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The object of this report is to supply the theoretical bases for certain 
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in hydroacoustic propagation. These approximations involve a knowledge 
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20.    acoustic profile Independent of range.    The ranges are long enough to 
Involve multiple-path transmission, caustics, and the complications 
prouueed by many convergence zones.    The random factors and incomplete 
knowledge of the medium of transmission are not only explicitly 
acknowledged but are made to play a central role in the discussion: 
they give rise to a somewhat novel model and open up possibilities 
of simplification of averages, etc. 

The mathematical methods are based on the following three processes: 
First, the Hamlltonian treatment of the differential equations of the 
rays, together with the transcription or "lifting" into phase space 
of the energy density and flux quantities.    This requires a detailed 
energy-theoretical comparison of the waves and the rays at high fre- 
quencies.    Its mathematical manipulation is facilitated by the use 
of Hamlltonian integral Invariants having statistical power-flow 
interpretations.    Second, the physically measurable quantities are 
expressed in terms of these quantities.    Third,  a canonical trans- 
formation of phase space, based on a simultaneous solution of two 
Hamilton-Jacob 1 equations, is used to bring about the superability 
of the equations in the new variables, thus allowing the introduction 
of angle and action variables, and the expansion of the power flux 
In a Fourier series.    Dropping all but the constant term in this 
series (which term depends only on the two profiles) provides the 
desired approximation. 

.i 

.1 

.1 

In the development, many incompletenesses (and some errors) in 
existing treatments are noted, and attempts made to remedy them, 
as well as to indicate work that should still be done. ] 
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NEW RAY METHODS IN PROPAGATION 

The ultimate objective of this study Is a method of computing 

hydro-acoustic transmission loss at long and Intermediate ranges—a 

method simple enough to be Implemented by feasible computer programs, 

general enough to Include the actual variations of sound speed found 

In nature (geographical, seasonal, and fluctuating randomly, as when 

Influenced by turbulence, etc.); and, finally, theoretically sound In 

that It Is derived logically from accepted mathematical physics. The 

Immediate objective of the study Is the establishment of such a basic 

rationale for the computation of practical answers:  It is methodological 

and theoretical. To gain a proper perspective, we outline the generalities 

1* 
of the present situation, in as elementary terms as possible. 

The conventional methods of dealing with the propagation cf 

high frequency radiant energy (in acoustics, optics, or electromagnetlsm) 

by means of the Huygens' construction of wave fronts and rays, meets with 

difficulties when the medium is heterogeneous and the ranges are long. 

This is precisely the case of importance in the detection of hydroacoustic 

signals. Caustics, path-splitting ambiguities, and other obscurities put 

many of the troubles into evidence. 

The attempt to avoid the difficulties by the more fundamental 

approach through the wave equation (normal modes, etc.) is often made. 

While conceptually this is the correct method for explaining t\\p  obscur- 

ities in the use of rays, to be computationally effective it must go 

further. The use of special functions and series for solving the wave 

* References in the text are to the publications given In detail under 
the superscript numeral (assigned according to general topic). 

Arthur D Little. Inc 
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equation requires drastically simplified assumptions regarding the sound 

speed c as a function of position throughout the volume of ocean in 

which the acoustic propagation takes place, as well as assumptions 

regarding the shape and nature of the ocean bottom and surface. 

The difficulty—whether rays or normal modes are used—is a 

double one:    Not only are the factors just cited highly complicated, 

as the limited existing observations have shown, but they are largely 

unknown.    Even if the whole ocean bottom throughout the world were ever 

to be charted in minute detail,  there would remain the prediction of 

sound speeds—a task coordinate in difficulty with predicting the 

weather. 

Situations in which there is an irremovable residuum of un- 

known complexity in the determining factors affecting quantitative 

behavior are familiar in mathenatical physics, e.g., in the kinetic theory 

of matter, Brownian motion, and turbulence.    The successful treatments 

of such cases are by statistical methods: the application of the analytic 

theory of probability.    In modern acoustics, there is a rapidly increasing 

view (on both sides of the "Iron Curtain") that the appropriate treatment 

of the acoustic problems we are discussing must be a statistical one. 

A profusion of books and papers written with this point of view are 

2 1 appearing.      Cf. e.g., Tolstoy and Clay , Chapter 6. 

The concrete question that this situation poses is whether 

one is forced to confine oneself to the wave equation and develop a 

tractable formulation of the statistics of its solutions, or whether 

there is still the possibility of developing a statistical treatment of 

the rays themselves, somehow overcoming the difficulties mentioned in 

I 

mmam 
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the second paragraph.    Here It must be emphasized that, when applicable, 

a ray treatment depends on more elementary concepts and is usually 

computationally simpler than the direct use of the wave equation. 

An essential purpose of the present report is to show how a 

modification of the ray treatment not only side-steps the difficulties 

cited in our second paragraph but provides a natural "port of entry" 

for statistical methods.    It is based on the application of Hamlltonian 

theory and its recent developments (integral Invariants, ergodic concepts, 

etc.).    This application reflects a very old notion:    The particle-wave 

duality, which was evidenced in the debate between Newton and Huygens 

on the "corpuscular" versus "wave theory" of light; it was exploited 

by Hamilton early in the last century, and returned to prominence in 

the de Broglie-Schroedinger wave mechanics of quantum theory. 

To carry out our program along these lines and arrive at a 

scheme of computation of transmission loss—both practicable and realistic 

in view of the physical complexities just mentioned—four steps have to 

be taken:    undertaking a mathematically sound exploration of  the condi- 

tions under which rays guide the propagation of hydro-acoustic energy; 

a "lifting" into the Hamlltonian phase spacf of these energy flow-versus 

ray relations from the lower dimensional physical space; showing pre- 

cisely how to include many of the random features of propagation in 

this process; and, finally, applying both old and new methods of 

Hamlltonian theory (integral invariants, "ergodic" concepts, and 

special types of canonical transformations) to establish the desired 

result: what we may call the'"second approximation" to long range 

transmission loss. 

