tPpe . . M 7 {:
Stanford Artificial Intelligence Laboratory //) August=r975 / ’
Memo AIM-265 =< — 4

Computer]Smpgp_mmgn _ \
Report Nq, STAN-CS-75- 5;57 ATM-Z L~ 5

0

l\ _—

™ /' TOWARDS A SEMANTIC THEORY //

e \ of

| . DYNaMIC BINDING/ .

2 7 by e———

: Y /r'; ,/ ¥ ff

g ;. Michael Gordon S A f.“//
e e /] T8 LT

VIR LE-75-C-O1 22, ARER r ’

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2494 CA

COMPUTER SCIENCE DEPARTMENT “/
Stanford University

p 590 wmo,p

§ ’grmﬁi"—‘
J

£5 £

"‘3 ‘égr W ;' pr,w.d for public releussi
A ssa(:/,\/ Distributior: Unlimi

mﬂ‘i‘

) GAan_D \?’

TOWARDS A SEMANTIC THEORY
OF

DYNAMIC BINDING

by
Michael Gordon
Department of Computer Science,
James Clerk Maxwell Building,
The King's Buildings,
Mayfield Road,
Edinburgh ER9 3J2Z.

. Abstract

\"L
The results in this paper contribute to the formulation of a semantic theory of dynamic

binding (fluid variables). The axioms and theorems are language independent in that
they don’t talk about programs - i.e. syntactic objects - but just about elements in
certain domains. Firstly the equivalence (in the circumstances where it’s true) of ﬁtyin.«g
a knot" through the environment (elaborated in the paper) and taking a least fixed point

#eval*; type interpreters.

is shown. This is central in proving the correctness of L|SP
Secondly the relation which must hold between two environments if a program is to
have the same meaning in both is established It is shown how the theory can be

applied to LISP to yield previcusly known facts

B

OWLEDGEMEN

Thanks to John Allen, Rod Burstall, Friedrich von Henke, Robert Milne, Gordon
Plotkin, Bob Tennent and Chris Wadsworth for helpful discussions and
correspondence. John Allen, Dana Scott and Akinori Yonezawa suggested

improvements and pointed out errors in preli ninary drafts of this report.

This research was supported in part by the Advanced Research Projects Agency of the
Office of the Secretary of Defense under contract DAHC 15-73-C-0435, ARPA order

no. 2494, —

The views and conclusions in this document are those of the author and should not be
interpreted as necessarily representing the official policies, either expressed or implied,

of the Advanced Research Projects Agency or the US Government.

SECTION PAGE
Lo IR P OAUCEION. . vivcersisiassminiississ s s et st 0110 1
2. Informal Discussion 0f RESUILS.....mmmiiiiiimismssssmmsmes 2
3. FOrmalisation. i i s s s 3
3.1. Knots and FiXed POiNtS....u i ms s s ssssssssssesssssssresssssssens 3

3.2. Equivalent Environment s, i s 7

B, PrO0fS..uniieiieiieririersrsassisssessatsssssssstssostss s ssaitas e s e sos AL S804 0001 10040001 0E 8481481 R AR RA SR BE SRRSO H RS RO RE SR en ar b ba e 8
5. ApPliCation 10 LISP...immmmmmmmisimmmiiisississms s 11
B 1L SYNEAX. e rruinse s e R AR 12

5.2, Some NOtatioN........uumsmim g s 12

B3, SOMANTICS.ccuiererrirrmrrsecr et sssirsssiters s SRR s g st an 13
5.3.1. Denotation Domaing... s 13

5.3.2. Environment DOmMaiN.. . coriisimimmsissismssssisssssissssmnsssssissessssssssesssssssssssans 13

5.3.3. SemMantit FUNCONS..ovmmmsusrimmsmmssmsssssssssssissonsmsssssmsrssmssmssssmsssssssssssasssssssssassessss 13

5.3.4. SemMantic EQUALIONS.......ocviinisinii st 13

6. Existence of PrediCates..... i 18
7. CoNClUAING RBMAIKS....iiviviiiienssssssssssssmsmsssesmsssssssssssssststssi s sssisssssssssssssssssesesestsssssssssmsssssssssssssssnssosssosse 24

8. References........... OO X0 XXX KX TGO OCGE00000KK 25

1. Introduction

The art of semantics is now sufficiently developed that most computer languages can be

given concise, elegant and intuitive formal descriptions. The theory of these

descrintions is well enough understood that useful facts - such as the correctrness of
implementations - are fairly straightforward to prove. Unfortunately prcofs tend to be
very long and the results obtained rather lacking in generality. For example the proof of
correctness of an implementation for one language has to be redone for a similar
implementation of another. Of course once the proof idea is known no real creative
E acts are needed in applying it and thus a certain amount of generality is obtained.
However this generality isn't of a type that’s easy to use (except, pehaps, by people

with considerable knowledge of the underlying theory). A more direct way of being

TR T

general is to isolate explicitly the assumptions used and then to pruve the results from
these. Then to apply such a result one just needs to check the language satisfies the
appropriate "axioms" - and this will normally be much less demanding than redoing a

whole proof by analogy with an existing one.

