
Stanford Artificial Intelligence Laboratory
Memo AIM-265 ^

//) Augu^t975 7

40

Computer Science Jepartment, ^-^
Report NQJSTAN-CS-75-5^7 41 Vj^/Jj

O

/ r

TOWARDS A SEMANTIC THEORY
of /.

DYNAMIC BINDING,

fU

by

Michael/Gordon /

(1I£'?3'C- %

^t'-'f/j

•/■

Research sponsored by 0O
Advanced Research Projects Agency ^Tr^NV^ ^ts

ARPA Order No. 2494 tf^' ^^V

COMPUTER SCIENCE DEPARTMENT
Stanford University

':5?G4M7tO w
■b^TBIgUTION 3TATE

Approved tor public ratoMI

J
^/y

'O

K <

-• TOWARDS A SEMANTIC THEORY
OF

DYNAMIC BINDING

by

Michael Gordon
Department of Computer Science,

James Clerk Maxwell Building,
The King's Buildings,

Mayfield Road,
Edinburgh EH9 3JZ.

Abstract

The results in this paper contribute to the formulation of a semantic theory of dynamic

binding (fluid variables). The axioms and theorems are language independent in that

they don't talk about programs - i.e. syntactic objects - but just about elements in

certain domains. Firstly the equivalence (in the circumstances where it's true) of ''tying

a knot" through the environment (elaborated in the paper) and taking a least fixed point

is shown. This is central in proving the correctness of LISP eval" type interpreters.

Secondly the relation which must hold between two environments if a program is to

have the same meaning in both is established. It is shown how the theory can be

applied to LISP to yield previously known facts

u

~ A -

f

\

ACKNOWLEDGEMENTS

Thanks to John Allen, Rod Burstall, Friedrich von Henke, Robert Milne, Gordon

Plotkin, Bob Tennent and Chris Wadsworth for helpful discussions and

correspondence. John Allen, Dane Scott and Akinori Yonezawa suggested

improvements and pointed out errors in prel; ninary drafts of this report.

This researcn was supported in part by the Advanced Research Projects Agency of the

Office of the Secretary of Defense under contract DAHC 15-73-C-0435, ARPA order

no. 2494.

The views and conclusions in this document are those of the author and should not be

interpreted as necessarily representing the official policies, either expressed or implied,

of the Advanced Research Projects Agency or the US Government.

CONTENTS

SECTION PAGE

1. Introduction 1

2. Informal Discussion of Results 2

3. Formalisation 3

3.1. Knots and Fixed Points 3

3.2. Equivalent Environments 7

4. Proofs 8

5. Application to LISP.... 11

5.1. Syntax 12

5.2. Some Notation 12

5.3. Semantics 13

5.3.1. Denotation Domains 13

5.3.2. Environment Domain 13

5.3.3. Semantic Functions 13

5.3.4. Semantic Equations 13

6. Existence of Predicates , 18

7. Concluding Remarks 24

S. References 25

■ I

A. Introduction

The art of semantics is now sufficiently developed that most computer languages can be

given concise, elegant and intuitive formal descriptions. The theory of these

descriptions is well enough understood that useful facts - such as the correctness of

implementations - are fairly straightforward to prove. Unfortunately proofs tend to be

very long and the results obtained rather lacking in generality. For example the proof of

correctness of an implementation for one language has to be redone for a similar

implementation of another. Of course once the proof idea is known no real creative

acts are needed in applying it and thus a certain amount of generality is obtained.

However this generality isn't of a type that's easy to use (except, pehaps, by people

with considerable knowledge of the underlying theory). A more direct way of being

general is to isolate explicitly the assumptions used and then to prjve me results from

these. Then to apply such a result one just needs to check the language satisfies the

appropriate "axioms" - and this will normally be much less demanding than redoing a

whole proof by analogy with an existing one.

In this note I've formulated abstract versions of two results about languages which use

dynamic binding of free variables. Initially these were proved for LISP (they were

needed in proving the correctness of an implementation). The abstract versions

described below can be instantiated to yield the LISP ones. Athough the two results

proven are completely language-independent (in that they don't talk about programs -

i.e. syntactic objects ■■ but just about elemants in certain domains) they qren't as

general as one might hope. Some situations in which dynamic binding is used and which

intuitively should fall under their compass don't. This is a defect of the present work - I

don't think it's a necessary difficulty.

:«:,,-„. --,-- .!&«,.

