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FOREWORD

This report was prepared bv The Perkin-Elmer Corporation, Norwalk,
conn , unasr Contract No. F332615-73-C-1080, Project 7371, Task 737101, en-
titled "Deveiopuent of Deicing Techniques for Dielectric Windows'. The worl
was administered under the divection of the Air Force Materials Laboratory,
Wrivht-Patterson ir Force Base, Ohio, Mr, D,W. Fischer was project engineer

and E.A, Strouse was the principal investigator.

This is the Finar Technical Report for Contract F33615-73-C-1080. It

covers the period April 193 to April 1975.

The report was submitted v the anthor in May 1975,
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SECTION |

1.1 CONDUCTIVE MULTLILAYLR FILMS

Continuous thin-film heaters transparent in the visible spectrum have
been in use for some time now as deicing and defogging elements on aircraft
transparencies. The heaters are generally made from either gold or semi-
conductor tilms based on indium oxide or tin oxide. The oxide films tor pilot
windshield defogging are generally deposited by a chemical pyrolitic decom-
position technique; temperatures in excess of 500°C are involved in this
process. For high quality optical windows such as those used in aircraft
camera bays, the oxide lilms are deposited by RF sputtering or thermal cvap-
vration techniques., Perkin-Elmer employs a provrietary process that combines
conductive films with dielectric films in the for.w of interference multilayers,
which can actually improve the transmission through a glass surface as well as

provide deicing and def{czging capabilities,

A charac:eristic of ali highly conductive thin films, whether gold or
oxide based, is a strong attenuation of wavelengths longer than 2 . The ab-
sorption edge begins in the region of 1 j and, for oxide semiconductor mate-
rials, reaches a steady level in the 2-3 p region. The attenuation in gold
films increases progressively with wavelength, This report describes mere
fully the nature of the attenuation in indium-tin-oxide f!1lms and how the
understanding of the complex optical constants enable thes2 films to be com-
bined with dielectric films to produce conductive multilayers with relatively

high transmission values in the 8-12 ¢y spectral region.

1.2 BACKCROUND

In the region of transparency, a conduc*tive film can be designed into
a multilayer system in the same way as any other transparent dielectric film,
Perkin-Elmer has already employed this technique in the production of a variety
ol devices requiring bigl transparency ccnductive film systems based on,the

indium-tin-oxide filins. The indium-tin-oxide films have a relractive index of
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2.0 at visible wavelengths, and there are a number of well known antireflection
coating designs for glass surfaces that can be adapted to accommodate films of

this index.

In the regions where the conductive films are nontransparent, it is
necessary to use those design techniques that are used for metallic films., To
illustrate this, it is convenient to consider designs used for gold-based coat-
ings that ave transparent at vicible wavelengths., 150 Z thick gold films show
a ¢ransmission of approximately 65% in the visible spectrum yet still have a
high counductivity. By placing suitable thickness and refractive index di-
electric films on either side of the gold film, one can increase the trans-
mission to approximarely 85% in the same spectral region, This program was
designed to apply similar techniques to the existiug Perkin-Elmer indium-tin-
oxide conductive film for use in the 8 to 12 micron region and to fabricate a

demonstration ZnS window,

Th2 wultilayer designs are very similar to the induced transmission
throvgh gold films., The oxide semiconduct-. films are treated essentially as
metallic films, the thickness of the films being subs antially less than in-

terference thickness in the 8 tc 12 micron range.

The thermo-optical analysis examines deicing techniques as applicable
to infrared windows., These techniques will be limited to uniform, transparent,
electrically conductive coatings. Analysis determined the image spoiling or

wavefront degrading effects due to each material investigated.

The thermal analysis was not restricted to the optical eftfects but in-
cluded an investigation of the thermal stress/shock imposed by heating .ad
cooling rates. Furthermore, the deicing techniques that were developed include
a study ot the safety aspects in the event of potential thermal runaway. The
danger of a catastrophic failure due to heating was eliminated by designing a
fail-safe thernuil system to preclude overly rapid heating rates or absolute

overheating in the event of a failure of the thermal controller,

After the most promising deicing and antireflective coating techniques
were established and fully developed through the coating experimental work, a

test demonstration was conducted to demonstrate the achievement ot the thermal
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and optical goals. A demonstration ZnS optic has been fabricested consisting

of a customer-supplied plano-parallel window tc which the deicing technique

has been applied,

1.3 PROGRAM OBJECTIVES

A study and experiments were conducted to investigate various methods
for deicing zinc sulfide, zinc s=zlenide, and zinc sulfo-selenide windows. The
goal was :o develop a deicing method that will not significantly degrade the
performance of a sensor receiving radiation through the window. The projected
flight envelope of the B-1 was to be used as the anticipated window environ-
ment, and the deicing technique developed was to be consistent with FLIR win-
dow configurations for the B-1 and with B-1's FLIR window performance require-

ment,
The work performed under Contract F33615-73-C-10°0 for Wright-Patterson
Alr Force Base is presented as follows:

e Optical characteristics of indium-tin-oxide films at IR

wavelengths
¢ Conductive antireflection coatings for IR wavelengths
e Autireflection coatings

e Use of conductive coatings in nonparallel bus bar con-

figurations
e Thermo-optical anclysis of conductive films and patterns
@ Fabrication and evaluation of coatec zinc sulfide windows

e Conclusions
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SECTION 2

OPTICAL CHARACTERISTICS OF INDIUM-TIN-OXIDE FILMS AT IR WAVELENGTHS

The transmission and reflection characteristics of a 0,15 micron thick
film are shown in Figure 1. It can be seen that whereas the transwmission value
stays approximately level in the region from 2.5 to i4.0 microns, the reflec-
tion value rises steadily with increasing wavelength. This is indicative of a
complex index behavior ir. which the real part (n) remains essentially constant
whereas the imaginary part (k) increases with increasing wavelength. In the
first phase of this program, a detailed examination of these optical constants
in the 8 to 14 micron region was made, The relationship betwecen the values of
n and k for various proness parameters was evaluated, The first opticai con-
stant measurements were made on films of identical thickness processed by
¢.- .y the same techniques as the films used in the low-light-level TV window
conductive treasparent coatings. Process parameters were then varied to pro-
duce tfilms with a range of conductivity values in order to assess the depend-

ence of the optical constants on this parameter,

2.1 EXPERIMENTAL RESULILS

The optical constants of the films were calculated from spectral meas-
urements made through the plate (T), double surface reflection from the plate
measured from the coated side (R), and double surface reflection measured from
the uncoated side (R')., Figure 2 shows a diagram of these measurements. The
optical c-mstants of the plate itsclf were determined by veparate experiments
The measured data is computer-reduced to yield the optical constants of the
film in the spectral range of interest., The input data and a typical computer
output are shown in Figures 2 and 3. Spectral measurements were made on a
Perkin-Elmer Model 180 spectrophotometer, and {ilm thickness measurements were

made on a Sloan angstrometer,

The n and k program takes the normalized transmission and reflection

data (shown in Figure 2) and converts this data to single surface values,

N e T
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Ns = ZnSe Ng Thk =1.32 mm Ns = 2.40
Wavelength
(Microns) % T % R % R! Remarks
8.0 30, 82 37.24 18. 44
3.5 30, ¢l 37.43 18 27 T
Uncoated
9.0 30, 51 27. 41 18. 23 N
Coated/
9.5 30, 44 37.34 18.12
' R
10.G 30, 86 37.09 18. 04
30,81 17 T
10.5 . 37.72 .89
Coated ?
~a
11,0 30. 94 37.67 17.83
Uncoated/'
11.5 31,11 37.97 18.02
Rl
12.0 31.31 37.98 17,78 Coater Substrate
In and Sn (87.5: 12, 5)
12.5 31.28 | 38.06 | 17.92 T - 16094
{measurements taken after
13.0 31,15 38.39 17. 95 vacuum baking)
13.5 31,08 38. 06 17.70
14.0 30,71 36,75 17.75
14,5 30,43 39,60 17.82
15.0 30,17 38, 90 17,95
Figure 2. Reflection and Transmission laput Data for ZnS Window Study
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33105-91100 11.23,08  05/16/73
TZSL3  CaD. FILM QT ZIS. RO ). ZISUB
:
- ATIN = 1,500
i RTRX = 2,500
; ARMIN = 3,000
ARMAX = 6,000
WFR= 1,0
WFT = 1.0
WA = 1,0
EEI = 1,000

FILM TIOCRESS 0, 1602 +OICROIS

N0, OF DATA POLITS 15
SPOEISIIISIISIISSSS
WVL RC-RM TC-TM1 AC-AM N K SEC
8.,000000 -0,17 0.00 Ce16 1,830 4,020000 6,5 p
8.500000 -0,15 -0,01 0.16 1,830  4,229700 6,2 3
9.000000 -0,11 0.02 0,09 1,850 4,419999 6,2
9.500000 ~-0,04 0.02 0.02 1,956 4,592099 6,2 ]
10,000000 0,06 -0.02 =-0,04 1,946 4,7795999 6,2
10.500000 0.05 -0.03 =-0.02 1,782 4,999999 6,2
11.000000 0.02 -0.11 0.09 1.920 5,139999 6,2
11.500000 0.03 -0.04 0.01 1,940 5,319999 6,1
12.000000 0.06 =0.03 -0.,02 1.830 5,399399 6,2
12,500000 ~0,02 0.05 -0.04 1,712 5.,553999 6,1
13.000000 0.06 =004 =0,03 1,714 5,719999 6,2
13,500000 ~0,07 0.04 0.03 1.622  5,879999 6,2 g
14,000000 =1,31 -2,11 3,43 1,490 5,919999 6,1 j
14,500000 -13,58 =~11,93 25,51 1.420  4,759999 6,1 1
15.000000 =-1,48 24,87 =-23,39 2,522 6.219999 0.2 :
TOTAL TIML = 92.9

AR N R

Figure 3. Typical Computer Output




The film constants are then calculated, Figure 3 shows the output of a typi-

cal calculation, The symbols used are as follows:

WVL = Wavelength

RM = Single surface reflection at air boundary obtained from data

RC = Calculated single surface reflection using {ilm n and k

TM = Single surface transmission obtained from data

TC = Calculated single surface transmission using film n and k

AM = Single surface reflection at substrate boundary obtained

from data
A = Calculated single surface reflection using film n and k
N = The real part oi the film index
K = The imaginary part of the film index

RC-RM = Deviation of measured and calculated film reflectance
TC-TM = Deviation of measured and calculated film transmission

AC-AM = Deviation of measured and calculated {ilm absorption

The deviation values give an estimate c¢f the validity of the calcula-
tion. It can be seen that the dispersion of the imaginary part (k) of the
complex refractive index (ﬁ) is approximately linear with wavelength (A).

The complex index can ther bc defined by the expression

N=n-jk=1.9- j(L + 3/8\) for Zn8

in the region in which n is essentially constant.

2.2 OPTICAL CONSTANTS OF INDIUM-TIN-OXIDE ON ZnS AND ZnSe

o]
Table 1 lists the optical constants of 1600 A thick 85% indium oxide/
15% tin oxide after a 250°C vacuum bake. The results shown are the average
of four coating runs, Table 2 lists the optical constants of the same thick-

ness and process parameters when deposited onto ZnSe,

Because of the oxidation of ZnSe during film processireg, it was im-
possible to achieve good re roducibility of the optical constants, One can
ohserve by comparing Tables | and 2 that the optical properties of the con-

ductive film vary with the substrate being coated,

it
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TABLE 1., n AND k FOR In203/SnO ON Zn&

2
Au) _n_ ko
| 8.0 1.85 4.35
| 8.5 1.85 4,57
| 5.0 1.95 4.78
| 9.5 2.00 4.99
10.0 2.12 5.14
10.5 2,13 5.37
11.0 2.25 5.58
11.5 2.35 5.82
12.0 2.28 6.00
12.5 2.12 6.20
13.0 2.02 6.38
13.5 1.98 6.59
14.0 1.72 6.62

TABLE 2, n AND k FOR In203/Sn02 ON ZnSe

AG) n b
8.0 2.05 5.41
8.5 1.98 5.76
9.0 2.05 6.00
9.5 2,06 6.28
10.0 2,11 6.52
10.5 2,22 6.78
11.0 2,11 7.06
11.5 2.13 7.33
12.0 2.04 7.57
12.5 2.01 "84 j
13.0 1.99 8,08 ‘
13.5 2.01 8.32
14.0 1.97 8.04

e B n Gl e s RS A
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2.3 DEPENDENCE OF n AND k ON FILM CONDUCTIVITY

Figure 4 shows the variation of the imaginary refractive index k (at 10
microns) with sheet resistance for a 0.16 um thickness indium-tin-oxide film,
The film composition is 85% indium oxide, 15% tin oxide. The sheet resistance
values were varied by subjecting the films to a number of different vacuum
bake regimes. The plot points are the avevage values from three films of the

same thickness and composition,

The value of 75(i/sq. represents the lowest value to which the film re-
sistance can be reduced by vacuum baking without the liberation of free metal
particles, These free metal particles drastically change the absorption prop-
erties of the film at iong wavelengths making it very difficult to achieve
reproducible values of n and k for the film, For sheet resistances greater
than 200{}/square, the variation in k is approximately linear, inversely pro-
portional to the sheet resistance, and k is reducing at a rafte of -0,12 per
1005}/ square.

