
Stanford Artificial Intelligence Laboratory
MemoAIM-264 .^

//j Augc^»75]/^

Computer gHfipnfi nopflriBaQ4—--—^""^^^ ""7
Report N^/STAN-CS-75-5jZi6. /tlM-Jl U1/ I

O

OPERATIONAL JREASONING
and

DENOTATIONAL SEMANTICS, I

v

Michdel Gordon /

/,-: /: - J £*, ?. -. -Z^f*

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2494 /■"Vv

COMPUTER SCIENCE DEPARTMENT
Stanford University

■ Fi f
r«

SßJg^
äf
fi? I? \tl

m

n?- ■ 3f^ i ■ ENt A

Apwov. I tor pwblic ^iwis^

V1/
0 J 2

■■

OPERATIONAL REASONING
AND

DENOTATIONAL SEMANTICS

by

Michael Gordon
Department of Computer Sfience,

James Clerk Maxwell Building,
The King's Buildings,

Mayfield Road,
Edinburgh EH9 3JZ.

Abstract

Obviousiy true" properties of programs can be hard to prove when meanings are specified

with a denotational semantics. One cause of this is that such a semantics usually abstracts

away from the running process - thus properties which are obvious when one thinks about

this lose the basis of their obvious',or' !n the absence of it. To enable process-based

intu'ions to be used in constructing proofs one can associate with the semantics an abstract

interpreter so that reasoning about the semantics can be done by reasoning about

computations on the interpreter. 1 5 technique is used to prove several facts about a

semantics of pure LISP. First a denotational semantics and an abstract interpreter are

described. Then it is shown that ine denotation of any LISP form is correctly computed by the

interpreter. This is used to justify an inference rule - called 'LISP-induction* - which

formalises induction on the size of computations on the interpreter. Finally LISP-induction is

used to prove a number of results. In particular it is shown that the function eval is correct

relative to the semantics - i.e. that it denotes a mapping which maps forms (coded as

S-expressions) on to their correct value?.

N

-A

ACKNOWLEDGEMENTS

Thanks to John Allen, Rod Burstall, Friedrich von Henke, Robert Milne, Gordon Plotkin,

Bob Tennent and Chris Wadsworth for helpful discussions and correspondence. John Allen,

Dana Scott and Akinori Yonezawa suggested improvements and pointed out errors in

preliminary drafts of this report

This research was supported in part by the Advanced Research Projects Agency of the

Office of the Secretary of Defense under contract DAHC 15-73-C-0435, ARPA order no.

2494. ^-^

The views and conclusions in this document are those of the author and should not be

interpreted as necessarily representing the official policies, either expressed or implied, of

the Advanced Research Projects Agency or the US Government.

CONTENTS

SECTION PAGE

1. Introduction 1

2. Syntax of Pure LISP 2

2.1. Meta-variable Conventions 2

2.2. BNF Equations 2

3. Denotational Semantics of Pure LISP 3

3.1. Semantics 4

3.1.1. Denotation Domains 4

3.1.2. Environment Domain 4

2.1.3. Semantic Functions 4

3.1.4. Semantic Equations , 4

3.2. Notes 5

4. A- Interpreter for Pure LISP 11

4.1. Notes 14

5. Correctness of the Interpreter 1 5

5.1. Reasoning via the Interpreter 17

6. LISP-lnduction 18

6.1. Simple LISP-lnduction 20

7. The Correctness of eval and apply 23

8. Concluding Remarks 29

9. References 30

1. Introduction

This peper contains example,? of the use of operational reasoning to prove properties of a

denotationai semantics. By "operational reasoning" is meant reasoning which exploits notions

associated with the operations involved in running programs on interpreters. "Obviously true"

properties are often rather hard to prove when meanings are specified by a denotationai

semantics. One cause of this is that such a semantics usually abstracts away from the

running process - thus properties which are obvious when one thinks about this lose the

basis of their obviousness in the absence of it. One way to enable process-based intuition'

to oe used in constructing proofs is to associate with such a semantics an abstract

interpreter so that one can reason about the semantics by reasoning about computations on

the interpeter. In what follows this approach is used to prove several facts about a

semantics o* pure LISP. Doing this involves:

(A) Describing a set of semantic equations for pure LISP

(B) Describing an interpreter (expressed as a calculus) for mechanically evaluating
LISP forms,

Having done this I then prove that the denotation of a form (as specified by the semant.c

equations) is always correctly computed by the interpreter. This result is then used to

formulate a special purpose induction rule for reasoning about LISP programs. This rule -

called "LISP-induction" - is induction on the length of computations on the interpreter.

Because the interpreter is correct LISP-induction is valid for reasoning from the semantic

equations. Using LISP-induction I outline how to prove the correctness of the LISP function

eval. This involves shewing that the denotation of eval (as specified by the semantic

equations) is a mapping which maps LISP forms (coded as S-expressions) on to their correct

values.

2. Syntax of Pure LISP

The syntax of LISP described below is that of M-expressions as described in the manual [41

1 use the variant of BNF notation described in [9]

2.1. Meta-varlable Conventions

A ranges over <S"expression> (as in page 9 of [4])
x,f,2 range over <ident1fier> (as in page 9 of [4])
e ranges over <form> (as defined beiow)
fn ranges over <function> (as defined below)
F ranges over <standard function (as defined below)

I use meta-variables x,f,z to range over identifiers x is used in contexts where the

identifier is a form, f where it's a function anü z where it could be either.

