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ABSTRACLT

We have N stages to sequentially construct 1l suc-
cessful components, At each stage, we allocate a certain
amount of money for the construction of a component., If vy
is the amount allocated, then the component constructed will
be a success with probability P(y) , where P {is a con-
tinuous nondecreasing function satisfying P(0) = O . After
each component is constructed, we are informed as to whether
or not it is successful. If, at the end of the N stages,
we are 1 components short, then a final | malty cost C(1)
is incurred. The problem is to, at each stage, determine
how much money to allocate so as to minimize the total
expected cost (construction cost plus penalty cost) incurred.
This model is similar to that presented in [1] except for the
cost function.

In Section 2, we obtain the structure of the optimal
policy. In particular, if C(i+l) - C(i) < C(i+2) - C(i+l) ,
and if yn(i) denotes the optimal value to allocate when |
components are needed with n stages remaining, then yn(i)
is nondecreasing in 1 and nonincreasing in n .

In Section 3, we consider the special case of
C(1) = 1A . Tf we now write yﬁ(i) to indicate the depen-
dence on A , we show that yﬁ(i) is nondecreasing in A
for fixed n and 1 . We also find that the necessary and
sufficient condition under which it is never optimal to

construct components (buy them instead at a fixed price of

i

"y
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A per component) is given by A < inf y/P(y) . We then
y

show that whenever { > n and A > inf y/P(y) , then yn(i)
y

{

is just the larg:st value of y that minimizes

y + (1 - P(y))A . Finally, we investigate special forms for |

P(y) , namely, P(y) = min(y,1) for y <1 , and

P(y) = 1 - e-y s
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OPTIMAL SYSTEM ALLOCATIONS WITH PENALTY COSTS
by

C. Derman, G, J. Lieberman and 3. M. Ross

1. Introduction

We have N stages to sequentially construct 1 successful
components, At each stage we allocate a certain amount of money for
the construction of a component. If y 1is the amount allocated then
the component constricted will be a success with probability P(y),
where P 1is a continuous nondecreasing function satisfying P(O) - O.
After each component is constructed we are informed as to whether or
not it is successful, If, at the end of the N stages, we are 1
components short then a final penalty cost C(1) 1is incurred. The
problem is to, at each stage, determine how much money to allocate so
as to minimize the total expected cost (construction cost plus penalty
cost) incurred. This model is similar to .that presented in [1] except
for the cost function.

In Section 2, we obtain the structure of the optimal policy.
In particular if C(i+l) - C(i) < C(i+2) - C(i+l), and if yn(i)
denotes the optimal value to allocate when 1 components are needed

with n stages remaining, then yn(i) is nondecreasing in 1 and

nonincreasing in n,




In Section 3, we consider the special case of C(1)  {A.

If we now write yﬁ(i) to indicate the dependencc on A, we show trat

yﬁ(i‘ is nondecreasing in A for fixed n and i. We al-o fin: ‘=
the necessary and sufficient cendition under which it ic never optimal
to construct components (tuv them instead at a fixed price of A per

component; is given by

x>
A

< inf y/Ply)
y>0

We then show that whenever 1 > n ana A - inf y/P(y', then ¥4 i
y

is just the largest valua of y that minimizes y + (1 - Fly 'A.
Finally, we investigate special forms for P(y), namely, Piy min(y, 1)

for y <1, and Ply) = 1 - eV,

2. Structure of the Optimal Policy

If we let Vn(i) denote the minima’) expected additional costs
incurred if there are n stages to go and we still need an ailitiona.

i successful components, then Vn(i‘ satisfies the optimality eq.ations

vofi) C({i) , L)
vV i) = min {y+(L-P(y)) V. (1) +P(y)V_ _(i-1)1,
n C(i>zy20 n-1 n-1
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If we let yn(i) denote the larfest value of y that minimizes the
above then the policy that allocates yn(i) wvhen | components are

needed with n stages remaining is an optimal policy.

Lemma 1: If y(c) represents the largest value of y that minimizes

y + (1 - P(y))c, then y(c) 1is a nondecreasing function of c.