The corresponding variation in n with sheet resistance was impossible
to evaluate from the set of data that yielded the variation in n for each of
the three films tested; following each of the process adjustments, these vari-
ations could not be corrvelated with conductivity values for the films. It is
more likely that the variations weie attributable to differences in the free
metal conteit of the films, Generally, the rangc of values for n that were
recorded fell im a fairly tight range and could not be anticipated as strong
an influencing factor in the multilayer design considerations as the much

lagrger variatrions in «,

10
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Figure 4.
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SECTION 3

DESIGN OF CONDUCTIVE ANTIREFLECTION COATINGS FOR IR WAVELENGTHS

In this program phase, the n and k information gathered in the previous
phase was used to generate transparent conductive coating designs using the

induced transmission filter technique.

3.1 INDUCED TRANSMISSION FiLTER TECHNIQUE

The technique of augmenting the transmission through metal films by the
use of additional dielectric films is referred to by thin-film filter designers
as the induced transmission filter technique. The technique involwves reducing
the reflection contribution of the imaginary part (k) of tie complex index of
the film by matching it to the real index of a dielectric film or the effec-
tive real index of a dielectric film stack, These matching films are disposed
symmetrically on either side of the metallic film, The symmetrical grouping
of metal and dielectric films has an effective k value that is significantly
lower than the value for the metal film and, for the purpose of impedance
matching into the substrate and the surrounding medium, the grouping can be

treated as though it had a real index only.

The multilayer groupings of dielectric films are required when the k
value of the metallic film exceeds the highest real value that can be obtained
using a single material., In systems such as these, the index value is strongly
dispersive and the high trunsmission is obtained only over a narrow spectral
region, The technique is in fact employed in the fabr.cation of narrow-band
spectral filters., In the following section, we will trace step by step the
development of an induced transmission design for a ZnS window based on a

conductive film,

3.2 TECHNIQUE APPLIED TO INDIUM-TIN-OXIDE FILMS IN THE 8 TO 11.5 MICRON
SPECTRAL REGION (THEORY)

Us.ing the optical constants shown in Table L, the transmission was com-

puted through the uncoated side of a zinc sulfide plate (coated on the other

12




side with the indium-tin-oxide film) and is shown in Figure 5. The trans-
mission value in the range is approximately 24%, a value far too low for

the film to be useful as a heater element.

Figure € shows the transmission through a three-film system of
germanium/indium-tin-oxide/germanium. The thickness of the films is chosen
such that the sum of the phase retardation introduced by the germanium film
and the phase retardution suffered on reflection at rhe germanium-indium-
tin-oxide boundary is g/Z2. The index of germanium in the 8 to 12 micron
region is equal to 4.0, which is the closest approximation of the k value
tor the indium-tin-oxide that we can achieve with a single discrete material,
Tne transmission pezks ac 10.) microns at a value of 72% but falls off rapidly
at both larger and shorter wavelengths. Figure 7 shows the behavior of the
complex Herpin equivalent index value for the three-film system, It can be
seen that the equivalent k value for the system has been reduced to less than
1.0 over most of the spectral range while the equivalent real index value at

wavelengths longer than 10.0 microns is on the order of 2.2,

The next stage in the decign formulation is to provide films for the
reduction of the reflections from the three-film system and the air and sub-
strate values. The simplest of these approaches is based on the assumption
that the real index of the system 1s 2.2, In this case, the system is al-
ready a good index match to the substrate, so no f.ims are necessary at the
substrate/system boundary. The problem then reduces to one of providing an
antireflection coating for a medium of index 2,2, The simplest such coating
would be a single quarter-wave optical thickness (at A = 10,0 microns) of
material with a refractive index equal to 1.47, A close approximation %o
this in practice would be a film of thorium iluoride (n ~ 1,40), Figure 8
shows the computed performance of such a system, It can be seen that the
transmission gain over the three-film group at the peak transmission wave-
length is not spectacular., Reasonable gains .re recorded at the off peak
wavelengths giving the four-film system a fairly flat transmission charac-~

teristic.

Usirg the same design approach, a coating design was calculated using
[
an 800 A indium-tin-oxide conductive film. The anticipated resistance would
be 200 ohms per square and would have approximately 86% transmission as shown

in Figure 9.
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33105-91100 11.31.32 04/27/73
OID-IR CQIDUCTIVE FIIM ONLY QN IRE-2 SUGSTRAIE

DESIGN FOR SIDE 1

FILM SATCK PARAMETERS WR = 9.500000 MICRNS

NO. MATERIAL THK (MU) OPT.THK. (WR UNITS)
SUIB  2.2200
1 CaD-IR 0. 16020 0.03204
BN 1,0000
TOT/\L THICK. 0.16020 MICRONS.

bk ko gk ko ok koK Aok R Rk

33105-91100 11,32,08 04/27/73
OND-IR  CQHDUCTIVE FIIM ONLY ON IRr-2 SUBSTRATE

DESIGN F2R SIDE 2

FILM SATG. PARRMETERS WR = 9,500000 MICRNS

NO. MATERIAL THK (MUJ) OrT. THK. (WR WILTS)
SuB 2,2200

EN 1.0000

10721 THICK. 0.0 MICRIIS.

Ak o ok ok ok ok ok ok bk ok ok ke
e ok ok o Aok ok ok ok ok ook R ko

33105-91100 11.32.49 04/27/73
COND-IR CONDUCTIVE FILM QNLY QY IRT-2 SUBSTRAIE

LATA FOR BOTH SIDES COMBLNED : T=T1*T2/(1,0~RSUB1*RSUBZ)

PERLIIT ENN-SIDE TRAMSMITTANCE AT NORMAL INCIDEMCE

PCT. WAVE 0 20 4o €0 80 100
TRANG LEZIGTH I+++++++++I+£+++++++I+++++++++I+++++++++I+++++++++I
24,5376  8,000000 + + ¢
24,6114  8,500000 + + ¢
24,6462  9,00000C + +3
24,6473 9,500000 + +
24,6188 10,0006000 + +
24,5642 10.500000 + + ¢
24.4867 11,000000 + +
28_.2398835  11,500000 + +
L2 PR ?
!
!
Figure 5. Transmission For Nonabsorbing Substrate $
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FILM STACK PARMMIIERS WR = 8.000000 MICRONS

0. MATERIAL

SuB
1

2.2400
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2 ALPHA-1

3
ENN

Ge
1.0000

TOTAL THICK.

ek ok ok ok dkook o ok ok ok ok Kok K

3310591300
aC Al NS

PCT.

TRANS
43,4093
53.7373
65.9380
71,4626
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WAVE
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9.0000n0
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10.000000
10.5000006
11.000000
11.500000
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12.500000
13.000000

$$335535983583338558
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Figure 6,

14,43.51 06/14/73

THK (1U) OPT.TiHK. (WR UNITS)
0.49610 0.25363
1 16020 0.03805
1.49610 0.25363

1,15240 MICPCNS.,

14,485,348 06/14/73

WR = 8.0000C0 MICR®IS 1/4R = 0.12500

PERCIND ENL.-SIDE TRAISMITTANCE AT NCRMAL INCIDENCE

0 20 40 60 80 100
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Transmission for Three-Film System
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4 33.65-91100 . 06,23,33  04/27/73
OOND-IR1  CONDUCTIVE FIIM ,1602 MJ. TUICK ON IRT-2(ZNS)

FILM SATCK PARAMDIERS WR = 10,000000 MICRONS

NO, MAITRIAL THK (MJ) OPT.THK. (WR UNITS)
S 2,2200
1 2 Ge 0,52109 0,21000
g 3 CaND-IR 0.16020 0.03044
; 4 Ge 0.52109 0.21000
i EN  1,0000
TOTAL THICK. 1.20238 MICRONS,
33105-91100 06.23,33  04/27/73

COND-IR1  CQNDUCTIVE FIIM ,1602 MU, THICK (N IRT-2(ZNS)
g. ‘ WR = 10,000000 MICRONS 1AR = 0,10000

OfPLEX HERPIN INDEX AT
0.0 DBEGRIES ANGLE CF INCIDENCE.

WAVE 0 2 4 S 8 10 12

REML(O) IMAG(=) LENGIH I+t Tt L T e D HHH S L AL
2,8416  4,2001 8.000000 =» +

1.4824 3,2772  2,500000 + +

0.7672  2.1908 9,000000 + ;

0,3264 20,9809  9,500000 +

1.2147  0.2613 10,000000 +

1.7471 0.3703 10,500000 +

2,0239 0,4116 11,000000 +

2,1885 0.4322 11.500000 %

2.2925  0.4458 12,000000 + =

2,3603  0,4556 12,500000 + +

2.4034  0,4651 13,000000 + +

R R LERREER R

Figurce 7. Herpin Equivalent Index Value for Three-Film System
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33105-91300 14,4884 06/14/73
CC (N ZNS
FIIM STACK PARAMETLRS VR = 8.000000 MICRNNS
NO., MATERIAL THK (MU) OPT.THK. (NR UNITS)
SuB 2.2200
1 Ge 0.49610 0.25363
2 ALPHA-1 0.16020 0.03805
3 Ge 0.49610 0.25363
4 ThE 4 1.62637 0,31250
ENN 1.0000
TOTAL THICK. 2.77877 MICRINS.
Kook ok Aok ok Ak ok A ok
33105-91300 14.49,39 06/14/73
C al s
WR = 8,000000 MICRONS 1I/MR = 0,12500
PERCIINT EBNN~-SIDE TRANSHITTANCE AT NCRMAL, INCIDINCE
PCT, WAVE 0 20 40 60 80 100
TRANS LEINGTH I++H+H++I+H+++H+I+++H~+H—+I++H++H+I++++—H+++I
62,9819 8.000000 + + + Hi\‘e
63.3645  8.500000 + + + +
72,2881  9,000000 + " + + h‘
73.6880  9,500000 + + + +
74,4654  10.000000 + + + <
74.8284  10.500000 + + + +
74,7563 11.000000 + + + +
74,2769 11.500000 + + + +
73,4272 12,000000 + + + + f
72.35Q00 12.500000 + + + +
71.0765 13.000000 + + + + #
$PIIP$PCI85555 95853
Figure 8. Three-Film System with Antireflection Coating of Thor:ium Fluoride
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33105-91100 71.11.54
OND-IR2 CONDUCTIVE FIIM STACK ON IRT=-2 (ZNS) SUBSTRAIE

FIIM SATCK PARAMETERS WR = 9,500000 MICRONS

NO. MATERIAL THK (MU) OPT.THK. (WR UNITS)
StB 2.2200
1 Ge 0.50434 0.21500
2 COND-IR 0.08000 0.01600
3 Ge 0.50494 0.21500
4 ThrY4 1.54761 0.25000
ENN 1.0000
TOTAL THICK, 2.63750 MICRNS,
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33105-91100 11.13.24
OND~IR2 CQNDUCTIVE FILM STACK QN IRT-2 (ZNS) SUBSTRATE

WR = 9,500000 MICRNS 1AR = 0,10526
PERCENT ENN-SIDE TRANSMITTANCE AT NORVAL INCIDEMNCE

PCT. WAVE 0 20 40 60 80 100
TRANS LENGITH I Dbt Tt T T T
83.4769  8.000000 +
86.5780  8.500000 +
87.4465  9.000000 +
87.5176  9.500000 +
87.1023 10.003000 +
86,1393 10.500000 +
84.5900 11.000000 +
82,5731 11.500000
$IIIITHIIISSOI5585

R R
+++ 4+t
I

+

Figure 9., Indium-Tin-Oxide Three-Film System with
Antireflection Coating of Thorium Fluoride

04/27/73

04/27/73




Other more complicated designs are, of course, possible, but the real
limiting factor for the transmission that can be induced through the indium-
tin-oxide film is the absorption in this film. More complex muiltilayers
could not be expected to yield, even in theory, more than 2 or 3% more trans-
mission than the design used in the foregoing example. In practice, the re-
producibility of these complex designs will be limited by the reproducibility

of the n and k values for the indium-tin-oxide film,

Figure 10 shows the use of three-film Herpin sections to obtain a
higher real index for impedance matching purposes. This technique yields
a higher maximum transmission (86%) but has a much narrower bandwidth (~ 1,0

micron) due to the dispersive properties of the Herpin sections.

3.3 EXPERIMENTAL EFFORT

The initial prototype coatings using the theoretical design shown in
Figure 8 exhibited extremely poor durability and low transmission. Thin

films of ZnS and ThF4 were inserted into the film system, During this study

the following was observed:

a, The optical constants of the conductive films are influenced

by the substrate and previously deposited films,

b. The sticking coefficient of the condrctive film is a function

of the surface being coated,

¢, The n and k values of the indium-tin-oxide may be varied by

post deposition processes such as air or vacuum bake cycles,

d. Diffusion between the germanium film and conductive film

occurs at temperatures < 250°C.

