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Preface 

This thesis is a result of my investigating the possibility of 

developing and solving a set of differential equations which describe 

an ascending nucleav fireball. Although complex models have been 

developed, a relatively simple model is needed to aid in the initial 

study of fireballs. Whenever possible I have made assumptions which 

keep the model simple. Included within this report is the FORTRAN 

program that I wrote to solve the equations. 

My sincerest thanks are given to Dr. Charles i. Bridgman, my 

thesis advisor. Not only did he willingly answer ny questions, but he 

asked pertinent questions which served to stimulate my thinking. Also, 

be Introduced me to various persons who were knowledgeable in certain 

related areas. 

I would also like to thank Dr. Donn G. Shanklln, who provided the 

subroutine which I useu to solve the equations; Prof. Harold C. Larsen, 

who answered several of my questions involving fluid dynamics and 

mechanics; and Captain Daniel A. Matuska of the Air Force Weapons 

Laboratory, who furnished the data which I used as input into my 

equations and to which I compared my solutions. To other members of 

the faculty at the Air Force Institute of Technology who geve some 

guidance or encouragement, I say thank you. 
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Abstract 

A set of four differential equations describing a rising, homo¬ 

geneous, spherical, atomic fireball were developed from basic laws 

of physics. These four equations were: a time rate of change of 

temperature derived from energy conservation; a time rate of change 

of altitude derived from the definition of velocity; a time rate of 

change of velocity derived from momentum conservation; and a time 

rate of change of radius derived from the ideal gas law. 

A computer program was written to solve the equations. This 

program assumed that the values for the four parameters were known 

at some time after the second thermal maximum, and the program uses 

a Runge-Kutta method to determine the solutions. The value for the 

entrainment coefficient had to be determined by parametric evaluation. 

The value was chosen to be 0.00055. 

Data for a 1-Kt, sea level nuclear detonation was used, the 

equations solved, and the solutions analyzed. The peak altitude 

was higher than expected and the velocity and radius initially 

behaved as expected. 
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A SIMPLE DESCRIPTION OF AN ASCENDING 

NUCLEAR FIREBALL AND A FORTRAN SOLUTION 

I. Introduction 

Although computer programs? have been written which describe a 

rising fireball from a nuclear explosion, the codes are unusable at the 

Air Force Institute of Technology (AFIT). In many of the codes the 

fireball has been described by some empirical relationship based on 

findings from experimental data and not based on physical concepts. 

Generally, t'-’ese relationships have been used as a subroutine within a 

complex program designed primarily to study some other nuclear effect. 

The programs written specifically to describe a fireball are complex. 

In fact, the computer time required "o process one of these programs 

is prohibitive at AFIT. Therefore, the need for a simple computer 

program which could be used to describe a nuclear fireball has led to 

this thesis. 

Statement of Problem 

The objective of this thesis was twofold. First, a set of basic 

equations which cruld be used to describe a late-time fireball had to 

be developed. The term 'late-time' has been used here to indicate time 

after the second thermal maximum which occurs from a nuclear explosion. 

The set of equations had to be developed with the knowledge that they 

would be of little practical use unless they could be solved by some 

numerical technique using a computer. This led to the second part of 

the thesis problem. 

1 
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The second segment of the problem was to develop a computer 

program that would solve the set of equations previously mentioned. 

The program was to be written in FORTRAN code since AFIT has a terminal 

to a CDC 6600 computer. The actual solutions would be obtained by 

using an available subroutint that incorporated a Runge-Kutta technique. 

Analysis of Problem 

Equations. The equations that describe a nuclear fireball had to 

consider the conservation of energy, mass, and momentum. If one began 

with a set of equations that described the energy, mass, and the momen¬ 

tum of a fireball, then the only requirement remaining was to insure 

that the properties were conserved. 

Programming. The computer program to solve the equations had to 

be written satisfying two criteria. First, the monetary and time 

costs to the user of the code had to be within the limits of AFIT. 

The second criterion was that the code had to be written so that 

variable input data could be used. 

Assumptions 

To solve the thesis problem several assumptions had to be made. 

The main assumptions were: 

1. The nuclear detonation was an air burst (i.e., fireball did 

not touch the ground). 

2. The fireball could be treated as a homogeneous sphere 

3. The drag force acting upon the fireball could be treated as 

the form drag which acts upon a solid sphere as it moves through an 

ambient atmosphere of air 

2 
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A. The pressure within the fireball at late-times is approxi¬ 

mately the same as the ambient pressure 

5. The initial input data would be available from some external 

source. 

Organization 

The remainder of the thesis has been organized just as the problem 

was solved. The derivation of the set of equations describing the 

nuclear fireball is contained within the next chapter, and a method of 

solving the equations is discussed in the following chapter. Next is 

Chapter IV which has the discussion on the results obtained from the 

computer program. The final two chapters contain the conclusions and 

the recommendations, respectively. 

A bibliography and a number cf appendices are located immediately 

following the last chapter. The bibliography may aid anyone who has a 

desire to do more investigation into the problem, and the appendices 

may help refresh the reader’s mind on certain aspects of physics as 

they apply to the problem of late-time fireballs. 

3 
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II. Derivation of Equations 

To describe an ascending nuclear fireball one can begin with the 

equations for the fireball energy, the time rate of change in that 

energy, the simple definition of velocity, the momentum equation, and 

the equation of state of an ideal gas. With the proper applications of 

physical equations as they apply to the fireball and the atmosphere, a 

set of four basic equations can be developed that describe the fireball 

temperature, size, and motion as functions of time. 

The fireball as used in this model is based on several simplifying 

assumptions. First, the fireball, even at late-times, is assumed to be 

a homogeneous sphere of radius r^. Even though a torus is formed by 

late-times (Ref: 18,8), when the objective is to develop a simple model 

to describe the fireball, then the fireball can be assumed to act as a 

sphere (Ref: 7,3). 

The second assumption is that the temperature of the fireball is 

the same throughout the interior. In reality, this is not true 

(Ref: 3,168); however, for the purpose of simplicity a constant temper¬ 

ature is assumed. The fireball temperature, Tf, might best be tnought 

of as an average temperature within the fireball. 

The third, and final, major assumption concerning the fireball 

involves the treatment of entraining the atmospheric air into the 

fireball. This model assumes that the ambient air is taken into the 

fireball at the ambient density and is instantaneously accelerated to 

the velocity of the fireball. Also, this model assumes that the en¬ 

trained air is instantaneously mixed with the gases within the fireball 

to maintain th:; homogeneity of the sphere. A better and more complicated 

4 
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description of the interior of a fireball is being developed by consid¬ 

ering the fireball as consisting of three fluids: a hot, unmixed gas; 

a cold, unmixed gas which is the entrained air; and a mixture of the 

two (Ref: 12,19). But since the simple model assumes a homogeneous 

sphere with a temperature Tf, the instantaneous m'-ing is assumed. The 

three-fluid model is complicated and is impossible to describe using 

simple equations; therefore, it will not be incorporated into this 

model. 

