g Q 

aircraft that can fly missions and Blue is short B^-B^ QRA 

aircraft.  Thus, In this new measure, the number of surviving 

Blue GP aircraft is taken to be max{B -B^jO}, not B^, and the 

Blue QRA shortfall is taken to be max{B -B ,0}. 

Let B„ be the amount of Blue firepower delivered on all 

CAS missions; and let R^ be the same for Red.  Then, in addition 

to the eight inputs given in the previous subsection, OPTSA can 

also accept the four inputs e^, e^, M^, and M^ and can calculate 

the payoff to Blue as    . 

a^(max{B -B ,0}) + 3^ + Y^B^ + 6% + e^B^ - M^ (max{Bq-Bg, 0}) 

-a^(max{R^-R .0}) - 3% " ^''^  " ^"^^i " ^""^f + M^ (maxlR^-Rg, 0}) . 
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Chapter IV 

COMPUTATIONAL CONSIDERATIONS 

To estimate the central processor (CP) time used by OPTSA, 

It suffices to determine the number of dally assessments fought 

and the time per dally assessment.  As before, let there be D 

days In the war; three periods with d, , d , and d-. days In each; 

and n allocation choices per period per side. 

The number of first-period payoff entries that must be 

computed Is n, = (r-,+c,)n - 3?-,C-,, where r, and c, are the 

number of rows and columns In the first-period game matrix whose 

entries must be computed to solve the game.  Therefore, n, 

second-stage games must be solved.  Each of these n, games might 

have a different number of payoff entries that need to be com- 

puted, but let np be the average number.  Then, on the average, 

n-,np third-stage games must be solved.  Thus, l+n,+n-.np games In 

all must be solved.  On the average, let each third-stage game 

require computation of n^ payoff entries for solution.  Then 

n-,npn^ war outcomes at the end of day D are found.  The number 

of dally assessments computed Is then n, d-.+n-. npdp+n, npn^d^, on 

the average, because the model does not fight D days to find 

each of the n,npn^ war outcomes but stores results at the end 

of each period (as described In Sec. D of Ch. II, above).  For a 

two-period war, the model solves 1+n, games, computes n,np war 

outcomes, and computes n-,d^+n,npdp dally assessments. 

What are reasonable estimates of n., , n^,   and n^, given n? 

The computational experience so far Indicates that there is a 

wide variance in the number of rows and columns whose entries 

need to be computed to find the solution to a one-stage game. 
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The minimum, of course, is one row and one column (or 2n-l 

payoff entries per game); the maximum Is n payoff entries.  A 

good first guess of a Red strategy can eliminate some computa- 

tion; however. It Is often hard, a  priori,   to know whether a 

particular pure strategy will be active In the final solution. 

If It Is not, at least one unnecessary column of payoff entries 

must be computed. 

Experience with the two-period war suggests that for a 

fairly wide range of n (around 6 to 13), np = 3n - 2 (two columns 

and one row. Implying a saddle point) and n, = 4n - 4 (two col- 

umns and two rows) are reasonable estimates.  In this case, the 

number of dally assessments Is n-,d-, + n-,npdp — or (3n-2)d-, + 

(3n-2)(4n-4)d2.  The computational experience with the three- 
period war has been more limited; but (with n = 7) running times 

from 65 to 150 CP seconds have been encountered.  3n - 2 (one 

row and two columns) still seems to be a good estimate of n^, 

the number of Zaet-perlod payoff entries required to solve a 

last- (third-) stage game, for n in a fairly wide range.  It is 

difficult at this point to say anything about n, and np. 

However, it should be kept In mind that small shifts In the 

input data can and generally do dramatically affect the number 

of payoff entries required.^  Note that in both two- and three- 

period wars there is a substantial reduction from the original 

version of the model., which calculated n D dally campaigns for 

the three-period war and n D for the two-period war. 

Though the running time per dally campaign is constant 

throughout any particular game, it depends on the Input data. 

The determining factor Is whether or not SP aircraft are played. 

Several experiments were performed to determine timings.  With 

one kind of Blue and Red division and only GP aircraft, O.OI5 

seconds (on the average) are required to compute one dally 

^Thls is an interesting feature of the revised OPTSA model, as the running 
time of most models is Independent of the data. 
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campaign.  With three kinds of Blue and Red divisions and four 

kinds of Blue and Red aircraft, the average CP time per dally 

campaign rises to 0.027 seconds.  Other Input quantities do not 

seem to affect greatly the running time per dally campaign. 

If the periods are equally spaced (I.e., d, = dp = d^; or 

^1 ^ '^2 "^°^ ^^^ two-period war), the CP time for the game Is 

proportional to the number of days In the war.  For a given 

value of D, the shorter the first periods and the longer the 

last periods, the longer the game will take to play (and vice 

versa).  In general, larger values of D require longer running 

time; but, because of the period-spacing factor, the running 

time Is not strictly monotone with D. 

An estimate of the running time for a two-period war with 

six strategies per period per side (n = 6) can be obtained as 

follows:  Let D = 30; d^ = 10; and d2 = 20.  SP aircraft are 

played.  The number of dally campaigns Is 

n^d^ + n^n2d2 = (3n-2)d^ + (3n-2)(4n-4)d2 .■       , ;  . 

.= (18-2)10 + (l8-2)(24-4)20 . ' 

= 160 + 6,400 

= 6,560 dally campaigns at 0.027 CP seconds each 

= 177 CP seconds. -I  ._   . 

Actual running-times for games with these data have ranged from 

150 to 185 CP seconds.  With the original model,^ using the 

Improved assessment routine, 6  x 30 (or 38,880) dally campaigns 

at a total of 1,050 CP seconds would be required.  The new game- 

solving method results In an 85-percent time savings. 

Experience with three-period games has been limited, but 

running times of about 700 CP seconds have been encountered for 

30-day wars.  Since the original game-solving method used with 

^The original version of OPTSA (documented In Reference [4]) could not play 
two-period wars; however, an Intermediate version of the model (using the 
old game-solving and assessment procedures) did. 
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the new assessment routine would have taken (6 x 30 x 0.027 =) 

37,800 GP seconds, there has been an Improvement of 98 percent. 

We would also like to see, however, how the two opposing factors 

of shorter game-solving method and longer assessment time affect 

the actual running-time.  A timing estimate of 0.003 CP seconds 

per dally campaign has been obtained for the original OPTSA 

model.  Therefore, since the original model with the old assess- 

ment routine wpuld take approximately (6 x 30 x 0.003 =) ^,199 

CP seconds, the new model still appears to take considerably 

shorter time.  For a two-period war, the original model would 

have taken (6  x 30 x 0.003 =) 117 CP seconds—comparable to the 

time of the new model. 

The number n of pure strategies per period per side is 

obviously an Important factor in the running time, which rises 
2 3 roughly as does n for two-period or n for three-period wars 
U r 

(as compared to n  or n in the original model).  Too few pure 

strategies do not allow a realistic range of allocations.  The 

set of six allocations consisting of all combinations of all or 

half the GP aircraft to missions seems to work quite well. 

(The strategies are listed in the example in Vol. 2, Ch. II, 

Sec. C.)  Excursions done on increasing the number of pure 

strategies did not dramatically affect the game value [5, Ch. I], 

The model is currently dimensioned to hold up to 11 pure strate- 

gies per side (e.g., 10 "normal" ones and one that it might be 

interesting to try) and can easily be redimensloned to hold up 

to 20, If sufficient computer-core storage is available. 
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Chapter V 

LIMITATIONS OF THE REVISED OPTSA MODEL 

There are three types of limitations to the revised OPTSA 

model:  limitations to the game-solving procedure (given the 

current assessment procedure), limitations to the assessment 

procedure (given the current game-solving procedure), and 

limitations that affect both the game-solving and assessment 

procedures.  Some limitations of each type are listed below. 

Within each type the limitations are listed in order of 

importance. 1. 

A.   LIMITATIONS OF THE GAME-SOLVING PROCEDURE 

The limitations of the game-solving procedure are as 

follows: 
I.'  . 

(1)  Limited Number of Decision Periods.  OPTSA can con- 

sider only two- or three-period wars (with a variable number of 

days in each period).  Therefore, if the war being modeled lasts 

longer than three days, OPTSA cannot optimize the allocation of 

aircraft to missions for each day of the war.  Theoretically, a 

side may be able to achieve a much better payoff with a strategy 

that changes on each day of the war than it can achieve with the 

strategy that is optimal among the set of strategies that do not 

change within each period.  It should also be noted that the 

periods must begin and end on the same days for each side (Blue 

cannot change strategy on day 10 and Red on day 15 of a 30-day 

war), and that a mixed strategy is played as a mixture of period- 

long pure strategies.  For example, if the first period lasts 10 

days, OPTSA can play that GP aircraft fly CAS on all of the first 
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ten days with probability 1/2, and fly ABA on all of those days 

with probability 1/2.  But OPTSA cannot consider strategies that 

allow GP aircraft to fly CAS with probability 1/2 and to fly ABA 

with probability 1/2 on each of the ten days independently of 

what was flown on the other days. 

