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PREFACE 

AN AGGREGATED MODEL OF A TWO-SIDED NUCLEAR WAR 

John Donelson III 

In this paper we consider the problem of modeling a two- 

sided nuclear war.  In such a war, the first striker (denoted 

by A) is faced with the problem of allocating his weapons 

against the value targets and weapon targets of the second 

striker (denoted by B).  There are a number of Important vari- 

ables that would in reality affect A's weapon allocation against 

B (e.g., the yield, reliability, and accuracy of Afs warheads; 

the hardness of B's targets; and the total number of weapons on 

both sides); but one of the most important—which affects A's 

first-strike allocation—is the capability of B to retaliate 

after absorbing a first strike by A.  Thus, A must somehow take 

account of B's retaliatory capability, and the manner in which 

A does so in the decision-making process is very important.  If 

B's strategic weapons are somewhat vulnerable to a first strike 

by A, then, by attacking B's weapons in a massive way, A may be 

able to minimize the retaliatory damage that B can inflict.  On 

the other hand, either if A's warheads are of low accuracy or 

if B's strategic weapon targets are relatively invulnerable, 

then A may be unable to destroy very many of B's strategic 

weapons.  In this case, A would almost certainly be faced with 

a massive retaliatory strike by B. 

The model that we shall develop in this paper is quite 

simple.  All value targets are aggregated into a single value 

target.  B's weapon targets are treated as a single class of 

weapon targets for A to strike against.  The weapon allocations 

determined by the model are also aggregated.  The model 



allocates a block of A's warheads against Bfs value targets and 

another block of weapons against Bfs weapon-launchers.  However, 

we are able to consider a sufficient number of real-world effects 

to make the model interesting and important. 

There are several advantages of a two-sided model of nuclear 

war, as opposed to those models that treat one-sided strikes. 

In reality, A would have to consider the variables that affect 

Bfs ability to retaliate successfully.  One-sided models of a 

nuclear strike do not correctly take account of this interaction. 

In a two-sided model, however, the interactions between the 

variables affecting the strategic capabilities of both sides 

are built into the model.  Another advantage of a two-sided 

model is that it does not require any assignment of intrinsic 

value to strategic weapons.  Afs allocation of warheads to destroy 

B's strategic weapons is determined by the ability of B's weapons 

to inflict retaliatory damage—not by their intrinsic value 

relative to other value targets. 

In Chapter I (below), we derive the basic model and develop 

the appropriate measures of effectiveness.  These derivations 

are done under the assumption that the variables interact in a 

deterministic manner. 

In reality, there is randomness in the number of B weapons 

that survive A's first strike.  There is also additional random- 

ness introduced by the reliability and accuracy of the weapons 

on both sides.  In Chapter II, we consider some of these effects 

and perform the calculations for some special cases.  We also 

consider other technical issues in Chapter II. 

In Chapter III, we derive a damage law for the economy of 

the United States using data derived from a real-world data base. 

The procedure used in Chapter III is reasonable and simple, 

and it should be applicable to many data bases. 

vi 



Finally, In Chapter IV, we consider several numerical 

examples—including a hypothetical nuclear war between the 

United States and the Soviet Union.  These examples illustrate 

the use of the model and also show the sensitivity of the allo- 

cations and damage levels to various parameters that occur in 

the model. 

vii 





Chapter I 

DERIVATION OF THE DETERMINISTIC MODEL 

We begin with the assumption that nation A has n nuclear 

warheads and decides to launch a first strike against nation B. 

B has m weapon-launchers, each of which is capable of deliver- 

ing y warheads.  B's weapon-launchers constitute a possible 

class of weapon targets for A.  Let v denote the value of A's 

economy and let v, denote the value of B!s economy.  (In this 

paper, v and vK are value added.)  We assume that B
fs economy a     u 

constitutes a single value target for A having value v..  Simi- 

larly, Afs economy constitutes a single aggregated target having 

value v , against which B retaliates, a 

In this chapter, we assume that all of A's warheads have 

the same yield, which we shall not specify at this time.  We 

also assume that A's warheads are perfectly reliable, so that 

each warhead allocated by A functions correctly and detonates 

on its target.  (We make similar assumptions for B's strategic 

weapons.) 

A.   CONDITIONAL DAMAGE RATE AND DERIVATION OF THE DAMAGE LAW 

Let B(x) denote the fraction of Bfs economy surviving 

after a first strike by A with x (<_  n) warheads.  The assumption 
that Afs warheads have reliability 1.0 implies that each war- 

head allocated by A detonates on or near its target.  Since 

B(x) is decreasing for x >^ 0, its first derivative—denoted 

by B"(x)—is negative.  We define the conditional  damage  rate 

to Bfs economy—denoted by b(x)—to be the negative logarithmic 

derivative of B(x).  That is, 



b(x) = -^lnB(x) = -|$i . (1) 

Thus, b(x)dx represents the fraction of B's remaining economy 

that would be destroyed by dx additional warheads, given that 

x warheads have already detonated against B!s economy. Since 

B(x) is a fraction, we have 0 <_ B(x) <_ 1 for x > 0. Also, we 

have the initial condition B(0) = 1, since there is no damage 

to B!s economy if x = 0. Integrating both sides of Equation 

(1) over the interval [0,x] and using the initial condition, 

we deduce that 

B(x) = expf-lb(u)du) (2) Y-fb(u)du\ 

for x > 0. 

Let Dß(x) denote the damage to B's economy caused by 

detonating x warheads.  Then, for x >_ 0, we have 

DB(x) = vb[l-B'(x)] ■ vjl - exp/-fb(u)dun  .     (3) 

For example, when b(u) =  b (b > 0) for u _> 0, we see that 

B(x) = e"bx and that Dß(x) = vb(l-e"
bx). 

Let A(y) denote the fraction of ATs economy surviving after 

a retaliatory attack by B with y warheads.  If we let a(y) denote 

the conditional damage rate for A's economy, then (as before) 

we have 

A(y) = expf-fa(u)du) CO 

for y _> 0.  Let D»(y) denote the damage inflicted on A's economy 

in a nuclear attack using y warheads.  Then 

DA(y) = va[l-A(y)] = va 1 - expf-j a(u)du ) 

for y > 0. 

(5) 



 _ 

B.   RETALIATORY DAMAGE TO A 

In a two-sided exchange, if A is able to destroy a sizable 

portion of B's strategic arsenal, the retaliatory damage to A 

may be limited to some extent.  The most important variable 

affecting BTs ability to retaliate against A is the size of 

Bfs surviving arsenal.  In reality, there are a number of 

physical variables that affect Afs ability to damage or destroy 

B's strategic arsenal.  Though we consider some of these effects 

in Section 3, we limit our consideration in this section to 

finding an expression that determines the number of B-weapon- 

launchers surviving as a function of the size of A's attack on 

B's strategic arsenal. 

Let C(w) denote the fraction of B's weapon-launchers sur- 

viving after an attack by w (<  n) warheads.  If c(w) is the 

conditional damage rate for ATs warheads attacking Bfs weapon- 

launchers, then we have 
w 

C(w) = expl 

for w > 0. 

)f-fc(u)duj 

If B has m weapon-launchers initially, then the number of 

B-weapon-launchers surviving an attack by w warheads—denoted 

by N(w)—is given by 

N(w) = mC(w) = m exp [-jc(u)duj . (6) 

If each B-weapon-launcher is capable of delivering y warheads, 

then B is able to retaliate with a total of 

(-fc(u)duj uN(w) = urn exp (-1c(u)du) (7) 

warheads. 



In order to compute the maximum retaliatory damage that B 

can inflict on A, we note that D.(y) is increasing in y.  Hence, 

B can maximize retaliatory damage by allocating all of its sur- 

viving weapons against Afs economy.  Thus, when A allocates w 

weapons to counterforce operations against B's strategic arsenal, 

the maximum retaliatory damage that B can inflict on A is given 

by the expression 

DA(uN(w)j = v ll - expl  j a(u)du. (8) 

0 

where N(w) is given by equation (6). 

