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NEW RAY METHODS IN PROPAGATION

The ultimate objective of this study is a method of computing
hydro-acoustic transmission loss at long and intermediate ranges--a
method simple enough to be implemented by feasible computer programs,
general enough to include the actual variations of sound speed found

in nature (geographical, seasonal, and fluctuating randomly, as when

influenced by turbulence, etc.); and, finally; theoretically sound in

that it is derived logically from accepted mathematical physics. The
immediate objective of the study is the establishment of such a basic
rationale for the computation of practical answers: It is methodological
and theoretical. To gain a proper perspective, we outline the generalities
of the present situation, in as elementary terms as possible.l*

The conventional methods of dealing with the propagation cf
high frequency radiant energy (in acoustics, optics, or electromagnetism)
by means of the Huygens' construction of wave fronts and rays, meets with
difficulties when the medium is heterogeneous and the ranges are long.
This is precisely the case of importance in the detection of hydroacoustic
signals, Caustics, path-splitting ambiguities, and other obscurities put
many of the troubles into evidence.

The attempt to avoid the difficulties by the more fundamental

approach through the wave equation (normal modes, etc.) is often made.

While conceptually this is the correct method for explaining the obscur-

ities in the use of rays, to be computationally effective it must go

further. The use of special functions and series for solving the wave

[ ]

* References in the text are to the publications given in detail under
the superscript numeral (assigned according to general topic).
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equation requires drastically simplified assumptions regarding the sound
speed c as a function of position throughout the volume of ocean in
which the acoustic propagation takes place, as well as assumptions
regarding the shape and nature of the ocean bottom and surface.

The difficulty--whether rays or normal modes are used--is a
double one: Not only are the factors just cited highly complicated,
as the limited existing observations have shown, but they are largely

unknown. Even if the whole ocean bottom throughout the world were ever

to be charted in minute detail, there would remain the prediction of

sound speeds~-a task coordinate in difficulty with predicting the

weather,

Situations in which there is an irremovable residuum of un-
known complexity in the determining factors affecting quantitative
behavior are familiar in mathenatical physics, e.g., in the kinetic theory
of matter, Brownian motion, and turbulence. The successful treatments
of such cases are by statistical methods: the application of the analytic

theory of probability. In modern acoustics, there is a rapidly increasing

view (on both sides of the '"Iron Curtain') that the appropriate treatment

of the acoustic problems we are discussing must be a statistical one.

.

A profusion of books and papers written with this point of view are

appearing.2 Cf., e.g., Tolstoy and Clayl, Chapter 6.

The concrete question that this situation poses 1s whether

Gy ot

rw— .
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one is forced to confine oneself to the wave equation and develop a

tractable formulation of the statistics of its solutions, or whether

f there is still the possibility of developing a statistical treatment of

the rays themselves, somehow overcoming the difficulties mentioned in

Arthur D Litt!




the second paragraph. Here it must be emphasized that, when applicable,
a ray treatment depends on more elementary concepts and is usually
computationally simpler than the direct use of the wave equation.

3 An essential purpose of the present report is to show how a
modification of the ray treatment not only side-steps the difficulties
cited in our second paragraph but provides a natural "port of entry"

for statistical methods. It is based on the application of Hamiltonian
theory and its recent developments (integral invariants, ergodic concepts,

etc.). This application reflects a very old notion: The particle-wave

duality, which was evidenced in the debate between Newton and Huygens
on the "corpuscular" versus ''wave theory" of light; it was exploited

by Hamilton early in the last century, and returned to prominence 1in

t the de Broglie-Schroedinger wave mechanics of quantum theory.

To carry out our program along these lines and arrive at a
scheme of computation of transmission loss--both practicable and realistic
in view of the physical complexities just mentioned--four steps have to
be taken: undertaking a mathematically sound exploration of the condi-

tions under which rays guide the propagation of hydro-acoustic energy;

a "lifting" into the Hamiltonian phase space of these energy flow-versus
ray relations from the lower dimensional physical space; showing pre-
cisely how to include many of the random features of propagation in
this process; and, finally, applying both old and new methods of

: Hamiltonian theory (integral invariants, "ergodic' concepts, and

{ special types of canonical transformations) to establish the desired

result: what we may call the "second approximation" to long range

transmission loss.

Arthur D Little Inc
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If one terms the "first approximation" to transmission loss
any calculation based on the assumption that the acoustic profile is
independent of range, so that only the one at the emitter is used, it
is natural to call the "second approximation" one making use of two
profiles, the one at the receiver and at the emitter. A number of
different schemes of computation of this second type have been set up,
often in classified reports and based on various conceptions of the
physical processes involved--and too frequently leading to quite
different results., The scheme of computation to whic': tne present
study leads has been announced in different stages of its development
at the Acoustical Society of America [6 Nov. 1969 (6H1): "Some Mathe-
matical and Computational Contributions to Underwater Sound Propagation",
by B.O. Koopman and G. Raisbeck; 22 Apr. 1970: (NI1): "Computation of
Long-Range Propagation Loss in a Duct" by G. Raisbeck; and (N12):
"Propagation Over Underwater Obstructions" by B.0. Koopman]. These
were not published but were presented to the U.S. Navy in the form of
reports. Ancther essentially equivalent computational scheme, based on
similar intuitive conceptions, was published by P.W. Smith, Jr., in the

paper, ''Averaged Sound Transmission in Range-Dependent Channels"

.

[Journal of the Acoustical Society of America, Vol. 55, No. 6, June

1974, p. 1197]. Other similar work has been communicated to the present
author in the form of a report by Tetra Tech, Inc., "A Statistical Model
of Propagation in Sound Ducts", by M. Milder and L. Solomon. Both these

latter and the present author presented many of these and related results

— ey o

in a symposium on Ray Tracing at the SACLANT Centre (La Spezia, 1971)
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and are publisihed in its unclassified proceedings.

But to our knowledge no treatment meeting the standards of
classical mathematical physics is available in the literature: a
mathematically sound derivation of the required algorithm from estab-
lished mathematical physics under precisely stated and appropriate
special assumptions. The present paper is intended as a contribution

to this end--in the case of no (regular) time dependence of sound

speed c. There are far more than philosophical or abstractly scientific
reasons for seeking such a rigorous basis: without it, how can any navy
decide which, out of the multitude of different methods submitted to it
on the basis of different "physical intuitions" and "ad hoc" assumptions*,
are the ones—-if any--to use in technological and tactical planning under
various given conditions?

After recalling in Sections 1 and 2 the conventional method of
ray tracing and its familiar difficulties, the study goes back to the
wave equation and its energy density and flux vector (Section 3), normal
modes and travelling waves (Sections 4,5). The treatment attempts to
be elementary and keeps to the real demain while the basic issues are
being faced., It is emphasized that those travelling waves which produce
a net progress of acoustic power are ouly possible with "eigen-value
degeneracy'": two real solutions with the same frequency (as stated,

e.g., in Morse and Ingard, 5.2, p. 2061). In Appendix C, a more pre-
cise definition on the basis of a normalization process removes such

ambiguities as those recognized by Brekhovskikh (Chapter I1I.6, p. 229)1.

* And sometimes even errors of fact: cf. the incorrect interpretation
of Snell's law and a prevalent error in constructing shadow zones,
examined in Appenaix A, as well as many others noted in later Appendixes.

Arthur D Little Inc
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Section 6 considers families of travelling waves parameterized
by their circular frequency w, studied as this increases indefinitely.

The prevalent notion that at high enough frequencies the acoustic power

flows essentially along rays (in the open, or near boundaries whose

radii of curvature greatly exceed the wave length) requires precise

= X -

interpretation., If it means that the power flc. lines approach*appro-

e i o

priately chosen rays and that the rate of flow of energy regarded as
localized in the medium approaches c as w-+«, then it is sometimes true
and sometimes not, as shown by various simple examples in Appendix D.
Moreover, many conventional treatments, which show that a slow enough ]
variation of amplitude A with increasing w is necessary for the validity
of a ray treatment, and then assume it sufficient, are in error (counter
example: exp [iw(x cosw + y sinw)/c] which satisfies the Helmholtz
equation, has unit amplitude, but approaches no limiting direction as i
w-+=), This, and the essentially local or special treatments of radia-
tion given by mathematicians, has forced us to establish necessary and
sufficient conditions for the power flow-ray approach, i.e., for the

validity of any ray treatme..t in actual media. Any family of travelling

ke ey

waves satisfying our conditions we call a Fermat family--for obvious

reasons. e
A mechanical analogue model of rays in ducts is given in I i

Section 7, introducing the Hamiltonian formulation in Section 8; !

classically known pruperties of the differential systems to be used l

are outlined in Section 9, more technical material being deferred to

Appendices E, F and G.

*Jith an appropriate definition of "approach": 'weak convergence" in
the general cases is the necessary concept; cf. Section 6, end.

6
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Section 10 transcribes (" ifts") the wave power flow relation-

ships in an individual Fermat family into the Hamiltonian phase space,

f while Section 11, which deals with statistical ensembles of Fermat 'J
families, leads to a formriation of power flow relations by means of a
continuous power flux density in that aspace. The elements of integral

f invariants (intuitively interpretable) then show that this density is i

constant along each ray (in the limit). In terms of this density,

acoustic intensity, transmission loss, and similar desired measurable
quantities are expressed. This 1s the theoretical key point of the

present study.

e oo

The remaining five sections develop special methods of

NS

approximation to these measitable quantities under various stated
conditions.

Section 12 applies conventional first order perturbation
methods, regarding the perturbing term in the Hamiltonian as a statisti-
cal fluctuation.

The remaining sections confine the study to the case of

azimuthal symmetry: c depends on depth and range from a symmetrical

emitter only, and the propagation is in vertical coaxial planes.

r Section 13 particularizes the general results established above to
this case. Section 14 uses a geometrical representation with the aid

of the surface of section, introduced into dynamical theory at the

turn of the century by H. Poincarés, G. D. Birkhoff6, and their

successors. Section 14 then exawires in detail the "laminar" (or i

-

layered medium) case, ¢ depending on depth only. Improved derivatiors

.,_
=ZF |
=
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of the "first approximation” to transmission loss are developed, mainly
cs a stepping off point for the "second approximation", treated in
Sections 15 and 16.

Section 15 applies the random perturbation method of Section
12 to the case of Section 14 but when the laminarity is only true on
the averuge; it also applies methods of ’nformation theory to obtain
a simplified graphical version of the "first approximation” at long
ranges,

Section 16 established the "second approximation" in a deter-
ministic but slow departure from laminarity. Briefly stated, it first
makes a canonical change of variables based on solving, by line integrals,
a pair of simultaneous Hamilton-Jacobi partial differential equations
in the large. This transforms the problem to one in which the variables
are separable, so that angle and action variables can be introduced.
Then the power flux density, being periodic in the new range-like
variable, can be expanded in a Fourier series, Physical reasons are
glven for dropping all but the constant term: this is easily calculated
in terms of the two profiles (at the emitter and at the receiver) and
so gives the desired second approximation. Points concerning the
generalizability of the method are noted. The excessive length of
Section 16 is due to its treatment of the same subject at three
successively increasing levels of mathematical technicality, from
largely intuitive to essentially rigorous, because of the diversity of

backgrounds of the probable readers: logically it could be less than

one-third of its present length.

Arthur D Little
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Every attempt has been made to avoid unnecessary mathematical
technicalities--to Interpret as intuitively as possible those that the
basic reasoning forces us to include in the text, and to relegate the
rest to appendices. This has caused what may seem an excessive length
of the study: 1f the state of the available literature had permitted,
our presentation could have been greatly shortened. Thus, the only
text in the English language treating Hamiltonian theory in sufficient
depth for our purposes 1is Whittakers; but his treatment of integral
invariants does not go far enough for our needs and we have been obliged
to refer to French texts (Poincaré and Cartan) and to add Appendix F
on the subject, so that our presentation would be more nearly self-
contained.

Appendix G deals with the mathematical problem of the existance
of Fermat families as produced by radiators--in the large, where classi-
cal methods fail because of the multiple-valuedness of the eikonal and
the tangled nature of the characteristic conoid. Hadamard's "elementary
solution" is carried into the complex domain and made to yield the har-
monic waves by contour integration. While giving the needed results in
many special cases, a completely general theory requires further research.

Appendix H is essentially a reproduction of the author's paper
"Propagation Over Underwater Obstructions", cited above, and in which
the methods of the text are applied to such obstructions as sea mounts.

The great practical importance and the mathematical difficulty
of the subject have led many workers to "measures of desperation”, often
leading to gross errors in mathematical reasoning. In addition to those
noted above, Appendix D and H point out the one in Brekhovskikh's treat-

ment of layered media and the "source to duct coupling fallacy.

9
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1. The Method of Ray Tracing

One standard elementary method of calculating transmission loss
in underwater sound propagation takes over the methods of geometrical
optics in a medium of variable but known refractive index n = 1l/c, where
¢ is the speed of propagation*. The justification of this method is that
when the wavelength is much smaller than the dimensions of the medium and
the radius of curvature of the rays, the flow of acoustic energy 1s guided
by the rays** Therefore by studying the extent that they spread out from
the source of sound, the change in acoustic intensity with distance can

i be estimated. To make the method clear--and to show how it can lead to

difficulties--we shall first examine a number of illustrations of its use.

The simplest case is that of a point emitter O in a homogeneous
medium (n = constant). All the rays are straight lines, and since the
wave fronts are spheres centered at O, the rays guiding the flow of

rﬁ acoustic energy are those perpendicular to the wave fronts, viz., the

GREhaa = bx b et

straight lines through O (Figure 1,I), Let Wo be one of the spherical wave
fronts, of radius L and let W be another, of greater radius r. On the
surface WO let a region So bounded by the curve Co be traced. All the

acoustic energy from O that crosses So will remain within the cone of

rays through 0 and the curve Co' It will therefore pass through the

| region S of W, bounded by the curve C of intersection of the cone with W.

*The constant factor € in the full expression n = &/c is taken as unity
to simplify the preliminary discussion. However, in Section 7, we set 1
T = C, appropriately chosen and ¥ 1. :

**Strictly provable under certain additional assumptions given in later 1
sections,

10
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FIGURE 1.1 FIGURE 1.II

I i
! Spherical Spreading Deformed Spherical Spreading _j
. n = 1/c = constant n = 1/c varies with position ‘
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FIGURE 1,.III

Multiple - Path Transmission at increased range
n = 1/c varies slowly with position
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The acoustic intensity at a point P where a ray L cuts S is the amount of
energy (per unit time) intercepted by a body at this point, "subtending

a unit area of the wave front."

More exactly, it is the ratio of the
total energy E passing through S (per unit time), divided by the area of
S, the latter being regarded as arbitrarily small; more precisely, it is
the limit of the ratio E/S as region S shrinks up on W to the point P.
Since we are assuming conditions under which the acoustic

energy is guided by the rays, the same amount of energy E passed through
S° on its way to S, so that the acoustic intensity at Po is the limit of
the ratio E/So. But by the geometry of spheres, S/So = rzlroz, so that
the ratios of acoustic intensities at the two points obey the equation

1.1) acoustic intensity at P _ So . Iyl
acoustic intensity at Po S 2

which is the familiar inverse square law of spherical spreading. We are
assuming a quasi-steady state: that any change in power output from the
source 0 in the course of time can be neglected in this equating of the
energy through So and through S. This is usually allowable when range r
is moderate; for longer ranges, account may have to be taken of the
delay time of propagation from S° to S.

Now consider the more usual case in hydroacoustic propagation,
that the index n = 1/c varies enough over the region of propagation so
that the rays are no longer straight lines but gently curved. (We are
postponing the case of reflection.) Figure I-II shows the modification
needed in the shapes shown in Fiéure 1.1. With emission from the point O,
there will still be a set of wave fronts, such as wo and W, perpendicu-

lar to the rays through O (by the Theorem of Malus). The first equation

12
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in (1.1) will apply; but since the areas So and S are not spherical, the

second equation will not be true: The inverse square law of propagation

no longer holds. Consequently, before the effect of sprzading on trans-

mission loss can be calculated by equation (1.1), the valuc of the

spreading factor S/So (S° small) must be found. More precisely, the

limit of this ratio must be evaluated as So shrinks to point Po—-thereby ﬁ
making S shrink to P--where Po and P lie on the same ray L through 0.
We denote this limit by GS/GSO.

The method of 'ray tracing" offers a grapiical evaluation of

the spreading factor. In its simplest terms, the method consists in 4
constructing (e.g., with the aid of machine computation) a large number
of rays emanating from O, and closely spaced in their directions from O,

as evenly as convenient. If N(So) of these rays cut through So’ the !

number N(S) cuttirg through S must be exactly the same, by construction
of S: N(S) = N(So)' Therefore this common number behaves analogously
to the energy: its density (per unit area normal to L) is N(So)/so at
Po and N(S)/S at P; hence the ratio of densities of rays at the two
points P and Po is the latter quotient divided by the former. After
cancelling the common numerator, we get SO/S, the desired term in (1.1),
or reciprocal of the spreading factor. Since the ray density at any
point can be read off approximately once enough rays have been traced,
we are given a solution of our problem: SO/S = rav d. at P/r.d. at Po.
The practicality, accuracy, and reliability of the above
method must all be carefully examined. We have begun with the simplest
situation in which, as shown in Figure 1.71I we are close enough to the

emitter so that through each point P one and only ray passes, emanating

13
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from 0. For longer ranges (beyond the onset of convergence zone phenom-
ena) this is no longer true: multiple-path transmission sets in (Figure 1.
III)together with reflections, caustics, and other complications. Their
study will be undertaken in Section 2 (the mathematics,in Appendices A and B).
The accuracy and reliability of the method depeund on the cor-
rectness with which the rays can be determined; whereas its practicality--
indeed, its economy--is a relative matter, requiring a comparison with
other methods of answering the same questions and starting from the same
data. All applications of rays to the study of transmission loss--
whether the rays are actually traced, computed numerically, or merely
enter into the mathematical reasoning leading to numerical results--have
the same starting point: an assumed knowledge of the sound speed c
throughout the region of propagation (or equivalently, of the acoustic
index n = 1/c); and the differential equations determining the rays, and
expressing Fermat's "principle of least time". The basic elementary
facts will be recalled in their general setting in Appendix A, with

specific detail given in important special cases in Appendix B.

14
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2, Difficulties at Long Ranges

All the formulas and methods for calculating acoustic intensity
(Section 1 and Appendix A and B) imply single path transmission: the
situation of Figures 1.I, 1.II, but not of Figure 1.III. Everything has been
based on the smooth wave front W which is the surface of constant phase
or travel time t, orthogonal to all the rays issuing from the source O,
and progressing with increase of time according to Huygens' construction.
What becomes of the construction and reasoning when longer
ranges are considered, giving rise to multiple-path transmission, with

such attendant complicatiors as caustics? Suach factors will surely enter

at ranges beyond the first convergence zone, e.g., much beyond 35 miles.

