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7        Preceding pege Mink 
1      INTRODUCTION 

The dynamic analysis of framed steel structures under earthquake 

loading would appear to be well In hand, and many studies and appli- 

cable computer programs are readily available  [1,2,3].    In terms of 

building configuration, structural elements, and applied loading,  the 

programs are general In nature, but all assume that material behavior 

can be approximated In terms of moment-rotation joint relationships. 

A simple bilinear or Ramberg-Osgood   f2,4,5]  curve fit Is usually 

adapted to model this material resistance function and appears adequate 

for most engineering applications.    Currently accepted design criteria 

for steel structures with respect to  lateral displacements, ductility 

ratios, and lateral forces have evolved from studies using the above 

computer programs.    However, the complexity of the load-displacement 

hysteresis loops for frame type structures, where buckling, plastic 

straining,  large displacements and joint slip are active, can be 

judged from the survey given in  [6] of computations and experiments 

on model structures. 

The current study presents some results obtained during the 

course of a continuing research project on the magnitude and distri- 

bution of energy dissipation in dynamically loaded structures.    A 

significant point of  this research  is  that  the behavior of the struc- 

ture is  found by means of a material model with properties derived 

from the exact hysteretic stress-strain behavior of A36 steel. 

Measurements of  the cyclic behavior of A36 steel were carried out  in 

[8], and the analytical model was  developed and validated in  [7]  for 

uniaxial and multiaxial stress states.    By means of this model,  one 

can Incorporate the results of advanced research in material behavior 

*Bracketed numbers refer to reference list. 
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Into engineering analysis.    In all cases known to the writers, cyclic 

material behavior has been deduced from monotonic test curves while, 

In fact, highly accurate results on cyclic behavior are readily 

available  [9,10,11].    The development of this higher order material 

model supplements the current activity in the cyclic testing of 

structures through large strain reversals     [12], 

Since the material resistance is synthesized from knowledge of a 

polntwise stress-strain relation rather than a moment-rotation rela- 

tion at a Joint,  the finite element method rather than a stiffness 

method is used to model the structure.    The element used is a simple 

beam-column with the stiffness matrix obtained by numerical integra- 

tion along the length and through the depth of a member element.    A 

finite element plane stress analysis of a simply supported beam, 

cycled through three load reversals with large plastic strairs, was 

used in  [7]  to check the material model under discussion.    Further 

analysis of the same problem, using a beam-column element and ideal- 

ized material properties,  is given in  [13].    The purpose of  the study 

in  [13] was an assessment of the accuracy of numerical solution tech- 

niques with a particular reference to cyclic  loading.    The refined 

material model has been incorporated in a general purpose finite 

element computer program  [14]  capable of analyzing the nonlinear 

static and dynamic responses of engineering structures. 

The objective of  this research is  to  formulate an analytical 

procedure for determining overall structural energy dissipation 

properties on the basis of experimental cyclic material behavior.    A 

projected use of  the numerical results  is an assessment of  the effect 

of nonlinear material behavior on the damping properties of structures. 



The preliminary results given here are aimed at verifying the overall 

analytical model and the accuracy of the numerical solution procedures. 

For the case of a simple portal frame under earthquake excitation it 

Is shown that considerable differences In displacement values occur 

between the current results and those obtained using a bilinear kine- 

matic hardening stress-strain relation. 

2      METHOD OF ANALYSIS 

(1)    Finite Element Formulation 

The general equation of motion for a body, derived from the prin- 

ciple of virtual work, Is written in terms'of initial geometry as 

[M]   {qt} - - ;v  [B]T {S} dV +  {Pt} (1) 

where  [M] Is a consistent or diagonal mass matrix,     {q},  {q} are the 

generalized displacement and acceleration vectors.     {P} is a vector of 

equivalent nodal forces,     {s} is a vector of generalized stresses. 

The matrix  [B] transforms generalized displacement Increments at the 

nodes to generalized strain increments at any point In an element.    It 

is defined by the equation 

{AE} -  [B]  {Aq} (2) 
it 

and is a nonlinear function of displacement.    The expressions used in 

forming [B]  in the current study are given in the Appendix. 