C.   MEASURES OF EFFECTIVENESS 

Since A plans to strike first, its leaders must decide how 

to allocate their n warheads against B's value targets and 

weapon targets. Let x be the number of warheads allocated by A 

against B's value targets; w, the number of warheads allocated 

by A against B?s weapon-launchers. Then x + w < n, since A has 

only n warheads. By striking at Bfs strategic weapons, A hopes 

to reduce Bfs capacity to retaliate. 

The choice of A's allocation (x,w) will depend upon the 

measure of effectiveness (MOE) that is used.  We consider two 

MOEs for evaluating ATs allocation.  Since the exchange is 

two-sided (in the sense that A attacks first and B then retaliates), 

the problem may be stated as a max-min problem in which the first 

striker (A) uses his resources to maximize the MOE and the second 

striker (B) uses his surviving weapons to minimize the MOE. 

The first MOE that we examine is the difference between 

the damage to B and the retaliatory damage to A.  For this MOE, 

the two-sided exchange can be stated as a max-min problem of 

the form 

max   min  pR(x) - DA(y) 
x,w>0 y<yN(w)L a J 
x+w<n 



Since DA(y) is increasing in y, the inner problem is solved by 

setting y = yN(w).  Hence, the max-min problem reduces to the 

following one-sided optimization problem: 

max  DB(x) - DA|yN(w)j  . (9) max 
x 
x+w<n 

Let D(x,w) denote the function to be maximized in (9).  Then, 

by substituting Equations (3) and (5) into (9), we get 

D(x,w) - DB(x) - DAfuN(w)J  = vb 1 - expf-fb(u)duj 

uN(w) [/ uN(w)    v-i 

1 - expf- J a(u)du ) , (10) 

0 
where N(w) is given by Equation (6).  It is easy to show that 

D(x,w) is increasing in both x and w, since N(w) is decreasing 

in w.  This fact implies that the maximum in (9) occurs at a 

point (x,w) that satisfies the constraint x + w = n.  Therefore, 

in order to solve (9), it suffices to find x in the interval 

[0,n], which maximizes D(x,n-x).  Making use of Equation (10), 

the optimization problem in (9) reduces to the following one- 

dimensional optimization problem: 

r       /x      \ 1      r       ^N(n-x)   v -i 
maximize:   v,    1  -  exp(-lb(u)du)       -  v   11  -  expf-       a(u)du ) 
xe[0,n]       bL V J0 ' J aL \    { 7 J 

Thus, the two-sided max-min problem is reduced to a one- 

dimensional optimization problem in which A seeks to maximize 

the damage to B minus the maximum  retaliatory damage to A. 

The second MOE that we consider is the ratio of the damage 

to B to the retaliatory damage to A.  In this case, the attack 

and retaliation model can be stated as the following max-min 

problem: 

(11) 



max   min  D
R^
X
^ 

x,w>0 y<yN(w)   ,   v * 
x+w<n Avy; 

Again, since D.(y) is increasing in y, the inner problem is 

solved by setting y = yN(w); and the max-min problem reduces to 

the following optimization problem: 

max   DR(X) 

Thus, the MOE—denoted in this case b> R(x,w)—is given by 

DQ(X)        r     / x    \ir      /PN(w)  ."1-1 
R(x'w) = DA(yN(w)J 

= Väl1 " exp(-Jb(u)du jj[l - exp(-Ja(u)du)J  . (13) 

0 0 

Since R(x,w) is increasing in both x and w, the maximum in (12) 

occurs at a point (x,w) that satisfies x + w = n.  Hence, in 

order to solve (12), it suffices to find x in the interval [0,n], 

which maximizes 

R(x) = R(x,n-x) = 
DB(x) 

= V. V b a 

DA(yN(n-x)J 

x      -| r-       pN(n-x)  -.-1 
1 1 - expl-fb(u)du)  1 - exp/-J a(u)duj   .   (lU) 

0 0 

If x* maximizes R(x) in the interval [0,n], then x* and w* = n-x* 

solves the problem stated in (12). 

In finding the maximums of Equations (11) and (14) in the 

interval 0 <_ x _< n, we are interested in nonnegative integer 

solutions since the actual allocations must be nonnegative 

integers.  In practice, these maximums are easy to find—either 

by using NewtonTs method and then rounding to integer answers 

(this must be done with care) or by performing a search over 

integer values of x between 0 and n. 



Examples:  (a) Constant Damage Rates.   If we take b(u)=b, 

a(u)=a, and C(U)EC for u > 0, where b > 0, a > 0, and c > 0, then 

DB(x) = vb(l-e~
bx) ; 

DA(y) = va(l-e~
ax) ; and 

N(w)  = me~cw . 

In this case, the damage difference is given by 

D(x,w) = vb[!-
e"bX] - va[! " exp(-apme-cw)] ; 

and the damage ratio is given by 

R(x,w) = vb
v;1[l-e"bx] [l - exp(-apme-cw)J  . 

(b) Variable Damage Rates.  Suppose that b(u) = b3uß~\ 

where b > 0 and 3 > 0.  Substituting this expression into 

Equation (3), we deduce that 

DB(x) = vb[l - exp(-bx3)] (15) 

for x >_ 0. 

The case 0 < ß < 1 is very interesting; it corresponds to 

a decreasing damage rate, which is probably more realistic than 

a constant damage rate—since the first warheads targeted against 

B's economy are likely to be targeted against large industrial 

complexes that have high productive capability.  After many war- 

heads have been detonated against B's value targets, any addi- 

tional warheads will attack either targets that have low values 

or targets that have already been destroyed.  As a result, the 

fraction of B's remaining economy that is destroyed by these 

additional warheads will be lower than it was for the first few 

warheads that were detonated. 



If a(u) = aaua  , where a > 0 and a > 0, then substitution 

into Equation (5) yields 

DA(y) = va[l - exp(-ay
a)] 

for y > 0.  Combining this result with Equation (15), we find 

that the damage difference in this case has the form 

D(x,w) = vb[l - exp(-bxß)J - va[l - exp (-a[pN(w) ]a) J . 

If N(w) = me~~cw(c(u)=c, c>0), then this expression reduces to 

D(x,w) - vb[l - exp(-bx6)] - va[l - exp(-ap%ae-acw)] . 

D.   REMARKS 

We conclude this section with two remarks concerning the 

appropriateness of the MOEs given by Equations (10) and (13). 

First, it is obvious from the latter that the ratio v, v~  is 
b a 

just a multiplicative constant.  Thus, the relative sizes of 

v and v, do not affect the choice of the optimal allocation ab 
if the maximum damage ratio criterion of Equation (12) is used 

to determine A's allocation.  If v  is factored from the damage- 

difference expression given by Equation (10), we get 

x 
D(x,w)   =  vb     l -  expf-  fb(u)dujJ 

JIK(W) 

"  VaVb"L|1  "  exp(~ I   a(u)duJJ 
ö 

From this expression, it is obvious that the ratio v v" will 

affect the location of the optimum in Problem (11). 

Second, the significance of the damage-difference criterion 

used in Expressions (10) and (11) needs some further interpreta- 

tion.  Let A~ = v - v, be the difference between the value 0   a   b 



added of A and B before a nuclear war.  Let 

A1 = A1(x,w) = VaA(yN(w)) - vbB(x) (16) 

be the difference between the surviving value added of A and B 

after a nuclear war in which A chooses the allocation (x,w) 

and B retaliates with yN(w) warheads.  A(y) is given by Equa- 

tion (4) and B(x) is given by Equation (2).  If Ax < AQ, then 

evidently A is the "loser"—since the difference in value added 

after the war has gone in the opposite direction from what A 

wanted.  Comparing Equations (10) and (16), we deduce with the 

help of Equations (3) and (5) that 

D(x,w) = A1(x,w) - AQ . 