Even without the added complications of reflections or absorptions from

the surface or bottom, the difficulties mentioned will occur. They
have long produced practical complications and obscurities in the
various computational techniques (ray tracing and analytic formulas),
and many attempts have been made to deal with them by ad hoc modifica-
tions of the standard computational procedures. But before a firm basis
for reliable and efficient methods can be laid, it is necessary to go
back to first principles and examine the physical relation between rays,

wave fronts, and the propagation of power.

Priy B Y-

Let us see geometrically how the difficulties occur, by follow-

ing the progress of a wave front W by means of Huygens' construction.
Figure 2+ shows (in plane section) a front which at first has no singular-
ities, but in which the sound speed c is greater above and below a

| central axis through the emitter O. In the early positions of the front,
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such as W., W, W., it has the appearance and is what we would expect
2’75

1’
Huygens' construction to give when the "elementary (spherical) wavelets"
have larger radii away from the central axis. In such later positions
as w4, 5 w6, the parts off the axis have more than caught up with
those near the axis, and the front is converging. By the time w6 is

reached, the radius of curvature on the axis is so nearly equal to that

of the elementary wavelet there that the Huygens' construction will show

tue formation of an angular point F on the wave front w7. The radii of
curvature of the wave fronts from W6 to W7 approach zero on the axial
ray. Consequently the family of rays between PlF and P2F, all being
orthogonal to the wave fronts, will pass through the angular point F of
W7. Since the energy traversing the piece S1 of Wl will come to a focus

at F, which is a piece of w7 of area zero, the energy density at F is
infinite. Obviously we are dealing with a situation in which the ray

approximation to the behavior of the acoustic propagation is inadequate.
Thus such a simple ray tracing method as the one described in Section 1

will not tell us how to calculate the acoustic intensity beyond F.

A similar situation is illustrated schematically in Figure 2,11

JoRTTO TR 157

which shows a pencil of rays having a caustic C. The wave front con-

e

verges to the arc of tangency with C, as shown in AlBl, A2B2, A3B3; it

is then reversed and deverges from this arc, as shown in A4B4, ASBS’ _
A6B6. Its evolution between A3B3 and A484 is not shown in the figure »
because of difficulties of scale; but it clearly folds over, temporarily I
acquiring a cusp in transit. This is because at each point T (not shown)

where one of the rays touches C, one position of the wave is formed by

joining two curves, AT and TB; and at T both curves, being perpendicular

16
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17 Arthur D Little Inc.

-

DU BRE [ . YR = J e

P At o A T T T

S

il L

g

g

R PR e

— Ty



(il stk o

et o e e

to the ray, are also perpendicular to C. Evidently the caustic C is a

locus of singularities in the wave front W; and the energy density is

infinite on C, In general, caustics are loci of wave front cusps.

Analytically, the progressing wave front W is the locus of the

equation S(x,y,z) = t, for the succession of increasing values to t.
Here S(x,y,z) is the time taken for a signal to pass from the point of
emission (0 in Figures 4¢1 M) to the point (x,y,z) of the medium--
along the "path of least time" (the ray) connecting these points.
Evidently when, as in Figurel.l more than one such path joins these

points, S(x,y,z) is multiple-valued. Since this function was single-

valued close to O (the situation in Figures iJandD), as (x,y,z) moves
away from O, it must pass through a locus of critical points at which
the single-valued S becomes multiple-valued: this "branching locus" is
precisely the caustic, as Figure 2.fshows geometrically, or the focal
point, as in Figure 21. With such a singularity appearing in W (or S),

there can be no simple form of the Huygens' construction.

18
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3.__Waves and Energy Flow

Section 1 has been based on the assumption that, at the signal
frequencies of interest, the rays guide the flow of acous’ ¢ power.
Section 2 has noted the difficulties of the conventional ray and-wave-
front construction at long ranges in the case of a sound speed varying
in space. Inasmuch as propagation does in fact occur under such condi-
tions without observable difficulty, the basic trouble must be, not with
Nature, but with the Huygens simplified description of it. This forces
us back to first principles: the wave equation and the concommittant
energy density E and its flux vector F.

Every simple acoustic disturbance corresponds to a function y
of time and spacial position, satisfving d'Alembert's wave equation
c2V2¢ = wtt ‘or one of its generalizatioms, 1 Using rectangular
coordinates (x,y,z),and subscripts to denote partial derivatives,

the appropriate wave equation for heterogencus media is

1 P
(3.1) E [ wx)x + (o wy)y + (p wz)z] = cz Vep

The wave function ¢ denotes the acoustic velocity potential, although

(3.1) would also be valid for acoustic pressure, on replacing p bv 1/p. The

space density of energy E and its flux vector F are given by the vector

equations (V, the gradient operator).

(3.2 :

B« (o /2)[[vy|? + a%?

Y
]’ F = =p llitVllf

Here p 1is the "quiet" density of the medium. Since the essence of the

phenomena under present study is the effect of spacial variation of p ana ¢

19
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(and n), the left side of (3.1) cannot be replaced by Vzw--a fact which

seems to have been widely disregarded.

The following theorem is basic; it is easily derived from (3.1)

and (3.2 ) by obvious differentiations and reductions:

Theorem: When the quantities p , ¢ (and hence n) are independent of the

time t, the transmission of acoustic energy is conservative, obeying the

"equation of continuity".

(3'3) E...ﬂ.._ﬂ*..ai

st Toax Tay oz " O

This means that, for a given wave | satisfying (3.1), we may
picture the transmission of acoustic energy just as we do the trans-
mission or flow of matter (mass) in a fluid of density p = E and velocity

components u, v, w, defined by the equations
(3.4) pu = Eu = X, pu = Ev = Y, oW = Ew = Z,

As in the case of real fluids, the lines of flow or trajectories are the
paths in geometrical space of points (x,y,z) which are functions of time
t (and initial positions)--the functions satisfying the differential

equations
dx/dt = u = X/E, dy/dt = v = Y/E, dz/dt = w = Z/E,

At each instant t, the directions of motion will have compon-
ents u, v, w (or, equivalently, X, Y, Z). The curves which at that

particular instant are tangent, at each of their points, to these
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directions are the stream-lines; they satisfy (for the fixed t in question)

the differential equations

dx _dy _dz

u v W

or equivalently,

(3.5) d _dy _dz
X Y z

In general, these will depend on the particular value chosen for t: the
stream-lines will vary with the time,

In the important special case of steady flow in hydrodynamics,
the velocity components u, v, w are independent of the time t; or,
equivalently, the ratios X:Y:Z are independent of t. Then the stream-
tines coincide with the trajectories, forming a fixed system of curves,
one and only one through each point in space. Furthermore, as a direct
consequence of the equation of continuity, no matter (energy, in the
radiation analogy) can pass through a surface made up of these fixed
stream-lines. Such a surface could be generated by moving a point P
along an open curve C (not tangent to a stream line), and letting the
- unique stream-line through P sweep out a sheet-like surface. If, on the
other hand, C were small and closed, the surface would be a tube; if SO
and S are two surfaces closing this tube (as in Figures 1.I and 1.II), the
mags of fluid (or energy) entering through So is the same as that leaving
through § .

Since we have in Section 1 been considering the rays as guiding

the flow or power, it is natural to suppose that, at least for broad

classes of waves y, the corresponding flow curves of acoustic energy are

21
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fixed, corresponding to a steady flow, and that they exactly (or approxi-
mately) coincide with a corresponding class of acoustic rays.

Unfortunately for the simplicity of this picture, it can be 1 i

shown mathematically that no real-valued y, satisfying the wave equation

PO G Y

and giving rise to these stationary flow patterns, can exist=— without

the energy density increasing indefinitely. Only with complex-valued y =
equivalently, with pairs of real-valued waves— can we establish such a
steady flow, In the remainder of the text, we shall consider only real-
valued wave functions for the sake of ease of physical conceptualism. In 3

Appendix C, the subject is re-examined with the aid of more technical

MR ik,

mathematics, There the concept of "travelling wave" is examined in some ;
mathematical generality.

To pass from the wave to the ray picture through the equations 3

(3.2), three steps have to be taken: First, we must consider waves ¥ ‘5
which represent stationary solutions, i.e., of the form ¢ = ¢T, where ¢ z

depends on spacial position only, and T on time only (normal modes). ]
Second, we have to find pairs of such solutions, complying with the 3

appropriate boundary conditions (equivalently, a single complex-valued

solution). Third, after substituting a linear combination of such a

pair of solutions into (3.2), the time-average of the resulting F must

4

be calculated. Then and only then do we obtain a steady flow, approxi- i
i

3

mated by a class of rays.
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4, Travelling Waves and Mean Power Flow

The concept of travelling or progressing waves is familiar to
electrical engineers in the study of radiation (e.g., from antennas) and
of wave guides. In such cases the signal speed ¢ is either constant or
varies only at limited loci, such as boundaries between different media;
cf. J.A. Strattond., More generally, ﬁhe speed ¢ varies continuously
throughout the whole region of propagation. The latter case has been
treated when ¢ is assumed to have special simplified forms, using special
functions. For more general c, mathematical treatments have been given; cf.
Courant & Hilbert3; but with results that are local and inapplicable to
long ranges. Yet it is under precisely such conditions that many of the
most important cases of signal transmissions in the ocean take place. To
fill the gap in the existing treatments, this and the next two sections
outline the general concepts of travelling waves in a form needed for

these applications, leaving the more complicated mathematics to Appendix C

Throughout this whole study we continue to postulate the inde-
pendence of sound speed c of time t; and likewise for g *

The most important acoustic disturbances ¢ in underwater
detection are periodic in the time (or made up of extended pieces having
this property). By a bacic theorem of Fourier analysis, every such
periodic function (under the usual physical assumptions of regularity)
can be written as a convergent Fourier series:

(4.1) = 2 [A cos(nat) +B_ sin(nat)] ,
n=o

*cf,, however, Tatarski.?
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where the Fourier coefficients An and Bn are independent of t but are
functions of position (e.g., of the rectangular coordinates (x,y,z)),
and where Q is a constant, the angular frequency of the "fundamental
note"; its frequency is Q/2r and its period 2n/Q. 2nc/Q is the approxi-
mate wave-length (exact only when ¢ is constant). Similarly for the
n'th harmonic, of angular frequency w = nQ: its frequency v = w/2m,
period = 1/v, and approximate wave-length c/v.

The substitution of the expression (4.1) into the wave equa-
tion, followed by formal manipulations, and reasoning familiar in
Fourier analysis, show that the coefficients in (4.1) all satisfy

Helmholtz' equation in its generalized form:

2
62 Vel Vot

O =

> ¢ =04 = A orB,us= nQ)-

These, multiplied by the corresponding sinusoid, are normal modes:
Thus (4.1) expresses our periodic wave y as a sum of normal modes whose
frequ;ncies are integral multiples of a fundamental frequency.

The substitution of the expression for y in (4.1) into the
equations (3.2) for the space density and vector flux of energy pro-
duces a sum of products of sines and cosines of various integral multi-
ples of Qt, all multiplied by factors depending on spacial position only.
The resulting sum, even in the simplest cases, 1is highly complicated,
revealing the fine details of the diffraction patterns, and all the
surges of energy within them,

In contrast to such complexities, if we seek what is important
in the practical problems of hydroacoustic transmission, we shall

naturally look for the behavior on the average. To find the time
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averages of E and F in the present case, we have but to take the term-
by-term integral over ome full period 2n/Q of the results of the substi-
tutions described above, and then divide the sum of integrals so obtained
by this period. By elementary trigometric integration, all the resulting
terms are zero except those integrals that involve t through the square
of one and the same sinusoidal term; and the value of all these is 1/2.

After carrying out this process, two general results are
obtained:

1. The mean energy density E' is the sum of the mean energies
contributed by each of the brackets in the series in (4.1); and likewise
the total mean flux F' is the vector sum of the mean flux vectors con-

tributed by each of these brackets,

2. For each bracket, which we write simply as A coswt + B sinwt,

the mean energy density E' and flux vector F' are given by the expressions
(4.3) B = b[ica2+ 9 A~’-)+1(|\713,12+“’2 B)

’ 2]z oz ] oz e
(4.4) F' = 2 (avB - BUA) 0,

Since t has been integrated out in the averaging process, all
the quantities in these two formulas are independent of the time.

Therefore, if we replace (X,Y,Z) in (3.5) by the components (X',Y',Z') of

?', we obtain the stationary flow picture described in Section 3, but

rejected as a general possibility for hydro-acoustic power--but now seen
to be valid after the averaging. Clearly the equation of continuity
(3.3) is true for the accented quantities, since 3E'/3t = 0 and (4.4)

shows that the divergence V-F' = 0.
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The concept of the travelling wave applies only to those

special vibrations which, in addition to the periodic property expressed
; in (4.1), actually give a net transfer of energy with the passage of a full
period of time. From what we have seen, they are composed of pairs of
"monochromatic" waves, combined together in the form ¢ = A cosuwt +

b B sinwt, the spacial coefficients satisfying (4.2); and with E' and F

3 given by (4.7) and (4.4). Our detailed examination will be confined to
such "elementary" waves. When such pairs A and B of solutions of (4.2)
exist, any other pair A', B', formed by taking independent linear com-
binations with constant coefficients of the original pair serves

equally well, and when the determinant of the linear transformation is
unity, it gives the identical mean flux of energy. This flexibility
will be used, as explained in Appendix C, to "normalize" and "orthagon-
alize" our pair: this will have the physical consequence that, in a

certain sense, we shall have an elementary wave producing the maximum

energy flow for the least energy density. Such pairs shall constitute

the travelling waves to be considered; they include all the special

cases studied in conventional radiation theory.

In most of the classical problems involving normal modes of i
vibration, a bounded region is assumed and the boundary conditions ) i
determine the solution of a given frequency uniquely: no two linearly
independent eigenfunctions can belong to the same eigenvalue w?, Such

cases are those of the vibrating string or elastic membrane clamped at ) 1

its boundaries (one and two dimensional vibrations); more generally,
cases where the(l, 2, or 3-dimensional) region is simply connected,

and at every point on the boundary either y or its normal derivative or a
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homogeneous linear combination of them is zero. Under such conditions,

(4.4) shows that F' = 0, so there is no displacement of power on the

é average: we do not have travelling waves,

There are exceptions in the above cases: The homogenedus
square drumhead has pairs of linearly independent normal modes, and a
study of the situation with the aid of (4.4) shows that there is then a

net average circulation of energy about the center of the drumhead,

{ around which the flow-lines are closed curves. When the region of
vibration is multiply connected, ring-shaped for example, the above
situation is the rule rather than the exception. We might call the

vibration a circulating travelling wave in cases of this type. They

| j may have applications to wave guides, but make no evident contribution
to long range propagation, and shall be excluded from further study here.
In concluding this section, it may be noted that the coaven-
tional treatments usually start by assuming the existence of a complex
valued normal mode. Since the real and imaginary components of
such a complex function constitute a pair A, B of real fundamental
modes of the same frequency (we have but to write C = A + iB), the
assumption in question is valid only in certain cases and not in
others, * Moreover, not only the physical pictures but the logical
relationships of the possible assumptions are kept clearer by remaining

in the domain of reals--evern though many formulas are simpler in

complex notation,

*Some authors are clearer than others on this subject. See references
to Morse & Ingard1 in Appendix D for a realistic treatment.
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5. Boundary Conditions and Power Wave-Fronts

It has been noted above that the existence or non-existence of
travelling waves, and their nature when they do exist, is fundamentally
dependent on the conditions set at the boundary. This seems natural,
since if the bqundary conditions allow no energy to cross it on the
average, there can at most be circulating travelling waves; and in a
simply connected region, even these are exceptional (requiring coincident
eigenvalues)., Such classical boundary conditions as assigning the values
of the function, or of a linear combination of it and its normal deriva-
tive, can be seen by an easy application of (4.4), to give a zero mean
flux of power acrcss the boundary: The mathematics then shows that the
solution of (4.2) is in general unique, etc., thus illustrating the facts
concerning travelling waves. The practical question facing us here
is what conditions to assume at the physical boundaries of the ocean.

The ocean regions of relevance to the present study have three

types of boundary: physical boundaries of the water mass involved, i.e.,
its surface, bottom, or emerging land masses; emission surfaces out of
which a mean flow of energy can take place, determined by the enclosed
source; and reception surfaces, containing the receiver into which the
energy enters. The problem is indeterminate--as it should be: If, first-
ly, we imposed boundary conditions of the classical type mentioned above
on all the boundaries, the real ¢ would be uniquely determined and there
could be no mean energy flow. If, secondly, conditions on the emission
and reception boundaries are less definite, there would be infinitely

many mathematical solutions of the acoustic wave problem. They might
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all have "physical meaning" (i.e., correspond to possible vibrationms);
but only an (infinite) sub-set would be relevant to our study of signal
transmission. These are the waves that we wish to single out here,

by applying the criteria set forth here and in the next section.

As we have seen, the lines of mean flow of energy for an ele-

mentary travelling wave are the solution curves of the differential

system

dz

A ﬁ' = (x'v Y', z')

L (5.1) dx _ dy
. 3

E where F' is given by (4.4). Their geometrical nature will depend, in an
essential way, on the loci of points in space where simultaneously A = 0
and B = 0, We can say that "in general" the individual locus of A =0 on

the one hand and B = 0 on the other are surfaces, and that the simultan-

eous locus, which is their intersection, is made up of curves. Of course i
! in equally general cases, one or both of these individual loci may not ;
exist, or it may be made up of points or curves; furthermore, the two

individual loci may not intersect, or may do so only at isolated points.

But whatever the dimensionality of the locus of the simultaneous equa-
tions A =0, B = 0 it will be called the singular locus of (5.1).

A possibility not mentioned above is that the singular locus
have two-dimensional parts, i.e., that the individual loci A =0 and
B=0 have a surface in common,.across which no mean power flows, by (4.4). i
Then such a surface is an"internal boundary” made up of flow curves
(determined by (5.1) and its consequences). This theorem, which is a

consequence of Helmholtz' equation (4.2), is proved in Appendix C,
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where it is aiso proved that 1t creater no ambiguities in the flow
direction (X':Y':Z'), nor in the limiting values of 0 in (5.3), which
differ by m as a regular point on it is approached from the two sides.
Starting from any elementary travelling wave (under the re-
striction just mentioned), to any point (x,y,z) of the part of the ocean
considered there corresponds a point (u,v) in a plane, given by the

equations
(5.2) u=A=A (x,,2), v=B=B (x,y,2z) .

To points on the singular locus corresponds the origin (0,0) in the uv-

plane; to every other point, there corresponds a point (A,B) ¥ (0,0).

1/2

Such a point defines a distance R = (A2 + B2) to the origin, and,

apart from integral multiples of 2m radians, an angle © whose sine and

cosine are A/R and B/R (or their limits on the 2-dimensional singular loci):

(5.3) A=RcosO, B=Rsind.