A modified, or corrected, linear incremental form [14] of Eq.   (1) 

is obtained as 

mmMämamm: •■ mmmmmmm»:- •. •■. 
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[M]   {Aqt+At} - - J^AB]1  {S} dV - /V[B]T {AS} dV +  (AP^} 

+  (-[MHqJ - /[B]T  {S} dV +   {P)) (3) t v t 

The incremeital stress vector {AS} can be expressed In terms of {Aq} 

by using Eq. (2) and the following linear incremental stress-strain 

relation 

{AS} - [D ]  {AE} (4) ep 

The construction of the elastic-plastic stress-strain transformation 

matrix [D ] with reference to the new material model follows the ep 

approach outlined in [15].  By substituting Eq. (4) in Eq. (3) and 

following procedures described in [15], Eq. (3) can be written as 

[M] {Aqt+At} - - [Kt] {Aq^} + {AP^} + {l^ (5) 

where the tangential stiffness matrix [K 1 is formed by combining the 

first two integrals on the right hand side of Eq. (3), and the "load 

correction term" {I } is the contribution of the terms inside the 

parenthesis in Eq. (3).  (l } Is the total unbalanced force at time t. 

(11) Time Integration 

The controversy over an optimum temporal integration operator has 

produced a large volume of studies in recent years.  Direct methods 

[16] are available for estimating the accuracy of these operators when 

applied to linear systems [17], but it seems that only numerical 

experiments can provide a measure of their worth in the nonlinear 

case.  In a recent analysis [18] of the performance of several popular 

operators (namely  the Houbolt [19], the Wilson [20], the Newmark 

Beta [21], and the central difference operator), it was noted that the 
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accuracy and stability of solutions with these operators were very 

different between corresponding linear and nonlinear applications. 

The overall conclusion arrived at In  [18]  is that  Inaccuracies In 

nonlinear solutions accimulate very rapidly when Integration operators 

are used with time Inc*. -"ents larger than that of the stability limit 

given by the central difference operator. 

In order to further investigate the result described above, both 

the central difference operator and the Newmark operator with 6=1/4 

and y=l/2 were used  in the current study.    The latter operator is 

generally applied in earthquake engineering and is the basi? of the 

solution method in  [3].    The Incremental value of the displacement 

vector is given ,by the central difference operator as 

(AqJ -   (Aqt.At} + At2  {q^} (6) 

The solution cycle is formed by calculating the displacement increment 

from Eq. (6) and using this value to comput.e the Integral on the right 

hand side of Eq. (1).  The acceleration for the next step is found by 

solving Eq. (1) for (q }.  The operator is not self-starting and suit- 

able initial values are outlined in [18]. 

Because of its implicit form, the Newmark operator is more conven- 

lantly combined with a linearized equation of motion such as given by 

Eq. (5).  The increment of acceleration is given by 

I {AVAt} - db ^W -At V - T\» (7) 

Substitution of Eq.   (7)   into Eq.   (5)  yields 
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+ iM(At{-t} + At2{..t}) 

At 

(8) 

In this approach ^Aq  . } Is first calculated from Eq. (8) and then 

substituted back Into Eq. (7) to find the acceleration Increment. The 

velocity vector Is given by 

{w}" V + ^({*t} + {W}) (9) 

Damping forces of the equivalent viscous type are not Included at 

present since they would complicate the Interpretation of the effect 

of material nonllnearlty In the response. 

(Ill) Constitutive Relation and Refined Material Model 

The new refined material model Is an extension of the work of 

Martin [22] and Jhansale [23] and is described in detail in [7,8]. A 

mechanical analog of the basic series model with only three elements 

is shown in Fig. 1. E ich spring of the system has a linear stress- 

strain relationship.  The springs in the parallel spring-slider elements 

are not deformed until the applied stress reaches the yield stress of 

the slider in that element.  If the applied stress in an element 

reaches above the yield stress, then the difference is stored in the 

element as a residual stress.  The tangent modulus E* on a given segment 

of the curve is obtained from the relation 

1   1 J. v 1 

E* " E + ^ Ej 
(10) 

where the summation is extended over all those spring-slider elements 

which have yielded. The stress-strain response with this model lollows 

itiimiM/h<""' -.. 
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STRESS, «■ 

Figure 1.    Stress-strain response of the series model, 

timtelam **« ... 