The method of approach used in developing this simple model is to 

start by considering the energy equations and arriving at an equation 

describing the temperature of the fireball. Then, the basic velocity 

aquation is considered. Following this, the forces acting upon the fire 

ball system are considered to insure conservation of momentum. This 

leads to an equation describing the acceleration of the fireball. The 

final expression developed gives the time rate of change in the fire¬ 

ball radius. Each of the final equations is a function of the fireball 

temperature, radius, velocity, and/or altitude. 

Before proceeding into the actual development of the set of equa¬ 

tions, the reader is referred to page vii which contains a listing of 

the symbols used in this model. For the purpose of clarity, the first 

time that a symbol is used, it will be defined. The dimensions of the 

variable quarcities are given in parentheses following the definition. 

If the symbol represents a constant, the value and units are given 

followed by the name of the constant. 

5 
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Energy 

The energy within a nuclear fireball is the sun- of the radiant 

energy and the internal energy which, in equation form, is 

where 

Ibitor^T^ 

E - energy of fireball (J) 

it * 3.1416, constant pi 

g - 5.6696xl0~8 nt/(m-sec-°K4), Stephan- 

Boltzmann constant 

8 — i 
c * 2.9979x10 m-sec , speed of light 

rf * radius of fireball (m) 

Tf - temperature of fireball (0K) 

Mf *= mass of fireball (kgm) 

cv “ specific heat at constant volume 

(J-kgnf^V1) 

(1) 

At late-times, any time after the second thermal maximum, the 

temperature of the fireball is on the order of a few thousand degrees 

or less, the radius is on the order of a few hundred meters, and the 

specific heat is on the order of a thousand Joules per kilogram per 

degree. Therefore, eq (1) can be approximated by 

Differentiating this approximation with respect to time (WRT) 

gives, when the chain rule is applied to dcv/dt, the following equation: 

6 
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dE 

dt (3) 

where dE 

dt 

-1 
" time rate of change in fireball energy (J’sec ) 

* time rate of change in fireball temperature 

(OR-sec'1) 

dc 
V 

■ rate of change in cv WRT Tf (.T*kgm~A*°K-z) 
dT 

f 

dMf 

- time rate of change in fireball mass (kgnrsec”1). 

The rate of change in mass is due to entrainment and can be ex¬ 

pressed in terms of the ambient density, the surface area of the 

fireball, and the velocity of the fireball relative to the atmosphere 

through which the fireball is moving (Ref: 21, 16A4). This expression 

in valid since the fireball is assumed to be spherical. The rate at 

which the fireball mass changes is 

f 

dt (A) 

where e - entrainment coefficient (dimensionless) 

“ ambient air density (kgm*m ) 

Vrel " ^f ’ velocity relative to ambient 

atmosphere (m*sec~^) 

The entrainment coefficient is assumed to be constant. From 

nuclear tests, a range of values from 0.13 to 0.26 for e has been 

found (Ref: 7, 8). The only method available to determine the actual 

value for the entrainment coefficient is to apply the descriptive 

7 
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equations being developed herein to some known data from a fireball. 

An expression for the mass and density of the fireball is derived 

from the equation of state for dry air since the fireball is composed 

mainly of heated air in one form or another. The equation of state 

for dry air is developed from the equation of state for an ideal gas. 

This is actually done in Appendix A. The equation of state for dry 

air is 

where 

P V 
a a 

M R,T 
a d a 

(5) 

p “ pressure of ambient air (Nfm ) 
A 

3 
V - volume of ambient air (m ) 

a 

M - mass of ambient air (kgm) 
a 

R. - 287.05 J*kgm **°K \ gas constam for dry air 
d 

T ■ temperature of ambient air (°K) 
a 

Since the density is, by definition, mass per unit volume, 

eq (5) can be solved for M /V which is the density of air; therefore, 
a a 

P 
a 

a 

R.T 
d a 

(6) 

_3 
where p is the density of ambient air (kgm*m ). This is the form 

a 

for the air density that will be used in eq (A). 

An expression for the mass of the fireball is obtained by applying 

eq (5) to the fireball and by using 

(7) 

where (m3) is the volume of a fireball when taken to be a sphere 

8 
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with radius r^. The only change is eq (5) when it is applied to a 

fireball is the changing of the subscript 'a' to 'f. This change 

yields the equation of state for a fireball. By using this and 

*<1 (7), one can vrite the mass of the fireball as 

M 
f 

4,,Pfrf 

3RdTf 
(8) 

«2 
where pf is the pressure within the fireball (Nfm ). 

The specific heat of air at constant volume is a function of 

temperature (Ref: 17). However, for the purpose of simplicity a 

constant value of is assumed for this model. The reasons for 

selecting this particular value for cv are discussed in Appendix B. 

Substituting in the numerical value for R. leads to 
d 

cv - 717.63 J-kgm^.V1 (9) 

This implies that for this simple model. 

^v 
dT 

0 (10) 

Eq (3) can now be written in terms of fewer variables by using 

«98 (A), (6), (8), and (10). When these equations are substituted 

into eq (3) the common terms are factored, the dE/dt can be approxi¬ 

mated by 

dE 

dt 

4ïïrfcv pfrf ‘"f , £paTfvrel 

R. 3 dt T 
. d a 

9 
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But by using the first law of thermodynamics, the time rate of 

change in the fireball energy can be written as the sum of the internal 

energy lost by radiation and the energy given up in the form of work 

done by the expanding fireball. In this model, the energy gained by 

the fireball through the release of latent heat is not considered. One 

knows from basic physics that as phase changes take place either energy 

is gained or lost by the body undergoing the changes (Ref: 8, 482). In 

this model the quantity of latent heat is assumed small when compared 

to the amount of energy being radiated or lost due to expansion. 

Writing dE/dt as the sum of the radiant energy lost and the work 

energy lost gives 

dE 

dt 
-4TrorjTj Pf 

(12) 

where dV^/dt is the time rate of change in the volume of the fireball, 

/ 3 -lx (m *sec ). 

Differentiating the equation of state for a fireball, “ ^f^d^f* 

with respect to time and solving for p^dV^/dt gives 

Pf 
MfRd RdTf 

(13) 

where dp^/dt is the time rate of change in the fireball pressure, 

-2 -1 
(Nt*m *sec ). 

