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ABSTRACT

The purpose of this paper is to show the relevance of reli-
ability theory to the problem of aggregating individual preferences
to social preferences over a set of alternatives. First, the
Arrow impossibility theorem is proved using coherent structure
arguments. Second, coherent systems as decision structures are
examined and their properties studied. It is shown that only the
self-dual systems are never inconsistent or blocked. It is further
found that for any given coherent decision structure any set of
alternatives is split into four subsets that have certain inter-
esting properties. Finally, the introduction of probabilities
indicates how a cardinal ordering of preferences on the component
level can be aggregated to a cardinal ordering on the system level.
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I. Reliability and the Arrow Impossibility Theorem

We will show in this chapter how the Arrow impossibility theorem can
be proved using reliability theory arguments. Arrow [1951) considered the
problem of aggregating the preference orderings of n individuals over
a set of alternatives A to form a "social" preference ordering over the
set A . Arrow formulated five reasonable conditions and two axioms that
such an aggregation rule should satisfy. The result was the well known
impossibility theorem which shows that no function exists that can satisfy
all five conditions.

Consider a set of alternatives A = {al, T am} . We will denote

by alPia2 the statement "individual 1 prefers a, to a, ."" Similarly,

allia2 will mean that "individual 1 1is indifferent between alternatives

a_, a, ." Finally, In the following

1 2 is the negation of

alRia2 aZPial .

we will assume that each of the 1 individuals can order the alternatives

presented to him in a complete ordering. That is

(i) Transitivity:

alRia2 . azRia3 x»alRia3 , where al,az,a3 € A
(ii) Connectedness:
For any aj,a, € A either alz(ia2 s Or azRia1 , or both.

Once we assume the above, we can define a function

1 a.R.,a
xy(a),ay) = '

for each individual i .
We seek to find a social choice function. By that we mean a function

FA(al’aZ) where aj,a, € A and




E 1 if society does not prefer a, to a,
- (i.e., a,Ra,)
FA(al,az) ) G

0 if society prefers a, to 8

f

i

E (i.e., azPal)

|2

t The subscript A reminds us that F may depend on the whole set of alter-
natives A even though the comparison is between two elements of A .

E The axioms and conditions imposed by Arrow on FA(-,- are the following.

Axiom 1 (Connectedness):

For any aj,a, ¢ A, FA(al'aZ) is either equal to 1 or 0 (in other

words, for any two alternatives a),a, soclety either prefers a, to

1 2

or a, to a, or is indifferent between them).
Axiom 2 (Transitivity):

If FA(al'aZ) = 1 FA(az,a3) =1 ‘(hen FA(a =] .

1)33)

] Condition 1:

Y (a) The number of elements in A 1is greater than or equal to three.

i (b) The social choice function F 1s defined for all individual

PR TR TR

orderings.

j (c) There are at least two individuals.

TRt

Condition 2 (Positive responsiveness):

1f the social choice function is FA(al,az) = 1 for a given set of

individual preference orderings, it shall not decrease if the individual

orderings are changed as follows:

(a) The 'ndividual paired comparisons between alternatives other
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than al remain the same and

(b) Each individual paired comparison between a, and any other

alternative either remains unchanged or it is modified in favor

of al .

Condition 3 (Independence of irrelevant alternatives):

If an alternative is added or subtracted from the set of alterratives
A the resulting social ordering must keep the alternatives in A in the

same preference ordering.

Condition 4:

The social preference function must depend on the individual preference
orderings only. And for any two alternatives a;»a, there are individual

preference orderings such that society prefers a to a, .

Condition 5 (No dictator):

There is no individual wich the property that whenever he prefers

3y to a, (for any al,az) society prefers a; to a, regardless of

the preferences of the other individuals.

A discussion of these conditions of which the weakest seems to be
Condition 3, can be found in Luce and Raiffa [1957].

We will show now that

Lemma 1:

Conditions 2, 3, 4 imply that FA(al’aZ) can be written as a function
Q(xl(al,az), xz(al,az), s xn(al,az)) and further that ¢(x1 noc xn) is

a coherent structure.




The opposite, that when FA(al,az) = ¢(x1 e xn) with ¢ coherent

then conditions 2, 3, 4 are satisfied is immediate.