Arthur D Little Inc 
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If one terms the "first approximation" to transmission loss 

any calculation based on the assumption that the acoustic profile is 

independent of range, so that only the one at the emitter is used, it 

is natural to call the "second approximation" one making use of two 

profiles, the one at the receiver and at the emitter. A number of 

different schemes of computation of this second type have been set up, 

often in classified reports and based on various conceptions of the 

physical processes involved—and too frequently leading to quite 

different results. The scheme of computation to whic'i the present 

study leads has been announced in different stages of its development 

at the Acoustical Society of America [6 Nov. 1969 (6H1): "Some Mathe- 

matical and Computational Contributions to Underwater Sound Propagation", 

by B.O. Koopman and G. Raisbeck; 22 Apr. 1970: (Nil): "Computation of 

Long-Range Propagation Loss in a Duct" by G. Raisbeck; and (N12): 

"Propagation Over Underwater Obstructions" by B.O. Koopman]. These 

were not published but were presented to the U.S. Navy in the form of 

reports. Another essentially equivalent computational scheme, based on 

similar intuitive conceptions, was published by P.W. Smith, Jr., in the 

paper, "Averaged Sound Transmission in Range-Dependent Channels" 

[Journal of the Acoustical Society of America, Vol. 55, No. 6, June 

1974, p. 1197]. Other similar work has been communicated to the present 

author in the form of a report by Tetra Tech, Inc., "A Statistical Model 

of Propagation in Sound Ducts", by M. Milder and L. Solomon. Both these 

latter and the present author presented many of these and related results 

in a symposium on Ray Tracing at the SACLANT Centre (La Spezia, 1971) 

! 
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and are published In Its unclassified proceedings. 

But to our knowledge no treatment meeting the standards of 

classical   mathematical physics is available in the literature:  a 

mathematically sound derivation of  the required algorithm from estab- 

lished mathematical physics under precisely stated and appropriate 

special assumptions.    The present paper is intended as a contribution 

to this end—in the case of no  (regular) time dependence of sound 

speed c.    There are far more than philosophical or abstractly scientific 

reasons for seeking such a rigorous basis: without it, how can any navy 

decide which, out of the multitude of different methods submitted to it 

on the basis of different "physical intuitions" and "ad hoc" assumptions , 

are the ones—if any—to use in technological and tactical planning under 

various given conditions? 

After recalling in Sections 1 and 2 the conventional method of 

ray tracing and its familiar difficulties,  the study goes back to the 

wave equation and its energy density and flux vector (Section 3), normal 

modes and travelling waves  (Sections 4,5).    The treatment attempts to 

be elementary and keeps to the real domain while the basic issues are 

being faced.    It is emphasized that those travelling waves which produce 

a net progress of acoustic power are only possible with "eigen-value 

degeneracy":  two real solutions with the same frequency  (as stated, 

e.g.,  in Morse and Ingard,  5.2,  p.   206 ).     In Appendix C, a more pre- 

cise definition on the basis of a normalization process removes such 

ambiguities as those recognized by Brekhovskikh (Chapter III.6,  p.  229)  . 

*   And sometimes even errors of fact:  cf.  the incorrect interpretation 
of Snell's law and a prevalent error in constructing shadow zones, 
examined in Appendix A,   as well as many others noted in later Appendixes. 

Arthur D Little Inc 
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Section 6 considers families of travelling waves parameterized 

by their circular frequency u, studied as this Increases Indefinitely. 

The prevalent notion that at high enough frequencies the acoustic power 

flows essentially along rays (In the open, or near boundaries whose 

radii of curvature greatly exceed the wave length) requires precise 

Interpretation. If It means that the power flu* lines approach*appro- 

priately chosen rays and that the rate of flow of energy regarded as 

localized In the medium approaches c as u-*■<*>,  then It Is sometimes true 

and sometimes not, as shown by various simple examples In Appendix D. 

Moreover, many conventional treatments, which show that a slow enough 

variation of amplitude A with Increasing OJ Is necessary for the validity 

of a ray treatment, and then assume It sufficient, are In error (counter 

example: exp [lu(x cos u + y slnai)/c] which satisfies the Helmholtz 

equation, has unit amplitude, but approaches no limiting direction as 

u-»-00). This, and the essentially local or special treatments of radia- 

tion given by mathematicians, ha» forced us to establish necessary and 

sufficient conditions for the power flow-ray approach, I.e., for the 

validity of any ray trr.atmtM.t in actual media. Any family ot travelling 

waves satisfying our conditions we call a Fermat family—for obvious 

reasons. 

A mechanical analogue model of rays in ducts is given in 

Section 7, introducing the Hamiltonian formulation in Section 8; 

classically known properties of the differential systems to be used 

are outlined in Section 9, more technical material being deferred to 

Appendices E, F and G. 

*Wlth an appropriate definition of "approach": "weak convergence" in 
the general cases is the necessary concept; cf. Section 6, end. 

I 
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Section 10 transcribes ("ilfts") the wave power flow relation- 

ships In an Individual Fennat family Into the Hamlltonian phase space, 

while Section 11, which deals with statistical ensembles of Fermat 

families, leads to a fonni-latlon nf power flow relations by means of a 

continuous power flux density In that space. The elements of integral 

invariants (intuitively interpretable) then show that this density is 

constant alon^ each ray (in the limit). In terms of this density, 

acoustic intensity, transmission loss, and similar desired measurable 

quantities are expressed. This is the theoretical key point of the 

present study. 

The remaining five sections develop special methods of 

approximation to these measnable quantities under various stated 

conditions. 

Section 12 applies convcintlonal first order perturbation 

methods, regarding the perturbing term in the Hamlltonian as a statisti- 

cal fluctuation. 

The remaining sections confine the study to the case of 

azimuthal symmetry: c depends on depth and range from a symmetrical 

emitter only, and the propagation is in vertical coaxial planes. 

Section 13 particularizes the general results established above to 

this case. Section 14 uses a geometrical representation with the aid 

of the surface of section, introduced into dynamical theory at the 

turn of the century by H. Polncar^ , G. D. Pirkhoff , and their 

successors. Section 14 then exdiulpes In detail the "laminar" (or 

layered medium) case, c depending on depth only. Improved derivations 

Arthur D Little Inc 
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of the "first approximation" to transmission loss are developed, mainly 

as a stepping off point for the "second approximation",  treated In 

Sections 15 and 16. 

Section 15 applies the random perturbation method of Section 

12 to the case of Section 14 but when the lamlnarlty Is only true on 

the average; It also applies methods of information theory to obtain 

a simplified graphical version of the "first approximation" at long 

ranges. 

Section 16 established the "second approximation" In a deter- 

ministic but slow departure from lamlnarlty.    Briefly stated, it first 

makes a canonical change of variables based on solving, by line Integrals, 

a pair of simultaneous Hamilton-Jacob1 partial differential equations 

in the large.    This transforms the problem to one in which the variables 

are separable, so that angle and action variables can be introduced. 