(2)  Limited Strategy Space.  The pure strategies considered 

by OPTSA must be input and must be fractional assignments of 

sorties to missions.  Theoretically, It is possible that the 

optimal Blue strategy is to fly 3/8ths of its GP aircraft on 

CAS and 5/8ths on ABA, yet if this strategy is not on the input 

list, OPTSA cannot consider it and will only select the best of 

strategies that are on the input list.  Also, given the first 

limitation above, it might be reasonable to play that the Blue 

commander tells 1/2 of his GP aircraft to fly CAS throughout a 

period and 1/2 to fly ABA throughout that period.  However, OPTSA 

cannot consider this strategy if the period is longer than one 

day and if the CAS attrition differs from the ABA attrition.  For 

example, suppose that Blue has 2,000 GP aircraft with a sortie 

rate of one and that aircraft suffer two-percent attrition on 

CAS each day and ten-percent attrition on ABA each day.  Then, 

if 1,000 aircraft were told to fly CAS each day and 1,000 were 

told to fly ABA each day, on the second day there would be 98O 

aircraft flying CAS and 900 flying ABA, and on the third day 

there would be 960.4 aircraft flying CAS and 8IO flying ABA, and 

so on.  OPTSA cannot play this strategy; it can play that 1/2 of 

the sorties fly CAS each day and 1/2 fly ABA each day, which 

results in 940 aircraft flying each mission on day 2 and 883.6 

aircraft flying each mission on day 3, and so on.  Finally, it 

should be noted that the set of allowable strategies can be 

different for each side but this set must be the same for all of 

the periods played.  For example. Red cannot be required to fly 

all ABA missions during period one simply by inputting only that 

strategy only for period one. 
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B.   LIMITATIONS OF THE ASSESSMENT PROCEDURE 

The limitations of the assessment procedure are as follows: 

(1) Notional Types of Aircraft (Capabilities).  OPTSA 

plays only four types of aircraft which are differentiated 

according to allowable mission assignments.  It cannot play 

different types of aircraft which have the same allowable mission 

assignments, but have much different air-to-air or air-to- 

ground capabilities.  For example, both an F-4 and an P-104 can 

be considered as GP aircraft, yet they have much different capa- 

bilities.  Using average parameters to reflect an average capa- 

bility as OPTSA requires (rather than using parameters that 

reflect the capabilities of each type of aircraft) might lead 

to significantly different results in all aspects of air combat. 

Using average parameters also makes preparing and changing 

inputs difficult and makes priority sheltering of a particular 

type of aircraft generally impossible.  Playing various types of 

aircraft according to capabilities within the four basic mission 

assignment types currently played by OPTSA would require only 

changing the assessment procedure.  (The optimization posture 

would only have to be changed if each different type of aircraft 

could be assigned differently, as will be discussed below.) 

However, adding new types of aircraft within the four mission 

assignment types might significantly Increase the computer 

running time of OPTSA. 

(2) SAMs.  OPTSA plays ground-to-air attrition only by an 

input attrition rate.  SAMs and AAA could be played directly. 

Various numbers of different types of SAMs and AAA could be 

played at various locations (barriers, area defenses, point 

defenses, etc.) and SAMs could either kill or suppress attacking 

aircraft. 

(3) Constant Air Firepower.  Each unit of air firepower 

delivered (no matter on which day it is delivered or how much 
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was delivered that day) counts the same In contributing towards 

the MOEs which use air firepower delivered.  However, the 

second unit of firepower delivered on a day might not be worth 

as much as the first unit on that day, and the third not worth 

as much as the second, and so on.  Similarly, firepower delivered 

on day 2 may not be worth as much as the same amount delivered on 

day 1, and firepower delivered on day 3 might not be worth as much 

as the same amount delivered on day 2, and so on.  OPTSA cannot 

play this discounting of firepower.  Also, OPTSA must play fixed 

length wars where the length of the war must be determined in 

advance of the combat.  A major advantage of being able to dis- 

count firepower by day is that it allows random length wars to be 

played where only the probability distribution of the length of 

the war need be known In advance.  For example, suppose the value 

of a unit of firepower deliverd on day t is assumed to be V^ if 

the war has not ended before day t.  Let 

P  = the probability that the length of the war is > t. 
u 

Values for P  would have to be found, but since P^ >_ 'P^^-^, 

reasonable guesses could be made.  And guessing values for P^ 

is generally better, and always at least as good, than being 

able to play only fixed length wars.  (Playing a 30-day war, for 

example, is equivalent to assuming that P^ = 1 for t £ 30 and 

P  = 0 for t > 30.)  If OPTSA could discount firepower, then the 

value of a unit of firepower on day t could be input as P^V^ 

instead of as some constant, and by this device OPTSA could play 

random length wars Instead of only being able to play fixed 

length wars. 

(4)  Air Munitions.  Different air munitions can have 

different firepower values (and can result in different P^'s 

for ABA missions) and might be available in different quantities. 

And the rate of consumption of air munitions could depend on the 

numbers and types of missions flown on each day.  OPTSA cannot 



address this problem and must assume that the same notional 

loads of air munitions are carried throughout the war. 

(5) Shelters Independent of FEBA Position.  Aircraft can 

move back and forth as the FEBA moves back and forth (If there 

are sufficiently many suitable airbases).  But shelters are 

essentially fixed in one position on the ground and can become 

too close or too far from the FEBA to be useful.  OPTSA does not 

play that shelters remain In a fixed position as the FEBA moves. 

As OPTSA stands now, this limitation is not significant if there 

Is relatively heavy air-to-air attrition.  However, if several 

locations for airbases and corresponding considerations were 

played, then this limitation could be significant. 

(6) Force Ratios.  OPTSA uses the standard form of the 

force ratio for calculating losses to ground units.  This ratio 

is of the form "air plus ground" divided by "air plus ground". 

While this form is standard, it is not symmetric in terms of 

shooters and targets, and this form can lead to certain anom- 

alies.  A nonstandard force ratio, as described in Reference [1], 

should at least be available as an option. , 

(7) Changeable Parameters.  OPTSA can only change two 

parameters (sortie rates and fraction of day on ground) during 

the course of the war, and these parameters can only be changed 

once during a war.  A more general structure would be to allow 

all parameters to be changed as often as desired.      | 

C.   LIMITATIONS WHICH AFFECT BOTH PROCEDURES 

Those limitations which affect both procedures are as 

follows: ■ ■ 

(1)  One Notional Location for Airbases.  OPTSA cannot play 

that some airbases are closer to the FEBA (and hence closer to 

the enemy's airbases) than others, and this is perhaps the most 
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critical limitation of OPTSA.  If an aircraft can fly an ABA 

mission from a particular alrbase, then It can move farther to 

the rear and fly a CAS mission with the same amount of fuel, 

and aircraft based farther to the rear are less vulnerable to 

enemy ABA missions for two reasons.  First, enemy ABA aircraft 

have to fly over more friendly territory to reach rearward air- 

bases and so are more vulnerable to detection and kill by more 

friendly Interceptors, SAMs, and AAA.  Second, and more Impor- 

tantly, to reach rearward alrbases enemy aircraft have to carry 

more fuel and less payload, and so are not as effective when 

they reach the rearward alrbases (If they can carry enough fuel 

to reach them at all).  Thus, the effectiveness of aircraft Is 

Inherently related to the basing of the aircraft.  The commander 

must choose where his aircraft are to be based and, for ABA 

missions, how deep into enemy territory his aircraft are to fly. 

These are Interrelated decisions.  OPTSA cannot optimize the 

basing of aircraft or how far into enemy territory these aircraft 

are to fly.  Even for a fixed basing of aircraft, OPTSA cannot 

calculate an optimal allocation which considers significant 

differences in distances between aircraft and the FEBA (if the 

particular basing has these differences).  To consider this 

limitation would require changing both the game-solving and the 

assessment procedures. 

(2)  Deterministic Attrition Processes.  One strength of 

OPTSA is the way it handles mixed (stochastic) strategies.  But 

this strength is somewhat mitigated by the fact that it requires 

deterministic attrition equations.  Stochastic considerations 

are significant when there is a possibility of a shortage of 

aircraft,^ and one reason for optimizing over aircraft missions 

is because there is a possible shortage.  (For example, if a 

commander could replace all his losses on a one-for-one basis. 