Proof:

Condition 3 implies that FA(al,az) does not depend on A . Thus we
write simply F(al,az) c

Condition 4 requires that F(al,az) = ¢(x1(al,a2) oo xn(al,az))

Condition 2 requires that ¢(x) 1s non-decreasing in each xi g

Condition 4 again since ¢(x) 1s non-decreasing requires that

$(0) =0 and ¢(1) =1 , where x=x, ...x ,0:=0...0,1:1, ...,1.

1 n e =

n n

Theorem 1 (Arrow's impossibility theorem):

Conditions 1, 2, 3, 4, 5 and Axioms I and Il are inconsistent.

Discussion:

Lemma 1 has limited our search for a social choice function to coherent
structures. Let us now introduce Axiom 1. Axiom 1 would be satisfied
for a given coherent system if the individual orderings were such that
for any two alternatives there is a path and a cut whose components (in-
dividuals) agree on the ordering of the two alternatives in question. Turn-
ing now to Axiom 2 (tramsitivity) we can see that the social choice function
will satisfy it if the individuai (component) orderings are such that for
each triplet of alternatives al,az,a3 there 1s a cut (not necessarily
the same) which does not allow a cycle of the alternat’ves a

s3558, toO

1 3

pass. But the above describe relations betwecn the individual preference

structures and the structure function ¢ . We want, however, to find what
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coherent systems if any satisfy Axioms 1 and 2 for any preference structure
of the components (Condition 1).
Before we continue wita the proof we will need some more notation.

The dual syetem is defined as
D -
¢ (x) =1-¢(L-x)
where

l-x:=1-:x

R l.l—xz, so0y 1—x

n

From reliability theory we know that:

(a) The dual of the dual is the original system.

(b) The minimal path (cut) sets of the system are the minimal cut
(path) sets of the dual.

(c) 1f ¢D(§) = ¢(x) for all x it follows that each minimal path
set of ¢(x) 1s also a minimal cut set of ¢ (x)

One such class of systems is the a ; 1 -out-of-n system with n

odd (the odd majority -'ote systems). But it is not the only one, for
example, consider a 2 out of 3 system each component of which is itself
a 2 out of 3 system. We can see that ¢D(5) = ¢(x) but it is not a majority
system. We now define the following classes of coherent systems.

S = class of coherent systems such that any two paths have at least

one common component.

M = the class of coherent systems whose structure function ¢(x)

satisfies the identity
D
¢ (x) = ¢(x) for all x .

(We will often call these systems self-dual.)




P = class of coherent systems such that all paths have at least one

common component.

We can immediately see that PC S . Also MC 8 because for systems
in M each path 1s also a cut; thus 1f two paths had no common component
thece would exist a cut (one of the two paths) which would not have a common
component with a path (the other path) but this is impossible by definition
of a cut.

Now we can return to the proof of the Theorem.

1) At first glance Zxiom I requires that society is consistent, i.e.,
" and "a, is not

2 1

preferred to az." This part of Axiom 1 limits our search for admissible

systems to those in the class S since for any system in S any two paths

that society cannot both agree that "a1 is preferred to a

have a common component which by assumption is consistent.
2) Axiom 1 further restricts us to the class M . This is so because

we want that for any two alternatives society must either agree to

85547

the affirmative of "a. is preferred to a," or to the negation of this L

1 2
statement. If the affirmetive induces the individual's response x the
negation 1-duces 1 - x and we require for society tiat for any x either

(a) or (%) must hold.

(a) ¢(x) =1 and ¢(2L-x) =0

® ¢(x) =0 ané ¢Q - x) =1 .
(a) and (b) are equivalent to 1 - ¢(1 - x) = ¢(x) <=>¢D(3<_) = ¢(x)=¢ €/ .
3) We argued in (1) above that the consistency part of Axiom 1 restricts

us to the class S . Let us now find the systems in S that satisfy Axiom 2.

We will show that it is the class P . That systems in P satisfy Axiom 2

is obvious once the common component observes transitivity as it is assumed.




We therefore focus our attention to showing that Axiom 2 and Condition 1
imply restriction to the class P .
(1) If there is only one path the system belongs to P and satisfies
Axiom 2 trivially.
(11) If there are only two paths, since the system belongs in S they
have a common component, thus again the system belongs to P and
satisfies Axiom 2.
(111) 1If there are three or more paths then for the moment pick any

three of them P We know that any two of them have a

1°F20P3 -
common component. ILf they have more than one common component,

choose their preference orderings to be identical. Thus we have

only one common component between two paths. Let component

(12) be common to paths P1 and P2 similarly (13) to Pl’P3’