2.2. BNF Equations

e ::= A | x | fn[e,;...jen] | [en-^e,^...^,-»©^]
fn ::= F | f 1 AUx,;...;^] | label[f}fn] 1 M[f;fn]
F ::« car | ctlr 1 cons | atom | eq

(The purpose and meaning of functions of the form n[Ufn] is explained in [Note 16] below)

3. Denotational Semantics of Pure LISP

The formal definition of LISP described in this section is a "mathematical semantics'" of the

type developed by Scott and Strachey [9]. I have found that modoliing data-types as

complete lattices [8] leads to minor technical difficulties and inelegancies [1] which disappear

if complete-posets (ie. partially ordered sets in which every directed set has a least upper

bound) are used. Consequently in what follows - and in contrast to the standard theory -

"domain'' will mean "complete-pos-et". The theory based on this notion of domain differs only

in obvious and trivial ways from the theory based on complete-lattices.

If X is a set let flat(X) be the domain obtained from X by adjoining x to it and imposing tr.e

ordering ±sx tor all xCX. Thus

xfflat(X) <=> x=.i. or x<:X

xEy <=> x=± or x^y

The following syntactic domains will be used later:

S=flat(<S-e*pression>)
/rf=flat(<identifier>)

Form=flat(<form>)
f"unca'on=flat(<function>)

The semantics below should be read in conjunction with the explanatory notes that follow it.

3.1. Semantics

3.1.1. Denotation Domains

D=S*Funval [Note 1]
S=flat(<S-expre88ion>)

Funval=fS*->S/ [Note 2]

3.1.2. Environment Domain

Env^Id-*/Env^Dj [Note 3]

3.1.3. Semantic Functions

(}:Form-*fEnv-*Sj [Note 4]
%• :Function-*fEnv-*FunvalJ [Note 4]

3.1.4. Semantic Equations

(SI) dMp = A [Note 5]

(S2) GWp =p(x)p!S [Note 6]

(S3) (f[Ifn[e1;...;en]]]p = 5l[fn]]p((f[[e,]lp,...,0;I[eJp) [Note 7]

(S4) Q:[[[ell-*elz;...;enl-*en2]]]p = ((?[LeliIlp-*(fIIe12]lp,...,(f He, Jp-l5[[en2]]p) [Note 8]

(S5) JEcarUp = As:S.car(s) [Note 9]
^[[cdrlip = A8:S.cdr(s) [Note 10]

SE^onsJlp =» A61.8?:.?,con8(8|.8?) [Note 11]
ifdatomjip = A8:S.§tpm(8) [Note 12]

5|[eq]lp = Asl,82:S.eq(s1,s2) [Note 13]

(S6> WSifi ~ p(i)f>\Funval [Note 14]

?S7) «5llA[[x1;...xn];e]Ilp = A81,...,sn:S.(f[Ie]]p[81/x1]...[sn/xn] [Note 15]

(S8) ff|Ilabel[fjfn]]]p - 5?[[fn]]p[5[[fn]l/f] [note 16]

(S9) 5llM[f;fn]]p = yf{X>f:fEnv->Funvalj.*p'iEnvÜlinJp'[yf/1])p
[Note 16]

. -.llLLlirnlMU'if-MI "—^ ^'--""^-TTH-rr,,

3.2. Notes

Note 1

"'" is the separated sum [6]. If Di.f^ are domains then:

DrDz = {U.d^ld.dM U {(2^)^02) U {±]

which is made into a domain by imposing the ordering:

j-sdi.d)
(n,d)E(n',d') <-> n=n' and dsd'

If d^Dj let (d, inD) mean (i,d,) - i.e. the natural injection of d, into D^D r"2

■f dtD^Dz let

d|D, =« d(, if d«{i,d,)i
~ J, , otherwise.

d|D, is the natural projection of d on to D,.

Note 2

If /. is a domain then:

L*={{x1I...lxm) | m>0 and xfiL] U {x}

L* is made into a domain by imposing the ordering:

±s(*]l...,xn)

(x1,...,xr,)£{yi,...,ym) <=-> n«m and Vl. x.sy,

Note 3

The purpose of environments in the semantics is like the purpose of alists in interpreters.

Thus environments are used to hold the bindings of variables to their values. In LISP when a

function is bound to a name on the alist the values of the function's free variables are not

determined. These values depend on the environment in which the function is activated and

this is unknown at definition time. To model this the objects which get bound to names on

environments are mappings defined on environments. These objects thus have type fEnv-*D/

and so Env has to have the circular type Id->fEnv-*DJ . This kind of environment also

handles the binding of form variables to S-expressions - the binding of A to x in p is

represented by arranging that p(x)p'^A for all p'tEnv. Bob Tennent has suggested [private

communication] that this somewhat unnatural representation of form variable bindings could

be avoided by letting Env have type given by Env=!d-*fS*fEnv-*Funvai//.

The domain equation Env=ld-*fEnv-*D/ may have many solutions. These solutions can be

ordered by regarding them as retracts (and hence members) of a universal space. Then the

Env intended here is that represented by the retract ViXe.Id-^fe-^D/) - see [1] or [8] for

further explanation. This minimality is needed in the proof of the Main Theorem (see below).