Thus, the difference in damage to B and maximum retaliatory 

damage to A equals the change in the difference in value added 

between A and B brought about by the nuclear war.  With this 

interpretation in mind, it appears that the damage-difference 

criterion of Equation (10) is the better of the two measures 

given by Equations (10) and (13). 



Chapter II 

THE EFFECTS OF RANDOMNESS 

A realistic treatment of a two-sided nuclear war must 

account for various random effects.  The outcomes of many 

real-world activities are probabilistic rather than determin- 

istic.  A nuclear war is no exception.  In fact, there are 

numerous sources of uncertainty for each side in a two-sided 

nuclear war.  For discussion purposes, these sources of uncer- 

tainty can be divided into two types.  The first type includes 

effects that are due to various physical characteristics of the 

weapon systems and targets.  These random effects include the 

yield, reliability, and accuracy of the weapon systems; the 

hardness of targets; and the cumulative effects of these uncer- 

tainties on the level of damage to both weapon and value targets. 

These sources of randomness are amenable to mathematical treat- 

ment if certain reasonable assumptions are made; and we consider 

these random effects in some detail (below).  Less amenable to 

mathematical analysis, the second type of uncertainty includes 

uncertain knowledge about the location of targets (in particular, 

movable weapon targets such as submarines and bombers) and the 

imperfect information that each side has about the other side's 

intentions and capabilities. 

In this chapter, we consider the effects of the reliability 

of each side's warheads on the level of damage for both the 

first and second striker.  We also analyze the effects of 

weapon yield, warhead accuracy, and weapon-target hardness on 

the number of B's weapon-launchers that survive Afs first strike. 

Our objective is to develop correct expressions for the expected 

10 



first-strike damage to B and the expected maximum retaliatory 

damage to A.  We shall also examine the variance of the damage 

difference and the effect of substituting expected values into 

the damage-difference function in place of the exact expected 

damage difference. 

A.   DERIVATION OF THE EXPECTED FIRST-STRIKE DAMAGE TO B 

Suppose that A allocates x warheads against B's value system, 

where 0 <_  x <_  n.  Due to weapon system malfunctions only X 

warheads will actually detonate and damage BTs economy.  Obviously, 

we have 0 < X <_ x.     Assume that Afs warheads have reliability 
r , where 0 < r  < 1.  If we further assume that A?s warheads a* a 
function independently of one another once they have been 

allocated, then we get the following binomial distribution for 

V 
P(Xx=k) =MrJ(l-ra)

x-k      k=0,l,2,...,x .      (17) 
&> 

The actual damage to B's economy is thus 

DB(V = vb[1'B(Xx)] • 

This quantity is a random variable, since X  is a random variable. 

Using (17) we find that the expected damage to B's economy 

when A allocates x warheads, denoted by Eß(x), is given by the 

formula 

EB(x) = E [DB(V] " jQ
DB<k)P(Vk) 

-^hLB^ (18) 

For example, if B(x) = e~   (corresponding to a constant 

damage rate b(u)=b, b>0), we find on substitution into (18) and 
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using the binomial theorem that 

EB(x) = vb[l-(rae"
b
+l-ra)

X] . (19) 

B.   DERIVATION OF THE PROBABILITY OF A SINGLE A-WARHEAD KILLING 
A SINGLE B-WEAPON-LAUNCHER 

Suppose that Bfs weapon-launchers have hardness H (measured 

in psi).  In addition, assume that Afs warheads have the same 

yield Y—measured in megatons—and the same CEP (circular error 

probable)—measured in nautical miles.  Our objective is to 

derive an expression for the single-shot kill probability—denoted 

by p—for a single A-warhead killing a single B-weapon-launcher 

in terms of the parameters H, Y, and CEP.  This derivation may 

be found in a recent article by K. Tsipis though there are mis- 

takes in his derivation.1  The derivation given here corrects 

these mistakes.  According to Tsipis, the overpressure Ap (in 

psi) created at a distance r nautical miles from the point of 

detonation of a nuclear warhead with an explosive yield of Y 

megatons is given by the empirical formula 

Ap = 14.7 ^3 + 12.8^~\  . (20) 

If we let a = /^j  and divide by 12.8, then Equation (20) can be 

rewritten as a second-order polynomial in a: 

AP     T  iir 2 

1278 = 1'15a  + a " 

Solving for a and retaining the positive root we get 

-1 + (l+Q.36Ap)^ . (21) 
a        2.3 

1 "The Calculus of Nuclear Counterforce," Technology Review  (Oct.-Nov. 197*0, 
pp. 3^-47. Equation (9a) on page 37 of Tsipis1 article is incorrect. The 

(-(äp)H- correct equation is P = exP -VTJEP/ ln2l* TsiPis omits the factor ln2 here 

and in other equations in the article. 

12 



If Ap is large compared to 1 (say Ap > 100 psi), then we may 

neglect the 1 inside the radical in Equation (21) and get 

S(M = "0.^35 + 0.26(Ap)ls 

Squaring both sides of this equation and solving for r^, we 

obtain 

r3 =  X  
Ap(0.19Ap 1  - 0.23Ap"^ + 0.068) 

= Apf(Ap) ■ (22) 

where f(Ap) = O.^Ap"1 - 0.23AP"*5 + 0.068.  Finally, taking 

the cube root of both sides of Equation (22), we get 

(Ap)*(f(Ap))* 

Ya 

This equation gives the distance from the point of detonation 

at which the overpressure is Ap psi.  Thus, if B's weapon- 

launchers have hardness H, then 

r ■ -r-t r (23) 
S   H*(f(H))* 

is the distance (in nautical miles) from the point of detona- 

tion, at which Ap = H.  Suppose now that a single A-warhead 

detonates at a distance r from a B-weapon-launcher.  If r < r , s 
then Ap > H; and the B-weapon-launcher will be destroyed.  If 

r > r_ , then Ap < H, and the B-weapon-launcher will survive, s 

In order to compute the probability of an A-warhead killing 

a B-weapon-launcher, we need to know the probability that a 

single A-warhead detonates at a distance less than r  from its s 
aimpoint (the B-weapon-launcher in this case).  In order to make 

this computation, we shall assume that the actual point of 

detonation (x,y) for A's warheads has a bivariate normal dis- 

tribution centered about the aimpoint (0,0).  We assume further 

13 



that the x and y coordinates are independent.  Under these 

assumptions, the distribution of the point of detonation has 

the density 

f(x,y) = -i-* exp[- ^p(x2+y2)] , 
2ircT    L 2od J 

where a is the standard deviation of the x and y coordinates. 

Let p denote the probability that a single detonating A- 

warhead destroys a single B-weapon-launcher.  Then 

p  =  Prob(r<r   )   = f  / f(u,v) dudv 

2TT  
rs 

= j / ib exp[- K°)2]rdrde = x - exp[" &) 1 •  (2i° 
By definition, the CEP of A's warheads is a distance (in nautical 

miles) such that 

P(r < CEP) = | . 

Substituting CEP in place of r  in Equation (24), we see that 

P(r < CEP) = 1 - exp 

Solving for a, we get 

[- K5?)2] ■ i • 

CEP a   = 
yj 21n2 

Substituting this expression into Equation (24) and rearranging, 

we get 

p = 1 _ exp -ln2(rlp) I - (25) 
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Finally, substituting Equation (23) into Equation (25) we obtain 

the kill probability in terms of Y, H, and CEP as follows 

p = 1 - exp [ .,  -Y>2   21 • (26) 

Suppose now that Afs warheads have reliability r .  Then a 
the probability that a single B-weapon-launcher survives an 

attack tiy a single A-warhead is 1-r + r (1-p), where p is a   a 
given by Equation (26).  Note that r is the probability that a 
an A-warhead arrives in the vicinity of its target and detonates. 

