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Abstract 

Obviousiy true" properties of programs can be hard to prove when meanings are specified 

with a denotational semantics. One cause of this is that such a semantics usually abstracts 

away from the running process - thus properties which are obvious when one thinks about 

this lose the basis of their obvious',or' !n the absence of it. To enable process-based 

intu'ions to be used in constructing proofs one can associate with the semantics an abstract 

interpreter so that reasoning about the semantics can be done by reasoning about 

computations on the interpreter. 1 5 technique is used to prove several facts about a 

semantics of pure LISP. First a denotational semantics and an abstract interpreter are 

described. Then it is shown that ine denotation of any LISP form is correctly computed by the 

interpreter. This is used to justify an inference rule - called 'LISP-induction* - which 

formalises induction on the size of computations on the interpreter. Finally LISP-induction is 

used to prove a number of results. In particular it is shown that the function eval is correct 

relative to the semantics - i.e. that it denotes a mapping which maps forms (coded as 

S-expressions) on to their correct value?. 
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1. Introduction 

This peper contains example,? of the use of operational reasoning to prove properties of a 

denotationai semantics. By "operational reasoning" is meant reasoning which exploits notions 

associated with the operations involved in running programs on interpreters. "Obviously true" 

properties are often rather hard to prove when meanings are specified by a denotationai 

semantics. One cause of this is that such a semantics usually abstracts away from the 

running process - thus properties which are obvious when one thinks about this lose the 

basis of their obviousness in the absence of it. One way to enable process-based intuition' 

to oe used in constructing proofs is to associate with such a semantics an abstract 

interpreter so that one can reason about the semantics by reasoning about computations on 

the interpeter. In what follows this approach is used to prove several facts about a 

semantics o* pure LISP. Doing this involves: 

(A) Describing a set of semantic equations for pure LISP 

(B) Describing an interpreter (expressed as a calculus) for mechanically evaluating 
LISP forms, 

Having done this I then prove that the denotation of a form (as specified by the semant.c 

equations) is always correctly computed by the interpreter. This result is then used to 

formulate a special purpose induction rule for reasoning about LISP programs. This rule - 

called "LISP-induction" - is induction on the length of computations on the interpreter. 

Because the interpreter is correct LISP-induction is valid for reasoning from the semantic 

equations. Using LISP-induction I outline how to prove the correctness of the LISP function 

eval. This involves shewing that the denotation of eval (as specified by the semantic 

equations) is a mapping which maps LISP forms (coded as S-expressions) on to their correct 

values. 



2. Syntax of Pure LISP 

The syntax of LISP described below is that of M-expressions as described in the manual [41 

1 use the variant of BNF notation described in [9] 

2.1. Meta-varlable Conventions 

A ranges over <S"expression> (as in page 9 of [4]) 
x,f,2 range over <ident1fier> (as in page 9 of [4]) 
e ranges over <form> (as defined beiow) 
fn ranges over <function> (as defined below) 
F ranges over <standard function (as defined below) 

I  use    meta-variables x,f,z to range over identifiers x is used in contexts where the 

identifier is a form, f where it's a function anü z where it could be either. 

2.2. BNF Equations 

e ::= A | x | fn[e,;...jen] | [en-^e,^...^,-»©^] 
fn ::= F | f 1 AUx,;...;^] | label[f}fn] 1 M[f;fn] 
F ::« car | ctlr 1 cons | atom | eq 

(The purpose and meaning of functions of the form n[Ufn] is explained in [Note 16] below) 



3. Denotational Semantics of Pure LISP 

The formal definition of LISP described in this section is a "mathematical semantics'" of the 

type developed by Scott and Strachey [9]. I have found that modoliing data-types as 

complete lattices [8] leads to minor technical difficulties and inelegancies [1] which disappear 

if complete-posets (ie. partially ordered sets in which every directed set has a least upper 

bound) are used. Consequently in what follows - and in contrast to the standard theory - 

"domain'' will mean "complete-pos-et". The theory based on this notion of domain differs only 

in obvious and trivial ways from the theory based on complete-lattices. 

If X is a set let flat(X) be the domain obtained from X by adjoining x to it and imposing tr.e 

ordering ±sx tor all xCX.   Thus 

xfflat(X) <=> x=.i. or x<:X 

xEy <=> x=± or x^y 

The following syntactic domains will be used later: 

S=flat(<S-e*pression>) 
/rf=flat(<identifier>) 

Form=flat(<form>) 
f"unca'on=flat(<function>) 

The semantics below should be read in conjunction with the explanatory notes that follow it. 



