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TOWARD A METHODOLOGY FOR MAN-MACHINE FUNCTION
ALLOCATION IN THE AUTOMATION OF SURVEILLANCE SYSTEMS

VOLUME I: SUMMARY
CHAPTER 1
INTRCDUCTION AND OVERVIEW

This is Volume J of a two-volume report on a study con-
cerned with the performance implications of various degrees
of automation in surveillance systems. The study was stimu-
"lated by a growing need for systematic feedback from operating
systems to the designers of future systems. The need for such
feedback was felt to be especially acute in the class of sys-
tems generally known as information processing systems, of
which surveillance systems are an example. It was hoped that
the study would generate information that could aid system
designers in making performance/cost trade-off decisions in

future surveillance systems.

It was felt that the most significant feature of current
and future information processing systems is the extent to
which they incorporatc computers and other forms of automa-
tion. A trend toward more and more dependence on automation
has been especially evident in recently developed surveillance
systems. Both the cost and performance implications have
proved to be extensive, and there have been some major disap-

pointments in how effectively some functions can be automated.

In some kinds of systems, the performance improvement
due to automation has been quite dramatic. For example,
automatic processing, storing, and distribution of informa-
tion in tactical da‘a or command-and-control systems can
immensely facilitate the making of timely and valid decisions.
Automation is especially effective in such systems because,
in general, human beings are severely limited in the informa-

tion rate they can handle and, conscquently, often become




overloaded. Also, the nature of most of the informition in
tactical data systems is such that it is not degraded by auto-
matic processing and distribution. In contrast, automation
techniques can often iead to severe performance degradation
when they are applied to complex recognition and decision-

making functions.

Most system functions lie somewhere between these extremes.
Often, the information processing load is sufficiently high
that automation is tempting. However, it may be clear that
some performance degradation will be incurred. Just how much

degradation to expect is seldom easy to predict.

It was our purpose to address this problem in surveillance
systems using four sources of information: (1) experience with
automation in several large-scale surveillance systems during
the course of their development and trial, (2) an analysis of
what is known about how man functions as an information pro-
cessor, (3) test data on how well man performs various tasks
associated with the operation of surveillance systems, and (4)
data from experiments specifically designed to clarify the
effects of function allocation between man and computer in

surveillance systems.

A good deal of this study was retrospective in the sense
that we had to depend on past histories of successes and fail-
ures of automation in surveillance systems at various stages
of development. And we are certainly not in a position to
forecast how the future state-of-the-art in automation will
cope with some of the difficulties identified during the course
of this study; but we can assert the importance of closing the
feedback loop from operating systems to the designers of future
systems. We hope that the material in these two volumes will
help serve this purpos® with respect to both machines and
their human operators. There is still a good deal of uncer-
tainty about both. The following quotation, which was made a
decade ago, still retains the clear ring of truth:

R I - o T ™
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Those of us who are in the human sciences often
feel incecure and apologetic about our own
science and subject matter. We often feel that
it is our ignorance about human behavior which
is responsible for the difficulties we have in
making decisions about man-machine system design.
I1f you have ever worked closely with systems
engineers, however, you soon come to realize
that there is much uncertainty on the machine
side of the equation as well. 1In the first
place, there is no such thing as a system design
process, precise and specifiable.... Instead,
systems designers often proceed with much trial-
and-error just as anyone else does. In addition,
although I realize it is dangerous to make a
generalization about this point, I have the
feeling that engineers are sometimes overly
optimistic in their predictions about what they
can do with their machines. As a result, the
final products frequently fall short of what

had been anticipated for them. (Chapanis, 1965)

There is still much ignorunce about human behavior, there
is still much uncertainty on the machine side of the cquation,
there is stil) no such thing as a system design process, and
engineers are still sometimes overly optimistic about what
they can do with their machines. Despite substantial engineer-
ing efforts to automate most surveillance system tasks, exten-
sive automation is conspicuously absent from today's operational
surveillance scene. A large proportion of these efforts have
been focused, by several different engincering groups, in
several different ways, upon certain crucial surveillance sys- |
tem functions which continue, obstinately, to resist successful if
automation. It now appecars to many that successful automation %
of these functions is not just around the corner, and the time
appears propitious for a serious reconsideration of man-machine

function allocation in the automation of surveillance systems. /

We say '"propitious," implying a favorable condition, not
because things have been going well; quite to the contrary.

It is the heer magnitude and costliness of the problems which

have been encountered that, perhaps, will provide the nccessary

impetus for the substantial interdisciplinary cfforts that will




be essential to resolve the function allocaticn problems we

are now clearly confronted with. Many years ago, human fac-
tors specialists could specify with a reasonable degree of
precision how well each of several surveillance system functions
and tasks could be executed by men, but it was not then possible
for engineers to demonstrate corresponding performance levels
for machines. 1In the absence of empirical evidence, a good

deal of optimism prevailed regarding automation. Today, the
strengths and weaknesses of machines, as well as men, are more
clear; and while it is obvious that we will not want to cling
.to "totally" manual systems, the extensive degree of automation
anticipated by some cannot be regarded as a viable alternative
for "next generation" systems, either. Tktus, human factors
specialists and systems engineers must now undertake, together,
to move into those uncertain regions where man and machine

work as more nearly equal partners, executing tasks apportioned
in various permutations, so that it may be determined which
configurations bring about the synergistic man-machine relation-

ships that must comprise the 'next generation' systems.

We do not believe the human factors and systems engineer-
ing disciplines are totally prepared for the function alloca-
tion problems that now must be faced. We have entitled this
report "Toward a Methodology..." because it is not a "cookbook,"
with convenient recipes for every (or any) specifie function
or task allocation. Indeed, the complete '"cookbook" of function
allocation recipes would probably take longer to develop than
the totally automated surveillance system, therefore rendering
it moot; but neither of these remote developmenis should con-
cern the surveillance community faced with solving problems
now.

We have set down in the two volumes of this report a
perspective of the function allocation process as we see it
affecting the "next generation" of systems. Some of this in-

formation, we hope, will make the task of the reader seriously



. involved with specific function allocation problenms easier,
and we will have achieved an important goal if this report

will provide him some guidance regarding the precise nature

of the information gathering that he will almost certainly

have to undertake himself,

Classified information, which comprises much of thz spe-
cific information in Volume II, has been omitted from Volume I
to permit a broader dissemination of summary information, with
the result that some of thc viewpuints expressed in this volume
may secm unsupported. We hope that the interested reader will
4 also turn to Volume II, the contentis of which are briefly out-

lined at the end of this volume.

The following chapter outlines a general functional
taxonomy of surveillance systems, together with our conclusions
concerning the merits and problems associated with allocating
each function to man or computer. Volume II also contains the
taxonomy, but with some examples that are classified, and a
somewhat extended discussion of each function. Chapter 3
presents a model of man as an information processor in
surveillance systems; Chapter 4 presents some information on
the variable performance of man in surveillance systems; and
Chapter 5 is concerned with the measurement of man-machine
performance in surveillance systems. Each of these chapters

has its more detailed counterpart in Volume II.
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CHAPTER 2

MAN-MACHINE FUNCTION ALLOCATION 1IN
NEW SYSTEM DESIGN

One of the products of this study is a generalized tax-
onomy of surveillance system functions. We shall discuss each
of these functions, breaking them down into elements we shall
call "tasks." The reader should note that we use the term

"task" in a special sense that shall be presently evident,

and that the term has been used by different authors to mean

different things. Each of the taxonomy functions is described
helow. A rating is given to cach task on a scale from 1 to 9,
which reflects our conclusions concerning the necessity of
retaining operator involvement in that task versus the alter-
native of full automation. A high Operator Involvement Rating
(7, 8, or 9) is assigned to a task that almost certainly re-
quires extensive roles for the operator at this time, either
because extreme difficulties have been encountered in previous
attempts to automate such tasks or because potential sources
of difficulty can readily be foreseen. A low Operator Involve-
ment Rating (1, 2, or 3) is associated with tasks that clecarly
should be automated because of man's limited information pro-
cessing capabilities, computing capabilities, or fallible
memory, and because it has been demonstrated that machines

can handle those tasks efficiently. Intermediate OIRs are
given to those tasks where human information processing cur-
rently plays a critical role but where computer-aiding may

nonetheless be a feasible and desirable system characteristic.

We h&d some misgivings about assigning simple unidimen-
sional scores to the admittedly very complex considerations
of function allocation. We nevertheless did so because we
fecel these numbers do convey in a very genecralized manner a

convenient index to the very different degrees of risk in

Preceding page blank '




making the assignment of various functions to mcn or machines.
We rcadily admit that therc may be considerable room for argu-
ment about the different values assigned; this satisfies one

of our objectives because we feel such arguments may be useful.

The rcader will find a rationale for each rating in the
function descriptions that follow Table 2.1. The discussion
that follows is general and somewhat abstract. The interested
reader is urged to consult Volume II, in which the discussion
is more Jengthy and is enhanced by examples drawn from specific

(classified) surveillance systems,
TABLE 2.1
SURVEILLANCE SYSTEM FUNCTION TAXONOMY
Operator

Involvement
Rating (OIR)

1. Memory
1.1 Goal information 5
12 Function algorithms g
1.3 Stimulus data 2
1.4 Non-stimulus data 5
2. Lxecutive Control
2.1 Comprehension of the current
situation 5
2:2 Interpretation of goals 5
2.3 Interpretation of past situations 5
2.4 Hypcthesis generation and prediction 5
R:% Effecting appropriate control
responses 5
2.6 Hypothesis testing and iteration 5

3. Attention Selection
3.1 Search initiation
3.2 Sensor placement

3.3 Spatial coverage and spatial
resolution selection

3.4 Selection of other parameters




Operator
Involvement
Rating (OIR)

4. Stimulus Transmission

4.1 Pre-sensoi transmission N/A

4.2 Post~-sensor transmission 1
5. Stimulus Processing

5.1 Beam forming 1

5.2 Further processing 1
6. Detection

6.1 Signal detection 2

6.2 Transient detection 8

6.3 Track detection 3
7. Feature Extraction/Association

7.1 Signal parameter estimation (i.e.,
extraction of lowest-order features) 6

7.2 Screening 6

7.3 Early classification based on espe-
cially distinctive characteristic

lower-order features 2
7.4 Association of lower-order features

into appropriate higher-order features 8
7.5 Alerted searching for undetected

lower-order features 2
7.6 Association of higher-order features

with targets 8

7.7 Early classification based on espe-
cially distinctive characteristic
higher-order features 2

8. Feature Space Transformation
8.1 Combination of features to reduce

dimensionality 5
8.2 Combination of features to maximize
discriminability 5

8.3 Coordinate transformation

9. Target Localization
9.1 Single-sensor fixing 2
9.2 Multiple-sensor fixing 2
9.3 Tracking 2

e g — D — R T




10.

11.

12.

13.

10

Target
10.1

10.¢
10.3

Motion Analysis

Inference of motion based on
extracted stimulus features

Position-versus time analysis
Track-aiding

Classification

11.1

Determination of stimulus source
likelihood estimates

11.2 Alerted secarching for undetected
signals typically related to
inferred stimulus sources

11.3 Determination of stimulus source
configuration likelihood estimates

11.4 Determination of operating
behavior likelihood estimates

11.5 Determination of target class
likelihood estimates

11.6 Alerted searching for undetected
signals typically related to
inferred target classes

1.2 Determination of target class
a priori probabilities

11.8 Determination of target class
a posteriori probabilities

11.9 Determiration of classification
decision risk functions

11.10 Determination of an appropriate
decision rule

11.11 Classification decision making

Communication

12.1 System coordination

12.2 System output

12.3 System input

Learning

13.1 Strategic and tactical intelligence

13.2 Technical intelligence

13.3 System operational characteristics

13.4 Training

Operator
Involvement
Rating (OIR)
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1. Memory. Memory is ecssential for even the sim-
plest system to operate. In simple systems, memory
might be rcgarded as the hard wiring which causes
the unit to bchave as it does. In larger systems,
memory can be widely distributed, in many different
forms, throughout the system. It serves as a repos-
itory for "goal'" information, to assist the execu-
tive function in bringing about goal-directed system
behavior; for the storage of function algorithms,
which can include all the functions on our list;

fur the storuge of stimulus data, upon which the
function algorithms work; and for the storage of
non-stimulus data, which are many in kind and number
and which are necessary to support the operation of
the system. Crucial factors of the memory function
include form, capacity, storage speed, storage
accuracy, retrieval specd, and retrieval accuracy.