The final ccating design and durability is shown in Table 3, Figucre
11 shows the spectral performance of the coating design when deposited onto
ZnS., All attempts to increase the transmission by the use of 800 K conduc-
tive films resulted in marginal increase in transmission and a tenfold in-

crease in resistance,

By comparing Figures 8 and 11, it can be seen that at the peak trans-
mission wavelength, the agreement between measured and computed data is ex-

cellent, the difference of approximately 2% containing the contributions
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Figure 10, Three-Film Herpin Sections
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from the uncertainty in the k values for the indium-tin-oxide film, absorp-

tion in the dielectric films, and absorption at film interfaces.

The coating design then clearly demonstrates the viability of the
induced transmission technique as a means of providing conductive thin-film
coatings with high infrared transmission., The work directed towards the
understanding of the optical constants of the indium-tin-oxide films has
enabled us to obtain an idea of some of the practical limits of the tech-
nique for considerations such as film durability and the spectral coverage

that can be obtained,
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SECTION 4

ANTIREFLECTION COATINGS

The design types that can be used most effectively for high index sub-
strates such as zinc sulfide and zinc selenide comprise one or more films,
each being o:.e-quarter wavelength optical thickness at a wavelength centered

in the frequency range of interest,

4.1 THEORETICAL DESIGN

4.1.1 Single Layer Desigus

The simplest design is the well known single quarter-wave design, which

provides for a minimum reflectivity value at or close to zero when

T

[ (Vi

n, = (nons)

where

nl is the refractive index of the film

no is the refractive index of the medium

B VISHEROLE PR L1 o S <

é n_ is the refractive index of the substrate

-

Eal
et teteas

For zinc sulfide (n = 2,2), n, = 1.48 and for zinc selenide {n = 2.4), ny = :
] 1.55; the spectral response of these film systems are shown in Figures 12 and i

13, Since no known nonabsorbing material having the above indices in the 8

R b

to 12 micron regior exists, it will be necessary to simulate this index.

One method of realizing films having refractive indices not available
in any practical material is the use of the Herpin equivalent index film sys-
tem technique, This technique basically involves the use of a symmetrical

;
é system of 3, 5 or some other odd multilayer stack of film to simulate a single

film with some index intermediate between the values for the two films, Figure
l4a illustrates the single film design for ZnSe and Figure 14b illustrates the
simplest equivalent stack, a three-:1ilm equivalent of a single quarter-wave

optical thickness. The solution can be affected with either two high index

24
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T ZnSe

N = 1. 5466 /4 O, T, ThF,
1 ZnSe
T 7T T 77T
ZnSe ZnSe
a. Single Film b, Three-Film Herpin

Equivalent Film Section

Figure 14. Herpin Equivalent Index Film System
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films and one low index film, as shown, or two low index films and one high
index film, The selection of the particular arrangement for any two mate-
rials would depend on practical considerations such as adhesion to the sub-

strate, abrasion resistance, etc,

Figures 15 and 16 (ZnS and ZnSe, respectively) show the Herpin cquiva-

lent film system that replaced the single film previously shown.

4,1.2 Double-Layer Desigus

The effective range of antireflection coverage can be extended through
the use of double-layer designs using two quarter-wavelength thick films,.

One solution for such a design occurs when

A
2 . (=2)
" %
where
n, is the refractive index of the outer film
n, is the refractive index of the inner f£ilm
By assuming n, to be 1,40 (ThFA) one calculates the theoretical value
of n, to be 2,07 for ZnS and 2,17 for ZnSe. The spectral response of these
coatings is shown in Figure 17 for ZnS and in Figure 18 for ZnSe., By the use
of the Herpin equivalent film system, n, is replaced by ZnSe and ThF4 films,

The spectral response of these coatings is shown in Figure 19 for ZnS and in

Figure 20 for ZnSe,

4,2 EXPERIMENTAL EFFORT

To increase the durability of these coatings, a thin protective film
of CeF3 was used as the outer film, The following table lists the coating
design and spectral performance curves of 2,0 mm thick ZnS and ZnSe sub-

strates coated on both surfaces,
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: Theoretical Theoretical Spectral
é Substrate Design Ferformancr Curve
; ZnS N b Figure 15 Figure 21 (2)
; Zns NG = NG Figure 19 Figure 21 (1)
ZnSe A b Figure 16 Figure 22 (2)
i ZnSe Nb = Nb Figure 20 Figure 22 (1)
% The durability of the A/4 and AN/4 - A/4 stepdcwn coatings were evaluated,
% and the results are shown in the following table,

Test Specification Results
1 Adhesion MIL-M-13508B Passed
3 Abrasion MIL-C-675A Passed
4 Humidity MIL-C-675A Passed
z ashing Using Acetone & Alcohol Passed
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SECTION 5

USE_OF CONDUCTIVE COATINGS IN NONPARALLEL BUS BAR CONFIGURATIONS

L s et 2

In using thin-film heating systems in relutively high quality trans-
parencies, it is essential to ensure that nonuniformity of power dissipation %
in the film is avoided, Films made using the Perkin-Elmer conductive oxide
process exhibit a high degree of uniformity of bulk resistivity, and any non-
uniformity of the sheet resistance/power dissipation would only arise from
thickness nonuniformity or effects due to either nonparallelism of the bus
bars or end effects at the bus bars,

This phase of the program was intended to demonstrate the use of a non-
unifc..n coating technique applied to a fairly simple irregular configuration

such as a trapezoidal or triangular window shape, It was intended to serve two

purposes:

a, A first pract.c.al experience with the nonuniform resistance

conductive antireflection coating technique applying known
technology

b, A demonstration of significant potential value to the LLLTIV

portion of the B-1 sensor window program

5.1 NONUNIFORM COATING TECHNIQUES

In many circumstances involving windows of irregular shape (such as
those originally planned for the B-1 sensor housing) and spherical (dome) or
other nonflat sections, it is not possible to attach electrical connections
or bus bars to a window in order to make them parallel, This will create an
uneven power dissipation on the element unless it is countered by making the

appropriate change in film thickness,

Changing thc film thickness or grading of the films could easily be

accomplished by using the selective coating technique of the Perkin-Elmer
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(1)

Glacler process, The disadvantage of this method would be that incorpora-
tion of the nonuniform films in coating designs would be difficult because of
the continually changing thickness., For transparent regions of the conductive
film, this problem could be overcome by overcoating the conductive film with
a dielectric film of equal refractive index, whose thickness varied in the
complementary sense. The two films would then be combined to form a uniform
film of known optical thickness that could then be incorporated in anti-
reflection coating designs by any of the techniques previously described.

Figure 23 schematically illustrates the nonuniform film technique,

Filler Layer

77 77777777,

Conductive Layer

Figure 23. Overcoating of Graded Film
5.2 GLACIER PROCESS DESCRIPTION

The basic Glacier process involves a definition phase, a mask prepara-

tion phase, and a deposition phase.

5.2.1 Definition Phase

The fi1-st step in the procedure is to define a point-by-point map
description of the desired film thickness required, The values for this ap-

proximately rectangular array of locat . as is required for the mask fabrica- f

tion process and is inserted into a computer program, The map is used to
construct a variable transmission mask that is inserted in the vapor stream
of a coating chamber and modifies the flow of coating material to produce a

variable thickness coating on the substrate,

o i

5.2.2 Mask Preparation

The mask is prepared in several steps. The computer output data is

corrected to the final format by point-by-point exposure of photographic film

on an automatically controlled precision drafting table. The contrast of the
pattern is enhanced by an autopusitive contact printing process, This high-

contrast image is then transferred to a layer of photoresist material thut has

(Dglacier Program, Perkin-Elmer Report No. 11200.
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been laminated on a wire cloth carrier, After development, the remaining
photoresist has the pattern that is desired for the final mask, But since
the photoresist material is not suitable for use in a vacuum chamber, the
pattern is transformed by evaporation, plating, and chemical bathing into
an all-metal halftone, The resulting mask is fine enough to permit precise
control of evaporant transmission, is sturdy enough to facilitate handling,

and is well suited to the vacuum environment,

5.2.3 Deposition Phase

The key to the Glacier process is this transmission mask that can
effectively regulate the amount of evaporant naterial deposited on any por-
tion of the optical substrate, The mask ~onsists of a multiplicity of half-
tone dots or holes in a metallic sheet supported by woven stainless-steel
wire cloth, The size of each dot, and therefore its transmission, is con-
trolled individually based upon the input map data. A typical mask may
contiin over one-half million halftone dots, Because the mask is placed
suitably downstream and the evaporant source has an appreciable area, there
is no residual halftone structure in the mask shadow on the workpiece,

Therefore, smooth surfaces are produced,

The substrate and mask are niounted in the chamber and the alignment
of the substrate, mask, and coating source is performed., The deposition of
material is initiated by controlling the evaporation sources. Monitoring of
deposition rate and thickness is accomplished with two crystal monitors that
are mounted on the edge of the substrate, When the crystal monitors indi-
cate the required amount of material has been deposited, the coating process
is terrinated and the optical element is removed for testing. There is no

fundamental limit to the amount of thickness \ariation that can be achieved,

5.3 EXPERIMENTAL EFFORT

Four BK-7 trapezoidal windows were fabricated to achieve a transmis-
sion wavefront error less than >./15 at 6328 A. The two parallel sides of these
windows were 3 inches and 6 inches with a height of 4 inches. Two windows (A
and B) werc coated with a uniform conductive coating, and two windows (C and D)
were coated using the Glacier technique to achieve a 2/1 thickness ratio. The

latter two windows were then ccated with the reverse {ilm thickness variation
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using a dielectric film whose index is equal to the conductive film. Fig-

ure ’* shows the schematical buildup of this film system. All windows were

characterized at each stage of completion and the results are shown in Table 4.

Figures 25a and b show the transmission wavefront interferograms before and

after coating window B. Figures 25¢, d and e show, respectively, the trans-
mission wavefront interferograms before coating, after the 2.3/1 ratio con-

ductive cnating, and after correction of window D. Using this process, the

observed degradation was less than )/20 at 6328 A.

Windows B and D were chosen to evaluate the temperature profile of the
heateble trapezoidal windows. Figure 26 shows the geometry and electrical
connections made to a uniform and nonuniformly coated BK-7 window. The pro-
ceaure used for this evaluation was to apply ac voltage (slowly) and to
record the temperature at positions A through H (as shown iu Tigure 26) when
the window has reached equilibrium (~ 10 minuteg). Table 5 shows recor@ed

temperatures of the nonuniformly coated window and Table 6 shows the uniform

coating temperatures.

By comparing the data shown in Tables 5 and 6, one finds that at an
average window temperature of approximately 165°F, the nonuniform window had
a temperature variation of only 39.4°F as compared with 65.1°F for the uniform
coating. This clearly indicates the effectiveness of the nonuniform coating
technique to obtain uniform power dissipation. The data also indicates that
special techniques for mounting heatable windows may have to be designed to
eliminate edge effects. Section 6,9 describes the thermal problems due to

lateral heat flow through an IR window to the frame.
5.4 CONCLUSIONS

For the transparent region of conductive films, the nonuniform coating
technique described in this section is an ideal solution to the problem of
providing a uniform power dissipation in an irregular bus bar configuration
if an analytical solution can be determined for the thickness of the conduc-
tive film as a function of the geometry. The optical thickness of the coated
optic can then be corrected for transmission wavefront uniformity and can be

incorporated intoc a high efficiency multilayer coating.
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Figure 24,

Variable Resistance Coating




Flgure 25,

Transmisgion Wavefront Interferograms
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TABLE 5,

WINDOW D

RESISTANCE (BUS TO BUS) = 149.3 OHMS

RECORDED TEMPERATURES OF NONUNIFORMLY COATED WINDOW

Voltage
(ac) Temperature (°F)
Position
(Fig, 26) | A B c D E F d H
15 104.8 | 104.3 |103.8 |106.0 |104.3 | 99.1 |100.6 | 97.2
30 146.1 | 141.0 |144.6 [147.3 |136.) |124.,3 |130.1 |119.1
35 172.6 1163.4 |169.4 |173.3 |157.8 |140.0 |149.7 |133.9
60 238.0 {237.3 |238.8 |241.4 |220.8 |209.3 |212.2 |185.5
TABLE 6., RECORDED TEMPERATURES OF UNIFORMLY COATED WINDOW
WINDOW B
RESISTANCE (BUS TO BUS) = 236,1 OHMS
Voltage
(ac) Temperature (°F)
Position
(Fig. 26) A B C D E 13 G H
20 96.2 | 95.9 94.9 | 95.1 | 93.5 85.8 | 89.1 R6.8
50 137.4 | 143,2 |130.8 |137.4 |129.9 | 106.7 j124,3 |109.3
00 179.9 j 176.9 |163.2 |188.8 |171.6 |123.7 |155.,5 |131.0