Then the power flux density, being periodic in the new range-like 

variable, can be expanded in a Fourier series.    Physical reasons are 

given for dropping all but the constant term:  this is easily calculated 

in terms of the two profiles (at the emitter and at the receiver) and 

so gives the desired second approximation.    Points concerning the 

generalizablllty of the method are noted.    The excessive length of 

Section 16 is due to its treatment of the same subject at three 

successively increasing levels of mathematical technicality, from 

largely intuitive to essentially rigorous, because of the diversity of 

backgrounds of the probable readers: logically it could be less than 

one-third of Its present length. 

I 
I 
I 
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Every attempt has been made to avoid unnecessary mathematical 

technicalities—to Interpret as Intuitively as possible those that the 

basic reasoning forces us to include In the text, and to relegate the 

rest to appendices. This has caused what may seem an excessive length 

of the study: If the state of the available literature had permitted, 

our presentation could have been greatly shortened. Thus, the only 

text In the English language treating Hamlltonlan theory In sufficient 

depth for our purposes Is Whlttaker ; but his treatment of Integral 

Invariants does not go far enough for our needs and we have been obliged 

to refer to French texts (Polncar^ and Cartan) and to add Appendix F 

on the subject, so that our presentation would be more nearly self- 

contained. 

Appendix G deals with the mathematical problem of the existence 

of Fermat families as produced by radiators—In the large, where classi- 

cal methods fall because of the multlple-valuedness of the elkonal and 

the tangled nature of the characteristic conoid. Hadamard's "elementary 

solution" is carried into the complex domain and made to yield the har- 

monic waves by contour integration. While giving the needed results in 

many special cases, a completely general theory requires further research. 

Appendix H is essentially a reproduction of the author's paper 

"Propagation Over Underwater Obstructions", cited above, and in which 

the methods of the text are applied to such obstructions as sea mounts. 

The great practical importance and the mathematical difficulty 

of the subject have led many workers to "measures of desperation", often 

leading to gross errors in mathematical reasoning. In addition to those 

noted above. Appendix D and H point out the one in Brekhovskikh's treat- 

ment of layered media and the "source to duct coupling" fallacy. 

9 

Arthur D Little Inc 

*m—m 



■■■llpppiiMPIMPNPIHPI 
„r^«T7t.■'.■»Jr'-vw'"-■"-"'™^•"c""""", 

1. The Method of Ray Tracing 

One standard elementary method of calculating transmission loss 

In underwater sound propagation takes over the methods of geometrical 

optics In a medium of variable but known refractive index n * 1/c, where 

c Is the speed of propagation*. The Justification of this method is that 

when the wavelength is much smaller than the dimensions of the medium and 

the radius of curvature of the rays, the flow of acoustic energy is guided 

by the rays** Therefore by studying the extent that they spread out from 

the source of sound, the change in acoustic intensity with distance can 

be estimated. To make the method clear—and to show how it can lead to 

difficulties—we shall first examine a number of illustrations of its use. 

The simplest case is that of a point emitter 0 in a homogeneous 

medium (n -  constant). All the rays are straight lines, and since the 

wave fronts are spheres centered at 0, the rays guiding the flow of 

acoustic energy are those perpendicular to the wave fronts, viz., the 

straight lines through 0 (Figure l.J), Let W be one of the spherical wave 

fronts, of radius r ; and let W be another, of greater radius r. On the 

surface W  let a region S bounded by the curve C be traced. All the 
o       0    o       ' o 

acoustic energy from 0 that crosses S will remain within the cone of 

rays through 0 and the curve C . It will therefore pass through the 

region S of W, bounded by the curve C of intersection of the cone with W. 

*The constant factor c^ in the full expression n ■ C/c is taken as unity 
to simplify the preliminary discussion. However, in Section 7, we set 
c ■ C, appropriately chosen and t  1. 

**Strictly provable under certain additional assumptions given in later 
sections. 

10 
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n ■ 1/c ■ constant 

FIGURE l.II 

Deformed Spherical Spreading 
n ■ 1/c varies with position 
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FIGURE l.III 

Multiple - Path Transmission at increased range 
n ■ 1/c varies slowly with position ————— 
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The acoustic Intensity at a point P where a ray L cuts S Is the amount of 

energy (per unit time) Intercepted by a body at this point, "subtending 

a unit area of the wave front." More exactly, It Is the ratio of the 

total energy E passing through S (per unit time), divided by the area of 

S, the latter being regarded as arbitrarily small; more precisely, It Is 

the limit of the ratio E/S as region S shrinks up on W to the point P. 

Since we are assuming conditions under which the acoustic 

energy Is guided by the rays, the same amount of energy E passed through 

S on Its way to S, so that the acoustic Intensity at P Is the limit of 

the ratio E/S . But by the geometry of spheres, S/S = r2/r 2, so that o oo 

the ratios of acoustic Intensities at the two points obey the equation 

(1.1) acoustic intensity at P _ £o  ro 
acoustic intensity at P   S   r2 ' '    o 

which Is the familiar Inverse square law of spherical spreading. We are 

assuming a quasi-steady state: that any change in power output from the 

source 0 in the course of time can be neglected in this equating of the 

energy through S and through S. This is usually allowable when range r 
o 

Is moderate; for longer ranges, account may have to be taken of the 

delay time of propagation from S to S. 

Now consider the more usual case in hydroacoustlc propagation, 

that the index n <*  1/c varies enough over the region of propagation so 

that the rays are no longer straight lines but gently curved.  (We are 

postponing the case of reflection.) Figure I-II shows the modification 

needed in the shapes shown in Figure l.f.With emission from the point 0, 

there will still be a set of wave fronts, such as W and W, perpendicu- 

lar to the rays through 0 (by the Theorem of Malus). The first equation 
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In (1.1) will apply; but since the areas S and S are not spherical, the 

second equation will not be true: The inverse square law of propagation 

no longer holds. Consequently, before the effect of spreading on trans- 

mission loss can be calculated by equation (1.1), the value of the 

spreading factor S/S (S small) must be found. More precisely, the 

limit of this ratio must be evaluated as S shrinks to point P —theruby 
o r    o      ' 

making S shrink to P—where P and P lie on the same ray L through 0. 

We denote this limit by 6S/6S . 