Note 4

Relative to an environment piEnv the semsntic functions ff,t5 map forms e, and functions fn,

onto their denotations (f'|Ie]]p(S, 8'Hfn]]p(Funna/ respectively. The semantic equations

consist of a recursiv,, syntax-directed definition of (J and 5. (f[[±]]=i and 5[[x]]»J.. The

"emphatic' brackets [[,]] are s device due to Scott to increase the legibility of complex

expressions - [[...]] always enclose pieces of LISP code.

Note 5

S-expressions denote themselves in all environments.

Note G

"p{x)p|S" means the projection into S of p(x)pt:D=S*Funuai. Since S-expressions are

constant (i.e. their meaning is environment independent) they get represented by constant

functions in [Env-*Sl (see [note 3]). Thus for any p'tEnv "p{x)p'" would do just as well as

the right hand side of (S2). However when f is a function name "p(f)p" is needed (see (S6)

and [note 3]) and so it seems more elegant to have (S2) as it is so that it resembles (S6). As

mentioned in [note 3] this arbitrariness is eliminated if the type of Env is changed to satisfy

Env=Id-*/S*fEnv->FunvalJJ.

Note 7

If 9u...,9ntS then («„....s^S* and for ii/S*->Sj i{su...tsn) means f((s„...,sn»

Note 8

(8|1-»8|2,...,Sni->8n2) ■ if 9U=± Or (»n^T ancl 8il^ then J- else 'f Sll="," then 8iz else

if »2i=x or («zi^T and ezl^F) then i. else if Sj]*»! then 822 else

if Sni-J. or (Sni^T and 8n,^F) tnen ± else if 8n|=T then 8n2 elce i,

Note 9

See [note 15] for explanation of \.

car:S-»5 is defined by: Cär(ä> = A, , if 8=(A,.A2);
= x , otherwise (i.e. if s=± or s is atomit).

8

Mote 10

See [note 15] for explanat'an of X.

cdr.-S- 'S ib defined by. cdris) " Ag , if 8={A,.A2);

= J. , otherwise (i.e. if s-JL or s is atomic^.

Note 11

See [note 15] for explanation of A.

cons.-SxS-^S is defined by: cons{s1.8?) = (8,.s2) , if 8^1 and 32^J.;

- JL , otherwise.

Note 12

See [note 15] for explanation of _

§tcjTi;S-*S is defined by; atom.,9) = T , if s is dtomicj
= F , if s 10 of tha form (S|.s2);

= J. , otherwise (i.e. if s=±).

Note 13

See [not- 15] for explantion of A.

eq:SxS-*S is defined by; efl(8i(öz) = T , if s, and 82 are atomic and s,=s2i
= F , If S| and s2 are atomic and 3,/$^
= x , otherwise.

Note 14

p(f)p\F nval is the pr-,action into Funval of p(f)p(D=.<f+funt)a/. Forming p(f) models

, jking up f on the aliet, applying p(f) to p to get p(f)p models looking up the free variables

in the activation environment.

Note IS

Suppose E{8|,...,8n) is an expression which takes values in the domain Dz when 9u...tBn range

over domair. D, then ^S|,...,8n:D,.E(sl,...,sn) denotes the functic V-*^ defined by

Us) = E(s!,...,sn) , if 8=(8i...8m) where m>n and Vi. s^i.}
- ± , otherwise.

Thus Asl,...,8n:D,.E(8|,...,8n) is a function which always returns X when one of its arguments

is j, (this Is to model call-by-value) and which can take any number of arguments >n (this is

a property of LISP functi^.s).

I shall use As,,...lsr,:D1."rl(sl,...,sn) (i.e. with >> instead of A) in the usual way to mean the

function f:D|n-*D2 defined by

1{9it...,9n) = E(8l,...,8n)

If p(Env, v(:fEnv-*D/ and ztld then

p[v/z] = Xz':ld. If z=J. or z'=X then X else if z=z' then v else p(z')

In (S7) I've used the "coercion conventions" that if s«S then p[s/z] means

p[(Ap';£nu.(s inD))/z]. Thus, as discussed in [Note 3], for the purposes of binding to

variables in environments S-expressions are rej. asented as constant functions.

10

Note IG

There are two natural ways to analyse recursion. One of them is to mimic in the semantic

equations what the LISP eval function does - viz bind the function to it's own name on the

alist. The other way is to take the denotation of a recursively defined function to be the

(minimal) solution of the equation which defines it. Both these approaches have something to

be said for them and fortunately they turn out to be equivalent in practice (what "in

practice" means will be elaborated later - it's also discussed abstractly in [3]). To simplify

the investigation of thi? equivalence two kinds of recursive functions, label[f;fn] and ^[fjfn],

are included in the syntax of LISP. Iabel[f;fn] is given an analysis which mimics the evsl

function whilst n[f;fn] receives a minimal-fixed-point treatment.

In both (S8) and (89) I've used the "coercion convention" that if yi/Env-^^unval/ then

p[v/f] is to mean p[{Xp':Env.{w(p') inD))/f].

In (S3) V:/'/Env-*Funvalj-*/Env+FunvalJJ-*fEnv-*FunvaLj is the usual minimal-fixed-point

operator AF.LJnFn(j.). Note that the fixed point extraction is done "before" the free variables

are looked up (i.e. the result «f applying Y is applied to p, rather than Y being applied to

something which has already been applied to p). This is necessary to correctly model dynamic

binding (fluid variables).