46




4,

SECTION 6

THERMO-OPTICAL ANALYSIS OF CONDUCTIVE FILMS AND PATTERNS

Several infrared window deicing techniques utilizing electrically con-
ductive films or patterns were analyzed to determine the extent of wavefront
; distortion and the stresses and strains induced by the temperature and pressure
gradients imposed by the B-1 flight environment, Window substrate materials
were limited to CVD (chemical vapor deposited) zinc sulfide (ZnS), zinc sele-

nide (Znfe), and zinc sulfo-selenide (ZnSSe) solid solution,

A study of the safety aspects, especially with regard to the possibili-
ties of catastrophic failure due to temperature controller malfunction, was

also performed. Several general conclusions were reached:

The maximum window tensile stresses due to temperature and

pressure gradients are well within the strength capabilities
of the selected window materials with the possible exception
of an abnormal situation that results in sudden couoling of a

window that has been heated at high power densities,

The wavefront degradation due to axial temperature gradients
caused by applying the electrically conductive coating to

the interior surface of the window is insignificant at angles

of incidence up tvo 30°,

There is appreciable wavefront distortion for radial (lateral)
temperature gradients caused by heat loss to a cold window

frame, A method of eliminating these gradients is described,

The thermally-induced optical path differences (window thick-
ness variations) due to striped heater patterns, utilized to

increase the average window transmission, will cause negligible

wavefront distortion for interior surface coatings on ZnSe at
4,5 watts/inz.
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e, An attractive method for maximizing the overall trans- ,
mission of the EC-coated window is to add 2 thin intermedi- :
ate bus bar centered on the vertical dimension (parallel to i

‘ the horizontal dimension). This reuuces the electrical ro-

sistance of the coating by'a factor of 4, thus permitting

15 . oam A e e

the use of thinner (higher transmission), high resistance

EC coatings, uniform or striped,
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VPP

Thermal stresses are minimized by applying the EC coating to

e
"
-

i the exterior window surface, although higher power densities
are then required to maintain a given interior curface tem-

perature and the exterior coating is more subject to physical

damage than an interior coating would be,

6.1 ASSUMED CONDITIONS

For purposes of the analyses, the following conditions were assumed for

the IR window:

) e Window dimensions, 8.8" x 10" x 0.75", with the 10" dimension
: horizontal (same as the preliminary dimensions for the 3-1

k germanium IR window, per Boeing).

e Average power density required, 4.5 to 6.9 watts/in2 (dis-

cussed later),
e Minimum desired average heater-coated window transmission, 0.80.
e Maximum available supply voltage, 230 V rms,
e Aircraft interior temperature, 70°F,

e Interior surface convective film coefficient, 0.5 BTU/hr-ft2-°F

(calculated value for free convection at 14.7 psia).
e Minimum ambient temperaturz, -65°F,

e Exterior surface film coefficient, 21,5 MTU/hr-ft2-°F (per
Joe Stein, NAR).

e Minimum external surface temperature, 35°F (to prevent frosting).

e Window frame is temperature controlled to minimize edge heat
losses and concurrently reduce the lateral window temperature

gradients,
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e The bandpass of the transparent EC coatings is 8 to 12 pum.

The thermal conductivities of ZnS and ZnSe are within 10% of each
other; therefore, they are considered interchangeably with regard to the tem-
perature distribution., ZnSSe has a thermal conductivity equal to one-half
that of ZnS and, therefore, represents the worst case of the three materials
in this respect. The properties of thesfe materials were taken from data sup-

plied by Raytheon (Table 7) and References 2 through 6.

6.2 BASIC ANALYTICAL PROCEDURE

The transient and steady-state temperature distributions were deter-
mined by nodal analysis for selected deicing configurations, From these, the
resultant stresses and strains were computed., The lattur were then used to
calculate the distortion of a plane wavefront assumed to be incident over a

selected region of the window,

Of the three potential configurations: (1) EC coating on the exterior
surface, (2) EC coating on the interior surface, and (3) EC coating laminated
between two window substrates, only the first two were considered because a

suitable laminating adhesive having high transmission between 8 and 12 pmn was
not available at that time,

6.3 POWER DENSITY AND TEMPERATURE CONTROL REQUIREMENTS

The initial axial temperature gradient analysis was based on the heat

flux specified for the B-1 LLLTV window, 6.9 watts/in2 (Ref. 7)., Subsequent

(Z)Caren, R.P., Funai, A,I, Frye, W.E. and Sklensky, A.F,, "Properties of
Infrared Sensor Materials", Materials Research and Standards, MIRSA,
Volume 11, No. 6, June, 1971, p. 10.

(B)Technical Report AFAL-TR-73-252, '"Chemical Vapor Deposition of Multi-
spectral Windows", Air Force Avionics Laboratory, Wright Patterson Air
Force Base, July, 1973, pp. 29, 30.

(4)"Raytran ZnSe", Raytheon Data Sheet, Raythcon Research Division, 28 Seyon
Street, Waltham, Massachusetts 02154

(S)Telecon, James Pappis, Raytheon with E.A, Strouse, Perkin-Elner, December
1974, re: Recent CVD ZnSe Data.

(6)Letter, James Pappis, Raytheon to E.A, Strouse, Perkin-Elmer, June 28,
1973, re: Properties of CVD ZnS, ZnSe and ZnSS3e,

(7)Speci£ication No. L330C2001-1, Rockwell International, B-1 Division, p. 3.
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TABLE 7, CVD MATERIAL PROPERTIES (REF, 3,
EXCEPT ASTERISKED DATA AS NOTED)

E Property Standard ZnSe ZnSSe ZnsS
é Density (gm/cc) 5.27 5.15 4,08
1 Refractive Index (10.6 ym) | 2.405% (10.6 pm) 2,38 (est) | 2.20
é Absorption Coefficient 0.002 - 0.005** 0.007** ~0.15""
T (10.6 um, 1/em)
¢ Transmission Limits 0.5 = 22 um 0.5 - 16pum | 0.5 - 14 pm
3 Hardness (Knoop 50 gm) 100 190 250
5
? lcrain Size (Microns) 70% 100 (20 - 100)
1 . %
f Flexural Strength 8000 7700 16000
: (psi, 4-point loading)
; 6
Young's Modulus (psi) 9.75 x 10 9.16 x 106 10.8 x 106
Thermal Expansion Coeffi- 8.53 x 107° 8.30 x 10°% | 7.85 x 107°
cient (1/°C) RT-500°C
RT - 170°C 7.57 x 107%%
Thermal Conductivity 0.043 0.02 0.040
(25°C, cal/sec-cm-°C)
Specific Heat (cal/gm-°C) 0.085 0.088 (est) 0.112
Electrical Resistivity ~ 1012 ~ 1012 ~ 10%2
(ochm-cm)
dn/dt (10.6 um, 1/°C) 5.9 x 107°%
Turbidity Coefficient
(1/cm) "
0.6328 um 0.16 - 0.43"
10.6 pm 1,5 - 3 x 107
Inhomogeneity 10,6 um 1.3 x 10-6

%*
Ref., 5
vede

Ref. 6
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discussions with the Thermodynamics Section personnel at Rockwell during
September 1973 revealed that thke nominal heat flux requirement for the B-1
IR window could be as low as 4 watts/in2 (approximately 2000 BTU/hr-ftz) to
maintain the exterior surface above 35°F, Perkin-Elmer analysis has indi-
cated that & minimum of 4.5 watts/in2 (approximately 2200 BTU/hr-ftz) is
required to achieve this condition with the -65°F exterior ambient tempera-
ture specified for the B-l LLLIV window. Consequently, 4.5 watts/in2 was
ultimately selected for the minimum required value, (Note that MIL-T-5842A,
Ref, 8, requires a maximum of 4.3 watts/in2 for windshield anti-icing heat-
ing at air speeds greater than 300 knots.) However, as will be shown later,
higher power densities may be needed to prevent fogging on the interior sur-

face with low exterior ambient temperatures,

This situation is primarily due to the relatively high thermal con-
ductivity of the selected window substrates (near that of the austenitic
stainless steels), which results in much lower axial temperature gradients
than are usually encountered with the more common window glasses, The latter
have thermal conductivities that are lower by factors of up to 10 or more,
Therefore, the temperature control circuit should be designed to automati-
cally deliver sufficient power to ensure that the minimum interior surface
temperature is always maintained above the interior dewpoint tewperature in
addition to satisfying the 35°F minimum exterior surface temperature require-
ments, It is possible to provide a control system that will make the winimum
interior surface temperature track the interior atmosphere dewpoint with a
positive temperature differential of a few degrees. This method would mini-
mize the heater power requirements, A simpler, alternate approach (which will
obviously waste power at relative humidities of less than 100%) is to track

the interior ambient atmosphere temperature with a small positive differential,

There is the possibility that a combination of circumstances can result
in fogging of the exterior surface, e.g., this surface, operating near 35°F,
is suddenly exposed to a warmer, high humidity envitvonment during a flight

maneuver, An external dewpoint or ambient temperature sensor track circuit,

e v bt i . . A " e

(S)Military Specification MIL-T-5842A, "Transparent Areas, Anti-Icing,

Defrosting and Defogging Systems, General Specification for', September,
1950,
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similar to that just described for the interior sucface, would also be re-
quired if there is a chance that these circumstances would occur when the

IR window 1is in use.

A schematic of the complete control system described above is shown
in Figure 27, The edge guard (subframe) heater is required to minimize the
optical degradation resulting from radial (lateral) temperature gradients
(to be discussed later). The bimetallic, Klixon-type thermostat will shut
down both controllers in the event of a circuit malfunction that causes the
heater to inadvertently stay on, e.g., open circuit in any of the positive
temperature coefficient ambient temperature sensors, shorted control tran-
sistor or thyristor, shorted positive temperature coefficient surface temper-
ature sensor, etc. Control redundancy can thereby be provided by, using a
narrow ditferential thermostat having an actuating temperature above the
highest anticipated interior dewpoint, which would automatically maintain
the window fog- or frust-free but at the expense of higher power consump-

tion and/or EML caused by the ON-OFF switching transients,

6.4 STEADY STATE THERMAL STRESSES

The results of the steady state nodal analyses are summarized in
Table 8 for the range of power densities considered here, The intermediate
values listed therein are those necessary to maintain the interior window
surface at the assumed interior ambient temperature (70°F) for either EC coat-
ing location. Thit condition guarantees that there will be no fogging on the

interior surface at very high humidities,

The thermally induced stresses were calculated for 4.5 and 6.9 watts/

inZ using the equation tor the bending stress in a flat plate of uniform

thickness with a linear temperaturv gradient and fixed edges(g):
Stress = 0,5%AT«*E/(1-V)
where
0T = temperature gradient, °F
a = expansion coefficient, 1/°F
E = modulus of elasticity, psi
v = Poisson's ratio (dimensionless) = 0.3 (Ref, 2)

(9)Timoshenko, 5. and Woinowsky-Krieger, §.
McGraw-Hill, 1959.

"Theory of Plates and Shells',

)
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TABLE

8. SUMMARY OF EC-COATED ZnSe AND ZnSSe WINDOW
(STEADY-STATE TEMPERATURES BETWEEN
4.5 AND 6.9 WATTS)/IN?)

E Power EC Coating On EC Coating On
g Density Interior Surface Exterior Surface
Window Interior | Exterior Temp Interior | Exterior Temp
; Material QWatts> Surface |Surface |Gradient|Surface | Surface |[Gradient
, in2 Temp(“F) | Temp(“F) (°F) |Temp(°F) | Temp(°F) (°F)
;
: ZnSe 4.50 51,62 38.28 13,34 38,68 38.58 | 0.10
5.23 70.00 54 .55 15.45 54.96 54.91 0.05
5.91 86.99 69.60 17.39 70.00 70.00 0.00
6.90 | 111.98 91.73 20.25 92.13 92.20 |-0.07"
ZnSSe 4.5C 66.51 37.93 28.58 38.78 38.58 0.20
4.62 70.00 40.66 29.34 41,51 41,33 0.18
5.91 106.40 69.15 37.25 70.00 70.00 0.00
€.90 | 134.58 91,21 43,37 92.06 92.20 |[-0.14"

¥
Negative temperature gradient indicates that heat flows from exterior
to Lnterior surtace.

Conditions:

. 2.,
film coefficient, 0.5 BTU/hr-ft =°F
film coefficient, 21,5 BTU/hr-ft<-°F

Interior surface
Exterior

I. Window dimensions, 8,8" x 10" x 0.75" thick
2. No lateral heat tlow

3. Interior ambient temp, 70°F

4, Exterior amblient temp, -65°F

5.