Proof: Let y, = y(cl) and let c, =c) +¢, « >0. Now

<

vy + (1 - Ply;))e; <y + (1 - Fy)ey,
or

yy * (1 - P(y)e, - (1 - P(y;))e <y+ (1-Plyle, - (1 - Ply))

(3

or

yp * (L= Ply)ey <y + (1 - Puy)le, + e(B(y) - Ply))
<y+ (1 -Ply)e, whenever y < y,,

implying that y(c,) >y, . ||

We shall assume throughouat that C(i) 1is & nondecreasing

function of i, with C(0) = O.

Lemma 2: Vn(i) is a nonincreasing function of n and a nondecreasing

function of i,

Proof: Follows immediately from the definition of Vn(i) and the

monotonicily of C(1). ||
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Lemma 3: If

C(1+1) - C(1) « C{i+>) - Cri#1), i -0, 1,

then the following inequalities are satisfied:

. - ~ / _ \ -
Ai,n' vn+1(1+1) Vn+l(i) <V {1rl) Vn(j/ , i, n>0
\ - - H ~
Birn n+l(i’ vn(i) = Vn+’(1) Vnwl(‘) , 4, n 20
al . _— . +{’ - ( . ‘:.
Cy o Vo (iel) -V (1) <V ($+2) -V (411), i, n 20 .

Proof: The proof is by induction on k = nti. As the inequalities

A , B 3G are true when k = O assume they are true whenever
i,n i,n i,n
n+i < k. Now suppose n+i = k. We first show that Ai n is tinvec.
’
As Ai a is clearly valid when 1{ = O, suppose that i > O. Now
’

for some y

vn+1(1) =y + Ply) Jn(i-l) + (1 - P(y) Vn(i)

and thus

Vo () -V (1) = §+ PRIV (1-1) -V (1] .

Also,

Vi (1+1) < § + P(y) V(1) + (1 - P{y)) V (141)

and thus

Vo (1#1) =V (1+1) <y + P(YIV (1) -V (1+1)]
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Thus Ai n will fol.ow if we can show that
’

V(1) - v (141 < v (1-1) - v (1)

However this is just the inequality C1 LT which is true when
-4y

i+n = k by the induction hypothesis.

To prove Bi n vt first note that for some Yy
’

Vo1 =y + P(y) v (1-1) + (1 - p(y)) V(1)

and thus

V. (1) -v_ . 4) =y + P(y)(V_ . (1-1) =V  (1)]

n+2 n+i nt+l

Also,

y+ P(y) vV (1-1) + (1 - P(y)) V {1)

—

[

~—
IA

vn+1

implying that

Vo () = v (1) <y + P(YIV (-1 -V (D],

Therefore Bi i will follow if we could prove that
’

(i-1) -V (1)

- - i) <
v, (1-1) Vn(x) <V, -

However -he above is just the inequality , whick is thus

*1-1,n
true by the induction hypothesis.

3
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To prove C1 N e first note that B states that

i+l,n-1

’

av (141) < v (141) + v (141)

n 1(

and thus Ci a will follow if we can show that
’

Voo (01) + v

pe (1FL) SV (1) + v (192), (1)

Now for some Yy

v.(i#2) - v L (i41) =y + (1 - POV, (192) -V (1+))] .

n-1

Furthermore,

Vorr(F1) =V (1) <y + (1 - POV (441) -V (1)] .

Thus (1) (and C, ) will follow if we can show that

i,n
v (1+1) - v (1) <V (142) -V (1+1) . (2)
Now, from A it follows that
i,n-1

vplisl) - v (1) < v (1+1) - v (1)

n-1

and thus it suffices to show that
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Vo () - v

(1) <V

(1+2) - Vv (141) .

1 n-1

However the above 1is just the inequality C1 a1 which is true by
’

the induction hypothesis. ||

Theorem 1: If

C(1+1) - C(1) < C(1+2) - C(1+1)

then
yn(i) 18 nordecreasing in i and nonincreasing in n.
Proof: As
v (1) = min(y + P(y) V__(1-1) + (1 - P(y)) V__ (1))
y
= min(y + (1 - P(y))(V, (1) -V (4-1)]) +V  (1-1)
Yy
the result follows from Lemma 1 and the inequalities C and A

i,n i,n

of Lemma 3. ||

Remarks:

(1) The results go through in an identical manner when one is only
allowed to allocate amounts of money within a given class @&

as long as inf {(y + (1 - P(y))c) 1is attained for all
y€a

c >0.