10 
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When the chain rule is applied to dpf/dt, the following equation 

can be obtained: 

dpf dpf dz 

dt dz dt (14) 

where dpf/dz is the change in the pressure within the fireball with 

_3 
resnect to altitude, (Nt*m ), and dz/dt is, by definition, the velocity 

of the fireball (nrsec *). Since the equation representing the velocity 

is an extremely important equation, as will be evident later in this 

development, let it be written as 

Using eqs (4), (6), (7), (8), (14), and (15) in eq (11) yields 

the following expression for the work energy: 

Using the above form for the work energy in eq (12) and collecting 

the common terms give 

T 
a 

Vf dp 
3 dz 

11 
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Temperature 

Now, since eqs (11) and (17) are both approximately equal to the 

time rate of change in the energy of a fireball, the right hand sides 

(RHS) of the equations must be approximately equal. Therefore: 

Anr^/p^r^c dT. c ep T,v , 
ft f f V _f + V ra f rel 

3T, dt 

-Aur^/ oT, Pfrf dT 

3Tf dt 

, cp T,v , 
f + a f rel 

T 
a 

l£t dpf 
3 dz 

(18) 

The last equation can be solved for dTf/dt. Since the pressure is a 

function of altitude, and the specific heat value has been chosen to 

be constant, the resulting equation for dTf/dt is a function of the 

altitude, radius, temperature, and velocity of the fireball. After 

applying some basic algebra, eq (18) yields the following approxima¬ 

tion for the time rate of change in the fireball temperature: 

dT 

dt 
3RdTf 

L(cv+ Rd) pfrf 

rfvf J',f 
3 dz (19) 

Before proceeding into the development of the remaining equations, 

a brief discussion of the pressure and the specific heat are appropriate. 

This allows eq (19) to be written in the final form. 
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The pressure within the fireball can le assumed to be equal to the 

ambient air pressure, p , for the times being considered in this model. 
cl 

The shock front has moved from the vicinity of the fireball, and the 

pressure within the fireball has had a relatively long time in which to 

return to the ambient pressure (Ref: 14, 7). For 100-kt yields or 

less, the time required to return to ambient pressure is approximately 

one second. The model being developed herein will be based on this 

assumption; that is, 

(20) P a 

This model will use the standard atmosphere as adopted by the 

National Advisory Committee for Aeronautics (NACA). The NACA has 

accepted 10,769m as the height of the tropopause; therefore, two sets 

of equations describing a fireball must eventually be considered. The 

only differences in the sets will be the equations that will be used 

to describe the properties of the atmosphere. The atmospheric tem¬ 

perature and pressure as functions of altitude are given by the 

following equations (Ref: 9, 52): 

T - 288 - .0065z 
a 

T - 218 
a 

z< 10,769m (21a) 

z> 10,769m (21b) 

z< 10,769m (22a) 

pa - 23452 exp [- (z - 10,769)/6381.6] z> 10,769m (22b) 

where the temperature is in °K and the pressure is in Nt’m-^. 

13 
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The change in pressure found in eq (17) can be found by differen¬ 

tiating eqs (22a) and (22b) with respect to altitude. The simplified 

forms of dp /dz are 
â 

.80977 

dpa » (-1.9991X10-19) (44,308 - z) •19023,zi 10,769m (23a) 

dz 

dpa - -3.6749 exp [-(z - 10,769)/6381.6] ,z > 10,769m (23b) 

dz 

Now eq (19) can be written in the final form. Naturally, since 

the atmosphere has been divided into two regions, there are actually 

two expressions for dTf/dt. The numerical values for Rd and cv have 

been inserted into eq (19) as have been eqs (20) through (23) f^r 

the purpose of simplifying the final forms. 

For z < 10,769m: 

dT 

dt 
f ~ 

2.2539x1019T, 

rf (44,308 - z) 
.19023 

aT4 + (l.3310xl0'19)(44,308 - z) 
.19023 

eT,v , 
f rel 

288 - .0065z 

.80977 

-90 14023 
+ 6.6637x10 rfvf(44,308-z) (24a) 
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For z > 10,769m: 

3.6549xl0“5Tf 

exp [-(z-10,769)/6381.6] 

3.7652xl02eTfvrel exp [-(z-10,769)/6381.6] 

1.2250rjV^ exp [-(z - 10,769)/6381.6] 

+ 

(24b) 

So far the equations giving the time rate of change in the temper¬ 

ature and the altitude of the fireball are available. They are given 

by eqs (24a) and (24b) as well as eq (15). Since e is assumed to be 

constant, the equations are in terms of the fireball temperature, 

altitude, radius, and velocity. 

Velocity 

As previously mentioned as eq (15), the time rate of change in the 

altitude of the fireball is nothing more than the velocity of the fire¬ 

ball. Now, an equation describing the time rate of change in the 

velocity, commonly called the acceleration, is needed. The desired 

equation must be in terms of the same parameters as mentioned in the 

preceeding paragraph. 

Acceleration 

By considering the conservation of momentum one can determine an 

expression for dvf/dt. The time rate of change in the momentum must 

be equal to the sum of the forces acting upon the fireball. At late- 

times there are only two forces acting upon the fireball. They are the 

buoyant force (Fg) and the drag force (FD). A more detailed discussion 

15 
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on these forces will be given later, but first recall that the basic 

equation for momentum can be written as 

(25) 

where Hj, is the total mass of the fireball system (kgm) and F^, is the 

total force acting upon the fireball (Nt). 

When momentum is being considered, the mass of the fireball system 

is greater than just the mass of the fireball. This is a result of the 

presence of the ambient air around the fireball. As the fireball moves 

through the atmosphere, the apparent mass of the fireball is actually 

equal to the mass of the fireball plus half of the mass of the fireball 

but consisting of air (Ref: 13, 124). Thus, when the mass is written 

as the product of the volume and the density, 

4irr? 

Up - —— (Pf + Pfl/2) (26) 

-3 
where is the density of the fireball (kgm*m ). The apparent mass 

effect is indicated by the p /2-term. 
a 

Performing the differentiation in eq (25) and making use of eqs 

(4) and (26) gives 

4irr'I dv. - 

— <“£ + ST + 4,t °.rfVivf ' ft (27) 

Before this equation can be simplified, a brief discussion on the 

forces acting upon the fireball is needed. Fg is discussed first, and 

then Fq Is discussed. 
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Buoyant Force. The density of the fireball initially is much less 

than the density of the ambient air surrounding the fireball because of 

the extremely high temperature within the fireball. The result is an 

initial upward force acting upon the fireball. This is an example of 

Archimedes' principle (Ref: 8, 363). The buoyant force can be written 

as 

FB e 8(Ma - Mf) (28) 

_2 
where g = 9.80671 m’sec , the earth's gravitational acceleration 

constant. 

Writing the mass as the product of the volume and the density 

gives the following equation for the buoyant force: 

FB * 8(Vapa - W <29> 

Since, by necessity, the volume of the air displaced by the fireball 

must be equal to the volume of the fireball; therefore, 

Va = Vf (30) 

By substituting eq (30) into eq (29) for V , factoring out the 
SL 

common term V^, and using the equivalent form of as given by eq (7), 

one can write F as 
b 

4ïïgrJ 
FB = ~3 ^Pa " Pf^ 

This is the form of F that will be used later in developing the 

remainder of the equations. 
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Dra¿ Fiorce. Any body moving through a fluid, even if that fluid 

is air, experiences a retarding force which opposes the motion. This 

force is commonly referred to as the drag force. The drag force is 

dependent upon the shape, size, and velocity of the moving body as 

well as upon the properties of the fluid through which the object is 

moving (Ref: 19, 91). 