6.

surface
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The results are given in Table 9 for interior and exterior EC coatings on

ZnSe and ZnSSe., The corresponding stresses for ZnS are within 10% of those
listed for ZnSe,

Obviously, each of the three substrate materials, ZnS, ZnSe and ZnSSe,
is suitable from a stress standpoint when the EC coating is deposited on the
exterior surface of the window. The exterior surface thermal resistance
(R3, Figure 28), due to forced convection in flight, is much smaller than
the interior surface resistance (Rl). Consequently, most of the electrical
heat flux must flow through R3. This, combined with the relatively high
conductance of the window substrate material, results in an extremely small
axial (thickness) tempecature gradient, e.g., 0.10°F for ZnS or ZnSe and
0.20°F for 2nSSe at 4,5 watts/inz, with a correspondingly negligible stress,
With the heater coating deposited on the interior surface (Figure 29), all
three materials still have acceptable stresses despite the considerable in-
crease in thermal gradient compared to the previous configuration (from
0.07°F to 20.25°F for ZnSe) because most of the applied electrical power
must now flow through the substrate to the exterior ambient, Note that even
at 6.9 watts/inz, very little of the total electrical input (3.8 watts or
0.63%) is dissipated to the interior ambiewnt because of the aforementioned

large free convection resistance at the interior surface,

6.5 COMBINED STEADY-STATE STRESSES (AT EXTERIOR SURFACE)

The maximum stresses due tou the temperature and pressure gradients
were calculated(g) for three basic window support conditicns at 4p's of 2.5
and 10.5 psi (maximum expected Op per Ref, 10), The worst case results, for
ZnSSe at 6.9 watts/inz, are summarized in Table 10, Raytheon3 has deter-
mined that the room temperature flexural strength of this hybrid material,
(with 10 percent sulfur substituted for selenium) is 7700 psi *10%; there-
fore, the material would be conservatively loaded, especially since the soft
elastomers, normally used for the window support to eliminate stress concen-
trations in the brittle substrates, provide conditions that approach the

free edge case,

(lo)Telecon, Phil Mueller and Ron Brigstorke of Boeing to E,A, Strouse,
Perkin-Elmer, July 1973, re: B-1 Flight Parameters.
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q, * 607. 2 Watts

g, =1.98 Watts (2072.4 BTU/hr) q, = 605.2 Watts
(6. 76 B TU/“,” (2065.64 BTU/hr)
A Rl B R2 C R3 D

Nodes:
A Interior Ambient, tA = 70°F
B Interior Window Surface, tB = 42, 13°F
C Exterior Window Surface, tC = 42, 20°F
D Exterior Ambient, tl) = «65°F
Temp gradient through window = tB-tC = =0, 07°F

Resistances (Based on assumptions stated earlier):

R1
R2

R3

"

n

3.2727°F * hr/BTU
0. 00Y8°F * hr/BTU
0.0761°F * hr/BTU

Note: It is assumed that heat flow is unidirectional-perpendicular to
window plane (an edge guard heater eliminates heat transfer to
the window frame)

Figure 28. Thermal Schematic of Heated 8.8'" x 10" x 0.75" 7ZnSe Window
with EC coating on Exterior Surface (6.9 watts/in?)
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38 W qq - 607. 2 Watts ‘
= 3. atts )
12 ® (2072.4 BTU/hr) 4y = 603. 5 Watts

(12, 97 BTU/hP)* (2059.75BTU/hr)
- AAA—

A RI B R2 C R3 D

Nodes:
A = Interior Ambient, tA = 70°F
B = Interior Window Surface, tB = 111, 98°F
C = Exterior Window Surface, tC =91, 73°F
D = Exterior Ambient, tD = -65°F

Temp gradient through wincow, t = 20, 25°F

Bt

Resistances (Based on assumptions stated earlier):

Rl = 3,2727°F * hr/BTU
R2 = 0.0098°F « hr/BTU
R3 = 0.076!°F * hr/BTU

e

Figure 29. Thermal Schemati: of Heated 8.8" x 10" x 0.75" ZnSe Window i
with EC Coating uu Interior Surface (6.9 watts/inZ)
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TABLE 9, STEADY-STATE THERMAL STRESSES FOR UNIFORMLY HEATED
8.8" X 10" X 0.75" ZnSe AND ZnSSe WINDOWS AT 4,5
AND 6.9 WATTS/INZ2 POWER DENSITY

Maximum Tensile 2 ngimum Tensile 2
: Stress® at 4.5 watts/in Stress” at 6,9 watts/in
: Window _ (psi) o (psi)
3 Substrate Exterior Interior Exterior Interior
) Coating Coating Coating Coating
é ZnSe 2.6 372 1.9 589
; ZnSSe 5.2 732 4.1 1163

*Occurs at colder surface (Table 8) and assumes rigidly held
(fixed) edges; actual stress levels are usually reduced by
deflection of the flexible elastomer sealant or gasket retain-
ing the window,
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6.6 TRANSLIENT THERMAL STRESSES

During transient heating ol the window with the EC coating on the
interior surface, the thermal tensile stress dues not exceed the steady-
state values given in Table 7, I[f the heater power is interrupted after
the steady-state temperature gradlent is established, the tensile stress
will increase due to the cooling ot the exterior surface to approxirately
650 psi for the ZnS material and to approximately 1240 psi for the ZnSSc
material. These values are all acceptable; however, if the steady-state
power input is increased to above 4.5 watts/inz, the ZnSSe macerial may
become marginal, For the case where the EC coating (and th: power input)
1s applied to the exterior surface ~f the window, there is no transient

thermal stress problem,

The time to heat the outer surface of the ZnS window tu 35°F, at
-65°F ambient, is approximately 27 minutes when the EC coating is on the
interior surface and 20 minutes when the coating is on the exter.or surface,
An increase In the maximum power input to above 4.5 watts/in2 wlll decrease
this time, The 2nSSe material will require approximately 10% longer to come

up to temperature,

The transient thermal response, thermal stress, and thermal runaway
equilibrium temperature have not been computed separately for the aSe mate-
rial, This was considered unnecessary since the response of the Znse mate-
rial would be almost identical to the ZnS mater? 1, The thermal conductivity,
thermal capacity, thermal stress, and thermal d..fusivity for both materials

are very similar (within a few percent),

6.7 TEMPERATURE CONTROL CIRCUIT MALFUNCTION

Although the proposed circuit tor the window heater controller in-
cludes a thermostatic switch bonded to the window to cut off power in case
of excessive temperature, calculations indicate that 4.5 watts/inz could be
continuously applied to the EC coating with the local awmbient at 70°F on both
sides of the window, The ZnS window would stabilize below 200°F if the air
stream velocity exceeds 500 ft/sec (340 mph), The temperature gradient (and
hence, the thermal stress) would not be sfignificantly different than for
steady-state conditions. Only in the case of prolonged overheating followed

by a power failure and simultaneous greatly reduced ambient would the thermal
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stress indicate a probable window failure. With the EC coating on the out-

side, a structural failure due to overheating is unlikely,

6.8 WAVEFRONT DEGRADATION (UNLFORM EC COATING ON INTERIOR SURFACE)

A raytrace and wavefront analysis was performed for each of the three
materials (2nSe, ZnS, and ZnSSe) for a temperature gradient due to 6.9 watts/
in2 .ccompanied by a flight pressure differential of 2,5, 5,0 and 10.0 psi
at angles of incidence of 0°, 15° and 30°. The deflection due to the pres-
sure dilferential tends to compensate for the thermal distortion; therefore,
é the worst case is for the largest AT (for ZnSSe material with its lower
thermal conductivity), the smallest pressure gradient, and the highest angle
of incidence, The results for this combination are shown in Figure 30; wave-

front degradation is insignificant and will obviously be less for lower power

densities,

4 6.9 LATERAL TEMPERATURE CGRADIENTS

4 A serious problem does exist with regard to lateral heat flow through

the window to the frame., For the mount configuration shown in Figure 31, the

; conduction between the window and trame, through the 0,13-inch thick silicone

: elastomer, is on the order of 1,9 watts per Jegree F of their temperature
difference (with the thermal conductivity of the silicone rubber = 0.18 BTU-ft/
hr-ft2-°F). Theretore, the heat loss could be as high as 331 watts for the
extreme case of a ZnSSe window at 6.9 watts/in2 (average edge tcmperature =

112,9°F) and a frame temperature of -65°F,

A nodal analysis was made to determine the in-plane temperature gradi-
ents due to conduction to the window frame. [t was assumed that the frame was
attached to the exterior of the turret in the usual fashion. The following
typical flight conditions, obtained from Rockwell B-1 Section personnel, were

used for these cowr- -tations:

o Aircralt velocity, 500-600 ft/sec

e Altitude BO0OO - 10000 ft

e Ambient air temperature, 483°R (23°F)

e Exterior surface film coefficient, 21,5 BTU/hr-ft2-°F

e Average turret diameter, 12" (looking forward)
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Material: ZnSSe 10" x 8.8" x 0, 75"
AT = 44°F

AP = 2,5 psi

30° Angle of Incidence

A =10.6 Micrometers

Q = 6.9 watts/in2

Round Aperture, 8. 5-inch diameter

0.8

O.GL

Abertation-Free Sensor

é
B
3 o
] &
= 0.4 =
Aberration-Free
a. Sensor and Window
0.2
0 1 1 |
0 0,2 0. 4 0.6 0.8 1.0

) 1
Spatial Frequency - k/ko (ko = m)

Figure 30. Loss of Performance Due to Window with Axial
Temperature Gradieaut and Pressure Differential
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SILICONE RUBBER SEAL, 43" Tek

3 SUREBALE
A 4 )f I j
k ;— Y / !

-
/ NN b
EC COATING

Tﬂzzwz TURRET STRUCTURE

=3

SEAL
Zm Se WinDOW
8.8"x 10.0%.8" ALUMINUM ALLOY FRAME
OVERALL (2 PIECE)

DIMENSION

Figure 31. Window Mount Concept
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The stagnation tewmperature for the first three conditions is 500,7°R or 4]1°F

at a Mach number of 0,464 (500 ft/sec), This value was used herc for the

frame temperature,

Figure 32 shows the thermal contours for one quarter of the window,
Figures 33, 34, and 35 show that significant wavefront degradation is caused
by this temperature profile with ZnSe. The analysis is based on the value
of dn/dT for the ZnSe material obtained at 6328 K. Values of dn/dT for ZnSSe

are presently unknown,

If, in order to eliminate lateral gradients, an additional 0.13-inch
thickness of silicone rubber and closed-cell polyurethane foam were used to
enhance the thermal insulation between the window and frame (Figure 36),
approximately 247 watts would be required to maintain the added subframe at
the maximum average edge temperature of 112,9°F for the ZnSSe window (frame
at -65°F; thermal conductivity, BTU-ft/hr-ft2-°F, for silicone rubber = 0,18
and for polyurethane foam = 0,022), This is a relatively large amount com-
pared to that required for the window heater, but it appears to be essential
for maintaining high optical performance, Note that extra power would be
required anyway to compensate for the edge losses that are present with the
simple window mount shown in Figure 31, as mentioned above. The extra power,
if delivered to the subframe heater instead, is used more effectively to
eliminate lateral gradients, Power is conserved by maximizing the ratio of
polyurethane insulating foam to silicone rubber usced between the subframe and

frame, consistent with seal and support requirements,

6.10 [INCREASING COATED WINDOW TRANSMISSION WLTH CONDUCTLVE PATTERNS

A basic disadvantage ot the electrically-conductive coatings considered
here is their inherent decrcase in optical transmission with decreasing re-
sistivity (increasing thickness), Three possible approaches to solving this
problem were selected for thermo-optical analysis, They are, not necessarily

in order of preference:

a, Application of opaque, electrically-conductive nichrome

films to the antireflection coated window in a regular

pattern of narrow, parallel linear stripes,
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Figure 32. Temperature Gradients in Quarter Window
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Material: ZnSe, 10x8.8x0.75 inch

Thermal Input: 2,85 watts/in?
1.0 Frame at 41°F

E Ambient (Interior) at 70°F
% Ambient (Exterior) at 23°F
E 500 ft/sec, 10, 000 ft. alt.
{ XA = 10,6 micrometers
y Normal Incidence
0.8 |
¢
¢ Aberration-Free Sensor
: Sensor Aperture (8" x8'")
Fills Window
0.6 |-
Window Alone
i
= 0,4 |
0.2 Aberration-Free
Sensor and Window
0 ] | 1
0 0.2 0.4 0.6 0.8 1.0

Spatial Frequency - k/kO (ko -

Figure 33 Loss of Performance Due to Window with Radial Temperature Gradient
Resulting from Conduction of Deicing/Defogging Heat to Frame
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Figure 34.

Material: ZnSe, 10 x8.8 x0.75
Thermal Input: 2.85 watts/in?
Frame at 41°F

A.nbient (Interior) at 70°F
Ambient (Exterior) at 23°F

500 ft/sec, 10, 000 ft.

A =10, 6 micrometers

Window Alone

Aberration-Free
Sensor and Window

~ Normal Incidence . )
Aberration-Free Sensor

Sensor Aperture 1/2 of
Window Aperture (5" x 5", centered)

1 1 1 |
0 0.2 0.4 0.6 0.8 1.0

. 1
Spatial Frequency - k/ko (ko Sy )

Loss of Performance Due to Window with Radial Temperature Gradient
Resulting from Conduction of Deicing Heat to Frame
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Material: ZnSe, 10 x 8.8 x 0. 75
Thermal Input: 2. 85 watts/in?
Frame at 41°F

Ambient (Interior) at 70°F
Ambient (Exterior) at 23°F

500 ft/secc, 10, 000 ft.