Thus, with probability 1-r , the warhead malfunctions and the a 
target survives; with probability r (1-p), the warhead detonates a 
but the target survives.  Finally, the probability that a single 

B-weapon-launcher is destroyed in an attack by l  A-warheads— 

denoted by p—is given by 

p* = l - [l-rjl - exp/-^-^ii§2  \|1\      (27) 
a)       VH^(f(H))f(CEP)2>/(_ 

We note that this expression assumes that the i  warheads 
attacking a single B-weapon-launcher all act independently. 

Thus, Equation (27) neglects the interference effects caused 

by detonating more than one nuclear weapon near the target in 

rapid succession.  Equation (27) allows us to calculate the 

probability that l  independent A-warheads will destroy a single 
B-weapon-launcher in terms of both the warhead parameters 

(r , Y, and CEP) and the target-hardness parameter (H). 
a 

C.   DISTRIBUTION OF THE NUMBER OF B-WEAPON-LAUNCHERS 
SURVIVING AFTER A'S FIRST STRIKE 

Let N denote the number of B-weapon-launchers that survive 
w 

a first strike in which A allocates w warheads against B!s 

weapon-launchers.  Then 0 <_  N  <_ m, since B has m weapon- 

launchers.  In order to derive a probability distribution for 

N , it is necessary to make some assumptions about the targeting 
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pattern that A uses in attacking B's weapon-launchers.  Recall 

that we are assuming that the yield, reliability, and CEP are 

the same for all of A's warheads.  Also, all of B's weapon- 

launchers are assumed to have the same hardness H, the same 

MIRV (Multiple Independently targeted Re-entry Vehicle) factor 

y, and the same reliability r, .  In this situation, it is easy 

to show that A can maximize the number of B-weapon-launchers 

destroyed—and thereby minimize the maximum retaliatory damage 

that B can inflict—by distributing its w warheads uniformly over 

B!s m weapon-launchers.  Thus, the weapon-targeting scheme that 

we assume for A is as follows:  Number Bfs weapon-launchers from 

1 to m in any manner desired.  For w >_ 0, let Ä=A(w) = ^ , where 

[x] denotes the integer part of the nonnegative number x.  Also, 

for w > 0, let 

ml = mi^w^ = w - fi,m   and   m?  = nip(w) = m-m.. = m(Ä,+l)-w. 

Then nu >_ 0, m-   >_ 0, and rru + m  = m.  We shall assume that A 

allocates Ä+1 warheads against B's first m, weapon-launchers 

and £ warheads against the remaining m« weapon-launchers. 

Let M-. denote the number of Bfs first m,(=m..(w)) weapon- 

launchers that survive a first strike by £+1 A-warheads.  Simi- 

larly, let Mp denote the number of BTs remaining nip(=mp(w)) 

weapon-launchers that survive an attack by I  warheads.  Then 
N  = M-, + M2; and we have the following binomial distributions 

for M-, and Mp: 

P(Ml=k) = f)(pl+1)
Bfk(l-Pl+1)

k   k=0,l,2,...,mi ;   (28) 

P(M2=j) = (j2)^)™2 J
(

1
-Pä)

J
    J=0,l,2,...,m2 ,       (29) 

where p„ is probability that a single B-weapon-launcher is 

destroyed In an attack by I  A-warheads and p^ is given by 

Equation (27).  Assuming that M, and Mp are independent, we 

deduce that 
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P(N =i) =   I       P(M =k)P(M =j)    1=0,1,2,...,m .     (30) 
w     k+j = i    X     2 

This is the distribution that we sought for N . 

D.   COMPUTATION OF THE EXPECTED MAXIMUM RETALIATORY DAMAGE TO A 

We assume now that Bfs surviving weapon-launchers have 

reliability rfe, where 0 < rfe < 1.  If a B-weapon-launcher 

functions correctly (with probability r ), we assume that it 

delivers u separate warheads to their respective targets and 

that each of these warheads detonate; if a surviving B-weapon- 

launcher malfunctions (with probability 1-r.), then we assume 

that none of its warheads are detonated. 

Since V.(y)   is increasing in y, it follows that B can 

maximize retaliatory damage to A by allocating all of its sur- 

viving weapons against A's value system.  Let Y denote the 

number of B's remaining N weapon-launchers that function 

correctly in a retaliatory strike and, thus, successfully 

deliver y warheads in retaliation against A*s economy.  Then 
0 1 Yw -  Nw"  Tnus> the actual (maximum) retaliatory damage 
inflicted on A is DA(pYw), where DA(y) is given by Equation (5). 

Let E.(w) denote tt 

ATs economy.  Then 

Let E.(w) denote the expected maximum retaliatory damage to 

EA(w) = E[DA(pYw)]  . 

Now let G(N ) denote the conditional expectation of w 
DA(vY ), given N .  Since the conditional distribution of Yw> 
given N , is binomial with parameters Nw and r , we deduce that 

G(Nw)   =  E[DA(UYW)|NW]    =  joDA(wk)(/)rJ(l-rb)Nw"k   .      (3D 

Finally, taking the expectation of G(Nw) with respect to the 

distribution given in Equation (30), we conclude that 
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EA(w) =E[a(Nw)] = ? Q(i)P(Nw=i) 

m 

= I 
i=0 

I 
s+t ̂ [(^^^(^^t2)^/2"'^/]) •  (32 

) 

As an example of the use of Equation (32), suppose that 

DA(y) = va(l-e"
ay).  Substituting into Equation (32) and inter- 

changing the order of summation, we find that 

m2-t 

[s+t= 

m 

= v. -va|Lio(r^e"aiJ+i-rOs&)[i-p^i)S(p-i)VS] 

x[p,+ (l-pj(rbe-
a^l-rb)]

m 

v - V 
a  a 

The w dependence in this expression is rather complicated, since 
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E.   RESTATEMENT OF THE MAX-MIN PROBLEM 

Suppose now that A has n warheads and decides to launch a 

first strike against B.  In order to evaluate the allocations 

chosen by A and B, we shall use the difference in expected 

damage as our measure of effectiveness.  For this MOE, the model 

of the two-sided nuclear war can be stated as the following 

max-min problem: 

max min E|DR(XV)1 - E[DA(IIY )1 
,w>0 y<N   Lttxj    LA  yj 

(31) 
x 
x+w<0 

where Y denotes the actual number of B-weapon-launchers that 

function correctly when B retaliates with y weapon-launchers. 

Since VAy)   is increasing in y, it follows that E 

is also increasing in y.  Thus, the interior problem Issblved 

by setting y = N .  Since only Y (=YM j of B's weapon-launchers 

[v»y] 
K) 

actually deliver their warheads, the maximum retaliatory damage 

is D.(uY ); and the expected maximum retaliatory damage is 
n W f -» 

EA(w) = E[DA(„YW)] Hence, the max-min problem in Expression 

(3^) reduces to the following two-dimensional integer programming 

problem: 

maximize E(x,w) = En(x) - EA(w) 
P.: B      A (35) 0* s.t. x>^0, w_>0, x+w£n   with x and w both integers, 

where Eß(x) is given by Equation (18) and EA(w) is given by 

Equation (32).  Since Dß(x) is increasing in x, it follows that 

ED(x) is increasing in x.  Also, it is possible to show that 
D 

E.(w) is decreasing in w.  Hence E(x,w) is increasing in both 

x and w.  We conclude from this fact that the solution to PQ 
occurs at a point (x,w) such that x + w = n.  Thus, PQ reduces 

to the one-dimensional problem 

P':    maximize   E(x,n-x) = Eß(x) - EA(n-x) .      (36) 
xe{0,l,...,n} 
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By using Equations (18) and (32), this problem may be solved 

directly by searching over the set of integers from 0 to n. 

