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ABSTRACT 

We have    N    stages  Co sequentially construct     1     suc- 

cessful  components.     At  each  stage,  we allocate  a  certain 

amount  of money  for  the  construction of a  component.     If    y 

is  the  amount  allocated,   then  the component  constructed will 

be a success with probability    P(y)   ,  where    P     is a  con- 

tinuous nondecreasing  function satisfying    P(0)   » 0   •     After 

each component  is  constructed,  we are  informed as  to whether 

or not   It  is  successful.     If,  at  the end of  the    N    stages, 

w«! are    i    components short,  then a  final \ 'r>.ilty cost    C(i) 

is  incurred.     The  problem is  to,  at  each stage,  determine 

how much money  to allocate so as  to minimize  the  total 

expected cost   (construction cost  plus  penalty cost)   Incurred. 

This model  is similar  to  that  presented in   [1]  except   for the 

cost  function. 

In Section 2,  we obtain  the structure  of  the  optimal 

policy.     In  particular.   If    C(i+1)  -  C(i)   <_ C(i+2)  -  C(i-H)   , 

and If     y  (i)     denotes  the optimal value  to allocate when     1 

components are needed with    n    stages  remaining,   then    y   (1) 

is nondecreasing  in    i     and nonincreasing  in    n   . 

In Section  3,  we  consider  the special  case of 

C(i)  =  iA  .     If we  now write    y   (i)     to  indicate  the  depen- 
n 

dence on A , we show that y (1)  is nondecreasing in A 
n 

for fixed    n    and     i   .     We also  find  that   the necessary and 

sufficient  condition under which  it   is never optimal   to 

construct  components   (buy  them  instead at  a  fixed price of 

iv 
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A per component) Is given by A <^ Inf y/P(y) .  W« then 

y 

show that whenever  1 > n and A > inf y/P(y) , then y (i) 
— n 

y 

is Juat the largest value of y that minimizes 

y + (1 - P(y))A .  Finally, we investigate special forms for 

P(y) , namely,  P(y) - min(y,l)  for y 1 1 . «nd 

P(y) - 1 - e"y . 
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OPTIMAL SYSTEM ALLOCATIONS WITH PENALTY COSTS 

by 

C.  Derman,  G.  J.  Lleberman and 6.  M.  Ro&s 

1.     Introduction 

We have    N    stages to sequentially construct    1    successful 

components.    At each stage we allocate a certain amount of money for 

the construction of a component.    If   y    is the amount allocated then 

the component constricted will be a success with probability      Pvy), 

where    P    is a continuous nondecreasing function satisfying    P(0)  - 0. 

After each component is constructed we are informed as to whether or 

not it is successful.     If,  at the end of the    N    stages,  we are    i 

components short then a final penalty cost   C(i)    is  incurred.    The 

problem is to,  at each stage,   determine how much money to allocate so 

as to minimize the total expected cost (construction cost plus penalty 

cost)   incurred.    This model is  similar to that presented  In [1]  except 

for the cost function. 

In Section 2,  we obtain the structure of the optimal policy. 

In particular if    C(i+1)  - C(l)  < C(i+2)   - C(l+1),  and if    y  (11 

denotes the optimal value to allocate when    i    components are needed 

with    n   stages remaining,   then    y  (i)    is nondecreasing  in    i    and 

nonincreasing in    n. 

^mm ■MMMi mrn^mm 
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In Section 3,  we conplder the apecial case of    C(l)       LA. 

If we now write    y  (1)     to  Indicate  the dependence on    A,   we show tr.at 

y  (i)     is nondecreaslng  in   A    for fixed    n    and    i.     We al-o  fin:    :.&' 

the necessary and sufficient condition under which  it  is  never optimal 

to construct components   (buy them instead at a fixed price of    A    per 

components   is given by 

A < inf   y/PCy) 
y >0 

We then show that whenever i ^ f1 *nu A > inf y/P(y}, then y i' 
y n 

is just the largest value of y that minimizes y + (1 - r.y'^A. 

Finally, we investigate special forms for Ply"', namely, Pivy   min(y,l) 

for y 1 1, and P(y) r-  I  - e' 

Stricture of the Optimal Policy 

If ve let V (i) denote the minima.' expected additional costs 

incurred if there are n stages to go and we still need an adlitionai 

i successful components, then V {i]    satisfies the optimal!ty equations 

v0(i) C(i) , i ■ 0 

Vi: 

vn(o; 

min   (y+(l-P(y))V Ai) +?{y)V    ,(1-1)1, 
C(i)>y^O n-1        n-1 

1 ■ 0, n > 1 

0. 

MMMitam 



  

If we let y (1) denote the largest value of y that minimizes the 

above then the policy tbat allocates y (l) when 1 components are 

needed with    n    stages remaining Is an optimal policy. 

Lemma I;     If   y(c)    represents the largest valae of    y    that minimizes 

y + (l - P(y))c,  then   y(c)     is a nondecreasing function of    c. 