Clearly these polar functions of (x,y,z) have all the regularity proper-
ties of A and B (continuous differentiability, etc.), provided (x,y,z) is
not on the singular locus. On the other hand, while R is single valued,
© may well be infinitely multiple valued. This multiplicity may be
generated when exclusion of the singular locus from the region of propa-
gation renders the latter multiply connected. Then the point (x,y,z) can
move along a closed curve threading the excluded singular locus: if, as
may happen, the corresponding point (A,B) in the uv-plane goes around the
origin (0, 0) e.g., once in the positive direction, the original value of

O 1is increased by 2n . Crossing an internal boundary causes a jump of m.
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The formulas and relatioms to be examined assume & simpler form 1f we
replace the polar angle 0 by its quotient S by the angular frequency w,

writing (S used in a new sense, later to be related to the earlier one):
(5.4) O=uwsS,

Then equations (5.3) are replaced by

(5.5) A=Rcos wS, B=R sin wS .

S, like 0, is multiple valued, being determined only to integral multi-
ples of 21/uw = 1/v, the period of vibration of the travelling wave.

The substitution of the expressions (5.5) into (4.2) glves,
after equating coefficients of sines and cosines (as justified by the

usual reasoning), the polar form of the Helmholtz equatioms:

Ve VR)
(5.6) |vs|? - lz - _1_2. i_
LO®

Cc

(5.7)  9+(pR? VS) = VZS +VS o (2V1cg R+ Vlcgp ) =0
The corresponding substitution into (4.3) and (4.4) give

P 02 g o Loag L 2
(5.8) E' =5 R (|vs! +€7+;z|v log R|2)p

¥ w? o2

(509) -2 R VSP .
Finally, the expression for our elementary travelling wave becomes
(5.10) yiqu',0'") = (R cos w(S -t), R gin w(S - t),

(replacing -t by +t for power flow opposite to vs).
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Equation (5.9) shows that the flow-lines defined by (5.1) are
in the direction of the gradient of the function S, and thus are normal
to each surface S = const. Moreover, (5.10) shows that this family of
surfaces, regarded as the loci of the equation S = t, can be described
as surfaces moving with increase of time, and representing loci of
constant phase--all exactly as described in Section 1. But there is
one difference. 1f we consider two near-by surfaces, S = t and
S = t + A, where At is small, the second will cut a length AN off the
normal to the first surface (drawn at some given point (x,y,z) on the
latter); and AN/At approaches, as At » 0, the rate of motion of the
surface of given phase, S = t (at that point). But this is easily seen
to be the reciprocal of the gradient of S; in other words, this rate of
motion AN/At + 1/|9S|. Now equation (5.6) shows that this is equal to
the sound speed c only if the right-hand member of this equation can be
neglected; otherwise the phase velocity of the travelling wave will
depend (through the function R) on the wave and on its frequency w.

At this point the conventional treatments regard the right-
hand member of (5.6) as approaching zero as w increases indefinitely.
As a deduction from (5.6) and what preceded it, this is incorrect,
since the other quantities, S and R, also depend on w (otherwise they
could not satisfy Helmholtz' equation). It is perfectly possible for
V¢R/R to become infinite as w increases, in such a way that the right
hand member of (5.6) does not approach zero. In fact, as we shall see
in Appendix D, counter-examples to the approach to zero can be given.

More logically, we could select, from the infinitude of

waves satisfying the boundary conditions at the physical and internal
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boundaries, a sub-infinitude for which

(5.11) 1im Ve« (pVR)/Rpw? = 0,
e

Many authors derive important local consequences from this
assumption (cf. Hadamard3, "Lectures ..." or Courant & Hilbert?, Vol.
IT). A general feature of certain methods 1is to start with a solution
S0 of the eikonal equation, the limiting form of (5.6) under assumption
(5.11); and then to obtain special solutions of (3.1), or of (4.2) or its
equivalents (5.6) and (5.7), by methods of successive approximations or
in formal power series in 1/w. The fact that only local results can be
obtained in the general cases of variable ¢ needed in long range propa-
gation results from the nature of the multiple-valuedness of So, whose
branch loci are surfaces in space or curves in the plane--as we have
noted in Section 2 with regard to caustics. See Appendix D.

It is possible to select a sub-infinitude of travelling waves,
parameterized by the frequency w, in such a way that the power flow lines
approach an appropriate subset of rays: such a sub-infinitude will be
defined in Section 6, and will be termed a "Fermat family" of travelling
waves, since, as will be shown, they are the ones in which the flow of
power is governed at high frequencies by the usual application of Fermat's
Principle. The fact that this is not automatically the case--that many
simple and physically natural families of travelling waves exist in which
the power flow curves are not remotely represented by rays even as w>®--

is shown by the classical examples in Appendix D.
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The complex notation. Before leaving the present subject, we

re-cast some of our earlier expressions in the simpler and more usual
complex notation--which we have deferred up to now, in order to make the
physics and the logic more visible. As noted at the close of Section 4, §
we may write for our travelling wave pair, A,B, the complex function
¢=C-A+iB-Reiws, which of course satisfies Helmholtz' equation. The
corresponding complex wave ¢, which satisfies D'Alembert's wave equation,

wt

b4
is given by y=¢e ~, the + for a retreating, the - for an advancing wave

(in the direction of VS). Thus (5.10) is replaced by

(5.12) o Reiw(s+t) ‘

while the density and flux of energy and their means are given as follows,

the bar denoting the complex conjugate:

- R :
E= (Vy+Vy + n wtwt)olz, ;
F= -0 +0,7)0/2

(5.13)
_ _ :

E'= (V6:V¢ + n2w209)/0/ b,
> = —
F'= (¢V¢ - ¢V¢)ow/4d

Note: A Common Fallacy. In spite of valid results derived by some
authors from (5.11), in many elementary presentations of the subject,
this equation--which 1s obviously a necessary condition for the validity
of the ray approximation--is assumed to be sufficient. That this point
of view cannot be held is shown by a counter-example in Appendix D, which
gives a family of travelling waves satisfying (5.11) but not leading to
the ray approximation. This requires us to give the detailed discussion
of Section 6.
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6. Asymptotic and Fermat Families of Travelling Waves

Statements concerning the behavior of travelling waves at high
frequencies, such as the assumption that "at high frequencies the mean
flow of power is guided by the rays'", must, if they are to be given
precise meaning and mathematical proof, imply that an infinite set of
waves is under discussion--not individual ones--and that their limiting
properties are being considered as their frequencies increase without
limit. This means that we have to deal with a family {¢m} of travelling
waves, each individual member ¢w of which is given by (5.10), or more
conveniently, by (5.12). We wish to explore the conditions under which,
as w-+o, the lines of mean power flow P (the " A-lines" as we shall

" L-lines") "associated"

term them) approach the appropriate rays (the
with them by mutual tangency at a given fixed point: the least that
it would imply is that the unique A- line through each fixed (non-

specialized) point P have a tangent whose direction vector (the unit

vector F'w/IF'wl) approaches a limit direction as w +«,

The many possibilities presented by actual w-parameter families

of travelling waves are 1llustrated by the six examples given in Appendix
D, each of which is an elementary and classical case having a simple ]
physical meaning. The first four examples deal with homogenious media
(constant n,p) so that the rays are all straight lines. The fifth is

among the earliest studied problems of reflection and refraction across

a plane boundary between media of different but constant (n,p).
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; The first example is the square membrane clamped at its edges.
There are no internal boundaries (curves where ¢=0); but, for each w, a

E set of singular loci (points) around which the A-lines wind; as w-+o

J the singular points increase in number and density throughout the square:
g every one of its points is either a singular point or the limit of such

points as w+®; and the A-lines have their curvatures increasing without

limit., Obviously no ray treatment is possible in this case.

The fifth example is the classical case of reflection and re-
fraction of plane waves at a plane interface: no internal boundries, but
a singular locus ¢ = 0 consisting of parallel equi-spaced lines on the

interface, crowding indefinitely as w+«; no limiting direction of A-lines.

The second example is again a membrane, but clamped about its
circular boundary. The center is the sole singular point for all fre-
quencies; but the interior boundaries (curves where ¢=0) are concentric
circles, spaced according to the roots of Bessel functions, and with a

spacing approaching zero as w *«. The mean power flow or A lines are

these circles and others concentric with them. Therefore our necessary
condition--the approach of limits in direction (and position) of all A-

lines--is satisfied. In spite of this, these lines have nothing to do

with rays, which are all straight lines. This should dispel the glib
generality that at high enough frequencies, the rays guide the mean (or h ;

other) flow of power!

padh a el St sl e
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The third and fourth examples are of radiation emitted from
a point, in a membrane or in space, respectively, and thought of as
extending without limit., In these examples both the A-and the Im~lines
are radial straight lines through the point radiator: in every associated
pair A= L at all frequencies.

Appendix D follows these familiar cases with a counter-example to the
notion that (5.11) is sufficient for the applicability of rays as w~=: a family
of plane waves satisfying (5.11) but having no limiting direction. Clearly

more than (5.11) must be assumed. We start by giving the preliminary

P. DEFINITION I.By an asymptotic family {¢w} of travelling waves

shall be meant one having the following property: Given any point P°
in the medium, not belonging to an exceptional figure I which is inde-
pendent of w and of dimension at least 2 lower than the medium, there
exists a neighborhood No of Po’ within which the diractions of all A=
lines approach limits, in a "regular and smooth" manner. More precisely,
such that if P is any point fixed in No’ the direction vector tangent at
P to the unique A-line through this point (for sufficiently large w) will
approach a limiting vector direction as w +«, Further, this approach
will also hold for the space derivatives of this field of directions in
No of orders up to and including the fourth. Finally, the convergence
is in all cases uniform on No.

This somewhat long-winded definition can be shortened and made
more elegant by assuming the analyticity of all ¢w--as we may, in view
of the considerations cited in Appendix C. Then all that is needed is

the requirement of uniform approach to limits of the directions themselves
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(1.e., of the three analytic functions contained in the symbol f'w/IF'w|)
on some fixed 6~dimensional neighborhood Ng of Po: (xo,yo,zo): the uniform
convergence of theilr derivatives of all orders automatically tollows.
We may add that in all examples 3iven in terms of special functions--as
those of Appendix D--this situation always occurs when the A-lines do
approach limits (as in the last three examples cited).

Consider the field of limiting directions of the A-lines: by
the assumptions of differentiability and uniformity of approach, it 1is
a "smooth" (i.e., 4th order differentiable--usually analytic) field,
except on I's A first application of the classical theory of ordinary
differential equations shows that through each point Ponot on ' passes
one and only one integral curve A (i{.e., tangent at each point to
the direction of the field at that point). A second application of the
general theory shows that the A-curve through any P (not on I') approaches
the integral curve A_ through P of the limiting field, as w-~w, and that
this approach is uniform (through the fourth order of differentiation at
least) in any bounded region, however large, not containing points on T.
[A most convenient form of the general theorems used here is in G.D.
Birkhoff's "Dynamical Systems", Chapter II].6

We wish to show that the limiting curves A_ in the asymptotic
family {¢w} are normal to a family of surfaces, I(x,y,z) = constant;
i.e., that a function I exists, "smooth" to at least the 4th order
defined (but usually multiple-valued) except on I'. Here we apply a
theorem of advanced calculus® that states that a field of directions,
described, e.g., by a unit vector ﬁ-ﬁ(x,y,z) (whose components have the

present order of smoothness) is a field of normals to a family of

*References in Appendix D.
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surfaces of the above type if and only if the field is perpendicular
to its curl; i.e., Ueuxt = 0. This property will be established,
in view of the way we have assumed the field of directions ﬁw = F'wllF'wl
converges to ﬁ, once it has been proved for the latter. To do this, we
first consider any point Po at which ¢w # 0 and take a neighborhood No
throughout which ¢w $ 0: in N0 the functions @ and S are defined, e.g.
by (5.3) and (5.4); and ?'m 1s normal to the surface S = constant, (5.9).
Hence, this vector field, and therefore Ew = F'/IF'I, is perpendicular to
its curl. Now, as shown in Appendix C, even on internal boundaries the
directions ﬁw are defined, and join smoothly onto those defined at other
points. Hence the property of being perpendicular to its curl is extended
by continuity to the internal boundaries: it therefore holds for the
limiting vector field ﬁ at every point not on [, whose dimension is,
according to the above definition, at least two units lower than that of
the medium. This suffices to show that the property of the A-lines of
being normal to a family of surfaces (S = constant, one and only one
through each point) is transmitted to their limits, the L-lines.

It is appropriate to emphasize the purely geometrical nature
of the results established above for asymptotic families: from their
definition in terms of limiting directions at each point (not on I') we
have concluded that the Am-line through each point (not on ') approaches
a limit curve A_ through that point; and further, that the very special
property of orthogonality to each of a family of surfaces--one and only
one of which passes through each given point not on I'--applies also to

the 1limit curves. While the proof outlined above is based on analytic
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formulas, the result may be regarded as geometrically evident. So also
may be the fact that the unique surface (I = const.) through any given
P (not on T) normal to the limiting A -lines is actually the limit, as
w—+», of the surfaces (Sw = const., etc.) through P. An outline of a
deeper liscussion of these matters will be given in Appendix D.

It is also appropriate to note that these geometrical relations
(or their analytical proofs) do not automatically establish the fact that
the functions S*I as w+». This is because a familv of surfaces, such as
L = const., does not determine the function I that may be used to represent
1t: thus I3 could serve to represent the above family as well as I; and,
in fact, any such family can always be represented in infinitely many
different ways; this however would imply that the new function is a
function of the first--of the form f(L). Since obviously V£(Z)/|Vf(Z)| =
VZ/IVEI, the normals aefine the same direction fields. This state of
affairs 1s illustrated by the fact that in the second example of Appendix
D, Sw = p8/w (6 = tan ! y/x, the polar coordinate angle, while the integer
p 1s independent of w). Hence Sw-*O, whereas L # 0, and can be taken,
e.g., as § or po.

As noted before, in view of this same example, the limiting

A_ through a point P not on T' may or may not be the ray L associated with

it by mutual tangency at P: to justify any application of the ray method,

conditions that Am = L must be established. An obvious criterion is
that the function I in the representation (I = const.) of the family of

surfaces normal to the A -lines may be so chosen as to satisfy the

eikonal equation |VI|2 = n?. Since, as we have observed, the whole
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class f(I) represent this same family of surfaces--and if one satisfies
the eikonal the others in general will not--the application of this
criterion is somewhat impracticable. Another criterion reposes on the
intrinsic geometrical shape of the A-and I=1lines associated at the point
P: their curvature and (in the case of space curves) their torsion.
Appendix D, after recalling the definitions of these fundamental concepts
(and giving references), establishes formulas for them in the cases of
associated A~and Ir lines. Now clearly if these two curves are to coalesce
as w ==, the curvature and the torsion of these two curves must differ by
an amount approaching zero. The formulas then show that our asymptotic

family {¢w} must be such that not only must (5.11) be valid in the sense

of uniform convergence in some neighborhood N of each point P (not on T),

but the derivatives of the left-hand member of (5.11) up to the second

order must converge to zero in the same way.

(5H) The augmented version of (5.11) italicized above shall be
referred to as (5H). So far it has been established only as a necessary
condition for the ray treatment of power flow in an asymptotic family,

We now have the following

THEOREM I. Condition (5H) is not only necessary but sufficient
for the validity of the ray treatment of power flow in an asymptotic

family of travelling waves {¢w} at high frequencies.

Equation (5.6) combined with (5H) shows that IVSw|-+n as u+w,
On the other hand, the definition of asymptotic families states that the

direction vector ﬁw = VSw/IVSwl approaches the limit ﬁw. Therefore the
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product VSm = IVSwlﬁw approaches the product of the limits, nﬁm. Finally,

since § = J}Sm-d¥ + const. (r is the position vector), the integration

being along any fixed regular path, it follows (by the uniformity of

the convergence of the integrand) that, as w »>w, Sw approaches a limit
>+ +

S, -‘Ihum-dr + const. and that VSco =l , so that, on taking I = Sm,

we can satisfy the eikonal equation, since |VS_|2 = n?. From this point,

the elementary general theory (if Osgood, Chapter XIV.23)“ shows that the

limits of the A-lines are in fact a family of rays. All this assumes

that we are avoiding points of I'. We pass to the next preliminary

P. DEFINITION II. By a Fermat family of travelling waves shall
be meant an asymptotic family {¢w} satisfying the condition (5H)--or,
equivalently, the condition that S_ = lim Sw exists and satisfies the

eikonal equation.

Here we may observe that the reason for introducing S = w0 in
Section 5 instead of the apparently more natural 0 is this simpler behavior
of S in Fermat families. In the second example in Appendix D--the
asymptotic but not Fermat family--it is © and not S that approached the
required limit,

The rest of the present study will be based on the notion of
Fermat families--a concept to which we have been led in our attempt to
justify the ordinary ray treatment. But certain questions of crucial
importance introduce themselves: first, can we satisfy the physically
realistic boundary conditions imposed on the problems of hydro-acoustic

propagation by a Fermat family, or do we have to use linear combinations
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of such families? and second, in the latter case, is such a combination
of Fermat families also a Fermat family? And other issues can be raised.
The answer to the first question will depend on the precise
nature of the boundary conditions. If they are of the classical
deterministic type, they cannot in anv but the simplest cases (e.g.,
in the third and fourth examples of Appendix D) be satisfied by a Fermat
family. Even as simple a case as the fifth example, of reflection and
refraction of plane waves at a plane boundary--with a resulting non-
asymptotic family of travelling waves--shows the impossibility mentioned.
The same examples, which combines Fermat families linearly, i.e., by the
"principle of superposition' shows that the second question has a negative

answer. In fact we have the following:

THEOREM II. If {¢m} and {¢'w} are two linearly independent
asymptotic families of travelling waves, their combination by the principle
of superposition, i.e., {a¢w + b¢'w}, is never an asymptotic family (unless

a=0orb=0or they tend to coalescence in the limit).

The proof is given by a direct calculation based on the
expressions (5.12) and (5.13).

0f course the classical boundary conditions and the combination
by the principle of superposition would also automatically prove that
multi-path transmission is impossible. Since we know experimentally
that it does occur and is very important, we are driven to the con-
clusion that boundary conditions formulated as implied above do not

represent the physical facts in such cases: that we have used the 'wrong
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model". The following theorem shows one way out of this reflection problem:

THEOREM III. If in the combination of the two asymptotic

families in Theorem II, we insert a 'relative phase factor", 1i.e.,

s

replace b bybei6 (where § is real), then calculate the components

of F' for this linear combination by formulas (5.13) and lastly take
the mean of the result over a full period (i.e., integrate with respect
to § between 0 and 27/w and divide the result by this period), it is :
found that the components of the flux vector ~> the linear combinations, i

by the real factors ]a|2 and |b|2, of those of the original wave families.