In this note I’ve formulated abstract versions of two results about languages which use

dynamic binding of free variables. Initially these were proved for LISP (they were

needed in proving the correctness of an implementation). The abstract versicns

described below can be instantiated to yield the LISP ones. Athough the two results

;

proven are completely language-independent (in that they don‘t talk about programs -

il

i.e. syntactic objects -~ but just about elemants in certain domains) they aren’t as
general as one might hope. Some situations in which dynamic binding is used and which
intuitively should fall under their compass don’t. This is a defect of the present work - |

don‘t think it’s a necessary difficulty.

TR B A 1 1

2. Informal Discussion of Results

When reasoning about programs it’s often useful to be able to exhibit the denotation of
a recursive procedure as the least iixed point of some functional. Doing this enables,
for example, computation-induction to be used. The first result to be discussed helps
with this as It concerns the equivalence (in certain circumstances) of "tying & knot"
through the environment (elaborated below) with taking a !sast fixed point. Besides
being of interest in its own right, this result is at the heart of the correctness of LISP
eval type interpretors. Hopefuily the abstract version wiill assist in proving the

correctness of similar interpreters for othar languages.

The way recursive definitions are handled by many LISP implementaticns is to bind the
body of the function to its own name an the alist. This creates & circularity or "knot" in
which places inside the function body (namely recursive calls) point back to the
beginning of the function. Now the standard analysis of recursion is via the Y-operator
(i.e. in terms of least fixed points) and consequently in proving the correctness of
"knotting" interpreters with respect to standard semantics it’s necessary to ascertain
the conditions under which "knotting" and fixedpointing are equivalent. Contrary to what

one might expect thay aren’t always the same. This is shown below.

The second result concerns what relation needs to hold between two environments a,a’

(alists in the case of LISP) for a form e to evaluate to the same values in both a and a“.

Call this “ondition "a=*a"".

3 = o= e

1t e 111111 1

T

3
A first guess might be that the two environments must agree on the free variables of e
(as is the case for terms in predicate-calculus or the A-calculus). This won’t do
however for although a and a’ might agree on e’s free variables the things they bind to
these might depend on other variables not free in e and on which a and a’ differ (e.g. if
e=x, a and a’ both bind x to y but & binds y to 1 whilst a’ binds it to 2). What is
clearly needed is that & and a’ agree on e’s free variables and on the variables free in
the things bieund to these variables etc.
To formulate this for LISP ane just needs a recursive definition like:

a=a’ <=> Vx. [x free in e => alx)=a"(x; and a=*"a’]

Now given a syntax for e’s its easy to formalise "x free in e" - the difficulty arises if
one wants a syntax independent definition. What’s needed is an abstract notion of
free-ness applicable to elements of the type denoted by & (and hopefully denoted also

by programs from languages other than LISP). | describe such a notion below.
3. Formalization

3.1. Knots and Fixed-points

Before proceding with abstract formulations of the above it’s necessary to describe the
anvironments needed to handle dynamic binding. Let D be an arbitrary domain of

expression values and let Env=Id-V; be the associated domain of environments.
Elements of V,, are - in the case of dynamic binding - denotations of objects which may
contain free variables and so might still depend on the environment. Hence Vy=Env—=>D

and thus Env must satisty Env=Id—=/Env=D/.

|

4
It turns out to be necessary (see lemma 8 below) to require in addition that if
p¢Env then p is strict ie. p(Li=L thus if /D,=*D,/ is the domain of strict
continuous functions from D, to D, then Env must have
Env=ld=»[Env>D).

type satisfying:

From this one can immediately formulate whst it means for "knotting" and fixedpointing
to be the same viz. we require for vél/ and p<Enu:

T
knot fixedpoint

vip[v/xD=Y(F (v)p where F (v)=av:.xp.v(p’[v'/x])
1 .

here plv/x] is p updated to bind v {o x. Unfortunately this equality isn’t true in
general.

For example if:

v=Ap’.p'(y)p’ (where y¢Id)
p=L[(Ap.d)/x][(2p"p"(x)p)/y] (where L#d¢D)
Then it turns out that v(p[v/x])=d#L=Y(F,(v))p.
For we have: v(p[v/xD=(p[v/xDy)p[v/x] (by definition of v)
=p(y)(o[v/x])
=(Ap.p(X)p)Xp[v/x]) (by definition of p)
=(p[v/x])(x)p
=v(p)
=p{y)p (by definition of v)
-(Apf.p'(x)p)p (by detinition of p)
=p(x)p
=(Ap’.d)p
=d

(by definition of p)
And as Y(F (v))p=udF.(v)(1)p and

F (v)NL)p=d implies

F (v L)p=F (v(F ()L

=v(p[F (V)™L)/x])
=(p[F (W)LY /X DUBIF (V)N L) /x]) (by definition of v)
=(Ap*.0°(x)p) (p[F (W)L /x]) (by definition of p)

=F (v)"{(L)p=1

It follows by induction on n that: Yn. F (v)NL)p=4L and so YF (v))p=L .