3.1. Semantics 

3.1.1. Denotation Domains 

D=S*Funval [Note 1] 
S=flat(<S-expre88ion>) 

Funval=fS*->S/ [Note 2] 

3.1.2. Environment Domain 

Env^Id-*/Env^Dj [Note 3] 

3.1.3. Semantic Functions 

(}:Form-*fEnv-*Sj [Note 4] 
%• :Function-*fEnv-*FunvalJ [Note 4] 

3.1.4. Semantic Equations 

(SI) dMp = A                                                                       [Note 5] 

(S2) GWp =p(x)p!S                                                           [Note 6] 

(S3) (f[Ifn[e1;...;en]]]p = 5l[fn]]p((f[[e,]lp,...,0;I[eJp)                            [Note 7] 

(S4) Q:[[[ell-*elz;...;enl-*en2]]]p = ((?[LeliIlp-*(fIIe12]lp,...,(f He, Jp-l5[[en2]]p)   [Note 8] 

(S5) JEcarUp = As:S.car(s)                                                         [Note 9] 
^[[cdrlip = A8:S.cdr(s)                                                      [Note 10] 

SE^onsJlp =» A61.8?:.?,con8(8|.8?)                                        [Note 11] 
ifdatomjip = A8:S.§tpm(8)                                                  [Note 12] 

5|[eq]lp = Asl,82:S.eq(s1,s2)                                             [Note 13] 

(S6> WSifi ~ p(i)f>\Funval                                                   [Note 14] 

?S7) «5llA[[x1;...xn];e]Ilp = A81,...,sn:S.(f[Ie]]p[81/x1]...[sn/xn]                  [Note 15] 

(S8) ff|Ilabel[fjfn]]]p - 5?[[fn]]p[5[[fn]l/f]                                      [note 16] 

(S9) 5llM[f;fn]]p = yf{X>f:fEnv->Funvalj.*p'iEnvÜlinJp'[yf/1])p 
[Note 16] 

. -.llLLlirnlMU'if-MI "—^ ^'--""^-TTH-rr,, 



3.2. Notes 

Note 1 

"'" is the separated sum [6]. If Di.f^ are domains then: 

DrDz = {U.d^ld.dM U {(2^)^02) U {±] 

which is made into a domain by imposing the ordering: 

j-sdi.d) 
(n,d)E(n',d') <-> n=n' and dsd' 

If d^Dj let (d, inD) mean (i,d,) - i.e. the natural injection of d, into D^D r"2 

■f dtD^Dz let 

d|D, =« d(, if d«{i,d,)i 
~ J, , otherwise. 

d|D, is the natural projection of d on to D,. 

Note  2 

If /. is a domain then: 

L*={{x1I...lxm) | m>0 and xfiL] U {x} 

L* is made into a domain by imposing the ordering: 

±s(*]l...,xn) 

(x1,...,xr,)£{yi,...,ym) <=-> n«m and Vl. x.sy, 

  



Note 3 

The purpose of environments in the semantics is like the purpose of alists in interpreters. 

Thus environments are used to hold the bindings of variables to their values. In LISP when a 

function is bound to a name on the alist the values of the function's free variables are not 

determined. These values depend on the environment in which the function is activated and 

this is unknown at definition time. To model this the objects which get bound to names on 

environments are mappings defined on environments. These objects thus have type fEnv-*D/ 

and so Env has to have the circular type Id->fEnv-*DJ . This kind of environment also 

handles the binding of form variables to S-expressions - the binding of A to x in p is 

represented by arranging that p(x)p'^A for all p'tEnv. Bob Tennent has suggested [private 

communication] that this somewhat unnatural representation of form variable bindings could 

be avoided by letting Env have type given by Env=!d-*fS*fEnv-*Funvai//. 

The domain equation Env=ld-*fEnv-*D/ may have many solutions. These solutions can be 

ordered by regarding them as retracts (and hence members) of a universal space. Then the 

Env intended here is that represented by the retract ViXe.Id-^fe-^D/) - see [1] or [8] for 

further explanation.   This minimality is needed in the proof of the Main Theorem (see below). 

Note  4 

Relative to an environment piEnv the semsntic functions ff,t5 map forms e, and functions fn, 

onto their denotations (f'|Ie]]p(S, 8'Hfn]]p(Funna/ respectively. The semantic equations 

consist of a recursiv,, syntax-directed definition of (J and 5. (f[[±]]=i and 5[[x]]»J.. The 

"emphatic' brackets [[,]] are s device due to Scott to increase the legibility of complex 

expressions - [[...]] always enclose pieces of LISP code. 



Note 5 

S-expressions denote themselves in all environments. 

Note  G 

"p{x)p|S" means the projection into S of p(x)pt:D=S*Funuai. Since S-expressions are 

constant (i.e. their meaning is environment independent) they get represented by constant 

functions in [Env-*Sl (see [note 3]). Thus for any p'tEnv "p{x)p'" would do just as well as 

the right hand side of (S2). However when f is a function name "p(f)p" is needed (see (S6) 

and [note 3]) and so it seems more elegant to have (S2) as it is so that it resembles (S6). As 

mentioned in [note 3] this arbitrariness is eliminated if the type of Env is changed to satisfy 

Env=Id-*/S*fEnv->FunvalJJ. 