-Äma^aiaBtr ^._-^iA^.r,-!\.j^iÄiWta1*auifl-«K,,... m rt Htät i-iir-; n liir-inii-^iWn- r r * ir tv».._ ■:, 

1A 

Massing*s hypothesis where the closed hysteresis loops are the same 

form as the stabilized initial branch OA of the stress-strain 

curve except for an enlargement by a factor of two [10].    The hypothe- 

sis also implies that after a small hysteresis loop EFGH, the loading 

branch will follow the path El  Instoad of EJ.    This is an example of 

the "memory" effect which is created by the distribution of residual 

stress in the elastic springs. 

This basic model cannot, however, accurately trace the hysteretic 

stress-strain curve of A36 steel for two reasons.    Firstly, A36 steel 

in its "stable" condition does not obey Massing'«; hypothesis.    This is 

shown in Fig. 2 where the cyclic stress-strain curve. Increased by a 

factor of two,does nor. accurately describe the hysteresis loop shapes, 

and the upper hysteresis loop tips do not fall along the upper trace 

of the largest loop.    Secondly, A36 steel cyclically hardens or 

softens before becoming stable.    It was observed in  [23] and  [7] that 

even during the hardening and softening process each upper branch of 

stress-strain curve (except for the initial flat top branch)  could be 

fitted to the double skeleton curve for the "stable" material by trans- 

lating the loop along the elastic line.    The loop is  translated along 

the elastic line until the upper loop tip is approximately tangent to 

the double skeleton curve.    An outer trace of a given loop is then 

described in terms of this skeleton curve and an appropriate stress 

offset, S    , which defines the amount that the loop must be displaced 

along the elastic line.     In Fig.   3 the individual branches of hystere- 

sis  loops obtained from constant amplitude strain controlled tests 

have been fitted to the double skeleton curve.    As shown in the figure, 

the stress offset,  S     ,  depends on the number of reversals and the 
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total strain range. In this study S  Is approximated by a family of 
OS 

linear  functions of the number of  reversals and the total strain 

range. 

The analytical material model also  Incorporates cycle-dependent 

mean stress as described  In   [7], but  this feature is not activated In 

the present study.    An added feature Is that the Initial response 

of  the model Is determined by a set of constants derived from the 

"flat-top" stress-s.rain curve obtained by testing a virgin specimen 

of A36 steel.    The spring constants and slider stress values  for sub- 

sequent reversals after the first loading are found separately from 

the skeleton curve obtained from constant amplitude strain controlled 

cyclic tests of steel specimens.    The procedure,used to compute the 

spring constants and slider stress values,is described In detail in 

Appendix A of   [7].    Agreement between  the refined material model and 

a complicated cyclic stress-strain history for a virgin steel  Is shown 

to be highly satisfactory by the results depicted In Fig.  4. 

3      NUMERICAL RESULTS 

(i)    Verification of Material Model in Structural Application 

In order to test the validity of the material model  In structural 

applications the beam problem,  described in Fig.   5, was developed. 

Ten spring-slider eleirpnts were used  in the material simulation, and 

the dimensions of the beam were chosen in order to obtain large 

plastic strains without introducing nonlinear geometric effects.    The 

beam was  loaded and reloaded through  three cycles as shown in Fig.   5. 

In  the earlier investigation of Plunmer  [7]  the beam half-span was 

modeled by 15 plane stress 8-node Isoparametric finite elements   [24], 

With a view to later, more general  frame-type structural applications, 



:__  ,   i> **Hr\lt miim.M-*u*-±.   ■ ,««;«iui.liLlu 

I 18 

2 

I 
: 
M • 
U iH 
09   01 

HA 

r< as 

h 
at u 
*J o 

T3 «a 

cu Jo 

9) u 

•H 



19 

,?(+) 

Tw 

BEAM EXAMPLE 

2 3 4 

DISPLACEMENT, S, IN. X 10* 

Figure 5.    Experimental program. 
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the half-span was modeled with 10 simple beam-column elements in the 

present study.    The generalized strain-displacement relations on which 

the beam-coluian element is based are outlined in the Appendix. 