L In [1] and [2] it is shown that for v’s and p’s which are the denotations of LISP

functions and alists respectively the equation v(p[v/x])=Y(F (v))p does in fact hold. .
The proof use- was very specific to LISP (being essentizily an induction on the size of
computations on & certain abstract interpreter). Now hopeiully the result should hcld
for dynamic binding in general rather than just fo.r LISP. Thus the problem arises of

isolating and stating those properties of dynamic binding which, when possesed by v

and p, entail v(p[v/xD=Y(F,(v))p. Te do this we need to introduce recursively

: defined (but not necessarily monotonic) relations of the type first studied by Milne [5]
r and Reynolds [7] Using these we can then provide a (partial) abstract characterisation
é of dynamic kinding by defining a notion of "regular" for which:

E v, p regular => v(p[v/x]=Y(F (v))p

£

From now on x,x’,x",...,y,y",y*’ etc. will range over Id. X,Y will range over subsets of
Id. p,p',p**will range over Enu. v,v',v** wili range over Vy=Env=D and d,d’,d** will

range over D.

|
é

6
Using techniques developed by Robert Milne of Oxford [S] one can show that there
exist predicates of types:

acEnv x Env
a*clp x Vp (one for each x¢ld)

«cEnv x Env
«<Vp x Vp

which are directed-complete (i.e. if they hold of each member of a directed set then
they hold of the union) and satisfy:

pap’ <=> Vx. p(x)a*p’x)

varvt <=> Vpp*. [pap’ => v(p[v/x]) = v'(p’[v*/x])]

pep’ <=> Vx. p{x)«p’(x)

vev' <=> Vppr. [pap’ => v(p) = v(p’)]

One can then show that:

vey' => varY(F (v*))

viev => Y(F (v*))o*v
And as it also turns out that p<p’ => pap’ we have:
vevipep => viplv/xD=v(pLY(F (v}}/xD=Y(F (v)

Thus a definition of "regular" which works is given by:

Definition 1

v:Env=D and p:Env are regular <=> vev and p«p

To apply this to LISP one just shows that the denctations of forms and alists are

regular, this is done in section 5.

in the next section proofs of the al ove assertions will be given relative to the

existence of the predicates. This existence (which can't be shown with the Y-operator,

¢s the necessary functionals aren’t continuous) will be proved in section 6.

3.2. Equivalent Environments

The farmulation of the result about free variables also requires the use of Milne style
recursive predicates viz.:

& c Vp x {XIXcld}
=X ¢ Env x Env (one ‘or sach Xcld)

Where intuitively ®(v,X) means the free variables of v are included in X and p=%p’

means p and p’ "strongly" agree for all x¢X. Formally we require that:

&(v,X) <=> ¥Y,p,p%. [XY => [p=Yp* => v(p)=v(p’)]]
p=rp’ <=> VYxeX. p(x)=p‘(x) and &(p(x),X)

In section 5 below I/l show that if e is a LISP form which denotes G[e] and if
vs(e)={x]x is free in e} then @((E[[e]],vs(e)). From this it follows (via the definition of
p_-_vs(o)p,) that;

Yo,p°. [p=p* => G[el(p)=CLe](p")]

In particular if @ has no free variables then :a(e)={} and (since it’s clear that for any p

and p*: p=Up") we have G e J(p)=G[e J(p").

Somewhat less trivially: if ¥x¢vs(e). p(x)=p’(x) and giso p(x) is a constant function (i.e.
is an environment independent quantity) then again p="*"p’ and so

e (p)=G¢[ell(p*). This last exarmple corresponds to the case for static binding - i.e.

when objects have all their frea variables bound by the time they themselves are

S ———— T T L —— T T

bound. The existence of $ and =* will be discussed in section 6.

A

(i

ikl

|

l

L s

M R Lt

4. Proofs

Readers from now on are assuned to be famiiar with notations commonly empluyed in

tha lit arature on Mathematical Semantics.

A "domain” is a partially ordered set in which each directed subset has a least upper
sound. This notion of domain is used (rather than complete lattices) for minor and

nonessential techinical reasons (see [1] for a discussion).