Note 7 

If 9u...,9ntS then («„....s^S* and for ii/S*->Sj   i{su...tsn) means f((s„...,sn» 

Note 8 

(8|1-»8|2,...,Sni->8n2) ■ if 9U=± Or (»n^T ancl 8il^ then J- else 'f Sll="," then 8iz else 

if »2i=x or («zi^T and ezl^F) then i. else if Sj]*»! then 822 else 

if Sni-J. or (Sni^T and 8n,^F) tnen ± else if 8n|=T then 8n2 elce i, 

Note 9 

See [note 15] for explanation of \. 

car:S-»5 is defined by: Cär(ä> = A, , if 8=(A,.A2); 
= x , otherwise (i.e. if s=± or s is atomit). 
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Mote 10 

See [note 15] for explanat'an of X. 

cdr.-S- 'S ib defined by. cdris) " Ag , if 8={A,.A2); 

= J. , otherwise (i.e. if s-JL or s is atomic^. 

Note 11 

See [note 15] for explanation of A. 

cons.-SxS-^S is defined by:   cons{s1.8?) = (8,.s2) , if 8^1 and 32^J.; 

- JL , otherwise. 

Note 12 

See [note 15] for explanation of _ 

§tcjTi;S-*S is defined by; atom.,9) = T , if s is dtomicj 
= F , if s 10 of tha form (S|.s2); 

= J. , otherwise  (i.e. if s=±). 

Note  13 

See [not- 15] for explantion of A. 

eq:SxS-*S is defined by; efl(8i(öz) = T , if s, and 82 are atomic and s,=s2i 
= F , If S| and s2 are atomic and 3,/$^ 
= x , otherwise. 

Note 14 

p(f)p\F nval is the pr-,action into Funval of p(f)p(D=.<f+funt)a/. Forming p(f) models 

, jking up f on the aliet, applying p(f) to p to get p(f)p models looking up the free variables 

in the activation environment. 



Note IS 

Suppose E{8|,...,8n) is an expression which takes values in the domain Dz when 9u...tBn range 

over domair. D, then ^S|,...,8n:D,.E(sl,...,sn) denotes the functic      V-*^  defined by 

Us) = E(s!,...,sn) , if 8=(8i...8m) where m>n and Vi. s^i.} 
- ± , otherwise. 

Thus Asl,...,8n:D,.E(8|,...,8n) is a function which always returns X when one of its arguments 

is j, (this Is to model call-by-value) and which can take any number of arguments >n (this is 

a property of LISP functi^.s). 

I shall use As,,...lsr,:D1."rl(sl,...,sn) (i.e. with >> instead of A) in the usual way to mean the 

function f:D|n-*D2 defined by 

1{9it...,9n)  = E(8l,...,8n) 

If p(Env, v(:fEnv-*D/ and ztld then 

p[v/z] = Xz':ld. If z=J. or z'=X then X else if z=z' then v else p(z') 

In (S7) I've used the "coercion conventions" that if s«S then p[s/z] means 

p[(Ap';£nu.(s inD))/z]. Thus, as discussed in [Note 3], for the purposes of binding to 

variables in environments S-expressions are rej. asented as constant functions. 
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Note IG 

There are two natural ways to analyse recursion. One of them is to mimic in the semantic 

equations what the LISP eval function does - viz bind the function to it's own name on the 

alist. The other way is to take the denotation of a recursively defined function to be the 

(minimal) solution of the equation which defines it. Both these approaches have something to 

be said for them and fortunately they turn out to be equivalent in practice (what "in 

practice" means will be elaborated later - it's also discussed abstractly in [3] ). To simplify 

the investigation of thi? equivalence two kinds of recursive functions, label[f;fn] and ^[fjfn], 

are included in the syntax of LISP. Iabel[f;fn] is given an analysis which mimics the evsl 

function whilst n[f;fn] receives a minimal-fixed-point treatment. 

In both (S8) and (89) I've used the "coercion convention" that if yi/Env-^^unval/ then 

p[v/f] is to mean p[{Xp':Env.{w(p') inD))/f]. 

In (S3) V:/'/Env-*Funvalj-*/Env+FunvalJJ-*fEnv-*FunvaLj is the usual minimal-fixed-point 

operator AF.LJnFn(j.). Note that the fixed point extraction is done "before" the free variables 

are looked up (i.e. the result «f applying Y is applied to p, rather than Y being applied to 

something which has already been applied to p). This is necessary to correctly model dynamic 

binding (fluid variables). 

Note also that from the fixed point property of Y we have: 

Stefn^p = SCfnUW-tonlH/f]) 

The right hand side of this differs subtly from that of (S8). 
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4. An Interpreter for Pure LISP 

The interpreter described below is designed so that reasoning about computations on it is 

convenient, its purpose is to aid in the formuiation of a special purpose induction rule for 

LISP ("LiSP-induction"), It is formalised as a calculus consisting of rules for simplifying terms 

of the form <o | a> where e is a LISP form and a an allst. The rules of thr calculus are 

intended to correspond to the obvious simplifications that one would perform on expressions 

of the form (fl[e|p. An example of such a simplification is: 

G[[>>[[x];[atom[x]-*x;T-»cdr[x]jj|.u t/jj^, 
=(f[[[atom[xhx;T^cdr[x]]|(±[(l 2)/x]) 
=(ficQr[x]]](±[(l 2)/x]) 
=(f[cdr[(l 2)0(4(1 2)/x]) 
=(2) 

Let the meta-variables p.a range over the strings defined by: 

p::=A |<ela> 
a::=NIL i a[A/z] | a[fn/z] 

p will be said to range over <term> and a over <alist>. Define $[[p]](S and 2l[[a]|<£nu by 

$[[A]]=A 
$C<ela>3=ffirel9rira]l) 

«[[NIL]]=j. 
«Ca[A/2]3-8l[[a]][A/z] 
«Ca[fn/2]]]-SrI[a][5[[fn3/z] 

In the last two equations I've used the "coercion conventions" described in [note 15] and 

[note 16] above. 