The numerical and experimental results for the beam are compared 

in Fig. 6.    The geometric shcpes of both curves are so clearly similar 

that  it appears that a slight extension of the elastic range would 

allow perfect agreement.    The dimensions of the beam span, cross- 

section, and concentrated loading also make it likely that shear 

deformations contribute in part to the difference In results.    This is 

investigated in Fig.  7 where the results of the plane stress analysis 

from  [7] are compared with the current beam-column results.    The 

continual redistribution of the two-dimensional stress state 4n the 

plane stress results r..eans that, even for zero hardening, the load 

will continue to increase after the critical mid-section has become 

totally plastic.    In a similar example Felippa  [25] found a 35 percent 

increase in load capacity beyond the limit  load in simple bending at a 

dibplacement of approximately five times the elastic limit value.    The 

effect in this case is to give the plane stress curve a greater slope 

on the initial branch which leads to higher residual stresses in the 

spring elements before the first reversal.    The residual stresses for 

the beam-column case are practically zero except for one element, and 

this means a flatter response will occur on the subsequent reversal. 

It is felt  that this effect rather than shear displacement causes 

most of the difference in results in Fig.  7 at the end of the second 

reversal. 

These preliminary results indicate that further tuning of the 

analytical material model may be in order.    Current suggestions in 
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Figure 6. Comparison of beam finite element results with experimental values. 
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Figure 7.     Comparison of plane stress and beam finite element 
results for cyclic material model. 
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this respect are to drop the initial monotonic "flat-top" behavior and 

use the cyclic skeleton curve for calculating one set of spring and slider 

values for all cases.    Omission of the "flat-too" first cycle may result 

In an overall Improved response.    It was suggested In Appendix A of [7] 

that fictitious residual stresses be built in at the and of the "flat-top" 

cycle, but this may overly complicate the parameters of the model. 

The constitutive relations for the plane stress analysis in [?] are 

based en Prager's kinematic hardening theory.    This theory assumes that dur- 

ing plastic deformation the loading surface translates as a rigid body in 

stress space maintaining the size, shape and orientation of the original 

yield surface.    Plummer [?] satisfied this constraint by not adding the 

stress-offset to the yield stress of the first slider.    This, however,  dis- 

torted the shape of the double skeleton curve represented by the spring slider 

model.    In the present study the stress-offset was added to the yield stress 

of the first slider also.    A general combined kinematic-isotropic hardening 

theory is under active development by the writers with a view to relaxing the 

restriction of constant size of the loading surface. 

(11)    Response of a Portal Frame to Seismic Loading 

The portal frame described  In   [26], was modeled with three finite 

elements per member and subjected to a selected four seconds  (1.5 sec- 

5.5 sec.)  of the El Centro NS earthquake acceleration record magnified 

by a factor of  1.5.     The equations of motion must be adjusted to 

reflect this  type of loading and Eq.   (8)  Is replaced by 

+ ^ (4t {0t, + ^      . ^ ^ 
(11) 

where {^L.A,.) IS now the generalized displacement relative to base of 

'iidjUiiniiitd- ■■ .,.,.:,. 
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the structure.    The vector {Qt} is formed by the components of base 

acceleration Input.    The equilibrium correction term is also changed to 

{It} - -   [M]({üt) + {Qt}) - /V[B]T{S} dV + {Pt} (12) 

For the solution with the central difference operator, Eq.  (1)  is 

solved as it is written for the absolute acceleration, and the rela- 

tive structural acceleration is obtained from the relation 

{üt} -  {qt} - {Qt} (13) 

Displacements relative to the base, for the purposes of calculating 

Internal forces,  are found In the usual manner as 

{Aut}.  Mut.At} + At^{ut_At} (14) 

The stiffness matrix [K ] Is generated numerically using three 

Gaussian points along the length, and the cross-sections of the I-beams 

are modeled by three specially weighted integration points, one placed 

In each flange and one pt the center.    The number of points In all 

cases can be varied, and an option also exists which allows stresses 

to be computed at one or all Gaussian Integration points.    A diagonal 

mass matrix is formed In the program by collapsing all rows of the 

consistently formed matrix on to the diagonal.    The diagonal mass 

matrix is used with Eq.   (1) and the central difference operator, and 

the consistent mass matrix Is used In Eq.   (11)   since there is no 

apparent computational advantage in using the diagonal form. 