The domain intended by Env=I/d-*{ Env=D/ is the mi~ mal solution of the equation i.e. if

id,d are retracts of a universal domaln (eg Scott’s D,) which represent I/d an? 0
respectively (in the sence that [d={x|x=id(x)} and DZ{xIx=d(x)}) then
Y(re.id=>(e-=d)) represents Env. (here a=b=AuAx.b{u(a(x))) and
a~>b=auix.b(str(u){a(x))) where str{u)=Ax.(x=1-L,u(x).). From this minimality it
fallows that there are mappings Ap.p:Env=Eny such that:

(P1) L=pgEP| St EPpE e cp

(P2) p=Llp,

{P3) <Pn)m=9mm(n,m,

(P8) py.i(x)p'=p(x)n’,
in fact if Env is represented as above then p,=(Ae.id=*(e~d))"(L}p). For v¢/Env=D)
v, is defined by v,(p)=v(p,). {P4) can thus be written as: p,,(X)=p(x), and it is easy

to sh~w (see [1] for details) that: p[v/X]n1=Pni[Va/X].

| shall prove [vev’ => m.»o'Y(F,(v'))] by showing (by induction on n) that [vey’ =>
v,a*Y(F (v))] ¢ .d then take a limit. Similarly [vev’ => Y(F (v))a*v*] will be

proved by showing that for all n: [vev’ => F. (V)L (v)arve]

=== gL — == == =—— e+ T N A — o Ll TR —

8

The following rathei ad-hoc looking definition enables the clean statement of some of

the lemmas below:

Defini‘ion 2

FiVpovpis "invarient at x" <=> Yp,v. F(v)(p[F(v)/x])=v(p[F(v)/x])
The useful applications of this detinition are given in the next lemma.

Lemma 1

For all x (Av.v) and (Av.Y(F (v))) are both invarient at x.

Proof

Trivial for (Av.v), for (Av.Y(F,(v)) use the fixed-point property of Y.

Q¥D.

Lemma 2
If Fis invarient at x and vev* then Vn. v ,<*F(v’).
Proof

r=0; Must show vy<*F(v*)
i.e. pap’ => vu(p[ve/x]) = F(v))(p[F(v’)/x])
i.e pap’ => v(L) = v/(p[F(v’)/x])
OK as vev® and L<p[F(v*)/x]

n>0: Assume true for n-1. Let pap’. Must show v (p[v,/x]) =F. »)p[F(v*)/x])
e (P [Vn1 /XD & V(P[F(v?)/x])
need p,[v,.;/xJap[F(v’)/x]
need v, <*F(v’) - OK by induction.

QED.

10

Lemma 3
If Fis invariant at x and vev’ then v<*F(v’)
Proof

Trivial from lemma 2 as v=Ll,v, and <* is directed-complete.

QED.

Lemma 4

Vx. [vev' => va'y’]
Vx. [vev’ => var¥(F (v))]

Proof

Trivial consequence of lemmas | and 3.

i QED.
s Lemma 6
If F is invarient at x and vev’ ihen ¥n, F (v)"(L)<*F(v*).
i‘; Proof
. n=0: Trivial

n>0: Assume true for n-1. Need pap’ => F (W)L} (p[F (v)"(L)/x]) = F(v')(p[F(v*)/x])
ie. pap’ => v(p[F (V)" (L)/x]) & vi(p[F(v)/x])
OK if F {(v)™!(L)<"F(v*) - true by induction

QED.

Lenima 6

E;T
]
i

If F is invarient at x and vev* then Y(F (v))<"F(v*).
Proof

Trivial from lemma 5 as Y(F,{v))=U,F (V)™(L) and < is directed-complete.

QED.

mlww i
Hi_x;

}

|

11

Lemma 7

Vx. [vevt => Y(F (v))a*v*]
Vx, [vevt => Y(F (V)Y (F (v*)]

Proof
Trivial application of lemma 1 and lemma 6.

QED.

hheorem 1

If v and p are regular then v(p[v/x])=Y(F (v))p

Proof

By lemma 5 and lemma 7 we have:
Y(F (v))orv
varY (F (v))
hence from the definition of <*
Y (F v lY(F () /%)) & vp[v/x])
vip[v/x]) g Y(F) a[Y(F () /xD
hence
Y (F)oY (F () /xD=v(p[v/x]
Finally, using the fixed-point property of Y on the left hand side of this, we get:
Y(F (v)p=v(p[v/x]

QED.

5. Application to LISP

In this section D will be specialized to a domain appropriate for pure LISP and then the

abstract results described above will be shown to hold of the denotations of LISP

programs.

The semantics of LISP used here will only be described in barest outline. For furthur

i

details, motivation and justification see [1] and [2].