The method of "ray tracing" offers a graphical evaluation of 

the spreading factor. In its simplest terms, the method consists in 

constructing (e.g., with the aid of machine computation) a large number 

of rays emanating from 0, and closely spaced in their directions from 0, 

as evenly as convenient. If N(S ) of these rays cut through S , the 

number N(S) cutting through S must be exactly the same, by construction 

of S: N(S) » N(S ). Therefore this common number behaves analogously 

to the energy: its density (per unit area normal to L) is N(S )/S at 

P and N(S)/S at P; hence the ratio of densities of rays at the two 

points P and P is the latter quotient divided by the former. After 

cancelling the common numerator, we get S /S, the desired term in (1.1), 

or reciprocal of the spreading factor. Since the ray density at any 

point can be read off approximately once enough rays have been traced, 

we are given a solution of our problem: S /S = rav d. at P/r.d. at P . 
o  •  ■ o 

The practicality, accuracy, and reliability of the above 

method must all be carefully examined. We have begun with the simplest 

situation in which, as shown in Figure 1.II we are close enough to the 

emitter so that through each point P one and only ray passes, emanating 
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from 0. For longer ranges (beyond the onset of convergence zone phenom- 

ena) this Is no longer true: multiple-path transmission sets In (Figure 1. 

IllXtogether with reflections, caustics, and other complications. Their 

study will be undertaken In Section 2 (the mathematics, In Appendices A and B). 

The accuracy and reliability of the method depend on the cor- 

rectness with which the rays can be determined; whereas its practicality— 

Indeed, its economy—is a relative matter, requiring a comparison with 

other methods of answering the same questions and starting from the same 

data. All applications of rays to the study of transmission loss— 

whether the rays are actually traced, computed numerically, or merely 

enter into the mathematical reasoning leading to numerical results—have 

the same starting point: an assumed knowledge of the sound speed c 

throughout the region of propagation (or equivalently, of the acoustic 

index n - 1/c); and the differential equations determining the rays, and 

expressing Fermat's "principle of least time". The basic elementary 

facts will be recalled in their general setting in Appendix A, with 

specific detail given in important special cases in Appendix B. 
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2. Difficulties at Long Ranges 

All the formulas and methods for calculating acoustic Intensity 

(Section 1 and Appendix A and B) Imply single path transmission:  the 

situation of Figures 1.1, HI, but not of Figure l.III, Everything has been 

based on the smooth wave front W which is the surface of constant phase 

or travel time t, orthogonal to all the rays issuing from the source 0, 

and progressing with increase of time according to Huygens' construction. 

What becomes of the construction and reasoning when longer 

ranges are considered, giving rise to multiple-path transmission, with 

such attendant complications as caustics? Such factors will surely enter 

at ranges beyond the first convergence zone, e.g., much beyond 35 miles. 

Even without the added complications of reflections or absorptions from 

the surface or bottom, the difficulties mentioned will occur. They 

have long produced practical complications and obscurities in the 

various computational techniques (ray tracing and analytic formulas), 

and many attempts have been made to deal with them by ad hoc modifica- 

tions of the standard computational procedures. But before a firm basis 

for reliable and efficient methods can be laid, it is necessary to go 

back to first principles and examine the physical relation between rays, 

wave fronts, and the propagation of power. 

Let us see geometrically how the difficulties occur, by follow- 

ing the progress of a wave front W by means of Huygens' construction. 

Figure 2*1 shows(in plane section) a front which at first has no singular- 

ities, but in which the sound speed c is greater above and below a 

central axis through the emitter 0. In the early positions of the front. 
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such as W., VL, W», It has the appearance and Is what we would expect 

Huygens' construction to give when the "elementary (spherical) wavelets" 

have larger radii away from the central axis. In such later positions 

as W,, VL, W,, the parts off the axis have more than caught up with 

those near the axis, and the front is converging. By the time W, is 

reached, the radius of curvature on the axis is so nearly equal to that 

of the elementary wavelet there that the Huygens1 construction will show 

the formation of an angular point F on the wave front W,. The radii of 

curvature of the wave fronts from W, to W., approach zero on the axial 
o    / 

ray. Consequently the family of rays between P^ and P?F, all being 

orthogonal to the wave fronts, will pass through the angular point F of 

W-. Since the energy traversing the piece S.. of W1 will come to a focus 

at F, which is a piece of W7 of area zero, the energy density at F is 

infinite. Obviously we are dealing with a situation in which the ray 

approximation to the behavior of the acoustic propagation is inadequate. 

Thus such a simple ray tracing method as the one described in Section 1 

will not tell us how to calculate the acoustic intensity beyond F. 

A similar situation is illustrated schematically in Figure 2.11 

which shows a pencil of rays having a caustic C. The wave front con- 

verges to the arc of tangency with C, as shown in A.IL, A.B», A„B~; it 

is then reversed and deverges from this arc, as shown in A.B,, A^B,., 

A,B,.  Its evolution between A-B» and A,B, is not shown in the figure 

because of difficulties of scale; but it clearly folds over, temporarily 

acquiring a cusp in transit. This is because at each point T (not shown) 

where one of the rays touches C, one position of the wave is formed by 

Joining two curves, AT and TB; and at T both curves, being perpendicular 
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to the ray, are also perpendicular to C.  Evidently the caustic C Is a 

locus of singularities In the wave front W; and the energy density Is 

Infinite on C. ^n  general, caustics are loci of wave front cusps. 

Analytically, the progressing wave front W Is the locus of the 

equation S(x,y,z) ■ t, for the succession of Increasing values to t. 

Here S(x,y,z) is the time taken for a signal to pass from the point of 

emission (0 in Figures i'l^iB) to the point (x,y,z) of the medium— 

along the "path of least time" (the ray) connecting these points. 

Evidently when, as in Figure1ID more than one such path Joins these 

points,  S(x,y,z) is multiple-valued.  Since this function was single- 

valued close to 0 (the situation in Figures I'landU), as (x,y,z) moves 

away from 0, it must pass through a locus of critical points at which 

the single-valued S becomes multiple-valued: this "branching locus" is 

precisely the caustic, as Figure 2«Dshows geometrically, or the focal 

point, as in Figure 2'1-  With such a singularity appearing in W (or S), 

there can be no simple form of the Huygens' construction. 
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3.    Waves and Energy Flow 

Section 1 has been based on the assumption that, at the signal 

frequencies of Interest, the rays guide the flow of acous*  c power. 

Section 2 has noted the difficulties of the conventional ra> and-wave- 

front construction at long ranges In the    case of a sound speed varying 

In space.    Inasmuch as propagation does In fact occur under such condi- 

tions without observable difficulty,   the basic trouble must be, not with 

Nature,  but with the Huygens simplified description of it.    This forces 

us back to first principles:    the wave equation and the concommittant 

energy density E and its flux vector F. 