The following definition describes a binary relation —^ defined on terms, p—^p' r    ,ns that 

p simplifies to p". If one likes one can think of the p's as states of a machine then "p ^p'" 

means "in state p move to state p'", final states are p's of the form A. 
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I shall immediately follow the definition of —> with an explanation of the notation it is 

written in; then I will give some notes which should be read in conjunction with the definition. 

Definition 1 (Definition of —^ and -H) 

-*-£ is the reflexive, transitive closure of —^. 

(PI)   <A |a>—M 

(P2)     a(x>=A 

<x|a>—^A 

(P3)        F(A1,...,An)=A 

<F[Al;...;An]|a>-^A 

(P4)     [Vj. <ei | a>-^A,] and [3i. e/A,] 

<fn[e1;...;en] | a>—Kfn[A,!-..;An] I a> 

(P5)  <eml | a>-^T and [Vi<m. (e,, | a>-HF] 

<[e,|-»e12;...;er,1-»en2] | a>—^<em2 j a> 

(P6) a(f)=fn 

<f[A,;...jAn]|a>-^<fn[A1;...;An]|a> 

(P7) m<n 

<A[[x1;...;xm];e][A1;...;An] | a>H><e I atA./x,]...[Am/xm] > 

(P8)  <labei[fifn][Al;...;An] | a>—^<fn[A,;...;Aft] | a[fn/f] > 

<P9)   <*i[f;fn][A1;...;An] j a>-^<fn[A1;...;An] | a[(i[f;fn]/f] > 

(P10)     [n=l] or [l<n and Pi—^p2,...,Pn-i—^Pn] 

Pl-^Pn 

[note 17] 

[note IS] 

[note 19] 

[note 20] 

[note 21] 
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Each clause P1-P10 is a schema and the meta-variabies in them range over their previously 

defined sets (e.g. A ranges over <S-expre8sion>). 

A schema of the form p—^p' (i.ePl, P8 or P9) means that any instance of it is a pair for 

which —^ holds. 

A schema of the form; 

conditions 

P-H>P' 

(i.e. P2-P7, P10) means that any instance of it which satisfies the conditions is a pair for 

which —^ holds. 

An example computation, which corresponds to the simplifications described above, is: 

<A[[x];[atom[xPx;T^cdr[x]]][(l 2>] | NIL) 
—K[atom[x;HxiT-cdr[x]] I NIL[(1 2)/x] > (by P7) 
—KcdrM I NIL[(1 2)/x] > (by P5) 
—^<cdr[(l 2)] | NIL[(1 2)/x] > (by P4) 
—^(2) (by P3) 

Notice that this computation can be mechanically and deterministically generated from its 

initial term - the definition of —^ makes explicit the intuitions which were previously used 

in simplifying (f[[x[[xM8tom[x]-*x;T-»cdr[x]]][(l 2)]J{±) above. 

-  ■-■ P^^- 
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4.1. Notes 

Note 17 

a(x) is defined by structural induction on a as follows: 

NIL(x)   = 1 
(a[A/z]){x) = If x=z then A else a(x) 
{a[fn/z])(x) = if x-z then fn else a(x) 

Thus e(x)«{j.} U <S-expre8sion> U <function>. The reason ??. rather than "<x | a>—>a(x>" 

is used is that with the latter if a{x)-j. or a<x)*fn then <x | a>—^± or <x | a>—>fn ;änd 

neither I. nor fn are terms. 

Note 18 

F ranges over car.cdr.cons.atom.eq. "<F[A|;„.;Ar] | a>-4F{AII...lAr,)" won't do because it 

would yield e.g. <cons[N;4.] | a>—b± - and 1 isn't a term. 

Note 19 

The reason for the condition "[3i. e^A,]" in P4 is to exclude unending computations of the 

form: 

<fn[Al}...;An] I a>-^<fn[A1;...;An] I a>-^ ... 

and also to make —^ deterministic (i.e p—^p' and p—^p" -> p'=p" ). Thus i exclude the 

nondeterminism: 

<label[f;fn][AIj...jAn] | a>-^<fn[Ai;...;An] | a[fn/f] > 

<label[f;fn][A1;...jAn] | a>—►<label[f;fn][A1}...;An] I a > 
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Note 20 

a(f) is defined as in [note 17] (with x replaced by f in the definition of a(x)). 

"<f[A|;...;Aft3 I a>—Ka(f)[A,}...;AJ I a)" will not do for P6 because of the possibility that 

a{i}=± or a(f)=A(c.f. [note 17]). 