Any text on fluid dynamics gives an equation for the drag force 

experienced by a sphere moving through a fluid. One such equation is 

(Ref: 16, 5-10) 

FD “ 1/2CD p VrelA (32) 

where fd " drag force on sphere (Nt) 

CD " drag coefficient (dimensionless) 

P - density of fluid (kgm-m"3) 

vrel * relative velocity between sphere 

and fluid (m*sec~^) 

A - area of sphere projected on plane 

normal to direction of motion (m2). 

When eq (32) is applied to a fireball, it can be written as 

Fd - fCD parfvrel (33) 

where the projected area has been replaced by irr2. 

The value of Cp is usually obtained from a graph of the drag 

coefficient versus a quantity called the Reynolds' number, Re. 

To obtain a value for CD, one must first compute the value of Re, and 

then obtain the value of CD by referring to a CDvs Re graph for a 
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sphere. The values for the Re for a spherical nuclear fireball have an 

order of magnitude of 10 to 10 , and the values of CD are from 

approximately 0.2 to 0.1 in this Re-range (Ref: 11, 3-8). Appendix C 

gives a more detailed discussion of CD and Re as it applies to the fire¬ 

ball problem. Since the upper limit occurs more often in the study of 

fireball rise, CD = 0.1 is used within this model. 

Eq (33) assumes that the direction of motion of the fireball is 

unchanging. Since the fireball may oscillate around an altitude of 

stabilization, eq (33) must be modified to indicate the change in the 

drag force. The drag force must always oppose the buoyant force. When 

the fireball is above the stabilization altitude (pr = p ), then F <0- 
fa B * 

therefore, the effect of must be positive. To insure that F^ always 

opposes Fg, eq (33) should be written as 

FD • 2¾ parfVrel (34) 

Using = Fg “ F^ and the RHS of eq (27) replaced with eqs (31) 

and (34), one can describe the forces acting on the fireball as 

4irrl dv. 

i (Pr i/2 p ) —— + 4 it e p rfvrv 
J i a dt a f f rel 

4TTgr 

1 - Pf> - "WfVral (35) 

By applying some rules of algebra, one can solve the above equa¬ 

tion for the acceleration of the fireball, dvf/dt. The equation becomes 
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dt 

dvf 28(Pa “ Pf) 
(36) 

From this equation one can see that the effect of entrainment Is 

like the aerodynamic drag. Using the equation of state for dry air 

and the fireball plus eqs (20) and (30), one finds that 

When both the numerator and denominator of eq (36) are divided by 

Pf and eq (37) is substituted in the resulting expression, one gets 

dv 
f 

(38) dt 

This is one of the equations describing a nuclear fireball which 

must eventually be solved. From this equation, the initial accelera¬ 

tion must be approximately 2g since >> and v^ is zero. Only 

when Tf and Ta become the same order of magnitude will the drag force 

appreciably effect the acceleration. 

In order for this equation to be solved, T must be written in 
cl 

terms of the fireball altitude. This is done by making use of eqs (21a) 

and (22b). The results are given on the following page. 
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For z < 10,769m 

288 - .0065z rf(288 - .0065z) 

(CD + 8e) 
(39a) 

dt 
2 + 288 -.0065z 

For z > 10,769m: 

218rf 

(CD + 8e) 

(39b) 
TTTf 

218 

Radius 

Since the equations for dT^/dt and dv^/dt involve r^, an 

expression for the time rate of change in the radius, dr^/dt, is 

needed. When this equation is obtained, then the set of equations 

which describe a rising nuclear fireball will be complete. 

The equation of state for the fireball is the beginning point in 

developing the desired equation. Using eq (7) to express in terms 

of r, and the assumption that pf = p yields the following form of 

the equation of state: 

^ - *Wf (4 

Taking the time derivative of this equation will give a time 

derivative of r^, which is the item of interest. When this is done 

and eqs (4) and (6) are properly substituted into the result, the 

equation found on the next page is obtained. 
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eT-V 
f rel 

dt " 3Tf dt 3p dz 
ra 

(41) 

The parameters of T , p , and dp /dz are given as functions of 
cl cl a 

altitude by eqs (21a) through (23b). One can see that dr^/dt must be 

expressed by two equations since the parameters each have two forms. 

Substitution of eqs (21a), (22a), and (23a) into eq (41) and solving 

for drf/dt gives the following expression which is valid for z <_ 10,769m: 

dr 
f + - — + _ 

288 - .0065z 44,308 - z (42a) dt 3Tf dt 

Substitution of eqs (21b), (22b), and (23b) gives the following 

equation for drf/dt which is valid for z > 10,769m: 

drf rf dTf eTfv l 
IT m 3f¡dT + “nr" + 5.2232xl0-5rfvf (42 

Now that the time rate of change in the radius of the fireball is 

written in terms of T^, r^, and v^, all of the necessary equations to 

describe a rising fireball at late-times are available for solution. 
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Summary 

The four equations that are necessary to describe a rising nuclear 

fireball have just been developed. The equations form a simple descrip¬ 

tive model since several assumptions were made in the developing process. 

Since the NACA standard atmosphere was used and since it is based upon 

the tropopause being at 10,769-meters, a set of equations had to be 

written in the final form that was valid for each region of the atmos¬ 

phere. Thus, two separate sets were actually derived. 

The equations are written in terms of four properties of the fire¬ 

ball. They are: temperature, T^; altitude, z; radius, r^; and the 

velocity, v^. The set of equations involves the time derivatives of 

these four parameters. 

The two sets of descriptive equations are repeated here since they 

do not appear anywhere as a consolidated list. 

For z <_ 10,769m: 

2.2539xl019 Tf 

-ITT x 
.19023 

rf (44,308 -z) 

+ 

1 
-iq iqn?”î 

1.3310x10 (44,308 - z) eTfVrel 

288 - .0065z 

.80977 

+ 6.6637xl0_20rfvf(44,308 - z)*19023 

(24a) 

- V 
dt vf (15) 
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dVj 

dt 

2g 
- 1' 

288 - .0065z 

•75T-V-V . 
f f rel 

(CD + 8 e ) 

rf(288 - .0065z) 

2 + 
288 - .0065z 

(39a) 

dt 
_If ff 
3Tf dt 

1.7523rfvf 

288 - .0065z + A4,308 - 7 

cT _v 
f rel (42a) 

For z > 10,769m: 

5 
dt 

3.6549x10-5T, 

rf exp [-(z - 10,769)/6381.6] 
4 

aT^ + 

e3.7652xlO¿Tfvrel exp [-(z - 10,769)/6381.6] + 

1.2250rfvf exp (-(z - 10,769)/6381.5] (24b) 

dz 
dt (15) 

d^ 

dt 

2g 
f - 1 

218 
•75TfVfVrel (Cd ^ 8 c > 

218r , 

2 + Tf 

218 

(39b) 

dt 3Tf dt 

eT.v . 
f rel 
218 

+ 5.2232xl0-5rfvf (42b) 
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i 

. III. Solving the Equations 

r 

* 

Numerical Techniques Used 

j Modified Euler-Cauchy Method. The four equations developed in 

the previous chapter describe a rising nuclear fireball at late-times. 