By letting w—>«, this linear combination of these important j

physical quantities approaches the corresponding combination of their 1

limits: indirectly, then, we can apply the asymptotic or the Fermat

families--and thus restore the basis for the validity of ray methods.
What 1s the physical basis of the phase averaging of Theorem .II”
One answer (applicable to specular reflection) would be that the actud’

position of the reflecting plane is indeterminate within the limits of

very short wave lengths, and thus produces the incoherence assumed. i

a more general answer is to be found in the medium itself. These matters 3
will be examined further in Sections 10 and ll--most conveniently after

the Hamiltonian picture of ray phenomena has been introduced, in Sections T .
This extension of power flux to phase space will be based in :

Sections 1) and 11 on the geometrical ideas just developed, for the sake

of intuitive simplicity. More sophisticated methods would do the corresponding 3

task for the broadened conceptions to which we now turn.
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Broadening of the definitions. It is necessary to broaden the

two preliminary Definitions I (asymptotic families) and II (Fermat families),
to apply to the case of multi-path transmission, as when two or more rays
pass through the points of emission and reception, and when this does not
involve the type of reflection at a surface of discontinuity noted above,

but continuous refractive bending. Then the ray directions throughout ex-

tensive volumes of the medium will not be unique: at any point P there will
be as many different directions as there are rays joining it with the emitter.
Since, on the other hand, for each fixed w, however large, the energy flow
directions given by (5.13) at P are uniquely determined (when P is not on
the 2-lower dimensional T), it follows that the latter single direction

at P could not possibly approach the several ray directions through this
point: no asymptotic family according to our preliminary definition could
exist at such ranges from the emitl.er as allow multi-path transmission.

In physical terms, such transmission will produce a complicated interfer-
ence patterm, varying rapidly with increasing w, and preventing the approach
to any limit,

This interference behavior results, of course, from the time
differences of arrival at P of an emitted phase as it takes the several
paths: the resultant at P will depend strongly on the frequency w. Now
this fact suggests the way out of our difficulties: carry the whole picture
from that in the space occupled by the medium (xyz-space) to a picture in
the "space-time" of the variables x, y, z, t. For in all cases of radiant
energy in classical physics, the path ("world line") connecting the pcint

o]

("event") (xo, yo, z, t°) with (x, y, z, t) is unique (with rare exceptions
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which cause no difficulties)? In other words, the times taken for a
phase to travel from (x°, yo, z°) to (x, y, z) are different for the
different rays connecting these points, so that t - to will determine
the ray in question.

This transference to space-time requires us to return to the

time dependent elementary travelling waves (5.12) ¢ = Reiw(s_t)

, and the
corresponding E and i given by the first two equations in (5.13). Then
in rephrasing Definition I we sould have to consider limits at a fixed
point-and-time ("event") (x, y, z, t) of these and related quantities

as w *», We also have to consider, not simply the 3-vector F but the

"4-vector" (f,E). Accordingly, we broaden the earlier definitions as

follows:

DEFINITION I. An asymptotic family {ww} of elementary time-
dependent travelling waves is one which in a neighborhood of each point-
and-epoch (x, y, z, t) has its 4-vecotr (f,E) approaching a limiting
4-direction - i.e., the ratios of its four components appraoch limits.

Here it is understood that points on a 2-lower dimensional T
may be excepted; and that the convergence is uniform in the neighborhood,

extended slightly to complex values of the variables.

In order to reach a corresponding definition of the Fermat
family, it 1s useful to introduce the velocity vector 6 of flow of energy,
regarded as located in the medium. Clearly V = F/E, and with an asymptotic
family, this approaches a limit as w +~ (with the usual exclusions).

Locally, (5.12) and (5.13) show that (5.8) and (5.9) apply to F and E,

*Being, as explained in Appendix G, confined to 2-dimensional manifolds
(the l-dimensional caustics in the (x,y,t) case).
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but with the second members multiplied by 2. The length V of V is
V=F/E (F = length of f‘). Our equations, after taking reciprocals

involving 1/V, lead to the following:

(16.1) [lvsl -%]2+ [—13-1—2] + 3 17 10g &|% = 0,
¢ v w

The first conclusion is that V < c, since otherwise the second
parenthesis would be positive, and since the other two are non-negative,

the sum could not vanish. The second conclusion is that V, which depends

on w, will approach ¢ if and only if |\7 log Rllw +0. This is again based

on the non-negativeness of the first and second parenthesis. Turning

to (5.6) we see that the above approach will occur if and only if (5.11)

is valid - and with it, the consequence that |V S| - 1/c¢ +0. These
results, as noted earlier in this section, establish the approach to
coincidence of the A-line through a given (x, y, z, t) to the L-line

tangent to it at that point, as w-+«. Thus our definitive:

DEFINITION II. A Fermat family is an asymptotic family in
which the limiting 4-directions (ratios of the four components of

(-f,E)) are such that the energy speed V is the phase speed c.

Our previous examples show that many families {ww} can fail
to be asymptotic; that many asymptotic families exist which are not
Fermat; and that Fermat families exist. Furthermore, Theorems I and II

continue to be valid with the present broadened definitions of these

terus.
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It remains to show that under the physical conditions of impor- i

tance to long range propagation, with smoothly varying but quite general

physical functions (p,c) Fermat Families exist. This task will be carried

out in Appendix D; but it is appropriate to close the present section i
with three remarks. 3
First, the literature in which mathematically correct valida-
tions of ray treatments on the basis of the wave equation, whil~ very
voluminous, does not appear to cover the case of multi-path transmission ;
of acoustic energy, with caustics causing complicated multiple-valuedness ;
of the phase function. Thus in Courant & Hilbert3, Vol. II, Chap. VI,
Sec. 5, the equations (3) and (20) contain such functions as "y" (our S)
which at ranges of interest to us become multiple-valued. See also the

references given in that pace.

Second, the method (hat we shall use in Appendix G is based on

gl o b

the elementary solution first established in sufficient generality by

J% Hadamard3 in 1923 (Lectures on Caucny's Problem, etc.) In our case

TR

of time-independent coefficients, slowly varying in range, this solution
simplifies and can be extended to the long ranges required. Furthermere,

our assumptions of analytic data allow great simplifications: by contour

integration in the complex domain of the initial time of a harmonic factor
times the elementary solution, we obtain our Fermat families of emitted %

travelling waves without the need of Hadamard's complicated "finite part"

. i

[ of a divergent integral: or the even greater complications of the 'improper
E; functions" (L. Schwartz' "Distributions", including in particular Dirac's ;

Delta Function) which are common methods in the present mathematical
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theory, used largely to avold assumptions of analyticity and use of

complex independent variables: to economize assumptions for mathematical
form rather tnan physical necessity. g
Third, our proof in Appendix D requires a physically unimportant %

but mathematically crucial broadening of the notion of limit in our above

Definitions I and II: instead of "strong limits" (actual approach at each
point (x,y,z,t)=— with local uniformity) we must use "weak limits": the
approach of integrals of our functions over arbitrarily small and given
regions (not changing with w). After all, it is not the density F
itself, but the total flux of energy it produces across a small but
finite pilece of surface during a small finite interval of time that is
physically meaningful and measurable. Similarly for the integral of E

over a small volume at a given instant (epoch).
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7. A Mechanical Analogue Model of Acoustic Rays

Having established the close coincidence of rays with the
lines of power flow at high frequency, our next step is to establish a
better way of applying rays to transmission loss problems than the
usual one, outlined in Sections 1 and 2. For this purpose it is neces-
sary to borrow from the classical theory of dynamical systems certain
mathematical tools. The exact and general approach will be set forth
in the succeeding sections. The present section is intended to intro-
duce the ray versus particle-trajectory ideas in a simple form that can
be visualized. A still more elementary account of the particle-wave
correspondence (in very special cases) is given in "Physics" (Physical
Science Study Committee, D.C. Heath & Company, Boston 1960). Chapter
15 (The Particle Model of Light) studies surface refraction by esc.- -
tially the model used in this section.

One purpose of the mechanical model described herein is to

aid in bringing mechanical intuition to bear on the behavior of sound
propagation by rays in a vertical plane. Such propagation occurs when
the sound speed c depends not only on depth z but also on horizontal

distance x along the direction of propagation--but not on distance

across it; thus c = c(x,z). The special case when the acoustic profile

is the same at all points, is included in the model; this case, which

1s studied in Appendix B, is very simple, and the rays are easy to
visualize, being periodic (see Figure Bl). As shown in Appendix B,
they are given mathematically b& explicitly solving their differential }

equations by quadratures. The construction and operation of the model 3
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} will be described here, its physical justification being deferred to
Section 8.

The construction and validity of the model are based on two
facts. Firstly, as will be shown in Section 8, the equations determin-
ing the acoustic rays are identical with those governing certain motions 5
of a particle of unit mass under the sole action of a field of force
derived from a potential V = - C2/2¢c2 ; here the constant of proportion-
ality C, of dimensions of velocity squared, is chosen arbitrarily and 4
determines the scale of the construction. Secondly, in the two-
dimensional case of rays in the xz - plane, the motion under the action [s
of the potential V = V(x,z) is equivalent (to quantities of higher
order) to the motion of a unit particle constrained to lie on an appro-

priately defined smooth surface 2: and acted on only by gravity and the

normal reaciton of ). .
The construction of ), 1is as follows: First, turn the xz -
plane from its originally vertical position to a horizontal one; second,
introduce a third axis, y, directed downward; finally, construct 2: as i

the locus of the equation

y=-V/g= CZ/2c29

where g is the constant of gravity; thus V = -gy, the gravitational
potential.

If, then, the particle is started at any point Po of 2: in

any direction (tangent to 2: ) and with the speed v, = C/co
(co = ¢ at Po), its path will (to quantities of higher order in the

vertical component of its velocity) trace out the ray tangent to the

( same initial direction. Figure 7.1 illustrates the situation in the case
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FIGURE 7-1 CASE c=c(x,z), WITH DUCT DOUBLING
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of ¢ = ¢(z) and the motion gives periodic rays; Figure 7Jshows the
more general case c = c (x,z).

The above choice of initial speed v = A makes the total
energy E = v2/2 + V = 0 initially--anl hence all along the path--a
requirement that will become clear in Section 8. Therefore, along each
path, v¢ = 2gy, so that v has its minimum at the highest point reached
onz by the ray. The equation definingz:shows that it is always well
below the xz~plane. Hence v is never zero. The only exceptions may be
at the boundaries of the medium: If we wish our model to illustrate
bottom absorption, we note that the bottom is a vertical plane or
cylindrical surface in Figures?7] and 70 on which z has relatively large
velues. Then we must think of it as made out of an absorbing sticky
putty. If we wish to represent surface reflection, we must boundz by
a plane parallel to the xy-plane with a relatively small constant z,
and assume it is made of a perfectly elastic material: at impact, the
velocity vector will suffer a discontinuity, but without resulting
change in speed.

A bundle of power-transmitting rays can be modelled as a set
of many mutually non-interfering particles, initially projected from a
point (the "emitter"). Their rarefactions and condensations (at
caustics) as well as their splitting into ducts (Figure7.F)can be
visualized.

While the pictures of the model shown in Figures7T and 70 are
schematic and give a qualitative idea of the process of rays traced by
the moving particle, a further step seems desirable, namely obtaining
actual dimensions in representative cases. For this purpose, we must
first fix our units and next decide on a convenient value of the general

scale factor C. We shall use the MKS system (meter-kilogram-second).
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On the basis of extensive oceanographic observations, the sound speed
in most cases lies in the interval between 1475 M/S and 1525 M/S, only
very rarely attaining either extreme. We shall, accordingly, measure c
about the central value c; = 1500 M/S, setting c = c; + u: this
"algebraic excess'" speed u lies between t 25 M/S.

As for C, a convenient scale for our model is obtained in two
steps: First, we set C = ¢c; /2gh , where h is a length~-the linear
scale factor (it is seen that this gives C the dimensions of a velocity
squared, as required earlier). Next, after substituting this expression
into the equation of 2:, we gelect that length h which gives the model a

convenient size. We have

2: c? clz u )7
: y-wﬂhzz—-h 1+ —

the dots in the binomial expansion denoting terms of higher order in the
small quantity u/c; . This ratio lies between * 25/1500 = t 1/60, so
that the second term in equation for ) is between ¢ 1/30.

To arrive at a useful choice of the scale constant h, we must
realize that the deep channel propagation of interest here requires an
ocean depth between two and three miles at least: 1let us take 3 kilo-
meters as the length of the interval of values of z in our model
© $zg 3 x 103 M). Further, the usual convergence zone distance, of
the order of thirty miles (abouf 50 kilometers) requires the model to be

about 5 x 10° M long, so that some ten ray periods occur. Clearly, such
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a3x10 M by 5 x 10° M area can be viewed only from the altitude of an
airplane. If the hills and valleys of the surfaceZare to be visible
from such a distance, they must be of the order of hundreds of meters.
Let us accordingly take h = 10“M. Then the xz-plane in our figures is 10"M

above the distance of the median horizontal plane ofz » which lies

e S e E|;m &=3

between parallel planes 333 1/3 M above and below the median plane.

Such changes in altitude y of Zcould easily be seen from our airplane,

Beasang
agearried

and the motion of the particles discerned. If it were night and they

&=

were luminous, they would leave & path on a fixed camera, which would

thus perform a mechanical analogue ray-tracing.

o
[ Y

To get the model to laboratory size, we can, without changing

—_—

the mechanics of the model, scale it down by a factor of 10%. Then it
7 becomes 30 cm wide, 50M long (or less, if one does not require ten con-
vergence zones), and the median plane 100 cm deep, the surfacez lying
between two planes 3.33 cm above and below the median. To indicate

that the median is so much lower than the xz-plane, we have in Figures

7.1 and 7.1I joined these planes with dashed lines, indicating that their

-3 =3

lengths are out of scale.

e
[N

*A 8
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8. Rays, Particle Dynamics, and Hamiltonian Phase Space

The acoustic rays being, by Fermat's Principle, the "paths of ;
least time" between two points, are the solutions a of certain system

ordinary differential equations. These equations result from the appli-

cation of the elements of the calculus of variations (Euler-Lagrange
equations) to this time-minimizing problem. From the mathematics of
these ray differential equations it follows that, through any given
point and in any given direction, there passes one and only one ray.
On the other hand, through two points, there are more possibilities:
there may be no ray joining them (shadow zones); just one ray; or
several (multi-path transmission). These facts and their analytic
formulation are given in Appendix A, and developed in more detail in a
special case in Appendix B. There, as everywhere els: in the present
study, the independence of sound speed on time is assumed.

It has been known since the early developments of dynamical
theory that the rays in a refractive medium of generally variable index

of refraction n = 1/c (i.e., heterogenious but isotropic), and a certain

class of trajectories of a particle of unit mass, subjected solely to
forces deriving from a potential field V = - n?/2 = =1/ 9c?, are
identical, There are two provisos for this ray-particle trajectory

equivalence:

First, the time t in Fermat's Principle must be replaced in

the particle's motion by a different variable, which we shall call the 1
"pseudo-time" and denote by 1 . Their relationship is expressed as

follows (s denoting arc length):

—
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(8.1) ds/dt = ¢ ; ds/dt =1l/c=n; dt =c? dt .

Along each given path or ray, these equations determine, by a simple
integral, any two of the quantities (s, t, 1) in terms of the third.
The fact that the greater the sound speed ¢ = ds/dt, the smaller the

particle speed ds/dt = n, so that the latter moves faster in a "denser"

medium (higher index n) was most troubling to the Newton-Huygens

"corpuscle" versus "wave' arguments about the nature of light. On

examining Figures 7-1and 7.J (Section 7), we see that the particle

moves faster (more kinetic energy) the lower its position on the surface
Y (less potential energy) i.e., the lower its sound speed).

Second, not all motions of the partic.ic trace out rays--only
those having a certain given value of the total energy. With the arbi-
trary additive constant in the potential energy chosen as we have done
above, the appropriate value f ~ the total energy must be zero. We
recall that this was accomplished by the choice of initial speed of the
particle in the model in Section 7. This second condition for equiva-
lence of rays and particle paths may seem less surprising than the one
of the preceding paragraph, since from a given initial point each
initial velocity vector (with 3 independent components) determines one

and only one particle trajectory, whereas the ray through that point is

determined by its direction (2 independent parameters, e.g. direction
} angles). There are therefore 6 variables needed to specify a "state of
motion" or "phase" (position & velocity; equivalently, position &

momentum) of the particle, in contrast with 5 variables for the
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position & direction phase for the rays. As we shall see, this lower
dimensional space 1s the locus of the equation setting the total energy
equal to zero.

The proof of the equivalence under the two hypotheses just
stated is in three steps: the first is to write down the differential
equations resulting from the application of Newton's laws of motion to
the particle, The second step is to apply our first assumption, chang-
ing the independent variable Tt in the equations of motion to t by the
use of (8.1); and compare the result with the ray differential equa-
tions, (A.2) of Appendix A.

In rectangular coordinates (x,y,z) the equations of motion of

the unit particle are

n?

x2 g v

(8.2)

g;'o.
,!\)
]

I
w |
% |<
"
Q)lo)

the dots standing for the corresponding equations in y and z. Along
any given particle trajectory, (8.1) gives the following equations for

change of variable of differentiation from t to t:

d/dt = d/Z dt = r?d/dt ;

hence
x _ 24 |.24dx
éif T (“ dt)’
After inserting this into (8.2) ‘an obvious manipulation yields the

first ray equation (A.2), as desired; etc.
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The last step brings into play our second assumption, which can
be expressed either by the special choice of the additive constant in the
potential energy term V, implied by setting V = n?/2, or by requiring
| that the total energy along the sub-class of paths we are considering be
zero: 1in view of (8.1), either assumptioa is equivalent to the other.

In the language of classical mechanics, we have derived

Maupertuis' principle of least action from Newton's equations for our

particle, and have then identified the "action" with the "time" t along
each ray, so that Fermat's principle of least time is obtained. Mathe-
| matically, we have merely re-written differential equations in a differ-

ent form--and re-verbalized them, so that one physical picture is re-

placed by another. The utility of this process is that it guides us in
applying a highly developed branch of mathematics (modern dynamics) to
our difficult problems of long-range transmission in a heterogenious
i medium, affected by random factors. Our first step is to write the
differential equations of our problem in Hamilton's canonical form.

In addition to the coordinates x,y,z of our particle, we intro-

duce three more variables, the components of its momentum, Py» py, P,

Then we introduce the following function H of these six variables, the

Hamiltonian of our dynamical system

(8.3) H=1/2 <px2 + py2 + pz2 - n2> .

Using the symbole 3 to denote partial differentiation with respect to the
following set of seven independent variables (i.e., holding all but one
fixed):

T)x’y,z’pxlp!pz)

y

—

59
Arthur D Little Inc




and the symbol d to denote differentiation along a given trajectory (so
that only t is varied arbitrarily, the other variables being functions
of it, as explained below), Hamilton's canonical equations for our dynam-

ical problem are the following

oH aH oH
dx/dt = — , dy/dt = — , dz/dt = —
P, ap,, op,
(8.4)

dp /dt = - % ’ dPy/dT = - %% » dp,/dt = - g—}z*

The first three show that the momentum vector is the velocity
vector (with respect to the pseudo-time 1) of our unit particle, since
they give dx/dt = px, etc. The last three equations become, on replacing
the momenta by these values, identical with the Newtonian equations of
motion. Therefore (8.4) and (8.2) are identical and we can use either
system to determine the motions of the particle, What about the total
energy? This 1s evidently equal to H . If any trajectory is given
(i.e., any set of six functions (x, ..., pz) of 1 satisfying (8.4)), the
rate of change of H along it is found by the rules of partial differen-

tiation to be

dp
dd _oH dx oH X
dt 3x dt A O = 3p, dt 00

which is seen at once from (8.4) to be zero. (Note that this would not
have been true if ¢ contained the time). Hence H = h, a constant: the

"law of conservation of energy' for this system,
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Now suppose we select the set of trajectories for which this

constant h is zero. The first three equations in (8.4) give
sz + Pyz g pz2 = (dx/d1)? + (dy/dt)? + (dz/dt)? = (ds/d7)?