Man's own memory is often called upon to provide a
substantial proportion of system memory. Goal in-
formation, function algorithms, and non-stimulus

data are likely to be associated with man's long-
term memory; stimulus data, with man's iconic and
short-term memories (see Chapter 3). Man's memory
has an astonishingly grecat ecapacity, but most of the
stored information is totally irrelevant to functions
he is likely to perform in surveillance systems; its
storage spced and acccuracy are highly dependent upon
both the man and the learning situation; its infor-
mation retrieval epeed can be annoyingly slow; and
its rectrieval aecuracy is certainly unreliable
relative to hardware memory systems. Nevertheless,
man's own memory, when acting in support of his more
sophisticated behaviors, such as hypothesis formula-
tion or pattern recognition, is an invaluable recsource
which is difficult or impossible to duplicate with
engineered mechanisms.

Allocation with respect to the memory function is
discussed in terms of four tasks: (1) goal infor-
mation, (2) function algorithms, (3) stimulus data,
and (4) non-stimulus data.

1.1 Goal inJomuation. . . . . . . . . OIR: §

The memory function must provide storage of goal
information so that the executive control func-
tion (sce below) can attempt to bring about sys-
tem goal-directed behavior. This goal information
should reflect system strategic, tactical, and
technical employment considerations, with specific
information relating the importance and probability

11



of occurrence of various targets of interest to
pertinent system capabilities and limitations.

1.2 Funetion algorithms . . . . . . . OIR: §

All system functions we describe must in some
sense be embodied in system memory. We earlier
noted that hard wiring constitutes a form of
memory. Another example is when a function is
executed entirely by a computer. 'n that case,
the function algorithm can be preciscly identified
(consisting of a string of machine instructions)
and its location in system memory can be precisely
identified physically. Another, very important,
example is when a function is allocated entirely
to man; in that case neither the function algo-
rithm nor its physical location can be precisely
defined. Yet the importance of man's memory is
indisputable, since his behavior, which is crucial
to system functioning, depends upon it.

1.3 Stimulus data . . . . . . . . . . OIR: 2

In surveillance systems, it is often necssary
to acquire, store, and display large amounts of
stimulus data.

A common storage medium for stimulus data has
been "hard-copy" displays. This medium has
well served surveillance systems, but it has
limitations. One is the physical space required.
One alternative is to store many millions of bits
of information in such a manner that they may be
retricved for display in a timely manner.
Another, generally unacceptable, alternative is
not to stoxre the stimulus data but to rely in-
stecad upon real-time system functioning not to
overlook anything of importance. This is very
risky. Reliance upon the real-time functioning
to select only a portion of the stimulus data
for storage sometimes leads to serious loss of
information. Thus; in some surveillance systens,
the stimulus data generate a substantial memory

- requirement that should be allocated to machines
if hard-copy storage is not feasible.

'We use the term "stimulus" rather than signal or signal-
plus-noise or signal-plus-noise-plus-clutter bccause the
definitions of sigral, noise, and clutter can change dynam=-
ically as the system is in operation, but these things all
remain stimuli,
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1.4 Non-gctimulus data . . . . . . . . OIR: 5

Much non-stimulus data is accessary for a sur-
veillance system to operate. Most data arc
technical intelligence ubout targcts of interest
(and, importantly, targets not of interest).

In carly systems, a comnon storage medium for
such duata was the printed page, in the form of
technical publications. Even un the latest sys-
tems, the printed page remains important, not
only for technical intclligence, but also for
information rcgarding the knob and dial opera-
tion of hardwarc. Printed operating data
gradually transfer (with varying degrecs of
fidelity and comprechensiveness) to the operator's
own mewory through learning. llis memory constu-
tutes a second storage medium for these data

and, when a complex function such as classifica-
tion is attempted by computer, these data will

be found in a third medium of storage, the
computcer memory. There (and in mun, since we
intend to model him in decision-theoretic terms),
these data are likely to be represented in scme
combination of a prieri probabilities, likelihood
functions, risk functions, and decision rules.
Sonmcvwhere among the non-stimulus data should be
recorded the sum total of the system's past
"expericnee," so that the system (i.e., the
exccutive control function) can deal with the
prescnt through historical perspective of the
past.

Ezecutive Contrcl, In complex systems, we believe

the executive control function necessary to bring
about integrated, goal-directed system behavior. This
function, like others, may be executed cither by man
or machine. Most commonly it has been within man's
province. Some of the crucial factors relating to

the attainment of appropriate goal-directed behavior
include (1) the ability to define system goals, (2)
the ability to implement procedures to attain system
goals, and (3) the ability of the exccutive faithfully
to execute the procedures.

Executive control requires interpretation of infor-
mation in memory concerning goals and past situations,
comprchension of the present situation, hypothesis
generation, prediction, effecting appropriate con-
trol responscs, hypothesis testing, and subscquently
appropriate iteration. The above are highly cognitive
activituics which man performs with varying degrees of

cffectiveness. Man's variability is one of his

weaknesses as an executive., On the other hand, such

activities are very difficult to automate success-

fully.




Executive control must exert its influence throughout
a very complex range of activities, from those requir-
ing wide focus upon the most molar aspects of system -
functioning to those requiring narrow focus upon
moleculur detail. MHowever, therc are¢ certain tasks
characteristic of executive control at all of these
levels, and we will discuss function allocation with
respect to cach of them in turn: (1) comprehension

of the current situation, (2) interpretation of

goals, (3) interpretation of past situnations, (4)
hypothesis gencration and predictioa, (5. effecting
aprropriate control responses, and (6) hypothesis
testing and iteration.

2.1 Comprehenston of the current
sttuation . . . . « . . . 4 . . . OIR: §

The executive function makes its control re- )
sponses bascd upon its comprechension of the
current situation, in an attempt <o make that
comprchension more accurate. The executive con-
trol function is adaptive. Through iteration,

it attcmpts to converge upon a true perspective,
which is the fundamental goal of any surveillance
system., Accurate comprchension of detzils of the
situation at the outset hastens convergence and
reduces the probability that divergent behavior
may ecvolve,

2.2 Interpretation of goals . . . . . OIR: §

The executive control function interprets the
goal information stored in memory in the light
of its perspective upon the current situation
in order to bring about proper allocation of
system resources,

2.3 Inierpretation of past situations OIR: 5

The executive control function should interpret
the record of past situations for its-relation-
ships to the current situation. This activity
represcnts an "experience factor" which may have
considerable influence upon the ceontrol responses
made in the current situation.

2.4  Hypothesis generation and predic-
BIOM: + . 4 v v v 4 4 e 4w w s . OIR: 8

Based upon the executive's comprehension of the
current situation and its interpretation of sys-
tem goals and past situations, it will (idecally)




form hypotheses and make predictions. TFor
example, the executive may determine that a tar-
get is of special interest and worthy of greater
attention; more, that if the target is of a
certain type, there should be present a particu-
lar signal fcaturc not yet detected.

2.5 Effecting appropriate econtrel
PEEPOHSES o « o o o s o s o o o« o OIR: 5

Based upon predictions from the preceding task,

the executive should effect appropriate control
responses. These may be preliminary, intcrmediate,
or final output responscs. To continue our ex-
ample (see 2.1), if the executive predicts that

a particular signal feature should be present,

it should focus system attention to heighten

search for that fcaturec.

2.6 Hypothesis testing and iteration. OIR: 5

After effecting control responses, the exccutive
tests its hypotheses and predictions upon the
stimulus set. Let us continue our example: A
predicted target signal is sought. If found, it
strengthens its associated hypothesis; if not,
the hypothcsis is wcakened or rejected. After
such a test, cxecutive comprchension of the cur-
rent situation refines itself. Then executive
control itcrates its tasks, leading to continued
refinement and, hepefully, convergence on a
solution.

3. Attenticn Selection. The objective of this func-
tion is to receive all necessary stimuli to attain
system gouals. This mecans maintaining surveillance

of a sufficient area of stimulus space with suffi-
cient resolution., The area to be searched is multi-
dimensional, including (1) the three dimensions of
Euclidean space; (2) time; and (3) various signal-
related dimensions, such as intensity, frequency,
polarization, and so on. The crucial limitation in
attention selection is that the quoticnt of the
multidimensional stimulus arca to be scarched divided
by the resolution with which that area is searched
has an upper bound. Since information processing
rate has cost and technical constraints, a trade-off
is forced between the areca of stimulus space surveyed
and the resolution possible withi. that area. The
problems invelved in making this trade-off are
substantial.



(Man has his own, very interesting, attention-
selcction mechanism, which is discussed at length

in Chapter 3.)

The attention sclection funciion is considered in
terms of four tasks: (1) search initiation, (2)
sensor placement, (3) spatial coverage and spatial
resolntion sclection, and (4) selection of other
parameters.,

3.1 Search inittation . . « « « « « o OIR: O

This tas) has its most obvious meaning in connec-
tion with certain systems that do not ordinarily
conduct a continuous surveillance operation, such
as ccrtain airborne acoustic ocean surveillance
systems; their scarch must be initiated by a
compunication from the proper authority. This '
cornmunication must define with some degree of
certainty the arca which is to be searched, |
which constitutes the first step in attention I
sclection, However, even in systems which con- i
duct continvous surveillance opesrations, search

initiation still has mcaning, sor it may refer -
to an intcrsification of secarch in some portion

of the arca under continuous surveillance; we l
shall refer to this as "alerted search." Alerted
scarching may be brought about thrcugh communi-
cation of information from outside the systen,

or it may be initiated by the svstem executive
function as part of its hypothesis formulation,
prediction, and testing iteration.

Iz Sensor placement. . . . . . . . . OIR: 6

For systems whose sensors are fixed, this task
hopefully has only to be considered once. llow-
ever, for mobile systems, the sensor placement
task constitutes the next step in attention
selection followinyg scarch initiation, and
obviously dcfines to some extent the spatial
coverage of the systemn.

3.3 Spatial coverage and spatial
recsolution celection. . . . . . . OIR: §

In some systems, spatial coveragpge and spatial

resolution are not variable, but are fixed at

the time of installation (granted, operators may '
not give cqual attention to all spatial arcas

the syvstem sensces).  However, other systems do

provide flexibility in these respects. Variable

o
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coverage and resolution are particularly impor-
tant when there is limited data processing

capacity and it is necessary simultaneously to
cover all potentially accessible spatial arcas.

3.4 Selection of other parameters . . CIR: 5

Most large systems have a large number of mode
options and control scttings which must be
properly sclected to focus the system's atten-
tion and permit optimum performance. When these
selections are made by an operator, it frequently
poscs a significunt challenge to him to do so
cffectively; when the sclections are automated,
it often poses a significant challenge to the
designer to provide adcquate flexibility in his
mode-sclection algorithms to responsively main-
tain optimality in the face of changing environ-
mental and opcrational conditions.

4, Stimulus transmicsion. The goals of this function
arc to convey stimuli to the system scnsors and then to
other system clements as necessary. A crucial factor
affccting stimulus transmission is the cnvironmental
channel. Another is that channel bandwidths have cost
and technical limits which force trade-offs among types
of information transmitted, encoding/dccoding methods,
and trarsmission rates.

Onc of the most crucial links in man-machine interaction
is at the interface where stimulus transmission occu:s
from machine to man. This is particularly truc when the
complex stimuli of a survecillance system are prescented
visually to an opecrator who must perform, or augment the
machine in performing, detection, featurc extraction,

and classification. Display hardwarc/software technology
is in a relatively advanced state compared to our Kknowl-
edge of the optimal formatting of complex information for
presentation to the operator. Much morce experimental work
is nceded to add to this knowledge, particularly in the
face of the trend toward displaying more information
(including new kinds of information derived from more
advanced stimulus processing) to fewer operators.

The stimulus transmission function is considecred bcelow
in terms of two basic tasks: (1) pre-scnsor transmission,
and (2) post-sensor transmission.

4.1 Prec-sensor tronsmisston. . . . . . OIR: N/A

The cnvironmental medium which conveys stimuli to
the sensor may have substantial cffects on thosc
stimuli, so the naturc of the transmission medium




must be well understood. Many of the apparent
vagaries of various transmitting media have given

way to knowledge and understanding in the face of
research, Still, there is much that remains to be
known, and that which we may discover holds the
potential for advanced stimulus processing techniques.
There is little doubt that processing will remain

the province of machines.