N =10, 6 micrometers

1.0

Window Alone

0.6

~ Aberration-Free
Sensor and Window
Normal Incidence

Aberration-Free Sensor

T(K)

0.2

, Sensor Aperture 1/2 of Window
o] Aperture (8" x 5", Offset to Edge)

| 1 1
0 0.2 0.4 0.6 0.8 1.0

Figure 35. Loss of Performance Due to Window with Radial Temperature Gradienc
Resulting from Condnction of Deicing Heat to Frame
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b. The use of additional narrow intermediate bus bars located

within the window clear aperture to permit the use of full

sheet, uniform nultilayer EC coatings having higher electri-

cal resistance than those being considered and, possibly,
higher optical transmission, The additional bus Lars would

minimize the supply voltage requirements by reducing the path
lengths for current flow.

c. Application of low sheet resistance, semi-transparent EC coat-

S U T TS TS

ings to the antireflection coated window in a regular pattern

T

of parallel linear stripes,

For the first approach considered (the opaque nichrome stripes), a
pattern was chosen to give the minimum clear aperture obscuration for an
average power density of 4.5 watts/inz, consistent with the maximum recome

mended stripe power density for thin-film resistors of 50 watts/in2 (Ref. 11).

This pattern, which provides an overall transmission of 0.88, consists of nine

0.12-inch (3 mm) wide nichrome stripes spaced 1 inch (25.4 mm) apart and ori-
ented parallel to the 10" window dimension, symmetrical with the windowv cen- %
terline. Because of the high local power density, this configuration will 3
produce the highest temperature gradients in a given material and thus the

worst case optical path differences,

The major optical effect of this arrangement is the spurious diffrac- 2
tion image it produces, a regularly spaced set of images displaced along a ]
line perpendicular to the opaque conducting stripes at angles (8) from the 3
real image, where

2
2 sin EEE)
d
1(8) = (——d‘_’s) — Sl

(11)Rea, S.N. and Wriston, R.S,, Development of Deicing Methods for

Chalcogenide Windows for Recunnaissance and Weapon Delivery', Technical
Report AFAL-TR-73-340, Air Force Avionics Laboratory, Air Force Systems
Command, Wright-Patterson AFB, Ohio, October, 1973, p. 9.

70




where

d = center-to-center separation of the stripes
s = width of stripes
m = integer 1, 2, 3, ...

N = wavelength

I1(6) versus m is given in Table 1l1. The main effects of these diffraction
images are crosstalk awmong the detectors in an array and extraneous signals
from an out-of-field bright object.

TABLE 11. DIFFRACTED IMAGE INTENSITY

m 8\ = 10 um) 1(8)

1 4.0 x 1074 0.017
2 8.0 x 10°% 0.015
3 1.2 x 1073 0.014
4 1.6 x 1072 0.008
5 2.0 x 1073 0.005
6 2.4 x 1072 0.002

In addition to the diffracted images produced by a regular uarray of
opaque conductors, the total diffracted energy outside of a given angle from
the image of a point source is obtained from a simple formula, If I is the
total length of edges in the aperture of the optical system at which diffrac-
tion can occur, LAH is the total energy scattered outside a 3° cone, where H
is the irradlance at the diffracting edges and A is the wavelength of the
incident radiation. The scattered energy is essentially independent of the
curvature of the edges as long as it is not too yreat. This formula points
out the neccssity of utilizing a small value of L (i.e., as few conductors
as possible), which suggests the second approach ia its simplest form (one
narrow conductor) centered on the 8,8-inch dimension and parallel to the 10-
inch dimension, Obviously, diffraction eftects are substantially reduced
when compared with the nichrome striped pattern, which has 9 times the total
edge length, The single intermediate bus bar will lower the terminal resist-
ance by a factor of 4, allowing the use of EC coatings having sheet resistivi-

ties of 600{i/sq. to produce a power density of 4.5 watts/in? with a 230 volt
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supply, Furthermore, the central condu:tor can be grounded and the high voit-

age bus bars can be located, as usual, near the window frame, well shielded

from accidental contact,

Aanother benefit of running the conductor along the horizontal dimen-
sion of the window is that it is probably the direction of scan of a poten-
tial IR sensor, If the scan is along the centerline of the window, the length
of conductor seen at the focal plane will be constant over the scan. Had the
conductor been placed along the other dimension of the window, thc length in
the field of view would vary with the frequency of the scan. In this case,
any radiation emanating from the conductor because of its finite emissivity

would be modulated and added to the signal instead of being averaged out as
noise,

The key to the feasibility of this approach is how much of a transmis-
sion advantage the higher sheet resistance coatings (300 to 600{i/sq.) would
have over the existing 75 to 100{}/sq, coatings,

Note that there is another parameter that can be varied to possibly
eliminate the necessity for intermediate bus bars--the level of the supply
voitage, For a given power density, doubling the sheet resistance requires
V2 times the voltage. The maximum voltage permissible, no doubt, is limited
by sa.etv considerations in addition to EMI requirements and problems with arc-

over or corona, which might occur in an unpressurized or depressurized area.

A steady-state computer nodal analysis was run for the case of the
opajquv, striped nichrome pattern on ZnS and ZnSS: substrates to obtain a com-
parison w.th the uniform sheet coating, A summary of the results is given in
Table 12 and Figure 37,

As mentioned previously, the interior surface temperatures are below
the aircraft interior temperature in all cases except on or adjacent to the
nichrome stripe on the ZnSSe window, even though the exterior surface tempera-
ture is high enough to prevent frosting. This condition and the excellent

temperature uniformity on the cxterior surface are due to the relatively high

substrate conductivity,
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The third approach considered, a pattern of semi-transparent stripes,
would also produce diffraction effects similar to thcse obtained with the
opaque stripes, but with somewhat lower intensities, The main problem with
semi~-transparent stripes is that they introduce a phase shift over the part
of the aperture they cover with respect to the rest of the window, For a
wavelength in the range of interest, this differential phase shift is = x,
corresponding to a half-wave, resulting in a reduction of axial intensity
from 1,00 to 0,89 for an EC coating havine & transmission of 0.60, using the
same dimensions as given for the opaque conductors, This loss of energy on-
axis is redistributed among the rings of the diffraction image, correspond-
ing to a larger blur circle, Obviously, this problem can be eliminated if
the nonconducting portions of the window surface are covered with a coating
having the same phase shift characteristics as the conductive coating.

Another disadvantage of semi-transparent stripes is the relatively
high electrical resistance per stripe, requiring that the supply voltage be
increased above 230 volts to obtain an average power density of 4.5 watts/inz.
For example, if it is assumed that the minimum sheet resistance available is
75(i/sq,, a pattern consisting of 1/2'" wide stripes spaced 1" apart would give
an overall transmission of 0.80 (with a coating transmission of 0,60) but would
require 257,1 volts for 4.5 watts/inz, unless perpendicular intermediate bus
bars were introduced,

6.11 WAVEFRONT DISTORTION OF HEATER PATTERNS

Steady-state computer nodal temperature analyses were run for four
different semi-transparent (Perkin-Elmer multilayer EC coating) striped win-
dow heater patterns, each producing an average power density of 4.5 watts/in2
(for a total power input of 396 watts) with a pitch'(spacing) of 1 inch, The
window dimensions are 8.8" x 10" x 0.75" thick; material is either Zn5 or ZnSe
since they have similar thermal conductivities, The four configurations are

as follows:

e Nine 1/2-inch wide x 10-inch long stripes, 4.4 watts/

linear inch

e Ten 1/2-inch wide x 8.8-inch long stripes, 4.5 watts/

linear inch
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e Ten 1l/4-inch wide x 8.8-inch long stripes, 4.5 watts/

linear inch and also with 6 watts/linear inch (6.0 watts/
in2 or 528 watts total) to demonstrate the effects of
higher power densities

e Ten 1/8-inch wide x 8.8-inch long stripes, 4.5 watts/

linear inch

In addition, the nodal analy'is for the 1/8-inch wide x 10-inch long nichrome

stripe pattern was rerun for a direct comparison,

A summary of the results of these analyses is given in Table 13 and
Figures 38, 39, and 40. A finer nodal network was used for these runs, thus
giving slightly different (more accurate) temperatures than previously re-
ported for the case of the 1/8" wide nichrome stripes, Note that the temper-
atures obtained for the 1/8" x 10" stripes are lower than those for the 1/8"

x 8.8" stripes, which is due solely to the fact that the total length is some-
what grea. !r for nine 1l0-inch long stripes than ten 8.8-inch long stripes,
thus giving a slightly lower linear power density for the former pattern (4.4
watts/linear inch compared to 4.5 watts/linear inch).

From an inspection of Table 13 and Figures 38, 39, and 40, it is
clear that, as expected, the wider stripes produce a more uniform temperature
distribution, The maximum lateral temperature gradient at the upper (heated)
surface ranges from a high of 16,1°F for the 1/8" x 10" stripes to a low of
6.5°F for the 1/2'" x 10" stripes,

For comparison, the average transmission of each configuration, given
in Table 14, was calculated based on a simple area ratio, assuming the follow-
ing transmissions in the 8-12 um region: 0.60 for the semi-transparent EC coat-
ing, 0.95 for the antireflection coated intermediate regions (it has been
assumed that this coating has the same phase shift characteristics as the EC
coating), and 0,0 for the opaque nichrcume stripes. The eftects of diffcaction
caused by the regularly varying transiission perpendicular to the stripes have
not been considered here, Note that the orientation of the stripes makes very
little difterence in the overall transmission as evidenced by the calculated

values for the 1/2" wide stripes,
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TABLE 14, AVERAGE TRANSMISSLON OF STRUPED WINDOW HEATER PATITERNS

Pattern Configuration Average Transmission
9 - 1/2" x 10" EC Stripes 0.77
9 - 1/8" x 10" Nichrome Stripes 0.83
10 - L/2" x 8.8" EC Stripes 0.78
10 - 1/4" ~ 4.8" EC Stripes 0.86
10 - 1/8" x 8.,8" EC Stripes 0.91
Uniform EC Coating 0.60

The 1/4" x 8,8" pattern on ZnSe operating at an average power density
of 4.5 watts/inz was selected for detalled optical analysis, The optical
path differences (OPD's) were calculated for this configuration in 1/8'" wide
lateral and 1/8" thickness increments corresponding to the node spacings
shown in Figure 39 using the following equation:

1=6 ‘dn
oD = f t ATi Lat * (n-l)(a);
where
t = thickness increment = 0,125 inch = 3,175 mm
ATL = temwperature difrerential between lateral increments
dn

T ° temperature coefficient of the index of refraction
o <
for ZnSe - 4.8 x 1077 1/°C (Ret. 4)

n = Index ot refraction for ZnSe = 2.40

, . . =t
u = thermal expansion coetiicient for ZnSe = 7,2 x 10 ’

1/°C between 270 and 290°K (20 and 62°F) (Ret, 12)

The calculated OPD values, ich repeat around cach stripe, arv listed

in Table 15. The maximum OPD of 0,]J32A saticties the Rayleigh criterion,

(lz)"Kodek Irtran Intfrared Optical +aterials', Publication U-72, Eastman
Kodak Company, Rochester, New 5ork, 14650, Septembor, 1971, p. 20,
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TABLE 15, OPTLCAL PATH DIFFERENCE DISTRIBUTLION AROUND EACH STRIPE

[ et e

Distance from Edge of Window Optical Path Difference (OPD)
(Inches) (Waves at 10um)

é 0 ~0.132)
E 1/8 -0,121\
‘ 1/4 ~-0,0851
E 3/8 (edge of stripe) -0,021x
E 1/2 (center line of stripe) 0 (reference thickness)
i 5/8 (edge of stripe) -0,021)

3/4 -0,085)

7/8 -0.121)

I (midpoint between stripes) =0,132)

—

which states that an O°D ot less than 0,25\ will not sensibly affect the image
quality, (A similar calculation tor Zn$ gives a slightly higher maximum OPD
of 0,187\ still satistyinp this criterion,)

The shape ol the distribution curve, plotted in Figure 41, is closely

approximated by the cosine function:

oPb = - 0,006 coB (2r x =21n) - 0,066

(vhere % = distance divided bv stripe pitch, dimensionless)

alsu plotted tor comparison, Therctore, for purpeses of this analysis, the

UPD distribution was sssumed to have a regular ccsine variation with a peak-
te=puak value of 0,13 wave (at 10 pm) in a direction perpendicular to the
steipes. ‘this tunction was usced to calculate the optical modulation transfer
runction (MIF) and point spread runction (PSF) tor an 8.8-inch diamcter cir-
cular aperture within a window having this striped heater pattern,  The Perkin-
Elmer computer program OTFGEN was used to determine these two tunctions, The

results o! these runs are plotted in Fipures 42 and 43,
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RESULTANT STREWNL lAi‘no = QA3

. NOTE: QIBPFRALTION EFBRCTS OV

STR\PED PATTERN NOT
INGLUDED

®
L o

Y AXi$ MOD.- DIFERACTION LiM(TED |
(PARALLEL T® 8.8" DINENSION) !
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(1O * DIFFRACTION LIMITED RESOLUTION FREGVENGY)

Figure 4. Attect ot Thermallv-Iadoced Optical Path Ditterences
on Modulation Transter Funet oon
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ANGLE Ewmor

. 8.8 % 10" 78’ Z,..Sc WINDOW , 875" DIA. APERTUAE

TEN )Q WIOE x 8.8"LoNG s:m-TRANsnR:NT
, ELECTRICALLY CONDUGTIVE STRIPRS,
SPACKD | " APART

AVERAGE POWER DENSITY: 4.5 WATTS/IN*

(4.5 WATTS/LINEAR INCH om STRIPE)

o

= PEAN ¥ Q.083

*Hx10"¢
OPT!C.AL A19 (RADIANS)

Thermally-Induced Point Spread Funcocion
Perpendicular to Stripes (X Axls)
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The shape of the resultant MIF curve in the worst case direction
3 (perpendicular to that of the stripes) and the relatively high Strehl ratio*
,% of 0.93 indicate that the optical path variation across the window will not
3 significantly degrade image quality, thereby substantiating the 0.25\ Rayleigh
criterion mentioned previously. The MIF curve for the direction parallel to
the stripes, also plotted in Figure 42, is equivalent to the ideal curv: for
a diffraction-limited system since there is no OPD variation due to the heated

stripes in that direction,

The point spread function for the thermally-induced OPD variation per-

pendicular to the stripes is plotted in Figure %2, Note that most of the

ecnergy is concentrated around the axis with small amounts of energy distributed

4 radian from the real image,

in spurious diffraction images displaced 4 x 10”
: again substantiating the small amount of degradation attributable to the heated
stripes, In the direction parallel to the stripes, the energy distribution is

similar with the same peak value but slightly more concenirated; however, there

are no spurious diffraction images produced due to the absence of optical path

variations.