Therefore, the assumption that H = O gives, according to (8.3), the
relation (ds/dt)2 = 1/c? , and hence ds/dt = + 1/c , the (+) 1f we use
the convention of measuring s in the sense of increasing 1 , the (~) with

the opposite convention. We shall use the former convention hereafter.

Thus, we have established (8.1), and hence by the earlier reasoning, the
equivalence of the suyb-class of solutions of (8.4) for which H = 0 with
the rays--the solutions of (A.2).

We can now give a more geometrical meaning to the momenta along

a ray. Applying (8.1) to (8.4) we see that
P, " dx/dt = dx/cds = cos x/c = n cos x ,

and similarly for the other components; thus we express the momenta as

the index times the direction cosines:

= = = N COS Y.
(8.5) P, = 0 cos o, py n cos B , P, Y

The direction angles(®, B, y) are made with the positively directed co-

ordinate axes by the half-tangent to the ray in the sense of increasing s.

Our results lead to the following picture: The six values of
the coordinates-and-momenta of our particles constitute a possible phase
for it; the totality of such phases--or "points" in "6-dimensional

space''--1s called phase space. The locus in this space of the equation
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H =0 is a 5-dimensional manifold, the set of all possible coordinates-
and-directions on our acoustic rays. By the basic theorems of systems of
differential equations of the first order, such as (8.4), through each
point of phase space passes one and only one trajectory (path in phase
space) of our particle; and if the point in phase space is located on
the manifold H = 0, the unique trajectory through it will remain on this
locus: the 5-dimensional manifold H = 0 is "made up of'" those phase-
space paths which are the rays--or, in more familiar terms, whose pro-
jections onto the physical xyz-space of the medium are the rays. To the
question: '"How does a point on a ray in the latter space acquire two
extra coordinates?" the answer is: 'by having the two variables of the
direction of its tangent recorded”". It has "ascended" into the 5-
dimensional srace of the position-and-direction of the point which
traces it: a "1ift" is the modern mathematical term for this.

We may see even at this stage one feature of the mechanism by
which the ambiguities at caustics are resolved. In the 2-dimensional
(x,z) case shown in Figure 2.II two rays AlA6 and BlB6 that intersect
at a point P, always have differeat directions at P, and hence corres-
pond to different points of phase space (3-dimensional, in the case of
propagation in a plane)., As P approaches a point Po on the caustic of
Figure Q-D,the third coordinate (that of direction) of each of their
corresponding points in phase space approaches a common value, the
direction of the caustic at PO: there is a continuous change of each
ray in phase space into the unique ray C1C6 tangent at Po to the caustic.

Otherwise stated, we can continuously change the ray A1A6 into BlB6 by
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starting with A1A6’ moving the point from P to Po’ and then back to P--but

now using, in reverse, the sequence of directions of the lines through which
passed in going into C1C6'

A very simple model (to be returned to in Section 16) shows

BB

the essential ideas; propagation in the vertical xz-plane is assumed.
Let us start with a cylindrical surface, that we may think of as of cir-
cular cross section. On it a family of helices is traced, all haviny
the same pitch, so that one and only one passes through each point,
This could be constructed by ruling parallel sloping lines on a ractan-
gular sheet of paper, and rolling it up into a cylinder (the radius
being chosen so that the lines join along the edges). Now think of the
cylindrical surface as transparent and the lines opaque; and conmsider
their shadow (orthogonal projection) on a plane, N , parallel to the
cylindrical axis., The result is a family of curves, two through each
point, all lying between the two parailel lines L;, L;, which bound the
projection of the cylinder (L, and L, are the intersections with I of
the two planes perpendicular to N and tangent to the cylinder). All the
projections on Il of the helices (actually, sine curves) are tangent to
L) and Ly: these lines are their envelopes and bear the same relation
to them as caustics do to rays. This shows that a set of curves (the
helices) which have no '"peculiarity" at all on a surface (the cylinder)
upon which they lie, may be represented in projection by curves (the
sine curves between L and L,) which do have marked peculiarities.

The fundamental question is whether such peculiarities, as

they occur in caustics of acoustic rays, have any significance in the
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physics of propagation of acoustic energy--which is, of course, the only

reason for using rays in the first place. An essential point of the
present study is to show that if the rays are considered in phase space,
they can be used directly to calculate the propagation of energy without
the difficulties of caustics, etc., which difficulties are reduced to
"artifacts of the representation.” But this requires certain concepts
which must now be set forth,

It is important to realize that our methods skip the wave=-
front and Huygens construction of Sections 1 and 2, as well as the
elkonal--just as modern dynamics uses Hamiltonian theory but not the
Hamilton~Jacobi partial differential equation (except locally or in
simple cases). Its use will be extended and clarified in Section 16.

We turn lastly to the special case of Section 7, when
c =c(x,2z), and write the equations of motion of a particle con-
strained to lie on the smooth surface 2: constructed as described there,
If X, Y, Z are the components of the forces of constraint, the equations

of motion are

d2x d2 d2z
AR RN = AR AR T - S

-

and, of course, since the particle must lie on the surfacez , we must

have (introducing the abbreviation f£(x, 2z)):
y = f(x, z) = - V/g = C2/22g
Finally, the forces of (smooth) constraint result from the normal

reaction of 2: , in an upward direction; i.e., opposite to that of the
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+ y - axis. Since the direction components of this normal are
fx y = 1, fz (first partials of £(x, z)) we have
X= fo y Y==R, 2= sz ’
where R is the force of reaction and is positive, Substituting the

values given by the last two sets of equations into the first, we obtain

d2x a2 d2z
a2 - fo i f(x, z) =-R+ g, i " sz c

Carrying out the differentiations in the second of these

equations we have

d dx dz
dt £(x, 2) fx dt * fz dr

42 d2x d?z dx |2 dx dz dz \2
dr2 £@x, 2) fx dr2 b fz dt2 L fxx dt ¥ foz dr dt E fzz dt

=R (f2+f2) + " + " 4 "
X z

This shows that the vertical compoment of the acceleration on 2: y L.e.,
d?y/d12, being a linear combination of the second derivatives and the
squares of the first derivatives of f (which is proportional to 1l/c2),
can be neglected., Hence, to this approximation, R = g, which converts

the remaining equations of motion into

dz"afg_.al dzz.f.-ﬂ
atZ T B x ' diZ " B 3z’

As proved before, these are the ray equations in the dynamical form (8.2).
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9. Differential Systems and Their Integral Invariants*

A recurring feature in our study of lines of power flow, rays
and trajectories in phase space, is the system of differential equations
of the first order such as (3.5) (and the previous one, containing dt),
(5.1), and (8.4). These all come under a general form, which can be

written symmetrically as

du; _dus du
—t—— Y m—— T .'iz—ﬂ

U, U, U

(9.1)

vhere Ul,...,Un are given functions of the n variables Upyeen,lp If it
is wished to identify the independent variable among these n variables,
we may re-write (9.1) in a less symmetrical form. If, for example,

Un $ 0, we may use u = u as the independent variable, and set

Vi - Ui/Un . Then (9.1) becomes

(9.2) dui
K - Vi = Vi (Ul,...,un_l,l.\) (i‘l,o'o,n-l) .

In the form (9.1) the system has a simple geometrical interpre-~
tation, easily visualized when n = 2 (the plane) or n = 3 (ordinary space).
The denominators (assumed not all simultaneously zero) can be thought of
as determining the direction of a line segment at each point (ul,...,un),
namely, the segment whose axial projections (direction numbers) are in the
proportions Uj: Up:...: Un . The solutions of (9.1), or "integral curves'",
are any curves in the space of the n variables, tangent at every one of
their points to the line segment given there. In other words, (9.1)

determines a field of directions; an integral curve is one having these

directions as those of 1its tangents. The fundamental property of these

*cf., e.g., Goursat & Hedrick, Vol. Ir.“
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curves is that, through any given point, passes one and only one integral
curve: they decompose space into "filaments'". This is a theorem which
presupposes a '"regularity" of the denominators of (9.1) in the region
considered: the continuous differentiability of the sort that is always
safely assumed in physical applications, It also assumes that at no
point of our region are they all equal to zero.

In the form (9.2) the system has a simple kinematic Interpreta-
tion, in terms of motion in the (n-1)-dimensional space of the dependent
variables (ul,...,un_l). If we interpret the independent variable u as
"time", the derivatives in (9.2) are the velocities of a moving point in
this space, so that the system (9.2) assigns a velocity vector of com-

ponents V v to each point (ul,...u

e Voo -l) and time u. The funda-

n
mental property stated in the preceding paragraph now takes the follow-
ing form: Given any point (“10""’“3-1) and time u°; then there exists
one and only one path, or trajectory, described by a moving point

(ul"°'un-1)’ whose coordinates are functions of u satisfying (9.2), and

o

which, when u = uo, is in the position given by (ulo,...,u n-l)' In

formulas, this means that there are n-1 functions fi of the n given con-

stants u °,...,u° ,uo, and also u, such that, on settin
1 n-1 8

(9.3) u = fi(ulo,...,uon_l,uo,u) (i=1,...,n-1)

and interpreting dui/du as the partial derivative of fi with respect to
u (the o-superscript variables held constant), the equations (9.2) are
true for all values of all n+l variables (restricted to lie in the region
of regularity of the functions Vi)'

In the case n=4 our kinematic interpretation of (9.2) may be

considered as picturing the flow of a fluid, which fills the region of
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space of (uj,uz,u3), and moves so that, at each moment u, the field of
velocities of its particles is given by (9.2). Then (9.3) can be regarded

as the transformation experienced by any point P or figure (locus of

points) traced in the fluid (marked, e.g., in ink or smoke) and partaking

of its motion, as time u goes on., While not visible physically when

n > 4, it is convenient to apply the terminology of "flow" in all cases.
In fact, all the essential properties to be used later that are intui-
tively evident for n = 4 can be established mathematically for the general
case.

Analytically, the effect of the flow transformation induced by

the solution (9.3) of (9.2) upon figures traced in the fluid can be found

; : by the following general method. If the figure i1~ a curve whose initial
position Co 1s given parametrically by setting the n-1 coordinates equal
to functions of a parameter &, during the course of the flow its succes-
sive images are also given parametrically in terms of a by (9.3) after
each ug has been replaced by the corresponding function of o initially
given. The points of C will then be functions of two variables: time u

and position along C: o (of course u’ is held fast). Similarly, if a

surface S 1is given parametrically in its initial position with the aid

of two parameters a,B8, to find its parametric equations in its evolving

positions, one simply replaces u; in (9.3) by the given function of o and

B. For a region V of dimension n-1 (a piece of ordinary space when n=4)
one applies (9.3) with (u?,...,uﬁ_l) ranging over the given initial
position of this region, Vo.

1 A first integral of (9.1) is a (regular) function F-F(ul,...,un)

which is constant along every integral curve. This is the same as saying
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that its differential dF is zero along such a curve; or, applying (9.1),

that F satisfies the partial differential equation

oF doF
i (9-4) Ul :)u] +|o|+ Un aun =0 .

In geometric language, this means that the gradient VF (of components

TSI ey VY = e

SF/aui) is perpendicular to the direction Uj: Uz:...:Un . Equivalently,
it means that the locus F = K (constant) is tangent to that

direction. Also, from the defining property of F, any integral curve of ?
(9.1) having one point on the locus F = K lies entirely in this locus: ﬁ
we can then say that the locus is '"made up" of integral curves. Con- ‘

¢

a curve, this curve is evidently an integral curve. It is shown mathe-

versely, if n-1 first integrals q-produce loci F,=K, which intersect in ﬁ

matically that every integral curve in our region can be given as such an

» intersection. ;
The first integral F, in the notation of (9.2) and its inter- i

pretation as a flow in (n-1)-dimensional space, can be described as a ]

function of position and time whose rate of change along any trajectory

is zero. This is because, in the notation in question, (9.4) may be i

! written as i

|
oF oF oF

(9.5) Vi o5 tot Vo ] ta5 =0 |

and the left-hand side of this is precisely the derivative of F along the

trajectory, since by the formulas of partial differentiation

(9.6) gF  oF Wl s no1  oF
—=-3TL_K+“'+BU du +E’
du 1 n-1
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the values of dui/du being given by (9.2). This has the following inter-

pretation (phrased for the case n=4, but easily imagined in general). If
initially (u=u®) the region of fluid for which F = K is colored by a dye,
this colored region will change in shape and position during the flow,

i.e., as the time u increases; but it will always be bounded by the

r———

é : surface F=K: it cannot cross this boundary. This surface will move and

deform in the course of the flow, except when F does not contain u: then

it is a fixed boundary. i

In the important special case that the functions V, are indepen-

i
dent of time u, the flow is stationary: the field of velocities in the

(Ul,...,Un_l) space is unchanging, and the trajectories are fixed curves.

If V is an @ -1)-dimensional portion of the medium, given as

Vo when u-uo, what becomes of its volume (number of cubic units when n=4,

and generalized) as V evolves in the course of the flow? If the flow is

incompressible, the volume of V will not change, If the flow is con-

servative, the mass will not change. This means that there i1s a density

function, p-p(ul,...,un_l,u), which has the property that for all choices

)

of initial volume V°

0 )
9.7) Jb 0 dul...dun_1 = .0 N dul...dun_l "

o

where Py denotes the result of replacing (ui,u) by (ui,uo). By a theorem

of the calculus (explained in more detail in Appendix £), for this to ;

occur, p must satisfy the "equation of continuity"

9 3 ap
(9-8) Kl— (pvl) +...% r (Ovn_l) + a—u- =
! n-1
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This reduces to

(9.8") —_—

in the special case of incompressible flow, because then p is a constant
and drops out.

We have already seen examples of those equations of continuity
(with n=4) in Sections 3 and 5, where it was not matter but energy that
was conserved. We now apply the ideas to the ray differential equations
in their Hamiltonian form (8.4). In this case n=7 and the line-up of

variables is the following

u] ujz uj Uy ug Ug u
while that of the given functions is

BH/Bpx BH/pr BH/apz - 3H/3x  -3H/3y  -3H/3z

V1 V2 V3 V“ V5 V6

On substituting these values into (9.8') it becomes evident that the

equation 1s satisfied: the flow that (8.4) induces in phase space 1is

incompressible. This is Liouville's theorem, valid for every Hamiltonian

system, and forming an essential basis of statistical mechanics.

We have seen in Section 8 that the function H is a first inte-
gral of (8.4), and that the acoustic rays form the locusf3:Hs0. This
locus is a fixed one in phase space, since H is independent of 1. The

trajectories in phase space lying in this locus induce a flow in 1it, but
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taking place in a space of 5 dimensions rather than in 6. Now whereas the
flow in this space is not in general incompressible (5-dimensional volumes
change), there is a positive density function p, depending only on posi-

tion on f», and ;¢ satisfies the condition for conservation (9.7), but with

V  and Vo 5-dimensional regions of f5 and dul...dun_l, etc., replaced by

.

the "element of 5-volume" for this locus. The proof of this and other
related theorems will be taken up in Appendix E, using powerful general ‘ 1

methods. We limit ourselves here to giving an intuitive argument apply-

e it

ing to a parallel case in ordinary 3-dimensional space in which a steady
flow of an incompressible fluid (liquid) 1s taking place, leaving F, a ‘ 1
function of position, invariant (i.e., F 1s a first integral of the
equations defining the steady flow).

Let ﬁzbe the surface F=0, and consider the near-by surface
ﬁ\j : F=h (for any small constant h). These are fixed surfaces, very l‘
close together, as shown in Figure 9,I. Think of a piece AF)" of sz and
draw the normals at its boundary, cutting off a piece Af);of 52" , all l

forming a cylinder-like region AV. During the flow, AV will move, 1

VYelume Al(': A'TI-AFS:

FirauRre 9‘I
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Aﬁz and AS‘I sliding along};z and Sz', but its volume will remain constant.
It will be bounded by the moving pieces Aﬁz, A'le’ and their connecting
cylinder-like surface. For small dimensions of the figure and a short
interval of time, we can regard h/An as the magnitude of the gradient of F,
so that 4n = h/|VF| , to terms of the first order. To the same degree of
approximation, the volume of AV = An + area of AE5 = area of Aﬁ%/lVF] ;
i.e., if the numerator is regarded as and element of surface dS = area of
A}é, we see that the element of surface integration, dS/IVFI, is unchanged

by the flow, so that

ffp ds=ffp ds_ p = 1/|VF| .
S S
o)

In the application to the Hamiltonian case, a corresponding

equation holds, but with

2 2 2 2 2 2 _1/2
o=1/|vn|=[u +H +H +H +H +H ] 4
x 'y ‘'z p P

X y P,
Applying the equations of Section 8, this reduces to

p=1/n (l+|Vn|2)1/2 , f(n=1/c) .

Quantities that are left unchanged by certain transformations
(as by the flow (9.3) induced by (9.2)) are called invariants of these
transformations. A function such as a first integral F is an invariant

function of position (u;,..., ); the mass of a piece of matter under-

un-l

going a conservative flow is also an invariant quantity, but is not a

function of position but an integral over a figure which is moved and

deformed by the [low: such a quantity is called an integral invariant of
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1 the system of equations (or of the transformations they induce). The
integral of E in Section 3 that expresses the acoustic energy in a volume of
the medium is an integral invariant of the system of power flow lines.

The volume of an incompressible fluid, the "6D" volume of Hamiltonian

phase space and the "5D" surface integral of 1/|VH| in the 5-dimensional

: f ray phase space {3 are all integral invariants.

There 1s a 4-dimensional integral invariant of importance to

F the present study of acoustic propagation; it may be obtained from the

one mentioned at the close of the last paragraph. The intuitive explana-

tion is very simple, and will be given in the analogous case of steady

flow in ordinary space, deferring mathematical details to Appendix E.

Figure 9.II shows a set of trajectories--fixed stream-lines,

since the flow is stationary--forming a tube-like surface, &, closed by
two surfaces, A and B. A is any smooth surface closing the tube, while

B is the result of sliding A continuously along the stream-lines. This

means that each point P of A is moved through a distance D(P ), this

e

FIGURE 9. 10
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distance being a regular function of position. Clearly, the net mass
(measured by the density 1/|VF|) which enters this two-ended tube is zero
because of the steady nature of the flow . Also, nothing can pass through
the tubular boundary; therefore what enters the tube through A must equal
what leaves it through B. But the amount which crosses any surface fixed
in the fluid is the surface integral of the normal component of the flux
vector (density times velocity vector, of components pu, pv, pw). There-
fore this integral taken over A is equal to the same one over B. If B
is chosen as a surface into which A flows during a given interval of
time, the fact that the flux integral is a 2-dimensional integral invari-
ant is obvious; but B may be obtained by sliding A in ocher ways.