^rfeny runs of OPTSA have shown that at least one side soon has a severe 
shortage of aircraft due to heavy attrition. 
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but could, not bring In new aircraft except as replacements, then 

all aircraft would probably always be sent on CAS for ground- 

related MOEs.)  Thus, a significant reason for optimizing air- 

craft assignments implies a need to play stochastic attrition 

processes.  A stochastic model might also handle other important 

stochastic phenomena, such as weather.  The limitation that OPTSA 

must play deterministic attrition processes may be second in 

significance only to its not being able to play several locations 

for airbases on each side. ,  ': 

(3) Notional Types of Aircraft (Allocations).  In the 

previous section, the limitation of only being able to play 

different capabilities for four notional types of aircraft was 

discussed.  If OPTSA were able to play more than four types of 

aircraft in the assessment procedure, then the next step would 

be to allocate different types of aircraft to missions according 

to their individual capabilities.  For example, if OPTSA could 

play ten types of aircraft, then the allocation of each of these 

ten types could be optimized.  The significant difference in 

capabilities among the various (actual) types of aircraft makes 

this an Important limitation of OPTSA. 

(4) Missions for Aircraft.  OPTSA can only play three 

missions for aircraft (CAS, ABA, and INT).  There are several 

other possible missions that are related to the air war.  INT 

can be divided into Battlefield Defense and Airbase Defense. 

There are SAM suppression missions and there are escort missions 

for all of the attacking missions.  Further, it may be optimal 

under some circumstances for aircraft to stay on the ground and 

not fly any missions on some days, or to take off on warning of 

an attack in order not to be caught on the ground (even if this 

means that the aircraft cannot fly other missions that day). 

Since CAS is a surrogate for all air attacks on ground units, 

not being able to play Interdiction missions is not a significant 

limitation of OPTSA. 
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(5)  Attacking Shelters Versus Attacking Nonsheltered 

Aircraft.  OPTSA allows two options to determine whether an ABA 

attacker shoots at a shelter or at a nonsheltered aircraft (and 

perhaps a better method to determine this decision can be found). 

But whatever method Is used, both the defender and the attacker 

have an allocation problem to solve.  The defender must decide 

how many aircraft he should shelter and how many he should leave 

out In the open (OPTSA now assumes that he shelters as many of 

the aircraft as he can).  The attacker must decide whether to 

allocate (In some sense) his aircraft against shelters or against 

nonsheltered aircraft.  These are the only allocation decisions 

In OPTSA that the model does not optimize.  Since they are not 

optimized. It Is theoretically possible, for example, for Blue 

to do worse with more shelters than he does with slightly fewer 

shelters (all else being equal).  This type of anomaly can be 

fixed for all possible cases only by optimizing these allocation 

decisions. 
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Appendix 

DOCUMENTATION OF ASSESSMENT PROCEDURE      1,^ 

This appendix gives an algebraic description of the 

assessment routine.  The purpose of the routine is—with a 

given combination of allocations of GP aircraft to missions 

(for each side, over all the periods)—to fight a campaign 

to compute a measure of effectiveness that becomes a payoff 

entry in a final-stage game corresponding to the allocations. 

There are three different kinds of inputs to the assessment 

procedure.  First, there is the fixed set of effectiveness 

parameters (including firepower per division; sortie rates; 

firepower per CAS sortie; probabilities, by aircraft type, 

of detection and kill by attack and defense aircraft in the 

INT interaction; proportions of aircraft destroyed by enemy 

SAMs; probability of detection and kill of sheltered and non- 

sheltered aircraft in the ABA interaction; FEBA advance as a 

function of force ratio; and divisional casualties as a 

function of force ratio).  These are input once at the begin- 

ning of the program.  Second, there are the time-varying 

numbers of Blue and Red divisions, by type; aircraft, by type; 

and shelters.  At the beginning of the program, the number of 

days in the war and streams of Blue and Red divisions and air- 

craft additions   occurring on each day of the war (Including 
day 1) are specified.  However, the inventories   of divisions, 

aircraft, and shelters computed at the beginning of each day 

are what actually affect the results.  Finally, of course, are 

the allocations of Blue and Red GP aircraft.  The game-solving 
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routine determines the choice of allocation from lists of 

feasible allocations input at the beginning of the program.^ 

The assessment routine is set up as a large DO loop (indexed 

by day of the war) and is performed period by period; that is,, 

the lower and upper limits of the day index are the first and 

last days of some period in the war, determined by the game- 

solving routine.  Each day the assessment proceeds as follows: 

First, the starting division inventory is computed as the start- 

ing division Inventory of the previous day, minus destruction 

the previous day, plus new divisions arriving for the present 

day.  The ground firepower is computed from the division Inven-. 

tory and ground-firepower scores (the sum of divisions times 

firepower scores).  Starting aircraft inventory is computed in 

the same way as starting division inventory.  Aircraft alloca- 

tions to missions are computed from fractional allocations times 

inventories for the GP aircraft and from total allocations for 

the SP aircraft.  Total aircraft assigned to missions are com- 

puted.  The air-to-air assessment is then performed with the 

aircraft assigned to INT encountering the aircraft assigned to 

CAS and ABA.  An input proportion of the attackers remaining 

after the alr-to-alr assessment are destroyed by enemy SAMs. 

The aircraft still remaining are computed for use in the air- 

to-ground (ABA) computation.  Inventories of sheltered and non-r 

sheltered aircraft (by type) are established, and the number of 

aircraft and shelters destroyed are computed by using one of 

four possible attack modes (the choice of attack mode for each 

side Is input).  The total number of aircraft killed (by type) 

is computed as the number of aircraft of each type destroyed 

air-to-ground (sheltered plus nonsheltered), plus the aircraft 

of each type destroyed in the alr-to-alr interaction, plus the 

aircraft of each type destroyed by enemy SAMs.  The air firepower 

^If the fractional allocations sum to less than 1, the GP aircraft not assigned 
to missions are computed. They are still vulnerable to enemy ABA. 
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is computed in the same way as ground firepower (sum of success- 

ful CAS sorties times firepower scores). 

The measures of effectiveness and ground-forces destruction 

are then computed by using the flrepowers and Inventories.  Total 

firepower is computed as ground-plus-air firepower.  FEBA posi- 

tion is computed as the previous FEBA position plus or minus the 

movement.  Division destruction is computed as division inventory 

times percent casualties, assessed on the basis of force ratio. 

Finally, cumulative total firepower and air firepower are computed 

To save computer-storage space, the two new MOEs are computed in 

the game-solving (rather than the assessment) routine. 

A. DEFINITIONS OF INPUT QUANTITIES^ 

B. 

R. 

D„ , = Blue type-Jl„ divisions on day t. 
Jlgt B 

Dp . = Red type-£p divisions on day t. 
Jtj^t 

X  = Blue type-m aircraft on day t (m=l - GP aircraft; 
"^^   m=2 - CAS aircraft; m=3 - ABA aircraft; m=4 - INT 

aircraft). 

y , = Red type-n aircraft on day t (n=l - GP aircraft; 
^^       n=2 - CAS aircraft; n=3 - ABA aircraft; n=4 - INT 

aircraft). 

Q^  =  desired number of Blue QRA aircraft. 
B 

Q" = desired number of Red QRA aircraft. 
R 
■p 

ST.   =  number of Blue aircraft shelters at beginning of 
day t. 

S^  =  number of Red aircraft shelters at beginning of 
day t. . I ' 

f   = firepower per Blue type-£p, division. B 
I B 

B 

R f.     =  firepower per  Red  type-Jl„  division, 
^R ^ 

^In order of use in the assessment routine. 
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p 
C  = firepower per Blue CAS sortie performed by type-m 

aircraft. 

C  = firepower per Red CAS sortie performed by type-n 
^       aircraft. 

■to 

t  = day on which Blue sortie rates are to change. 

p 
t  = day on which Red sortie rates are to change. 

The variables for the alr-to-alr war are indexed by 1, J, and k 

(as appropriate):  1 stands for type of aircraft (1 - GP; 2 - 

SP—^the kind Is specified by variable j); j stands for mission 

(1 - CAS; 2 - ABA; 3 - INT); and k stands for type and mission 

of an attack aircraft (1 - GP-CAS; 2 - GP-ABA; 3 - SP-CAS; , 

4 - SP-ABA). 

R 1 B ^  = Blue sortie rates before day t , by aircraft type 

and mission (Blue surge sortie rates). 

R ? B 5  = Blue sortie rates on or after day t^,   by aircraft 

type and mission (Blue sustained sortie rates). 