Note 21 

It follows from P10 that Vp. p-Hp (take n=l in P10) and p-^Hp' and p'-«-^p" »> p^-^p" 

5. Correctness of the Interpreter 

The following result show?, that —^ fulfils its design requirements i.e. that <e 1 a> simplifies 

down to A if and only if ßW(8f|[a]])=A 

Theorem 1 (Main Theorem) 

p^A   <=>  SPM-A 

Proof outline 

The theorem splits into two parts, viz: 

(a) p-HA   =>   $Cp]=A 
(b) JBM-A  ->  P-HA 

(a) is essentially trivial - one just checks that rules (Pl)-(PIO) preserve the denotation of 

terms. I discuss how to organize this argument in section 6.1. below. 



IS 

(b) is less straightforward and I shall only indicate the main idea of the proof. This idea is 

due to Robert Milne [private communication] and considerably shortens the original proof 

given in [1]. Similar ideas have been developed Independently by Reynolds[7]. 

The    main    idea    is   to   construct    predicates   ^""^^1^    and   .^»,11.1    defined    cn 

/■£nii-*5/x<form>, /£nu->FunDa//x<function> and £nDx<alist> respectively such that; 

(1) i*f0'm{y,»)  <->  Vp,a. [ ^(p.a) -> VA. [ v(p)-A => <a j a>-HA ] ] 

(2) ^funct.on(v>fn)   <=>  vpta [■ jj>«ii»«(p)a) => [ v(p) is strict ] and VA.A,,...^^ 

[v(p)(All...,An>-A => <fn[A1;...iAr,] 1 a>-^A 1 1 

(3) ^8|,8,(P,8)   <=>   Vz,A. [ if a(z)=A then ^'orm(p(z>|/£m^.S7,A) and 
if a(z)=fn then ^>'unc,,on{p(z)|/£nti->Fun^/y,fn) ] 

In    (3)    above    "p(z)\fEnv*S/"    and    "pWlfEnv+Funvall"    are    abbreviations     for 

"Ap':£nt..(p(z)p'|S)" and ">lp':£nu.{p{z)p'lFunval>" respectively. 

From (l)-(3) it is straightforward to show by structural induction that: 

(4) Ve<<form>. ir»,0rm(G[[e],e) 

(5) Vfn(<function>. l»?,üne,ion{(Jifn]]#fn) 

(5) Va.<alist>. ^"»'(SlUalLa) 

and then by taking v-öl[e| and p=M[[a]] we have by (1), (6) and modus ponens that: 

ff'IM(WW)-A   =>  <e|a>-HA 

as desired. 
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The only non trivial part ot this proof is showing that there exist relations •Ej>f0rm
i 

tjpfunct.on^.iis! satisfying (l)-(3>. Lack of monotonicity prohibits the simple use of Y to do 

this. General techniques for solving recursive predicate equations (such as (1H3) above) 

have been developed by Robert Milne (and also by Reynolds), The reader is referred to [5] 

and [7] for further details. 

"aED" 

5.1. Reasoning via the Interpreter 

I'll start by illustrating the use of the Main Theorem on a totally trivial example - determining 

3[Ilabel[f;f]]](i.) - less trivial examples are theorems 2, 3, 4, 5 below. Intuitively 

o-(Ilabel[f;f]]i(i.)=± as label[f;f] terminates on no arguments - to rigorise this observe that 

by P8 we have for arbitrary Ai,...,An 

<label[f;f][A1;...;An] | NIL>-^<f[Ai;...;Al,] I NIL[f/f] > 

and (by P6) if pKf[A|;...;An] | NIL[f/f]> then the evaluation of p just leads to the unending 

computation: 

p—^p—^p—»,.. 

so by the Main Theorem there's no A such that G;[[label[f;f][A,;...:An]]l(j.)=A and so : 

VA,,...^^ (fClabel[f;f][A1;...;An]]](8rIlNiL]l)=5ilabel[f;f]]U)(A1,..,An)==.J. 

hence (5l[label[f}f]]]U)-l 

To prove the intuitively obvious fact that 5-l[labe![f;f]]](j.)=i without using the Main 

Theorem one needs to exploit the minimality of Env. The Main Theorem packages-up this 

minimality in an easy to use form. 
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R    T.TSP-Induction 

LISP-induction is an attempt to formalize certain kinds of intuitive arguments about US? 

programs. A very simple example of such an argument is the reasoning used at the end or 

the last section to prove that 5[[tabel[fif]]l(M[[a]])=x.  A less trivial example is the "proof" 

that 

Va.f.fn. 5[[labeirf;fn]]l{«[[aj|)=5EM[f;fn]]](fflira]]) 

which is based on the intuition that for all A „....An if one starts "evaluating" both sides of the 

equation 

5(Ilabel[f;fnj]j(KCaIl)(Alf...,An)=5[[M[f;fn]](8l[[a]l)(A1I...,An) 

then either both "evaluations" will stop with the same value or both will go on for ever. 