But our example gives more than an invariant integ:.al over a surface
that moves with a flow: it gives us an integral that has a much higher

degree of invariance--that may be described as a "sliding integral invariant."

While more details will be given in Appendix E, we may add to our

examples one of a rather different character, the circulation along a

curve C in the physical space in which a flow of a fluid is taking place.
If the components of the hydrodynamic velocity are u, v, w, the circula-
tion along it, in a given direction, is defined as the line integral of

the tangential component, in that direction, of the velocity:

circulation = j.uéx + viy + wéz
C C

Here § is used to distinguist differentiation along the curve (time held
fixed) from d used for differentiation along the trajectory (curve param-
eter a held fixed). A fundamental theorem in hydrodynamics states that

for a "perfect fluid" the circulation about every closed curve C is an
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integral invariant of the flow. Upon this theorem is based Lagrange's
theorem of the permanence of the irrotational character of a perfect fluid
initially irrotational, and thence the existence of a velocity potential.
And again, the Helmholtz theory of vortices, the "vorticity" vector field
resulting from the circulation through Stokes' theorem.

These circumstances have thelr parallel in Hamiltonian Theory,

where the "action integral"

Jkpx éx + py sy + P, 8z

is an integral invariant--provided ( is closed. As will be explained in
Appendix E, from this all the other integral invariants of the Hamilton-

ian system can be derived by simple formulas.

In Appendix E this whole subject of integral invariants is studied

in matkematical detail, and references to the literature are given.
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.,  Eunergy Flow in Phase Spzce

Having, as expleined in Secrion 8, '"lifted" the rays of the physical
space of the medium ‘nto the 5~dimensional phase-space f3, and having
shown in Section 6 that in a Fermat family of travelling waves {¢w} have
their power flow or A-lines approaching coincidence (as w+ ) wich an
associated class of -.ys .: L-lines, it 1is necessary to make clear the
implications of the.: 'dcts for the phase space picture--both as regards
its geometry and its relation to the flow of power.

The first step is to "1lift" each A-line of our Fermat family
into the S5-dimensional J® as follows: For each value of w and point
P: (x,y,z) on a A-line ’not on ') we have a unique direction ﬁm tangent
to it, in the sense of the flow of power, as explained in Section 6. If
(cos a, cos B, cos y) are the components of this vector (its direction
cosines), we define the three momenta by the equations P = n(x,y,z) cos a,
py = n(x,y,z) cos B, P, " n(x,y,z) cos y; or, in vector notation, by
; = n ﬁw' Clearly, the point (x, v, 2z, Py py, pz) in 6-dimensional
phase-space lies in the 5-dimensional S5, since its coordinates as just
defined satisfy H = 0. Evidently its orthogonal projection onto the
space of the medium is the point P:(x,y,z) from which we started. By
applying this process to all points of a A-line, it is lifted into a
curve in fb. In view of the smoothness of the original A-line, 1its lift
also is smooth., Of course it will not in general be an integral curve
of the canonical equations of the rays (8.4); but as w+ > 1t will approach
coincidence with its associated tangent ray at P,

Now let © be a small plece of surface in the medium, nowhere

tangent to a limiting ray L of the Fermat family--and hence, for sufficiently
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great w, nowhere tangent to any of its A-lines. We wish to study the
flow of power across G by the use of rays--a method easy to explain for
short ranges of propagation in terms of the constructions of Section 1,
together with the approach of A- to L-lines, but breaking down when
caustics, etc., appear. Our first step is to lift ©® into /> by first
defining a field of direction vectors, just one at each point of & , and
then assigning as momentum vector the product of its direction cosines
by the values of n at the respective noints of &. Of course, this can
be done in as many different ways as there are ways of defining these
fields of directions: the resulting lifts will be 2-dimensional figures
in the 5-dimensional phase space, two of which can only intersect at
points at which the corresponding directions in their fields happen to
coincide.

An important case of this construction occurs when the field of
directions assigned to points of (5 are those of the limiting rays L
through these points: we would obtain a perfectly definite 1lift, which
we shall denote by (-BL. If on the other hand we use the directions of
the A-lines cutting @ we obtain (for each w) another non-intersecting
11ft @A. The same will be true of the 3-dimensional figure obtained by
lifting all the limiting rays chat cut & --and hence whose lifts cut GL--
and also the 3-dimensional 1ift of all the A-lines (for the given w) which
cut (> and therefore whose lifts cut GA. Any intersections of these two
3-dimensional "worm-like" figures in the S5-dimensional J3 will be "purely
fortuitous'--as will intersections of two A-line "worms" for different
values of w. These statements may have exceptions in special cases, as

L A
in the third and fourth examples of Appendix D where & and " coincide.
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We may actually visualize the geometrical relations in the
case of waves 1n the vertical xz-plane, to be studied at length in
Sections 13-16. Then the phase-space 653 is 3-dimensional (shown in
Figures 14-I, II); G is replaced by a plece of curve, and the lifts
C&L of the rays cutting it, and also the G?A, are ribbon-like figures,
in general never intersecting.

"1 spite of the fact that we do know that the worm of lifted
A-lines cutting QBA approaches that of the L-lines through GQL as w*®,
this in itself gives but an awkard handle on the power flux relations in
Ja. To obtain a better hold on the question, we shall make the following

modification of the construction--simple but drastic in its effects:

What we shall do is, simply, to increase by two units the
dimensionality of GSL: at each point P of (5 we take not only the unique
direction of L there, but a cone of solid angle Q of directions about
it, and, after multiplying each set of direction cosines by the value of
n at P, obtain a set [l of momenta lying in this cone. Obviously this Il
is a 2-dimensional piece, and when combined with each point of the
2-dimensional & , gives a 4~-dimensional lift in J3.

A simple and convenient way of making this construction is
first to pick a reference pcint Po inside ® ; second, to fix a cone Qo
containing the direction ﬁo of the L-line through Po in its interior;
and third, to take for the @ at any other point P a cone congruent and
parallel to QO: if the dimensions of Q are small enough in comparison
with these of Qo’ as we will suppose, for each P on(5, the @ will contain

the ﬁ at P in its interior. We may always represent any such cone
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of directions as a region on the unit sphere centered at its vertex P;
its spherical area will be the solid angle measured in steradians. Such

a combination of objects (P, ﬁ) is an element of the Cartesian product

© x Q.
3 The corresponding combination (P, n(P)ﬁ) 1s a point in 3, and
i their totality is the 4-dimensional 1ift of (© that we are defining. We
3 shall denote it by ({5, M); only when n is constant throughout © 1s it

a Cartesian product (&, ) = € x . Nevertheless, when both & and ©
are very small, the measure (4-dimensional volume) is, to quantities of

higher order, given by the following formula, where n, is the value of

F n at PO:

2

' (10.1) measure (6, ) = "02 measure (& x Q) = n ° area of @ X area of 9

This formula will be used in Section 11.
Now consider the rays determined by all the points of (G, II):

they are the integral curves of (8.4) passing through these points, and,

! when extended in range, form an elongated S-dimensional piece of /3, to

be denoted by (@, NM). Since we are thinking of both (& and Q--and :

i c o

therefore M--as small in largest dimension, this plece is not only long

P v

but slender: it may be described as a "hyper-worm".

Since every direction of the L-lines at points of © are interior

to the corresponding cones 2, it follows that the 2-dimensional lift € k
is interior to the 4-dimensional (G, M), and hence the 3-dimensional !
"worm" formed by the lifted L-lines through it is inside the above 5-

dimensional hyper-worm.
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Suppose that the range interval through which the rays (i.e.,
their 1ifts) have been extended is thought of as large, but fixed. Since
as w=> the worm of A-lines through GBA approaches that of the L-lines
through G5A, and since they form a set of interior points to R(G, 1),
(strictly interior, if the rays in the construction of the latter are

extended very slightly at each end), it follows that for all sufficiently

great w the whole worm of A-lines through ) A will be inside -5(('—3J n).

This attaches a power flow number to the hyper-worm LG, m):
the acoustic power entering the A-worm through G, once the frequency
has reached its value as required above. This power can be thought of
as flowing along the hyper-worm, and crossing any of its "cross-cuts':
the 4-dimensional figures in f3 (&, M) which divide it in two pieces in
such a way that each ray forming it is cut at an angle into two pieces;
and, further, that their (topological) position in the hyper-worm is
such that they can be slid continuously along the rays that make it up
into the original figure (G, N). In Appendix G an analytic basis will

be given for the statements here submitted on an intuitive one (which,

in general cases must be replaced by rigorous analvsis of limits). Let the

projection of the cross-cut into the space of the medium, in which

x, y, z, Pyr Pys pz) becomes (x,y,z) with the direction determined by

y
(px, Py’ pz) through it, is "in general" a solid (shaped, e.g., like a
potato), through each point of which passes a continuous l-parameter ;

family of directions, describable as a narrow curved '"fan". The limiting

L-lines traverse this potato, being at each point tangent to the corre-

sponding fan. Second, it is possible to slide this cross-cut along the
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rays that cut it so that 1t assumes a special position, exactly resembling

the original (@, N): The fans moving together along their rays have squeezed
into cones of small solid angle and the potato has become a surface ' like
©. All the .power entering the hyper-worm through @ crosses (®': this is

our power flow number--obviously a sliding invariant.

This 1s the first step in the transference to phase space of the
power flux quantities. It gives us a set function, i.e., a numerically valued
function of  4-dimensional pieces of S that can be regarded . 5 cross-cuts;
and since any small enough piece in this space which is nowhere tangent to
a ray can be regarded as a cross-cut (i.e., of the hyper-worm made of all
the rays that cut it), this includes a large class of figures. We have
seen that this set function is a sliding invariant of the rays in phase
space. It 18 easy to see that it is "additive'": the flow of power through
both of two cross-cuts, which cannot be slid along their rays so as to
overlap, is the sum of the flows through each.

But this sliding invariant additive set function is not an
invariant integral--i.e., of a density over the set in question. This
1s because it is not "absolutely continuous'"--the power flow across
(®, M) could remain constant and positive while the measure of this
set approaches zero. To see this we have but to recall (10.1), and let
@ shrink up about eachlL~line through Q, the latter remaining constant:
such "densicy' over the 4-dimensional cross-cut would jump from 0 to «.

We are to regard this invariant set function as a "precursor"
of an actual sliding integral invariant; but this requires the introduc-
tion of infinite classes of Fermat families, acting together but with
enough random to avoid the rigidity of the "principle of superposition'.

This will form the subject of the next section.
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11. The Statistics of Acoustic Transmission

In all studies of radiant energy two types of model may be

used: firstly, the single solution § of the wave equation under quite
specific boundary and initial conditions; and secondly, an aggregate or
ensemble of such solutions, combining "incoherently', and producing the
observed effects and regularities through the statistical characteristics
of the ensemble, as well as the properties of its individual members. In
electromagnetic radiation, the first type of model is appropriately applied
to radio and radar waves, and recently to laser radiation under simple
conditions; the second type of model becomes necessary in most studies of
light, particularly when the source is large in comparison with the wave-
length, and in the isotropic radiation in cavities. In acoustics, the
first type of model is appropriate in studies in which the configuration of
the environment is simple and its dimensions not inordinately greater than
the wavelengths considered, as in room acoustics, lobe formation and other
interference patterns near reflecting objects, and in many similar cases.
On the other hand, the second type of model--the statistical ensemble of
waves-ig necessary to describe the actualities of hydroacoustic radiation
of wavelengths much shorter than the ranges, the depth of the medium,and
the radius of curvature of the rays and power flow lines. This choice of
model is not just a matter of convenience--e.g., to obtain a tractable set
of relations--but is forced upon us by those aspects of the physical situa-
tion now to be outlined, which subject them to random.

The first source of random, contributing a set of incoherent

sound waves, is the nature of the acoustic emitters of interest to Naval
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1 operations, such as submarines. Such an object is large and has many
vibrating parts. Even the pressure hull has a complicated pattern of
vibration, distant parts seldom vibrating in perfect unison., Added to this
is the irregularlnature of the mass of water through which it passes and
which takes part in the acoustic emission, e.g. by cavitation and turbulence.

The second source of random is the medium--the actual behavior of

the sea water. There is insufficient knowledge of its effects: while a
single acoustic wave has been shown to maintain a remarkable degree of phase
coherence over long ranges, there is no indication that two waves, generated
by different parts of the emitter, will maintain any observable degree of

mutual coherence. cf. Tatarski? and others' discussion of random turbulence.

The third source of random in the acoustic radiation fields is the

set of physical boundaries. The simplest 1s the ocean surface. While there

1s much evidence to regard it as acting as a "specular reflector" (in the
range of frequencies and angles of interest), this term implies two proper-
ties: the return of all acoustic energy without appreciable loss at an
angle of reflection equal to the angle of incidence; and the maintenance of
a definite phase relation between incident and reflected wave, so that

energies combine by interference rather than simple addition. It is only in

the first sense that the ocean surface appears to act as a specular reflec-
tor. A more complicated boundary is the bottom, which absorbs a fraction of
the incident radiation and reflects the remainder. 'With hard bottoms and

moderate ranges, the latter part is important as contributing to detection

by "bottom bounce"; but it has a randomizing effect on what it returns. In

fact, recent studies have been made of the influence of bottom irregulari-
ties on the random nature of the returned radiation.2 In the case of
|
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very long range propagation, the repeated bottom absorptions of certain

rays remove all their energy contribution, so that the bottom assumes the

R e o s

character of a perfect absorber. This, however, implies an extreme regu-

larity of the rays, the medium, and the bottom: it may be necessary tc¢

i b s ek

take into account rays that are reflected only once by the bottom, (e.g.,

at a sea-mount)and then enter the radiation field in a phase and direction

S A

uncorrelated with the others.
There is a final reason for the appropriateness of statistical

methods in the treatment of hydro-acoustic propagation: the limitations of

possible specific knowledge. The fine-structure of the environment--sound

1 speed, all physical boundaries, etc.--have excessively complicated and

essentially unpredictable variations in space and time. All that can ever

be known of these features is in terms of averages, too coarse-grained to
form a basis of more than a statistical treatment. Fortunately, when
properly applied, this gives all that is needed for practical operationms.
On the basis of these considerations, we have to formulate in
precise terms the statistical assumptions regarding the radiation field to
be used as the model of hydro-acoustic transmission. The ideas are essen-
tially simple--given the material set forth in the preceding sections.

Suppose that v = {y|,..., ¥,} 1s a set of elementary travelling

N
wavesof common frequency w, all satisfying the loose boundary conditions

i

appropriate to the practical problem. Each wi has its own vector field F
and corresponling power flow lines. We construct the small pieces Al , A, of
surface b and of solid angle .. (nowhere tangent to this surface), as in the
preceding section. The power lines of wi may or may not have a bundle

crossing A@ 1in a direction belonging to AR. If they do, wi will contribute
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a certain quantity of acoustic power to the "hyper-worm" K = £§ (4G,50):
once entering it, it will stay in it, as explained before.* The first part

of our statistical assumption is that all these waves are incoherent in

phase; hence their total power contributions add. Let P(¥) be the algebraic
sum of all the power contributed by the set ¥ to this K (algebraic sum,

since the directions involved in the above construction may show negative
power entering--i.e., positive power leaving, our K). For the reasons given
before, this total power entering K through its base figure (A5, AQ) stays in
it, and is what traverses any later cross-cut (what we get out of the worm

is just what we feed it): it is a "sliding invariant"; but as yet, not

expressible as an integral. This has all been explained in Section 10.

The next step in the formulation removes the discreetness and re-
sulting discontinuities in power flow directions due to confining the
ensemble ¥ to a finite swm. The method is to use limits of such sums
of elementary travelling waves, as their number increases indefinitely
while their individual energies approach zero. The ideas are comparable
to those in the definition of an integral as a limit of a sum. To put
the matter precisely, we think of an infinite "triangular" collection
of elementary travelling waves (of the same frequency w). Each one is
identified by two indices, as wN, in which 1 goes from 1 to N, giving a
"horizontal" set or row of N waves; while N increases indefinitely,
giving an infinitely deep '"pile" of such horizontal rows, and thus the

following triangular figure:

* This actually assumes that each wN is in reality a Fermat family
{v (w)} and that w is sufficiently great so that all the A-lines are
in'K, Increasing w along the perpendicular to the page, our triangle
¥ becomes an infinitely tall prism, with an infinite triangular base--
from which we then cut off that part with too low values of ..
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Corresponding with this triangular system of waves, we have a tri-

N
i

vectors f?, where, as with w?, i=1,2,...,Nand N = 1,2,3,... .

angular system of their energy densities E, and of their power flux

These are the time-means, indicated in Section 4 with an accent--
which we drop from now on for simplicity of notation. As in the case
of the finite ensemble of waves first treated, we assume that the N
waves in each row WN = {WT.---:wS} are incoherent in phase (our first
statistical assumption); and we again denote by P(WN) the total power
they inject into K across its bounding end (4G, 4). As before, it is a
sliding invariant of the rays in §.

The second part of our statistical assumption is that for every choice

N
of (8B, 4u) the power P(%") approaches a limit P(Y) as N increases

indefinitely. Being a limit of sliding invariants, it too is a sliding
invariant; but not yet expressed as an integral.

The third and final part of our statistical assumption enables us
to express P(y) as an integral over the 4-parameter figure ( ,2) of a
power flux density in phase space fj , with respect to a "é-volume"*

(measured by sums of products of elementary areas on & and areas on 1).

* Technically stated, an assumption of "absolute continuity" of the
limiting P(¥).
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This will make P(y) an integral invariant (in the more drastic "sliding"
sense) and will therefore make the body of theorems governing such in-

variants applicable to the problems of acoustic transmission.

FIGUNE 41.1
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The concept of density of flux through (® ,?) involves a limiting
process. The geometrical relations are shown in Figure 11.l1a. First,
select any point (x,y,z) on our given surface @ and any direction from
this point, (cos a, cos B, cos y); these cosines are the coordinates of
the representative point on the unit sphere {i, Second, construct a small
piece AG of ® containing this (x,y,z), and also a small plece of Af
of I containing (cos a, cos B, cos Y). The power flow AP(Y) through
the elementary 4-dimensional boundary (A6 ,AQ) is defined as before.