4.2 Post-sensor transmission . . . . . OIR: 1

Once the stimuli have been converted to electrical
signals, they must be routed throughout the systen.
When the system is sufficiently compact physically
that the signals may be carried by wires, there is
not much of a problem. However, when parts of the
surveillance system are so scparated that electro-
magnetic transmission is necessary to convey data,
the quantity of those data, the rate at which they
arc generated, and the need for security in their
transmissicn conflict with cost and technical con-
straints upon channel bandwidth.

5. Stimulus processing. The goal of this function is
to process stimuli to support the detection and feature
extraction functions. This simple statement belies the
complexity and importance of the function. The crucial
factors herc involve the determination of optimal process-
ing; the implementation of optimal processing; and the
provision of sufficient processing flexibility to main-
tain optimality with changing conditions. Different
signals may require different processing, but processing
rate is limited by cost and technical constraints, re-
quiring multiplexing trade-offs.

In surveillance systems a large amount of stimulus
processing is done electronically. Electronic process-
ing cnormously ecxtends man's own sensor capabilities.
Some of the most significant performance improvements in
the evolution of surveillance systems have resulted from
advancements in signal processing technoldgy. However,
at some point the processed stimuli are usually presented
to an operator, at which point his own stimulus process-
ing must come into play.

The stimulus processing function is considered in terms
of two tasks: (1) beam forming, and (2) further
processing.

5.1 Beam forming. . . . . . . . . . . . OIR: 1

To provide resolution in physical space, surveillance
system sensors arc usually formed into arrays. The




outputs of array scnsors are combined in various
ways to provide directional scnsitivity. Beam-
forming, in addition to providing spatial resolu-
tion, also improves signal-to-noise ratio, In
general, the narrower the beam the better the ratio.
But narrow bcams also mean that more beams are
necessary for the same coverage, and thcrefore
greater processing and display requirements for the
system. Recent advances include adaptive beam
forming, which enables the system to respond to
changing signal and noise conditions. Most aspects
of beam forming do not involve operator intervention,

5.2 Furthepr processing. . . < . « + » « @IR: 1

A number of additional processing techniques may be
employcd to enhance specific characteristics of a
conplex stimulus. These are almost always best
accomplished with machines.

6. Detection. The goal of this function is to detect

the presence of stimuli of interest in the total stimulus

set with sufficient speed and accuracy. This is a com-

plex problem that requircs knowledge of stimuli of inter-
est, of the stimulus set exclusive of stimuli of interest,
and awareness of man versus machine capabilities/limitations.
In many existing systems, man performs all detection

tasks. When target signal characteristics are well

known, detection can. usually be more cffectively accom-
plishcd by machine.

Function allocation with respect to detection is con-
sidered in terms of three tasks: (1) signal detection,
(2) transient detection, and (3) track detection.

6.1 Signal deteotion . . « « « s + « » « UER: 2

Signal detection consists of vertical or azimuthal
scarch for signal sources, by comparing the energy
received on onec bearing or elevation with that re-
ceived on adjacent bearings or clevations. Signal
detection is probably best modeled in a sequential
decision-making context (Birdsall § Roberts, 1965).
In this model, two decision thresholds are of
interest. If the received energy (or some test
statistic derived thercfrom) exceeds the higher of
these thresholds, it is decided that a signal
is present. If the energy or test statistic falls
betwecn these two thresholds, it is decided to wait
for additional information. And (in the classical
model) if the energy or test statistic falls below
the lower of these thresholds, it is decided that
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no signal is present. In many cases, the lower of
these two thresholds is inconsequential, since the
system or operator makes no overt response which
would differentiate between a decision to continue
searching and a decision that no signal is present.
However, in other circumstances it is indeced con-
sequential: Considcr the case of an alerted scarch
for a signal which must cither be confirmed or
denied in order for the exccutive-control function
to test predictions and refine hypotheses.

6.2 Transtent deteetion . « « « « « « o OIR: 8

The dictionary tells us that a transient "is short
in duration and passes quickly.'" The question is,
compared to what? For surveillance systems there
are several framcs of reference within which the
definition might differ; in all, however, transients
are "things that happen somewhat more quickly than
most of what is going on." Whatever the frame of
reference, many transients share two common charac-
teristics: 1) They may represent important infor-
mation, and 2) they may be difficult to detect
automatically, Provided sufficient signal-to-noise
ratio, man's perceptual mcchanisms make many tran-
sients casily detectable on a suitable display.
Automating their rccognition and characterization
is far from casy, and far from successful implemen-
tation in any automatic system. (This accounts, we
believe, for the rather conspicuous shortcomings of
some highly automated systems we have seen).

6.3 Track detection . « . « « « o« « « o OIR: 3

Target motion parameters arc extremely important in
surveillance systems, both for maintaining contact
and to assist in determining the tactical and stra-
tegic implications of threat targets. Track detec-
tion, and target localization and motion analysis,
can be most precisely exccuted using the outputs

of several sensors at geographically separated
locations.

Feature extraction/ascociation. The goals of this

function are to extract reievant fecatures from the stimuli

of interest, associatec these fecatures where appropriate,

and extract relevant features resulting from the associa-

tion in an iterative, hi:rarchical process of extraction
and aggrcgation, lcading to more and more features. The

crucial factors are dcfinition of relevant featurcs and
of appropriatc associations, and the development of
fcaturc extraction and association mcthodologics. These
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processcs are complicated by the nccessity for invariance
to irrelevant transformations or changes in the stimulus
set, and adaptability to reclevant transformations or
changes in the stimulus sct.

For signals with stationary probability distributions,
machines can excced man in reliability, accuracy, and
speed of signal parameter cstimation. However, estima-
tion of paramcters which characterize non-stationary sig-
nals is probably best performed by man. Likewise,
screening can often be efficiently performed by man,
since his attention seclection mechanisms permit him to
ignore stimuli that are not of interest and attend to
those that are.

The functions associated with fecature extraction and
association will be discussed in rec¢lation to secven tasks:
(1) signal paramcter e¢stimation (extraction of lowest-
order fecatures), (2) screcning, (3) early classification
based on especially distinctive lower-order features, (4)
association of lower-order fcatures into appropriate
higher-order features, (5) alerted scarching for unde-
tected lowcr-order fecaturcs based on expected assvciations,
(6) association of higher-order fecatures with targets, and
(7) classification based on especially distinctive higher-
order features,.

7.1  Signal parameter estimation (extrac-
tion of lowest-order features). . . .OIR: 6

In order to support the target localization, motion
analysis, and classification functions, appropriate
features must be extracted from received signals.
The features of interest can be considered random
variahles, and thercfore their characteristics will
be derived in a statistical sense.

However, the probability distributions of the
variables of interest often are not stationary;
typically they exhibit both time and space depen-
dencies. Therefore, cach of the extracted statisti-
cal paramcters must have associated with it the time
for which it was derived and an appropriate spatial
specification. The more radically the probability
distributions of the signals of intcrest depart from
stationarity, the more they approach what we charac-
terized carlier as '"transients'"; in that case they
present a situation in which non-stationary behavior
may represent very important information that may

be difficult to automatically characterize. In
contrast, the characterization of random variables { ]
that have stationary probability distributions, by

o
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means of automated feature extraction techniques,
is a problem that may be approached with some con-
fidence. It has been shown that a machine can
excced man in the precision of such extraction.

However, the problem of adequately characterizing
radically non-stationary processes automatically can
be approached with much less confidence. Substantial
efforts and scme progress have becen made in this
arca, but we do not believe that it has been demon-
strated that machincs can presently equal the capa-
bilities of man in adequately extracting,
characterizing, and utilizing these kinds of
features.

P8 SOPCEBING. « « 4 4 s s ow s b s e . . BEIR: B

Bascd upon signal parameter estimation, it can usually
be concluded that certain signals do not require
further immediate attention. Examples of such sig-
nals ure cquipnment- or platform-generated artifacts

or artifacts associated with the transmission medium,
signais which have alrecady been accounted for, and
signals that have not yet been accounted for but

which z2zre not believed associated with targets re-
quiring immediate attcntion,?

7.3 Early eclacsification based on espe-
ctally dictinetive characteristie
tower-prder featuvres . . . ., . . . . OlR: 2

Certuin targets may produce especially distinctive
signals which lend themsclves to automatic detection
and consequent early classification. However, such
classifications are not very often certain because
of probable overlap of attributes of targets fronm
dificrent classes,

7.4 Association of lower-order features
into appropriate higher-order feutures OIR: 8

The basic parameters of a signal can often be inter-
related in such a way as to draw inferences about

-the physical fecatures or behavior of a target.

These in turn lcad to probability statements about

2Certain unchanging artifacts, characteristic of a specific
system, may actually be screened out during stimulus processing,
reducing the processing load during the detection and feature
extraction functions. However, there remains a significant
subset of the total stimulus set which is dynamically changing
and therefore connot be eliminated during early processing.
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the target's nature. This is a classic problem in
pattern recognition, the solution to which is very
difficult to automate, particularly when the signazal
space is occupied by many targets at a given time.
At this stage of development, man's role in these
processes remains critical.

7.5 Alerted searching for undetected
lower-order features . . . . . . . . OIR: 2

Once tentactive identification of a signal pattern

is made, cne may predict the appearance of other
pattern elements even if they are not initially
detected. Knowing the characteristics of these
undetected pattern components permits alerted search
for the remainder of the pattern, likely by refocus-
ing system attention.

7.6 Association of higher-order fe.iures
with targets . . . . . . . . . . . . OIR: 8

This activity consists of associating together all
higher-order features that appropriately belong to

a particular target and carefully excluding features
that belong to other targets, so that proper clas-
sification of the target can take place. The task
is made difficult by the simultaneous presence of
many signal sources and overlapping target charac-
teristics. Again, the pattern recognition capabili-
ties of man appear essential for success. It is
significant to note that many potential clues to

target association have been omitted in the various
attempts to automate this task. It is therefore

not surprising that no attempt at automated target
association that we know of will function adecquately
in a stimulus-rich environment.

7.7 Early classification based on espe-
etally distinctive characteristic
higher-order features. . . . . . . . OIR: 2

Somewhat infrequently, a distinctive combination of
target features, derived from a comhiuation of lower-

.order signal features, will permit classification of

the target with high confidence. The emphasis is on
especially distinctive, which permits automation to
be more successful in this case than in others where
the pattern to be recognized is less obvious.

Feature space transformation. The goals of feature

space transformation include reducing the dimensionality
of feature space to reduce system information processing

23




load; increasing discriminability so that classification
can be done in the fecature space which yields the best
results; and, sometimes, coordinate transformation, for

| example, to describe target location and motion in an
appropriate coordinate system. The crucial factors
involve discovcring appropriate transformations, particu-
larly since dimensionality reduction and discriminability
enhancement are often inversely related.

With respect to man-machine function allocation, trans-
formation of fcatures to reduce dimensionality and maxi-
mize discriminability is something of a gray area. If
man is acting as the principal feature extractor/associa-
tor, he will perform some fcaturec space transformations
on his own., To the extent that some of the following
tasks are automated, however, they may involve further
feature space transformations by computer algorithm.

Feature space transformation will be described in terms
of three tasks: (1) combination of features to reduce
dimensionality, (2) combination of features to maximize
discriminability, and (3) coordinate transformation.

8.1 Combination of features to reduce
dimenstonality. . . . « « « « « « « . OIR: 5

As might be inferred from our discussion of the fea-
ture extraction/association function, an extensive
analysis of surveillance system stimuli can lead to

a quite large number of features of various types

and diagnostic potential. The independent processing
of all these features during subscquent downstream
functions may burden the system with an undesirable
or even impossible load, and it is therefore almost
always desirable to apply some transformation to the
feature space as it is originally extracted so as to
reduce its dimensionality. The simplest technique
for doing this, which is absurd, is to omit features
randomly until the processing load is reduced to a
tolerable or desirable level. It is easy to demon-
strate that machines do not do this, rather, that
programmers do not design feawure space transforma-
tions in this way. It is not so easy to demonstrate
that human operators do not occasionally do this.

In any event, if omission is to be the technique of
dimensionality reduction, it is obviously more
sensible to be selective in picking what is to be
omitted. In system design stages, this is sometimes
accomplished by omitting the features that are most
difficult to extract, leading to a calculated failure
to extract them at all, While this may be justifi-
able on the grounds of cost or technical constraints,
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many of the. shortcoming: of automation in surveil-
lance systems can be traced to the omission of such
features.

Another, mecre desirable way toc reduce dimensionality
is to use a linear combina’ion of features, wherein
the coelficients are allowed to take on appropriate
values according to the diagnostic potential of the
features. One ‘c not limited to a linear combination
of features. The combination may be more complex.