The equations were initially solved by using the Modified Euler-Cauchy 

Method (Ref: 15, 259) and a Hewlett-Packard, model 35, hand calcula¬ 

tor. However, the purpose of using this method was to study the 

effect of each term in order to see if any of the terms were insigni¬ 

ficant. For this reason, only three iterations were actually performed. 

Also, the modified Euler-Cauchy Method is only an improved version 

of the point-slope technique. This method uses the slope at the mid¬ 

point between two values instead of using the slopes at an end-point. 

Thus, the solutions are more accurate for slowly varying functions 

than for rapidly varying functions. Around the points of inflection 

the Modified Euler-Cauchy Method can yield erroneous answers since 

the actual slopes can be greater than the slopes generated by using 

the mid-point. 

Runge-Kutta Technique. After checking the order of magnitude of 

each term, the Runge-Kutta Technique was selected. An existing computer 

code called BLCKDQ has been developed by Donn L. Shanklin of AFIT 

(Ref: 22) which uses an eighth-order Runge-Kutta Technique. 

BLCKDQ 

The subroutine BLCKDQ solves a set of first-order differential 

equations by an eighth order Runge-Kutta method. The initial values 
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of the independent variable, time, and the corresponding dependent varia¬ 

bles, temperature, altitude, velocity, and radius, must be furnished as 

input data to BLCKDQ. Also, the desired degree of accuracy in each 

variable and the desired final value of the independent variable must 

be given as input data. The exact form of the input data is discussed 

below. 

Input. The input variables necessary to access BLCKDQ are FCN, 

NEQ, ND, XIN, XOUT, YS, X, Y, F, ALWNC, ALLOW, REST, SIZE, and IBLCK. 

Each of these terms are now discussed to illustrate the necessary input 

data required for BLCKDQ. 

1. FCN is an external function subroutine called EXTERNAL FCN 

(X, Y, F) which contains the actual differential equations to be solved, 

here equations 24, 15, 39, and 42. X is the independent variable which 

is time, Y is a matrix of the current values of the dependent variables, 

and F is a matrix of the values of the derivatives of the dependent 

variables at X. 

2. NEQ is the number of equations to be solved. In this case 

NEQ = 4. 

3. ND is the dimension limit for the arrays Y and F, and in this 

case ND = 4. 

4. XIN is the initial value of the independent variable which in 

this case is time. In this study the initial value is set equal to 

zero and then incremented by the value of XOUT. 

5. XOUT is the final desired value of the independent variable. 

In this case, XOUT is the time increment for establishing the time 

between the desired solutions. 
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6. YS is a matrix which Initially contains the values of the 

dependent variables at time - XIN and which upon returning from BLCKDQ 

contains the solutions at time = XOUT. 

7. X is an array of length 12 which contains a table of values 

of the independent variable around XOUT upon returning from BLCKDQ. 

This array is us<id internally. 

8. Y is a scratch-pad matrix which at return contains the values 

of the dependent variables for each value in X. The matrix Y is 

dimensioned (4, 12) in this model. Therefore, if Y (1) corresponds to 

the dependent variable of temperature, then Y (1, J) corresponds to the 

temperature values at X (J). 

9. F is a scratch-pad matrix which at return contains the values 

of the derivatives of the dependent variables for each time value in X. 

In this model F is dimensioned (4, 12); therefore, the values in F have 

the same relationship to X as does Y. 

10. ALWNC is the array, dimensioned ALWNC (4), which contains the 

relative error tolerances. The actual values of the tolerances are 

read into the matrix by the main program, and the values are discussed 

later in this report. 

11. ALLOW is a scratch-pad array with a length cf four in this 

model. 

12. HEST is the estimated step size and is automatically adjusted 

by the subroutine BLCKDQ. At return, HEST contains the last step size 

used y BLCKDQ. An initial, extremely bad guess will waste computer 

time, but an initial good guess is not critical for BLCKDQ to work. 

In this model the initial values of HEST are 10~6. 
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13. SIZE Is an array which contains the guesses for the solutions' 

sizes. In this model the dimensioning of the array Is (4). The 

subroutine is written so that no initial values need to be given; 

therefore, since no size estimates are known for the solutions, no 

initial values are given for SIZE. 

14. IBLCK is an indicator to BLCKDQ. If no estimates are given 

in SIZE, then IBLCK must be negative. But, if estimates are given 

in SIZE, then IBLCK must be zero. Since no values are given in this 

model for SIZE, IBLCK = -1. 

The above list can be reduced to the following input data: the 

initial time and the desired time increment between solutions; the 

Initial values of the dependent variables; and the relative error 

tolerance for each dependent variable. 

A short main program was written to process this input, to call 

BLCKDQ, to produce the solutions, and to process the output. This 

program, plus some subroutines, are contained in Appendix D. Only 

the essential input data and the output options are now d'scussed. 

Data- The main computer program is written to read five 

data cards. The cards can be thought of as containing the time in¬ 

formation on the first card, the initial values of the dependent 

variables on the second card, the tolerances on the third card, the 

number of iterations minus one on the fourth card, and the last card 

contains an indicator to select the type of output desired. Each of 

these are discussed in greater detail in the following paragraphs. 
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1. Time. On the first data card, two numbers appear. 

The first number is the initial time of the data which is actually 

the time after the explosion. This time is given in seconds. The 

second number on the card is the time increment in seconds, and 

this corresponds to the first XOUT-value. 

2. Dependent variables. The second data card contains 

four numbers corresponding to the dependent variables. The values 

are read into the program as YS(I), I - 1,4. YS(1) is the tempera¬ 

ture of tie fireball, YS(2) is the altitude, YS(3) is the velocity, 

and YS(4) is the radius. The actual values on the card are deter¬ 

mined by the size of the nuclear device and the initial time selected. 

The actual data that is used in studying the set of equations is 

given here as Table I, which is located on the following page. 

3. Tolerances. The third card also contains four numbers, 

but these four numbers are the relative error tolerances. The values 

fcr this model are not all equal since the magnitudes of the ex¬ 

pected range for the various oependent variables are different. 

The tolerance for the velocity is chosen to be equal to one since 

the expected change in the velocity for a time increment is small. 