With the 1/4" x 8,.8" long stripes having a minimum resistance of 75{)/sq.,

the maximum power available for a supply voltege of 230V would be only 200

% watts, However, by adding a third bus bar at the center of the window perpen-

E dicuvlar to the stripes (Figure 44), the maximum power available with the same

: supplv voltage is increased to 802 watts--more than sufficient to produce 4,5
watts/inz--since the effective resistaunce of the pattern is reduced by a fac-
tor of 4 (coating resistivity remaining at 75(i/sq). Alternately, with this

?f central bus bar, the resistivity can increase to 152(i/sq. and still produce

3

the desired average power density of 4.5 watts/in®,

Thus, it can be concluded that the EC neater pattern consisting of ten

equally spaced 1/4" x 8.8" stripes with three bus bars (one centrally located)

is an attractive compromise approach for significantly increasing the average

transmission of heated infrared windows over that obtainable with a uriform

EC coating (0.:6 versus 0.60) without introducing appreciable thermal-optical

degradation within the wavelength rauge of interest.

*
Ratio of the energy intens ty at the peak of the diffraction pattern of an .
aberrated image to that at the peak of an aberraticn-free image (diffraction |

limited).
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4.4 INCHES —.—l

-

os \Ncn—v-l -vl '—--i— INCH STRIPE WIDTH (TYPcAL)

1 INCH SPACING (TVYPICAL)

SEMI-TRANSPARENT MULTI-LAYER ELECTRICALLY
CONDUCTING HEATING STRIPE (TRANSHMISSION=0.60 @ 8-12 um.)
TEN TOTAL ON INTERIOR SURFACE

Figure 44, Striped Pattern Window Heater With Central Bus Bar

87

it it i e A i A



SECTION 7

FABRICATION AND EVALUATLON OF COATED ZINC SULFIDE WINDOWS

Three ZnS windows were fabricated and coated using the designs developed
during the experimental work on this program. The windows were evaluated for
the fcllowing:

e MIF measurements werc made before and after coating

o Transmission and reflection curves were made of one-inch

diameter witness pieces at various operational temperatures

¢ Coating durability was evaluated on the one-inch diameter

witness pieces
e Measurements were made of the thermal profile across a
heated window
7.1 FABRICATION OF TEST FIXTURES

A test fixture was designed and "abricated to measure the transmission

of the one-inch diameter witness pieces at 0°F, ambient temperature, and 120°F,
Figure 45 shows the detailed drawing of this fixture,

A second fixture was designed and fabricated to hold a window in the
"cold box" to perform a thermal profile of a heated window under operational

condition., Figure 46 shows the detailed drawing of the housing, ?

7.2 FABRICATION OF WINDOWS

Six ZnS windows 4.0" x 3.5" x 0.3" were fabricated and the best three
were chosen to be fully coated and were used to evaluate the design concept.
The coating design used for conductive antireflective coating is shown in
Table 3 and the coating design for the antireflection coating is shown in

Figure 19,

88




L e b ek

—— 0y
i
i
T -~
. N
.
N
\
\
1
}
L :
i (e .J: /
0\,‘. _

-

¢ AE Cown,

. /')

ot T

-

Q 2
ki
T
~ %
h)
Ay
X Vd
P.. kY ﬁah_ \
LY . 3L
Ry o~
.M v
)
£y
2
J
3
2

/0

Thermal Vacuum Chamber

Figure 45.

89




Buysnof xequey) pajernsuyl ‘g4 Indyg

A Sp DI PE AL INTD
n;\}\:u\i% fI, LR, 2

corne 5o oy - ”, - PN w4 x%5Lx% 9
rme 5 A - #2377 : BORR“YS 2R PIPopomT 3G 0s ]
-
- 124
-
¢ \N....\n\ » owxag
i SRS
‘ ' IR/ Aal e g
S i Yol OOl : WASNI? FLTEE PN
I Il
- L - e 1 CE Dl AR
¥ i @ ' ’ T \
Ty 2 )
Lo KO B
Coki T [t emsaoom Gr ax s (Z
! R 57 - TR 2 e S ¢ fU
NISO | _* - ? - ) - )
— ’
\N“ ) ! _.HW..\ .\.\ ~ &1_ vu\?h)\w +
- - L = ,..
\.\nQ + . T .404/ 2
! O i L THory 7 TS
Q‘ . . _ . g \ NCE & WONE 55 PC N
-~ ~ oY e OIS Z . 1 | e fEXEy Bl 2
~ ~ G p el AL AN _ﬂi.. - . !
% . “ &
F & ) et
Y “
. .
Py \V.\\‘ / m
it .
Fost P $ T
H - '
i
i . ~
~ B ;
(o SH LY - . ~ T \
LrrlPae €T N ?\Qm‘w T ¢
<
7o Co
. L
. b
~. .1\\ .
~. 30 7 GRASMY ) NN\ L
> (e 1 Trmersy B 7 w
N

s L’

/

e 21-ad

S0

[P



- - oy - e e e

7.3 EVALUATION OF ZnS WINDOWS

7.3.1 MIF Measurements

MIF measurements were made by Texas Instruments on two windows (P/N
610-5457-2 and P/N 610-5457-6) betore and after coating. The data received
frowm lexas Ilnstruments are piven in Appendix A for before corting and in

Appendix B for after coating,

Table 16 compares the before and atter coating MIF values at 10 lp/mm
and 20 Ipfmm, Also given is the effective MIF of the coating only. Since
there is a limited range of lp/mm, the image spread function cannot be cal-
culated. The image spoiling effects duc to the coating must be inferred by

the MIF coating-only data at single frequencies (lp/mm),

TABLE 16. MIF MEASUREMENTS

10 1p/mm 20 1lp/mm
MTIF MTF
Betore After Coating | Betore After |Coating
S/N Orientation | Coating | Coating | Only Coa.ing | Coating | Only
610-5457-6 0* 0.979 0.973 0.994 0.947 0.900 0.950
610-5457-6 90° 0.955 0.975 1.021 0.893 0.972 1.089
610-5457-2 0° Nn.,972 0.973 1.001 0.949 0.955 1.006
610-5457-2 o 0.¢" ., 0.992 0.999 0.922 1.043 1,123

Bob Crossland (Texas Instruments) stated that all existing FLIR systems
are limited to frequencies ot less than 20 lp/mm because of their short focal
lengths (3 to 20 inches) and detector size, Since the MIF measurements are
reproducible to + 0.02, the change in the MIF due to the coatings was not
measurable. The appsrent increase of the coating-only MIF is due to the use
of a narrower bandpass filter to define the in-band transmission region. There-
fore, any image spoiling etfects will be caused by temperature gradients across
the window and must be controlled by using appropriate mounting techniques and

edge heaters,

i 7.3.2 oOptical Performance of Cvated Witness Pieces :

One-inch diameter witness pieces, costed with the window, were evaluated

for spectral performanze, Table 17 lists the types of spectral measurement,
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f conditions under which the measurement was made, and the corresponding figure

numbers. The following summarizes the results of these measurements:

o The transmission of the coatings remains unchanged from

0°F to 120°F

HAARLAE
[ ]

The average transmission for the three windows is 68% in

the 8 to 11 micron region

Thps Sl T

e The average reflectance for the three windows is 6% in the

8 to 1l microa region

e The peak transmission is 72% at zpproximately 9.5 microns

S ot AT el N Rl A Lokl S i A

7.3.3 Coating Durability

d One witness piece from each coating run was evaluated for coating dura-

4 bility. Table 18 summarizes the test method and results,

7.3.4 Measurement of the Tha2rmal Profile Across a Heated Window

Bus bars werz soldered to the window along the two Zour-inch sides of
the window and were mounted in the test fixture shown in Figure 46 using RTV,
Eight thermocouples were attached onto conductive coatings (inside the box).
1 The position of the thermocouples and recorded temperatures at steady-state
4 are shown in Figure 56, Three thermocouples were attached to the external
surface (antireflection coating). The positions and recorded temperatures at

steady state are shown in Figure 57. A small piece of plastic foam was placed

over these thermocouples to insure that the temperature readiungs were of the

window surface and not the cold air stream, ?

The fully instrumented package was placed in a cold box at an angle of

45° to the air stream, At the steady-state condition, the following parameters

were recordecd:
e Cold air temperature = O°F
e Air velocity, 5850 feet per minute

e Window was drawing 107 watts (107 volts and 1 amp)

e Power dissipation approximately 8.9 watts/inZ

e Starting from ambient conditions, the steady-state condition ,

is reached in thirty minutes
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TABLE 17.

OPTICAL PERFORMANCE

s

P/N Measurement Conditions Figure No,
610-5457-1 Transmission 70.8°F 47
610-5457-1 Reflectance Ambient 48
610-5457-1 Transmission 0°F & 120°F 49
610-5457-6 Transmission 70.0°F 50
610-5457-6 Reflection Ambient 51
610-5457-6 Transmission 0°F & 120°F 52
610-5457-2 Transmission 69.0°F 53
610-5457-2 Reflection Ambient 54
610-5457-2 Transmission 0°F & 120°F 55

TABLE 18. COATING DURABILITY
Antireflection Conductive
Test Coati“]g Coating
Washing Passed Passed
Scotch-Tape Test per MIL-M-13508B Passed Passed
Abrasion Test per MIL-M-13508B Passed Passed
Abrasion Test per MIL-C-675A Passed Failed
Humidity Test per MLL-C-675A Passed Passed
93
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Figure 56. Positions and Recorded Temperatures of Thermocouples
on Heated Window Conductive Coating
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Figure 37. Positions and Recorded Temperatures of Thermocouples !
on Heated Window Antireflection Coating
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e The minimum temperature on the outer surface was 38°F

(35°F is the B-1l specification) with a gradient of 16°F

e The inside temperature of the enclosure was 34°F (in use,

this temperature will be 70°F)

The results of the thermal profile test indicate that, as expected,
special techniques for eliminating edge effects must be inrcrroreted into the
mounting design and the power dissipation spec MIL-T-5842A and minimum ex-

ternal temperature can he achieved,
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SECTION 8

CONCLUSIONS AND RECOMMENDATLONS

8.1 TRANSMISSION VALUES

The work performed under this contract clearly indicates the feasi-
bility of producing transparent, continuous thin-film heaters for the 8 to
11.5 . spectral region. While the transmission of 72 percent of the demon-
stration windows does not compare with che spectacularly high values now
achievable at visible frequencies, where the conductive films are essentially
nonabsorbing, it is clearly well in excess of any value that might have been
expected on a less than detailed examination of the transmission values of
the indium-tin-oxide films alone. The value, in fact, falls less than 10
percent short of what used to be considered high for visible region trans-
parent films before these values were increased by the use of multilayer

interference filter techniques,

It is unfortunate that it was not possible to realize the slightly
higher thenretically predicted values within the scope ani funding of the
contrict; however, we believe that analysis of the experimental work clearly
shows in which zreas will turther experimental work lead to transmission
waing., Certainly, the sandwich-type chalcogenide windows currently being con-
sidered for FLIR systems would make ihe film system design problem simple in

theory and in practice, as well as increasing the transmission potentially
available.

8.2 COATINGS FOR IRREGULAR SHAPED WINDOWS

The degradaticn of the transmitted wavefront through the .est window,
following the application of the programmed nonuniform coating and the subse-
quent correction of that value following the apprlication of the compensating
film, clearly indicates that the layers were deposited .n the appropriate

programmed noncniform thickness.
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The thermal measurements show that the nonuniform coating created a
significantly more equal teuwpsrature distribution over the window. Special
techniques for eliminating =dge effects must be incorporated into a mounting

design if greater temperatures uniformity is desired.