(1) The structural result presented in Theorem 1 can be used to

reduce the computationc needed for obtaining the optimal policy,

For instance we can write

VvV (i)~ min + P(y)V (1-1) + (1=-P(y))V_ (1)
R (1) o (1_1)ly 2L (1-P(y)IV__,
n-1 ~Y -Yn
y @

(111) When P(y) 1is concave it follow. that

y + P(y) vn_l\1-11 + (1 - Ply))v_ (1)

n-1

is convex and thus its negative is unimodal. This fact can

be used to reduce computations in the obvious manner,

3. The Special Case Ci(i) - iA

An important special case under which Theorem 1 is valid is
when C(i) = 1A. Such a penalty cost function would be valid if =t
the end of the problem we were forced to buy, at & price A per
component, additional components to make up for those we are short,

It seems reasonable that, as a function of A, the optimal

amounts to allocate should be nondecreasing. That i{s, writing

A A
n(i), e

\' (1) to indicate the dependence on A, then it seem:
intuitive that yﬁ(13 should be nondecreasing in A. We now prove

this.




Theorem 2: yﬁ(i\ is nondecreasing in A for fixed n, {.
Proof: We will prove the theorem by first proving that

Vg(i\ - Vﬁ_l(i) is nonincreasing in A,

and (3)

Vﬁ(i) - Vﬁ(i-l) is nondecreasing in A.

As both of the above statements are easily verified when n =1,

] ' #58 \me they are true when n =k Now

’-'- Ve (1) - otn (y + P(y)[VR(1-1) = VR(1)]) + VR(1)

implying, by the induction hypothesis, that

Vﬁ+1(i) = Vﬁ(i) it nonincreasing in A, (L)
Hence it remains to show that VA (1) - WA (1-1) 1is nondecreasing
k+l k+1l

in A. Now,

Ve, (1) = sinly + (1 - P(y)VR(1) = VR(1-1)]) + V}(1-1)

and thus, by the induction hypothesis, it follows that

Vﬁ+1(i) - Vﬁ(i-l) is nondecreasing in A ,

which implies from (L4) that

| Ay -vh e =V

Yk+1 k+1 k+1

(1) - VR(1-1) + vh(1-1) - VR (1-1)




B i sl e R e
N - v —

is nondecreasing in A. Thus the staterments (3) are proven by

{nduction. The theorem now follows from Lemma 1 and the second in-

equality in (3) since

Aty -mtn Gy + (L PNIA () - VA (en ) e v (e ]

3 -
n yzo n

Another question of interest is when it 1s optimal to always

invest O. That is, under what conditions on P(y) is it optimal

never to attempt to construct components yourself but rather to buy

them at a fixes price of A per component? If we let Un(i) Jdenote

the return from the policy of always investing 0 then Un(i) will

satisfy the optimality equation if

Un(i) <y + P(y) Un_l(i-l) + (1 - P(y)) Un_l(i) for all y O

which, since Un(i) + {A 18 equivalent to
- 0

1A <y+ P(y)(1-1)A + (1- P(y))4iA for all y -

or, equivalently, if
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% Since, in finite stage dynamic programming problems, a policy is
optimal if and only if its return atisfies the optimality equation
it follows that (5) is the necessary and sufficient condition for it
to be optimal to always invest O,

When i >n and A > inf y/P(y) then
y

TPy Py o e

yn(l) = largest value of y that minimizes y + (1 - P(y))A.

1 The above follows by noting that when 1 > n the problem is equivalent
to n separate problems each of which is such that if you invest y
and are successful then your cost i{s y and if you are unsuccessful

then your cost is y + A,

faaiemh i e o

| Remarks:

(a) In the special case
P(y) = min(y,1) , y<1

it is easy to verify that

T P T W

(v) In the special case

P(y) =1-e7

11 ]
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it can be verified that the Vn(i) and yn(i) can be

recursively computed according to

(1'1-)5 i

v
[

-
=
Vv
-

Vn(i) % 1+ Yn(i) *Via

where

yo(1) = loglv (1) -V .(1-1)], 1>1, n>1
using the boundary condition

vn(o) =0 .,
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