(23) to P2,P3 . It is now easy to apply the well known example

for non-transitivity: Let component's (12) preference ordering

of the triplet a,,8,,a, be alPa2P33 . For component (13)

a2Pa3Pa1 and for (23) a3PalPa2 . A picture will help:

a3>al>a2 al>a2>a3 P1

23 12

13

a,>a,>a




By appropriate choice of the individual orderings in Pl the path P1 will

agree to "82 is preferred to a3" thus the system will have F(a,,a,) = 1.

v

Similarly the system will agree to "a, 1is preferred to a. " or F(a3,a1) =1

<) 1
because of P3 . Finally because of P2 , F(al,az) = 1 . However F(az,al) = 0
since no path agrees that "a2 is preferred or indifferent to a, "' Thus
combining F(az,aa) -1, F(aB,al) = 1 and F(az,al) = 0 and

obtains violating Axiom 2. Thus, all three paths must have a common point,
F call it (123).

If there are more than three paths consider path P4 and P1P2 .  Now

P4 must pass through 12 but also P3 must pass through 12. Repeating this

i

aryument we have that all paths must pass through 12 or that the system must

g belong to P .

i (1v) To satisfy therefore both Axioms 1 and 2 in view of Condition 1 1
when we are restricted to look in the coherent structures (Conditions
2, 3, 4) we must look at the intersection of the classes A and F

MNP,
But now all systems in P have a one component cut (since a component

say j belongs to all paths) while M requires that all cuts (paths) are

also paths (cuts) of the system. Then j 1is both a cut and a pathk. Then

}J 1is the only relevant component in the system. That is, if xj =]1=>¢ =1

and if xJ = 0 =>¢ = 0 regardless of the orderings of all other components.

But this is exactly what Condition 5 does not permit. || b
As a side product we can now show that the odd majority systemsl are

the only ones satisfying Conditions 1, 2, 3, &4, Axiom 1 and gymmetry of the

components. The proof is simple. We already know that the only systems that

4
L By odd majority systems we mean an E%l out-of -n system with n odd.
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satisfy Conditions 1, 2, 3, 4 and Axiom 1 are the self-dual systems.
Symmetry requires that ¢(x1 xn) is the same for any permutation of
the arguments Xy oo X Now we proceed by induction. Certainly for a
three component system ¢D = ¢ implies that ¢ 1is a two out-of-three

system. Now let an n (odd) component system @n(gc_) and suppose that

1
D

f ¢n = ¢n along with symmetry implies that ¢ 1is a majority system. Let
¢n+2 be a n + 2 component system, which satisfies

L ¢2+2(§) = ¢n+2(5) for all x and symmetry. It follows that

for every 1,j we can write

EC i a e A e i e Dl bkt 2t

(2) ¢n+2(11;01;§')-¢2+2(11;Oj;:_c_') for al! x' where

X

li;Oj;gc_' 1P cee xi-l’l'xi+1’ "3-1'0”‘3+1’ seer Xo4o

: and

5! = xl, sy xi‘l’xi""l’ sy xj_lsxj+1) sy xn+2 .

Now consider ¢n+2(1i;oj ;x') . It 18 an n component system once
components 1,j have a fixed value. Denote it ¢n.1 0 (x') . The dual
1)

of this system is defined as

D
n,l

(3) ¢ 1-94

(x") 1-x").
103 = n,lioj(—

] But by definition the right hand side of (3) is

4) 1-¢ @-x") =1 -
n,lioJ ~

but because of (2)

;0

. 1 o 4D 1 oxe!
¢n+2(11 j’l'l ) ¢n+2(01’1j X )

(5) = ¢n+2(oi;lj x') = ¢n’011j x")

or finally

PN PR




D
n,l

(6) n,1,0, &) " g0, &)

1] 3

but because of symmetry

Prb2 (110421 = 04, (0,1,x")

J_
or
¢ ') =¢ (x') .
n,Oilj n,ljoi
Thus (6) becomes
(7) o0 o @) = o &) .
ke & 14

But because of the induction assumption (7) along with symmetry
implies that ¢n’lioj(§') is an odd majority system. Now we have shown
that the n + 2 system will behave as follows: For any x such that
two out of the n + 2 components are one equal to zero and the other equal
to one, the whole system will be one if an odd majority system of the rest
of the components is one and zero otherwise. But this exactly says that

the n + 2 component system is an odd majority system. The cases where

all the components are equal to 1 or all O are trivial.
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I1. Coherent Decision Structures

2.1 General

Coherent structures are often used as decision structures in socilety,

wiether this is a government structure or the management of the corporation

T

the problem is similar. In order for a proposal to be accepted by a decision
structure it has to pass through several channels. Along the way components

study it and either accept it or reject it. If all components along a path

accept it, then the proposal passes. For example, cons.ler an advisory
board of three people and a vice-president of a corporation. A proposal
passes 1f it passes through the advisory board with a simple majority and

the vice president agrees. The system can be represented by:

4 f
1 Vice-
'G 6 president

Advisory
Board

and the structure function will be:

¢(x) = (xl + X, + Xy = lexzxa)x4 .