The dotted line In Fig.  8 Indicates the response of the frame with 

the new material model and the central difference operator.    In the 

same figure,   the solid line passing through  the triangles represents 

r.-ii>.  ^■" '-  ■    '- in iinh^t.i^-'^-^-- .-.■... .^t ...i—^-■... -..-. ■■~~*'*~*  
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the response with kinematic hardening Idealized by a simple bilinear 

stress-strain curve given by E=30x10 psl, ay«36x10 psl, and 

ET 
—=■ " 0.1. A comparison of these two curves Indicate the Influence of 
E 

the added cyclic hardening effect in the refined material model over 

the idealized behavior.  The results clearly demonstrate a cumulative 

effect as the divergence between the results Increases with each 

reversal of the response.  It is emphasized that the model structure 

is a simple portal frame loaded with only a fraction of a typical 

earthquake input, and greater differences can be expected in the 

analysis of more complex framed structures under an extended earth- 

quake input. 

The solid line passing through the circles in Fig. 8 shows the 

values given by DRAIN-2D which Is a standard stiffness-type program 

developed by Kanaan and Powell [3]. The material response is based on 

a bilinear moment-rotation joint, or node, relationship, and the 

moment-axial force interaction diagram with shtipe code 2 [3] was 

adopted.  Each frame member was divided Into three equal elements, and 

the elastic constants and hardening modulus mentioned above were 

employed in the analysis. Inspection of Fig. 8 shows that the results 

with DRAIN-2D agree in general with those found using bilinear kine- 

matic hardening.  The divergence of these curves at the final peak 

values in the response may be attributed to the different yield cri- 

teria and to the manner in which the structural stiffnesses are com- 

puted in the respective computer programs. The agreement between 

DRAIN-2D and the results of the refined material model at the final 

peak displacement appears to be fortuitous since the displacement 

histories are considerably different up to this point. 
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(ill) Selection of Time Increment for the Temporal Integration 

Operators 

For linear problems the choice of an implicit versus explicit 

latugratlon operator, such as the Newma1*'. over the central difference 

operator, is often governed by the fact that the latter is only 

conditionally stable with respect to time increment size. Also, accu- 

rate solutions with comparatively large time increments can be obtained 

from Newmark's operator with 3=1/4 since the amplitude of each mode is 

conserved [21]. However, the results obtained In [18] for a geometri- 

cally nonlinear simple beam problem showed that all implicit methods 

suffered serious inaccuracies for time increments greater than that 

found to give stable results with the central difference operator, and 

that the Newmark method was the worst in this respect. 

In the current study the portal frame, described in Fig. 8, was 

subjected to a sinusoidal base excitation in order to find suitable 

Integration time-steps for the central difference and the Newmark 

operator. The response was obtained with the refined material model 

as well as with DRAIN-2D which also uses the Newmark operator, and the 

results are shown in Fig. 9. The limiting stable time Increment size 

for the central difference operator was found to be 0.0025 seconds, and 

an apparently stable response was obtained with the Newmark operator 

for a time step of 0.00625.  Fig. 9 indicates clearly the problem of 

identifying between stable but not necessarily accurate solutions. In 

this case all results were in agreement up until a time of 0.45 seconds 

when both DRAIN-2D and the finite element solution with Newmark's 

method begin to diverge from the central difference solution. There- 

fore, it was decided to assess this phenomenon more accurately by 

iABi>flL*arii,-.vi.rf.j.,:. -.,■■-.. t-^.i-1..-?..—.-j-t..:.,. v 
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running the problem described In Fig. 8 with decreasing time Increments 

until convergence was achieved for the response over the time of  the 

earthquake Input.    The results obtained with DRAIN-2D for Increments 

of 0.005 and 0.0025 are shown in Fig.  10.    No change occurred with a 

reduction In step size to  .00125 and so convergence Is assumed for At 

equal to .0025.    The problem Is now evident In that apparent convergence 

occurs over the first cycle or so with subsequent slow, but finally 

appreciable, divergence after approximately two seconds of the response. 