8.3 FOLLOW-ON INVESTIGATIONS

Despite the appearance of some negative results during the course of
the investigation, we believe that there were more than gsufficient positive
results to justify further investigation in certain areas. In particular,

a more careful study should be implemented of the relationship between the
optical constants r and k and the substrate or the film on which they are
deposited. Results of this effort should be used to feed a design study to
improve transparency of the film system to the values that were theoretically
predicted and to incorporate conductive films in designs for common aperture
systems. A study of single wavelength designs that might be used for EMI
suppression in narrow-band devices would be worthwhile. The nonuniform re-
sistance coating technique for the control of window temperature uniformity

should be continued on more complex geometries.
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OPTICAL TEST DATA FOR UNCOATED ZINC SULFIDE WINDOWS
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TEXAS INSTRUMENTS

INCORPORANILD

POBT OFFICE BOX 6015 ¢ DALLAS Y{YA& 75222

fquipment Group

5 December 1974

In reply refer to:
230-83-1548
Mail Station 209

The Perkin-Elmer Uorporation
Electro-Optical Division
Norwalk, CT 06856

ATTENTION Mr. W. Schilling
Purchasing
SUBJECT Optical Test Data for

Uncoated Zinc Sulfide Windows

REFERENCE (a) Perkin-Elmer Purchase
Order 86028 0S

ENCLOSURE (V) Technical Description of
Optical Test Results of
Uncoated Zinc Sulfide Windows
(1 copy)

“entlemen:

Texas Instruments takes this opportunity to submit enclosure (1)
in rosponse to item 1.0 of the reference (a) purchase order. The
customer furnished windows were shipped under separate cover on
27 November 1974. Enclosure (1), with its 4 figures and 6 data
runs, represents a synopsis of the test data obtained.

If we may be of further assistance or answer your questions on
this information, please contact Mr. Bob Crossland at area code
214, 238-4233.

Very truly yours,

o S |

Gordon E£. Leach
Contract Negotiator

GEL/sY

13800 NORTH CENTRAL EXPRESSWAY + DALLAS + 214 238 2011 ¢ TELEX 7-3324 ¢ TWX P10 8687 4702 ¢ CABLE TIXINS
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nclosure (1) to T
Letter 230-83-1548
Dated 5 December 1%74

TTUUNICAL DESCRIPTION OF OPTICAL
TEST K. 'LIS OF UNCOATED ZINC SULFIDE WINDOWS

The tollowing is a synopsis of Tewas Instruments Image Lvaluation
Labwratory tescing of two Zinc Sulfide ecptical blanks (Perkin-Elmer

serial numbers 510-5457-2 and 610-5457-6). The following aspects
are pertinent to the test setup:

1. The test was conducted with the 5-3A standerd cell
which was designed tor 2.0 cyeles/milliradian,

2. An apertiure of 3.75 inches square was placed over the
cell and defined the area tested in each blank.

3. snife orientation was vertical for all scans.

L, 0 oriontation ol the blank was det! ined when the

leng dimension ¢+ the blank was vertical.
L

() . . .y . K-
5. M7 arientation ~f the piank wqan definced when the 3
long Jdimension of the blank was horizontal.

b . The Landpass Filtee used tor these tests has 50% absclute
transmission points located at 7. 7? and 11.88 micron-
shiich define the in-batel fransmiasion region.

7. Aofaeal gerdes wae econdacted after introducing the blank

in ot b the stoastaed cell to remove any ef fects of

.

power o tilt in the curifaces.

g e g i ki

oy ™ (ST s 1} - - . h 0 -
Sexerad o rernbor HL0-%4b% 90 MU resalts were 97070 at 07 and ©3.3% i
0% for oa {requeney ot 10 Ip/Zmm. The tabulated data for the i
standard cell and the respective blank are included as runs 9,

id, and 32, This data is plotted in Tipgures 1 and 2. The blank

transmission in the spectral region previously specified was 63,3 i
1
4

Copial number C10=SEST746 MTT peenlta wepe 97.9% at 09 and 95, 5% 3

at 909 for a4 frequerey of 10 Ip/mm. lhe tabulated data for the .

standard cell and the F”’POLfLVP blank are included as runs 9, !

49, a1d 62. This data is ploutted in Figures 3 and 4. The blank
transmission was 62.8%.

i

s L ' KA b, i, Nas Bt
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OPTICAL TRANSFER FUNCILON
_RUN NO,® .. 9 FOCAL POSITION= 527,00 MICRONS
J,C. 11=20=74
S«3A_STANDARD. CELL WITH 4"X3,5" APERTURE
STANDARY CELL CHECK

e _UN AXIS  SA SCAN

; FREQ TR T NTFU PHASE  MTFC
ﬂ . WP l.0M@_. @00 1,400 0 1,000

} 5.7 L8096 =,AN3 886  =,2 ,900

1.0 214 _=,000___ 714 -0 ,7%6
15,4 555 «,002  ,555 "2 ,632
IR .
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{
E
!

rm s T e

T TN A T T g

T T STy LT

T TRV T T PR T

S=JA_STANDARD..CELL WITH 4"X3,5" APERTURE

112074

:
OPTICAL TRANSFER FUNLUTION i
-- 18 FOCAL POSITIONz 520,@ MICRONS :

LZINC SULFIDE MSNe61l=5d87w2 i

— . @ DEGREES UN ax]s SA SCAN :

FREQ TR T1 MTFU PHASE MTFC :
e W@ ___1,0800__ 000 1,480 1,000
2.0 e 980 - 002 . 9BY -, . 982
4.4 826 e B8 ___,926 . =,5 2934
6,0 851 ~_014 « 851 3 +B69
. B,o ____ W77 __= 220 o771 -l .5 »799
18,0 695 w020 .695 -y,7 735
~12.0. . ,626. . =,P14 « 026 1,3 »,680
14,0 + 9563 =, 014 1Y w,da .632
-l8.2 Saz eas 907 . «6. . 587
8,0 .450 P12 » 459 1.0 543
e, 394 _ 015 « 394 2.2 «A98

/w
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iRl a1 il TERT e cy

| o " OPTICAL TRANSFER FUNCTION

|
; — RUN N(,» .. .32 FOCAL POSITIONs 521M,0 MICRONS
| J.Ca 11=20=74
| S~3A_STANDAROD_CELL WITH 4"X3.5" APERTURE
| 7IN€ SULFIDE HN3N=61ReB54572
‘ —— .90 DEGREES ON AXIS SA SCAN
FREQ TR T1 MTFU PHASE  MTFC
. Jd_...1,000. __ MO0 1,000 .M 1,000

2.“ .901 ..'.0‘ .9“ -.‘ .9‘3
ap .93 eLE4__, 931 .e.2 . 99
6,0 L8600 =, 007 JH60 ~,4 874
.- ..“_.......7’3..-.."1‘ c?’& -.0 '.512
".” .7“9 ’."‘ .7“9 -‘01 .751
12,0 . ___.,643__~-,014 ,643 1.9 ,658
14,1 5808 -,009 .11 “,9 648
8.8 L5158 .@80__.515. . =.1. o587
1.0 2448 Ll LA48 1,1 . 4]
uoL~__“.aﬂ3-_...ﬂl5 . .383 2.2 -"‘
/v

Lot romctlion e o
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OPTICAL TRANSFFER FUNCTIONM

... .RUN NO,s.__ 49 FOCAL POSITION® 54,0 MICRONS
JoCo j1=20e74
S«3A_STANDARD CELL WITH 4"X3,5" APERTURE
ZINC SULFIDE MSN=610=54%576
—— @ DEGREES ON AX1S SA SCAN
. FREQ TR T3 MTFU PHASE MTFC
- —— .”.. - 1.060_ .00" t.“"“ l' 10050
% 2,9 979 =, 006 979 a3 .981
__A...H.__..Q.ZZ._:_.GXZ___.QQZ-_-_'-? 1931
g 6.0 847 - .04 . 847 “,9 <965
t . 8,0  _,770_ «,012 770 -9 <798
: 10,0 L5699 e, PBA .699 .5 740
: —12,0..._ ,635_. .00 .635 ol 689
: 14,0 573 .09 0573 N .64}
: —36,.4 510 «Bl4__ 510 1,6 . ,.591
; 18,0 .448 .17 . 449 2.2 L, 541
2,8 393 __ ,019 0393 2,8 .497

’ /®
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é OPTICAL TRANSFER FUNCIION
i .. RUN NO,® . 62 FORAL PDSITION® 549,08 MICRONS

¢ J!C. 11-23"74

: Se3A STANDARD_CELL WITH 4"X3,5% APERTURE
g ZINK SULFIDE MSNw( 1Pe545,=6

- _ . 9@ DEGREES UN AXIS SA SCAN

! FRED TR 11 MTFU PH)SE  MYFC
g — . _l,008__-_,n0R 1,000 .0 i.Pp@

4 2.0 .978 L0 ,978 o0 ,980

; __4.@ . ..921 L,2@1___,921 ... O «929

: 6.4 L842 «,008 842 -0 859
R 8.0 .---.759-“.0“3 .759 ’.2 .737

] 1n,0 ,682 =,006 ,H82 o5 722

% 12,0 ,bla_ =,048 614 “,8 ¢ 660

{ 14,0 550 «,040 . 551 1.1 o616

: 15,0 ARG P11 490 . ~1,5.... 567

: 18.9 L4299 =,1% .429 2,0 JH18

: 20,8 .. L3711 =015 371 2,4 . 469

‘ /e |

k

¥
L
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APPENDIX B

OPTICAL TEST DATA FOR COATED ZINC SULFIDE WINDOWS
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TEXAS INSTRUMENTS

INCORPORATED
POST OFFICE BOX 6018 + DALLAS, TRXAS 78228

£quipment Group

25 March 1975

In reply reofer to:
230-83-~1681
Mail Station 209

The Perkin-Elmer Corporation
Electro-Optical Division
Norwalk, CT 06856

ATTENTION Mr. W. Schilling
Purchasing, M/S 299
SUBJECT Optical Test Data for Coated
Zinc Sulfide Windows
REFERENCE (a) Perkin-Elmer Purchase Order 86028 0S
ENCLOSURE (1) Technical Description of Optical Test
Results of Coater Zinc Sulfide Windows
(1 copy) :
Gentlemen: ?

Texas Instruments takes this opportunity to submit enclosure (1)
in response to item 2.0 of the reference (a) purchase order.
Enclosure (1), with its 4 figures and 5 data runs, represents a
synopsis of the test data obtained. This submittal completes the
contract effort,

If we may be of further assistance or answer your questions on
this information, please contact Mr. Bob Crossland at area code ]
214, 239-4233, ]

Very truly yours,

Lol L fuil

I "Gordon E. Leach
: Contract Negotiator

e a1t el i,

GEL:slc

13800 NORTH CENTRAL EXPRESSWAY « DALLAS o 214.238:301) ¢ TELEX 7-2384 ¢ TWX 010-887-4702 » CABLE: TRXINS
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TECHNICAL DESCRIPTION OF OPTICAL
TEST RESULTS OF COATED ZINC SULFIDE WINDOWS

The following is a synapsis of Texas Instruments Image Evaluation Laboratory
testing of two Zinc Sulfide optical blanks (Perkin-Elmer Serial numbers

612-5457-2 and 610-5457-6). The following aspects are pertinent to the test
setup:

1. The test was conducted with the S-3A standard cell which
was designed for 2.0 cycles/milliradian,

2. An aperture of 2.8 inches square was placed over the cell
and defined the area tested in each blank,

3. Knife orientation was vertical for all scans.

4, 0° orientation of the blank was defined when the long

dimension of the blank was vertical.

5. 90° orientation of the blank was defined when the long
dimension of the blank was horizontal.

6. Initial tests were conducted using the same bandpass filter
as the previous tests on the uncoated blanks. However, the
results indicated that th2 coating on the ZnS had a narrower
spectral definition. Therefcre, for this setup, one blank
was placed at the blackbody source in addition to the band-
pass filter while the other blank was being tested.

7. A focal series was conducted after introducing the blank
in front of the standard cell to remove any effects of
power or tilt in the surfaces.

Serial number 610-5457-2 MTF results were 97.3% at 0° and 99.2% at 90° for a
frequency of 10 Ip/mn. The tabulated data tor the standard cell and.the.respec-
tive blank are inciuded as runs 5, 44 and 39. This data is plotted in Figures

7 and 8. The blank transmission in ihe same spectral region as the previous
uncoated test was 59.8%.

Serial number 610-5457-6 MTF recults were 97.3% at 0° and 97.5% at 90° for a
freguency of 10 1p/mm. The tabulated data for the standard cell and the respuc-
tive blank are included as runs 5, 16 and 29. This data is plotted in Figures

5 and 6. The blank transmission was 57.3%.
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OPTICAL TWANWSEFER FUNCTION
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NPTICAL TRANSPER FUNCTION
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OPTICAL TRANSFFW FUNCTION
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