Consider now n individuals and a set of alternatives A = {al, 800 0 an} .

A st e T i snd s S B A

We will assume that each individual for any alternative a. € A either considers

1
a, is a best alternative in A ," or "a1 is not a ber. alternative in A ."

By "best'" we mean that a, 1is preferred or indifferent to all other alternatives

1
in A . This implies that with each individual 1 and a set of alternatives

A we can assoclate a function
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‘ 1 if "aj is a best alternative in A"

xi(aj|A) = l

0 1if "a, is not a best alternative in A"

3

a, £ A.

E h|

Note that the x1(°) depends in general on the set of alternatives A .

e

By this we want to imply that the individuals may not respect the irrelevant
alternatives condition. For example, individual 1 may consider a, as
the best among {al,az,aB} but also may consider a, as the best when

his set of alternatives is limintd to {al,az} q

We will denote
A = {aceal] xi(a|A) =1}

and call it the optimal set for individual 1 . We will assume that A,

is non-empty for any set A . ]

Given a coher~nt structure ¢(x) we will say that the statement "a is

a best in A" passes through ¢ if ¢(x(a)) = ¢(x1(a|A), xz(alA), 0003 xn(alA)) =1

and "a 1s a best in A" does not pass through ¢ if ¢(x(a)) =0 .

Consider however the negation of "e& 1is a best alternative in A" . Each

component in the system when faced with the statement 'a is not a best in

A" will take the value 1 - xi(aIA) which will be one if he agrees and zero
"

if he doesn't. At the system level we will then say that "a 1is not a best

in A" passes (does not pass) through ¢(x) 1f

¢(1 - x(aja)) = 1(0) .

There are many coherent structures which will pass both the affirmative

and the negation of a statement (consider for example the parallel system)
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as well as many others that will not pass either the affirmative or the neg-
ation of a statement (example: series system).
In general therefore for a set of alternatives A a system can for

some alternatives pass the affirmative and the negation or the affirmative

but not the negation, etc. We will distinguish between alterna*ives by
using the Indicator systems p+(§), p_(x), pB(E), pC(E) to be defined in the

following.

Definition 1°

The system ¢(x) strongly considers a as a best alternative in A iff
$(x(ala)) =1 and ¢(1 - x(afA)) = 0.
That is, if "a is best" passes and "a is not best'" does not pass.

Definition 1':

pL(X) = ¢(x) ¢D(§)
It is then clear that ¢(x) strongly coneider a as best 1ff p+(§(a|A)) =1.

Definition 2:

We say that the system ¢(x) 8trongly considers a as not a best alter-

native in A iff
o(x(ala)) = 0 and ¢(L - x(alA)) =1 .

That is if "a is best" does not pass and "a 1s not best" passes. 2

Definition 2':

p_(x) = 6Q - 3(_)¢D(L- x) .
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It is now clear that ¢(x) strongly considers a uot a best alternative, 1iff
o (x(ala)) =1 .
Definition 3:
The system ¢(x) is blocked for a 1iff
; o(x(ala)) = 0 and ¢(1 - x(aA)) =0 .

That is, when both statements "a is best," "a is not best" do not pass.

Definition 3':

pp(®) = 4@ - 06° ()
then the system is Liocked for a 1iff pB(EﬁaIA)) =1,
Definition 4:
The system is contradictory for a 1ff
¢(x(ala)) =1 and ¢(L - x(ala)) =1.
That is, both statcments "a is best' and "a is not best" pass.