2. Informal Discussion of Results

When reasoning about programs it's often useful to be able to exhibit the denotation of

a recursive procedure as the least fixed point of some functional. Doing this enables,

for example, computation-induction to be used. The first result to be discussed helps

with this as it concerns the equivalence (in certain circumstances) of "tying a knot"

through the environment (elaborated below) with taking a least fixed point. Besides

being of interest in its own right, this result is at the heart of the correctness of LISP

eval type interpreters. Hopefuily the abstract version wiill assist in proving the

correctness of similar interpreters for other languages.

The way recursive definitions are handled by many LISP implementations is to bind the

body of the function to its own name on the alist. This, creates ä circularity or "knot" in

which places inside the function body (namely recursive calls) point back to the

beginning of the function. Now the standard analysis of recursion is via the Y-operator

(i.e. in terms of least fixed points) and consequently in proving the correctness of

"knotting" interpreters with respect to standard semantics it's necessary to ascertain

the conditions under which "knotting" and fixedpointing are equivalent. Contrary to what

one might expect thoy aren't always the same. This is shown below.

The second result concerns what relation needs to hold between two environments a,a'

(alists in the case of LISP) for a form e to evaluate to the same values in both a and a'.

Call this ondition 'Va'".

.

3

A first guess might be that the two environments must agree on the free variables of e

(as is the case for terms in predicate-calculus or the X-calculus), This won't do

however for although a and a' might agree on e's free variables the things they bind to

these might depend on other variables not free in e and on which a and a' differ (e.g. if

e=x, a and a' both bind x to y but e binds y to 1 whilst a' binds it to 2). What is

clearly needed is that & and a' agree on e's free variables and on the variables free in

the things bound to these variables etc.

To formulate this for LISP one just needs a recursive definition like:

a=»a' <=> Vx. [x free in e => a{x>=a'(x) and a^'V]

Now given a syntax for e's its easy to formalise "x free in e" - the difficulty arises if

one wants a syntax independent definition. What's needed is an abstract notion of

free-ness applicable to elements of the type denoted by e (and hopefully denoted also

by programs from languages other than LISP). 1 describe such a notion below.

3. FormaUzatioa

3.1. Knots and Fixed-points

Before preceding with abstract formulations of the above it's necessary to describe the

environments needed to handle dynamic binding. Let D be an arbitrary domain of

expression values and let Env=ld-*V0 be the associated domain of environments.

Elements of V0 are - in the case of dynamic binding - denotations of objects which may

contain free variables and so might still depend on the environment. Hence \/0=Env->D

and thus Env must satisfy Env=ld-*/Env-*DJ.

It turns out to be necessary (see lemma 8 below) to require in addition that if

piEnv then p is strict i.e. p(±)m± thus if /D,-»^/ is the domain of strict

continuous functions from D, to D2 then Env must have type satisfying:

Env*Id-*fEnv-*D/.

From this one can immediately formulate what it means for "knotting" and fixedpointing

to be the same viz. we require for ^VQ and piEnv:

v(p[v/x])=Y(FK(v))p where F,(v)=Xv'.Xp'.v(i)'[v'/x])

T T
knot fixedpoint

here pfv/x] is p updated to bind v to x, Unfortunately this equality isn't true in

general.

For example if;

v=Ap'.p'(y)p'
p=-±[^p'.d)/xJ[{Ap'.p'{x)p)/y]

Then It turns out that v(p[v/x])=d^i.=Y(FI(v))p.

For we have: v(p[v/x]Hp[v/x])(y)(p[v/x])
s,p(y)(p[v/x])
=(Ap'.p'(x>p)(p[v/x])
-(p[v/xj)(x)p
=v{p)
=P(y)P
-(Ap'.p'(x>p)p
=p(x)p
HAp'.d)p

And as Y(F.(v))p-Jl,F)t(v)n{x)p and

(where yt/cf)
(where JL.^d^ß)

(by definition of v)

(by definition of p)

(by definition of v)
(by definition of p)

(by definition of p)

.1 MWM ■—

F1((v)n(j.)p=i. implies

Fs(v)"*1(i.)p=F,(v)(Fx(v)fl(x))p

-(p[F,(v)n(x)/x])(y)(/)[F,(v)n(±)/x]) (by definition of v)

=(Xp'.p'(x)p)(p[Fx(v)nU)/x]) (by definition of p)

-F)((v)n(x)p=x

It follows by induction on n that: Vn. F]({v)n(a.)p-j. and so Y(F),{v))p=j. .

In [1] and [2] it is shown that for v's and p's which are the denotations of LISP

functions and aiists respectively the equation v(p[v/x])=Y(F)1(v))p does in fact hold.