Proof:    Let    y    = y(c1)    and Let    c-  =* c.  + c,  e "> 0, 

y1 + (1 - P(y1))c1 < y + (1 - ?(y))cl, 

Now 

or 

y1 + (1 - P(y1))c2 - (1 - P(y1)).- < y + (1 - P(y))c2 - (1 - P(y)^ 

or 

y1 + (i - P(y1))c2 < y + (i 

< y Mi 

implying that y{c2) > yj^. I | 

Ply))c2 -t e(P(y) - Fly^) 

P('y))c^   whenever y < y , 

We shall assume throughout that C(i) is a nondecreasing 

function of 1, with C(0) - 0. 

Lemma 2; V (i) is a nonincreaaing function of n and a nondecreasing 

function of i. 

Proof; Follows immediately from the definition of V (i)  and the 

raonotonicity of C(i).  || 
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Lemma ^:     If 

C(l+1)   - C(l)  < Cd+P)   - CiiH), I  ■  0,   1,   .. 

then the following Inequalities are satisfied: 

Al,n:      Vn+l
(iH)  -Vn+l

(i)  ^Vl+1)   "V^   '       l'   n ^ 0 

i,n 
V      (1)   - V  (I)  < V       (i)   - V      (1)   ,   I,   n > 0 

n+l n        ~   n+J nrl 

'l,n' 
V (li-l)   - V  (I)   < V  (1+21   - V  (IM),     I,  n > 0 

n n        —   n n — 

Proof;    The proof Is by  Induction on    k = n+l.    As the Inequalities 

A.     ,  B,     ,  C,        are true when    k - 0    assume they are true  whenever 
i,n'     l,n'     l,n 

n+l < k.     Now suppose    n+l   - k.     We first show that    A, Is tr-.e. 
l,n 

As    A. Is clearly valid when    1-0,   svippose that    I > 0.     Now 
l,n 

for some    y 

V ^.(l)   •- y + P(y)  V   (l-l)  +  (1 - Pi'y)''  V  (i; 
n+l n n 

and thus 

Al so, 

V    ,(1)   - V (1)   - y +  P(y)[V   (1-1)   - V  (i) 
n+l n n n 

v
n+1(i+1) ly+ p(^ v

n(i) + d - f'y^ vn(i+i: 

and thus 

Vn+1(l+l)   - Vn(i+1)  < y + P(y)[Vn(l)   - Vn(l+1) 

jatmmmt ■Manan^MM 
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Thus A.   will foiiOw if we can show that 
l, n 

v fi) - vn(i+i) < v (i-i) - v (i; 
n     n    — n       n 

However this is just the inequality C. . n which is true when 

i+n = k by the induction hypothesis. 

To prove B.   we f'.rst note that for some y 

Vn+2(i) = y + P(y) Vn+L(i-l) + (i - P(y)) V^i) 

and thus 

vn+2(i) - Vi(l) -y + *ünyn+lii-r> -vn+1(i)j • 

Also, 

v
n+l

(i) - ^ + P(y) Vn(i"1) + (1 " P(^) Vn(i) 

implying that 

Vi(l) - vn(i) < y + P(y)[vn(i-i) -vn(l)l . 

Therefore B.   will follow if we could prove that 
i,n 

vn(i-i) -vn(i)<vn+1(i.i) -vn+1(i) 

However   'He above is just the inequality    i.,   .     ,   which  is thus 

true by the indiiction hypothesis. 

MMMMM 
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To prove   C we first note that    B,,,       ,    states that 
l,n 1+1,n-1 

?Vn(i+l) < Vn .(1+1) + V  ..(1+1) n —    n-l n+l 

and thus   C, will follow If we can show that l,n 

Vn .(1+1)   + V   ..(1+1)  < Vn(l)  + Vn(l+2). (1) n-l n+l —    n n 

Now for some    y 

Vn(l+2)   - V^d+l)   ^ y +  (1 - P(y))(Vn_1(l+2)   - V^^l+1)] 

Furthermore, 

vn+i(i+1) " vn(i) < y + ^ - p(y))[vn(i+i) - Vn(l)] . 

Thus (1) (and C.  ) will follow If we can show that 
l,n 

Vn(i+1) - V (1) < Vn .(1+2) - Vn .(1+1) .       (2) 
n      n   — n-l       n-i 

Now, from A.   , It follows that 
1, n-l 

V (1+1) - V (1) < V ,(1+1) - V ,(1) 
nx  '   nv ' - n-l   '   n-l 

and thus it suffices to show that 

—————— '  ■■.—^^^M^J^-^— 
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vn .(i+i) - vn .(i) < yn .(1+2) - v    (in) . n-i n-i       —   n-i n-i. 

However the *bove  Is juet the  Inequality    C        .    which 18 true by 

the Induction hypothesis.     | | 

Theorem 1:     If 

then 

C(l+1)   - C(l) < C(i+2)   - C(l+1) 

y  (1)    Is  nondecreasl ng In    1    and nonlncreaslng In    n. 