Definition &4':

oc(g) = o(x)e(1 - x)

Then the system ¢(x) 1s contradictory with respect to a iff oc(i(alA)) =1.
The indicator systems divide the set of alternatives A {into four
mutually exclusive and conclusive sets which we will call characteristic sets

of system ¢ over the set A ,




A (a) = {a e Ao (x(a]a)) = 1}
A_(A) = {a e Alp_(x(a]A)) = 1}
Ag(a) = {a € AIpB(i(a|A)) =1}
A(a) = {ae Alpc(i(a|A)) =1}

We will also detfine
Az {aceAlox(@)) =1}
Certainly A = A+lJ AC since ¢(x) = p+(§) + pC(E)

2.2 Some Properties of the Indicator Systems

Property 1:

p,(x) 1is coherent if ¢(x) 4s coherent.

Proof:

¢(x) coherent implies ¢D(§) coherent and the series system of two

coherent systems is also coherent.

Property 2:

p_(x) 1is "anti-coherent" if ¢(x) 1is coherent. (By anti-coherent
we mean that p_(x) 1is non-increasing in x and p_(1) =0, p (0) =1 .

In other words 1 - p_(x) is coherent).

Proof:

Similar.

Property 3: Computational properties. We list them without procf.

15
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11 0@ + o x) = 0 + e
3.2) 0 =1-p (0
p_x)

(x) = 1- o+(5)

3.3) o, (1 -x)

3.4) »p

o\ o4

1.5) 20 +o (0 =s@-x v4°Q -0
3.6) ) = 1- o (0

3.7) oB(L - x) = g

3.8) op(x) + o ) = oL - x) T 4x)

39) pp@ +og®) =80 (L- B + 6@
3.10) 50(0) = 1 - o (x) !
311 6. - X = e !

2.3 The Classes C. S and M

Let C be rhe class of coherent systems. Define S as the class of

coherent systems such that
S = {6 e Clo (x) = 0, vx}
In other words systems in S are never inconsistent. Also define

S = {¢x) ¢ clpa(;) =0, Vx} .

Then S are the systems that are never blocked.
The indicator systems take special forms for systems in S, S and !
These properties are summarized below without proofs.
1) ¢ ¢ S <=> e = 0
P, (x) = ¢(x)
* @ - ¢

©
[=~]
x
~r
n

(L - x)

©
—~

]
~

f
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2) 9 £ S <=> Pg = 0

0, () = ¢ (x)

SOOI RSP

pe® = 0(0) - ¢°(w)
b x) =0 - 0

3) ¢cu<=>o=¢D<->oB=0.pC=0
pe(x) = ¢(x)

p_(x) = 3(1 - x)

Lemma 2.1:

¢ £ S 1f and only if ¢D e S .
Proof:

v eS=p.=0=6(x)1-x)=0;wvx

Now look at of the dual system:

‘B
op = 0@ P - 2)° = s@e@ - ) =0
Thus ¢D(§) ¢ S . The opposite is proved similarly.

Lemma 2.2:

The definition of S 1s equivalent to the definition of S in Chapter 1

({.e., S are the systems for which any two paths have a common component.)

Proof:

(1) Take ¢(x) with DC(_J_() =0 ,Vx . Thea suppose ¢(x) has two
paths with no common component. Then by choice of x I can make all elements

in the one path equal to 1 and all elements in the other path equal to zero.
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Then ¢(x) =1 and $(1 - x) = 1 => Pc (X) =1 for some X . Contradiction.
(11) Take ¢{x) sucn that any two paths have a common component.

Then suppose that for soue X, pc(g) =1 . This implies ¢(x) =1 and

$(1 ~ x) = 1 which implies that ¢(x) has a path with all components equal

to 1 and a path with all components equal to zero for that X . Thus there

are two paths with no common component. Contradiction.

Lemma 2.3:

S consists of coherent systems such that any two cuts have a common
component and only those.
Proof:

Since ¢ € S <=> ¢D € S and since that paths of the dual are the cuts
of the system and vice versa, it follows by Lemma 2, that ¢ must be such
that any two cuts have a common component.

Lemma 2.4:
The only systems that are never blocked or inconsistent are the sys* ‘ms

in M (i.e., the systems such that $(x) = ¢D(§) » VX)) .

Proof:

) If $(x) = 6°(x) then
P = 0@ - 0 = 4@ Q- ¢°@) = 4® - s () -
=4 -9 =0.
Pp® = " @ (L - %) = 4oL - x) = pe® = 0.

(11) 1f Pc(X) = 0 and pp(x) = 0 Vvx




Then

0, (1) = 8L - x) = 0

oy (%) = L% -0 = (1 - 6@ -0)A - @)= 1+ (L - %) -
¢ (x) - ¢(1 - x) = 0.