12

B.1. Syntax

The syntax of LISP (as described in the manual [4] and in the notation of [8)) is given
by the equations:

e u= A | x| fnfe;.;e] !l [ee e, 7ey]
fn = F | £] A[[x;5...;x,)ie] | label[f;fn]
F ::= car | cdr | cons | atom | eq

where the ranges of the variables e,Ax,fnF,f are as follows:

A ranges over <S-expression> (as in page 9 of [4))
x,f,z range over <|dentifier> (as in page 9 of [4))
e ranges over <form> (as defined above)
fn ranges over <function> (as defined above)
F ranges over <standard function> (as defined above)

| use meta-variables x,f,z to range over <identifier>: x is used in contexts where the

identifier is a form, f where it’s a function and z where it could be either.

B.2. Some Notation

In the semantics below:

flat(S)=S U {L} ordered by ¥s¢S. L ¢ s.

2S5, B (8),.8,) = As),.,8,(8,=L oF =L or .. or 5,=L » L, E(s,..,5,))

car,cdr,cons,atom,eq are the appropriate functions on S=flat(<S-expression>).

Whenever an expression v of type §, [Enm™S/ or [Env*Funval] occurs
in a context requiring something of type /Env=D/ then v means (i.e should be

"coerced" into) (Ap.vinD), (Ap.v(p) inD) and (Ap.v(p) inD) respectively.

i

=

e et Al L R L

e T T m T

5.3. Semantios

5.3.1. Denotation Domains

D=S+Funuval
S=flat(<S-expression>)
Funval={§*-S§)
5.3.2. Environment Domain
Env=]d-*{Env->D/]

5.3.3. Semantic Funotions

G:Form=[En-S/
§:Function—/ Env>Funual)

5.3.4. Semantic Equations

(S1) G[Alp = A

(S2) G[x]p = p(x)plS

(S3) G[tnej;-se.]p = F[tn]p(G e, Ip,..¢[e,1p)

(S4) G[[[e;2e .00,]up = (C[e;, Jo-Cle,,]p,.,G e, Jo>G[e,,]p)
(S5) FcarJo = car

Fledrlp = cdr
T[consJp = cons
FLatom]p = gtom

Fleqlp = eq
(S6) S[tDp = p(Hp|Funval
($7) FIAx)52, Ji81 00 = 28,808.G [0 T L8, /x,]..[8,/x,]
(S8) ¥[apellfitn1]e = Y(F(ELtaINa

13

14

Theorem 2 below shows that ‘iie denotations of LISP forms and functions are regular

and so Theorem 1 can be applied to them.

Theorem 2
¢[eJ«G[e] and F[tn]<«F[tn]

Proof

A straightforward induction works. The details are as follows:
Assume p<p’. | must show G[e]lo = G[ellp’ and ¥[tn]lp = F[tn]lp".

(1):
(2):

(3):

(4):

(5):
(6):

(7):

G[ATp=A = A=G[[e]p*

G[[xJp=p(x)plS

G[xJp’=p"(x)pIS

Now pap’ => p(x)<*p’(x) => p(x)(p[p(x)/x]) € p*(x)Np*[p"(x)/x])
=> p(x)(p) = p*(x)p’ by lemma 8 beiow

GLtn[eiwie,11o=F[tn1p(¢[e, Ip,..¢[e,]p)
e ¥[tnJp(G[Le, Jpo*,..C[e,]o")
=(i[[fn[e,;...;en]]]p'

(f'ﬂ:[el 1"3125---ien1“enz]]]P=((f[[el |]p*(ﬁﬁelzjﬂﬂ,---,(ﬂfem]]p*(i[Ienz]]p)
= ((E[[e, 1]]P'-‘(ff[[elz]]p'.---,(fﬂem]]P"’(ﬁ[[enzjﬂﬂ')
=(f'ﬂ:[e| l"elziu-ienl"enz]nﬂ'

S[Flp=F = F=B[FIp’

StTp=p(f)p|Fun
SLtle =p*(H)p’|Fun
and p(f)p = p*(f)p* as in (2) above.

KIEA[{XI;'";xn];e]]]p =2_sl,...,s,,.(f[Ie:Hp[81/x,]...[s,,/x,,]

3 [D{[Xni---;xn]ie]]]ﬂ'=?_3 lv"'tsn'(f'[[e]p'[sl/xl]'"[sn/xn]

go it suffices to show p[s,/x,]..[8,/%,Jop [s,/x,]}..[8x/%,]
and for this it suffices to show Ap.(s, inD)a*Ap.(s; inD)
i.e. pap’ => (Ap.8)(p[(Ap.8)/x]) = (Xp.8)(p°[(Ap.5)/x])
i.e. pap’ => g, = 5, - which is true.

i Rt R AL i]

el

15

(8): ¥[[Iabel[f;tn)Tp=Y(F (S tn]Np
S [iabel[fitn1Tp =Y (F (&L tn])p’

hence result by lemma 7.

QED.

Lemma 8

Vo,x. p=p[p(x)/x]
Proof

Follows trivially from definition of "p[p(x)/x]" and strictness of p.

QED.

Theorem 3 below shows that if vs(e) is the sat of free variablas in e then in the
abstract sense discussed above the free variables of G[[e] "are included in" vs(e).