Proof:    As 

Vn(l)  = mln{y + P(y)    Vn .(l-l)  + (1 - P(y)) V      (1) n n-i n-i 

= min(y + (l - P(y) HV^d)  - V^U-l)]) + V^^l-l) 
y 

the result follows from Lemma 1 and the Inequalities    C,        and   A. l,n 1, n 

of Lemma 5.     11 

Remarks; 

(1)    The results go through In an Identical manner when one Is only 

allowed to allocate amounts of money within a given class  (7 

as long as    Inf (y + (l - P(y))c)     Is attained for all 
y£(7 

c > 0. 

mm—in 
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(11)      The  structural result presented   in Theorem 1 can be used  to 

reduce the computation!.:  needed  for obtaining the optimal   policy. 

For Instance we can write 

V(i)r. mln (y + P(y)V    . (i-1) + (l-P(y))V    .(1)1   . 
n /,, ^     .      /J   , i n-1 n-1 ' ) < y < y 

y    0 

yn.1(iJiy_yn(i-i 

(111)      When    P(y)     is concave  it follow.,  that 

y + P(y) Vn.^1"1' + (i - p(y'Wn-i(i] 

is convex and thus its  negative  is unimodal.    This  fact can 

be used to reduce computations   in the obvious manner. 

5.     The Special Case    C(i)   -  LA 

An  important  special  case under which Theorem 1   is  valid   is 

when    C(i)   =   LA.     Such a penalty cost  function would be  valid  if  'i» 

the end of the problem we were  forced  to buy,   at  a price    A     per 

component,   additional components to make  up for- those we are short. 

It  seems   reasonable that,   as  a  function  of    A,   the optimal 

amounts to allocate should be  nondecreasing.     That is,  writing 

A     A 
V (i), y (i) to indicate the dependence on A, then it seems 

intuitive that y (1)  should be nondecreasing in A.  We now prove 

this. 

imam 
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Thgorw» 2;  y (1^  Is nondecreaalng In A for fixed /i, 1. 

Proof; We will prove the theorem by first proving that 

/(n n 

and 

/„CD 

v    ,(l)     Is nonlncreaslng In    A, n-1 

v  (l-I)     Is nondecreaslng In    A. n 

(5) 

As both of the above statements are easily verified when n = lf 

9jt 'me they are true when n = k  Now 

V^ (1) - mln (y + P(y)(vJ(l-l) - V^(l)]) + vj(l) 
v>0 

Implying, by the Induction hypothesis, that 

VjV,(l) - Vv(l) ic  nonlncreaslng In A. CO 

Hence It remains to show that    ^..(l)  - v. ^,(1-1)     Is nondecreaslng k+1 k+1 ^ 

In   A.     Now, 

v£+1(l)   = mln(y +  (l - P(y))[v£(l)   - V^(l-l)])   + vj(l-l) 
y 

and thus, by the Induction hypothesis.   It follows that 

vr+.(l)   - Vv(l-l)    Is nondecreaslng In    A , 

which Implies from (U)   that 

A 
Vl (D - <+1(ui) - vj+1(i) - vj(i-i) > V^d-l) - V^d-l) 
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Is nondecrcaalng In A. Thus the statements (3) are proven by 

Induction. The theorem now follows from Lemma 1 and the second in- 

equality In (3) since 

Al) -- min (y + (1 - P(y))(V* .(I) - / .(1-1)]) + / ,(1-1). 11 
n    y^0 n-1     n-1        n-1 

Another question of Interest Is when It Is optimal to always 

Invest 0. That la, under what conditions on P(y) is it optimal 

never to attempt to construct componenta yourself but rather to buy 

them at a flxeu price of A per component? If we let U (1) denote 

the return from the policy of always Investing 0 then U (l) will 

satisfy the optlnallty equation If 

Un(l) < y + P(y) ^^(i-D + (1 - P(y)) Vl(i) f0r an y ' 0 

which, since U (l) ^ 1A Is equivalent to 

1A < y + P(y)(i-1)A f (1- P(y))lA        for all y -• 0 

or, equlvalently, If 

or 

SPÄT 

A - ifo  ^ 

for all    y > 0 

CO 

10 
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Since,   in finite stage dynamic programming problems,   a policy is 

optimal if and only if its return    Ulsfies the optlmality equation 

it follows that  (5)   is the necessary and sufficient condition for it 

to be optimal to always  invest    0. 

When    1 > n    and   A > inf y/P(y)    then 
y 

y (i)  '■ largest value of    y    that minimizes    y +   (1  - P(y))A. 

The above follows by noting that when    i 2 n    t'ie problem is equivalent 

to    n    separate problems each of which is such that if you Invest    y 

and are successful then your cost is    y    and if you are unsuccessful 

then your cost is    y + A. 

Remarks: 

(a) In the special case 

P(y)   = mln(y,l)  , 

it is easy to verify that 

y < 1 

yn(i) = ( 

0       'f    A < 1 

1      if    A > 1 

(b) In the special case 

P(y)  - 1 - e" 

11 
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jyt-Li. 

It can be verified that the V (1) end y (l) can be n n 

recursively computed according to 

Vn(i)  « 1 + yn(l) + Vn-1(i-l), 1 > 1,  n > I 

where 

yn(l) - logfv^U) - Vn-l(l-l)],      1 > l, n > 1 

using the boundary condition 

vn(o) - 0 . 
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