It is easy to imagine, for example, that feature
space transformations that occur within human opera-
tors may be quite difficult to define in simple
mathematical terms. !legardless of the mechanism,

the go. of dimensionality reduction is almost always
tempered by the concern to conserve information and
maximize discriminability.

8.2 Combination of features to maximize
digeriminability . . . . . . . . . . OIR: 5§

The appropriate combination of features to maximize
disc-iminability is not easy to specify. Coupled
with the need to reduce feature space dimensionality,
arriving at an appropriate means to combine features
becomes a problem of magnitude second only to ex-
tracting features in the first place. If we con-
sider feature space transformations that can be
executed in computers to reduce dimensionality and
maximize or minimize the loss of discriminability,
we can define what is going on, if not demonstrate
that what is going on is optimal.

For example, in a multivariate discriminant analysis
approach, the weights or coefficients to be used in
the linear combination of features for the construc-
tion of each dimension in a new feature space are
derived from the components of the eigenvectors
resulting from the solution of an eigenvalue problem
so structured that between-class distances are maxi-
mized with respect to within-class dispersions.
Naturally, the example target classes which serve

as a data base for the eigenvalue problem, or for

.any other approach to feature space transformation,

must consist of a very substantial and representative
library of actual target signals of various classes
from which the features to be transformed are to be
extracted. To the extent that various target class
dispersions in the original feature space conform

to the assumptions of the particular technique being
used (for example, the assumption of multivariate
normal distributions, the equality of dispersions
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among all target classes, or whatever), multivariate
statistical techniques may provide optimum solutions
to the weighting of the various features for the pur-
pose of transformation to a space where dimension-
ality may be reduced while minimizing loss of
discriminability (e.g., by omitting dimensions with
the smallest associated eigenvalues).

8.3 Coordinate transformation. . . . . . OIR: 1

Certain features extracted in the course of surveil-
lance system functioning need to be transformed to
more convenient or appropriate spaces in a perfectly
obvious and well-defined mathematical manner; it
seems clear to us that such transformations should
be done by machine.

9. Target localization. The goal of target localization
is to determiue target position parameters in physical
space with sufficient speed and accuracy. Crucial factors
include system resolution in physical space and the ability
to track moving targets. Target localization requires
precisc estimation of certain parameters, difficult for
man to accomplish, and a large variety of mathematical
computations. This function therefore is particularly
suited to automation. 4

The target localization function is described in terms of
three tasks: (1) single-sensor fixing, (2) multiple-
sensor fixing, and (3) tracking.

9.1 Single-sensor fixing . . . . . . . . OIR: 2

The simplest case of single-sensor fixing involves
target localization using an omnidirectional sensing
device. Omnidirectional sensors do not furnish
azimuthal information. However, if such a sensor

has limited range capability, it can provide a useful
circular area of probability within which the tar-
get might lie. 1In systems which provide becam-forming,
target azimuth may be estimated. Range may be pro-
jected to some degree if target bearing rate

and speed are known or can be inferred through
.intelligence or other sources of information.

With a single passive sensor, an estimate of target
range is difficult to define with adequate precision.
An active system, of course, can provide both azi-
muth and range.

9.2 Multiple-sensor fizing . . . . . . . OIR: 2

Cross-fixing involves bearing/range determinations
on the same target from two or more sensors which are




at different geographic locations. A multiple-sensor
fix is generally more accurate than a single-sensor
fix. An important consideration in cross-fixing is
communication between machines or operators attending
the various sensors. The outputs of several sensors
may be brought together at a single location, in
which case this communication may be done directly.
If the outputs terminate at different geographic
locations, complications in communication are intro-
duced. The first requirement in cross-fixing is to
ensurc that the various sensors are looking at the
same target. This relates to the task of associating
features with targets, which can be facilitated by

the correlation of information among sensors, either
at the stimulus level or at some higher system

output level. We will discuss this further when we
take up the communication function.

9.3 Pracking . . « « « s« o « o s o« s« » » OIR: 2

The term "tracking'" denotes the problem of success-
fully maintaining target localization over a period
of time, which is significant, and which can be
aided by the approaches we cite to target localiza-

‘ tion and by the various methods of determining tar-
£2t motion parameters discussed beneath that function.
Successful tracking provides an input to target
motion analysis, and successful target motion analy-
sis, which has inputs other than position-versus-
time analysis, will aid in successful tracking.

10. Target motion analysis. The goal of target motion
analysis is to determine target motion parameters with
sufficient speed and accuracy. The crucial factors
include system resolution in physical space and in other

' target motion-related feature dimensions (e.g., doppler
shift) and the ability to track moving targets. Target
localization, target motion analysis, and the ability to
track moving targets are all closely related.

However, we feel that localization and motion analysis

are sufficiently different that each deserves a place on
our list of functions. Tracking is accomplished de facto,
when localization is svccessfully maintained over a

period of time. We have listed "ability to track" as a
crucial factor in localization and motion analysis in the
sense in which it reflects a system's tolerance to chang-
ing paramecters.

We would expect a human operator to review the outputs
of automated localization, tracking, and motion analysis
algorithms, because the experienced operator develops
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insights regarding system functioning and probable target
behaviors that can permit detection of errors in the
automatic execution of these tasks.

Target motion analysis is considered in terms of three
tasks: (1) inference of motion based on extracted stimu-
lus features, (2) position-versus-time analysis, and

{3) track aiding.

10.1 Inference of motion based on
extracted stimulus features. . . . . OIR: 2

Some stimulus features relate directly,

or indirectly, to target speced. Analysis of these
features, together with knowledge of target class,
makes possible inferences about target motion.

10.2 Position-versus-time analysis. . . . OIR: 2

Successive localizations of a target over a suffi-
cient period of time serve to indicate target motion
parameters. Currently, position-versus-time analy-
sis is conducted in some instances manually. How-
ever, we believe that this task, and most o the
others listed under target localization and taryet
motion analysis, are obvious candidates for auto-
mation, becausec solutions can be achieved with
greater speed and accuracy. The use of automation
is growing, but we feel that there is room for
broader application.

10.3 Track aiding . « <« « « « « « « o« o« » OIR: 2

As mentioned above, the results of target motion
analysis are useful in target localization. First,
knowing target motior. parameters permits prediction
of a track, assuming the parameters do not change.
Second, the nature of motion parameter changes may

sometimes be inferred from changes in lower-order
features of the signal, before the target departs

noticeably from its predicted track; this may enable
more timely modification of the track.

11. -Classtification. The goals of the classification
function are to determine what a target is, what it is
doing, and why, with sufficient speed and accuracy.

Much attention has been focused upon this function, and
some of the crucial fuctors relating to it, put into
decision-theoretic terms, are: knowledge of target class
likelihood functions in appropriate feature spaces; knowl-
edge of a priori probabilities; knowledge of decision

rick functions; knowledge of appropriate decision rules;




and the :apability to exccute logical decision processes.
The execcution of the classification function typically
places heavy demands upon the memory function.

Classification is a decision-making function. There is

a large and rather bewildering body of litcrature re-
garding the decision-making behavior of human beings (see
Rapoport and Wallsten [1972]). Here we shall only attempt
to paint with a broad brush the outlines of human decision
behavior as we feel they apply to classification in sur-
veillance systems.,

Classification depends upon adequatc cxecution of the
feature extraction/association function. Man is generally
superior to machine in performing most aspects of that
function. However, to successfully employ the extracted
featurcs, the classification function calls for appropri-
ate and somectimes complex aggregations of these features
and requires comparison of these agg:regations to very
large amounts of information held in somc form by system
memory. Now, man as a logical processor is known to be
somewhat faulty; man as an information storage device is
also less than perfect. These characteristics of man
almost certainiy impair his performance of the classifi-
cation function to somec degree.

We suggest that there are two approaches which, taken
either independently, or preferably, together, shouid
improve system functioning. First of all, we have no
doubt whatever that man's classification performance
could be substantially improved by the appropriate selcc-
tion, training, and motivation of surveillance system

operators. Second, we feel that the logical processes
involved in the classification function are suitable
candidates for automation. We arc inclined to believe

that a combination man-machine approach to the classifi-
cation function could bring about substantial syctem
performance improvements.

Two things are worthy of mention at this point regarding
our discussion of classification. First, the reader will
notice a flavor of decision theory in our organization
and description of various classification tasks. We
think-decision thecory provides an appropriate framework
within which to structure a description of classifica-
tion, but we have attcmpted to maintain sufficient -
generality so that our discussion may apply cqually well
to the tasks as they arc executed by men or various
kinds of machines, at lecast in the scnse of a model.
Second, not all the following tasks will necessarily be




executed by a human operator or a machine for a given
classification problem; some of them may rarely be
executed, and some of them may not even be within the
repertoire of behavier of a particular system. Nonethe-
less, to maintain adequate generality, we feel it neces-
sary to touch upon cach of the following tasks in turn.

The classification function will be discussed in terms

of eleven tasks: (1) detcrmination of stimulus source
likelihoed estimates, (2) alerted searching for undetected
signals typically related to inferra=d stimulus sources,
(3) determination of stimulus source configuration like-
lihood estimates, (4) determination of operating behavior
likelihood estimates, (5) determination of target class
likelihood estimates, (6) alerted scarching for unde-
tected signals typically reclated to inferred target
classes, (7) determination of target class a priori
probabilities, (8) determination of target class a
posteriori probabilities, (9) determination of classifi-
cation decision risk functions, (10) determination of

an appropriate decision rule, and (11) classification
decision making.

11.1 Determination of stimulus source
likelihood estimates. . . . . . . . OIR: 5

This task may be defined as estimating the likeli-
hood that a particular signal characteristic would
be produced by a particular physical source. It may
be executed in a number of ways, for example, by
stimulus matching techniques, by multivariate sta-
tistical analysis, or, in the case of the expert
operator, by recognition. In any event, the task
will place heavy demands upon the system memory
function, which in some form or other must store
the necessary technical intelligence information,
in addition to the task algorithm.

11.2 Alerted searching for undetected
signals typically related to
inferred stimulus sources . . . . . OIR: 2

The physical sources thought likely to be responsible
"for certain stimulus components that have been de-
tected may be known to c~mmonly produce other com-
ponents that have not yet been detected. In that
casc, an alerted search for these undetected com-
ponents may be initiated.

11.3 Determination of stimulus source
configuration likelihood estimates. OIR: 4

This task is similar to 11.1 but involves relation-
ships between the signal characteristics and various




characteristics of targets rather than a direct
rclationship with target type itself. Thus the
inference of target type is more rcmote.

11.4 Determination of operating behavior
likelihood estimates. . . . . . . . OIR: 7

By "operating bchavior," we mean the answer one
would hope to be able to give to the question, "What
has this target been doing?" This is an important
question to answer correctly, becausc that answer
can heclp considerably in answering the key question,
"What s this target?" And, when both of thesec
questions can be answered, it sometimes becomes
evident why the target is behaving as it is. Expert
operators infcr operating behavior from target
histories all the time, and put thosec inferences

to crucial use in answering the critical classifi-
cation questions of surveillance systems. Pro-
gramming a computer to do the samc thing can be a
formidable task.

11.5 Determination of target class
likelihood estimates. . . . . . . . OIR: 3

This task consists of estimating the likclihood that
target signal "i" would be produced by 2 target of
class "j" for all appropriate "i'" and "j." The
target classcs under consideration may be very

broad categorizations, such as threat and non-
threat, or they may represent more specific types.
The determination of target class likelihood esti-
matces may be based upon any or all of the preceding
tasks we have discussed under classification, or

it may be bascd upon some so~t of Gestalt technique
which does not explicitly iuvolve the preceding
tasks in any obvious way. However it is execcuted,
the task of dctermining target class likelihood
estimates is without doubt onc of the most important
in surveillance systems, and it is the task in which
all the other stimulus-related functiens and tasks
culminate. It also requires very substantial sup-
port from the system memory function to permit the
association of target signals of unknown origin to
the known characteristics of targets of various
classes.

11.6 Alerted searching for undetected
signals typically related to
inferred target classce . . . . . . OIR: 3

Once it is inferred that a signal may be generated
by a certain class target, it can be determined
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"whether it contains all the components typically
generated by that class. If it does not, an alcrted
scarch may then be initiated in an attempt to detecct
the missing components.