Note also that from the fixed point property of Y we have:

Stefn^p = SCfnUW-tonlH/f])

The right hand side of this differs subtly from that of (S8).

11

4. An Interpreter for Pure LISP

The interpreter described below is designed so that reasoning about computations on it is

convenient, its purpose is to aid in the formuiation of a special purpose induction rule for

LISP ("LiSP-induction"), It is formalised as a calculus consisting of rules for simplifying terms

of the form <o | a> where e is a LISP form and a an allst. The rules of thr calculus are

intended to correspond to the obvious simplifications that one would perform on expressions

of the form (fl[e|p. An example of such a simplification is:

G[[>>[[x];[atom[x]-*x;T-»cdr[x]jj|.u t/jj^,
=(f[[[atom[xhx;T^cdr[x]]|(±[(l 2)/x])
=(ficQr[x]]](±[(l 2)/x])
=(f[cdr[(l 2)0(4(1 2)/x])
=(2)

Let the meta-variables p.a range over the strings defined by:

p::=A |<ela>
a::=NIL i a[A/z] | a[fn/z]

p will be said to range over <term> and a over <alist>. Define $[[p]](S and 2l[[a]|<£nu by

$[[A]]=A
$C<ela>3=ffirel9rira]l)

«[[NIL]]=j.
«Ca[A/2]3-8l[[a]][A/z]
«Ca[fn/2]]]-SrI[a][5[[fn3/z]

In the last two equations I've used the "coercion conventions" described in [note 15] and

[note 16] above.

The following definition describes a binary relation —^ defined on terms, p—^p' r ,ns that

p simplifies to p". If one likes one can think of the p's as states of a machine then "p ^p'"

means "in state p move to state p'", final states are p's of the form A.

12

I shall immediately follow the definition of —> with an explanation of the notation it is

written in; then I will give some notes which should be read in conjunction with the definition.

Definition 1 (Definition of —^ and -H)

-*-£ is the reflexive, transitive closure of —^.

(PI) <A |a>—M

(P2) a(x>=A

<x|a>—^A

(P3) F(A1,...,An)=A

<F[Al;...;An]|a>-^A

(P4) [Vj. <ei | a>-^A,] and [3i. e/A,]

<fn[e1;...;en] | a>—Kfn[A,!-..;An] I a>

(P5) <eml | a>-^T and [Vi<m. (e,, | a>-HF]

<[e,|-»e12;...;er,1-»en2] | a>—^<em2 j a>

(P6) a(f)=fn

<f[A,;...jAn]|a>-^<fn[A1;...;An]|a>

(P7) m<n

<A[[x1;...;xm];e][A1;...;An] | a>H><e I atA./x,]...[Am/xm] >

(P8) <labei[fifn][Al;...;An] | a>—^<fn[A,;...;Aft] | a[fn/f] >

<P9) <*i[f;fn][A1;...;An] j a>-^<fn[A1;...;An] | a[(i[f;fn]/f] >

(P10) [n=l] or [l<n and Pi—^p2,...,Pn-i—^Pn]

Pl-^Pn

[note 17]

[note IS]

[note 19]

[note 20]

[note 21]

13

Each clause P1-P10 is a schema and the meta-variabies in them range over their previously

defined sets (e.g. A ranges over <S-expre8sion>).

A schema of the form p—^p' (i.ePl, P8 or P9) means that any instance of it is a pair for

which —^ holds.

A schema of the form;

conditions

P-H>P'

(i.e. P2-P7, P10) means that any instance of it which satisfies the conditions is a pair for

which —^ holds.

An example computation, which corresponds to the simplifications described above, is:

<A[[x];[atom[xPx;T^cdr[x]]][(l 2>] | NIL)
—K[atom[x;HxiT-cdr[x]] I NIL[(1 2)/x] > (by P7)
—KcdrM I NIL[(1 2)/x] > (by P5)
—^<cdr[(l 2)] | NIL[(1 2)/x] > (by P4)
—^(2) (by P3)

Notice that this computation can be mechanically and deterministically generated from its

initial term - the definition of —^ makes explicit the intuitions which were previously used

in simplifying (f[[x[[xM8tom[x]-*x;T-»cdr[x]]][(l 2)]J{±) above.

- ■-■ P^^-

14

4.1. Notes

Note 17

a(x) is defined by structural induction on a as follows:

NIL(x) = 1
(a[A/z]){x) = If x=z then A else a(x)
{a[fn/z])(x) = if x-z then fn else a(x)

Thus e(x)«{j.} U <S-expre8sion> U <function>. The reason ??. rather than "<x | a>—>a(x>"

is used is that with the latter if a{x)-j. or a<x)*fn then <x | a>—^± or <x | a>—>fn ;änd

neither I. nor fn are terms.

Note 18

F ranges over car.cdr.cons.atom.eq. "<F[A|;„.;Ar] | a>-4F{AII...lAr,)" won't do because it

would yield e.g. <cons[N;4.] | a>—b± - and 1 isn't a term.