Every simple acoustic disturbance corresponds to a function ty 

of time and   spaclal position, satisfying d'Alembert's wave equation 

c2y2ii " ip      ror one of its generalizations. Using rectangular 

coordinates  (x,y,z)|and subscripts to denote partial derivatives, 

the appropriate wave equation for heterogenous media Is 

(3.1) ±[(Mx)x+(py   +(P ,z)z] =   i   V, 
c 

The wave function ip denotes the acoustic velocity potential, although 

(3.1) would also be valid for acoustic pressure, on replacing p bv 1/p. The 

space density of energy E and its flux vector F are given by tha vector 

equations (V, the gradient operator). 

(3.2) 
E- (p /2)[|V^|2 + n2^  ], F « -p ^V^ 

Here p Is the "quiet" density of the medium. Since the essence of the 

phenomena under present study is the effect of spaclal variation of p ana c 
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(and n), the left side of (3.1) cannot be replaced by 7 iji—a fact which 

seems to have been widely disregarded. 

The following theorem is basic;  it is easily derived from (3.1) 

and (3.2 )  by obvious differentiations and reductions: 

Theorem: When the quantities p , c (and hence n) are independent of the 

time t, the transmission of acoustic energy is conservative, obeying the 

"equation of continuity". 

(3.3) il + M + il + iZ- 
8t      3x      3y      3z " 

This means that, for a given wave ty satisfying (3.1), we may 

picture the transmission of acoustic energy just as v/e do the trans- 

mission or flow of matter (mass)  in a fluid of density p = E and velocity 

components u, v, w, defined by the equations 

(3.4) pu ■ Eu - X,    pu - Ev - Y,     pw ■ Ew - Z. 

As in the case of real fluids, the lines of flow or trajectories are the 

paths in geometrical space of points (x,y,z) which are functions of time 

t (and initial positions)—the functions satisfying the differential 

equations 

dx/dt - u - X/E, dy/dt - v = Y/E, dz/dt = w = Z/E. 

At each instant t, the directions of motion will have compon- 

ents u, v, w (or, equivalently, X, Y, Z). The curves which at that 

particular instant are tangent, at each of their points, to these 
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directions are the stream-lines; they satisfy (for the fixed t in question) 

the differential equations 

dx  dy  dz 
U    V    w 

or equivalently, 

(3.5) dx  dy  dz 
X = Y !:= Z 

I 

In general, these will depend on the particular value chosen for t:  the 

stream-lines will vary with the time. 

In the important special case of steady flow in hydrodynamics, 

the velocity components u, v, w are independent of the time t; or, 

equivalently, the ratios X:Y:Z are independent of t. Then the stream- 

tines coincide with the trajectories, forming a fixed system of curves, 

one and only one through each point in space.  Furthermore, as a direct 

consequence of the equation of continuity, no matter (energy, in the 

radiation analogy) can pass through a surface made up of these fixed 

stream-lines.  Such a surface could be generated by moving a point P 

along an open curve C (not tangent to a stream line), and letting the 

unique stream-line through P sweep out a sheet-like surface. If, on the 

other hand, C were small and closed, the surface would be a tube; if S 

and S are two surfaces closing this tube (as in Figures 1.1 and l.II), the 

mass of fl 

through S 

mass of fluid (or energy) entering through S is the same as that leaving 

Since we have in Section 1 been considering the rays as guiding 

the flow or power, it is natural to suppose that, at least for broad 

classes of waves i|), the corresponding flow curves of acoustic energy are 
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fixed, corresponding to a steady flow, and that they exactly (or approxi- 

mately) coincide with a corresponding class of acoustic rays. 

Unfortunately for the simplicity of this picture, it can be 

shown mathematically that no real-valued t|>, satisfying the wave equation 

and giving rise to these stationary flow patterns, can exist—without 

the energy density increasing indefinitely. Only with complex-valued ip— 

equivalently, with pairs of real-valued waves—can we establish such a 

steady flow. In the remainder of the text, we shall consider only real- 

valued wave functions for the sake of ease of physical conceptuallsm. In 

Appendix C, the subject is re-examined with the aid of more technical 

mathematics. There the concept of "travelling wave" is examined in some 

mathematical generality. 

To pass from the wave to the ray picture through the equations 

(3.2), three steps have to be taken: First, we must consider waves <p 

which represent stationary solutions, i.e., of the form ty  = fT, where $ 

depends on spacial position only, and T on time only (normal modes). 

Second, we have to find pairs of such solutions, complying with the 

appropriate boundary conditions (equivalently, a single complex-valued 

solution). Third, after substituting a linear combination of such a 

pair of solutions into (3.2), the time-average of the resulting F must 

be calculated.  Then and only then do we obtain a steady flow, approxi- 

mated by a class of rays. 

I 

22 

Arthur D Litt' 

- ^u— 'mHyuMü'iiiiiiii ,    ,. ---■■-,.tr,i   , 
  : ■ ■   i 



wwww^mmmmm^^. '•,mif.nippiiw^.utwp^wiPWTiwrw'l'i^v^^rry^mi-" -    -^wwfrojff.^-^;'."-- "f^ 

II 

LI 

li 

lj 

! 
U 

li 

i ■ 
t > 

4.    Travelling Waves and Mean Power Flow 

The concept of travelling or progressing waves is familiar to 

electrical engineers in the study of radiation (e.g.,  from antennas) and 

of wave guides.    In such cases the signal speed c is either   constant or 

varies only at limited loci, such as boundaries between different media; 

cf.    J.A.  Stratton3.    More generally, the speed c varies continuously 

throughout the whole region of propagation.    The latter case has been 

treated when c is assumed to have special simplified forms, using special 

functions.    For more general c, mathematical treatments have been given; cf, 

Courant & Hilbert3; but with results that are local and inapplicable to 

long ranges.    Yet    it is under precisely such conditions that many of the 

most important cases of signal transmissions in the ocean take place.    To 

fill the gap in the existing treatments,  this and the next two sections 

outline the general concepts of travelling waves in a form needed for 

these applications,  leaving the more complicated mathematics to Appendix C 

Throughout this whole study we continue to postulate the inde- 

pendence of sound speed c of time t ; and likewise for p * 

The most  important acoustic disturbances i|) in underwater 

detection are periodic in the time  (or made up of extended pieces having 

this property).     By a bafic  theorem of Fourier analysis,  every such 

periodic function  (under  the usual physical assumptions of regularity) 

can be written as a convergent Fourier series: 

I (4.1) 1* -  S [A    cos(nnt) + B    sin(m2t)l   , 
n-o 

*cf., however, Tatarski.2 
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where the Fourier coefficients A and B are Independent of t but are 

functions of position (e.g., of the rectangular coordinates (x,y,z)), 

and where Q is a constant, the angular frequency of the "fundamental 

note"; its frequency is U/ZTT and its period lulQ..    Zuc/fi is the approxi- 

mate wave-length (exact only when c is constant). Similarly for the 

n'th harmonic, of angular frequency u = nfi: its frequency v ■ ü)/2TI, 

period ■ 1/v, and approximate wave-length c/v. 