E,...=  Red sortie rates before t^,   by aircraft type and 

mission (Red surge sortie rates). 

R ? R E..   =  Red sortie rates on or after day t^, by aircraft 

type and mission (Red sustained sortie rates). 

A  = number of identical notional air-to-air combat 
regions on Blue side of FEBA. 

.';-  Ap, = number of identical notional alr-to-alr combat 
regions on Red side of FEBA. 

•p 
a  = proportion of engaged Blue attack aircraft that 

■^   keep their ordnance and fly on to their missions, 
if second method of alr-to-alr attrition is used 
(J=l or 2—i.e., attack missions [CAS or ABA] only) 

■p 
a . = proportion of engaged Red attack aircraft that 

•^   keep their ordnance and fly on to their missions. 

There are 64 air-to-air effectiveness parameters (i.e., 32 

detection and 32 kill) over type of Red and Blue Interceptor 
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(1=1,2) and attacker (k=l,2,3,4).  The detection parameters are 

probabilities that a partiaulaT  aircraft of a given type detects 

(and engages) a particular enemy aircraft of a given type.  The 

kill parameters give probabilities of kill, given detection. 

They are inputs to a binomial attrition equation (Ref. [10]). 
I  . 

RT 
d.. = probability that Blue type-i interceptor detects Ik 

BA 

Red type-k attacker (Blue side of FEBA) 

d, . = probability that. Blue type-k attacker detects Red 
^^       type-i:interceptor (Red side of FEBA). 

RT 
d., = probability that Red type-1 Interceptor detects 

Blue type-k attacker (Red side of FEBA). 

RA 
d, . = probability that Red type-k attacker detects Blue 

type-i interceptor (Blue side of FEBA). 

BT 
K., = probability (given detection) that Blue type-i •Ik interceptor kills Red type-k attacker (Blue side 

of FEBA). 

RA 
K, . = probability (given detection) that Blue type-k -kl 

RI 
^ik 

attacker kills Red type-i interceptor (Red side 
of FEBA). 

= probability (given detection) that Red type-i 
interceptor kills Blue type-k attacker (Red side 
of FEBA). 

R A 
K, . = probability (given detection) that Red type-k -ki attacker kills Blue type-i Interceptor (Blue 

side of FEBA). 

If the second method of air-to-air attrition is used, the 

parameters for attackers detecting enemy Interceptors are not 

needed—as an attacker shoots at an interceptor only if the 

attacker is engaged. 

a.. = proportion of Red attack aircraft, by type and 
"^^   attack mission (j=l - CAS; j = 2 - ABA) destroyed 

by Blue SAMs. 
■p 
a.. = proportion of Blue attack aircraft, by type and 

^"^   attack mission (j=l - CAS; J=2 - ABA) destroyed 
by Red SAMs. 
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R 1 ({)  = fraction of Blue non-QRA aircraft on the alrbase (the 
R 

remainder are out flying missions) before day t>.. 

B 2 ^ . = fraction of Blue non-QRA aircraft on the alrba^se on 
R 

or after day t^. - 

■   R 1 
4)  = fraction of Red non-QRA aircraft on the alrbase 

R 
before day  t^.. 

R 2 
(})  = fraction of Red non-QRA aircraft on the alrbase 

R 
on or after day t^.. 

Yr, = fraction of Blue shelters hit that are destroyed. 

Yo = fraction of Red shelters hit that are destroyed. 

■Q 
77= number of passes per Blue ABA sortie, by type of 
^  plane (1 - GP; 2 - SP-ABA). 

R 
IT. = number of passes per Red ABA sortie, by type of 
^  plane (1 - GP; 2 - SP-ABA). 

B^ = number of Blue identical notional alrbases. 

Bo = number of Red identical notional alrbases. 
■    n 

M„ = number of Blue parking areas for aircraft (non- ; 
sheltered aircraft only for Red attack modes 1 
and 2; sheltered and nonsheltered aircraft for 
Red attack mode 3), per notional alrbase. 

M„ = number of Red parking areas for aircraft (non- 
,,    sheltered aircraft only for Blue attack modes 1 

and 2; sheltered and nonsheltered aircraft for 
Blue attack mode 3), per notional alrbase. 

For the point-fire attack modes (1, 2, and 3), there are l6 

Input effectiveness parameters. 

R S 
d; = probability that Blue type-1 attack pass (1 - GP; 

^       2 - SP) detects Red shelter, 

N [, = probability that Blue type-; 
"""   2 - SP) detects Red nonsheltered aircraft 

R N 
d, = probability that Blue type-i attack pass (1 - GP; 

^k^ = probability that Blue type-1 attack pass (1 - GP; 
^       2 - SP) hits Red shelter. 
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B N 
k. = probability that Blue type-i attack pass (1 - GP; 
1 2 - SP) kills Red nonsheltered aircraft 

R S d. = probability that Red type-i attack pass (1 - GP; 
1 2 - SP) detects Blue shelter, 

R N 
d. = probability that Red type-i attack pass (1 - GP; ^i 2 - SP) detects Blue nonsheltered aircraft 

R S k. = probability that Red type-i attack pass (1 - GP: 
1 2 - SP) hits Blue shelter, 

R N k. = probability that Red type-i attack pass (1 - GP; 
"^   2 - SP) kills Blue nonsheltered aircraft. 

If the area fire-attack mode (mode 4 explained in Section 

D.6 of Chapter III, above) is to be used, then inputs are needed 

for the appropriate airbases; if both sides use mode 4, 20 in- 

puts are required.  A "B" on a variable refers to events taking 

place at the Blue airbases (including the effectiveness of Red 

munitions on Blue planes).  (The notation for Red is analogous.) 

cOp, = overlap factor (between 0 and 1 for Red 
munitions at Blue airbase. 

bp = area (in square meters) of a typical airbase 
on which Blue aircraft might be located. 

B 1 B 2 
a , a n'  n 

= lethal area covered by one pass of a Red GP- 
or SP-ABA aircraft (resp.) dropping "antl- 
nonsheltered" munitions against nonsheltered 
aircraft. 

RIB? a , a  = lethal area covered by one pass of a Red GP- 
^s' "s or SP-ABA aircraft (resp.) dropping "anti- 

shelter" munitions against shelters. 

k  , k  = a reduction factor applied to  a  or a  (resp.) 
ns'  ns n     n 

when "antl-nonsheltered" munitions are dropped 
on shelters. 

R 1  B 2 
^c.^)   l^cv. ~ ^^  expansion (or reduction) factor applied to 

r> "I      R ? 
a or a  (resp.) when "anti-shelter" munitions 
s     s    ^ 

•^R 

are dropped on nonsheltered aircraft. 

= overlap factor (between 0 and 1) for Blue 
munitions at Red airbase. 

I 
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b^ = area of a typical alrbase on which Red aircraft 
might be located. 

R 1 R ? 
a^^, a^ = lethal area covered by one pass of a Blue GP- 

or SP-ABA aircraft (resp.) dropping "antl- 
nonsheltered" munitions against nonsheltered 
aircraft. 

R 1 R P 
a^, a^ = lethal area covered by one pass of Blue GP- 

or SP-ABA aircraft (resp.) dropping "anti- 
shelter" munitions against shelters. 

RilR, 2       ^        .        ^ R1R2, 
^y.a' ^v.o "^ ^ reduction factor applied to  a  or a  (resp.) lib   ns n     n 

when "antl-nonsheltered" munitions are dropped 
on shelters. 

R 1  R P 
^c,n' ^c-v. ^ ^^  expansion (or reduction) factor applied to 

R 1     R 2 
a^ and  a^ (resp.) when "anti-shelter" muni- 

tlons are dropped on nonsheltered aircraft. 

F(*) = function for FEBA advance per subperlod as a 
function of the ratio of Blue firepower to 

. ' Red firepower. ■, .    »  ■ 
■p 

g (•) = function for percent Blue division destruction 
per subperlod as a function of the ratio of 
Blue firepower to Red firepower, 

■p 

g (•) = function for percent Red division destruction 
per subperlod as a function of the ratio of 
Blue firepower to Red firepower. 

3.,,3p.,3^^ = fraction of Blue GP aircraft assigned to CAS, 
iz       ^g^^ j^^ ^^ ^^y ^^ ^ g   < 1.0 (usually equal), 

■   113 
1 , • 

P-,^5pp^3Pn^ = fraction of Red GP aircraft assigned to CAS, 
iz       ABA, INT on day t, I   p., < 1.0 (usually equal), 

•   XT/ 
1 

If measure of effectiveness 4 (surviving aircraft) or 5 

(generalized air measure. Including penalty for QRA deficiency) 

Is to be used, the following weights must be Input: 

R P 
w  = weight for cumulative Blue air firepower delivered. 