The three remaining tolerances are each chosen to be equal to ten. 
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Table I 

Initial Input Data 

Data at One 
Second After Burst of 

of 1-Kt, Sea-level Detonation 

Variable Value 

T(°K) 

z(m) 

v(m/sec) 

r(m) 

6000 

0 

0 

100 

(Ref: 23) 

A. Number of iterations. The fourth data card contains a 

single integer which represents the number of solutions to be found 

by BLCKDQ minus one. The number is used as an upper limit on a D0- 

loop in the main program. The number chosen for this study is 599 

since the total number of iterations is then 600. By this judicious 

selection, the times values, although originally in seconds, can 

easily be converted to minutes. 

5. Output indicator. The fifth, and final, data card also 

contains a single number. But this number is used within the main pro¬ 

gram only as a means of selecting the form in which the solutions are 

to be displayed; therefore, this final number does not effect the solu 

tions. There are two possible forms of output in which the solutions 

may be obtained. The first form corresponding to the number one is a 

series of plotted solutions and a complete listing of the numerical 

answers. And the second form which corresponds to the number two is 

the plotted solutions only. 
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So far the required input date, the subroutine BLCKDQ, and the 

output options have been discussed; but, before th equations can be 

solved for any nuclear fireball, test solutions must be done to deter¬ 

mine the value of the entrainment coefficient. 

Determining Entrainment Coefficient 

As mentioned on page 7, the only method to determine the numerical 

value of the entrainment coefficient is to vary the coefficient with a 

set of test solutions. When the computer solutions match the data from 

experiments, then the value of the entrainment coefficient which 

produced the solutions is accepted as the correct value. The input 

data are taken from Table I which is on the preceeding page. Accord¬ 

ing to Captain D. Matuska (Ref: 23), the peak or maximum altitude 

reached by the fireball from this initial data is approximately 4-kjn, 

and the time from burst to that altitude is about 180-seconds. This 

value will be used as a benchmark to determine e. 

Varying the values for the coefficient are expected to indicate 

the one value which will yield the most accurate solutions. This 

value is then inserted as a constant into the external function FCN. 

Once the value is determined, then the computer program is complete. 

By changing the input data to match the values of the variables for 

different sizes of nuclear devices, the computer program can then be 

used to describe the changing late-time fireball of different devices. 

The data must be obtained initially from some external source and 

placed on data cards. 

Summary 

This chapter containc the discussions on the computer program 

that is written to solve the set of differential equations that were 
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developed in the previous chapter. The program reads the initial data 

from five cards, calls the subroutine BLCKDQ, and then produces the 

solutions as either a complete list plus a series of plots or just as 

a series of plots. BLCKDQ uses a high-order iterative technique to 

solve the equations which are actually written as an external function 

subroutine. But before the program can be applied to any size of 

device, a test must be used to empirically determine the correct value 

of the entrainment coefficient. The results of using the computer 

program are the topic of the following chapter. 
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IV. Results 

The solutions of the four differential equations are discussed in 

detail within this chapter. The first part of the discussion concerns 

the results of using various values for the entrainment coefficient. 

After one value has been finally chosen to be used, the solutions for 

a one-kiloton nuclear device are discussed in detail. In this portion 

of the discussion is included a description of the dominating terms in 

each of the four equations. To conclude this chapter, a summary of 

the results is given. 

Entrainment Coefficient 

To determine the value of the entrainment coefficient that will be 

accepted as the value to use in the set of equations, the following 

method was used with the indicated results. A particular value for the 

ccefficient was chosen and placed into the equations. The program was 

then run on the computer, and the solutions were determined. Next, the 

computer maximum altitude and the corresponding time were compar’d with 

the peak altitude and time values furnished by Captain Matuska. 

As previously mentioned, the expected peak altitude was 4-kilometers 

which was expected to occur approximately 180-seconds after detonation. 

If the computed value of the peak altitude was too high, then the value 

for e was increased; however, if the computed value was too low, then e 

was decreased. Then the entire process was repeated. Although several 

values for e were used, ranging from 0.0 to 0.1, only the results for 

three test programs are presented in this discussion since they illustrate 

all of the main results. 
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Table II 

Effect of e on Maximum Altitude 

Based on Input Data from Table I 

e z (km) 
max 

t(min) 

0.00000 
0.00055 
0.00600 

28.0 
19.0 
4.3 

5.9 
4.5 
1.3 

Table II contains the computed maximum altitude and the time of 

occurrence for each of the three values of e. As is evident from the 

listed maximum altitudes, all values of e smaller than 0.006 yield a 

maximum altitude greater than the desired value of 4-kilometers. Also, 

the time to the desired maximum altitude, or approximately three 

minutes,must correspond to a computer maximum altitude of higher than 

5-kilometers. 

The data entered into Table II were taken from Figures 1, 2, and 3. 

Figure 1 shows a peak altitude of 28-kilometers could be achieved by a 

rising fireball from a 1-kiloton air burst detonated at sea-level. 

And Figure 3 shows that if e=0.006, then the same type of fireball will 

reach a maximum altitude of approximately 4-kilometers, but the fireball 

is more dense than the ambient air so the fireball 'falls' to earth. 

Actually, the fireball accelerates downward and reaches sea-level before 

the drag forces can stop its descent. Since the fireball does entrain 

some of the ambient air but does not accelerate to earth in reality, 

the actual value to use for e must be between 0.0 and 0.006. This is 

two orders of magnitude less than other studies have indicated (see 

page 7). 
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Fig. 1. Altitude vs Time, e - 0.00000. Based on input data from 

Table I. 
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Fig. 2. Altitude vs Time, e - 0.00055. Based on input data from 

Table 1. 
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Fig. 3. Altitude vs Time, £ - 0.00600. Based on input data from 

Table I. 
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The value of e ■ 0.00055 was finally accepted for use in comple¬ 

tion of this study. This value was finally accepted because it is the 

largest value of e studied which does not cause the fireball to accel¬ 

erate earthward so fast as to reach sea level. This value was accepted 

even though the maximum altitude achieved by the fireball vas approxi¬ 

mately five times greater than the desired altitude. 

Solutions for 1-Kt Fireball 

Using the above value for e and the initial data for a 1-kt 

device given in Table 1, the set of equations was solved for a time 

period of approximately 20-minutes. The 20-minute time period was 

chosen because it illustrates the effects of the various terms in the 

equations. The graphical forms of the solutions were obtained as 

output and included in this report as Figures 2, A, 5, and 6. 

Figure 2 is located on page 36, and the remainder of the figures are 

located on the following three pages. Each resulting figure furnishes 

some insight into what terms are the dominating terms, and these are 

discussed in the following paragraphs. 

Altitude. The initial altitude for this fireball is sea-level, 

but the maximum altitude reached is approximately 19-kilometers as 

shown in Figure 2. And as time passes the change in the altitude 

decreases. Thus, although not shown in the figure, the fireball 

seems to be stabilizing at an altitude of approximately 11-kilometers. 