To convert this argument into reliable proof one needs a formal notion of evaluation (which 

has the property that unending evaluations only arise from terms which denote ±). The 

definition of —^ is designed to provide such a notion and the Main Theorem shows that it 

has the desired property. 

Using  ^ one can give a more rigorous version of the shove "proof" by showing that to ary 

computation of the form 

<labei[f;fn][A1;...;An] i a>-^p1-»p2-^...—^Pn-^A 

there corresponds one of the form 

<4f;fn][A,;...;An] I a>—»p.'-W-»--»?/-^ 

and vice versa, where (roughly!) p,' is got from p, by reolacing some occurrences of label by 

M and replacing some allst bindings of the form [fn/f] by [M[fifn]/fn]. 
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The USP-induction rule to be described provides a reasonably clean way of rigorously 

organising such arguments. In order to state It let p'op mean intuitively "p' has to be 

evaluated in the course of evaluating p ". More precisely let o be the transitive closure of 

c where; 

p'cp    <=>       either    (1) p—fc-p' 

or (2) pK^e,;...^] | a> and p'=<e, | a) for some 1. 

or (3) pK[eii-*ei2}...;enl-»en2] | a> and p'«{<e,i | a>,...,<eml 1 a>} 

where <;eril, 1 a)-*-^! and Vi<m. <ei1 I a)-*-^ 

Thus p'c*p <=> 3pi,...,pn. p'^cPzC.cPn'P (n>l) 

USP-induction Is structural (or Noetherian) induction with respect ot the ordering o applied 

to expressions of the 'orm "p-HA => ^l(p,A)" where ^l(p,A) is some sentence involving p 

and a. Thus the rule is: 

Vp. [[VP'c«p. rp'-HA'=> ^{p'.A')]]  =>   [p-^A => ^(p.A)] ] 

Vp. [p-HA => ^(p,A)] 

By  considering the various ways in which we can have p'op the above  rule  can  be 

instantiated to: 
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G.l. Simple LISP-Induction 

TO INFER: Vp. p-*^A -> ^(p,A) 

PROVE: 

(D'tfiA.A) 

(2) '^«A I a>,A) 

(3) avx)=A -> ^«x i a>,A) 

(4) F(A;;...;An) -> tf «FCA,;..^] I a>,A) 

(5) '^«e, i A>(A,), ^«MA,;...^] | a>,A) => ^{<fn[e,;...;en] | a>,A) 

(6) Vi<m.*j*;<e, | a>,F), ^«eml i a>J), l^«em2 | a>,A) -> 39«I>ii-»ai2!...;enl-»en2] I a>,A) 

(7) ^«e | aEA,/«,]...^/^] >,A) -> ^«A[[xi;...ixJ;6][A!;...;An] | a>,A) 

(8) m<Hf<ii"--A] I atfn/f] >,A) => ^«l8bel[fjfn][Ai;...jAn] I a>(A) 

(9) ^«fnLA.j-.Aj ! a[M[fifn]/f] >,A) -> ^«M[f;fn][A,;..A] I 8>,A) 

The above instance is somewhat less general than full LISP-induction and so it's called simple 

LlSP-;nduci:ion. Simple LISP-induction, however, is powerful enough to be used to to prove a 

number of interesting facts, for example here's the easy half of the Main Theorem: 

Theorem 2 

p_^A   ->   tPM-A 

Proof 

Take ^ to be such that ^(p,A) <=> 9J|[p|»A, then the result follows from a trivial 

application of  simple LISP-induction. 

aED 

ii. 



21 

theorem 3 

5iM[fjfn]]l<wCa3)-5|[label[f;fn]3(«l[a]l) 

Proof 

For the induction to go through one needs to prove a stronger result. If v., w' are forms or 

functions let w~w' if and only if w' can be got from w by changing zero or more occurrences 

of u to label and zero more occurrences of label to ß. 

If a,a' are alists define a-'a' <=> for all z: 

(1) a(z)=A   <=>  a'(z)=A  (A(<S-expre8sion>) 

(2) if a(zMn then [ y(z)=fn' or a'(z)"=(i[f;fn'] ] where fn-fn' 

(3) if a'(z)=fn' then [ a(z)=fn or a{z)=M[f;fn] ] where  fn^fn'. 

If p,p' are terms then p^p'  <=>  [ p=A=p' or p=<e | b) , p'=<e' | a'>   where e'-e'.a-a' ]. 

Now one can use simple LISP-induction to verify that p-HA =-- ^(p.A) where. 

■^(p.A)   <->   [ Vp'. p-p' => p'-*^A ] 

The result follows. 

QED 

The previous theorem can't be generalised to: 

Vp,f,fn.fflM[fifn]]p-ffI[label[fifn]3p 

A counterexample is got by taking fn'g, p-Y(Xp".J,rXp'.p'(f)p"/g][5l[car]]/f]).   It is then 

straightforward to show (see [1] or [3]) that 

5b[fjg3]p-x^Ccar3-Öfl[label[f;g]3p 

■   --'   
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Thus  it's not  the case that 55![M[f;fn]]]=(5lIlabel[f;fn]]], A detailed and LISP-independent 

discussion is given in [3]. 