The following lemma is needed for the proof. The definitions of & and =* are on page 7.

Lemma 9
(1) Yv,X,Y. [&(v,X), XY => &(v,Y)]

(2) Vd. &((xp.d),{})

(3) Vv,x,X. [&(v,X) => &Y(F (v),X\{x}]
Proof

(1): Trivial.

(2): Trivial.

(3): | show &(v,X) => &(F (v)"(L),XU{x}) by induction on n. Assume &(v,X).

n=0: ®(L,X\{x}) is clearly true.

(it

16

n>0; Assume true for n-1.
S(F (VNLIX\{x}) <=> p=Xrlpr => F (v)(L)p=F (v)(L)p’
<=> o=X\Wpr => v(p[F(v)™ (L) /xD=v(p[F ()™ 1} /x]).

<= =t <> p[F () (L)] TF (V)™ (L) /X
which is true by induction and (1) above.

QED.

Theorem 3

Yec<form>. &(G[[e],vs(e))
Yec<function>. &(F[[fn], vs(fn))

Proof

A straightforward structural induction works. Let vs(e)cX.

e=x:
Must show p=*p* => p(x)p=p*(x)p’. Now vs(e)={x}cX so if p=¥p":
p(x)=p*'(x) and ®(p(x),X) hence p(x)p=p(x)p’=p’(x)p".

e=A:
Must show p=*p’ => G[AJlp=G[ATp’ - which is clearly true.

e=fn[e;...;e,]:

we have by induction that &(3[tn],vs(tn)) and &(G[e],vs(e)).

Hence by lemma 9 $(F[fn],X) and ®(G[e,],X) as vs(fn),vs(e)cvs(e)cX.
So if p=*p* then F[f»Jp=%[tn]p’ and G[e Jp=C[e Jp*

and hence Gllep=G.eJp"

e=[e, ~e .+,
Argument as above.

Now let vs(fn)cX.

fn=f:
Similar to "e=x" case above,

fn=F:
Similar to "e=A" case above.

L R R LA 300 ARRACH LALLM ARG MR AR LIRS (A0 ML L L ke

MHIW

17

fn=A[[x;..;X,Jie]:

FA[D<5%Jie1]0 = 28,,..,8,:8.G[e]lpls;/x,)..[80/%,]
vs(fn)=vs(e)\{X;,...X,} so ve(e)cXU{x;, ,X,}.

Now by lemma 9(1,2) if Y=XU{x,,...,X,} then

p=*p => pls,/x,]..[8./%,Ja 0 [81/%,][00/ %,]
so as ®(G¢[e],vs(e)): GLellals /x). [s,/x.]=GLelo’[s,/x,]..[s./x,].

fn=label[f;fn]:

We have by induction ®(F[fn,],vs(fn))) where vs(fn))\{f}=vs(fn)cX.
So by lemma 9(3) and induction &(F[fnJl,vs(fn)\{f})

hence ®(S[fn],X).

QED.

As an application one can show that adding new definitions to an environment doesn‘t
change the values of the old ones as long as previously used variables aren‘t
overwritten. This is an important lemma needed in proving the correctness of eval.
Here it’s a trivial consequence of Theorem 3 but originally (see [1]) it needed a long
ad-hoc proof which confused general arguments with LISP specific ones. To see how it
follows consider an environment p which defines a set of functions all of whose free
variables are included in Xcld. Suppose x is a new function not included in X. We wish
to show that if e is a form (or function) then as long as vs(e)cX (i.e. e only uses the

old functions) we have for any v: G[eJo=G[ella[v/x] But this is now irivial for

&(G[el,X) and p="p[v/x] Saying this formally yields the following theorem (in whizh

"p[v/x]" above is replaced by “p*").

18

Theorem 4

Suppose p,p’¢Env, e€<form> are such that for some Xc/d we have:

(1) YxcX.3fne<function>. p(x)=p*(x)=8[fn,]| and vs(tn,)cX.
(2) vs(e)cX

then G[elp=G[e]p".

Proof
By theorem 3 &(G[e]l,X) and p=*p*. The result follows from the definition of &.

QED.

6. Existence of Predicates

In all the above the existence of the predicates «<,9% <,®,=* has been assumed.
However this existence cannot be deduced immedeately from the recursive definitions
as the predicates being defined arn‘t necessarily monotonic . The existence proofs to
be described are directly based on techniques developed by Robert Milne [5] Similar
methods have recently been independently discovered by Reynolds [7]. For the current
purposes it's only necessary to know that the required predicates exist, however
Milne’s work shows one can expect them to be unique also. | havn't checked this for

the predicates used here.

We define by induction on n predicates:

a, € EnvxEnv
a!n c VD"VD

19
and then set:

pap’ <=>Vn. pap’
va'v! <=> Vn, vaX v’

it follows (details below) that <.« satisfy the desired equations and are

directed-complete.