Note 19

The reason for the condition "[3i. e^A,]" in P4 is to exclude unending computations of the

form:

<fn[Al}...;An] I a>-^<fn[A1;...;An] I a>-^ ...

and also to make —^ deterministic (i.e p—^p' and p—^p" -> p'=p"). Thus i exclude the

nondeterminism:

<label[f;fn][AIj...jAn] | a>-^<fn[Ai;...;An] | a[fn/f] >

<label[f;fn][A1;...jAn] | a>—►<label[f;fn][A1}...;An] I a >

15

Note 20

a(f) is defined as in [note 17] (with x replaced by f in the definition of a(x)).

"<f[A|;...;Aft3 I a>—Ka(f)[A,}...;AJ I a)" will not do for P6 because of the possibility that

a{i}=± or a(f)=A(c.f. [note 17]).

Note 21

It follows from P10 that Vp. p-Hp (take n=l in P10) and p-^Hp' and p'-«-^p" »> p^-^p"

5. Correctness of the Interpreter

The following result show?, that —^ fulfils its design requirements i.e. that <e 1 a> simplifies

down to A if and only if ßW(8f|[a]])=A

Theorem 1 (Main Theorem)

p^A <=> SPM-A

Proof outline

The theorem splits into two parts, viz:

(a) p-HA => $Cp]=A
(b) JBM-A -> P-HA

(a) is essentially trivial - one just checks that rules (Pl)-(PIO) preserve the denotation of

terms. I discuss how to organize this argument in section 6.1. below.

IS

(b) is less straightforward and I shall only indicate the main idea of the proof. This idea is

due to Robert Milne [private communication] and considerably shortens the original proof

given in [1]. Similar ideas have been developed Independently by Reynolds[7].

The main idea is to construct predicates ^""^^1^ and .^»,11.1 defined cn

/■£nii-*5/x<form>, /£nu->FunDa//x<function> and £nDx<alist> respectively such that;

(1) i*f0'm{y,») <-> Vp,a. [^(p.a) -> VA. [v(p)-A => <a j a>-HA]]

(2) ^funct.on(v>fn) <=> vpta [■ jj>«ii»«(p)a) => [v(p) is strict] and VA.A,,...^^

[v(p)(All...,An>-A => <fn[A1;...iAr,] 1 a>-^A 1 1

(3) ^8|,8,(P,8) <=> Vz,A. [if a(z)=A then ^'orm(p(z>|/£m^.S7,A) and
if a(z)=fn then ^>'unc,,on{p(z)|/£nti->Fun^/y,fn)]

In (3) above "p(z)\fEnv*S/" and "pWlfEnv+Funvall" are abbreviations for

"Ap':£nt..(p(z)p'|S)" and ">lp':£nu.{p{z)p'lFunval>" respectively.

From (l)-(3) it is straightforward to show by structural induction that:

(4) Ve<<form>. ir»,0rm(G[[e],e)

(5) Vfn(<function>. l»?,üne,ion{(Jifn]]#fn)

(5) Va.<alist>. ^"»'(SlUalLa)

and then by taking v-öl[e| and p=M[[a]] we have by (1), (6) and modus ponens that:

ff'IM(WW)-A => <e|a>-HA

as desired.

17

The only non trivial part ot this proof is showing that there exist relations •Ej>f0rm
i

tjpfunct.on^.iis! satisfying (l)-(3>. Lack of monotonicity prohibits the simple use of Y to do

this. General techniques for solving recursive predicate equations (such as (1H3) above)

have been developed by Robert Milne (and also by Reynolds), The reader is referred to [5]

and [7] for further details.

"aED"

5.1. Reasoning via the Interpreter

I'll start by illustrating the use of the Main Theorem on a totally trivial example - determining

3[Ilabel[f;f]]](i.) - less trivial examples are theorems 2, 3, 4, 5 below. Intuitively

o-(Ilabel[f;f]]i(i.)=± as label[f;f] terminates on no arguments - to rigorise this observe that

by P8 we have for arbitrary Ai,...,An

<label[f;f][A1;...;An] | NIL>-^<f[Ai;...;Al,] I NIL[f/f] >

and (by P6) if pKf[A|;...;An] | NIL[f/f]> then the evaluation of p just leads to the unending

computation:

p—^p—^p—»,..

so by the Main Theorem there's no A such that G;[[label[f;f][A,;...:An]]l(j.)=A and so :

VA,,...^^ (fClabel[f;f][A1;...;An]]](8rIlNiL]l)=5ilabel[f;f]]U)(A1,..,An)==.J.

hence (5l[label[f}f]]]U)-l

To prove the intuitively obvious fact that 5-l[labe![f;f]]](j.)=i without using the Main

Theorem one needs to exploit the minimality of Env. The Main Theorem packages-up this

minimality in an easy to use form.

13

R T.TSP-Induction

LISP-induction is an attempt to formalize certain kinds of intuitive arguments about US?

programs. A very simple example of such an argument is the reasoning used at the end or

the last section to prove that 5[[tabel[fif]]l(M[[a]])=x. A less trivial example is the "proof"

that

Va.f.fn. 5[[labeirf;fn]]l{«[[aj|)=5EM[f;fn]]](fflira]])

which is based on the intuition that for all A „....An if one starts "evaluating" both sides of the

equation

5(Ilabel[f;fnj]j(KCaIl)(Alf...,An)=5[[M[f;fn]](8l[[a]l)(A1I...,An)

then either both "evaluations" will stop with the same value or both will go on for ever.