F.   APPROXIMATIONS 

The use of Equations (18) and (32) for evaluating Eß(x) 

and EA(w), respectively, can be time-consuming if x and m are 

large numbers, say x >_ 1,000 or m _> 1,000.  Therefore, it is 

worthwhile to inquire about approximations to Eß(x) and E.(w), 

Since X has the binomial distribution given by equation 

(17), we see that 

M- = r x . a 

If x is large and r  is not close to 0 or 1, then the distribu- 

tion of X is almost normal with mean r x and standard deviation  x_ a 
/xr (1-r ).  In this case, the standard deviation is small com- a   a 
pared to the mean; and, using the normal approximation to the 

binomial distribution, we find that 

'(iWl 2 3/xra(l-ra)) -0. 

If Dn(x) is very flat in the neighborhood within three standard 
D 

deviations on either side of the mean of X , then a useful 

approximation is to set 

EB(x) - DB(E[Xx]) = DB(rax) . (37) 

If DD(x) is concave for x > 0, we deduce with the help of Jensenfs 

inequality that 

EB(x) = E[DB(XX)] < DB(E[XX]) = DB(rax) . 

Thus, when Dß(x) is concave, it follows that the approximation 

Du(r x) overestimates the true expected damage to B. a    a 

Next, we seek an approximation to EA(w).  Since the 

tional distribution of Y , givei 

parameters N and r. , we deduce that 

conditional distribution of Y , given Nw, is binomial with 
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w'   wj b w 

Taking expectations  on both  sides  of this  equation,  we  find  that 

E[Yw] =  V[Nw]   • 
However, Nw = M-L + M2; and the distributions of M and IVL are 

given by Equations (28) and (29), respectively.  Hence, 

E[Nw] = E[MX] + E[M2] = ra1(l-pJl+1) + m^l-p^) . 

Now let g(w) = E[Y ].  Combining the above results, we see that 

g(w) = ^[^(l-p^) + m2(l-p4)]. (38) 

If DÄ(y) is concave for y >_ 0, then we deduce with the help of 

Jensen*s inequality that 

EA(w) = E[DA(PYW)] < DA(yE[Yw]) = DA(yg(w)) .       (39) 

Again, using the conditional distribution of Y , given N , 

we find that Var(Y ) = r,Var(N ).  Since IVL and M~ are assumed 
wow 1 d 

to be  independent,  we have 

Var(N   )   =  Var(Mn)   + Var(M0) 
w l <i 

= »!Pi+l(l-Pi+l) 
+ m2P£(1-PÄ

} • 

Therefore, the standard deviation of Y  is 

^['VWi-Pi+i5 + m2p£(1-p£)]! 

If m is large, this quantity is small compared to g(w)(=E[Y ]). 

Also, with probability close to 1, Yw will be close to g(w). 

This is a consequence of the normal approximation to the binomial 

distribution.  Thus, if DA(y) does not vary much in the neighbor- 

hood of g(w), then we may also make the approximation 

EA(w) * DA(yg(w)) . (1»0) 
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Combining the approximations made in Equations (37) and 

(40), we see that—when x and m are both large—we may approxi- 

mate E(x,w) by the function 

E1(x,w) = Dß(rax) - DA(pg(w)) . (4l) 

In this case, the allocation problem stated in Expression (36) 

may be replaced by the following problem: 

P.:     maximize   E (x,n-x) . (42) 
1       Xe{0,l,2,...,n}  -1 

When both sides have large numbers of weapons, the allocation 

determined by Expression (42) will be virtually the same as the 

allocation determined by Expression (36). 

G.   VARIANCE CALCULATIONS 

It is interesting to consider the extent to which random 

variations can affect the actual damage difference. Assuming 

that B retaliates with all of its surviving weapon-launchers, 

then the actual damage difference is 

W - DA^V • 
The expected value of this expression is the function 

E(x,w) appearing in (35).  In order to get some idea of the 

extent to which chance effects could alter the outcome of a 

two-sided nuclear war, we shall compute the variance of the 

damage difference for the special case in which both A and B 

have constant damage rate. 

Suppose that B(x) = e"bx (b>0) and A(x) = e"ay (a>0). 

Then DB(x) = vb(l-B(x)) = vb(l-e"
bX) and DA(y) = va(l-A(y)} = 

v (l-e~ay).  Since an additive constant does not contribute a 
to the variance of a random variable, we have 

Var DB(Xx)  = v^Var B(Xx)  = v^Var|exp(-bXx)J (43) 

and 
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Var|DA(yYw)l = v^Var |A(pYw)l = v^Var |exp(-aiiYw)l .      (M) 

Prom Equations (19) and (33) we have 

EB(x)   =  E[DB(XX)]   =  vb[l-(rae"b
+l-ra)X] 

and 

EA(w)   =  E[DA(WYW)J   =  va|l-[p,+1+(l-p,+1)(rbe-a^l-rb)]
mi 

r n1 

Thus,  we  see that 

E[B(XX)1 = Erexp(-bXx)l = (rae
-b+l-ra)

X CftSJ 

.m2 

and 

E[A(UYW)] = E[exp(-auYw)] = [pl+1+(l-Pl+1> (lyT^l-v]™1 

x[Pl+(l-p4)(rbe-
ap
+l-rb)]

m2 .  (-46) 

By using Equation (17), it is easy to verify that 

*[K>)*] ■ (v-*«~.y • 
Combining this result with Equation (45) and substituting into 
Equation (^3), we deduce that 

2x- 
Var[DB(Xx)] - v? [(r^+l-r^ - (^+1-^) X] . 

Next, by using the conditional distribution of Y , given w 

(47) 

N , we deduce that w 
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E[(A(»V)
2
|NWJ= E[exp(-2aMYw)|Nwj 

N 
w /M \    , N  -k 

=     I     exp(-2ayk)(\)r*(l-rj   w 

k=0 \k /   D D 

Taking expectations with respect to the distribution of N , we w 
find  that 

E[(A("V)2]  " [p4+l
+^Pt+lHrbe-2a^l-rb)]

mi 

x[p,+ (l-pt)(rbe-2a'1
+l.rb)]m2   . 

Combining this result with Equation (46) and substituting into 

Equation (44), we conclude that 

Var[DA(pYw)] = v2 j [p l+1+ (l-p £+1) (r^-^' + l-r,)]"1 

• [p,+ (l-P,)(rbe-
a,J+l-rb)]

2m2| .    (48) 

If A chooses the first strike allocation (x,w) and B 

retaliates with all of its surviving weapon-launchers, then the 

actual damage difference is 

W - DA("V • 
If we assume that X and Y are independent for each allocation x     w 
(x,w), then the variance of the damage difference is 

Var[DB(Xx)-DA(uYw)J = Var^U*)] + Var^DA(uYw)j .    (2.9) 
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Thus, under the assumptions we have made, we may substitute 

Equations (1*7) and (48) into the right-hand side of Equation 

(49) to obtain the variance of the damage difference for this 

special case. 

EXAMPLE:  Data for A Data for B 

a = 0.002 b - 0.003 
r = 0.8 a rb = 0.85 

p = 0.6 

v = 1012 1 
a 

[dollars) m = 1,600 

x = 1,400 w = 3 

w = 1,600 

In this example, we have l  = I ^ =  j/gnn] = ^5 

m = w - Jim - 1,600 - 1,600 = 0; and m  = 1,600.  Thus, 

p1  « 1 - [l-(0.8)(0.6)] = 0.48.  Using Equations (19) and (33), 

we find that the expected damage difference is 

E(x,w) = EB(x) - EA(w) 

,12 = 10" 

- ri-(o.48+(0.52)(0.85e"°-006+0.15)) '   J 

= -2.03 x 1010 . 