R S 
w. = weights for Blue SP surviving aircraft, mission j 
J   (j=l to 3). 
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■p  Q 
w. = for MOE 4:  weight for surviving Blue GP aircraft 

-^       (1=1 only); for MOE 5:  1 = 1, weight for GP air- 
craft surviving minus desired QRA and, 1=2, 
weight for desired QRA minus actual QRA. 

R 0 
w  = weight for cumulative Red air firepower delivered, 

R S w. = weights for Red SP surviving aircraft, mission j 
^   (J=l to 3). ..   :• 

R 0 w. = for MOE 4:  weight for surviving Red GP aircraft 
■^   (1 = 1 only); for MOE 5:  1 = 1, weight for GP air- 

craft surviving minus desired QRA and 1=2, 
weight for desired QRA minus actual QRA. 

B.   PROCEDURE AND DEFINITIONS OF COMPUTED QUANTITIES 

The following 24-step procedure Is performed for each day: 

(1) Compute starting division Inventory for day t as starting 
division Inventory for day t-1, minus division destruction 
during day t-1, plus divisions added for day t: 

BT^     B_       B_d     . B-^a f^^  „ T T n 
^Z^t=    °il^t-l - ^l^t-l-"    ^i^t for. all ^g; 

. ""^Zt   -   ""DO t-1 - X t-1 '  X t        ^°^ ^11 ^R ' 
n        n. n n 

where the superscript d denotes destruction and the super- 
script a denotes addition.  (The number of kinds of Blue and 
Red divisions are input. ) ' ■ .. 

(2) Compute ground firepower for day t as the sum of divisions 
times their firepower scores: , 

«t = ^  ^°£ t ^ ^'l     ' I ^   l^        ^B^     ^B 
■ ■ n 

,R   r  R^      R, K = I      D   X -f 
^   l^        ^Vi ^R 

(3) Compute shelter inventory for day t as starting shelter 
inventory of previous day minus shelters destroyed on pre- 
vious day: 
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„R _ cjR     AR   ■ 

(4) Compute starting aircraft Inventory for subperlod t as 
starting aircraft Inventory for subperlod t-1, minus air- 
craft destruction during subperlod t-1 plus aircraft added 
for subperlod t: 

/mt = ^m,t-l - ^m,t-l ^  <t  ■■    _^°^ .^^^ "^ i 

^nt = ^n^t-l - yn,t-l "^ ^nt       ^°^ ^^^ " ' 

where the superscript d denotes destruction and the super- 
script a denotes addition.  (The number of kinds of Blue and 
Red aircraft are Input.  However, most of the assessment 
routine assumes that all four kinds of aircraft are played, 
and the number of aircraft Is automatically set to zero for 
all kinds of aircraft not specifically input.) 

(5) QRA. 

Some of the GP  aircraft are set aside as QRA: 

%  = 

%  = 

Qg,    if Qg < x^^ ; 

^It'   ^^ ^B > x^^ ; 

%'    ^'  «R ^ ^it 

^it'   ^^ «R ^ ^it 

i 

The remaining GP aircraft are assignable to missions 

(6a) Compute aircraft assignments for day t: 

^11 ^ ^It^^lt'^^B^ (Blue GP aircraft to CAS) 

^12 "^ ^2t^^lt~'^B^ (Blue GP aircraft to ABA) 

^13 "^ ^3t^^lt~'°^B^ (Blue GP aircraft to INT) 

■^21 ^  ■^2t  ^Blue CAS aircraft to CAS) 
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X        =   X (Blue  ABA   aircraft   to   ABA) 
d. c. jt 

x^ = X|^   (Blue INT aircraft to INT) 

■^ll ^ '^lt'^-^lt~'^R^  ^^^^ ^^ aircraft to CAS) 

^  "  ■  -^12 "" '^2t^'^lt~'^R^  ^■^^^ ^^ aircraft to ABA) 

^13 " '^3t^^lt"^R^  ^^^^ ^^ aircraft to INT) 

■^21 "^ ■^2t  ^^^^ "^^^ aircraft to CAS) 

Ypp = yo+-  (Red ABA aircraft to ABA) 

^23 "" ^4t  ^^^^ -^^^ aircraft to INT) 

(6b) Compute GP aircraft not flying missions: 

^1 = ^^It-^B)^!-.^. ^-t^ 
J=l 

\  = (^t-^R^^l-.I, Pjt 
J 

(7) Sorties. 

(a) Find appropriate sortie rate: 

B, 

R 

B^l B^   "^ 

?.-.• = 
^ij- 

if  t 
^    ^^5 

IJ B;,2 B^ 
C .   .   ) if  t >             t;. 

IJ -                     C 

R   1 if  t <«t. 
^.. = 

IJ ' 5 
ij R   2 If t >''t. 

^IJ ' -                     5 

1=1,2 (aircraft type 
GP or SP) ; 

j=l,2,3 (mission) 

At this point in the computer program, the fraction of 
aircraft on base is also computed—to be used in Steps 
(13) and (15): \     ' 
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B*   - (j)   = if t   <  ^t^ • > 

If  t   >  ^t^ > 

4> = 
if t   <  \^ i 

If t   >  ^tj, 

(b) Compute number of sorties, by aircraft type and mission; 

Uj^, =  Cj_. X X    (Blue sorties) 

R 
v^  = K^.   X y^   (Red sorties) 

(c) Compute number of aircraft not flying (If sortie rate 
Is less than one), by aircraft type and mission: 

NP '^10 ^^-%J^'   ^^\j < "■■''' 

0.0, otherwise, 

y 
NP y^jd-^C^j), 

0.0, 

If ^?^j < 1.0 ; 

otherwise 

For example. If the sortie rate for Red SP-ABA aircraft 
Is 0.8, 20 percent of these aircraft stay on the ground; 

NP 
thus, V22 = 0.8y22 and y^^  =   (1.0-0.8)y22 = 0.2y22- 

(d) Compute total sorties, used as shooters and targets In 
attrition equations:     ;. 

U. = u  + u,2 + ^21 "*" ^22  (^1^^ attack [CAS and ABA] 
sorties) 

U-j- = u -. + U20  (Blue Intercept sorties) 

V. = V   + V „ + v„, + v_„  (Red attack [CAS and ABA] 
^    ^^    ^^    ^^    ^"^       sorties) 

V-j- = V _ + Vp^  (Red Intercept sorties) 
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(8) Average detection parameters for air-to-air interaction 
(average Is taken over target type and Is, therefore, a 
function of shooter type): 

d,, V.^ . 
ik 1 0 

(Probability that a Blue 
type-1 INT detects a Red 
attacker target) 

BA 
^k = Ji '\l^3)/^I (Probability that a Blue 

type-k attacker detects 
a Red Interceptor) 

RI d. = 
1 

RA 

^k = 

RI 
I    ^iR"i-r)/°A .k=l 

2 RA 
.1 ""^Ri"i3ri 1=1 

(Probability that a Red 
type-1 INT detects a Blue 
attacker target)   j 

(Probability that a Red 
type-k attacker detects 
a Blue Interceptor) 

The Index k for kind of attacker Is computed as j' + 2(1^-1), 
where 1' Is the type of attack aircraft (1 - GP; 2 - SP)— 
not to be confused with the type of Interceptor 1—and j^=1 

or 2 (I.e., attack mission CAS or ABA) BAT-    -.  RAx d, and  d, are k       k 
not computed if the second method of attrition is used, 

(9) Attrition from the first method of air-to-air interaction. 

If 
AA•       AA• 

Quantities  u.. and  v^. ^. (1=1,2; j=l,2,3) are found, 

the second method of attrition is to be used, perform Step 
(10) Instead of this step. 

On the Blue side of the FEBA, Blue Interceptors oppose 
Red attackers.  A two-sided heterogeneous binominal equation 
Is used: 

AA' 
V , 
1 J 

V. ^ . 
1 J 

2 
n 

1=1 
1- 

BI 
BI- ,^\/^B^ 

d^] 
) 

(U.3/A3), 

(Red attackers killed, where 1"=1,2; j"=l,2; (attack missions- 
CAS and ABA) only; and the index k is defined as j'+2(i"-l), 
the kind of attacker, as before.) 
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AA' u 
13 

= u \i - n 
■^\   k=l (■ 1 - Tvl^li-ti- \^ ) 

.(v^.j./Ag) 

(Blue Interceptors killed:  1=1 - GP; 2 - SP) 

Note that In these equations the Inside product Is 
taken over shooter  type, whether attacker or Interceptor. 
On the other side of the FEBA, Red Interceptors oppose 
Blue attackers. 