Substituting the first in the second equation we obtain:
D
1-6() - ¢(L-x)=0=>¢x =¢ x .||

Pictorially we have:

L’

@

M=Sns§

It is also immediate that for systems in M any path is also a cut and vice

versa.

+
Some examples of systems in M are the odd majority systems & 2 L out-

of-n , with n odd) and odd majority systems whose components are udd
majority systems. For example, a 2 out of 3 system of 2 out of 3 systems.

It is now obvious that the series combination of two S systems is

also in S , while the parallel combination of two systems in S 1is also

in S . Whether a parallel combination of two S-systems is also in S

will depend on the structure of the two systems. The following propositions

deal with this question.
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Proposition 2.1:

Let ¢,(® , ¢, ¢ S where x and y have at least one common
component. Then their parallel combination will still belong to S if

and only if ¢1(§)¢2(];- y) =0 for all x,y .
Proof :

The new system will have a structure function

$(3) = 610 + 0,(0) - § W, @)

We calculate Pc for this system,
Pc = ¢l - x, 1 -y)

Substituting for ¢(x,y) and noting that ¢1(§)¢1(];- x) =0, ¢2(1)¢2(];- y) =0

since ¢1,¢2 € S we obtain

Pe = ¢, (L~ x) + ¢,(L - ¥¢, x)
But then to require that P = 0 (which is equivalent to the parallel combination

belonging to S) is equivalent to asking that:

But this is equivalent to one only condition:

Remark:
The requirement that x and y have some common components 1s needed

because otherwise the condition we found would be satisfied only for trivial

systems like ¢1(£) - 3, ¢2(1) =0 vx,y.

o e i
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1 Proposition 2.2:

Let ¢1(5), ¢2(x) e S where x and y have at least one common
component. Then their series combination will still belong to S if and

only if ¢?(§)¢2(l -y)=0 for all x,y.

Proof:

Similar to the above only now:

D D ;
$(x,y) = ¢,(00,(x) and pp=¢ (KY$ A -x,1 -y . ]
Let us look a little closer at the conditions of Proposition 2.1 and
i 2.2. For Proposition 2.1 the condition is ¢l(§)¢2(l_— y) = 0 <=>
{ i

6 (L= 05 = 0 <= $D(41 () = ;) <= ¢ 2 ¢ <= by

symmetry ¢2(§) 2 4,00 -

Some systems that satisfy this are:

1) ¢2QQ is a k out-~f-n system.
¢l(§) is an x out-of-n system where x =y and & > k .

2) Let z be commea in both y and x . Then ¢g(x) is a k out-
of-n system over 2z 1n parallel with any other system over Yy
and ¢1(§) is an 2 out-of-n system over z 1in seriles with any
other system over x and £ > k .

A real life situation of the latter example is the governmental system

(President-Congress) in the U. S. Here ¢l is the House (1/2 majority) in series i
with the Senate (1/2 majority) in series with the president. While ¢2 is the

House (2/3 majority) in series with the Senate (2/3 majority) the dual of

¢2 is the dual of the House (i.e., House with 1/3 majority) in parallel

with the Senate (1/3 majority) and indeed, 1/2 > 1/3 rajority. We can now
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safely conclude that this govermnment belongs to the S systems (possibly
blocked but never inconsistent). At least this is something.
D
Similarly the condition of Proposition 2.2 is equivalent to ¢2(x) > ¢1(§)

or ¢1(§) > ¢g(1) and similar examples hold.

2.4 Properties of the Characteristic Sets

Theorem 2.1:

If for a set of alternatives A , each component of a coherent system
$(x) 1s allowed to consider one and only one alternative as the best (i.e.,
the optimal set Ai of each individual i =1, ... n contains one and only
one element) then,

(a) A+(A) can contain at most one element.

(b) 1If A+(A) # ¢ then AB(A) = @, and AC(A) = ¢

(c) 1If AB(A) # @ then AC(A) =@
Proof:

(a) First it is clear that A+(A) can be empty. Consider for example
a series system where not all components agree on which is the
best alternative in A .
Now 1f a e A 1is such that p+(§(a)) = 1 this means that
¢$(x(a)) = 1 and ¢D(§ﬂa)) = 1 or that there is a path and a
zut in ¢(x) that considers a as the best in A . Since the
components are not allowed to consider more than one alternative
as the best it follows that a 1s the only element in A+(A) .
(b) 1If A+(A) # 0 let a be the element in A+(A) . Now suppose

that for b $a pB(g(b)) = ] then ¢D(1_- x(b)) =1 and

s
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¢D(§(b)) = 1 . The latter implies that there is a path in the dual

% that considers b the best or a cut in the primal (¢(x)) that
considers b the best. But since p+(x(a)) = ] there 1s a
path and a cut in ¢(x) that considers a the best. Contra-
diction since the common element of path that prefers a and the
cut that prefers b must prefer both.