The substitution of the expression (4.1) into the wave equa- 

tion, followed by formal manipulations, and reasoning familiar in 

Fourier analysis, show that the coefficients in (4.1) all satisfy 

Helmholtz' equation in its generalized form: 

2 

- 7 -(p 7 4)+— * - 0,(* « A or B , u = nfi)- 
p   •        c2 

T   ,v'   n    n'      ' 

These, multiplied by the corresponding sinusoid, are normal modes: 

Thus (4.1) expresses our periodic wave ip as a sum of normal modes whose 

frequencies are integral multiples of a fundamental frequency. 

The substitution of the expression for i|> in (4.1) into the 

equations (3.2) for the space    density and vector flux of energy pro- 

duces a sum of products of sines and cosines of various integral multi- 

ples of fit, all multiplied by factors depending on spacial position only. 

The resulting sum, even in the simplest cases, is highly complicated, 

revealing the fine details of the diffraction patterns, and all the 

surges of energy within them. 

In contrast to such complexities, if we seek what is important 

in the practical problems of hydroacoustic transmission, we shall 

naturally look for the behavior on the average. To find the time 
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averages of E and F in the present case, we have but to take the tenn- 

by-term integral over one full period 2T\/ü  of the results of the substi- 

tutions described above, and then divide the sum of integrals so obtained 

by this period. By elementary trlgometrlc integration, all the resulting 

terms are zero except those integrals that involve t through the square 

of one and the same sinusoidal term; and the value of all these is 1/2. 

After carrying out this process, two general results are 

obtained: 

1. The mean energy density E' is the sum of the mean energies 

contributed by each of the brackets in the series in (4.1); and likewise 

the total mean flux F' is the vector sum of the mean flux vectors con- 

tributed by each of these brackets. 

2. For each bracket, which we write simply as A cosut + B simot, 

the mean energy density E' and flux vector F' are given by the expressions 

(A.3) 

(4.4) 

-\[lr E'  = 4!|(|VA|2 +^-A2) + ^(|VB|2 +^B2
)]P 

F' = I (AVB - BVA) P. 

Since t has been Integrated out in the averaging process, all 

the quantities in these two formulas are independent of  the time. 

Therefore,  if we replace  (X,Y,Z)  in (3.5)  by the components  (X'.Y'.Z1) of 

F', we obtain the stationary flow picture described  in Section 3, but 

rejected as a general possibility for hydro-acoustic power—but now seen 

to be valid after the averaging.    Clearly the equation of continuity 

(3.3)  is true for the accented quantities,  since 9E'/3t = 0 and (4.4) 

shows that the divergence V-F'  = 0. 
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The concept of the travelling wave applies only to those 

special vibrations which, in addition to the periodic property expressed 

in (4.1), actually give a net transfer of energy with the passage of a full 

period of time. From what we have seen, they are composed of pairs of 

"monochromatic" waves, combined together in the form 41 - A cosut + 

B sinojt, the spacial coefficients satisfying (4.2); and with E' and F' 

given by (4.>) and (4.4). Our detailed examination will be confined to 

such "elementary" waves. When such pairs A and B of solutions of (4.2) 

exist, any other pair A', B', formed by taking independent linear com- 

binations with constant coefficients of the original pair serves 

equally well, and when the determinant of the linear transformation is 

unity, it gives the identical mean flux of energy. This flexibility 

will be used, as explained in Appendix C, to "normalize" and "orthagon- 

alize" our pair: this will have the physical consequence that, in a 

certain sense, we shall have an elementary wave producing the maximum 

energy flow for the least energy density. Such pairs shall constitute 

the travelling waves to be considered; they include all the special 

cases studied In conventional radiation theory. 

In most of the classical problems involving normal modes of 

vibration, a bounded region is assumed and the boundary conditions 

determine the solution of a given frequency uniquely; no two linearly 

independent elgenfunctions can belong to the same eigenvalue u2. Such 

cases are those of the vibrating string or elastic membrane clamped at 

its boundaries (one and two dimensional vibrations); more generally, 

cases where the(l, 2, or 3-dimensional) region is simply connected, 

and at every point on the boundary either ty  or its normal derivative or a 
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homogeneous linear combination of them Is zero.    Under such conditions, 

(4.A) shows that F' ■ 0, so there Is no displacement of power on the 

average:    we do not have travelling waves. 

There are exceptions In the above cases:    The homogeneous 

square drumhead has pairs of linearly Independent normal modes, and a 

study of the situation with the aid of (A.4) shows that there is then a 

net average circulation of energy about the center of the drumhead, 

around which the flow-lines are closed curves.    When the region of 

vibration is multiply connected,  ring-shaped for example,  the above 

situation is the rule rather than the exception.    We might call the 

vibration a circulating travelling wave in cases of this type.    They 

may have applications to wave guides, but make no evident contribution 

to long range propagation, and shall be excluded from further study here. 

In concluding this section, it may be noted that the conven- 

tional treatments usually start by assuming the existence of a complex 

valued   normal mode.    Since the real and imaginary components of 

such    a complex function constitute a pair A, 6 of real fundamental 

modes of the same frequency  (we have but to write C = A + IB),  the 

assumption in question Is valid only in certain cases and not in 

others. *       Moreover,  not only the physical pictures but the logical 

relationships of the possible assumptions   are kept clearer by remaining 

in the domain    of reals—even though many formulas are simpler In 

complex notation. 