To convert this argument into reliable proof one needs a formal notion of evaluation (which

has the property that unending evaluations only arise from terms which denote ±). The

definition of —^ is designed to provide such a notion and the Main Theorem shows that it

has the desired property.

Using ^ one can give a more rigorous version of the shove "proof" by showing that to ary

computation of the form

<labei[f;fn][A1;...;An] i a>-^p1-»p2-^...—^Pn-^A

there corresponds one of the form

<4f;fn][A,;...;An] I a>—»p.'-W-»--»?/-^

and vice versa, where (roughly!) p,' is got from p, by reolacing some occurrences of label by

M and replacing some allst bindings of the form [fn/f] by [M[fifn]/fn].

19

The USP-induction rule to be described provides a reasonably clean way of rigorously

organising such arguments. In order to state It let p'op mean intuitively "p' has to be

evaluated in the course of evaluating p ". More precisely let o be the transitive closure of

c where;

p'cp <=> either (1) p—fc-p'

or (2) pK^e,;...^] | a> and p'=<e, | a) for some 1.

or (3) pK[eii-*ei2}...;enl-»en2] | a> and p'«{<e,i | a>,...,<eml 1 a>}

where <;eril, 1 a)-*-^! and Vi<m. <ei1 I a)-*-^

Thus p'c*p <=> 3pi,...,pn. p'^cPzC.cPn'P (n>l)

USP-induction Is structural (or Noetherian) induction with respect ot the ordering o applied

to expressions of the 'orm "p-HA => ^l(p,A)" where ^l(p,A) is some sentence involving p

and a. Thus the rule is:

Vp. [[VP'c«p. rp'-HA'=> ^{p'.A')]] => [p-^A => ^(p.A)]]

Vp. [p-HA => ^(p,A)]

By considering the various ways in which we can have p'op the above rule can be

instantiated to:

20

G.l. Simple LISP-Induction

TO INFER: Vp. p-*^A -> ^(p,A)

PROVE:

(D'tfiA.A)

(2) '^«A I a>,A)

(3) avx)=A -> ^«x i a>,A)

(4) F(A;;...;An) -> tf «FCA,;..^] I a>,A)

(5) '^«e, i A>(A,), ^«MA,;...^] | a>,A) => ^{<fn[e,;...;en] | a>,A)

(6) Vi<m.*j*;<e, | a>,F), ^«eml i a>J), l^«em2 | a>,A) -> 39«I>ii-»ai2!...;enl-»en2] I a>,A)

(7) ^«e | aEA,/«,]...^/^] >,A) -> ^«A[[xi;...ixJ;6][A!;...;An] | a>,A)

(8) m<Hf<ii"--A] I atfn/f] >,A) => ^«l8bel[fjfn][Ai;...jAn] I a>(A)

(9) ^«fnLA.j-.Aj ! a[M[fifn]/f] >,A) -> ^«M[f;fn][A,;..A] I 8>,A)

The above instance is somewhat less general than full LISP-induction and so it's called simple

LlSP-;nduci:ion. Simple LISP-induction, however, is powerful enough to be used to to prove a

number of interesting facts, for example here's the easy half of the Main Theorem:

Theorem 2

p_^A -> tPM-A

Proof

Take ^ to be such that ^(p,A) <=> 9J|[p|»A, then the result follows from a trivial

application of simple LISP-induction.

aED

ii.

21

theorem 3

5iM[fjfn]]l<wCa3)-5|[label[f;fn]3(«l[a]l)

Proof

For the induction to go through one needs to prove a stronger result. If v., w' are forms or

functions let w~w' if and only if w' can be got from w by changing zero or more occurrences

of u to label and zero more occurrences of label to ß.

If a,a' are alists define a-'a' <=> for all z:

(1) a(z)=A <=> a'(z)=A (A(<S-expre8sion>)

(2) if a(zMn then [y(z)=fn' or a'(z)"=(i[f;fn']] where fn-fn'

(3) if a'(z)=fn' then [a(z)=fn or a{z)=M[f;fn]] where fn^fn'.

If p,p' are terms then p^p' <=> [p=A=p' or p=<e | b) , p'=<e' | a'> where e'-e'.a-a'].

Now one can use simple LISP-induction to verify that p-HA =-- ^(p.A) where.

■^(p.A) <-> [Vp'. p-p' => p'-*^A]

The result follows.

QED

The previous theorem can't be generalised to:

Vp,f,fn.fflM[fifn]]p-ffI[label[fifn]3p

A counterexample is got by taking fn'g, p-Y(Xp".J,rXp'.p'(f)p"/g][5l[car]]/f]). It is then

straightforward to show (see [1] or [3]) that

5b[fjg3]p-x^Ccar3-Öfl[label[f;g]3p

■ --'

22

Thus it's not the case that 55![M[f;fn]]]=(5lIlabel[f;fn]]], A detailed and LISP-independent

discussion is given in [3].

Because variables are fluid in LISP it isn't true that if p,p' agree on the free variablss of fn

ther Sifnjp-Uifn]]/)' (e.g. consider fn=., P=«HNIL[g/f][car/gj]]

p'=2([[N!L[g/f][cdr/g]]]). The following definition gives sufficient conditions on a set

Zc'ldentifier> so that if a,a' agree on Z then 5[[fr.]](2l[ra]])=5i[fn]](8l[La']>.