To prove that AC(A) = @ we again observe that b ¢ AC(A)
b implies that there is a path in ¢(x) that considers b the best
which contradicts the fact that a 1is the best for both a path
and a cut in ¢(x) .

(c) 1f AB(A) # @ then for a e AB(A) pB(E(a))= 1 => there is a cut

but not a path in ¢(x) that considers a the best in A . Now
if A.(A) # @ there is b ¢ A (A) or po(x(b)) = 1 or there

is a path but not a cut in ¢(x) which regards b the best in
A . But the above implies that the commca component of the path

and the cut must prefer both a and b 1in A ; contradiction. || %

Corollary 2.1:

1f |A| >1 and A _(A) = @ then A+(A) ag.

Proof:

Since A_(A) = ¢ , A = A_(A) U Ag(A) U A () but by Theorem 1 (b) i
if A+(A) P = AB(A) U AC(A) = ¢ . This implies that A = A+(A) but

then A+(A) must contain more than one element. Contradiction. Thus

A =9 .

The above can be summarized in the following table:
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A, Ag Ac A
A+ Yes Yes
! Yes Yes
| s
| AC Yes Yes
A_ Yes Yes Yes Yes
¥
3
¢ Figure 1

Summary of Theorem 1
(A "Yes" indicates that the sets of corresponding
3 to the row and column can be both non-empty. All
] other combinations are impossible.)

Corollary 2.2:

For any given system ¢(x) and set of alternatives A if each component

considers one and only one alternative in A as the best then one and only ;
one of the following statements holds: %
(@) A (A UA(8) =4 1
() A (A) UA_(8) = A
(c) AL(A)UA_(A) = A
(d) A_(A) =aA
Proof:

Obvivus from Theorem 2.1,

e, Mt e & e
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III. The Introduction of Probabilities

Once we formed coherent decision structures we might as well introduce
probabilities. Let's assume that each individual (component) has a pro-
bability of agreeing that "a is a best alternative in A" for each a ¢ A .

Mathematically we have,
vi(aIA) = Pr[xi(a|A) =1] = Exi(aIA) .

If we assume that each individual can at any given time prefer one and only

one alternative from the set A then

) vi(aIA) =1;1=1, ..., n.
acA

S 2 i i

We can now calculate the probabilities

P+(a|A) E Pr[p+(§(a|A) = 1] = Prla e A (A)] ,
Py(ala) = Prloy(x(ala)) = 1] = Prla ¢ Aj(A)] T
Pc(ala) = Prlo (x(ala)) = 1] = Prla ¢ A ()] 1
P_(alA) = Pr(o_(x(a]a)) = 1] = Pra ¢ A_(A)]

Certainly P+(a|A) + P_(alA) + PB(alA) + PC(aIA) =1
1f we assume that xi(alA), xj(alA) are independent for any i,j then the above
probabilities are functions of vl(a|A) .o vn(aIA) only and they are linear in each
vi(aIA); i=1,...,n. Using standard reliability theory arguments we can show that i
(a) P+(a|A) is non-decreasing in each vi(alA)

(b) P_(alA) 1s non-increasing in each vi(alA)

(c) P+(a|A) + Pc(alA) is non-decreasing in each vi(alA) since it
equals to Pr[¢(§(a]A)) = 1] .
(d) P_(ala) + PB(aIA) is non-increasing in each vi(aIA) (because

of (c)).
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Further, the above functions are strictly increasing or decreasing if
1
0 < vi(a|A) <1 for all i1 and there are no irrelevant ) components.

The relevance of the quantities P P, PB’ P is obvious. They

+ - C
tell us the probabilities of a system being passing (P+) blocked (PB)

inconsistent (P or not passing (P_) as a function of the alternative

C)
in question.