Using Equations (47), (48), and (49), we find that the variance 

of the damage difference in this example is 

Var[DB(Xx)] + Var[DA(yYw)] 

= 102*J[(0.8e-°-00^0^ 
r p     -11,600 

+ h.48+(0.52)(0.85e"U-U1^+0.15)J 
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r 0 006     -]3,200 
-  0.48+(0.52)(0.85e  üüb+0.15) 

= 102^ x 5.^35 x 10"6 = 5.^35 x 10l8 . 

Taking the square root, we find that the standard deviation of 
a 

the damage difference in this case is 2.331 x 10 dollars. 

Thus, in this example, the standard deviation of the damage 

difference is only 11 percent of the absolute value of the 

expected damage difference—which indicates that chance fluctua- 

tions of the damage difference about the expected damage differ- 

ence are likely to be small in comparison to the expected damage 

difference. 
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Chapter III 

DERIVATION OF A DAMAGE LAW FOR THE ECONOMY OF 
THE UNITED STATES 

In this chapter, by fitting a curve to damage data gener- 

ated in a previous IDA study, we derive a damage law for the 

economy of the United States.  The data used here are from a 

second volume (unpubl.) of the June 1972 IDA Study S-394 

(entitled Methodologies  for Evaluating   Vulnerability  of National 

Systems,   by James T. McGill et al.) and were supplied to the 

author by Dr. Leo Schmidt (of IDA).  The data in Table 1 shows 

the U.S. value-added destroyed as a function of the number of 

one-megaton nuclear warheads detonated against the economy of 

the United States.  For example, in an attack by 1,000 one- 

megaton weapons having a CEP of 0.5 nautical miles (reliability 

of 1.0 is assumed for the moment), it is estimated that the 

total value-added destroyed would be $460.411 billion.  The 

estimated total value added for the entire U.S. economy in 1975 

is $878.408 billion.  Dividing the value-added destroyed by the 

total value-added of the economy, we obtain the fraction of 

value-added destroyed—denoted by f(x).  These data are shown 

in Table 1 as a function of the number of warheads (x) detonated 

in an attack on the U.S. economy.  For example, for an attack 

with 1,000 one-megaton weapons, the fraction of value-added 

destroyed is f(l,000) = 0.524 (i.e., ByB^uB billion = °'524). 
Figure 1 shows an arithmetic scale graph of the fraction of 

value-added destroyed from Table 1 plotted versus the number 

of weapons used in an attack. 
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Table 1.  U.S. VALUE-ADDED DESTROYED AS A FUNCTION OF 
ATTACK SIZE 

Number 
of 

Weapons l 

X 

Value-Added 
Destroyed 
(billions) 

Fraction 
Destroyed2 

f(x) -ln(l-f(x)) v-\(x) 

10 49.946 0.057 0.05854 0.057 

20 67.187 0.076 0.07957 0.076 

50 105.019 0.120 0.12733 0.120 

100 149.323 0.170 0.18632 0.171 

200 212.594 0.242 0.27710 0.242 

300 261.049 0.297 0.35266 0.297 

500 335.652 0.382 0.48127 0.384 

750 405.932 0.462 0.62012 0.464 

1 ,000 460.411 0.524 0.74264 0.526 

1 ,250 504.798 0.575 0.85490 0.576 

1 ,500 541.787 0.617 0.95916 0.617 

2,000 600.029 0.683 1.14913 0.683 

2,500 644.511 0.734 1 .32323 0.733 

3,000 679.248 0.773 1 .48400 0.772 

Weapons an 
1.0. 

; assumed to have 1-MT yield; CEP = 0.5 nm, and r eliability = 

2For 1975,  1 total  value-added is taken to be $878,408 billion . 

Our objective in this section is to derive a damage law 

of the form 

x 

DB(x) = vb 1 - expf- fb(u)duj I 

0 

(50) 

for the United States, as a function of the number of one-megaton 

warheads (assumed to be allocated optimally) detonated in an 

attack on the U.S. economy.  In Equation (50), vfe is the total 

value-added of the U.S. economy and b(u) is the damage-rate 

function for the U.S. economy.  Thus, the expression in brackets 
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in Equation (50) is the fraction of value-added destroyed. 

Hence, we make the identification 

f(x) =  1 - expf- fb(u)duj  . (51) 

0 

Taking logarithms in Equation (51), we see that 

x 

fb(u)du = -ln[l-f(x)] . (52) 

0 

In Table 1 we have also computed values for the expression 

on the right-hand side of Equation (52).  For x = 1,000, for 

example, we have 

1,000 

j    b(u)du = -ln[l-f(1,000)] = -ln[l-0.524] = 0.7^264 . 

0 

Rather than attempting to estimate the damage-rate function 

b(u), we shall instead estimate the integral 

x 

fb(u)du , 
0 

since this quantity is the argument of the exponential function 

in Equations (50) and (51).  Figure 2 shows a full logarithmic 

plot of -ln[l-f(x)] from Table 1.  We note that when the data 

are plotted on full logarithmic paper they fall approximately 

on a straight line.  In fact, for x _> 300 the data are almost 

precisely on a straight line.  This fact immediately suggests 

that we estimate fb(u)du by using monomial functions of the 

form Xxa.  After breaking the interval [0,3000] into four sub- 

intervals and matching at the endpoints to obtain continuity, 

we obtained the following estimated form for the integral of 

the damage-rate function: 
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X 

fb(u)du « 
0 

0 <_ x < 20 , 

20 < x < 50 , 

f(0.021179)x0-4112802 for 

(0.0171079)x0-513096 for 

(0.01*Jl889)x0-560917 for  50 < x < 240.32 , 

k(0.0101l48)x
0-622658 for  240.32 < x . 

The damage-rate function b(u) can be found by differentiating 

the expressions on the right-hand side of Equation (53) with 

respect to x.  Equation (53) may now be substituted into 

Equation (50) to obtain the damage function DD(x).  The last 

column of Table 1 contains the result of substituting Equation 

(53) into Equation (50) and dividing by v   .     Comparing columns 

3 and 5 of Table 1, we conclude that Equation (53) gives a very 

good fit to the hypothetical data on fraction of value-added 

destroyed. 

The procedure we have used in deriving Equation (53) is 

completely empirical.  We are given an estimate of the fraction 

of U.S. value-added destroyed for attacks of various sizes, 

and we want to derive a damage law for the U.S. economy as a 

function of the number of warheads detonated against the economy 

in some optimal manner.  Equation (52) provides the appropriate 

link between the hypothetical data on fraction of value-added 

destroyed and the damage-rate function to be used in Equation 

(50).  Since we have no data concerning the values of b(x), it 
x 

is better to estimate (i.e., fit a curve to) fb(u)du as a 
J0 

function of x than to try to estimate the damage-rate function 

b(x).  This procedure gives a better fit, since additional 

errors would be introduced by first estimating b(x) and then 

integrating to obtain the argument of the exponential function 
x 

in Equation (50).  After all, it is the integral fb(u)du that 
J0 

is needed in Equation (50) as a function of x. 
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Data on fractional damage to the economy of the Soviet 

Union as a function of attack size are not available in unclassi- 

fied documents.  In order to proceed with the use of our model, 

we make a crude estimate for the integral of the damage rate for 

the Soviet economy—based upon the following heuristics:  Since 

the manufacturing facilities of the Soviet Union are considered 

to be less concentrated than those of the United States, the 

damage rate for the economy of the Soviet Union should be smaller 

than the damage rate for the economy of the United States, at 

least for an attack involving hundreds of warheads. However, 

large Soviet cities tend to be more compact than large cities 

in the United States—for which reason a large city in the Soviet 

Union would be more heavily damaged in an attack by, say, a 

one-megaton warhead than would an American city (of corresponding 

size) attacked by the same one-megaton weapon.  If large cities 

in the Soviet Union were targeted with higher priority than other 

industrial targets in the Soviet Union, the initial damage-rate 

for the Soviet economy would tend to be higher than that for the 

U.S. economy.  Hence, we may estimate that (initially) the damage 

rate (not absolute damage) for the Soviet Union would be higher 

than that for the United States.  At some point, however, the 

damage rate for the U.S. economy would exceed that for the Soviet 

Union. 