11.7 Determination of target class
a_priori probabilities. . . . . . . OIR: 4

Target class likelihood estimates as we have defined
them arec derived solely from sensor stimulus data
(along with necessary supporting information) without
regard to the relative frcquency of occurrence of
targets of various classes, or with respect to the
prior probabilities of detccting targets of given
classes based on any other considerations. The
determination of a priort prebabilities in our
structuring of the classification function is re-
scrved as in independent task, which we are now
defining. Estimates of a priort probabilities for
target classes and their bchaviors may be based

upon information derived from other sensors or other
sources of intelligence. For cxample, it may be
known that a target of a given class is '"tracking"
in such g manner that it will probably be detected
by a given surveillance system, leading to a rather
high a priorit probability. The derivation of a
priori probavilities usually involves a comporent

of subjective cvaluation by some human judge, during
programming cad/or in recal time.

11.8 Determination of target class
a posteriori probabilities. . . . . OIR: 2

In this task, the target class likelihood estimates
are combined with the target class a priort proba-
bilities (hopcfully, with Bayes' rulec) to derive a
posteriori probabilities that a target of class "i" 1
is actually producing target signal "j," for all ‘
appropriate "i" and "j." Thesc probabilitics will

be utilized in the decision-making tasks which fol-

low, but their values arc of consideratle indepen- :
dent interest and may be reported along with the '
results of actual classification decision-making,
since they serve as indicators of confidence re-
garding the final decision and possible »lternative
decisions.

11.9 Determination of classification
decision risk functions . . . . . . OIR: 3

This task must rely upon the cxecutive and memory
functions, and appropriate inputs thercto, to derive




estimates of the "risks," '"costs," or "utilitices"”

of the various possible target classification out-
comes. In many instances thesc will be estimated

in a highly subjective manncer, and somctimes quite
inappropriately.

11.10 Determination cf an appropriate
decision rule . . . . . . . . . « o OIR: 2

An appropriate decision rule must be sclected to
come to a classification decision. Various decision
rules might be employed, such as a "maximum likeli-
hood'" rule, in which the target will be assigned to
that class which shows the highest a posteriore
probability; or, in an even more rudimentary scheme,
to that class which has the highest likelihood
estimate. thus ignoring the « priori probabilities;
or, rules which consider the risk functions, such as
Rayes' rule, which permit minimization of the cxpected ¥
risk or cost, where the a priort probabilities arc
rcasonably well-known; or Minimax rules, which mini-
mize the maximum conditional risk, where the a priori
probabilities are less certain; or, a Neyman-Pearson
rule, which attempts to maximize the corrcct classifi-
C cations while bolding the false alarms to some preset
value which is determined cither implictly or explicitly
from cost and a priori probabiliiy considerations. In
automated decision-making systems, the rule or rules
= enployed will obviously be uniquely identifiable; when
man is the decision-maker, it will not be so casy to
determine what rule or rules are operating.

pre——

11.11 Classification decision making. . . OIR: 3

Bascd upon the foregoing tasks, decisions may be
l made as to what a target is, what the target is

doing, and why the target is doing it. Depending

upon the nature of the target's signal and the

quantity and quality of the information and algo-
l rithms neccssary to support the foregoing tasks,

these decisions will be made with varying degrees

of confidence. The output of this task is crucial. ;
' It is the raison d'ctre of surveillance systems. f

12. Communication. The goals of this function are to
provide channecls to permit coordinated surveillance sys-
tem operation, to convey surveillance systcem outputs to
external agencies, and to receive instructions and other
information from external agencies. The communication
function is subject to constraints upon encoding/decoding,
speed, accuracy, reliability, and channel bandwidth.

o
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Ideally, the development, formatting, encoding, trans-
mission, decoding, interpretation, storage, and retrieval
of messages necessary to achieve integrated system func-
tioning must occur in as timely, smooth, and error-freec
manner as possible. The communication function as it is
often exccuted is archaic. Men are invelved in all sorts
of information handling tasks that, given the potential
of present-day technology, they should not be.

The communication function can be broken down in terms of
three tasks: (1) system coordination, (2) system out-
put, and (3) system input.

12.1 System coordination . . . . . . . . OIR: 3

The functions and tasks of detection, fecature ex-
traction and association, localization, target
motion analysis, and classification require or are
greatly facilitated by the coordination of infor-
mation from various sensors. Ideally, the network
of surveillance systems of all types should be so
well integrated that they might be regarded as
represcnting a single species of surveillance sys-
tem. Conscquently, cne of the most important
portions of the exccutive control function could
then be devoted to the centralized control of the
integrated system. However, successful execution
of integrated control depends heavily upon the com-
munication function.

12.2 System output . . . . . . . . . . . OIR: 3

Surveillance systems exist to provide strategic,
tactical, and technical intelligence to user agencies.
The user agency may or may not be closely linked with
the operating agency. In any event, the communica-
tion function must provide system output to the user
agencies in an accurate and timely manner.

12..3 System input. . . . . . . . . . . . OIR: 3

User agencies may make inputs into a surveillance
system to alert the system to the possible presence

of targets, to recquest increased attention to tar-

gets that arc present or are likely to be held by

the system, and to providec intelligence information
from other sources that may enhance system performance.
Inputs from user agencies arc obviously very important,
since surveillance systems exist to serve those
agencics. Both system input and output appear to

be candidates for considerale automation.




13. Learning. The effects of learning should be two-
fold. First, they should result in modification of sys-
tem behavior in such a way as to improve performance.
Second, they should reveal new or changed target charac-

teristics or targets to improve strategic, tactical, and
technical intelligence. These results are closely related.
Functionally, systems learning is embodied in modifications
to the system memory function. This applies to both man
and machine, and can come about internally, in adaptive
systems, or through reprogramming by an external agency.

The learning function is broken down into four tasks:
(1) strategic and tactical intelligence, (2) technical

intelligence, (3) system operational characteristics, and
(4) training.

13.1 Strategic and tactical intelligence OIR: 5

A surveillance system exists to obtain strategic

and tactical intelligence, which is sent to the

user agencies. However, this information should

also be "learned" by the system, by feedback to the
system memory function, so as to improve surveillance
system performance as new information is acquired.

13.2 Technical intelligence. . . . . . . OIR: 5§

The surveillance system acquires and gprovides user
agencies technical intelligence regarding target
characteristics. However, this inteliigence is the
cornerstone upon which successful system functioning
is built. Therefore, new technical intelligence
should also be incorporated into the system to en-
hance furctioning. Any technical intelligence pro-
vided to the system from outside agencies should be
incorporated as well,.

13.3 System operational characteristics. OIR: §

One cannot precisely know until a system is fully
operational all the nuances of man-machine-task
interaction that will be required for effective
system operation. As the system operates, system 4
.operational characteristics of a very detailed :
nature become evident. These lead to understanding
of system strengths and weaknesses and can be uti-
lized to enhance system performance.
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13.4 Training. . . . « « « « o « o o o+ «» OIR: 5

In adaptive systems such as man and some machines,

the results of the three preceding tasks are auto-
matically incorporated into the system memory func-
tion, hopefully in a way to improve system performance.
However, both men and adaptive machines require a
certain amount of training or reprogramming to ensure
that the right things are incorporated into system
memory as a function of system experience.
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CHAPTER 3

A MODEL OF HOW MAN FUNCTIONS
IN SURVEILLANCE SYSTEMS

There are two fundamentally different sources of knowl-
edge concerning man‘s functioning that should be of importance
to designers of surveillance systenms. The first has to do
with his observable performance, that is, how well he actually
performs the tasks that are assigned to him. This evidence
.takes the form of such experimentally measurable outputs as
level of alertness (vigilance); target detection performance;
accuracy of feature extraction/association, target tracking,
localization, and classification; communication skills; and

various interactions with the machine.

A considerable body of information is presented in Volume
I1I of this report concerning the actual performance skills of
operators in different types of surveillance systems. In this
volume, we will confine ourselves to a second source of knowl-
edge concerning man's functioning. This takes the form c¢f a
model of human information processing and it will be evident
that the operator performs as a kind of specialized surveil-
lance system in his own right.

It is emphasized that a treatment of this second kind of
unobservable, internal behavior relies heavily on theory and
laboratory experimentation. Thus, the model which follows is
a distillation of some key theorctical concepts from psychology
and physiology that we feel are relevant to an understanding
of human information processing in surveillance systems. The
model does not represent any single viewpoint; it is an inter-
pretation and synthesis that will provide some foundation for
the systems designer to apprehend a subset of research that is

relevant to human operators in surveillance environments.




Some of the :omponents of the model have been well demonstrated
in laboratory studies, some have been strongly implied from
laboratory research and through observations, and some compo-
nents of the model are theoretical constructs nececssary to

link other components to one another and to explain certain

aspects of human performance.

We wish to emphasize that this is a functional model; the
components are not necessarily homologous with the physiological
mechanisms that must underlie human information processing,
since the exact mechanisms underlying this kind of behavior are

not xnown at this time.
The Model in Brief

Figure 3.1 shows the functional model of human information
processing. The model posits that as the stimulus environment
18 scanned, images are stored in temporary buffers; features
are then extracted from the sensory images before the image
decays. By features, w: mean a set of descriptives that in-

clude, as well, the relationships among descriptives.

The model shows preliminary processing in memory before
a given feature set impinges upon human consciousness. The
so-called "cocktail party phenomenon'" is an example of this
preliminary processing: While one's attention apparently may
be devoted to a single conversation during the cocktail party,
some rudimentary parallel processing of other conversations
is occurring, because one can immediately switch channels when
his name is heard coming from one of the "unattended to" con-
versations. The mechanism for explaining this includes a
pertinence function which biases the preliminary processing

and attaches priorities to various stimuli or feature sets.

- The result of the above processing is that certain features
are selected for greater attention and, conversely, other fea-

tures are rejected and do not come under scrutiny of consciousness.
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An instantaneous, working buffer, which we may call
"eongcioueness,” is postulated. In this working buffer, the
human has great opportunity for exerting some sort of control
over the other aspects of his information processing system:
He may direct his scanning strategy; as we shall see later,
he may instigate rehearsal and other procedures for ensuring
that items are retained in short-term memory or that they are
transferred to long-term memory; he may adjust his biases so
as to affect pertinence and therefore shift his attention;
and he may, to some degree, direct his recognition and recall !
activities.

Closely linked with the working buffer is a short-term --
memory store which will retain information for approximately
30 seconds. This storage provides the immediate and highly i
interactive link between the working buffer and memory that
is needed to maintain continuity with ongoing tasks and the
stimulus environment. Information that is more permanently
stored resides in long-ierm memory, and this information is
not as accessible as that in short-term memory.

The reader will recall that this is a functional model,
not a physiological one. This is-'particularly true in the
case of short-term and long-term memory; the distinction is
a functional one and, although a large amount of experimental
evidence reveals the distinction between the characteristics

of information storage in short-term memory and that in long-
term memory, it is not at all clear that these two memories
occupy different neurophysiologizal locations. It may rather
be that there are differences in the organization and accessi-
bility of différent kinds of information stored in a single
location.

Khatever the physioloigcal differences or similarities
between short-term and long-term memory, it is clear that in-
formation is less accessible in Zong-term memory. For certain
kinds of recognition tasks or the recall of previously learned
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information, it appears that consciousness creates a query
and associational search of long-term memory; and the output
of the search is subsequently tested. If recognition has
indeed taken place, or the desired information recalled, the
process is terminated and consctousness becomes aware of the
result. If the search has been unsuccessful, a new search
may be initiated with the query modified to take advantage

of any associations retrieved from the prior search.

This subsystem may be influenced by a function we have
labeled gcceptance criteria. Often we are confronted with a
"partial pattern that we subsequently '"recognize' even though
it may not contain all of the features we have learned to
associate with that pattern. For example, a two-dimensional,
black and white photograph of a familiar face usually passes
the acceptance criteria even though it contains only a sub-

set of the features normally defining that face.

A component in the model which directly and indirectly
influences many aspects of human information processing has
been labeled cognitive biases. Webster defines '"cognition"
as the process of knowing or perceiving. Psychologists use
the terms "cognition" and "cognitive" to refer to the kind of
human information processing under discussion in this document;
sometimes "cognition" is used by psychologists to include
"thinking" and other hard-to-define topics like '"awareness."
We have used the term, in conjunction with "bias," to create
a convenient mechanism to describe how past and present expe-
riences influence perception of current stimulus inputs and
recall of past information stored in memory. The cognitive
bias mechanism is really a part of memory, but it is extremely
useful to separate it from our main treatment of memory in
order to focus upon certain peculiar human phenomena, to be

discussed later.