The proof use w^s very specific to LISP (being essentially an induction on the size of

computations on 5 certain abstract interpreter), Now hopeiully the result should held

for dynamic binding in general rather than just for LISP. Thus the problem arises of

isolating and stating those properties of dynamic binding which, when possesed by v

and p, entail v(p[v/x])=-Y(FJ((v))p. To do this we need to introduce recursively

defined (but not necessarily monotonic) relations of the type first studied by Milne [5]

and Reynolds [7]. Using these we can then provide a (partial) abstract characterisation

of dynamic binding by defining a notion of "regular" for which:

v, p regular => v(p[v/x])=Y(F<(v))p

From now on x.x'.x" y,y',y" etc. will range over Id. X,Y will range over subsets of

Id. p,p',p"m\\ range over Env. v.v'.v" will range over yD-£mr>Z) and d,d',d" will

range over Ü.

6

Using techniques developed by Robert Milne of Oxford [5] one can show that there

exist predicates of types:

<cEnv x Env
<JXCI/D x VQ (one for each mid)

*cEnv x Env
*^y0 x vD

which are directed-compiete (i.e. if they hold of each member of a directed set then

they hold of the union) and satisfy:

pop' <=> Vx. p(x)<i'p'x)
v<i«v' <=> Vp,p'. [p<ip' -> v(p[v/x]) s v'(p'[v'/x])]
p*p' <=> Vx. p(x;*p'(x)
V*v' <-> Vp,p'. [p-ap' => V(p) E V^p')]

One can then show that:

v«v' -> v<"Y(F)((v'))
v'*v -> y(Ft{v'))4%y

And as it also turns out that p*p' => p<ip' we have:

v*ytp*p -> v(p[v/x])-v(p[Y(Fx(v))/x])-Y(F)((v))

Thuo a definition of "regular" which works is given by:

Definition 1

v:Env-*D and p:Env are regular <=> v*v and p*p

To apply this to LISP one just shows that the denotations of forms and alists are

regular, this is done in section 5.

In the next section proofs of the ai ova assertions will be given relative to the

existence of the predicates. This existence (which can't be shown with the Y-operator,

es the necessary functional aren't continuous) will be proved in section 6.

3.2. Equivalent Environments

The formulation of the result about free variables also requires the use of Milne style

recursive predicates viz.:

* c V0 x {X|Xc/rf}

=x c Env x Env (one for each Xcld)

Where intuitively *(v,X) means the free variables of v are included in X and p=xp'

means p and p' "strongly" agree for all xcX. Formally we require that:

*(v,X) <=> VY(p,p'. [XcY => [p=V => v(p)-v(p')]]
p='p' <=> Vx<X. p<x)=p'(x) and *(p{x),X)

In section 5 beiow I'll show that if e is a LISP form which denotes CF[[e]] and if

vs(e)=ix|x is free in e} then 4(0;[[e]],vs(e)). From this it follows (via the definition of

p=vs(e)p') that:

Vp,p'. [p«^' -> GMipWMip*)]

In particular if e has no free variables then .«i(e)"{} and (since it's clear that for any p

and p': ps'ip') we have tiMipWUIiß')-

Somewhat less trivially: if Vx«v8(e). p(x)=p'(x) and eiso p(x) is a constant function (i.e.

is an environment independent quantity) then again psv,(*)p* and so

01[[e]](p)=0,([eII(p'). This last example corresponds to the case for static binding - i.e.

when objects have all their free variables bound by the time they themselves are

bound. The existence of 4 and =* will be discussed in section 6.

8

4. Proofs

Reader?, from now on are aoSu:ned to be familiar with notations commonly employed in

the litifature on Mathematical Semantics.

A "domain" is a partially ordered set ir which each directed subset has a least upper

bound. This notion of domain is used (rather than complete lattices) for minor and

nonessential technical reasons (see [1] for a discussion).

The domain intended by Envld-*fEnir*Dj is the mi-'nal solution of the equation i.e. if

id.d are retracts of a universal domain (eg Scott's DJ which represent Id and D

respectively (in the sence that /rf={x|x=id(x)} and C={xlx»d(x)}) then

Y(Ae.id-»(e-*d)) represents Env. (here a-»b=Au.Ax.b(u(a(x))) and

a-»b=Äu.Ax.b(str(u)(a(x))) where 8tr(u)=Xx.(x=j.->x,u(x).>). From this minimality it

follows that there are mappings Ap.pn:£nv->Env such that:

(PI) ±=P0 Ep, £ EpnE EP

(P2) p- LJpn

(P3) (Pn)m::rör,1in{n,r1,J

(P4) pnJx)p''p{x)p'ri

In fact if Env is represented as above then pn=(Ae.id^(e-»d)),1(x)(p). For vt/Env+Dj

vn is defined by vn(p)=y(pn). (P4) can thus be written as: pn.|(x)=p(x)n and it is easy

to sh-w (see [1] for details) that. p[v/x]nil=pn,|[vn/x].