We can give however, another interesting interpretation. The individunl

probabilities vi(a|A) imply a complete ordering of the alternatives for

each individual. Likewise, each of the probability functions P+(a|A),

P_(aIA), PB(a|A), PC(aIA) orders the alternatives in the sense of strongly

passing, strongly not passing, being blocked, being inconsistent respectively.
E It 1s easy to check that P+(a|A), 1 - P_(alA), P+(a]A) + PC(aIA), 1 - P_(alA) -
E PB(a|A) each satisfies Axioms 1 and 2 and Conditions 1, 2, 4, 5 of Arrow. i
Condition 3 (irrelevant alternatives) is not satisfied but then again it
does not make sense to require it once we assumed that it does not hold on
the individual level.
] [Tne assumption that the condition of irrelevant alternatives might
not hold on the individual level seems awkward at first. It is not. Con-

sider for example, the three alternatives:

a;: a raincoat with removable lining
az: the same raincoat as above without lining
831 a hat. %
The question is asked, what is the probability "al is the best in
{al,az,a3}" and the same question is asked for a, and a, . Since a,
dominates azrit is very likely that the probabilities will order the

1)

A component 1 1is irrelevant if ¢(1i§) = ¢(Oi§) Vx where 1i X =

i’xi+l RO Y xn .

XpsXgy oo li’xi+1 0P xn and 015 = xl,x2 ... 0
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alternatives as P(al) > P(a3) > P(az) where P(ai) = Pr(a1 is the best
in {81,82,83}); i=1,2,3 ....]

In this sense any of the functions P+(alA), 1 - P_(alA), P+(alA) + PC(aIA)
can be considered as implying a cardinal ordering on the set of alternatives
A . Still the question remains, which one is to be chosen. Concentrate for
the moment on P+(aIA) and P+(a|A) + PC(aIA) . The first gives us the pro-
bability that a will pass as a best and not pass as not a best while the
second gives us the probability the a will pass as a best (regardless
if the negation of a also passes). This is a matter of definition of the
system and what the system will pass as best. An example for the second
kind of system 1s the following:

[A group of people follow a two stage procedure to elect an officer in
their governing body. Let there be n people and m < n candidates. In
the first stage any candidate that can obtain [ ﬁ-] of the votes is
elected. In the second stage one of the candidates of the first stage is
selected by some other procedure, say by chancel). Focus on the first stage.
It is an ['ﬁ ] out-of-n systen and by definition we care only for the
cases when ¢(x) =1 or for the Pr[¢(x(ala)) =1] = P+(a|A) o PC(aIA)
Thus the choice between P+(alA) or P+(a|A) + PC(aIA) depends on the
definition of the system. The same argument holds if the choice were between
1 - P_(alA) and P+(a|A) + PC(a|A) .]

The real problem is then in the strict systems. That is, the systems
that elect an aiternative a only if p+(§(a[A)) = 1 . In this realm it is

not clear whether a decision analyst should try to miximize P+(a|A) over

a ¢ A or minimize P_(aIA) over a € A . There 1s one case where the two

1)By the way, chance has many merits that modern societies don't realize. It
was, however, effectively used for elections in ancient Athens.
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approaches are equivalent: If the system belongs to M, then we know that

P+(a|A) + P_(ajA) =1 for all ac A for any A .
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IV. Conclusions

The first chapter proved once more the Arrow Impossibility Theorem.

! The purpose was to show the relevance of coherent structures and reliability
theory to problems of social choice. Continuing in this direction and to
avoid the deadlock cf the Impossibility Theorem we kept the concept of
coherent structures but abolished the condition on irrelevant alternatives
right at the individual level. It is important to note that we did not
approach the problem by postulating conditions and then trying to find
functions that aggregate individual preferences to social preferences

because then again the question exists on how these functions are going to

take the form of real life institutions. Our approach started in the opposite
direction. We realized that many decision structures in real life have the
form of coherent systems. We don't discuss the morality of such forms or

why and how the positions on the structure are occupied by one individual

and not another. Once the structure is given, however, we know that all

the structure cares about 1s whether the components (individuals) agree or
disagree with an issue that is fed into the system and not whether one com- ]
ponent likes or dislikes the issue a lot or a little. With this attitude
in mind we stualed classes of systems as to whether they will be able to
answer consistently or be blocked, and we showed that only the self-dual
systems are never blocked or inconsistent.

With the introduction of probabilities on the individual level we

were able to aggregate to the system level (through standard reliability
procedures) and find what the probability of each alternative was for 1
passing, being rejected, being blocked, etc. Seen from another point of

view, the probabilities on the individual level induce a cardinal ordering
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of alternative which 1s aggregated to a cardinal ordering on the systems

level by P+ or P_ or P+ + P In the case of self-dual systems of

c .

the above aggregation forms are equivalent.
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