Definition 3

p.p’ <=> Vx. p(x)a",p'(x)
va'avr <=> v(L[vp/x]) = v/(L[v'/x])
var, v'o<=> VYp,p' [pap’ => v, (p[v/x]) g v/(p’[v*/x])]

The following two lemmas are needed to prove Theorem 5 below.

Lemma 10

(1) Vo' . [panip’ => pop’]

(2,0 Vp,p'. [pap” => pri9nip’]

(3 VYvvo [v, v => va' v']

(4, Vv [va' v =>vye* v]

Proof

| show that (3p) , (4g) , (3)=>(1,) , (4)=>(2,) , (2,.,)=>(3,) , (1,.,)=>(4,)

(3g): Munt skow va*v! => va*v’. Clearly La,L and we have:
vah v, Lagl => v(L[v/x]) = v/{(L[Vv'/x]
=> v(L[vo/x]) = v/(L[v’'/x])
<=> vo“ev'

il

(4p): Must show va*pv’ => vya* v’
Assume va’gv’ and payp’.
Must show vy, (0[ve/x]) & v'(p’[v’/x])
e vidl) = vi(p[v'/x))
but v(L) = v(L[ve/x]) & vi(w[v'/x]) € v*(p’[v'/x]).

(3y)=>(1,): Assume (3,). To show (1)) let pa, 0"
Must show pap’ i.e. Yx.p(x)a* p*(x).

But if pa,,;0° then Vx.p(xja*,,;p*(x) so Vx.p(x)<* ,0%(x) by (3,).

(£)=>(2): pa,p’ <=> Vx.p(x)a" p*(x)
=> Yx.p(x),9%,.,p"(x) by (4,)
=> VX.an(x)*’Kn‘lp'(x)
=> VX1, 9. 10"

(2,.1)=>(3,): Assume (2,_,). To show (2,) let v<*, v* and pa,10°.
Then p,a.p* irom (2,.,).
So vo, (pa[v/x]) g viia’[v'/x])
i.e. v(p,[v,/x]) & v(p[v'/x])
hence vy(p[v/x])=v(p,[V,.,/x])
S v(p,[va/x])
e v{(p‘[v'/x])).

(1p.1)=>(4,): Assume (1,,). To show (4,) let v<* v’ and pa,p’.
Then pa,_ ,p* so v (p[v/x]) & v(p[v*/x])
hence (Voo (B[Va/xD=v(p,[¥,.;/x])
=vy(p[v/x])
= vip[v'/x])

QED.

20

h ‘ﬂl I
{v

Lemma 11

If {v,} is directed then [[Vec. v,<*,v*] => [(L v,)a"v*] 1
Proof

Cases on n:

n=0: v 0¥ <m> v L[Vea/X]) E VA(B[V*/X])
s0 L VolL[Uovea/xD vip[v/x).

n>0: Let pa,. 0’ then Ye.Vx. v (p[vL/x]) = v(p’[v'/x])
80 (U v)lp[Uuava/xD) = vi(p?[v'/x))

hence L, v, a*v".

QED.

Theorem §
a and <* are directed-complete and satisfy:

pap’ <=> Vx. p(x)a*p*(x)
vatv! <e> Yp,p' [pap’ => v(p[v/x]) = v/(p’[v*/x])]

Proof
To show <* directed-complete we have:

VoV a"v! <=> VYo VN, v, % v’
<=> ¥YnVYe. v o v’
=> ¥Yn. U, v <*,v* by lemma 11
<=> quo«."V'

Showing [[Ve.varv?,] => [vaX (U, v’)] 1is trivial.

The directed-completeness of « follows directly from its definition and the

directed-completeness of <* for all x.

2l

22

To prove the rest of the theorem we have:

pqp' <=> Yn.Vx. p(X)Q'ﬂP'(x)
<=> ¥x.Yn, p(x)<" p*(x)
<=> ¥x, p(x)a*p’(x)

To show va*v’ => Vp,p’. [pap’ => v(p[v/x]) € v/(p’[v'/x])] assume v<* - and pap’.
Tnan Yn. ve* v/ pap’

so v, (p[v/x]) = v(p°[v'/x])

: hence unioning over n: v(p[v/x]) & v'(p*[v'/x]).

|

To show Vp,p’. [pap’ => v(p[v/x]) = v!(p’[v’/x])] => va*v* assume
pap’ => viplv/x]) € v'(p’|v'/x]). | show Vn. v<* v/ by induction on n.

n=0: LaL so v{i[v/x]) e v(L[v'/x]) so v(L[ve/x]) & v(L[v/X]) = v/(LIVv'/x])
50 va'yv.

n>0: By lemma 10: pap’ => pa,_p’ => p,ap’ =>Vm. p,a,p".
S0 p,9p’.
Hance vip [v/x]) © vi{p v /x]) so v(p[v./x]) = v(p[v/x]) = v'(p’[v'/x]).
Thus va*, v’

€o Yn. va* v’ and hence va*v’,

QED.

