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ABSTRACT 

Bayeslan linear regression models, where the 
parameters follow simple trends, can be efficiently 
solved using credibility approximations and recur- 
sive calculations which exploit the special struc- 
ture of the problem. 
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CREDIBILITY REGRESSION WITH SIMPLE TRENDS 

by 

William S. Jewell 

1.     BAYESIAN REGRESSION 

Consider a linear (regreseion) model 

(1.1) 
,.'>'    .     "^ y « Xß + u  , 

where   y   and   u   are   n * i    random vectors of observable output variables 

and unobaervable error variables, respectively,    X    is a known   n x k   de- 

sign matrix, and   IT   is    k * 1    random vector of unknown regression parame- 

ters.    We assume that a prior Joint density of    (g,u)     is known.    Given an 

observation   y '» y  ,  the problem is to draw posterlor-to-data inferences 

about    ß ,  or about  future values of    y"   for some different design matrix; 

this is a problem in Bayesian regresrion [see, e.g.  Zellner  (1971)]. 

Many insurance rate-making models are of this type.    With one parameter 

(an unknown mean),  and    X =   [1,1,   ...,  1]'  ,  we have classical credibility 

theory; multi-dimensional credibility theory has several such means, and    X 

contains blocks of unit matrices.     In additive relativity premium models, 

there are groups of different factors, with one parameter from each group 

added to make up the total premium;    X    consists of echelon patterns of I's 

and O's  [Grimes  (1971)]. 

■-'-'•f -   - — '-■■ ■■ ■ ■- 
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Of parclcular interest In these changing tines are linear models In which 

the parameters are subject to Inflation by unknown amounts.    Although there, is 

no formal difficulty in including trends in the Bayesian framework,  there are 

Important practical difficulties,  due to the necessity of providing full-in- 

formation priors,  and the resulting large dimensionality of real problems. 

This paper explores the case where the parameters follow a simple but unknown 

trend, and simplifications are possible by using credibility cheory    and an 

iterative computational scheme. 

2.     CREDIBILITY REGRESSION 

A complete Bayesian regression analysis is very difficult,  usually re- 

quiring restrictive distributional assumptions or complicated algebraic 

manipulations;   [see e.g.   Box and Tiao (1973), Morales   (1971),  and Zellner 

(1971).]    However,   recent work  [Hachemeister  (1974);  Taylor  (1974);  Jewell 

(1975)] has shown that  the linearized approach of credibility theory can be 

very useful for general models like  (1.1),   if the goal  is to update only mean 

values; preposterior  (average before-the-observation)   covarlances can also be 

determined. 

Let the prior knowledge of    (ß,u)    be sinmnarlzed in the mean vectors: 

(2.1) El?} - b    ;    E{u  | ?} = 0        (for all    ?)   ; 

and the covariance matrices: 

(2.2) l/{?} =  A     ;     El/{y   |   ß} = l/{u} = E  ; 

of order    k x k    and    n * n  ,   respectively.    We define also alternate-dimension 

versions of the covariances: 

(2.3) D = X  A X       ;     c =   (X'E^X)"1     ; 

uljgjfr m—^^-^_. .._—._.. ,   . i IIIMM—mi'  
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which are n x n and k x k , respectively. Even if E is positive definite 

(most applications have E diagonal), e may not exist in many linear models 

of interest because X is not of rank max(k,n) . 

Jewell (1975) shows that there are two versions of the updated credibility 

forecast of the mean parameter values f(y) ~ E{ß | y} .  In the first version: 

(2.4) f(y) - (Ik - ZX)b + Zy , 

where    I.     is    k x k   unit matrix,  and    Z    is a    k * n    ovedihility matrix 

(2.5) Z - AX'(E + D)"1 . 

This clearly exists if,   say,     E    is positive definite,  and    X    contains only 

nonnegative elements;  an    n * n    inversion is required,  even if    £      is known, 

hence this form is suitable for limited-observation experiments where    n < k  . 

(Parenthetically,  note that    n    refers to different dimensions of obser- 

vations, not the actual volume of observations;  if we have    v      samples, 

y11.y12.  •"»  yiv    »  ln dimension    1 , we can aggregate,  using    y± * I y±J
v±  » 

making appropriate adjustments in    E .) 