AA' 
U^.j. 

= u,^.^11 - n 
J \   i=iL 

(v^3/Aj,). 

(Blue attackers killed:  i'=l,2; J'=l,2; k=J'+2(l'-l)) 

AA' 
13 

= v._\i - n 

BA 

1 - "kl 
(V,/A^ ( 

>-i.-».-i"'"«' 
) 

,(u^.j./Aj^), 

(Red Interceptors killed:  1=1,2) 

(10) Attrition from the second method of air-to-air interaction 

The rationale for this method is explained In Chapter III, 
Section B (above).  The attritions to attackers are as In 
Step (9) above, but attritions to interceptors are found 
differently. 

On the Blue side of the PEBA, the number of Red 
attackers killed air-to-air, by type and mission, is 
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AA 
V . ^ . ^ 
1 J 

= V....11 - n 
1 J \  1=1 

1 - 

(u.^/Ag) 

\ 
1=1,2; j=l,2 . 

The number of Red attackers engaged, by type and 
mission, is , . 

V 
1 J 

1=1 
1 - (V^)t-^- Bl- . ^\/^B d.] 

) 

(U.3/A3) 

Essentially, the kill parameters have been replaced by 1.0 

to determine engagements.  (l- a....] of the engaged attack 

sorties jettison their ordnance and fight back at the Blue 
intercept sorties that have engaged them.  Of the Blue inter- 
cept sorties that have engaged Red attack sorties, the 
proportion 

B 

are GP; the proportion 

^13 ^1 

^13^^1 ^ ^23^'^2 

B 
P 

B3- 
^23 ^2 

2      B-  ,    B:T 
^13 ^1 ^ ^23 ^2 

are SP-INT. 

The number of Blue type-i INT sorties killed is 
therefore 

AA-       I   V /^i R     X e  \RA  B .  u   =   1    I   1(1- a ...)v . .1 K       p. 
^^  1^=1 J^=l\    ^  ^       ^ ^  f     - ki  ^ 

1=1,2 , 
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Wh6 ere (l- a^...]v^.^  = number of Red shooters; 

RA 
K, . = kill parameter of Red shooters 

B 

against type-1 targets; and 

'Pj^ = proportion of type-1 targets. 

On the Red side of the FEBA, 

AA' 
U^.j. 

2 
n 

1=1 

RI 

1 - "(U 
;i^(.-u--.,3'vs)) 

A' "R 

(Vjj/Aj,), 

(l'=l,2; J"=l,2 [Blue CAS,ABA]; 
k = kind of Blue attacker =j'+2(l'-l) — 

Blue attackers killed) 

u i^r 

1 - 
(U 

1     A  r,     RI-./V^)V 
A'    R' 

(Blue attackers engaged) 

(v^3/A„), 

and 

AA' 
^13 

2   2 

J 

r    Y f-, B     ^ e   BA   R 
i^Il .^IJ^- ^l^j-^l'j-  ^kl Pi i=l,2 , 

(Red Interceptors killed) 

RT RT 
R        ^13 ^1 H R        ^23 ^2 where p  =  ^^— ^ ; and p  =  ^^- ^ 

V   d  + V   d V   d  + V   d 
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(11) Subtract out losses from air-to-air Interaction, 

(a) If the first method of attrition is used. 

u 

V 

new 
ij 

new 

old u. . AA' u. . 

V, 
^old AA' 

V. . 

1=1,2; j=l,3 (Blue sorties) 

1=1,2; j=l,3 (Red sorties) 

(b) If the second method of attrition is used, first 
define 

u^B ^ ^^_B^^^^^^e _AA^^ ^^  (Blue engaged attackers that 
"^•^       -^^ "^ '^'^    jettisoned their ordnance 

and survived to fly back 
i to Blue airbase) 

1=1,2; j=l,2  (attack missions [CAS and ABA] only; 
PB ■") variables u.-, exist but are set to 

zero); 

and 

FB   /, R   V. e  AA-  N v.. = (1- a,.)(v..-  V,.) v^°=0; 1-1,2 

(Red engaged attackers that fly back to Red 
airbase). 

Then compute the number of sorties that can go on to 
deliver ordnance. 

u 

v 

new 
iJ 
new 

u, old 
AA.      FB 

u.. - u.. 

Ij 
old 

= V . . 
AA FB 

V. . - V. . 

1=1,2; J=l,3  (Blue) 

1=1,2; j=l,3  (Red) 

(c) To convert a number of sorties to a number of aircraft, 
divide the number of sorties by the maximum of 1.0 and 
the appropriate sortie rate.  With sortie rates less 
than 1.0, it is extremely Important that the operations 
be performed exactly as follows: , 

^^x. . = ■'^^u  /max{1.0,^5.-}  (Blue aircraft killed) 

AA-   = ^^<r. ./max{1.0,^K. .}     (Red aircraft killed) 
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x^j = u^./max{1.0, ?^.}  (Blue aircraft that fly back) 

y.. = V /rnaxd.O, 5..}  (Red aircraft that fly back) Ij   'IJ' 'ij 

(d) Compute the number of Blue and Red aircraft remaining- 
to perform their mission. 

new ^  old NF PB  AA. 
""iJ ■ ""iJ ~ ""ij - ''ij -  ^IJ 

,new   old NF FB  AA • 
^IJ = ^IJ - ^IJ - ^IJ -   ^IJ 

1=1,2; J=l,3 

1=1,2; J=l,3 

(12) Ground-to-air interaction. 

-j   First, compute sorties; then, aircraft lost to enemy SAMs: 

(a) GA u R 
Ij 

a.,u.. 
iJ Ij 

GA' 
Vj 

B 

1=1,2; 

..    -^^. •^. ^i  J=l,2 (attack missions only) 

(b) Convert sorties to aircraft 

a,.V., 
Ij ij 

GA' 

GA 

'Ij 

y 
ij 

u^./max{1.0, ^  } 

v^^/max{1.0,''c^j} 

n 

Ij' 

(c) Subtract out losses: 

^■J   CAS and ABA) 
new   old   GA •    ,_.,      , .       j ^   ^     ^ ■ u..  = u   -  u^^  (Blue sorties remaining to perform 

new old   GA • /-o ^    ^.^       ^   ^        ^ v., = V..  -  v.. (Red sorties remaining to perform 
•^ ^"^       ^-J   CAS and ABA) 

new old   GA' /„,    ,    _,     ^ ^  ^ X.. = X..  -   X.. (Blue aircraft remaining) 
IJ ij       ij 

new „old   GA- r-n  ^     A          ^^            ^ 4  \ 
y^ ^ "■^-11  ~   ^1 i (Red aircraft remaining) 

(13) ABA--Blue airbases. 

There are an Input number Bg of identical  notional airbases 
The total population of aircraft computed at the start are 
assumed to be uniformly spread among the airbases. 
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The indexing Is done by kind  of Blue aircraft m 
(m-1 - GP; 2 - SP-CAS; 3 - SP-ABA; 4 - SP-INT).  First, 
populations of sheltered and nonsheltered aircraft (by 
kind), the number of unoccupied shelters, and the number 
of Red attackers (GP- and SP-ABA) are established. 

(a) Compute Initial Blue aircraft Inventory by kind (not 
counting QRA): 

B 
1 

B_. = X 

B 

3 
I 

3=1  L 

,  NF ^  FB 
X . . + X . . + X . . 
IJ   IJ   IJ 

+ X- 

^  NF    _^  FB 
m  "2,m-l    2,m-l    2,m-l 

B^ + B^ + B^ + B^ 

(GP) 

m=2,3,4 (SP-CAS,SP-ABA, 
SP-INT) 

(b) Shelter Blue QRA aircraft 

Q 

% 

NS 
B 

^B ' 
,B 
^t ' 

'B 

Q ^B    _    QB 
^t   ~ ^t " ^'B 

B 

otherwise. 

(Blue shelters available for non-QRA 
aircraft) 

(c) Shelter remaining aircraft proportionally, by kind 

kind.  Reduce by the fraction  cj) of aircraft on 
base: 

B '^ 
B"^ = mln{B',S,^} x „. 
m t     B 

NS B 
m    >- m  m^    ^ 

,new ,old 
B m 

B' 
n 

► m=l,2,3,4 
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Add in QRA to GP aircraft population: 

Bf -Bf .Qf . 

Find total Inventories: 

m=l "^ 

^■^ ^ B^s = I BNS ; 
m=l ^     ' ■ 

B = B^ + B^S . 