The construction of ¢ and =% is very similar to the construction above. As before we

start by defining "finite" approximations to the relations viz.

LUl T U o LT TRl R

Definition 4

Ll

B (vX) <=> VY,p,p%. [XY => [p= 07 => v (p)=v,(p")]]

p=xep' = true
p=X 0 <=> YxcX. p(x)=p’(x) and &.(p(x),A)

We then prove a lemma similar to lemma 10 viz.

T P

LR

GEIHEHL |

N

nt

|

23
Lemma 12

(ln) VV!X' [éml(v!x) = ¢n<V,X)]

(2) Vv X [@ (vX) => & (vyX)]
(3 Yp,p' X [p=5,.10" => p=*p"]

(8,) Vo,p'X. [p350" => p, =X 10"]

Proof
Same as ierama 10 (mutatis mutandis).

QED.

From this it follows that if we define & and =* by:
B(v,X) <=> ¥n. & (v,X)
p=*p* <=> ¥Yn. p=X p*

then & and =* have the desired preperties.

7. Concluding Remarks

We have presented avove a partial axiomatization of dynamic binding. What has been
shown is that if v¢/Env=>D/ satisfies vev (i.e. is regular) and $(v,X) for some Xcld
then useful theorems follow. What is left open is just how many other axioms will
eventually be required. To answer this we need first to know which theorems we want
and to answer this we must attack “resl” problems such as the correctness of compilers
and interpreters. Doing this should revea! the general theorems about dynamic bindir{g

that must follow from any adequate theory.

T

!
%
-
3

bt

24

The theorems provéd here are not yet general enough. For example if we consider
the obvious extension of the semantics te handle funargs (see [1]) then the proofs
that ®[e]] and &[fn] are regular fail. In fact by replacing the occurences of " c "
in the definitions of 9,9 and « by another predicate (which needs to be defineg
recursively) it’s easy to cover this case. Unfortunately | don‘t at presert see a

uniform way of defining 9,9* and « to cover all useful D.

Having to separately prove the existence of all predicates is a big nuisance. One
step toward a general justification of recursive predicate definitions has been
provided by Milne and Reynrolds. Both give uniform accounts of how to construct
recursive predicates from their defining equations. In fact the constructions given
above are (more or less) instances of Milnes techniques. It would help a lot if
syntactic criteria on definitions could be developed to decide if the things purported
to be defined actually exist. Milne [private communication] has made progress toward
this by analysing the structure of some of the expressions which occur in definitions

and showing that these legitimate instances of his general construction.

It’s clear that many of the above proofs can't be done in existing fomalisms (eg LCF)
- the required predicates can't be defined in them. One way to fix this would be
to develop extensions, another would be to develop a translater from proofs using
predicates to proofs which don’t. The latter probably won't be adequate because
theorems may require the use of predicates in their statement at the general level

(even if all their useful instances don’t).

L A N

[1111 1

i i

THITTS TP I ee

Wl 16

(i

AT

Lttt

e e M

%

25
8. References

[1] Gordon, MJ.C. (1873) Models of pure LISP. Experimental Programming

Reports:No.31. Department of Machine Intelligence, School of Artificial intelligence,
University of Edinburgh. '

(2] Gordon, M.J.C. (1975 Operational Reasoning and Denotétional
Semantics. Presented at the International Symposium on Proving and improving

Programs, Arc-et-Senans, France (proceedings available from IR). Revised as
Memo AIM 264, Computer Science Department, Stanford University.

[3] Gordon, MJ.C. (1975) Towards a Semantic Theory of Dynamic
Binding. Memo AIM 265, Computer Science Department, Stanford University,

(4] McCarthy, J. et.al. (1969) LISP 1.6 Programmer’s Manual. MIT Press,

(5] Milne, R. (1974) The formal semantics of computer languages and

their implementatisns. Oxford University Computing Laboratory,

Programming Research Group, Technical Monograph PRG-13 (available on
microfiche).

[6] Reynolds, J.C. (1972) Notes on a Lattice~-Theoretic Approach to

the Theory of Computation. Systems and Information Science, Syracuse
University.

(7] Reynolds, JC. (19740 On the Relaticn between Direot and

Continuation Semantios. Second colloquium on Automata, Languages, and
Programming. Saarbrucket:.

[8] Scott, D. (1974) Data Types as Lattices. To appear as Springer Lecture
Notes.

[9] Scott, D. and Strachey, C. (1872) Towards a Mathematical Semantics

for Computer Languages. Proc. Symposiur on Computers and Automata,

Microwave Research Institute Symposia Series, Vol.21, Polytechnic Institute of
Brooklyn.