*Some authors are clearer than others on this subject.    See references 
to Morse & Ingard1 in Appendix D for a realistic treatment. 
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5. Boundary Conditions and Power Wave-Fronts 

It has been noted above that the existence or non-existence of 

travelling waves, and their nature when they do exist, is fundamentally 

dependent on the conditions set at the boundary. This seems natural, 

since If the boundary conditions allow no energy to cross It on the 

average, there can at most be circulating travelling waves; and In a 

simply connected region, even these are exceptional (requiring coincident 

eigenvalues). Such classical boundary conditions as assigning the values 

of the function, or of a linear combination of It and Its normal deriva- 

tive, can be seen by an easy application of (4.A), to give a zero mean 

flux of power across the boundary: The mathematics then shows that the 

solution of (4.2) Is In general unique, etc., thus illustrating the facts 

concerning travelling waves.    The practical question facing us here 

Is what conditions to assume at the physical boundaries of the ocean. 

The ocean regions of relevance to the present study have three 

types of boundary: physical boundaries of the water mass Involved, I.e., 

Its surface, bottom, or emerging land masses; emission surfaces out of 

which a mean flow of energy can take place, determined by the enclosed 

source; and reception surfaces, containing the receiver Into which the 

energy enters. The problem Is indeterminate—as It should be: If, first- 

ly, we imposed boundary conditions of the classical type mentioned above 

on all the boundaries, the real $ would be uniquely determined and there 

could be no mean energy flow. If, secondly, conditions on the emission 

and reception boundaries are less definite, there would be Infinitely 

many mathematical solutions of the acoustic wave problem. They might 
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all have "physical meaning" (I.e., correspond to possible vibrations); 

but only an (Infinite) sub-set would be relevant to our study of signal 

transmission. These are the waves that we wish to single out here, 

by applying the criteria set forth here and In the next section. 

As we have seen, the lines of mean flow of energy for an ele- 

mentary travelling wave are the solution curves of the differential 

system 

(5,1) F = r=F' ?' -(X'.Y-, Z') 

where F1 Is given by (4.4). Their geometrical nature will depend. In an 

essential way, on the loci of points In space where simultaneously A = 0 

and B ■ 0. We can say that "In general" the Individual locus of A -0 on 

the one hand and B ■ 0 on the other are surfaces, and that the simultan- 

eous locus, which is their intersection, is made up of curves. Of course 

in equally general cases, one or both of these individual loci may not 

exist, or it may be made up of points or curves; furthermore, the two 

individual loci may not intersect, or may do so only at Isolated points. 

But whatever the dimensionality of the locus of the simultaneous equa- 

tions A -0, B ■ 0 it will be called the singular locus of (5.1). 

A possibility not mentioned above is that the singular locus 

have two-dimensional parts, i.e., that the Individual loci A =0 and 

B»0 have a surface In common, across which no mean power flows, by (4.4). 

Then such a surface is an Internal boundary" made up of flow curves 

(determined by (5.1) and its consequences). This theorem, which is a 

consequence of Helmholtz' equation (4.2), is proved in Appendix C, 
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where It is also proved that It creates no ambiguities In the flow 

direction (X'tY'iZ1), nor In the limiting values of 0 In (5.3), which 

differ by n as a regular point on It Is approached from the two sides. 

Starting from any elementary travelling wave (under the re- 

striction just mentioned), to any point (x,y,z) of the part of the ocean 

considered there corresponds a point (u,v) In a plane, given by the 

equations 

(5.2) u ■ A ■ A (x,y,z) ,  v - B - B (x,y,z) . 

To points on the singular locus corresponds the origin (0,0) in the uv- 

plane; to every other point, there corresponds a point (A,B) # (0,0). 

1/2 
Such a point defines a distance R - (A2 + B2)   to the origin, and, 

apart from Integral multiples of 2ir radians, an angle 0 whose sine and 

cosine are A/R and B/R (or their limits on the 2-dlmen8lonal singular loci): 

(5.3) A - R cos0 ,  B ■ R sln0 . 

Clearly these polar functions of (x,y,z) have all the regularity proper- 

ties of A and B (continuous differentiability, etc.), provided (x,y,z) is 

not on the singular locus.    On the other hand, while R Is single valued, 

0 may well be infinitely multiple valued.    This multiplicity may be 

generated when exclusion of the singular locus from the region of propa- 

gation renders the latter multiply connected.    Then the point (x,y,z) can 

move along a closed curve threading the excluded singular locus:    if, as 

may happen, the corresponding point (A,B) in the uv-plane goes around the 

origin (0, 0) e.g., once in the positive direction, the original value of 

0 Is Increased by 2ir .     Crossing an Internal boundary causes a jump of IT. 
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The formulas and relations to be examined assume a simpler form if we 

replace the polar angle 0 by its quotient S by the angular frequency .. 

writing (S used in a new sense, later to be related to the earlier one)' 

(5.4) 
0 ■ a) S . 

Then equations (5.3) are replaced by 

(5.5) 
A - R cos a)S ,  B - R sin uS 

S. like 0. is multiple valued, being determined only to integral multi- 

pies of 2W. - 1/v. the fieriod of vibration of the travelling wave. 

The substitution of the expressions (5.5) into (4.2) gives, 

after equating coefficients of sines and cosines (as Justified by the 

usual reasoning), the polar form of the Helmholtz equations: 

(5.6) VS 
i w^ !!-!? 

2  Rp 

(5.7)  7.(pR2 VS) - V2S + 7S . (27 log R + V log p ) - 0 

The corresponding substitution into (4.3) and (4.4) give 

(5.8) 

(5.9) 

E. .|iR2 (ivs^+iy + i^iviogRl2)? 

f • - f R2 VS p 

Finally,  the expression for our elementary travelling wave becomes 

(5.10) V.iry) ' (R "s  0.(8 - t), R sin 0.(8 - t|. 

(replacing -t by +t for power flow opposite to VS). 
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Equation (5.9) shows that the flow-lines defined by (5.1) are 

in the direction of the gradient of the function S, and thus are normal 

to each surface S ■ const. Moreover, (5.10) shows that this family of 

surfaces, regarded as the loci of the equation S ■ t, can be described 

as surfaces moving with increase of time, and representing loci of 

constant phase—all exactly as described in Section 1. But there is 

one difference. If we consider two near-by surfaces, S = t and 

S = t + AL, where At is small, the second will cut a length AN off the 

normal to the first surface (drawn at some given point (x,y,z) on the 

latter); and AN/At approaches, as At -> 0, the rate of motion of the 

surface of given phase, S * t (at that point). But this is easily seen 

to be the reciprocal of the gradient of S; in other words, this rate of 

motion AN/At -> l/|vs|. Now equation (5.6) shows that this is equal to 

the sound speed c only if the right-hand member of this equation can be 

neglected; otherwise the phase velocity of the travelling wave will 

depend (through the function R) on the wave and on its frequency u. 