The final component in the model represents the overt
responses which may be empirically observed. With few
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exceptions, most of what is known about the internal workings
of human cognition has been inferred from studies where scien-
tists manipulate stimulus input to human subjects and care-
fully measure the output in the form of overt responses. The
model does not discuss the many types of overt human responses,
but Volume II of this report addresses those aspects of human

responses relevant to surveillance systems.

Various elements of the model will now be described in
more detail with specific comments on the strengths and weak-

nesses of human operators with respect t»> the various functions.
Memory

Investigators in the area of memory are fairly well agreed

that there are three basic types of memory:
1. Temporary buffers
2. Short-term memory
3. Long-term memory

The temporary buffers represent the first and most
transient element of memory storz. These contain fairly
literal representations of the stimulus environment. The
transient memory has been called iconic and echoic memory
for visual and auditory images respectively. That is to say,
an icon or exact visual representation seems to be stored in
this memory, and an echo or exact auditory representation

seems to be stored in this memory.

The iconic memory subsystem stores somethihg analogous
to "snapshot" of the stimulus pattern. This snapshot decays
rapidly, in about one second. The operator can extract in-
formation from this decaying memory for as long as it is
available. Echoic memory is also quite short. Various ex-
periments have shown that the echo, which has not been exten-
sively coded but is, rather, a high fidelity representation
of the impression that the physical stimulus makes upon the
sensory system, persists for about two to ten seconds.
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There is nearly unanimous agreement onrn the existence of
two types of relatively durable memory in human operators,
short term and long term. The short-term memory store may
maintain a given feature set for about 30 seconds, and the
long-term memory store maintains information for much longer
periods of time. Indeed, som: investigators feel that long-
term memory is permanent; however, interference from more
recent associations and learning experiences makes access to
older material more difficult. Other investigators feel that
information may slowly decay from long-term memory. A very
. few investigators feel that there is no qual tative difference
between short-term and long-term memory and that the two
memory systems actually repres~nt the ends of the continuum
of a single-memory system thet shows loss of information as
a result of time and certain other conditions. This latter
viewpoint, however, is not consistent with certain neurological

evidence.

In addition to their relative duration, another way of
distinguishing between short-term and long-term memory is by
their relative capacities. The capacity of short-term memory
is approximately seven items where an item may be a letter, a
number, a word, a string of numbers, etc. The number of
itzms that can be contained in short-term memory is surpris-
ingly constant although the amount of information represented
by the seven items may be variable from an information theory

point of view.

The capacity of long-term memory, as is intuitively
obvious, is much, much larger, and the absolute capacity, in

terms of items of information stored is exceedingly large.

In contrasting the memories of men and machines, one
must be impressed with the extraordinary storage capacity of
human memory. It may well be that any item that is passed

from short-term into long-term memory is, in some sense, per-

manently stored. Man's extremely rich memory provides him
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with a capability for rapid recognition of many patterns of
information, including degraded patterns, that are important
for surveillance system operation. However, the efficiency
of man's memory retrieval depends upun degree of initial
learning, the frequency with which the information is re-
trieved, and many c¢ther variables. Whether or not man's
rz2mory decays in the sense that information is actually lost,
or whether retrieval from memory storage simply becomes more
time-consuming and difficult when the information is rarely
used, is a moot point. There seems little doubt man's memory
systems exhibit both less reliable storage and less reliable
retrieval than does the memory of machines and thus are highly
significant areas for computer aiding in an optimum man-
machine design.

Attention

The elements of attention as reflected in the model
include the following functions:

1. Image storage in temporary buffers
2. Feature extraction
3. Preliminary processing in memory

4, Selection of certain features for greater
attention

S. Pertinence evaluation

We have remarked upon the function of the temporary
buffer; it contains a high fidelity representation of the
stimulus environment. This representation decays very quickly
and/or it is overlaid with new material. During the time in
which the‘representation remains viable, features are extracted
from it. Undoubtedly this feature code is complex; it repre-
sents descriptive features plus the relationships between
features plus the relationships between relationships, and so

on.




The next point in the flow of information is critical for
an adequate model of attention. All of the features which are
extracted are subjected to some sort of preliminary processing
that discards most of the features as uninteresting and retains
a few to be presented to consciousness as the stimuli for
ipmediate attention. It is perhaps this characteristic of
human attention that differentiates it most from comparable
functions in machines. The process is largely automatic; it
does not require an act of volition. According to the model,
certain features of the stimulus environment have high perti-
‘mencies attached to them and, during the preliminary proce sing,
result in attention being focused on them. In other cases, the
pertinence of a feature may or may not be sufficiently high to

warrant that feature entering consciousness.

The notion of differential pertinence for different fea-
tures os a stimulus pattern has obvious application in sur-
veillance systems. The operator who efficiently detects a
threat target has a very high pertinence ascociated with cer-
tain features of the displayed signal. A casual glance at
the information display may result in immediate focus of
attention on those features if they are present. At the same
time, he apparently dies not attend to most of the features
that represent uninteresting target signals. The pertinence
function provides more than a convenience in filtering out
certain features; it appears to be an absolute necessity, for
men do not appear to be capable of consciously attending to

all of the features of their immediate stimulus environment.

We wish to digress at this point to examine a popular
fallacy in man-machine comparisons. Often it is said that the
computer is a fast processor, while the man is slow. It i8
true that men are generally slow at sequential operations,
like arithmetic computations, and computers can be made to
perform these tasks extremely quickly and accurately. However,

this is not equivalent to saying that man is a slow processor
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and that computers are fast. If one reflects on how man scans

his visual stimulus convironment and immediately recognizes

innumerable patterns of information with different levels of
pertinence for his purpose at the moment, it will be clear

that he is an exceedingly fast processor of certain kinds of
information input. 1In general he is capable of processing an
extremely large number of pattern features and using selective 1

attention to focus on the relevant subset of features. In

this process he efficiently rejects irrelevant features, he -
is relatively undisturbed by the transformations that are -t
.irrelevant to identifying the nature of the object attended .

to, he is highly adaptive to changing signal characteristics
from the object of interest, and he is capable of anticipating
and predicting certain pattern features, given other features.
In contrast, machines are generally much less adaptive than
man to changing signal and environmental characteristics.

The machine is highly dependent on prior definitions of sig-
nal characteristics and is usually strongly bound to previously
specified instructions (although some degree of adaptation may
be possible). There is perhaps no other single area of dif-
ference between men and machines that so importantly affects
the critical processes associated with pattern recognition,

feature extraction, and target classification.
Recognition and Recall

We have discussed some of the properties of long-term
and short-term memory: how the information is entered into
these memory cstores, and some of the conditions- under which
retrieval from these memory stores takes place. The present
section focuses on the formal recognition and recall process,
which is of considerable interest in surveillance operations

as it is the basis for classification performance in humans.
The elements c¢cf recognition and recall in the model are:
1. The working buffer ("consciousness')

2. Short-term memory
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3. Long-term memory

4., Feature query

5. Output features

6. Acceptance criteria

The model postulates that during attempts at recognition
or recall, a query is generated. This query embodies a set
of features immediately known by consciousness to be associated
with the item to be reccalled or recognized, for example, a
particular target characteristic. A search of long-term memory
-is then initiated. The output of this search is a list of fea-
tures associated with the query features through prior experi-
ence. Different associations may have different strengths and
lead to a weighting of the output features' relationship to
the query features. For example, there may be a weak associa-
tion of the signal input with certain classes of targets and

a stronger association with other classes.

A decision mechanism tests the list of output features
against the conditions of the query. Was a classification
retrieved? Is the classification correct? This latter ques-
tion may be answered in two ways: First, if the weight or
strength of the association between the query features and the
classification is very high, the classification may be accepted
immediately. Second, if the strength of the association does
not pass the acceptance criterion, a tentative classification
may be formed which comprises a new query that is then sub-
jected to a new associative search of long-term memory. If
it is the correct classification, this search should produce
at least some of the features from the original query--that

is, some representation of the target features.

If classification is not retrieved in the first search,
several things may happen: Consciousness may decide that a
precise classification is not necessary, that just associating

the signal with the broad catcgory '"non-threat" is sufficient,
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and that it should go on to other things. Or, if a more
specific classification is required, the list of output fea-
tures may be appended to the 1lsit of query features to formu-
late a mdrdiried query, and a new search of long-term memory
may be initiated. It is not at all necessary that conscious-
ness play an active role in initiating each iteration of

this process. One can easily recall instances where a recall
process has not had a satisfactory result immediately, and
the whole problem is "put out of mind" indefinitely, often
with the result that the correct answer presents itself at

some later point.

The process we have just described may have three out-
comes: It may converge upon the desired associated features
on one or several passes; it may diverge, always coming up
with unacceptable outputs; or it may loop, always coming up

with the same but unacceptable answer.

The system, as a whole, is not constrained to dealing

only with the associations resulting from searches of long-

term memory. The results of the search of long-term memory
may provide features or cues that will stimulate a new
scanning strategy for acquiring additional features to be 1

used in future modification of the query.

We have already commented upon the richness of man's
memory and some of the difficulties he frequently experiences
in rapidly extracting the desired information from it. Be-
cause recognition and recall are intimately linked with the {
memory function it is inevitable that man's functioning in

these areas should be extraordinarily good in some respects

(e.g., the nearly instantaneous recognition on the telephone

of the voice of an old friend that one has not heard from for

a long time), but, for some kinds of information, be subject

to the deficiencie- associated with slow and unreliable re-

trieval. It seems that man's recognition and recall of highly
complex stimulus patterns is quite efficient but that his
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recall of detailed facts may be cumbersome and subject to

degradation with time.

A final, and most important, feature of man's recognition
and recall is his ability to rapidly generate new hypotheses
about stimulus patterns and new tests for evaluating these
hypotheses. This is a capability that we find to be quite
limited in machines and another characteristic of man that
presently necessitates his continuing role made in the opera-

tion of complex survejllance systems.
Congeiousness

We have placed consciousness in the model in a central
position as the primary working buffer for human information
processing. In a sense, consciousness is analogous to the
working registers of a simple serial processor computer.
Consciousness receives the output of the selective attention
mechanism; it initiates certain searches of long-term memory,
certain changes in cognitive biases, and, eventually, certain
overt responses. Consciousness is the prime mover in decisicn
making, a topic of considerable theoretical and experimental
attention. It is slavishly dependent on input from memory,
indirectly through the effects of memory upon the attention
mechanism and cognitive biases, and directly through the out-
put of associational searches. It might be said that conscious
awareness is only moderately dependent upon the physical prop-
erties of the stimulus environment, for the transmission of
those properties to consciousness is a function of coding
transformation, filtering, and distortion resulting from the
effects of the memory system upon the perceptual system. And

memory is not under direct control of consciousness.

We must warn the reader that we have taken a straightfor-
ward, simplistic approach to the treatment of consciousness.
There is a paucity of experimental data on the topic and there-

fore few guidelines for incorporating it into a model of infor-

mation processing. However, it is explicit or implicit in a




very large number of theories and approaches to the general
human cognitive process and the model certainly scems incomplete

without it.
Cognitive Biases

This component was included in the model to represent
the special effects of memory upon certain aspects of human
information processing. 7 is is a somewhat artificial com-
ponent because a "black boa containing cognitive biases in
no way exists as such ‘n the fiow of events representing in-
formation processing. Rather, these cognitive biases are the
functional results of past events, as they have bcen preserved
in the memory stores. We feel, however, that it is convenient
to distinguish the effects of cognitive biases from the role
that memory plays in providing recall and recognition facilities.
Also, by somewhat artificially distinguishing the effects of
memory 3in the form of cognitive biases via a scparate component
in the model, we have provided a reminder to system desiéners
of certain important, if somewhat peculiar and disconcerting,

informati 1 vrocessing characteristics of the human system.

Cognitive biases have two important influences on human
information processing. They actually control, modify, and
distort our more or less instantancous perception of the

psychological present, and, to an even greater degree, they

control, modify, and distort material that is retrieved from

long-term menmory, the psychological past.

Cognitive biases are themselves a result of material that
is stored in long-term memory; in some cases the cognitive
biases may be traced to a single past event, such as certain
kinds of instructions received by an operator prior to standing

watch. O0Or, the formation of cognitive biases may be the result

of a large number of events spanning several years, as in the

case of perceptual distortion due to racial prejudices.