I shall prove [v*v' => vo«Y(Fx(v'))] by showing (by induction on n) that [v*v' =>

vn<J,'Y(F,(v'))] t ,d then take a limit. Similarly [v*v' => Y^vJKv'] wi|| be

proved by showing that for all n: [v+v' => F)((v)h(x)(v)«3xv'].

The following rathei ad-hoc looking definition enables the clean statement of some of

the lemmas below:

Definition 2

FtVo^o is "invarient at x" <=> Vp.v. F(v)(p[F{v)/x])=v(p[F(v)/x])

The useful applications of this detinition are given in the next lemma.

Lemma 1

For all x (Xv.v) and (Av.Y(Fx{v))) are both invarient at x.

Proof

Trivial for (Xv.v), for (Av.YiF^v)) use the fixed-point property of Y.

aED.

Lemma 2

If F is invarient at x and v*v' then Vn. vn<,lF(v'),

Proof

r=0; Must show v0<3'<F(v')

i.e. pop' => ve{p[ve/x]) B F(v')(p[F(v')/x])
i.e. p<p' => v(j.) s v'(p[F{v')/x])
OK as y*v and ±<5p[F(v')/x]

n>0; Assume true for n-1. Let pop'. Must show vn(p[vft/x]) s F '')(p[F(v')/x])

if ^PnK^/x]) E v'(p[F(v')/x])
need P„[vn.,/x]«p[F(v')/x]
need vn.1<

,(F(v') - OK by induction.

QED.

r <

10

Lemma 3

If F is invariant at x and v*v' then vo,cF(v')

Proof

Trivial from lemma 2 as V"Unvn and o* is directed-complete,

QED.

Lemma 4

Vx. [V*V' => va^']
Vx. [v*V -> v<.«Y(Fx(v'))]

Proof

Trivial consequence of lemmas 1 and 3 .

QED.

Lemma 5

If F is invarient at x and v«v' ;hen Vn. Fx(v)n(a.)<3xF(v').

Proof

n=0: Trivial

n>0: Assume true for n-1. Need p<p' => FK(v)n(i.)(p[F,(v),1(j.)/x]) £ F(v'>(p[F(v')/x])

i.e. p<f>' -> v(/)[Fx<v)n-,(l)/x]) E v'(p[F{v')/x])
OK if F^vr'UKRV) - true by induction

QED.

Lemma 6

If F is invarient at x and v«v' then Y(Fx(v)KF(v').

Proof

Trivial from lemma 5 as Y(Fx(v))=UnF,(v)n(x) and «* is directed-complete,

QED.

i

I
<

11

Lemma 7

Vx. [vv => Y(Fx(v)Kv']
Vx. [w' => Y(Fx(v))<i,<Y(Fx(v))]

Proof

Trivial application of lemma 1 and lemma 6.

QED.

Theorem 1

If v and p are regular then v(p[v/x])=«Y(rj((v))p

Proof

By lemma 5 and lemma 7 we have:
Y{Fx(v)Kv

v<'xY(FK(v))

hence from the definition of ox

Y(Fx(v))(p[Y(Fx(v))/x3) E v(p[v/x])
v(p[v/x]) = Y(Fx(v))(p[Y(F»)/x])

hence
Y(Fx(v))(p[Y(Fx(v))/x])=v{p[v/x])

Finally, using the fixed-point property of Y on the left hand side of this, we get:
Y(Fx(v))p=v(p[v/x])

QED.

5. Application to LISP

In this section D will be specialized to a domain appropriate for pure LISP and then the

abstract results described above will be shown to hold of the denotations of LISP

programs.

The semantics of LISP used here will only be described in barest outline. For furthur

details, motivation and justification see [1] and [2].

J

12

5.1. Syntax

The syntax of LISP (as described in the manual [4] and in the notation of [9]) Is given

by the equations:

e ::= A | x | fn^.j-.-ieJ | [e||->e12i„.;enl-»en2]
fn ::= F | f | MCx,;...^]*] | label[f;fn]
F ::= car | cdr | cons | atom | eq

where the ranges of the variables ejA^fn^f are as follows;

A ranges over <S-expresslon> (as in page 9 of [4])
x,f,z range over <identifier> (as in page 9 of [4])
e ranges over <form> (as defined above)
fn ranges over <function> (as defined above)
F ranges over <standard function> (as defined above)

1 use meta-variables x,f,z to range over identifiers x is used in contexts where the

identifier is a form, f where it's a function and z where it could be either.

5.2. Some Notation

In the semantics below:

flat(S)-S U {J.} ordered by Vs^S. is«.