The expected altitude for stabilization for this fireball is about 

3-kilometers (Ref: 23). Therefore, closer agreement in the stabili¬ 

zation altitudes is achieved than in the maximum altitudes. 
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Fig. 4. Temperature vs Time, e = 0.00055. Based on input data 
from Table I. 
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Fig. 6. Radius vs Time, c 

Table I. 

0.00055. Based on input data from 
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Temperature. Figure 4, found on page 39, shows that the tempera¬ 

ture of this fireball decreases rapidly, and within five-minutes after 

the burst the temperature of the fireball is the same order of magni¬ 

tude as the i.mbient air. Initially, the cooling is primarily by radi- 

4 
ation; therefore, the dominant term is oT^. But, when the temperature 

is only a few hundred degrees Kelvin, then all of the terms in eq (24) 

contribute to the change in the temperature of the fireball. 

At times, the temperature in the fireball is actually cooler than 

the ambient air due to the cooling by expansion, radiation, and entrain¬ 

ment. This is the reason that the stabilization altitude is less than 

the maximum altitude. The momentum of the fireball causes it to go 

beyond the altitude of stabilization. This will be discussed later in 

more detail. 

When the temperature i.. the fireball is cooler than the ambient air, 

the entrainment of the relatively warm air increases the temperature of 

the fireball. This is especially true when the relative velocity is 

large. This effect is more evident by studying the numerical solutions 

instead of Figure 4; however, a careful study of the figure will detect 

this phenomena. 

Velocity. The vertical velocity of the fireball considered in this 

study is shown in Figure 5, page 40. From this figure one can see that 

when the temperature of the fireball is much higher than the ambient 

temperature, then a large velocity is achieved. This fact is as ex¬ 

pected since initially the air is much more dense than the fireball; 

therefore, the buoyancy effect is large. As was mentioned in the de¬ 

rivation, the initial acceleration is approximately 2g. 
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The effect of the temperature can best be studied by using eq (38). 

As the temperature of the fireball approaches that of the surrounding 

air, the acceleration decreases. When the buoyancy is equal to the drag 

Induced by the moving sphere and the entrainment, then the acceleration 

is zero. Even when this happens, the fireball has a non-zero velocity. 

The momentum of the fireball will cause it to continue in motion until 

the fireball is decelerated to the point where vf = 0. When vf = 0 and 

T ■ T , then the fireball must either accelerate upward or downward, 
f a 

The determining factor is whether T^ is greater than or less than T^. 

The velocity is zero only when either the fireball is at the alti¬ 

tude of stabilization or the momentum of the fireball is zero. Of 

course the initial velocity is not being considered at this time. 

Since, as is evident in Figure 2 on page 36, the fireball has not 

stabilized within the 20-minute time period considered in this study, 

the times when vf = 0 in Figure 5, page 40, correspond to inflection 

points on the altitude curve. Figure 2. The same points on the vele city 

curve correspond to the maxima and minima points on the radius plot, 

Figure 6, page 41. 

Radius. From the available literature (Ref: 4, 77) the expected 

maximum radius was approximately 67-meters. This is extremely inter¬ 

esting since the Initial radius (Ref: 23) was 100-meters. From this, 

one is forced to analyze the plot of the solutions on their own merits. 

Initially, the radius of the fireball decreases very suddenly. In 

fact, the radius decreases by approximately one-third of the initial 

value within less than oneninute. This is a result of the initial large 

change in the fireball temperature. 
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As the rate of cooling decreases and the velocity becomes large, 

the effect of the velocity becomes more important. The importance of 

the velocity is vividly seen by comparing Figures 5 and 6. Whenever 

the sign of the velocity changes, the trend of the radius also changes. 

Thus, if the radius is increasing and the sign of the velocity changes, 

then the radius begins to decrease. 

Since c was accepted to be a very small value, the effect of the 

entrainment on drf/dt is negligible. This allows eq (42) to be 

simplified by omitting the middle term on the RHS of the equation. 

However, since the term was needed to determine the accepted value of e 

and since that value is questionable, no simplification of eq (42) has 

been made in the computer program. 

Summary 

An accepted value for the entrainment coefficient was determined 

by comparing the computed solutions to the solution furnished by the 

Air Force Weapons Laboratory. Then, plots of the solutions were 

obtained as output from the computer program using the accepted value 

for c. These plots were used to study the set of descriptive equations 

that were developed in this report. Some terms were shown to dominate 

the solutions during the first few minutes and then become insignificant 

while the contribution due to other terms Increases as time passes. 
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V. Conclusions 

As a result of this investigation, four conclusions can be drawn. 

The first three conclusions involve the equations, and the final 

conclusion involves the validity of the results. 

The equations needed to describe a rising fireball resulting from 

a nuclear explosion can be developed from basic laws of physics and 

solved using some numerical technique. Four equations are necessary 

to describe the rising fireball. They involve the time rate of 

change in the altitude, radius, temperature, and velocity of the fire¬ 

ball. Most of these equations involve the four parameters just mentioned. 

The solutions of the four equations can be obtained by using an 

iterative numerical technique within a computer program. The cost of 

running the computer program on the author's computer was less than 

six cents, and this includes the cost of obtaining the output in the 

form of four plots. 

The initial time changes in the parameters can be approximated by 

very simple relations. The temperature changes as a radiating black- 

body, the radius changes by approximately one-third of the initial 

radius, and the acceleration initially is approximately 2g. 

The final conclusion involves the results. The peak altitude is too 

high, and the radius decreases after reaching a maximum. This is not in 

agreement with the data furnished by the Air Force Weapons Laboratory. 

The input data may not have been compatible with the model as developed 

within this report since the value of c was forced to be extremely small. 
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VI. RecommendatIons 

Three recommendations are made within this chapter. They are made 

with the hope that they might improve the validity of the solutions to 

the set of equations. 

First, more data is needed. Other initial data is needed from 

various sources so that a comparison between the initial values used 

in this study and the values for the same parameters from other sources 

can be made. Also, a time history of a fireball would aid greatly in 

comparing the solutions obtained from this model and those obtained 

from a more complicated model. 

Secondly, the formation of a torus should be studied to investigate 

its effect on the equations developed within this study. The assumption 

that the fireball can be treated as a homogeneous sphere has been the 

accepted method of treatment in other studies; however, the fact that 

the nuclear debris will be trapped within the torus will be critical if 

this model is to be used in any radiation studies. Also, the values for 

the coefficients associated with the drag and entrainment might be 

radically changed. 