For x >_ 0, let a(x) denote the damage-rate function for the 

Soviet economy.  We wish to choose an estimate of fa(u)du as a 
0 

function of x.  Based on the heuristic argument (above), the 

value of this integral should be greater than the integral in 

Equation (53) for small values of x.  For large x, however, this 

integral should be less than the integral in Equation (53).  In 

order to satisfy this requirement, we shall take a(u) = 0.01x~^ . 

for x > 0.  Then 
x 

Ja(u)du = 0.02x^ . (5*0 

0 
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Substituting (5*0 into Equation (5), we obtain the following 

expression for the hypothetical damage law for the Soviet 

Union: 

DA(x) = va[l - exp(-0.02/x)] , (55) 

where v is the value (stated in value-added) of the Soviet a 
economy.  If this expression is evaluated (using v =1) and 

1 a 

compared with the values of v" Dß(x) from Table 1, we see that 

v^XDB(x) > 1 - exp(-0.02xJs) 

for x > 300. 

For the purpose of illustrating the use of the model, we 

use the expressions given by Equations (53) and (55).  We also 

assume that the Soviet Union strikes first.  We remark that if 

data of the type presented in Table 1 were available for the 

Soviet economy, then we could derive a damage law for the econ- 

omy of the Soviet Union by using the same procedure that was 

used to derive Equation (53). 
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Chapter IV 

NUMERICAL EXAMPLES 

In this chapter, we examine several numerical examples of 

the aggregated two-sided nuclear-exchange model developed in 

the preceding sections.  These examples include a hypothetical 

U.S.-Soviet nuclear war that uses the damage functions derived 

in Chapter 3 (above).  These examples will also illustrate the 

sensitivity of the model to various physical parameters.  In 

particular, we consider the special case in which B adopts a 

"launch on warning" policy. 

The problem that we solve numerically in these examples is 

as follows: 

F? 
maximize vfe 1 - exp|-  fb(u)du)    - v\l -fexp -0.02/yg(n-x)J    .    (56) 

In this  expression,   g(w)   is  the  expected number of B-weapon- 
launchers  retaliating against   A  after  a  first   strike   in which 
A attacks  Bfs  weapon-launchers with w warheads.     g(w)   is  given 

by  the  formula 

g(w)   =  rjm^l-p^)   + m2(l-p£)J   , 

where I  - Mjj ; rr^ = w - £m; m2 = m - m1; and p^ is given by 

Equation (27).  The integraljb(u)du is evaluated using Equation 

(53). 

The numerical procedure that we used to solve Problem ?2 

is as follows:  We evaluate the expression in Equation (56) 
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for x = l,2,...,n, and then find the value of x for which this 

expression is a maximum. This procedure works very well, even 

for large values of n—say, n = 10,000. 

A. A HYPOTHETICAL NUCLEAR WAR BETWEEN THE UNITED STATES AND 
THE SOVIET UNION 

We consider in this example a hypothetical nuclear war 

between the Soviet Union and the United States.  We assume that 

the Soviet Union strikes first.  The following values are 

assumed for the Soviet Union (A) and the United States (B): 

A B 

Y = 1.0 MT H = 300 psi 

CEP = 0.5 nm rfe = 0.8 

a w = 5 

n = 3,000 m = 2,100 

v = $5 x 1011 (value-added) v. = $8.78 x 1011 
a u 

With this choice of parameters, the probability of single- 

shot kill given by Equation (26) is p = 0.3^7 -  The optimum 

allocations in this example are x = 3>000; w = 0; and the 

maximum-damage difference is $1.879xl011.  The fraction of U.S. 

value-added destroyed is 0.69, and the fraction of Soviet value- 

added destroyed is 0.84.  Since p is small in this case, it is 

not advantageous for the first striker to allocate any warheads 

against B's weapon-launchers. 

B. THE EFFECTS OF A "LAUNCH ON WARNING" POLICY FOR B 

From the previous example, we may infer that when the 

probability of A's warheads killing Bfs weapon-launchers is low, 

the effect on A's allocation is the same as if B had adopted a 

"launch on warning" policy.  In other words, as long as the 

single-shot kill probability is small, the allocation is not 

sensitive to a "launch on warning" policy for the second striker, 
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However, when the probability of single-shot kill is close to 

1, a possible strategy for modeling a "launch on warning" policy 

for B is to assume that the reliability of A's warheads that 

attack B's weapon-launchers is small—say less than 0.30.  That 

is, we assume that A-warheads attacking B-weapon-launchers have 

reliability different from those attacking Bfs value targets. 

The effect of this assumption is that most of Bfs weapon- 

launchers survive and are able to retaliate.  Let r denote the a 
reliability of A's warheads attacking B's value targets and let 

r*  denote the reliability of Afs warheads that attack Bfs weapon- 
v launchers.  Thus, we must substitute r in place of r  in the 
a w 

integral in Equation (56); and we must substitute r in place of a 
r  in Equation (27).  The following two cases illustrate this a 
point. 

Case 1. 

A B 

Y = 1.0 MT H = 300 psi 

CEP = 0.1 nm                 r  = 0.8 

'I - < - °-8 

n = 5,000 m = 2,100 

v=1.0 vK=1.0 a b 

For this case, the probability of single-shot kill determined 

by Equation (26) is p = 0.999976.  The optimum allocation is 

x = 2,900; and w = 2,100.  The fraction of Afs economy destroyed 

is 0.56, and the fraction of BTs economy destroyed is 0.72. 

Case 2. 

Y - 1.0 MT H = 300 psi 

CEP = 0.1 nm                rw = 0.8 

a M = 5 
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w r a = 0. 3 
n = 5, 000 

V a = 1 0 

m = 2,100 

vb = 1.0 

Since the parameters Y, CEP, and H are the same in this 

case as in Case 1, we again have p = 0.999976.  The optimum 

allocation, however, is now x = 5,000; and w = 0.  In this case, 

the fraction of Afs economy destroyed is 0.84, and the fraction 

of B?s economy destroyed is O.83.  Thus, even though Afs war- 

heads have high probability of destroying hard point targets 

(BTs weapon targets), A chooses nevertheless to allocate all 

its warheads against Bfs economy.  Also, in this case, the 

level of damage to both sides is considerably greater than in 

Case 1. 

For Case 1 the maximum expected damage difference is 0.16 

and for Case 2 it is -0.01.  Thus, in Case 2 B improves his 

ability to retaliate by adopting a "launch on warning" policy. 

Prom these examples we conclude that when the CEP of A's war- 

heads is small (say 0.1 nm or less), then B's deterrence is 

improved by adopting a "launch on warning" policy.  However, 

such a policy results in a higher level of damage to each side. 

C.   THE EFFECT OF THE NUMBER OF WARHEADS ON A'S ALLOCATION 

We now consider what effect the number of warheads at 

the disposal of the first striker has on his allocation.  (In 
v   w the remaining examples we take r  = r and denote the common a   a 

value by r .)  First, we consider the following two cases: a 

Case 3. 

Y = 1.0 MT 

CEP = 0.25 nm 

r  = 0.7 a 

B 

H = 300 psi 

rb = 0.7 

y = 5 
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A 

Y   i ■  1.0 MT 

CEP  = 0.25 nm 

0.7 

n = 5,000 

v«   = 1.0 

n = 3,000 m = 2,100 

va = 1.0 vb = 1.0 

Case 4. 

B 

H = 300 psi 

rb = 0.7 

P - 5 
m = 2,100 

v. = 1.0 
a D 

In each of these cases, the probability of single-shot kill is 

p = 0.8l8.  For Case 3, the optimum allocation for A is x = 3,000; 

and w = 0.  In this case, the fraction of A's economy destroyed 

is 0.82, and the fraction of B's economy destroyed is O.69. 