The manner in which cognitive biases effect our percep-

tion of things is not precisely known. However, at lecast two
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possible explanations have been put forth. Haber (1966) showed
f that at least some phenomena duec to ccgnitive biases can be
caused by distortions in encoding the stimuli for later pro-
cessing. In terms of the model, this would mean that a cogni-
tive tias would cause a high pertinence to be given to certain
feature sets stored in memory. As new features are extracted
from images in the temporary buffer, they are subjected to
preliminary processing in memory to determine which will be
selected for greater attention. At this point an error occurs--
the output from the preliminary processing includes some fea- I

tures which received the high pertinence, but which were not

|
‘ part of the set of features extracted from the image.
The mechanism to account for this kind of error was
alluded to earlier. Increases in pertinence are functionally
; equivalent to decreases in the threshold for perceiving fea-

tures. A feature set with a high pertinence may be so sensi-

&

tized that it will be triggered by noise input, or more likely,
by a feature set bearing somc similarities to the sought-after

features.

A second explanation of the apparent effects of cognitive

-

biases is that there is no effect on the perceptual process,
but rather, the reporting or response process is modified by : |
erroneous memories of what was perceived. In other words, !
the person perceives correctly but remembers incorrectly at

the time of reporting his perceptions.

In any event, an important effect of cognitive biases is

in their contribution to performance variability between hu-

mans, and to variability within performances of a single opcra-

tor on different occasions. In general, the mcre highly
controlled and structured a task is, the less opportunity

there is for variability due to cognitive bias. In some cases,
it may be possible to achieve very similar cognitive biases
within the individuals of a group. An example of this is pro-

vided by the very small variahility among surveillance system




operators in signal detection performance under the alerted

conditions that usually prevail when the recognition differ-
tial of the system is being measured. The conditions of such
tests produce a similar cognitive bias in all operators in the
form of high expectation for the imminent appearance of a sig-
nal on their display. This situation is to be contrasted

with more typical operations in many surveillance systems

where there is little control over the alertness of operators
or over other cognitive biases that they may have. The less
structured task environment characteristic of routine opera-
tions allows much greater leeway for the effects of cognitive
biases to exercise themselves differentially among individuals.
Different biases govern the manner in which attention is devoted
to the displays, the rigor with which recall and recognition

are executed, the opecrator's perceptual '"set," and sc¢ on.

Cognitive biases appear to be a characteristic of man for
which there is no obvious counterpart in machines. The central
problem is not so much that a bias may exist, but that it is
difficult for others to know that it exists and in what form
it exists. Since cognitive biases are a derivative of long-
term memory, they can only be changed through appropriate
retraining. It has been demonstrated thet this can be done
within the context of surveillance operations (Mecherikoff,
1974) but the problem remains that the cognitive biases of
most operators remain unknown and therefore constitute a

significant source of operator differences in performance.
Seanning Strategy

The scanning strategy component of the model, like that
for cogn{tive biases, is a convenient invention that has func-
tional utility but is not homologous with any physiological

mechanism in the flow of information in the human system.

We make two fairly simple observations in connection
with scanning. First, while consciousness may be (1) the

recipient of only partial information from the selective

|
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attention process, (2) the dependent of a not totally trust-
worthy long-term memory, and (3) the occasional dupe of cog-
nitive biases, at least consciousness has some autonomy in
deciding what it will look at or listen to. Thus it has a

direct input to the scanning strategy.

The second observation is that conscious control over

the scanning strategy is not complete. To some degree the
perceptual process, via selective attention, guides what we
see and what we hear. Thus an operator in scanning a visual
display may detect a curved line in a group of straight ones.
"He need not consciously decide to make his scan follow the
excursion of the curve; it scems that his perceptual process

will simpiy do this for him "automatically."

There are many elements of scanning strategy that appear
to differentiate between men and machines. First, machines
are completely systematic scanners (or can be made to be so)
while man is a relatively non-systematic scanner. Secoad,
the programming of machines to follow a wide variety of un-
predictable dynamic changes in various signal characteristics
(non-stationarity) makes it difficult and expensive in terms
of computer capacity to develop scanning strategies that are
sufficiently flexible for all possible signal variations.

Man has little difficulty in maintaining this flexibility,
and it is one of his most important assets relating to ‘eature

extraction, feature association, and target classification.

R —

Man's principal deficiency in this area, and it is an
important one, is that he does not systematically scan the
entire signal space that is presented to him. Further, he is ]
subject to degradation in his scanning behavior as a function

of monotonous, routine, watchstanding conditions. In this

respect he is almost certainly inferior to machines and a sys- ]

tem designer, who is concerncd with the man-machine interface,

must devote a considerable amount of his resources to this

problem. Displays with extended signal histories, the use
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of artificial signal injection, and the sequential illumination
of different parts of the display field are a few examples of

“"countermeasures'" for this deficiency in man.

54




'

CHAPTER 4

THE VARIABLE OUTPUT OF HUMAN INFORMATION PROCESSINZ
IN SURVEILLANCE SYSTEMS

In the previous chapter, we presented a general model of
man as an information processor. If that model described a
machine instead, we would expect its various outputs (overt
responses) related to surveillance operations to be highly
consistent, if not always correct. The hardware and software
representing the various functions described in the model
should produce either identical response outputs to a given
signal input or at least highly similar ones. Performance
should be much the same, day in and day out (barring cata-
strophic failure), and the hardware and software components
in one production line unit should, except for deliberate
modification, be interchangeable with other production line

units.

When man is the subject of the model, however, we are
confronted with a very different outcome. Such functions as
long-term memory, cognitive biases, pertinence, and acceptance
eriteria are conditioned by a large number of influences that
introduce extensive variability in the overt responses of hu-
man operators. The result is that these elements of the sys-
tem can (and usually do) function quite differently in
different opcrators for reasons that will be discussed shortly.
Thus, one of the dilemmas facing system design and test engi-
neers is that the human components of surveillance systems,
unlike other components built to a set of engineering specifi-
cations, are not interchangeable parts. Not only does the
output of different operators differ, but the responses of
even the same operator may be inconsistent from one operating
period to the next. Indeed, operators have the capacity to

contribute more variance to total system performance than any
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other component of the system. Recognition of this fact has
probably been one of the principal incentives to automation

in surveillance systems. In fact, if any other element of the
system contributed as much performance variance as the opera-
tors do, there would be immediate and intcnsive effort directed

to the problem of increasing the reliability of that component.
Sources of Operator Performance Variability

The protlem of operator performance wariability is not
so much the fact that it exists but that it can be so large.
It is large despite the fact that both selection and training
ﬂprograms are clearly designed to minimize it. Figure 4.1 illus-
trates tour major sources of operator variability; we will

discuss each in turn.

Innate abilities. The selection tests employed by the
Armed Forces as criteria for admittance to training as sur-
veillance system technicians are designed to homogenize and
optimize the human perceptual and cognitive abilities that
are important to performance in these systems. They are also
designed to maximize the probability that the candidate will
benefit from (i.e., successfully master) the training curric-
ulum. The way in which this is done is to set minimum cutoff
scures on various aptitude tests so as to effectively narrow
the range of individual differences in innate abilities that
are presumably relevant to job performance. How effective
these cutoff scores are, of course, depends upon the validity
of the tests for predicting actual performance on the job.
Although test validity is usually fairly well established with
respect to performance in basic training schools, their pre-
dictive relationship to operational performance is often a
matter that is less clearly established, partly because objec-
tive criteria of performance on the job by which test valida-

tion can take place typically are unavailable.

Training. Training in a technical school is also designed

tuv produce interchangeable human system components. The assumption
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Figure 4.1. Showing increasing performance variability
as a function of innate abilities, training, opera-
tional experience, and motivation.
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is that anyone who has successfully completed a prescribed
course of training in the operation of a particular system is
generally qualified to operate that system, or soon will be,
given a modicum of on-the-job experience. Explicit in the
training curriculum is the objective that all students will
learn to operate the system to some (usually unspecified)
criterion of excellencz with the hope that theoretical system
capability will be achieved in practice. For some comparatively
casily defined tasks where objective criteria of skill training
can readily be established (for example, ability to interpret
signals sent in Morse code with specified si'eed and accuracy),
training does produce a relatively homogeneous product that
can be plugged into an operational system and which, for a
time at least, results in reasonable uniformity in systems
performance. Even where such ohjective criteria are clearly
specifiable, however, individual differences in performance
soon begin to emerge. For example, within a few weeks after
graduation some operators will no longer be able to perform

at the school criterion level, some will still perform at
about that same level, and still others will be atle to per-
form with significantly increased speed and accuracy. Similar
divergencies in performance certainly occur in the performance
of the many complex tasks associated with the operation of
surveillance systems, as will be clear from data presented in
Volume II of this report. These performance differences re-
flect the fact that the selection criteria did not ensure that
all personnel assigned to the school are equally able (or
willing) to benefit from the :raining program, If the selec-
tion test scores were made sufficiently stringent so as to
produce "identical" inputs to the operator training program,
the resulting subset of personnel would likely be too small

to meet operational requirements. Although the required caliber
of personnel selected to be surveillance system operators is
generally high, such personnel are in short supply; ideal se-

lection criteria therefore must be compromised, with the

58




-

R

result that some unwanted individual differences are intro-

duced into the system.

Thus, the stage is set for the development of large indi-
vidual differences in performance. In spite of the fact that
both selection and training programs are in some sense designed
to produce interchangeable parts, the inputs to the training
"pipeline" are different in various ways to begin with and
these differences are magnified by virtue of differential
abilities to profit from the training expezience. It is impor-
tant to note, however, that the personnel assignment system
operates as if it had produced a batch of interchangeable
parts. And, to a very recal extent, the degree of control
over the performance of the human component has beer much

greater to this point than it c¢ver will be again.

Operational experience. Once an operator has been as-
signed for duty in an operating system, a third major variable
contributing to individual differences in performance begins
to show its effects. We have called this variable ""operational
experience," as if all operational experience were equally
meaningful. But there are a number of dimensions of experience
that have quite different implications for operator performance.
In the case of operators of surveillance systems, certainly
the most relevant and powerful determiner of individual dif-
ferences in performance is the frequency and recency with
which the operator has had the opportunity to detect and
analyze "targets of interest" (threat or otherwise reportable
targets). In most systems, targets of interest will be threat
targets as opposed to non-threat types, although in some sur-
veillance systems safety considerations may make it almost as
important to quickly and accurately recognize all types of
traffic.

Major sources of variety in operator experience have to
do with the type of signals encountered as a result of sensor

location; the type of mission assigned; procedural variables
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associated with individual commands, particularly command

attitude toward the importance of routine target reporting;
the frequency and validity of performance feedback received
by the operators; and the adequacy of on-the-job training.
This variety of possible operational experiences serves
further to increase performance differences among operators
thet already exist as a result of training differences and

differences in native abilities.

Motivation. The fourth major contributor to individual
differences in performance is motivation, that most important
and perhaps most difficult to measure of all human traits,

The consequences of motivation interact with the three variables
already discussed. The impact of differential motivation at
both the selection and training stages is well-known, serving
negatively in some cases to produce under-achievement, and
positively in others to produce performance well in excess of
that expected. A most important motivational consideration

in surveillance systems has to do with the operator's percep-
tion of the importance of his (frequently) very dull job and ]
the extent to which he is able to maintain a high level of
performance in the face of low expectancy for targets of

interest.

It is important to note again that even after operators - 1
have had various kinds of experience, personncl assignments
continue to be made as if the human components of operating
systems are, generally speaking, interchangeable. Operators
of a given rank and holding a particular occupational specialty
code are treated as though they indeed have equivalent skills.
Although advaﬂcement in rating procedures has been established
that, through written tests and practical demonstrations,
attempt to ensure that an operator being promoted to a par-
ticular rank meets certain specified standards of performance,

the relevance of these evaluztive procedures to actual ability

to perform the job is sufficiently uncertain as to leave room
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for large individual differences in performance skill among

personnel of the same rank and specialty code.

At this point it is fair to ask, "How large are these
differences in terms of meaningful operational criteria and
how important are they to a designer or evaluator of a sur-
veillance system?" A considerable body of objective data now
exists concerning individual differences in many aspects of
opcrator performance related to surveillance systems although
it may not always be in a form that will be directly useful
to the design enginecer. The nature of the data varies with
the complexity of the bechavior involved. For example, there
are cxtensive data concerning simple psychophysical relation-
ships such as the response of the eye to various intensities
and wavelengths of light, the discriminability of symbols of
various sizes and shapes, and so forth. Extensive information
is also available concerning the response of the car to vari-
our sound intensities at different frequencies, the discrimi-
nability of signals differing in pitch by various amounts,
and the ability to detect signals masked by background noise.
Not only are these relationships adequately described in various
human engincering guides (e.g., VanCott § Kinkade, 1972), but
the variability of human performance for these relatively
simple psychophysical tasks is comparatively small. Thus,
if we are concerned only about such relatively simple func-
tions, the opcrators of surveillance systems possibly ean be
regarded as interchangeable parts, assuming they mcet some

minimal criteria of sensitivity.