Therefore, there are a number of sheltered aircraft, 
a number of nonsheltered aircraft, and a number of 
shelters (hence, a number of unoccupied shelters). 

(d) Compute the number of Red attackers; 

R 
R^ = V ^ T\       (GP attack passes) 

R 
Rp  = Vpp  TTp     (SP attack passes) 

R  =  R^  + R2 

(Recall that v.„ = Red ABA sorties surviving Inter- 

ceptors and SAMs.) 

(e) Compute the average Red effectiveness parameters for 
the polnt-flre equations: 

^d^ = (R^^d^ + R/df)/R 

%2 = (.R^k^ + R/k§}/R 

R^N   f^  R^N . „ R,N> ^d^ = (R/d^; + R^^d^j/R 

¥,= [R,\; + R/k^)/R 
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(14) Attrition to Blue from ABA. 

First, the desired Red attack mode Is input.  In modes 2 
* and 4, Red must make a decision on the proportion of its 

attack passes to use against shelters, in mode 2, or to 
load with anti-shelter munitions, in mode 4; the remaining 
passes attack nonsheltered aircraft, or load with antl- 
nonsheltered munitions.  In modes 1 and 3, a prior alloca- 
tion of passes is not made.  In all cases, the Inputs to 

the attrition equations are B , B , and S, (the number 

of Blue sheltered and nonsheltered aircraft 

and R=R.+R 

and R. R, 1'  2' 
the number of GP, SP, and total Red attack 

'12 
passes), plus the point- or area-fire effectiveness parame- 

ters.  The outputs are B , B , and S, (the numbers of Blue 

sheltered aircraft, nonsheltered aircraft, and shelters 
destroyed on day t). ■^ 

(a) Red Attack Mode 1 

f = 1 - 1 - 
R^S k 

First, let 

il-[l-^d^]^^'^ 

R/8 

B^S/B 
B 

B 

The number of Blue shelters hit   Is 

,B- = fS B 

R S 
Of the S, shelters, B  are occupied; hence the number 

of Blue aircraft killed is 

^     - 3 "^ ^t 
^t 

= fB' 

since,   if  a   shelter   is   hit,   an  aircraft   in  It   Is 
destroyed. 

^In Sections D.5 and D.6 of Chapter III (above), the various attack modes 
and corresponding attrition equations are described in some detail, but 
in the following order: the basic mode described first is mode 2, then 
the point-fire modes 1 and 3~which differ only in that, in mode 3, both 
sheltered and nonsheltered aircraft are located on parking areas while, 
in mode 1, only nonsheltered aircraft are located on parking areas—are 
described.    Mode 4 (area fire) is described last. 
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The number of Blue shelters destroyed Is an input 
fraction of the number of hit shelters: 

The number of nonsheltered aircraft killed is 

R/B 

= B^^ll- 1 - 
Rr-N k 

mlnCMg.B^^/Bg) ( ) 

B> 

(b) Red Attack Mode 2.  Let q be the proportion of Red 
attack passes^ that attack Blue shelters; and let 
1 - q be the proportion that attack nonsheltered 
aircraft.^.  Given q, let 

f = 1 - 
TD C    I S  /R 

1  -  ^,i^-|l-[l-^d^]  ^    ^ 

^V\ (' ) 

qR/B B 

B^ = fB^ 

;B „^B 
B^^t 

NS B 

= ^'hi- 1 - 
R^N 

min(Mg,B''''/B3) (■ 
1-[1-%N] 

gNS/Bg 

) 

(l-q)R/B B< 

• S   • NS The q that maximizes B  + B  is found as follows 

^GP and SP passes are divided in the same proportion. 

^This is the notation used in the conputer program. In Section D.5 of 
Chapter III of this volume (above), q is the proportion attacking non- 
sheltered aircraft. 
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Let 

^N = 1 - 
 k    

min(Mg,B^^/Bg) ('■"- 

Rj^^tB^'^/Bg) 

) 

^N " ^N 

(R/Bg) 

K, =[' - 7^h--^'"''n 
(R/83) 

K = 
B^ X ^K^) 

SnK 
'0       ^MK^  + 0nK^ 

q = 

0, if QQ < 0 ; 

CLQ, If QQ e [0,-1] ; 

1, If QQ > i . 

(c) Red Attack Mode 3.  Let B' = B^^ + S^, the total number 
of tarsets: 

BVB 

g = 1 - 1 - 
%N X B^^ + V X S^ 

B' 

B 

f = 1 -['- 
Rr^ k 

R/B 

mln(Mg,BVBg)j 

B 

Then B^ = fB^; S^ = Yg^S^; and 

B^S = BNS|I 

'. R/B 
r     ^i^s   - 

■ I ^ ■ mlnCMg.BVBg) 

B' 
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(d) Red Attack Mode 4 requires the area-fire Inputs for the 
alrbase.  First, average over shooter type: 

■ ^a^ = (R^ X ^a.^ + R^ x ^^^^^^ . 

\  = (R, ^ \^ + R^ ^ ^a^)/R   ; n    1    n    2    n    ' 

^k   = (R, X \^^ + R„ X V   )/R ; ns    1    ns   2    ns    ' 

^k  = (R, X V  + R„ X \^   )/R . sn    1    sn   2    sn 

Let q be the proportion of Red attack passes that load 
with munitions against shelters,^ and let 

.   qR  + qR 

^„   (l-q)R. + (l-q)Rp 
R^^ =  ^--g   = (l-q)R/Bg . 

Define quantities^ 

0.0, If (l-a)g)\ybg < e ; . 

^x  = ll.O, if (l-a)p)\^/b„ > 1 ; ^n  K  ' '   B' "n' B 

(1-0)1-.) a /b^j     otherwise. 

0.0, If (l-a.3)\/k3^/bg < 0 ; 

(l-a)g)\^\gybg,    otherwise. 

X 

^Thls notation Is conpatlble with the ccnputer program. In Chapter III 
(above), q Is the proportion loading with munitions against nonsheltered 
aircraft. GP and SP passes are divided In the same proportion. 

^The letter "x" used here Is not to be confused with the prior use of 
X as Blue aircraft levels. 
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0.0, 

B 
X3  =   (1.0, 

,B (l-a)g)   a/bg. 

0.0. 

B X       =   (1.0, ns        '       * 

If (l-Wg)\^/bg < 0 ; 

If (l-a3g)\g/bg > 1 ; 

otherwise. 

If   (I-B) Ws/^B  <   °   ' 

if   (l-B^Ws^^B   '   1   ' 

B       n     ns     B ' otherwise 

Let   f  =  mln  1.0, 

/oNS„B     „B,       ,„S  B     X 
(JJTJCR     X  a  X  k    +R  X  a   ) B n       ns s 

B 

/ RNS pS     V 

Then B^  =  fB^;   S? =  YT^^S^;   and 

BNS   =  B^S n:ln 1.0, 
a)^(R     xa+Rxaxk     ) B n s       sn 

^B 

• S        • NS 
The  q that  maximizes  B    +  B       Is  found using Newton's 
method;^   however,   before  Newton's  method   Is  used,   checks 
are used  to determine whether  the  optimal  q  Is,   as   Is 
often the  case,   0  or  1. ,,   ■ 

^Actually, the function maximized Is the sum of the second terms within the 
braces.    It seems that these terms are practically always less than 1.0; 
hence, the maximization performed Is nearly equivalent to maximizing 
gS ^ -NS. 

If, after 100 Iterations of Newton's method, successive estimates are 
further than an Input epsllon apart, the program stops (see Section D of 
Ch., I In Vol.  2). 
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(15) ABA--Red Airbases. 

There are B^ Identical notional Red airbases.  The only 

difference from the procedure for Blue Is that there Is an 
option for no Red SP-ABA aircraft to be sheltered.  This 
results in the following procedure for setting up popula- 
tions of aircraft—Step (13), above. 

R 

K = y 

NF,..FB 
ij 

NP PB 
n 2,n-l "*■ ^2,n-l + y 2,n-l n=2 to 4 ; 

R" = 

^1 ■*■ ^2 ^ ^3 "^ R4, 

R^ + R2 + R4. 