As1,...,sn.E(8],...,sn) = ^«„...,•„.($,-.1. or SZ=J. or... or s„=x -> ± , B<8„...,«„>)

car.cdr.cons.atom.eq are the appropriate functions on S=flat(<S-expression>).

Whenever an expression v of type S, fEnv-*S/ or /Env+FunvalJ occurs

in a context requiring something of type fEnv-*Dj then v means (i.e should be

"coerced" into) (Xp.vinD), (>lp,v(p) inß) and (>>p.v(p) \r\D) respectively.

"• (

5.3. Semantics

5.3.1. Denotation Domains

D=S*Funta/
S=flat(<S-expression>)

Funvai=/S*-*S/

13

5.3.2. Environment Domain

Env'ld-*/Env*DJ

5.3.3. Semantic Functions

ffi.-form->/£nir»Sy
Z'.F unction-*/Env-*FunvalJ

5.3.4. Semantic Equations

(SI) 6|[A]/>-A

(S2> «Wp-p(x>p|S

(53) « CKeu-jejIp = &[[fn]]p((f [[e, H/v.MeJp)

(54) ö;[[e11-el2;...;eni^en2]JJp = ((f[e11]p^[[e12]]p1...,(f|reni]p^Cen2]lp)

(55) t>Ecarl]p » car
i5l[cdr]|p = cdr

5[[con8]Ip = cons
5[[atom]lp ■ atom

fflTeqUp - tfl

(56) 8fl[f]p = p{f)p\Funval

(57) ÖfII^[[x1;...xn];e]]p - Ä81,...,9n:S.eEe]]p[8,/x1]...[8n/xn]

(58) Of|[labelLfjfn]]lp = Y(Ff(5|[fn]))p

14

Theorem 2 below shows that *.!>• denotations of LISP forms and functions are regular

and so Theorem 1 can be applied to them.

Theorem 2

GCe]l*«M and 5l[fn]M3f|M

I Proof

A straightforward induction works. The details are as follows:
Assume pop'. I must show »Mp BÖWp' and UfflMfl E5l[fn]]p'.

(l):C*I[AlIp-AsA=«Mp'

(2): (flIx]]p=p(x)p|S
(fCx]p'=P'(x)p'|S
Now pop' -> p{*)«*f>'{x) "> p(x)(p[p{x)/x]) Ep'(x)(p'[p'(x)/x])

=> p(x){p) E p'(x)p' by lemma 8 below

(3):(f[[fn[el;...;en]]p^ifni]p((fire,]]p (?[[ejp)
EtJirfn]]p'((rielI]p',..,(f[[eJp')
-el[fn[e1}...;eri]3p'

(4):(f[[[e11^el2j...;en1-*en2]]]p=((f[[e11I]p^[[e]23p (ftUJp-^KJp)
-(»[[e.Jp'-ffire.Jp' ^lenJp'^lenJp')
=ß;[[[e,,->e12;...;enl-»en2]]lp'

(5):5CF]]p=FcF=3iF]p'

(6): 3:if]]p=p(f)p|Fun
^IIf]p'=P'(Op'|Fun
and p(f)p E p'(f)p' as in (2) above,

(7):5[[A[[x1;...;xn];e]3p=>.s11...1sn.(fl[e3p[s1/x1]...[sn/xn]

3i^[[x,;...;xn]ie]]p'=A8 ,tM*h'i*\M"[»M
SO it Suffices tO shOW P[81/X|]...[8n/Xn]<3p'[s|/X|]...[8n/Xn]
and for this it suffices to show ^.(s, inDK^p.^, inß)

i.e. p<p' => (^p.SiXp^^p.Si)/^]) B<Xp.8i){p'[<Xp.r;>/xi])

i.e. pop' => 8, E s, - which is true.

i l

15

(8):5ilabel[f;fn]]p=Y{Ff(5l[fn]))p
5([label[f;fn]]p'=Y(Ff(i5ifn3))p'
hence result by lemma 7,

QED.

Lemma 8

Vp,x. p=p[p(x)/x]

Proof

Follows trivially from definition of "p[p(x)/x]" and strictness of p.

QED.

Theorem 3 below shows that if V8(e) is the set of free variables in e then in the

abstract sense discussed above the free variables of (f[[ej "are included in" vs(e>.

The following lemma is needed for the proof. The definitions of * and =x are on page 7.

Lemma 9

(1) Vv.X.Y. [«(v.X), XcY => *(v,Y)]

(2) Vd. *((^p.d),{})

(3) Vv,x,X. [*(v,X) => *(Y(F»),X\{x})]

Proof

(1): Trivial.

(2): Trivial.

(3): I show *{v,X) -> *(F,(v)nU),XU{x}) by induction on n. Assume 4(v,X).

n=0: t(j.,X\{x}) is clearly true.