Definition 2

If Zc<ldentifier> and p,p' are terms then define p=zp' <=>

either p=p'=A

or p=<e I a>, p'=<e | a'> and (1),(2) and (3) where:
(1) Z contains all the free variables in e

(a variable is free if it isr.'t bound by A,M or label)
(?) Vz(Z. a(z)=a'{z)
(3) Vz<Z. Z contains all the free variable In a(z)

Theorem 4

P=zP' "> [P-HA <-> p'-HA]

Proof

Use simple LISP-induction to show that p-HA => ^(p,A) where:

*jt(p,A) <=> Vp'. [[3Z. p=zp'] => p'-^A]

The result then follows from the symetry of =z.

QED

23

Corollary

Let frK<function>, a, a'€<ali8t> then if there is a Zc<identifier> such that:

(1) Z contains the free variables of fn

(2) VzcZ. Z contains the free variables of a(z)

(3) Vz^Z. ateHa'te)

Then ffCfnMaMCfnMa'])

Proof

By previous theorem <frv[A|j...;An] 9>-*^A <=> <fn[A|i...;An] i a'>—^A hence result by

Main Theorem.

QED.

Results similar to Th&orem 4 and its corollary are proved in a more general setting in [3],

7. The correctness of eval and apply

The properties of eval and apply which constitute their correctness are:

(f[[eval[e*;a*]](pl„t)=(f[[e]](Sr[[a])

VA ,Ar,.«|Iapply[fn*i(A1...A(,);a*]]](pint)-5l[fn](8lI[a3){A1 An)

where e*,a* are S-expression representations of e and a and pint is an environment binding

the names of the various functions used in the definitions of eval and apply to their values

(see below)

24

The proof to be outliner1 is not an instance of simple LiSP-induction but is a general

Noetherian induction with respect to the ordering o. The full details are very long and

boring (see [1]) and are not given here - I hope that I describe enough so that it would be

quicker for the reader to generate the proof himself than to read through it.

In fact the above properties are not true for if e=x (so e*=X) and a=NlL[fn/x] (so

a*=((X.fn*))) then

(fCeval[eV]3(Pin,)-fnVx-e[x]I(«[a3)

However if we adhere to the constraint (violated above) that an identifier can't be used both

as a form variable and a function name in the same program then the property holds.

To enable us to say this precisely we make the following definition;

Definition 3

<e I a> is "nice" if the intersection of the sets FORMVARS, FUNVARS are empty, where:

FORM\/ARS={z|z is a form variable in e or a(z)f<form>}
FUNVARS«{z|z is a function name in e or a(z)<<function>}

The next definition extends the translation of M-expressions into S-expressions which is

given in the Manual [4] to include alists. This is necessary for the statement of the

correctness of eval and apply - viz. Theorem 5 below.

25

Definition 4 {definition of e*, fn*, a*)

The S-expression representation e*, fn*, a* of e, fn, a are defined by structural induction as

follows:

8*:

A* ={QUOTE A)
x*-X

fnte,;...*,,]* -(fn* •,*...•„*>
[e^e.^e.^e^^COND (a,,* e12*)...{enl* en2*))

fr^

a!:

car*=CAR
cdr*=CDR

cons*=CONS
atom*=ATOM

eq*=EQ

X[[x1;...;xn];e]*»(LAMSDA (x,*..^*) e*)
;abel[fjfn]*=(LABEL f* fn*)

NIL*=NIL
a[A/z]*=((z*.A).a*)
a[fn/z]*=((z*.fn*).a*)

aM, which is specified in the next definition, is an alist containing the definitions of the

functions which make up a basic LISP interpreter - namely those functions needed in defining

eval and apply. The environment denoted by a,,,, is pint.

26

Definition 5 (Specification of airt, ßM)

P,nl^r|Ia,J

where;

a,nt=NIL[fnllSSOc/assoc][fnpflirl,s/pairlis][fnequal/equal]
[fnnuil/null][fnclldar/cadar][fncaddr/caddr][fnc9dr/cadr]
[fncdflr/cdar][fncaar/caar][fnevllS/evlis][fn.vcon/evcon]
[fn,vei/eval][fnapply/apply]

where fnna^, is the definition of name given in the manual [4].

for example:

fn9ppiy«M[fn;x;a]j
[atom[fn]-[eq[fn;CAR]-»caar[x];

eq[fn;CDR]-cdar[x];
eq[fn;CClMS]-'Cons[car[x];cadr[x]];
eq[fn;ATOMj-atQm[car[x]];
eq[fn;EQ]-»eq[car[x];cadr[x]];

T -•apply[eval[fn;ajix;a]]j
eq[car[fn];LrAMBDAj-»eval[caddr[fn]ipairlis[cadr[fn];x;a]];
eq[car[fn];LABEL]->apply[caddr[fn];x;cons[consr':adr[fn];caadr[fn]];a]J]]

fn.v«r^[[e;a];
[at&m[e]-'cdr[assoc[e;a]]i
atom[car[e]]-»[eq[car[e],QUüTE]-'cadr[e];

eq[car[e];COND]-«evcon[cdr[e];a];
T -'apply[car[e];evlis[cdr[e];a]ja]];

T -* app!y[car[e];evlis[cdr[ej;3l;a]j]

[eval[caar[c]ja]-*ev8l[c8dar[c];a]i
T -♦evcon[cdr[c];a]]]

^.vilS=
A[[m;a]i

[null[mhNIL;
T ->con8[eval[car[m];a]jevli8[cdr[ml;a]]]]

27

Theorem S (correctness of eval, apply)

If <e I a> and <fn[A|,...;An] | a> ere nice then;

(f[Ieval[e:,:;a*]]{pin,>=Cf[[e3(8r[a]])

<J[Iapply[fn*i(A!...Aft)ja*]3(pll1t)-ffI[fnl«|[8]l)(AIl...A)

Proof

The theorem follows from lemma 1 and lemma 2 below.

aED.