In the second version,   we obtain 

(2.6) f(y)  -  (Ik - z)b + zß(y)   , 

where f3(y) is the classical (generalized) It. it-sq'^ares estimator of 

(2.7) ß(y) - eX'E'Sr - (X'E'-'-X)"^^"^ , 

and    z    is a    k * k    credibility matrix: 

(2.8) z =   (lk + ttT1}      - A(Ik + r1A)'1e"1 

This matrix is analogous to the usual multidimensional credibility matrix with "one' 

sample [Jewell (1974)] and gives a more readily interpreted mlxin,'» of prior mean 

m^mmmmmmm^^m .   a^-i:.-^.:.....-...^. ..  ^_   
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and classical estimator.  Moreover, In many applications k. < n , and the 

second form Is (2.8) shows that only one k * k Inversion Is required to 

find f(y) , if E   Is known, which greatly reduces the computational la- 

bor.  On the othrr hand, to find §(y) explicitly  , we require that e 

exist, which leads to the classic problem of "Identlflability", and the re- 

quirements that rank (X)» k , and n ^ k . 

For example, in the usual analysis of additive rate relativities, one 

adds extra constraints on the parameters so that X will be of rank k , 

and ß(y) will exist [Grimes (1971)]. This Is not necessary in a Bayesian 

regression, so long as n Is not so large that Z or z Is ill-conditioned. 

Of course, «.nere may be external reasons, such as economic equity, for using 

only models in which X has full rank; in this case, one can show that, for 

"stable" increasing designs, z -*■ 1.     as n -> «> [Jewell (1975)]. 

The preposterior covarlance of the parameter estimation error can be 

shown to be: 

(2.9)   * - l/{? - fGO) - (Ik - ZX)A = (Ik - 2)A = (A-1 + r1)"1 . 

~ -1 
Since the preatszon  (Inverse covarlance)  in estimating    ß    was    A      , prior- 

to-daLH, we see that,  on the average,   a forecast using    X    Increases the pre- 

cision by    e      ;  alternately,     $    is the    "A"    we expect to have,  on the aver- 

age,  as our estimate goes from    b    to    f  . 

Hachemeister (1974) and Taylor (1974;1975) have both given special versions 

of (2.6), (2.7). And there are numerous non-Bayesian versions [Thell (1963); 

Rao (1965)]. However, priority for both forms belongs in the communications 

theory literature, where generalized least-squares methoJs have been used for 

linear (Wiener-Kalman-Bucy) filter estimation problems for many years, (see, 

for example, Sage and Melsa (1971, pp. 187-4). further historical remarks 

are in Jewell  (1975). 

■ÜMÜMM ^MMM« -——-  
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3.  ITERATIVE CALCULATIONS 

An interesting feature of credibility regression is the possibility of 

cascading or serially combining several experiments through recursive cal- 

culations. Let X-.Xj, ..., X  be the design matrices for experiments 

1,2, ..., t in which 3 remains the same, but vectors YitVo» "•» ^V are 

observed, with known observational error covariance natrice. ,  E^,., ..., E  , 

for each experiment; the observational dimension n  may va,-y from experiment 

to experiment, but we assume observational independence between experiments, 

i.e. C{u ;u | ?} = 0 (s f* t) for all ? . 

One possibility for calculation is to combine all experiments into a single 

large model (1.1), with y' = [y^ry^: ...] , X' = [X^X^: ...] , 

E ■ diagCE... ;E22; ...) ; the dimensions will be n = J] n  by k .  Even if the 

second version (2 6) is used, there is a tair amount of simultaneous computa- 

tion to perform before the single k x k inversion; furthermore, if the data- 

gathering is, in fact, sequential in time, then successive forecasts are more 

and more inefficient. 

In Jewell (1975), it is shown that equivalent computations can bo performed 

in the following recursive manner: 

(1) Initialize by defining b(l) = b and A(l) = A . 

(2) For period t , assume that current prior moments, b(t) and A(t) , 

are given. Using these and y. , X , and E   from the current 

experiment, compute an updated forecast of ß , call it i  iy )   , 

from (2.4) or (2.6), and an error covariance *  from (2.9). 