16

n>0; Assume true for n-1.
*(F,(v)n(J.),X\{x}) <-> p=^«lp' => F<(v)n(x)p=F)((v)n(x)p'

<=> o=x^'p' => v(p[F(v)n-|(i.)/x])=v(p'[Fx(v)n-1<x)/x]).

<= p=A(xlp. => p[Fx{v>"-1(x)/x]=xp'[Fx(v)n-1(x)/x]>
which is true by induction and (1) above.

UED

Theorem 3

Vet<form>. *(ö;[[elvs(e))
Ve<<function>. *(5[[fnlvs(fn))

Proof

A straightforward structural induction works. Let vs(e)cX.

e=x;
Must show p=V -> p(x)p=p'(x)p'. Now vs(e)={x}cX so if p=V:

p(x)=p'(x) and *(p(x)IX) hence p(x)p=p(x)p'=p'{x)p'.

e=A:
Must show p^p' -> (fHAJlp^IlAjlp' - which is clearly true.

e=fn[e1;...;en]:
we have by induction that *(5;|Ifn]],v8(fn)) and *(ö;llel]],v8(e)).

Hence by lemma 9 *(5Cfn],X) and *((F[[e,]],X) as v8(fn)(V8(el)cv8(e)cX.

So if p^p' then SMp-ffCfnUp' and ffCeJp^CeJp'
and hence (fEe]]p =(fLe]]p'.

e=[ell-»e|2;...;enl-»en2]:
Argument as above.

Now let vs(fn)cX.

fn=f:
Similar to "e=x" case above.

fn=F:
Similar to "e=A" case above.

M

I

17

fn=A[[X|;...;Xn];e]:
S5[[>.[LXii...xn]j§]]lp - 2i81,...,8n!S.(fC»3p[s1/x1]...[«n/xft]
vs(fn)=vs(e)\{x1,...,xn} so V8(e)cXU{x1, ,xn}.
Now by lemma 9(1,2) if Y=XU{x1,...,x)1} then

psXp' => p[s1/x,],..[8„/xn]<
Yp'[s1/X1]...[8n/xn]

so as *((iie]],vs(e)); (f [[e]]p[81/x1]...[sn/xn]=(f [[e]Ip'[s1/x1]...rsn/xn].

fn=label[f;fn1]:
We have by induction *{5-[[fn1]],vs(fn|)) where vs(fn1)\{f}"V8(fn>£X.
So by lemma 9(3) and induction t(t5Cfn3,V8<fn1)\{f})

hence *(oifnlX).

QED.

As an application one can show that adding new definitions to an environment doesn't

change the values of the old ones as long as previously used variables aren't

overwritten. This is an important lemma needed in proving the correctness of eval.

Here it's a trivial consequence of Theorem 3 but originally (see [1]) it needed a long

ad-hoc proof which confused general arguments with LISP specific ones. To see how it

follows consider an environment p which defines a set of functions all of whose free

variables are included in Xc/rf. Suppose x is a new function not included in X. We wish

to show that if e is a form (or function) then as long as v8(e)cX (i.e. e only uses the

old functions) we have for any v: (f[[ej]p=tt[[e|p[v/x]. But this is now trivial for

((£j[e]],X) and p=xp[v/]' Saying this formally yields the following theorem (in which

"p[v/x]" above is replaced by "p"').

 .^SÄ* JMT" ■:-■•'' ■

I

18

Theorem 4

Suppose p,p'(Env, e€<form> are such that for some Xcld we have:

(1) Vx(X.3fn,t;<function>. />(x)=p'{x)=t5[[fnj and vs{tn,)cX.
(2) vs(e)cX

then ^eJfi'&^Bjp'.

Proof

By theorem 3 4((f([eJl.X) and pz*p'. The result follows from the definition of *.

aED.

6. Existence of Predicates

In all the above the existence of the predicates o,«*, *,*,=* has been assumed.

However this existence cannot be deduced immedeately from the recursive definitions

as the predicates being defined arn't necessarily monotonic . The existence proofs to

be described are directly based on techniques developed by Robert Milne [5]. Similar

methods have recently been indeoendentiy discovered by Reynolds [7]. For the current

purposes it's only necessary to know that the required predicates exist, however

Milne's work shows one can expect them to be unique also. I havn't checked this for

the predicates used here,

We define by induction on n predicates:

<3n C EnvxEnv

*\ C VDxVD

19

and then set:

pop' <=> Vn. po^p'
voV <=> Vn. v-a^v'

it follows (details below) that ■v* satisfy the desired equations and are

directed-complete.