Finally, the interior of the fireball should receive more investi¬ 

gation. If the three-fluid approach to describing the interior could 

be incorporated into the set of equations, then the solutions should be 

more accurate. The question that would have to be answered is "Is the 

increase in accuracy worth the additional cost of the computer time?" 
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APPENDIX A 

Equation of State for Dry Air 

The equation of state for dry air can be developed from the 

equation of state for an Ideal gas (Ref: 9, 9). For an Ideal gas, 

pa = R'T (43) 

-2 
where P ■ pressure of gas (Nfm ) 

a * specific volume of gas (m^'kgm ) 

R* « specific gas constant 

(J-kgm'^V1) 

T * temperature of gas (°K) 

Now, the specific volume is, by definition, the volume per unit 

mass, or 

a (44) 

where V (m^) is the volume of the gas and M (kgm) is the mass of the 

gas. 

Substituting this equation into eq (43) and multiplying both 

sides by M/T leads to 

Si 
T 

MR' (45) 
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According to Avogadro's Law (Ref: 10, 16), one mole of any two 

gases at the same pressure and temperature will occupy the same 

volume. Stated another way, this says that 

^ * constant = R (46) 
T 

where R is the universal gas constant with a numerical value of 

8.3143xl03 J-kmole'^V1. 

Obviously, the RHS of eq (45) must be equal to R by eq (46). 

If eq (45) is written so that it stands for the equation of state 

for dry air, and Rd, the specific gas constant for dry air, is used 

in place of R', then 

mR. « R (47) 
d 

where m is the molecular weight of dry air. 

The apparent molecular weight of dry air, based on the carbon-12 

isotope scale, is 28.9644 kgm'kmole ^ (Ref: 6, 2-134). When m in 

eq (47) is replaced by its numerical value and the equation is solved 

for the dry air constant, then one finds that 

R, - 287.05 J*kgm_1*0K-1 (48) 
d 

As a result, the equation of state for dry air can be written as 

where 

P V 
*a a 

M R.T 
a d a 

( 5) 

_2 
p ■ pressure of ambient air (Nt'm ) 

3 
V ■ volume of ambient air (m ) 
a 

M - mass of ambient air (kgm) 
a 
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287.05 J kgnT^V1 

temperature of ambient air ( K) 
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APPENDIX B 

Specific Heat at Constant 
Volume for Dry Air 

By classical statistical mechanics, diatomic molecules have a 

predicted value for the specific heat at constant volume, c^, of 7R/2 

where R is the universal gas constant; however, most diatomic mole¬ 

cules at room temperatures have a value of 5R/2 for cv (Ref: 1, 414). 

The key word to determining the value of cv is "temperature". 

From equipartlon theory, each coordinate or momentum component 

appearing as a squared term in the internal energy expression for a 

gas contributes a value of R/2 to c^. For a diatomic gas, seven 

contributions are possible: three by translational motion; two by 

rotational motion; and two by vibrational motion. But, vibrational 

-34 
motion contributes only when T hv/k, where h = 6.6256x10 J*sec, 

k ■ 1.38054x10 J*°K , and v is the natural frequency of oscilla¬ 

tion (Ref: 1, 414). 

Nitrogen, N2, is used to study the vibrational contribution in 

13 -1 
air. The vibrational frequency of ^ is approximately 7x10 sec 

(Ref: 6, 7-178); therefore, the minimum temperature at which vibra¬ 

tional motion contributes to the cv-value is approximately 3000°K. 

So for temperatures of a few thousand degrees Kelvin or less, there 

is no contribution due to vibrational motion. 

Tables and graphs of the value of cv for air as a function of 

temperature have been published (Ref: 17). This data shows how cv 

varies with temperature. 
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However, for incorporation into a simple model, the value of c 
V 

is appro:."*mated. The value chosen is 5R/2. This value has been chosen 

for two basic reasons. First, even if the initial temperature of the 

fireball is a few thousand degrees Kelvin, the fireball cools rapidly 

by radiating as a blackbody. Therefore, the temperature is quickly in 

the applicable range for justifying the use of 5R/2. The second reason 

for selecting this value for cv is the fact that the fireball is 

entraining ambient air which does have cv - 5R/2 (Ref: 6, 2-134). 

Thus, this model uses 

c 
V 

(49) 

By using eq (47), found in Appendix A, the value of the specific 

heat of dry air at constant volume is numerically given by 

cy - 717.63 J*kgm-1‘°K-1 (50) 
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APPENDIX C 

Drag CoeffIcient 

The drag force acting upon a sperical fireball is assumed to be 

proportional to the ambient air density, the area of the sphere normal 

to the direction of motion, and the square of the relative velocity of 

the fireball with respect to the ambient atmosphere. This is stated 

as eq (32) in the main text. 

In addition to the previously mentioned quantities, a drag 

coefficient, CD, appears in the equation for the drag force. The 

numerical value of CD for a sphere is found by a two-step procedure. 

First, a quantity called the Reynold's number. Re, is calculated. 

Then the value of CD is obtained from of graph of CD vs Re for a sphere. 

These graphs are contained in almost any text on fluids and aeromechanics 

(Ref: 11, 3-6; 5, 11-495) as well as in various science handbooks 

(Ref: 6, 2-268; 16, 5-60). 

To calculate Re, the following definition for Re is used: 

Re - ^ (51) 
V 

where v is the velocity of the moving sphere relative to the air 

(nrsec”1), d is the diameter of the sphere (m), and v is the kinematic 

2 “1 
viscosity of air (m *sec ). 

For a nuclear fireball. Re has a magnitude of approximately 107 to 

except when the velocity is zero. The magnitude of the diameter 

2 
for small yields is on the order of 10 to 10 meters, and the magnitude 

of the kinematic viscosity of the ambient atmosphere is approximately 
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-5 2 -1 
10 m ‘sec (Ref: 20). The magnitude of the velocity is normally 

2 
10 to 10 meters per second; therefore, by using these magnitudes in 

7 9 
eq (50), the magnitude of Re is 10 to 10 . 

Although most data on the Reynold's number have 10^ as the upper 

limit, at least one graph of vs Re is available in the open litera¬ 

ture which has a greater upper limit (Ref: 11, 3-8). The upper value 

g 
of Re in this graph is 10 . This graph is shown as Figure 7 below. 

The value of used within this model is based upon this plot. 

The figure shows that Cp varies between 0.1 and 0.2 when the range of 

6 8 8 
Re is from 10 to 10 . Although no data is available for Re > 10 , 

an approximate value can be determined by projecting the graph. When 
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the projection is made and the value of is obtained, one finds that 

o 
for Re = 10 , CD .09. Therefore, considering the range of Re for a 

rising fireball, the value accepted to be used within this model for 
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APPENDIX D 

The Computer Program Used 
To Solve the Equations 

The computer program contained within this appendix is the program 

which was used to solve the set of equations that describe the rising 

fireball. The equations are contained in the external subroutine FCN. 

Since numerous comment cards have been included in tue program and since 

the subroutine BLCKDQ has already been discussed in Chapter III, no 

further explanations are necessary to use this program. 
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