Because variables are fluid in LISP it isn't true that if p,p' agree on the free variablss of fn 

ther        Sifnjp-Uifn]]/)'       (e.g.       consider       fn=.,       P=«HNIL[g/f][car/gj]] 

p'=2([[N!L[g/f][cdr/g]]]).   The   following  definition   gives   sufficient   conditions   on   a   set 

Zc'ldentifier> so that if a,a' agree on Z then 5[[fr.]](2l[ra]])=5i[fn]](8l[La']>. 

Definition  2 

If Zc<ldentifier> and p,p' are terms then define p=zp' <=> 

either   p=p'=A 

or   p=<e I a>, p'=<e | a'> and (1),(2) and (3) where: 
(1) Z contains all the free variables in e 

(a variable is free if it isr.'t bound by A,M or label) 
(?) Vz(Z. a(z)=a'{z) 
(3) Vz<Z. Z contains all the free variable In a(z) 

Theorem 4 

P=zP'   ">   [ P-HA <-> p'-HA ] 

Proof 

Use simple LISP-induction to show that p-HA => ^(p,A) where: 

*jt(p,A)   <=>  Vp'. [ [3Z. p=zp'] => p'-^A ] 

The result then follows from the symetry of =z. 

QED 
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Corollary 

Let frK<function>, a, a'€<ali8t> then if there is a Zc<identifier> such that: 

(1) Z contains the free variables of fn 

(2) VzcZ. Z contains the free variables of a(z) 

(3) Vz^Z. ateHa'te) 

Then ffCfnMaMCfnMa']) 

Proof 

By previous theorem <frv[A|j...;An] 9>-*^A <=> <fn[A|i...;An] i a'>—^A hence result by 

Main Theorem. 

QED. 

Results similar to Th&orem 4 and its corollary are proved in a more general setting in [3], 

7. The correctness of eval and apply 

The properties of eval and apply which constitute their correctness are: 

(f[[eval[e*;a*]](pl„t)=(f[[e]](Sr[[a]) 

VA ,Ar,.«|Iapply[fn*i(A1...A(,);a*]]](pint)-5l[fn](8lI[a3){A1 An) 

where e*,a* are S-expression representations of e and a and pint is an environment binding 

the names of the various functions used in the definitions of eval and apply to their values 

(see below) 
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The  proof to be outliner1 is not an instance of simple LiSP-induction but  is  a general 

Noetherian induction with respect to the ordering o. The full details are very long and 

boring (see [1]) and are not given here - I hope that I describe enough so that it would be 

quicker for the reader to generate the proof himself than to read through it. 

In  fact   the  above  properties are  not  true for   if e=x (so  e*=X)  and  a=NlL[fn/x]  (so 

a*=((X.fn*))) then 

(fCeval[eV]3(Pin,)-fnVx-e[x]I(«[a3) 

However if we adhere to the constraint (violated above) that an identifier can't be used both 

as a form variable and a function name in the same program then the property holds. 

To enable us to say this precisely we make the following definition; 

Definition 3 

<e I a> is "nice" if the intersection of the sets FORMVARS, FUNVARS are empty, where: 

FORM\/ARS={z|z is a form variable in e or a(z)f<form>} 
FUNVARS«{z|z is a function name in e or a(z)<<function>} 

The next definition extends the translation of M-expressions into S-expressions which is 

given in the Manual [4] to include alists. This is necessary for the statement of the 

correctness of eval and apply - viz. Theorem 5 below. 
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Definition 4 {definition of e*, fn*, a*) 

The S-expression representation e*, fn*, a* of e, fn, a are defined by structural induction as 

follows: 

8*: 

A* ={QUOTE A) 
x*-X 

fnte,;...*,,]* -(fn* •,*...•„*> 
[e^e.^e.^e^^COND (a,,* e12*)...{enl* en2*)) 

fr^ 

a!: 

car*=CAR 
cdr*=CDR 

cons*=CONS 
atom*=ATOM 

eq*=EQ 

X[[x1;...;xn];e]*»(LAMSDA (x,*..^*) e*) 
;abel[fjfn]*=(LABEL f* fn*) 

NIL*=NIL 
a[A/z]*=((z*.A).a*) 
a[fn/z]*=((z*.fn*).a*) 

aM, which is specified in the next definition, is an alist containing the definitions of the 

functions which make up a basic LISP interpreter - namely those functions needed in defining 

eval and apply. The environment denoted by a,,,, is pint. 
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Definition 5 (Specification of airt, ßM) 

P,nl^r|Ia,J 

where; 

a,nt=NIL[fnllSSOc/assoc][fnpflirl,s/pairlis][fnequal/equal] 
[fnnuil/null][fnclldar/cadar][fncaddr/caddr][fnc9dr/cadr] 
[fncdflr/cdar][fncaar/caar][fnevllS/evlis][fn.vcon/evcon] 
[fn,vei/eval][fnapply/apply] 

where fnna^, is the definition of name given in the manual [4]. 