Definition 3

ponp' <=> Vx, p{x)<\f)'{x)
VO"0V' <=> V(i.[v0/X]) E V'Uiy/x])
v^V <--=> Vp,p' [p^p' => vn,1{p[v/x]) E v'(p'[v'/x])]

The following two lemmas are needed to prove Theorem 5 below.

Lemma 10

(ln) Vp.p'. [po^p'=> p^p']

(2n) Vp.p'. [p^p' => p^j^.p']

(3n) Vv.V. [vo'^V => v<\w']

(4n) Vv,v'. [v<«ftv' => v^V]

Proof

I show that (30) , {%) , (3n)->(lB) , (4n)=>(2n) , (2n.,)=>(3n) , d«.,)-^^)

(30): Mu-it show v^v' => v^V. Clearly l<»el and we have:
VO^V, X<J0X => V1(i.[v/X]) £ V'(JL[V'/X])

=> vUK/x]) s V'<J.[V/X])

<=> V<3X
aV'

(

20

(40): Must Show V-a'gV' => Vg'J^V'.
Assume v^^v' and p^aP'.
Must show v0l(p[v0/x]) £v'{p'[v'/x])
i.e. v(j.) = v'(p'[vVx])
but vU) s v(±[v0/x]) = v'U[v'/x]) E v'(p'[v'/x]).

(3n)=>{ln): Assume (3n). To show (ln) let po^p'.
Must inow ponp' i.e. Vx.p(x)<3x

np'(x).
Bui if p^ip' then Vx.p(x)^,p*<x) so Vx.p(x)<'np'(x) by (3n).

<yn)=>i2n): p<3np' <=> Vx.p(x><»«np'(x)
-> Vx.p(x)n^lp'(x) by(4n)
=> Vx.pn.](x)«a'rulp'(x)
=> Vx.p,,.,^^'

(2n.l)->(3n)5 Assume (2,,.,). To show (3n) let v^.iV and p^^p'.
Then pn<np' from (2r,.1),
So v^p^v/x]) E v'(p'[v'/x])
i.e. v<pn[vfl/x]) £ v'(p'[v'/x])
hence vn(p[v/x])-v(pB[vn.l/x])

E V(pn[vn/X])
£V'(p'[v7x]>.

(lft.i)->(4n>: Assume (ln.,). To show (4n) let v<i"nv' and p<inp'.
Then po,,.^' so vn{p[v/x]) E v'(p[v7x])
hence (vn)n.1(p[v(,/x])=v(pn[vr,.1/x])

=v„(p[v/x])
£ v'vp[v'/x])

aED.

21

If {vJ is directed then [[V^. v^V] -> [{Uu>fJ<\v']].

Proof

Cases on n:

n-Os v(,<ix0v' <-> yJ±[Vrt/*]) = v'{/)[v'/x])
so U^UiU^Jx]) sy'{p[yf/x]).

n>0: Let po^ff then V^.Vx. v^pCvJx]) £ v'(p'[v'/x])
9o{UÄvJn(p[U0(v0</x])sv'(p'[v'/x])
hence U^v^^V.

aED.

Theorem 5

< and <* are directed-complete and satisfy:

pop' <»> Vx. p(x)<»xp'(x)
v<.»v' <-> Vp.p'. [p^p' -> v(p[v/x]) s v'(p'[v'/x])]

Proof

To show <* directed-complete we have:

»> Vn. U^v^o^v' by lemma 11
<=> U^v^V

Showing [[Vrf.vo'v J -> [v^^U^v'J]] is trivial.

The directed-completeness of <i follows directly from its definition and the
directed-completeness of «" for all x.

i f

22

To prove the rest of the theorem we have:

pop- <=> Vn,Vx. p{x)«\p'(x)

<=> Vx.Vn. p{x)o\p'(x)
<=> Vx. p(x)<i*p'{x)

To show vo'V => Vp,p». [p<ip' => v(p[v/x]) s v'(p'[v'/x])] assume v^"1 and pop'.
Th^n Vn. v<i"n.,v',p<!p'

sovfttl(p[v/x])=v'(p'[v'/x])
hence unioning over n: v(p[v/x]) s v'(p'[v'/x]).

To show Vp,p'. [p<3p' «> v(p[v/x]) E v'(p'[v7x])] => voV assume
pop' => v(prv/x]) s v'(p'[v7x]). 1 show Vn. v<\y' by induction on n.

n=0; ±o± so v(J.[v/x]) s v'(j.[v'/x]) so v(i.[v0/x]) s v(j.[v/x]) = V'{JL[V#/X])

30 VO'gV.

n>0: By lemma 10: pop' => PViP' => P^J' => Vm. p„<imp'.
so pnop'.
H-r.ce v(pft[v/x3) E v'(p'LV'/x3) so vB(p[vft/x]) S v(pn[v/x]) E v'(p'[v'/x]).
Thus v<5x

rv'.