Lemma 1

<fn[A1;...jAn]|a>-HA => (f[[app!:'[fn*;(A1...An);a*]](pin()=A

<ela>-^A => (fCeval[e*ia*]](pin()=A

Proof

The lemma can be put into the form p-*^A => ^l(p,A) by defining

£l(p,A) <=> if pKfnLA,;...^,] I a>-HA then e([apply[fn;(A1...An);a*]]I(p J-A
and if p=<e | a>-^A then (f[[eval[e*ia*]]](p,nt)=A

A straightforward (but tedious) LISP-induction then yields the lemma.

QED

Lemma 2 below is a kind of generalised converse of lemma 1. The extra generality consists

in proving the result for certain aiists of the form ain([W|/21]„.[wn/zn] instead of just for am,.

This extra generality is needed to enable the induction to go through.

28

The alists in question are those of the form ain(.a' where a' is "safe" - here "aint.a'" is

defined by structural induction by:

aint.NIL=«aint

ain,(a[A/z]Ha,n,a)[A/z]
aint.(a[fn/z]Hain).a;[fn/z]

Also an alist a is called "safe" if when

Z={assoc,pairlis,equal,null,cadar,caddr,cadr,cdarlcaar>evli8levcon,eval,apply}

then: Vz^Z. a(z)-X.

These definitions imply that if Z is as above then for any safe a: aint
=

z(ain,.a). This fact needs

to be used in the proof of lemma 2 below.

Lemma 2

If <fn[Ai;...;An] | a> and <e 1 a> are nice and a' is safe then:

<apply[fn*;(A1...An)}a]|ajnt.a'>JHA => i^fnjMaHMA^.A^A
<evaire*;a*]la,r,t.a'>-H>A => tt[[e]]{5r[[a3)=A

Proof

The lemma can be put in the form;

p-*-»A => ^(p,A)

by defining

^(p,A) <=> if p-<apply[fn*i(A,...An);a*] I alM.s'>-HA (where a' is safe)

then 8fI[fn](a|[a|)(Al,...lAn)-A
and if p=<eval[e*;a*] | a^a^-HA (where a' is safe)

then GHeMalhA

This can then be proved by a straightforward (but extremely tedious) LISP-induction.

QED.

29

8. Concluding Remarks

Although these proofs formalize intuitive arguments their size, when all details are filled in, is

excessive. As these details are fairly mechanical and don't require creative acts for their

generation a proof production system (such as FOL at Stanford or the new LCF at Edinburgh)

should be able to help us cope with them. Another possibility is that abstract "high level"

notions can be developed which encapsulate some of the facts (proved here for LISP) in a

language independent form. A start at this has been attempted in [3], Abstract notions help

in the handling of large masses of detail by assisting in the isolation of those things which are

language specific from those which are more universal. When the progfs of language

independent facts are factored out from the proofs of the theorems described above the

latter are made shorter and more direct (see [3]). The formulation of such high level,

language independent notions should also assist in the design of proof construction systems -

research into proof generation needs to proceed hand in hand with research into the

structure of the proofs whose generation is deiirad.

hw-l

8. References

[1] Gordon, M.J.C. (1973) Models of pure LISP. Experimental Programming
Reports:No.31. Department of Machine Intelligence, School of Artificial Intelligence,
University of Edinburgh.

[2] Gordon, M.J.C. (1975) Operational Reasoning and Denotational
Semantics, Presented at the International Symposium on Proving and Improving
Programs, Arc-et-Senans, France (proceedings available from 1RIA). Revised as Memo
AIM 264, Computer Science Department, Stanford University.

[3] Gordon, M.J.C. (1975) Towards a Semantic Theory of Dynamic Binding.
Memo AIM 265 , Computer Science Department, Stanford University.

[4] McCarthy, J. et.al. (1969) LISP 1.5 Programmer's Manual. MIT Press.

[5] Milne, R. (1974) The formal semantics of computer languages and
their implementations. Oxford University Computing Laboratory, Programming
Research Group, Technical Monograph PRG-13 (available on microfiche).

[6] Reynolds, J.C. (1972) Notes: on a Lattice-Theoretic Approach to the
Theory of Computation. Systems and Information Science, Syracuse University,

[7] Reynolds, J.C (1974) On the Relation between Direct and Continuation
Semantics. Second colloquium on Automata, Languages, and Programming.
Saarbrücken.

[8] Scott, D. (1974) Data Types as Lattices. To appear as Springer Lecture Notes.

[9] Scott, D, and Strachey, C, (1972) Towards a Mathematical Semantics for
Computer Languages. Proc, Symposium on Computers and Automata, Microwave
Research Institute Symposia Series, Vol.21, Polytechnic Institute of Brooklyn.