The problem arises when one proceeds to the more complex
human reactions associated with such operational requirements
as feature extraction, feature association, and target classi-
fication., 1In each of these functions, individual differences
in native abilities, assimilation of training, operational
experience, and motivation combine to produce large individual

differences in operator performance skills. At the very least,

61

|



it is imperative that the system designer by aware of the

extent of these individual differences and, if possible, the

specific reasons for them. Ideally, he will design his system
so as to minimize the cffects of these differences on system
performance. This almost certainly means that the focus of

his design at the man-machine-task level should be on those
areas where human performance is kncwn to be deficient or where
operator variability is known to be large. Some oi these

areas are now well-known, For instance, the value of large-
scale information storage and rapid retrieval systems, in |
aiding the operator's memory and ability to process heavy

information loads, has clearly been demonstrated for surveil-

-

lance systems; the development of automatic fault location
systems is quite a different example, showing how computers
can be used to minimize the effects of large individual dif-

ferences in troubleshooting skills.

At the same time, the designer should be aware of the
capabilities of highly competent operators, that is, cases of
exceptional performance which can possibly serve as models for
software design. From a programmer's point of view, these
are (1) unusually effective capabilities that (nearly all)
humans possess, and (2) capabilities that unusually effective
humans possess. Since extraordinary operators, by definition,
cannot routinely be furnished to operational systems, it
should be one objective of the design engineer to develop
software that emulates or otherwise at least equals the per-
formance of the most highly competent operators, thus achiev-
ing the dual objective of maximizing the average level of
system performance and minimizing its variability due to

operator differences.

If the extraordinary operator is to be a model for future
system design, it behooves the engineering psychologist to
identify how that extraordinary performance comes about and,

hopefully, to describe it in terms that are meaningful to




systems designers. The first step is to describe the extent
of individual differences in actual operating performance.
Fortunately, there is considerable evidence concerning the
magnitude of these differences and some of the variables
associated with them. Evidence of this kind with respect to

surveillance systems is presented in Volume II of this report.
Design Consequences of Individual Differences Among Operators

The consequences of individual differences in operator
performance for system design and system test are summarized
below. These conclusions are generally supported by detailed

data presented in Volume II.

1. The overators of surveillance systems are not
equivalent or "interchangeable parts," though
the personnel system generally operates as if
they were.

2. Operators are likely to contribute more vari-
ance to systems performance than hardware (or
software) components,

3. Command attention, procedural rules, reporting
criteria, and "expectancy" for threat targets
are variables that strongly influence operator
performance, both with respect to target de-
tection efficiency and reporting thresholds.

4. Selection, training, experience, and motiva-
tional variables interact so as to magnify
differences in operator performance skills.

S. Onec objective of the system designer should be
to minimize the impact on systems performance
of individual differences among operators; the
principal focus, of course, should be on the
areas of greatest human deficiency.

6. -The performance characteristics of superior
operators should serve as standards of com-
parison for automated system functions.

7. Individual differences in comparatively simple
psychophysical tasks (e.g., alerted signal de-
tection) are small; for complex tasks they
increase as task complexity increases (e.g.,
target classification).
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10.

11.

12,

Individual differences in ability to volun-
tarily maintain a high state of alertness
are large.

Operators differ extensively both in ability
to extract target features from the signal
pattern and in their ability to relate them
to the nature of the target in a logical,
probabilistic manner.

Operators appear to be more likely to produce
false dismissals. than they are false alarms,
wkereas the opposite may be true of computer
algorithms. This may be a result of the
penalty for false alarms perceived by operators
as a result ot the higher level review neces-
sitated by contact reports.

The relationship between an operator's rank
and his proficiency in target detection, fea-
ture extraction, and classification is posi-
tive but small. Frequency and recency of
experience with particular types of targets
are considerably more important,

Operater performance in surveillance systems
suffers from lack of feedback concerning
missed opportunities and incorrect ciassifi-
cations,




CHAPTER §

MEASUREMENT OF MAN-MACHINE PERFORMANCE
IN SURVEILLANCE SYSTEMS

The methodology we envision for man-machine function
allocation requires, in part, the empirical evaluation of man-
machine performance in system configurations closely related
to those being censidered as design alternatives. Once a
design is realized as a prototype, further performance evalua-
tions will obviously be necessary, upon which the fate of a
newly designed system may depend, and still further evaluations
can be anticipated throughout the life cycle of a systen,
serving, in the end, as benchmarks against which later genera-

tions of systems will be compared.

Therefore, the importance of adequate systems performance
cvaluations can hardly be. overestimated, and the presence of
man in the system loop, whose variability we have attempted to
highlight, has extensive implications for the experimental
methodology necessary to conduct adequate systems performance
evaluations. In the course of this study we observed numerous
methodological shortcomings in operational evaluations that
often left the outcome of the evaluation very much in doubt,
despite very substantial investments in test procedures. In
many cases the shortcomings were associated with a failure to
consider variables associated with the human operators in the

systems being compared.

A substantial experimental methodology has collectively
evolved from various scientific disciplines faced with the
problem of measuring relatively small effects in the presence
of relatively great variability. Since the measurement of
system performance with men in the loop usually poses just
such a problem, an extended discussion of this methodology is

contained in Volume II of this report. However, the priacipal

points arz highlighted below. Though many of them are "obvious,"

they are included here because they are so often violated in

operational tests of surveillance systems.




Lvaluative tests of experimental man-machine
systems rcquire comparative data from a suit-
able baseline (control) system, except in
rare instances where absolute criteria can be
specified. The necessary man-machine perfor-
mance data for the baseline system usually
must be collected at the same time data on the
experimental system are collected because
suitable rcecords of routine man-machine per-
formance in operational systems are rarely
available.

Comparative tests of experimental and currently
operational systems nust take into account op-
erator and procedural variables that contribute
to total man-machine performance, as well as
differences in hardware or software.

Understanding the variables related to man-
machine strengths and weaknesses in currently
operational systems is essential for design-
ing suitable comparative tests of system
effectiveness.

The set of test signals used in comparative
system tests must be selected so as to be
representative of the difficulties posed at
each stage of the functional taxonomy, as well
as the signal population of interest and the
operational environment,

Considerations of experimental control usually
dictate the use of synthetic signals injected
into the actual operating system; the parameters
of the injected signals must reflect the con-
siderations outlined in No. 4 above.

The timing of injected signals is particularly
important when the system test involves ques-
tions of operator scanning behavior, vigilance,
or cxpectancy as to the time of appearance or
nature of the target,

Both men and computers (or computer programmers)

require comprchensive sets of signals on which
to learn. The discriminations learned on the
learning set must be cross-validated on an
independent test set of representative signals
to properly assess the effectiveness of these
discriminations.




Individuai differences among operating person-
nel in experience, training, innate abilities,
and motivational variables must be taken into
account in the design of the operational test
and in the analysis of the resulting data.
Such differences can otherwise result in mis-
leading conclusions about differences between
the systems in man-machine performance.

In the interest of equalizing or controlling
for individual differences among operators,

it is desirable to employ within-subject test
designs in which the same personnel operate
both the experimental and bascline systems
during the test. If this is nrot possible,
personnel used in the two conditions should be
matched as completely as possible on all vari-
ables known to be relevant to performance.

Negative attitudes toward innovative systems
or procedures may develop and adversely affect
the operational test unless certain principles
of introduction are followed. A change advo-
cate, whose credentials are highly respected
by operational personnel, can be very useful
in this respect.

The operational test should be designed so as

to minimize atypical operator motivations that
stem simply from the opcrator's knowledge that
he is participating in a test.

The operational test should be designed so as
to avoid atypical operator "expectancy" for
targets of special interest. However, this
ohjective may have to be sacrificed somewhat
in meeting the need for reliability of per-
formance measurement.

Usually, operational personnel used in system
tcsts should be representative of "average"
operators. The tendency to utilize superior
personnel in the experimental system should
be resisted, although some test objectives
might justify the use of superior operators
in the baseline system.

When the same test personnel operate both the
experimental and baseline systems, the test
design should be such that unwanted performance
variance is not introduced by the order in
which the two systems are operated.




1S. 1If the test involves round-the-clock operations,
the test design and data analysis should take
into account the diurnal variations in the level
of arousal (alertness) of human operatcrs.

16. In selecting criterion measures of man-machine
performance by which the test outcomes will be
assessed, it is essential to provide for re-
cording of data pertinent to each aspcct of the
function taxonomy that is related to the test
objectives. The recording schemes used may
differ considerably for the man and the machine.

17. Special sigral sets may have to be designed to
obtain appropriate system response measures on
some parts of the function taxonomy.

18. 1In the interest of obtaining reliable man-
machine performance measurcs, substantial num-
bers of measurements should be made on similar
signal inputs for each part of the function
taxonomy under test.

General Conclusions

There are a large number of specific conclusions to be
found interspersed throughout Volume II of this report as well
as those already presented in this volume. However, we should
like to emphasize here the broadest and most general conclu-

sions that we have come to as a result of this study.

When we undertook this research, we did it in response
to a felt nced for a systematic design feedback loop from
operating surveillance systems to the designers of future
systems, and we assumed that the final results would be usable
as guidelines for the design of future surveillance systems.
That scemed like a reasonable objective, and we hope the re-
sults presented in various parts of these two volumes do prove
to be uséful to the surveillance community; we are reasonably
certain that at least some of these materials will be. How-
ever, the first major conclusion we wish to present here con-
cerns our original expectation that we would be able to
develop detailed design trade-off criteria that would be

applicable to the function allocation phase of the design
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process. From this expectation, the reader can see some impli-
cation that we thought we might develop a "cookbook'" for func-
tion allocation. We did intend to proceed as far as possible
in that direction; but we also stated at the outset that our
objectives were ambitious, and we were somewhat dubious of
accomplishing those objectives where the human was involved

in the loop, because his vehavior is so task-specific. How-
ever, we thought the machine side of the equation might tend
to make the problem more tractable. It now appears to us

that the behavior of machines is also highly task-specific,
and therefore a small set of design principles will not serve
to provide ready answers to the much larger set of specific
man-machine function allocation problems. We have already
stated, and we reiterate as a major conclusion, that no '"cook-
book" of man-machine functioun allocation recipes is impending
as a result of this work or any other we are zware of. In-
stead, the function allocation methodology that we have de-
scribed must be applied to individual function allccation

problems.

The second major conclusion we have come to is that many
aspects of the detection, fecature extraction/association, and
classification functions of surveillance systems cannot be
totally automated, now, or for some time to come, without a
substantial sacrifice in system performance. We have con-
cluued that man must remain in surveillance systems as a part-
ner in the detection and post-detection processing functions
for the full performance potential of new surveiliance s, stem
designs to be realized. Certainly, we feel that man should be
extensively machine-aided in these areas, and vice versa. But
that leaves us with a considerable problem, because th- fun:-
tion and task allocations that will successfully optimize this
man-machine partnership remain to be determined. The surveil-
lance community now nceds to undertake a substantial and
dedicated research and development effort, hopefully employing

to advantage some of the material we present in this report,




to discover how men and machines can work most effectively

together in surveillance systems.
A Word About Volume II

Volume II of this rcport contains a great decal of addi-

tional inforimation that we hope will be of interest to indi-
viduals whose responsibilities include rescarch and develiopment
on surveillance systems hardware, software, and operating

personnel.

Following thc introductory remarks in Chapter 1 of Volume
Il1, we present in Chapter 2 a morc detuailed description of
functions in specific surveillance systems and deal with some
of the clussified cxamples of those function, which are not

covered in the present volume.

In Chapter 3, a more detailed description of human infor-
mation processing in specific surveillance systems is provided
with examples of how that processing occurs in the context of

operator performance during surveillance activities.

In Chapter 4, the variable output of human information
processing in surveillance systems is described in terms of
objecctive data concerning the performance of operators in
specific surveillance systems and the variables that appear

to influence that performance.

In Chapter 5, more detail is presented concerning the
considerations nccessary for proper mecasurcment of man-machine
performance in surveillance systems with special attention
devoted to problems that are unique to specific surveillance

systems.

The appendices of Volume II are devoted to the detailed
reporting of a number of experiments directed at the detection
and classification performance of operators in specific

surveillance systems.
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