(3) Continue the computation for period t + 1 by setting 

(3.1) b(t + 1) - ft(yt)  ;  A(t + 1) = *t  ; 

and repeat Step 2. 

e***************^^ | .,,„, „ ■ umiiHMiiaMMüi^ii 
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This iterative process replaces the all-at-once computations by a se- 

quence of smaller ones, with a choice of whether to use an n - or 

k-order inversion at each stage.  In fact, If all the E   are diagonal 

matrices (each dimension of observation error independent) then one could 

iterate through every row of all X I 

It should be emphasized that the final *  is still a preposteriov 

covarlance, equal to: 

(3.2) A-1 + I    e"
1(i)  ;  e'^i) 

i-1 
XiEliXi 

and is not updated by the y . With more specific distributional assumptions, 

one could in principle update the covariance as wel1; however, for problems in 

which control of the variance is appropriate, one would probably use different, 

nonstatlonary models, and different techniques, such as Box-Jenkins forecasting, 

or Wiener-Kalman filtering. 

4.  SIMPLE TRENDS 

Suppose now we believe that the regression parameters are subject to an 

unknown linear trend, and that, in fact: 

(4.1) B - ß1 + t'ß2 ,    (t - 1,2 T) 

with the model design    X    held constant.     In a direct formulation,   one would 

use    y' =  fy-py?1   '*■,  ^   •  an^ an    nT X  ^    super-design matrix 

(4.2) 

X 

2X 

TX 

HMHMMMMHiMHM ■ ■ ■MM—iinimi 
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there are now 2k parameters rearranged in linear format with prior mean vec- 

tor b' ■ [b'tb«] , and prior covarlance 

(4.3) A - 

All  A12 

A21  A22 

Note thai' Is not reasonable to assume that    A
1? " A'      Is void,  since most 

linear models of inflation are pi   portlonal in nature.   I.e.   (4.1)  represents 

(4.4) 6 - (ik + tr)ß1 , 

where    F    Is a scalar or diagonal matrix of unknown i if lation races. 

In Section 3, we have shown how computation using  (A.2)  could be reduced 

to a series of    n *  2k    computations using a design matrix of  form    [X:tX]   ; 

for  the rest of this section, we further simplify computation using this spe- 

cial structure. 

Initialize by defining    b  (1)  ■ b1  ,  and    A    (1) - A        (i,j  -= 1,2)   . 

Tlien,   if    n   -  k , v*t find two formulae similar to  (2.4)   ilor iteration    t    by 

using    yt » X*.  » E
tt  »  an<i calculating 

(4.5)     A1(t)  - A11(t) + tA12(t)   ;   A2(t)  - A21(t) + tA22(t)   ;  A0(t)  = A1(t) + tA2(t) 

Inverting one n x n matrix, we find first 

(4.6) Z1(t) - Ai(t)X'(Ett + XA0(t)X') 
-1 

(i - 1,2) 

and then update forecasts of    &.    and    ß-    through: 

(4.7) b1(t + 1) -  (Ik - Z1(t)X)b1(t) - tZ1(t)Xb2(t) + Z1(t)yt   , 

(4.8) b2(t + 1) - -Z2(t)Xb1(t) +  (Ik - tZ2(t)X)b2(t) + Z2(t)yt 

amitm MMMBMHWr^i 1^ MiMMM—■am r ......    | ...i-... -     ^.. . .   -^: 
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On the other hand, If k < n , we find e~ (t) from (3.2), Invert one 

k * k matrix, and make the following replacements in (4.7),(4.8): 

z (t)x )     / \-i(e"1(t) 
(4.9)    1    } - bAt){l.  + e 1(t)A,(t)) 

Z1(t)ytj   
i  Vk        J  /  (x'Et[yt 

(i - 1,2) 

The four components of the preposterior covariance are then updated without 

further inversion through: 

(4.10) L^it + 1) - L^it) - Z1(t)XAj' (i.j  - 1,2) 

Thus,  in the simple trend case of Bayesian regression, we obtain finally 

an iterative sequence of calculations, with a single minimal Inversion at each 

step, and separate formulae for updating base values and trends of the unknown 

model parameters. 

lUMM _m^^^*m  -  ■ -- 
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