For Case l|, the optimum allocation for A is x = 2,900; and 

w = 2,100.  For Case ^, the fraction of A's economy destroyed 

is 0.67, and the fraction of B!s economy destroyed is O.69. 

It is interesting to note that the fractional damage to both 

sides in Case 4 is lower than in Case 3, even though the first 

striker has 5,000 warheads in Case 4 and only 3,000 warheads in 

Case 3. 

Figures 3, **, and 5 display graphically the results of a 

series of calculations in which we varied the number and CEP of 

Afs warheads and held all the other variables constant.  In each 

of these figures the number of warheads on A's side ranges from 

500 to 10,000.  For the CEP of A's warheads, we used the values 

0.5, 0.25, and 0.1 nautical miles.  The other variables are as 

follows: 
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Y = 1.0 MT H = 300 psi 

ra = 0.7 rb = 0.7 

va = 1.0 y = 5 

m = 2,100 

vb = 1.0 

Figure 3 shows the maximum value of the (fractional) damage 

difference as a function of the size of ATs first strike attack 

for the three different values of the CEP.  These values were 

obtained by solving Problem Pp of Equation (56).  The three curves 

coincide for fewer than 3,^00 warheads.  The kinks in the curves 

for CEP = 0.25 and 0.1 occur at points where A's allocation 

against B's weapon-launchers increases by 2,100 warheads. 

Figure 4 shows the fraction of B's economy destroyed as a 

function of the size of A's first strike attack for each of the 

three values of the CEP.  Again, the three curves in Figure H 

coincide for fewer than 3>^00 warheads; and the jumps in the 

curves occur at points where A's warhead allocation against B's 

weapon-launchers increases by 2,100 warheads. 

Figure 5 shows the fraction of A's economy destroyed in a 

retaliatory strike by B as a function of the size of A's first 

strike attack for each of the three values of the CEP.  We 

remark that the retaliatory damage to A decreases as the number 

and accuracy of A's warheads increases, since fewer B-weapon- 

launchers survive to retaliate. 

Table 2 shows the allocations that yield the maximum damage 

difference in Figure 3- These allocations were found by solving 

Problem P2 of Equation (56). For the case N = 8,500, we note that 

the number of warheads allocated against B's weapon-launchers is 
not an integral multiple of 2,100. We conjecture that this 

outcome is due to the fact that Problem P~ is only an approxima- 

tion to the exact maximum expected damage difference determined 
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Table 2.  ALLOCATIONS YIELDING THE MAXIMUM DAMAGE DIFFERENCE 

FOR THE CASE Y = 1.0 MT; ra = 0.7; va = 1.0; 

H = 300 psi; r. = 0.7; u = 5; m = 2,100; v. =1.0 
D 

N 

CEP   =   0 . 5  nm CEP   =   0.25   nm CEP   =   0.1   nm 

X w X w X w 

500 500 0 500 0 500 0 

1 ,000 1 ,000 0 1 ,000 0 1 ,000 0 

1 ,500 1 ,500 0 1 ,500 0 1 ,500 0 

2,000 2,000 0 2,000 0 2,000 0 

2,500 2,500 0 2,500 0 2,500 0 

3,000 3,000 0 3,000 0 3,000 0 

3,500 3,500 0 3,500 0 1 ,400 2,100 

4,000 4,000 0 4,000 0 1 ,900 2,100 

4,500 4,500 0 2,400 2,100 2,400 2,100 

5,000 5,000 0 2,900 2,100 2,900 2,100 

5,500 5,500 0 3,400 2,100 3,400 2,100 

6,000 6,000 0 3,900 2,100 1 ,800 4,200 

6,500 6,500 0 2,300 4,200 2,300 4,200 

7,000 7,000 0 2,800 4,200 2,800 4,200 

7,500 7,500 0 3,300 4,200 3,300 4,200 

8,000 8,000 0 3,800 4,200 3,800 4,200 

8,500 7,835 665 4,300 4,200 2,200 6,300 

9,000 6,900 2,100 2,700 6,300 2,700 6,300 

9,500 7,400 2,100 3,200 6,300 3,200 6,300 

10,000 
1 

7,900 2,100 3,700 6,300 3,700 6,300 

by Problem PQ In Equation (35).  We also conjecture that the 

optimum weapon allocation against B's weapon-launchers determined 

in Problem PQ is an integral multiple of the number of B-weapon- 

launchers. 
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D.   THE EFFECTS OF HARDNESS ON A'S ALLOCATION 

We next consider what effect varying the hardness parameter 

H has on A's allocation and the maximum damage difference. 

Figure 6 shows the maximum value of the expected (fractional) 

damage difference for a series of calculations in which we 

varied the hardness of B's weapon-launchers and the number of 

A's warheads and held all the other variables constant.  For 

the hardness of Bfs weapon-launchers we used the values 300, 

600, and 1,000 psi.  The number of warheads on A's side ranged 

from 500 to 10,000.  The other variables were as follows: 

A 

Y = i 0 MT 

CEP = 0 25 nm 

ra 
= 0 7 

V a 
= 1 0 

B 

rb ■ 0.7 

M ■ 5 
ni = 2,100 

vb 
= 1.0 

Table 3 shows the allocations that yield the maximum 

damage difference in Figure 3 for the three different values 

of H.  These allocations were found by solving Problem Pp of 

Equation (56). 

When similar series of computations were performed using 

the values CEP = 0.1 nm and 0.5 nm, the maximum damage difference 

curves for the three different values of H virtually coincided. 

This indicates that when CEP <_  0.1 nm or CEP > 0.5 nm, the effects 

of hardness on A's allocation and the maximum damage difference 

are negligible.  This conclusion also seems intuitively reason- 

able.  If CEP <_ 0.1 nm, then, with high probability, the attacking 

warhead detonates within a few hundred feet of its target.  In 

this case, the target (a B-weapon-launcher) will almost certainly 

be destroyed no matter how hard it is.  On the other hand, if 

CEP _> 0.5 nm, then the weapon-launcher survives with high proba- 
bility when H = 300 psi; and further hardening does not 

significantly enhance B's ability to retaliate. 
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Table 3.  ALLOCATIONS YIELDING THE MAXIMUM DAMAGE DIFFERENCE 
r.   =   0.7; 

■   1.0 

FOR  THE   CASE 

=   1.0; 

Y   =   1.0  MT;   CEP   =   0.25   nm; 

=0.7;g=5;m=2,100; 
a 

and  v. 

N 

H   =   300  psi H  =   600  psi H   =   1,000   psi 

X w X w X w 

500 500 0 500 0 500 0 

1 ,000 1,000 0 1,000 0 1,000 0 

1,500 1 ,500 0 1 ,500 0 1 ,500 0 

2,000 2,000 0 2,000 0 2,000 0 

2,500 2,500 0 2,500 0 2,500 0 

3,000 3,000 0 3,000 0 3,000 0 

3,500 3,500 0 3,500 0 3,500 0 

4,000 4,000 0 4,000 0 4,000 0 

4,500 2,400 2,100 4,500 0 4,500 0 

5,000 2,900 2,100 5,000 0 5,000 0 

5,500 3,400 2,100 3,400 2,100 5,500 0 

6,000 3,900 2,100 3,900 2,100 6,000 0 

6,500 2,300 4,200 4,400 2,100 6,500 0 

7,000 2,800 4,300 4,900 2,100 4,900 2,100 

7,500 3,300 4,200 3,300 4,200 5,400 2,100 

8,000 3,800 4,200 3,800 4,200 5,900 2,100 

8,500 4,300 4,200 4,300 4,200 4,413 4,087 

9,000 2,700 6,300 4,800 4,200 4,800 4,200 

9,500 3,200 6,300 4,032 5,468 5,300 4,200 

10,000 3,700 6,300 3,700 6,300 5,800 4,200 
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