^R 

«R' 

S^ 
^t' 

If Red SP-ABA aircraft are 
to be sheltered; 

otherwise; 

If Qj, - S^ ; 

otherwise; 

«f = «R - «R; and 

^s 
^t   " ^t " % • ^ 

Shelter remaining Red non-SP-ABA aircraft proportionally, 

by kind.  Reduce by fraction  cj) of aircraft on base: 

R^ = min{R%S'"} x ^ R^ 
R 

n R- n=l to 4 

If Red SP-ABA are not to be sheltered, R^ = 0 

n=l to 4 
RNS =   (R -R2)^(), 
n     n  n^ * 

„new   cOld  „ 
R^   = R^   X ^d, 

n      ^ n 

4-4^4' 
Rf = Rf. Qf ; 

R   =   I   K > 
n=l 
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n=l  ^ 

R = R2 + R^S 

Define Blue attack passes 

B 
;■     ■ ^1 = ^12 ^ ^1 ' 

ID 

B  = u   X -n^   ; 

■  B = B^ + B^ ; 

and average Blue effectiveness parameters for point-fire 
equations: 

^d^ = (B^ X ^d^ + B^ X ^d^)/B ; 

^k^ = (B^ X \l  + B^ X \^)/B ; 

■ •.  %N ^ (3^ ^ B^N ^ 3^ ^ B^N)/g . 

^kN ^ (3^ , B^N , 3^ ^ B^^N)/3 _    ' 

(l6) Attrition equations for Red are exactly  the same, mutatia 
mutandis,   as for Blue—using the input Blue attack mode. 

(a) Blue Attack Mode 1. ' 

f = 1 - 1 - 

S?/B, 

(l-[l-%S]^  ""Xl-^^") 
R^^/B,.N'''^ 

R' 
t 

S 

;R 

= fS^  (Red shelters hit) 

= fR^  (Red sheltered aircraft killed) ' 
■p 

= Yp^S   (Red shelters destroyed) 
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RNS = RNS-I _ 1 = 
Bj^N 

mln(Mp^,R^^/Bj^) 
/l  -   fl-^^ 

RNS/B 

B/B 

R 

) 

Rv 

(Red nonsheltered aircraft destroyed) 

(b) Blue Attack Mode 2.  Let q be the proportion of Blue attack 
passes that attack Red shelters: 

f = 1 - 

R^ = fR^ 

;R 

^ki 

h  = ^R^^t ; 

^t^^R' 

qB/8 R 

f-P^l'  0 

RNS ,  RHS,,. 1 - 
Br-N k 

mln(M^,RN^/Bj^) ('-[ 1-%^ 
RNS/8 

(l-q)B/8, 

R 

) 

• c   .MS 
The q that maximizes R + R  Is found In a manner exactly 
analogous to the method In Step (l4b), mutatis  mutandis. 

(c) Blue Attack Mode 3. Let R" = R^^ + S^, the total number of 
targets: .-  - . ... ^ ^ 

RVB, 

g = 1 - 
^ _ %N X RNS -, BJS ^ 3R 

R^ 

R 

f = 1 - 1 - 
Br-S kg 

mln(M^,R'/8^) 

,B/8 

R- R' 

R 

R" = fR" ; 

^t   ^R^^t ' 
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B/B 

RNS = RNSJI. 
Br-N 

^ ~ mln(M„,RVB„) 'R = R' 

R^ 

(d) Blue Attack Mode 4.  As In Step (l4d), first average 
over shooter type: 

R     /T-.    Rl.T^ R2\ /T,        ' a  = (B, X  a  + B„ X a )/B ; 
S      1      S            d. S             :   . 

\  = (B, X \^ + B„ X \^)/B ; 
n    1    n   2    n   ' 

\  = (B, X V     +  B„ x^k^ )/B ; ns    1    ns   2   ns    ' 

\n'  (B, X V^.B^x\2^)/B 

Let q be the proportion of Blue attack passes that load 

with munitions against shelters; and let B  = ^ ^ - "^ ^ 

qB     . ^NS   (l-q)B  T. „.       , ., . = ^  , and B  = -^—p^  .  Define quantities 
^R ^R ., 

^R 

0.0, 

R X  =  1.0 , n   ' 
R 

R n'^R 

if (1-Wj^) X \ybp < 0 ; 

if (1-cOp) X \ /b„ > 1 ; n      n  n 

(1-Wp) X  a /bp ,    otherwise; 

ro.o, 

R 
X, sn =< 

1.0 

if (l-coj^) X ^a^ 

X ^k /bp < 0 ; 
sn R 

if (1-UR) X \g 

^ ""^sn/^R ^ 1 ' 

(l-cDp) X  a  X  k /bp.,   otherwise; 
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5^ft 

R 
X  = 
s 

0.0, 

1.0. 

R (l-oop^) X  a^/bj^. 

R 
If (1-cOp) X  a^/b„ < 0 ; ^R s' "R 

R If (l-ojj^) X a^/h^  > 1 ; 

otherwise; 

ro.o. 

R 
=< X   =/ 1.0 ns 

V.(l-Wj^) X  a^ X  k^„/b, ns  R 

if (l-ui^)   X  a 
R     n 

X  \ ■  /h^   <   0 ; 
ns  R ' 

if (l-wj^) X \^ 

X ^k /b„ > 1 ; ns R ' 

otherwise; 

Let f = mln^l.O, 

/rjNS R  R,  _^^S R  N 
a>^(B X a^x k^^+B x a^) 

^R 

-. (1-[1 - ^3]^  [1 - \]" ) 

Then R^ = fR^; S^ = Yj^fS^; and 

,„NS R      ,^S R   R,   , 
.TO   MO     i a)„(B  X  a^+B x a x k  ) 

ANS   ONS ^ ._   S-,    „   R  n     s   sn R   = R   X mm^l.Oj  b R 

. a-u-\/^i-\„]^'>( 

The appropriate q Is found by using Newton's method. 

(17) Total aircraft destroyed for the day. 

The quantities for sheltered and nonsheltered aircraft 
killed on the alrbase are apportioned by kind of aircraft 
Then aircraft killed In the alr-to-alr and ground-to-air 
Interactions are added. 
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(a) Blue aircraft destroyed: 

x^^ = B^ X B^/B^ + B^S    NS/ NS 
mt        m m 

d    d' ,  V  ^AA. ^ GA.  V 
^It = ^It \l.   ^     ^IJ -^   ^IJ^ 

d ^  d'   AA.      , GA, 
Vt   Vt     ^2,m-l    ^2,m-l 

m=l to 4 ; 

(GP) ; 

m=2 to 4 
(SP-CAS,SP-ABA, 
SP-INT) . 

(b) Red aircraft destroyed; 

y^; = RS X R^/R^ + RNS X RN^R^S 
n 

^It = ^It ■" 
J=l 

n 

,AA.   , GA.  V 

d 
^nt 

d' , AA. 
^nt ""   y2,n-l 

_ ,-  4. --.       , GA. y^^ - y^^ +  y, ^_. +  y 2,n-l 

n=l to 4 ; 

(GP) 

n=2 to 4 
(SP-CAS,SP-ABA, 
SP-INT) . 

(l8) Compute air firepower for day t as the sum of successful 
CAS sorties times firepower score per sortie: 

(19) Compute total firepower for subperlod t as the sum of 
ground-plus-air firepower: 

T^ = G^ + A^ • 
^t   ^t   \ ' 

^t = ^t ^ ^t 

(20a) PEBA advance for day: 

nB. 

A FEBA = 

If T^ > T^ ; 

If T^ < T^ , 
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(20b) FEBA position at end of day:  ' 

FEBA  = FEBA^_^ + A FEBA . 

(21) Division destruction. 

If all Blue casualties are replaced, 

^  ^°? t " °'°       all £g . ■ 

If no Blue casualties are replaced, 

B^d  _ B P-B/^  ■.  all il 

B       B \i^/ 

If all Red casualties are replaced. 

^D'J , = 0.0     ■ all ilp 

If no Red casualties are replaced 

(22) Cofnpute cumulative total firepower by day t 

(23) Compute cumulative air firepower by day t 

(24) The additional MOEs are not computed unless specifically 
called for-^and then only for one  input day t (usually 
the last day of the war). 
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(a) M0E4—surviving aircraft, weighted by type: 
4 

MOE = ^W?(x, -x^J + I     V ,(x  -x^J 
1  It  It   ^to       m-1 mt mt m=2 

R Q/    d N    V  R,TS  /    d s 

(b) M0E5—comprehensive air measure—is explained In 
Chapter III, Section F.2 (above). 

MOE = VcA^ + ^wJ(X;^^-x^t-Qg)"^ 

4 
B,,S B,,Q, 

z.p       T^-l     mt  mt      2  it  it  B 

R,,C^.R  R,.Q,     d  „.x + 
- ^ C^ - ^l^^lt-^lt-^R^ 

R,rS 
- J, X-l(^„t-^nt) - X^ ̂ it-yit-^'" ■ 

The symbol (z)  means the positive part of expression 

similarly. 

(z)' 

(z)~ = 

z, if z >^ 0 ; 

0, if z < 0 . 

0, if z > 0 ; 

z, if z < 0 . 
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