The assumption announced above is, firstly, that the ratio R,
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R = AP(¥)
(area AG ) *(area AQ)

{ approaches a limit as A and AQ shrink to their respective limiting

points, (x,y,z) and (cos a, cos B, cos y). Evidently this limit will
depend on the six coordinates of these two points, i.e., the point
(x,y,2) and the given direction through it. But it will also depend

on the nature and orientation of (& in the immediate neighborhood of
(x,y,2). In this latter respect, however, a simple construction familiar
in the study of the flow of fluids across surfaces ({llustrated in

Figure 11,.Ib) shows that the dependence on & reduces to a dependence

solely on its positively directed normal at (x,y,z) (of direction

cosines cos o', cos B', cos y'); and it shows further that the dependence

consists merely in the presence of a factor of cos 8 in the limit of the

above ratio, where ¢ is the angle between this normal and the direction

chosen 1in y:
: (11 v cos A = cos a cos 1' + cos 3 cos 3' + cos y cos y'
k Therefore the above limit assumption takes the form that, as j

A * (x,y,z) and 32 * (cos u,...), R+ ¢, 1.e., that

(11.2) R~ e(x,y,z; cos 1, cos ?, cos ¥)cos i

J The assumption of this approach to a limiting density needs to be

supplemented by what may seem only a mathematical refinement--the usual
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physical assumption of continuity (or piecewize continuity) of this .
limit as a function of its seven variables, so that its integral over
any (& ,Q) is? in fact, equal to power flow across this boundary. With
this addition to our third statistical assumption, the statistical
description of our radiation field is complete.* We are able to write -

the power flow across any (6 ,Q) in P as the integral

f!ff ecos 0dG dq ,

and we know that this is a sliding integral invariant. ';
It is desirable to re-write the above integral in terms of the
canonical coordinates (x,y,z,px.py,pz) . Applying the relations
of (8.5), the first being P, = n(x,y,z)cos o, we see that on the one
hand p can be expressed as a function of the canonical coordinates;
and on the other hand, that when the direction reference point 1is on ) ;
ti.e unit sphere 2, the corresponding mcmentum vector (px,py,pz) is on
a concentric sphere I of radius n = n(x,y,z). Hence, their elements A
of area are related by the equation dIl = nde or dQ = czdﬂ. Hence, if
we write

£ = £(x,y,2,P_»P_sP,)

y

= ¢(x,y,z,c08 a, cos B, cos Y)cz(x,y,z)

we have f cos 6 dll = € cos O dR, so that our power flow integral becomes

(11.3)  P(Y) = J‘;J'HI; £ cos © d6 dI

* Since so many limiting processes are involved (including w->«),
assumptions of uniformity are needed. We prefer to regard the limiting
steps as forming only an heuristic approach (11.3), the truth of which
we postulate in the physical description of a high frequency radiation
field,
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Acoustic Intensity. The function f-f(x,y,z,px,py

termed the flux density of power flow in phase space (due to the

,pz) may be

ensemble ¥) at the point (x,y,z,px,py,pz) of f3: the flux density for
any orientation of A® being fcos6, it achieves its maximum value when
this surface element is so oriented that its normal is in the direction
determined by (px,py,pz), since then 0=0 and cos 0=1.

If in (11.3) only the integration over N is carried out, and
if this solid angle is chosen as the unit hemisphere having the fixed f
normal to A& as axis (so that O varies between 0 and 1/2), the following
equations are obtained for the total flux of power through the element
A @ in the direction of its normal. Their results are in terms of
ordinary xyz-space: the three functions U=U(x,y,z), V=V(x,y,2),
W=W(x,y,2z), and the direction cosines of the normal to the element of
surface A@. Denoting the result of this operation by P(¥,A(®), the

equations are:

(11.4) P(¥,0B) = fj f cosO dil = U cosa' + V cosB' + W cosy' ,
n

in which (11.1) has been used and U,V,W are given by

(11.5) U=f f cosady, V= f f cosg dn , w-f f cosy dll ,
s ) n

and where, in each case, f=f(x,y,z,n cosa, n cosf, n cosy). Naturally,
in carrying out the integrations, one would simplify the limits of inte-
gration by a rotation of axes for II so that the new z direction (North

pole) is parallel to the normal to A® ; then the directions belonging to

I are expressed in terms of a co-latitude and longitude, which are
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integrated, respectively, from O to 7/2 and from 0 to 2m,
Applying (11.4) to the special form of (11.3) when® 1is the

element A shows that the total flux of power through this element is

given by
[AG) Ucos a' + [AG] VcosB'+ [AG] W cos v'

where [AG ] denotes the area of the elementary surface AG . Conse-
quently the vector of components (U,V,W) is the vector flux of power in
medi:m, produced by the radiation field corresponding to the statistical
ensemble Y. It is of course the same as the limit of the vector sum of
flux vectors f? due to all the elementary waves of Y. The acoustic
intensity at the point (x,y,z) is the length of this vector flux
density: Intensity = (U2 + V2 + w2)1/2. Note that the directional
dependence of the phase space flux f has been averaged out in (11.5):
starting with fluxes ?? which depend on (x,y,z) only, we have ended
with the total flux due to ¥, of components (U,V,W), which also depend
only on (x,y,z). The "mechanism' by which this directional dependence
introduced itself into f, R, and P(Y) = lim P(WN), is of course through

N0
the selection process whereby the subset of waves in WN was chosen, as

well as the way this subset was treated (integrated over ), in calcu-
lating P(WN).

While this vector field (U,V,W) in xyz - space is what is measured
and used in practice, its properties and algorithms of calculation are
based on those of the phase space flux f. The detailed study of special

cases is given in the succeeding sections; we close this one by proving
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a theorem upon which all the applications are based: that f is constant

along each ray in phase space 3. Therefore, it is a first integral,

which, in important special cases may be the trivial one: constant
throughout /5, or in those parts of it taking part in the transmission.
This theorem 1s a simple consequence of the existence, in addition
to the power flow integral invariant P(¥) given by (11.3), of a basic
sliding integral invariant common to all conservative Hamiltonian

systems.

.e) 1, = [f [fcos 0 a6 an .
© 0

As stated toward the close of Section 9, such a 4-dimensional
integral invariant can be derived from the 5-dimensional one based on
the conservative density 1/|VH|. The process was merely exemplified,
using the lower dimensional case illustrated in Figure 9.1. The simple
rigorous derivation in Appendix E starts from the universal Hamiltonian
"action integral" noted at the end of Section 9. The domain of inte-
gration in 14 can be any 4-dimensional piece of fS , for example,
(&,M.

We thus have two 4-dimensional sliding integral invariants of the
system of equations (8.4) in our 5-dimensional phase space f3 , namely

P(v) and I In view of a general theorem, the ratio of their

4

integrands is constant along every integral curve of (8.4): i.e., it

is a first integral of this system (which may be the trivial one:

constant throughout £ ).
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This theorem, proved by formulas ia Appendix E, can be made in-
tuitively obvious as follows: Let C be any integral curve; take the
"hyper-worm" of neighboring integral curves, containing C. From the
sliding invariance of P(Y¥) and 14, their values over any 4-~dimensional
cross-cut of this hyper-worm are independent of the cross-cut; hence,
the same is true of their ratios. Passing to the limit as the hyper-
worm shrivels down to C, we see that, on the one hand, the limit of the
ratio is the ratio of the Integrands at the point where this cross cut
intersects C; and on the other hand, that this ratio is independent of
the position of this intersection. Hence, it is constant along C.

Applied to the present case, we see that the ratio of integrands

of P(¥) and I,, namely

f cos O

(11.7) cos O

= f = f(x’)’:zopxipy’pz)

is constant along each integral curve of the Hamiltonian ray equation

(8.4). This is the basis of the Hamiltonian treatment of radiation fields--

the whole remainder of the present work.

A remark on the proviso, implied in all these derivations, that

O 1s the angle of our direction with the positively directed normal to

®: The choice of a direction across (& is arbitrary; but once made has
to be adhered to consistently in interpreting the formulas. If we take
it in the direction of flow of power in the propagation, then P(V¥)
represents the (positive) power actually entering the "hyperworm' K}

if in the opposite sense, the integral gives the power leaving it (which

in such a case would be negative).

9
Arthur D Little !



12. A Method of Statistical Perturbations

The three-fold statistical assumption describing the model of
hydro-acoustic radiation, together with its consequences concerning the flow
of power along sets of rays, formulated in the preceding section, has led
to the theorem that the flux density function * = f(x, y, z, Pys py, pz)
1s constant along any ray L in the phase space R: 1t is a first integral

of the canonical ray equations (8.4) -- but it may reduce to a constant

throughout £ or certain of its subregions.

From this property of f, an obvious method can be described for
calculating transmission loss in the flow of power from an emitter A to a
receiver B: Enclose each of these bodies in a surface,@A and 63, the
former just containing A together with the water participating in the hydro-
acoustic emission (often taken as a '"standard sphere"); the latter so close
about B that all acoustic power crossing it 1s detected by B. Since it is
usually assumed that the acoustic situation at the emitter is known (or
tentatively assumed, in the case of a hostile emitter), we can say that the
values of f are known at all points and directions of GA; i.e., at all
points of the 4-dimensional (GA, HA), where HA is the set of outwardly
oriented p-vectors from @A. Suppose then that a certain ray L has been
found to cut @A in a direction belonging to HA,i.e., in a point Po of
(5 A’ HA); and also to cut GB in a direction in IIB (the set of inward
directions to the latter), i.e. at the point Pl of the 4-dimensional

(5 B® IIB). Then since f is constant along L, its value at Pl equals its
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value at Po which, as we have just explained, is known. Thus, if all the
rays which cut &A and 63 have been found, f will be known at all receiver
points (& B® HB) so that the total power received by B from A can be

calculated by the formulas of the preceding section.

The picture simplifies greatly if -- as is usually assumed --

f is constant over ( & A’ I (Actually the effect on B will be the same

A)'
as if we only assume f constant over the smaller set ( GA’ HA), vhere HA

is the part of I, corresponding to directions from 6A of those rays that

A
could possibly reach GB). Thus, f is constant and known throughout the
5-dimensional "hyper-worm" K composed of all rays in fj passing through
(& A IIA). As frequently stated in earlier sections, the rays can be
regarded as the paths of a steady conservative flow in phase space /3. If,
then, the '"fluid" becomes stained with ink as it crosses the 4-surface

( GA’ HA) in its emission from A, this region K 1s the stained part of

S : it will stain that part (@ B? n of the receiver surface ( & B? IIB)

B)A
by ink transported in K But this (& B* HB)A is the part through which
flows the power sent from A to B, which power equals the known constant f
multiplied by the "4-dimensional measure" of (GB, HB)A’ calculated by

equation (11.4), the integration being over (@B, IIB)A. The outstanding

difficulty is, of course, in finding the latter region, which requires

integrating the ray differential equations (8.4).

The picture will actually be drawn in Section 13,which deals with
the "laminar" case c = c(z) and its extension ¢ = ¢(r,z), in both of which

the physical rays are in a vertical plane, the phase space [ being 3-dimensional.
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While the methods just described are theoretically perfect, they
become more and more impractical as the range increases, since the mechanical
or other computations needed to trace the individual rays become increasingly
elaborate. As will be shown in the simplified case in Section 13, with
increasing range the rays, and the inked region they sweep out, rapidly
become highly contorted after a couple of convergence zones. This could
have been expected from an examination of the conventional text book figures
traced in quite simple cases (e.g., Fig. 5.19 in Tolstoy and Clay(l)). It

is the phenomenon of mixing in phase space, which has played such a fundamental

role in the ergodic theory (see Appendix G).

What is perhaps an even gre.ter objection to all methods (such
as those described above) in which individual rays have to be computed over

long ranges (several convergence zones) is their inescapable artificiality:

precise values of c as a function of position have to be assumed before the
computations can start; and as every experimental oceanographer knows, all
such detailed assumptions are unrealistic. On the other hand, this very

difficulty can lead to a simplified point of view which can focus the attention

on the realities of the process of transmission loss computation and
correspondingly simplify the work: 1t is the statistical viewpoint and the
application of rather simple statistical methods. It turns out that our

Hamiltonian picture gives the statistical approach a most natural setting.

Perturbations. Our first step in implementing the ideas of the

preceding paragraph is to apply to the Hamiltonian equations of Section 8 the

method of perturbations, of fundamental use in so many other branches of
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physical science. The idea of this method 18 simple: the term in the
equations due to the external influenceg (e.g., forces) which in our ray

equations is the '"potential" V defined as

(12.1) V = V(x,y,z) = -1/2c2 = -n?/2,

is broken up into the sum of two parts: one part U is large and simple;

the other part W is complicated but small. The latter is regarded as the

"perturbing term'". Then a method of successive approximations is applied,
starting from a first approximation which is the solution of what the
canonical equations (8.4) would become if W were dropped from the Hamiltonian
(8.3), V being set equal to U. The method can take many forms; but for our
present purpose we shall orient it toward the evaluation of the first order
effects of the perturbing function W, stopping at the second stage and

dropping higher powers of the perturbations in the equations.

There are two essentially different situations in the application
of the above method, depending on whether W is known as a definite, although
complicated function of (x,y,z), or whether it is only known through its statis-
tical properties. The first situation is the classical one of physics and
celestial mechanics; it would be applicable to the case of acoustic rays if
the acoustic profile changed in a known way with changes in geographical
position, e.g., with latitude. The second is the case of our present concern:
it requires us to formulate the statistical facts representing our degree of

knowledge or ignorance of V,
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The desired statistical model is suggested by the conventional
gathering of oceanographic data and predictions bearing on the medium of
propagation: the results take the form of averages at different places,
depths, and seasons. Accordingly, we shall think of an idealized 'population"
of conditions, expressed as a statistical ensemble {V} of functions V, one
of which is "drawn at random". The population average -- the expected
value V of this function -- shall be used for the given, known function:
U=V. In general, the "population average" or expected value of any
quantity determined by this statistical ensemble will be denoted by the

bar.

It follows from the above choice of U that W = (}, since
W=V-U=V -V, Furthermore, since differentiations and integrations
are linear operations and hence interchangeable with this averaging, we

have
W/ax = JW/2x= 0, etc.,

It follows also that if C is any curve in xyz-space and if G=G(x,y,z) is any
given function, the average of any line integral such as JL G(eW/3x)ds is the
line integral of the average: 1; G(5W/3x )+ ds, which is zero. On the other
hand, integrals and other expressions containiag non-linear factors, such

as squares and products of W or its partial derivatives, will not necessarily
have vanishing averages, except when special assumptions are made. Such
special cases, which usually apply to terms containing uncorrelated products,

will appear later.
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Turning to the Hamiltonian ray equations (8.4), we shall
indicate by single accents the first approximation, obtained by replacing

V(= -n2/2) in the Hamiltonian H of (8.3) by its average U. Then the equations

(8.4) take the form indicated by the first two that follow (in which
u' = U(x',y',2"):
(12.2) dx'/dt = p;, dp;/dr = -3U'/ax', etc. N

The second approximation, indicated by double accents (and in
which we write U" = U(x",y", 2") and W' = W(x',y',z')), is defined as

the solution of the six equations, of a type illustrated by the pair o

(12.3) dx"/dt = p;, dp;/dr = -3U"/3x" - awW'/3x'. .

It is observed that the perturbing term, involving W, is the derivative of
this "random function" calculated for known values of the coordinates; i.e.,

for the x', y', z' determined by the first approximation.
We introduce the first order pe-turbations, defined as .i

(12.4) X=x"-x'", Y=2y"~-y', Z=2"-2'

P = " o_ ot P-ll_l
Tx Px TP TPy TRy, pepl-pl

Since we are assuming that the initial values (i.e., at v = 0) of both
approximations are the same (i.e., x; = x';, etc.), it follows that the
perturbations are all zero for v = 0, We must find the differential

equations satisfied by the perturbations (to quantities of the first order).
For this purpose we first subtract each equation in (12.2) from the correspond-

ing one in (12.3) and apply (12.4), thus obtaining e.g.
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(12.5) dX/dt = Px

dPx/dT = -(3U"/ox" - 3U'/ax"') - W'/ax'

Next, we note that the first uifference on the right is the difference

between the known (non-random!) function 3U/3x calculated for (x',y',z') and

for (x",y",2"). As we are working only to the first order in the perturbations,
we can expand it in a Taylor series about the known (non-random)(x',y',i5,

dropping all powers except the first in the perturbations. The result is

(12.6) dP /dr = U' X+ U' Y+ U Z+W
X XX Xy XZ X

in which the U' with the double subscripts denotes the corresponding second
partial derivative, always calculated for the first approximation (single

accent) values (which are determined and non-random); while W; = 3W'/ax’.

There results from this process six first order linear
differential equations ((12.5), (12.6) and the corresponding pairs for the
other two coordinates). The coefficients of the capital letters (random
perturbations) are determined functions of 1 through their containing the
first approximation functions x', etc., of this independent variable. Since
they contain the random perturbing terms 3W'/dx', etc., they are not

homogeneous.

On taking averages, we find that, since the perturbing terms

disappear, the averages X, Px’ etc., satisfy the corresponding homogeneous
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differential equations. Since the quantities are initially all zero, an
elementary basic theorem in such equations tells us that they all vanish

identically:
(12.7) X=mYaZ=Pp =p = =0
This is, of course, only true to terms of the first order.

In order to investigate the properties of the variances and
co-variances, which, in virtue of (12.7) are the means of squares and
products, ;;,'f?, etc., we must apply a slightly less elementary theorem
in ordinary linear differential equations, the proof of which is outlined
in Appendix F in the simple form in which it is needed here. The theorem

tells us that we can write our perturbations as integrals of the following

forms

X -{'[Gxx (1,8) Wy €8) + Gy, (1,8) Wo (&) + G, (1,0) Wy (£)]dg

(12.8)
P TR (100 WL (0 4R () W (®) + Ky, (1,0 Wy ()]de

(along with two more pairs of similar type for (Y,Py) and Z,l’z)3 in which
the first of the double subscripts !s replaced by y and by z, respectively).
In these equations, the functions of (1 £) with double subscripts are
completely determined by the coefficients of the perturbations (X, Py etc.)
in (12.5) and (12.6), which are, in turn, determinate functions, calculable
in terms of the known function U, The random effects are produced only by
the W-factors. From (12.8), by taking averages, the same result (12.7),
obtained before by more elementary methods, would become obvious. But

we now can deal with mean squares and products,
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We first write X2 in terms of products of integrals: the ex-~

pression for X in (12.8) can be written as the sum of three integrals, so
that X2 is the sum of three squares and three cross products, We shall re-
write these with the aid of a simple formula of the calculus, expressing the
product of two integrals as the double integral (over a square-shaped region)
of the product of the respective integrals, in each of which different
variables of integration have been inserted (the coordinates of the point on

the square). In its simplest form (for any integrands, f and g) it is
3 8@ a5 - IS gora = Me@gmazan
the double integral on the right being over the square
(6,n): 0 < &1, 0 <ng 1,
Applying this to such a typical cross-product term in Xz as

ol
e, B w @ d S G,y (T28) W) (8 4

this becomes

I 6t 6 () W ® W) d Ed

The mean of this is the integral

Hoy 0.8 6y (um) T E) Wy () dkan.

At this point, the first special assumption concerning the ensemble {W} is

stated on physical grounds: that the gradients in two perpendicular directions

of the random function W are independent. Therefore

103
Arthur D Little Inc

Sk

S

5 i Zamn A VGRS



@ W m =@ @m0

Hence the mean uf this, as well as all other cross-products, vanish.