The recommendation Is made to use the stable central difference time 

Increment In that the seemingly apparent stability and delayed appear- 

ance of gross Inaccuracies with Implicit operators could lead one to 

believe that one had a convergent solution at larger time steps. 

The results under discussion In this section, with the exception 

of the central difference case, were all obtained using the Incremental 

form of the equations of motion with an elementary equilibrium,  or load, 

correction term.    It can be argued that an Iterative solution at each 

step would Improve the accuracy of  the implicit solution schemes.    This 

was attempted in  [18], and for the problem studied,  the iterated scheme 

made a difference only at those time increments which had already caused 

large errors, and no overall significant improvement was apparent. 

Further study in this respect Is necessary, but the economic aspect 

of an explicit central difference versus an Iterated implicit solution 

may be the deciding factor in favor of the former method.    An added 

consideration Is the simplicity of central difference solution scheme 

and Its considerable advantage with respect to computer storage demand 

over the other methods. 

:■   ■    ■ ■- -  ■   , ,. 
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4  CONCLUSIONS 

An analytical procedure has been described which Incorporates 

constitutive relations based on a higher order material model. A 

comparison of analytical and experimental results for a virgin A36 

steel coupon and for a simply supported beam has shown the capability 

of the refined model to accurately predict the cyclic hysteretlc 

material behavior. 

The responses of a portal frame subjected to the El Centro NS 

earthquake acceleration record have been compared for the refined 

material model, a bilinear kinematic hardening model, and the 

DRAIN-2D model. The significant differences in the computed results 

have clearly demonstrated the effect of cyclic hardening on seismic 

structural response, and warrant a further study of this phenomenon 

with respect to energy dissipation and fatigue life of steel struc- 

tures. The preliminary dynamic results suggest that for comparable 

accuracy the time increments for implicit integration operators and 

for the central difference operator must be of the same order in the 

case of nonlinear problems with complex time-motion histories. 

. 
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APPENDIX 

BEAM-COLUMN FINITE ELEMENT 

The axial and normal displacements U and V at a point (X, Y) of 

the beam are approximated by a linear and a cubic interpolation 

function of X respectively. 

U - a0 + ajX (A-l) 

V - b0 + bjX + b2X
2 + b3X

3 (A-2) 

where a., a., b., . . ., b. are generalized displacement coefficients. 

It is convenient to separate the strain E at (X, Y) into its 

membrane and bending components E and E, , where 

_   dU . 1 ,dü.2  ,  1  ,dV.2 
Em " dX + 2 ^dX^ + 2 W 

d^ 
Eb " -Y dX? 

From Eqs. (A-l) and (A-2) 

dU 
lxmai 

§ > b1 + 2b2X + 3b3X
2 

An Increment of strain is obtained from Eq. (A-3) as 

AIT   A^U jdU /AdUN L dV ...dV. 
AEm - ^dX + dX (AdX) + dX (AdX) 

d^ 

(A-3) 

(A-4) 

(A-5) 
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Substituting Eq. (A-4) into (A-5), AE and AE can be expressed 

In terms cf Increments of generalized displacements as 

fAa, N 

[AE 

AE. 

(ix 0 

0 

dV 
dX af 2 dV 

dX 

-2Y -6XY 

3X'^|  |Aa3 

Abc |        (A-6) 

Ab] 

Ab, 

Ab, 

From Eq. (A-6), matrix [B] which relates generalized Incremental 

strains with generalized incremental displacemeits is readily identi- 

fied as 

[B] - 

o  uf o S  .Xg  3X*g 

-2Y -6XY 
(A-7) 

. ..■ .   . ■  . 
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