?o Vn. v<ixnv' and hence v^'v'.

QED.

The construction of 4 and =>; is very similar to the construction above. As before we

start by defining "finite" approximations to the relations viz.

Definition 4

«„(v.X) <=> VY,p,/)'. [XcY => [p=V => vn(p)=vn(p')]]

p=*0p' = true
P^iP' <=> Vx<X. p(x)=p'(x) and 4,{p(x),X)

We then prove a lemma similar to lemma 10 viz.

'

;

i
I i

23

Lemma 12

(ln) Vv,X. [«„„(v.X)-> *n(v,X)]

(2n) Vv.X. [*n(v,X) => *flt|(vn,X)]

(3n) Vp,p',X. [p=x
n4lp' -> ß**^]

(4n> Vp,p',X. [pa^p» -> p^^.p']

Proof

Same as iernma 10 (mutatis mutandis).

QED.

From this it follows that if we define 4 and =x by:

*{v,X) <=> Vn. *n(v,X)

PSV <=> Vn. ps^'

then $ and =x have the desired properties.

7. Concluding Remarks

We have presented above a partial axiomatization of dynamic binding. What has been

shown is that if wtfEnv+DJ satisfies v*v (i.e. is regular) and *(v,X) for some Xcld

then useful theorems follow. What is left open is just how many other axioms will

eventually be required. To answer this we need first to know which theorems we want

and to answer this we must attack "rear problems such as the correctness of compilers

and interpreters. Doing this should reveal the general theorems about dynamic binding

that must follow from any adequate theory.

24

The theorems proved here are not yet genera! enough. For example if we consider

the obvious extension of the semantics tr handle funargs (see [1]) then the proofs

that ©[[ell and ffUfn]] w« regular fail. In fact by replacing the occurences of " = "

in the definitions of <,<* and ♦ by another predicate (which needs to be defined

recursively) it's easy to cover this case. Unfortunately I don't at present see a

uniform way of defining <,<* and ♦ to cover all useful D.

Having to separately prove the existence of all predicates is a big nuisance. One

step toward a general justification of recursive predicate definitions has been

provided by Milne and Reynolds. Both give uniform accounts of how to construct

recursive predicates from their defining equations. In fact the constructions given

above are (more or less) instances of Milnes techniques. It would help a lot if

syntactic criteria on definitions could be developed to decide if the things purported

to be defined actually exist. Milne [private communication] has made progress toward

this by analysing the structure of some of the expressions which occur in definitions

and showing that these legitimate instances of his general construction.

It's clear that many of the above proofs can't be done in existing fomalisms (eg LCF)

- the required predicates can't be defined in them. One way to fix this would be

to develop extensions, another would be to develop a translater from proofs using

predicates to proofs which don't. The latter probably won't be adequate because

theorems may require the use of predicates in their statement at the general level

(even if all their useful instances don't).

25

8. References

[1] Gordon, M.J.C. (1973) Models of pure LISP. Experimental Programming
Reports:No,31. Department of Machine Intelligence, School of Artificial Intelligence,
University of Edinburgh.

[2] Gordon, M.J.C. (1975) Operational Reasoning and Denotational
Semantics. Presented at the International Symposium on Proving and Improving
Programs, Arc-et-Senans, France (proceedings available from IRIA). Revised as
Memo AIM 264, Computer Science Department, Stanford University.

[3] Gordon, M.J.C. (1975) Towards a Semantic Theory of Dynamic
Binding. Memo AIM 265 , Computer Science Department, Stanford University.

[4] McCarthy, J, et.al. (1969) LISP 1.5 Programmer's Manual. MIT Press.

[5] Milne, R. (1974) The formal semantics of computer languages and
their implementations. Oxford University Computing Laboratory,
Programming Research Group, Technical Monograph PRG-13 (available on
microfiche).

[6] Reynolds, J.C. (1972) Notes on a Lattice-Theoretic Approach to
the Theory of Computation. Systems and Information Science, Syracuse
University.

[7] Reynolds, J.C. (1974) On the Relation between Direct and
Continuation Semantics. Second colloquium on Automata, Languages, and
Programming. Saarbrücken.

[8] Scott, D. (1974) Data Types as Lattices. To appear as Springer Lecture
Notes.

[9] Scott, D. and Strachey, C, (1972) Towards a Mathematical Semantics
for Computer Languages. Proc. Symposium on Computers and Automata,
Microwave Research Institute Symposia Series, Vol,21, Polytechnic Institute of
Brooklyn.