Turning to a square, we have as before the double integral

expression for their means, such as

az.9) W G, (€ &) 6 (1,m) WI (&) WL (m) dtdn.

Here we are dealing with a product of the values of one and the same random

function w;, calculated at positions £and n that may coincide or be more

or less distant. If they coincide, we have the variance (W;)Z(E), obviously
a positive quantity. If they are miles apart, W;(E) and W;(n) will be
independent, and the mean in their product will contribute a zero value to the
integrand in (12.9). The distance between £and n within which the
dependence of w;(E) and w;(n) becomes appreciable -- which plays the role of

a "relaxation intervall’is not known with any precision to modern oceanography;
but it would seem physically natural to assume it not more than a mile or

two -- certainly considerably less than one convergence zone. Therefore, only
close to the diagonal {=n of the square over which the integral in (12.9) is
extended will there be any non-zero values of its integrand. Various
approximate expressions of (12.9) as an integral along this diagonal could

be given on the basis of natural assumptions; but in the incompleteness of

our knowledge of the refinements of ocean statistics, the simplest approxi-

mation may be the best: to set the dashed factor equal to the variance

W:(E) time the Dirac delta function, 6(£-n); whereupon (12.9) becomes
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(12.10) .!:rc (1,8) w,'( ©)? dt

§N

Applying this analysis to the other terms, we obtain (dropping

accents and independent variable signs):

T
(12.11) %2 = J(62 W +¢* W+t W de
(o] XX X Xy y X2z Z
Similarly

12.12) % = S W+

G G W +G G _ Wl dE
0 " XX yx X Xy yy 'y

Xz yz X

All the other variances and covariances of the random perturbations
can be expressed explicitly by such formulas, using the coefficilents in
(12.8). The only general facts to retain from such results are, firstly,
that the variances in the position along a ray are of the order of the
variances in the gradient of the random unknown component W in the acoustic
environment (roughly proportional to them); and increase with the distance
(which is roughly proportional to t). Hence the standard deviation (root
mean square) is roughly proportional to the square root of the distance

along the ray, and to the standard deviation of the gradient of W.

This places the validity of detailed computations of rays at
long ranges in doubt, although the statistics of acoustic profiles in the
ocean will have to be known to a much greater extent than they are at present
to say just how far our computed rays suffer how much random deviatiqn. It

also suggests that the ink-stained fluid passing across the emitter surface
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@aA‘mny do more than contort itself as in steady streaming: a picture of
a more drastic mixing, analogous to turbulence, may be more appropriate.
Then the whole of G;B (and its directions HB) would be reached by a diluted

fluid from A; and the degree of dilution would determine the transmission

loss.

These matters, in much more detailed and concrete form, will be

taken up in Section 13.
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y 13. Rays in a Vertical Plane with Azimuthal Symmetry

In the case of constant acoustic profile, i.e., when the acoustic
quantities c, b, V characterizing the medium depend on depth z only (the
"laminar case"),*the rays are all in vertical planes, and, as shown in :
Appendix B, their differential equations can be solved by quadratures, ]
‘. expressed in terms of integrals containing these quantities. But as soon as
B the profile varies (in a more or less known way) along the path, all the
b complications discussed in the preceding section enter the scene. This is
N true in spite of the fact that by working in phase space rather than in

geographic space, the earlier ambiguities (caustics, multiple-valued wave

i b front functions, etc.) have been banished. The object of the sections

|
\
]
)
¢
4
§

13 - 16 is to take one step beyond the laminar case, with the double regard
for achieving a useful degree of realism and for a simplicity in graphical
representation (a lower dimensionality than in the general case). This will

allow a visual presentation of the ideas and methods of the last two sections,

. A5 a0

and will lead to simplified numerical methods, useful in themselves,

BEPPETN

R

?1 : The facts developed here are derived from four assumptions which
W specialize the general conditions., As a matter of terminology, we shall
call the vertical axis passing through a central reference point A in the

emitter the emitter axis, and we shall take it as the z-axis in a system

of cylindrical coordinates. Thes 1s shown in Figure 13.IA(for convenience
in an "upside down" position, since in the ocean z increases with depth).

! .tation about the emitter axis 1s measured by the azimuthal angle ¢,

*  Usually called the case of "layered media".
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while horizontal distance from the emitter axis is the range r. Our first

two assumptions of this section are as follows:

1. The acoustic quantities (c, etc. are functions of depth

and range only (V= V(r,z)).

2. V =1U(z) + W(r,z) and W<<U. This W may be the random perturbation

of Sec. 12 (W = 0); or an irregular departure from laminarity.

Thus in our first approximation we are in the laminar case; range

dependence enters only through the random perturbation W = V-V = W(r,z).

The third and fourth assumptions are based upon a further specializa-
tion which will now be explained. We start by picturing the emitter as
radiating symmetrically in azimuth: power fn all azimuths being the same.
This 1s only an approximation, but deemed good enough to have been used
very often. Next, we "backtrack" on our assumption of Section 11 (11.3),
that rays through a given point could have a continuum of azimuthal
directions: we shall confine them to the emitter's axial plane. Thus the
4~dimensional density f is replaced by a 3-dimensional ?Ei.e., we set
f=f §(a-¢), (for 3'5 a;iﬁdfh A and Difac's §). Consistently, we assume a
corresponding aziﬁutﬂal symmetry for the bounding surfaces of the ocean.

In view of these assumptions, in conjunction with Assumption 1 above,

the wave equations (3.1) possesses azimuthally symmetric solutions,

since both its coefficients ¢ and the boundary conditions have this
independence of ¢. Therefore the same is true of the Helmholtz equation

(4.2) and consequently of the elementary travelling waves. Such pairs as (A,B)
being independent of azimuth ¢, it follows by (4.3) and (4.4) that the power
flow lines will lie in co-axial planes (all containing the emitter axis).
Furthermore, the power flux vectors will have the same azimuthal symmetry,

Obviously not all solutions of our azimuthally symmetric equations and
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symmetric boundaries will have this symmetry: our statement is, simply,

that such symmetrical solutions exist, and exist in sufficient numbers so
that we can, without mathematical inconsistency, construct our ensemble ¥ out
of them exclusively. Our third and fourth assumptions are consequences of
selecting in the statistical emsemble ¥ of Section 11 only such solutions

w? which are functions of r and z only.

3 g
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Figure 13.IA-Element (4G,4Q) Figure 13.IB.Momentum Vector P at
in Cylindrical Coordinates. (;%’, i Th um Vector ? attached to

To explore the consequences of the azimuthal symmetry in the present
situation, we recall vhe assumptions of Section 11 concerning the ensemble
¥, formulated in (11.2) and (11.3), and depicted in Figure 11.I. We shall
make an adaptation to the present case of the construction of the surface
% and solid angle Q,requiring both to be figures of revolution about the
z-azis through the common angle (¢1: ¢ < ¢2), the former generated by a

curve C traced in one of the co-axial planes; the latter, generated by the
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arc ' of a unit circle in the same co-axial plane, but centered at a point
on the axis. Similarly, the small pieces A® and AQ are generated by the
revolution, through a common small sub~-angle A¢, of the small pieces AC
and AT of C and I'. The construction is shown in Figure 13.IA but with @
and AQ transported so that their vertex is at a point (r,¢,z) on A® ,

in analogy with Figure 11.I. Evidently (to quantities of higher order)
A = rA¢AC and AQ = sin y Ar', Therefore, in surface integration over
(G ,9), using the arc-length o along C (in a given sense) and the angle Yy

(with the +z-axis) along I', we have

(13.1) d® = rd¢do, d? = sinydyd¢

The equations (11.2) and (11.3) still hold in the &-function interpretation.
Since all elements in the construction have azimuthal symmetry, the
same will be true of the power flux quantity ’g. Also, the angle O between
the normal to & (at the limiting point of A® ) and the limiting direction
of AR, 1is simply O = y'—y » where as in (11.1), y' and y are the angles that
the normal and the limiting direction make with the +z-axis. Finally,
since no power flow line in the present case has any azimuthal compoment,
power emitted in directions between any pair of co-axial planes will always
remain between them. Putting these facts together, we have a basis for our

last two assumptions:

3. The power flux density 'f' in phase space is a function of range

r, depth z, and angle y only; and f = f§()—9),

4. No power crosses any co-axial plane ¢ = constant.
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Figure 13.I1 Coordinates in Typical Vertical Plane e

The Hamiltonian in our cylindrical coordinates is
2 2
(13.2) H -(1/2)[(pf, + pi/r +p,)l- V., V= -n2/2.
The canonical equations of the rays are
2

dr/dt = Py d¢/dt = p¢/r , dz/dt = P,
(13.3)

dpr/dr = -3W/3r, dp¢/d1 = 0, dz/dt = -3V/az
[0f course when the new independent variable t is introduced through the
equation dt = n2 dt and the momenta are eliminated, (13.3) reduces to the

form (B.2) of equations in cylindrical coordinates,)

The fifth equation in (13.3) shows that p¢ = pg, a constant; the
second, that p: = r2(d¢/d1). Since we are only considering rays which
cut the z-axis, where r = 0, we must have p: = 0; therefore, again by the
second equation, d¢/dt = 0, so that ¢ = ¢°, a constant, This fact, that
all the rays considered are in vertical planes, co-axial with the z-axis,

is also derived in Appendix B, On the other hand, Snell's law (B.3)
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or, in the present case, P, = k (the Snell constant) is only true when |
3W/3r = 0, as we see from the fourth equation. Now since we are regarding a g
the perturbing term W as giving the departure from laminarity, W will

depend on r, and hence Snell's law is valid only in the first approximation

*
(i,e., when W is replaced by zero).

Returning to the Hamiltonian system, (13.2) and (13.3) reduce, in
view of the fact established above that Py = 0 and ¢ = ¢°, to the form {

2 2 ;

1 2
(13.4) H-E[pr+pz-n]

dr/dt = Pps dz/dt = P, s

(13.5)
dpl/dr = —3W/3r, dpz/JT = -3V/3z = -3U/3z - 3W/3z =«

These are the equations of a particle moving in a plane of rectangular 1
coordinates (r,z), under the action of forces derived from the potential

V = V(r,z), As in Section 8, our rays are those solutions of (13.4) in

the space of the variables (r, z, Pps pz) for which the constant value of

our present Hamiltonian (13.4) is zero. Thus our present phase space

p 1is 3I-dimensional: we shall denote it by £53 to distinguish it from

the one in the 5-dimensional case. Finally, in terms of the arc length

s along the ray and the relation ds = ndt, the first two equations (13.5)

show that

(13.6) P, = ndr/ds = n sin v, P, = ndz/ds = n cos v,

which correspond with (8.5), and give the trigonometric reason for the

equation H = 0,

* Despite a too common tendency to regard Snell'’s law as having the same
degree of generality as Rrmat's principle. Cf. Appendix A.

112

Arthur D Little Ir



s

The "action integral" along the curve C (c.f. Section 9, end)
becrmes in the present case

I(C) = I P, ér + p, 62
o

On applying the general methods of Appendix E, this yields the 2-dimensional

sliding integral invarient which (in the notation of that appendix) is

a.n 1, - ff(GprA 6 + p A 62)

and which, with the choice of region of integration depicted in Figure 13I

becomes

(13.8) I = ff n cos O dody
c r

This 12 takes the place of the I4 of (11.6). Here C is any curve in the
]
rz-plane, do an element of arc-length along it, y the angle from the +Z-axis
1)
to (the positively oriented) normal to C, ® = y - y, the angle between it

and the direction of a ray. Finally, T is any angular interval (arc of

the unit circle). See Figure 13.1.

We must now express the power flux P in terms comparable to (13.8).
We first recall equation (11.3), to which we apply the special choice of
©® and Q of Figure 3], and the expressions (13.1) for d@ and dIl = nzdﬂ.

We are then able to write (11.3) as the iterated integral

¢ ¢
2 2
P(Y) = f d¢ f r do .f d) f sinydy * nzfﬁ(A-Q) cos®
¢1 C ¢1 B

[¢ and A are two variables of integration, the first on © , the second
on 2]. Now apply our Assumptions 1 and 3. It is necessary to use the cylin-
dric coordinate expression for the direction cosines of the normal and the

momentum. These are obtained by projecting these vectors on the horizontal
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plane and then projecting the results on the two horizontal axes. By

trigononetry, we obtain for the normal
cos a' = sin y' cos ¢, cos B' = sin y'sin ¢,

and similarly, with the azimuth A of a general momentum vector, illustrated

in Figure 13.1IB,

cos o = giny cosA, cosBf = sin y sin)
Consequently, after a trigonometric reduction,

cos 0 = cosa' cosa + cosB' cosf + cosy' cosy
= cos(A-¢)siny' siny + cosy' cosy
Inserting this into the above expression for P(Y), we note that
the A-integration, using the properties of the 8 function, converts
cos(i-¢) into cos O=1; while the subs:quent ¢-integration merely multiplies
the resulting ¢-independent integrand by the constant factor ¢2 - ¢1;

and we have, with & = y'_.y 3

(13.9) P(Y) = (¢2-¢1) f do f n2 T ?cosesin ydy.
C T

As the 2-dimensional domain of integration (C,I') is slid along the

rays in our phase space f:';a the power P(¥) and the angular factor (¢,-¢,)
remain unchanged. Therefore the coefficient of (¢>2-¢1) , the; r flux

per unit azimuth angle,
(13.10) PZ = !C fl" n2 r ‘f'cos 0sin y dody

18 a sliding integral invarient, and hence, by the theorem cited in
Section 11,the ratio of its integrand to that of Iz is constant along

the rays in R thus we have, using (13.6),

'
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(13.11) n-sin y.r.f = pr-r-i - pt-r-?(r,z,p') = const.(on each ray).

It may of course be constant throughout all or part of ﬁs. In any
case, for a ray issuing from the point (ro,zo) close to A in a direction

)
at an angle yo,(go P, =P, " n(ro,zo)cos ya),we have

n(r,z) siny * r f (r,z,pz) =n sin A t

oo
Hence
o
r n_sin y r, P
= —2 . _—O o . r3 = —2 . -—r' 'F‘
(13.12) f(r,z,pz) r n s8iny fO r pr fo

The presence of the quotient rO/r on the right is what produces

the effect of ''cylindrical spreading".

It is emphasized that all these results have been derived

*
without assuming laminarity. Moreover, the assumptions which have led

to them can be weakened, by postulating only that azimuthal symmetry
applies when ¢ varies through a limited angular range: the range just
including the rays that could possibly reach the receiver. Thus the

results can be applied to cases of some dissymetry of emission.

In the case of laminarity -- e.g., in the first approximation
with W = 0 -- Snell's Law applies, giving the result P, - p: = k; then

(13.12) reduces to

r
~ 0
(13.13) f(r,z,pz) ==

? .

[o)

* Nor, indeed, making use of the approximate laminarity expressed in
Assumption 2.
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Returning to the more general case, the fact that P, is always
close to p: makes (13.13) a good approximation. To calculate the acoustic
intensity, equations (11.4) and (11.5) and the further considerations of
Section 11 take on a somewhat simpler form in the case of azimuthal symmetry
and the cylindrical coordinates. The same is trua of the perturbation
methods of Section 12, Thus in the cylindrical equivalents of (12.8)
there are only two terms in the integrand, arising from the two non-
vanishing derivatives of W. There are corresponding simplifications in
the formulas corresponding to (12.11) and (12.12) derived from the
earlier one. But basicilly it is not these various simplifications
that are the important results of the azimuthal symmetry: the really
useful consequences come from what can be inferred from the mixing and

tiow
random mixing .n the phase space ﬁssas we canAvisualize it.

These consequencesiwill be set forth graphically in the next
Section. We can say in anticipation that there are intermediate range
cases in which the constant in (13.11) is a function of P, only, so that
rf has this property, thus bringing far greater simplifications than any
of the preceding paragraph. At still greater ranges, this quantity is a
constant throughout a larger region of .E%, with still greater simplifica-
tions. The derivation and use of these facts are most easily made with
the use of a graphical device for representing the power relations, the

surface of section,

116

Arthur D Little’



AR TR AT RTINS

£
ORI ISt

-4
B wms o

[ e
]

e ms
[A—

P i =y
[

[

i

14. Graphical Representations and the Surface of Section

This section continues the study of the azimuthally symmetric
propagation, with acoustic quantities depending on depth and range only
and rays in vertical planes, of Section 13. It takes the mathematical

results established there and puts them into graphical form, so that

. their inter-relations can be visualized. In addition to clarification

on the conceptual level, the graphical presentation is shown to lead to
simple practical methods of predicting transmission loss at long and

at Intermediate ranges. Among other things, the effects of such underwater
obstructions as sea mounts and ridges can be examined and estimated

graphically.

The pictorial representation. This graphical method is made

possible by the 3-dimensionality of our phase space §d,, in contrast to

the 5-dimensionality of £ 1in the general case, Our present 53 is in fact

STV VRSN

the locus of "points" (r, z, Py pz) satisfying the equation
2 + 2

cYp, = nz(r,z). To visualize the relationships in this manifold, we

P
must represent its points in our ordinary 3-dimensional space, and this
is naturally done by means of a coordinate system. In Figures 14.I and
14,11, which show the typical vertical plane through the emitter axis
(¢ = ¢°, constant) of the rays in ordinary geographical space, the
coordinates are (r,z) and they are restricted by the three conditions
now to be given. Firstly, r is positive. Secondly, z > z(surface)= a.
This constant surface value a of z may be positive, negative, or zero,

depending on our choice of the origin of the cylindrical coordinates:

we may take a point on the ocean surface (then a = 0), at the emitter
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A, or at the center of an acoustic duct (minimum c); in either case, a < 0.
An origin above the surface would lead to a > 0; but this is seldom used.
Thirdly, z < z(bottom) = b. This is an abvious condition; but only if the
bottom is assumed to be f£lat do we have b = constant; otherwise, b = b(r),
a function of range, corresponding with variations of the ocean bottom
along the direction of propagation in our vertical plane. We shall,
accordingly, take for our first two coordinates in the representation of

553 the r and z restricted as follows
(14.1) r > o agzgb(r).

The third coordinate in the representation ofﬁ3 must, at each
given (r,z), specify the momenta P, and P, and vice versa. Since our
153 is made up of rays which are paths of power leaving the emitter
axis, not approaching it, their tangents are directed away from the
z-axis, so that 0 < v < m . Evidently when (r,z) are given, each value
of vy 1in this interval determines P, and P, in view of (13.6); and vice
versa, each pair of values of the latter determines a unique value of y
in the above interval. Consequently the angle y could be used as the
third coordinate in the specification of points in ﬁ53' For some
purposes y (or equivalently the angle with the horizontal, (4 = 7/2-y) is
preferable; but for our present investigations simpler formulas and
graphs are obtained by using the momentum component P, = n(r,z) cos vy,
The possibility of this choice is due to the fact that as y increases from
0 to 7/2 and thence to m, P, will decrease from n to 0 and thence to -n,
so that the intervals (0 < y ¢ ) an<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>