for example: 

fn9ppiy«M[fn;x;a]j 
[atom[fn]-[eq[fn;CAR]-»caar[x]; 

eq[fn;CDR]-cdar[x]; 
eq[fn;CClMS]-'Cons[car[x];cadr[x]]; 
eq[fn;ATOMj-atQm[car[x]]; 
eq[fn;EQ]-»eq[car[x];cadr[x]]; 

T -•apply[eval[fn;ajix;a]]j 
eq[car[fn];LrAMBDAj-»eval[caddr[fn]ipairlis[cadr[fn];x;a]]; 
eq[car[fn];LABEL]->apply[caddr[fn];x;cons[consr':adr[fn];caadr[fn]];a]J]] 

fn.v«r^[[e;a]; 
[at&m[e]-'cdr[assoc[e;a]]i 
atom[car[e]]-»[eq[car[e],QUüTE]-'cadr[e]; 

eq[car[e];COND]-«evcon[cdr[e];a]; 
T     -'apply[car[e];evlis[cdr[e];a]ja]]; 

T -* app!y[car[e];evlis[cdr[ej;3l;a]j] 

[eval[caar[c]ja]-*ev8l[c8dar[c];a]i 
T      -♦evcon[cdr[c];a]]] 

^.vilS=
A[[m;a]i 

[null[mhNIL; 
T    ->con8[eval[car[m];a]jevli8[cdr[ml;a]]]] 
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Theorem S (correctness of eval, apply) 

If <e I a> and <fn[A|,...;An] | a> ere nice then; 

(f[Ieval[e:,:;a*]]{pin,>=Cf[[e3(8r[a]]) 

<J[Iapply[fn*i(A!...Aft)ja*]3(pll1t)-ffI[fnl«|[8]l)(AIl...A) 

Proof 

The theorem follows from lemma 1 and lemma 2 below. 

aED. 

Lemma 1 

<fn[A1;...jAn]|a>-HA  =>  (f[[app!:'[fn*;(A1...An);a*]](pin()=A 

<ela>-^A  =>  (fCeval[e*ia*]](pin()=A 

Proof 

The lemma can be put into the form  p-*^A => ^l(p,A) by defining 

*£l(p,A)  <=>  if pKfnLA,;...^,] I a>-HA then e([apply[fn*;(A1...An);a*]]I(p J-A 
and if p=<e | a>-^A then (f[[eval[e*ia*]]](p,nt)=A 

A straightforward (but tedious) LISP-induction then yields the lemma. 

QED 

Lemma 2 below is a kind of generalised converse of lemma 1. The extra generality consists 

in proving the result for certain aiists of the form ain([W|/21]„.[wn/zn] instead of just for am,. 

This extra generality is needed to enable the induction to go through. 
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The alists in question are those of the form ain(.a' where a' is "safe" - here "aint.a'" is 

defined by structural induction by: 

aint.NIL=«aint 

ain,(a[A/z]Ha,n,a)[A/z] 
aint.(a[fn/z]Hain).a;[fn/z] 

Also an alist a is called "safe" if when 

Z={assoc,pairlis,equal,null,cadar,caddr,cadr,cdarlcaar>evli8levcon,eval,apply} 

then:   Vz^Z. a(z)-X. 

These definitions imply that if Z is as above then for any safe a: aint
=

z(ain,.a). This fact needs 

to be used in the proof of lemma 2 below. 

Lemma  2 

If <fn[Ai;...;An] | a> and <e 1 a> are nice and a' is safe then: 

<apply[fn*;(A1...An)}a]|ajnt.a'>JHA => i^fnjMaHMA^.A^A 
<evaire*;a*]la,r,t.a'>-H>A  =>  tt[[e]]{5r[[a3)=A 

Proof 

The lemma can be put in the form; 

p-*-»A   =>   ^(p,A) 

by defining 

^(p,A)   <=>  if p-<apply[fn*i(A,...An);a*] I alM.s'>-HA (where a' is safe) 

then 8fI[fn](a|[a|)(Al,...lAn)-A 
and if p=<eval[e*;a*] | a^a^-HA (where a' is safe) 

then GHeMalhA 

This can then be proved by a straightforward (but extremely tedious) LISP-induction. 

QED. 
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8. Concluding Remarks 

Although these proofs formalize intuitive arguments their size, when all details are filled in, is 

excessive. As these details are fairly mechanical and don't require creative acts for their 

generation a proof production system (such as FOL at Stanford or the new LCF at Edinburgh) 

should be able to help us cope with them. Another possibility is that abstract "high level" 

notions can be developed which encapsulate some of the facts (proved here for LISP) in a 

language independent form. A start at this has been attempted in [3], Abstract notions help 

in the handling of large masses of detail by assisting in the isolation of those things which are 

language specific from those which are more universal. When the progfs of language 

independent facts are factored out from the proofs of the theorems described above the 

latter are made shorter and more direct (see [3]). The formulation of such high level, 

language independent notions should also assist in the design of proof construction systems - 

research into proof generation needs to proceed hand in hand with research into the 

structure of the proofs whose generation is deiirad. 

hw-l 
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