At this point the conventional treatments regard the right- 

hand member of (5.6) as approaching zero as u increases indefinitely. 

As a deduction from (5.6) and what preceded it, this is incorrect, 

since the other quantities, S and R, also depend on w (otherwise they 

could not satisfy Helmholtz' equation). It is perfectly possible for 

V2R/R to become infinite as OJ increases, in such a way that the right 

hand member of (5.6) does not approach zero. In fact, as we shall see 

in Appendix D, counter-examples to the approach to zero can be given. 

More logically, we could select, from the infinitude of 

waves satisfying the boundary conditions at the physical and internal 
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boundaries, a sub-infinitude for which 

(5.11) lim 7'(p7R)/Rpu2 » 0. 

I 

Many authors derive important local consequences from this 

assumption (cf. Hadamard3, "Lectures ..." or Courant & Hilbert3, Vol. 

II). A general feature of certain methods is to start with a solution 

S of the eikonal equation, the limiting form of (5.6) under assumption 

(5.11); and then to obtain special solutions of (3.1), or of (4.2) or its 

equivalents (5.6) and (5.7), by methods of successive approximations or 

in formal power series in l/co. The fact that only local results can be 

obtained in the general cases of variable c needed In long range propa- 

gation results from the nature of the multiple-valuedness of S , whose 

branch loci are surfaces in space or curves in the plane—as we have 

noted in Section 2 with regard to caustics. See Appendix D. 

It is possible to select a sub-inflnltude of travelling waves, 

parameterized by the frequency u, in such a way that the power flow lines 

approach an appropriate subset of rays: such a sub-inflnltude will be 

defined in Section 6, and will be termed a "Fermat family" of travelling 

waves, since, as will be shown, they are the ones In which the flow of 

power is governed at high frequencies by the usual application of Fermat's 

Principle. The fact that this is not automatically the case—that many 

simple and physically natural families of travelling waves exist in which 

the power flow curves are not remotely represented by rays even as or*»— 

is shown by the classical examples in Appendix D. 
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The complex notation. Before leaving the present subject, we 

re-cast some of our earlier expressions In the simpler and more usual 

complex notation—which we have deferred up to now, in order to make the 

physics and the logic more visible. As noted at the close of Section 4, 

we may write for our travelling wave pair, A,B, the complex function 

(J)=OA+lB*Re  , which of course satisfies Helmholtz' equation. The 

corresponding complex wave i|), which satisfies D'Alembert's wave equation, 

±U)t 
is given by ^(Je      ,  the + for a retreating,  the - for an advancing wave 

(in the direction of VS).    Thus  (5.10) is replaced by 

(5.12) * = ReMS+t) 

while the density and flux of energy and their means are given as follows, 

the bar denoting the complex conjugate: 

E = (V^V^+ n20t^t)p/2, 

F = -(i|/t7?+ ft^)p/2 

(5.13) 

E'- (V(|i'V^ + n2u)2^)/p/4, 

?'= (cFv^i - <(iV$)pu)/41 

Note; A Common Fallacy. In spite of valid results derived by some 
authors from (5.11), in many elementary presentations of the subject, 
this equation—which is obviously a necessary condition for the validity 
of the ray approximation—is assumed to be sufficient. That this point 
of view cannot be held is shown by a counter-example in Appendix D, which 
gives a family of travelling waves satisfying (5.11) but not leading to 
the ray approximation. This requires us to give the detailed discussion 
of Section 6. 
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6.  Asymptotic and Fermat Families of Travelling Waves 

Statements concerning the behavior of travelling waves at high 

frequencies, such as the assumption that "at high frequencies the mean 

flow of power Is guided by the rays", must, If they are to be given 

precise meaning and mathematical proof, Imply that an Infinite set of 

waves Is under discussion—not Individual ones—and that their limiting 

properties are being considered as their frequencies increase without 

limit. This means that we have to deal with a family {$ } of travelling 

waves, each individual member $ of which is given by (5.10), or more 
U) 

conveniently, by (5.12). We wish to explore the conditions under which, 

as u)-»-00, the lines of mean power flow F' (the " A-ünes" as we shall 

term them) approach the appropriate rays (the " L-lines") "associated" 

with them by mutual tangency at a given fixed point: the least that 

it would imply is that the unique A- line through each fixed (non- 

specialized) point P have a tangent whose direction vector (the unit 

vector F' / IF' |) approaches a limit direction as w -»•00. 

The many possibilities presented by actual w-parameter families 

of travelling waves are Illustrated by the six examples given in Appendix 

D, each of which is an elementary and classical case having a simple 

physical meaning. The first four examples deal with homogenious media 

(constant n,p) so that the rays are all straight lines. The fifth is 

among the earliest studied problems of reflection and refraction across 

a plane boundary between media of different but constant (r,p). 
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The first example Is the square membrane clamped at its edges. 

There are no Internal boundaries (curves where 4>*0)',  but, for each u, a 

set of singular loci (points) around which the A-lines wind; as W-K» 

the singular points increase in number and density throughout the square: 

every one of its points is either a singular point or the limit of such 

points as w-»■<»; and the A-lines have their curvatures increasing without 

limit. Obviously no ray treatment is possible in this case. 

The fifth example is the classical case of reflection and re- 

fraction of plane waves at a plane interface: no internal boundries, but 

a singular locus ^ » 0 consisting of parallel equl-spaced lines on the 

interface, crowding Indefinitely as tu-»-»; no limiting direction of A-lines. 

The second example is again a membrane, but clamped about its 

circular boundary. The center is the sole singular point for all fre- 

quencies; but the interior boundaries (curves where $-0)  are concentric 

circles, spaced according to the roots of Bessel functions, and with a 

spacing approaching zero as u ■*«>'    The mean power flow or A lines are 

these circles and others concentric with them. Therefore our necessary 

condition—the approach of limits in direction (and position) of all A- 

lines—is satisfied. In spite of this, these lines have nothing to do 

with rays, which are all straight lines. This should dispel the glib 

generality that at high enough frequencies, the rays guide the mean (or 

other) flow of power! 
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The third and fourth examples are of radiation emitted from 

a point, In a membrane or In space, respectively, and thought of as 

extending without limit. In these examples both the A-and the Wines 

are radial straight lines through the point radiator: In every associated 

pair A «= L at all frequencies. 

Appendix D follows these familiar cases with a counter-example to the 

notion that (5.11) la sufficient for the applicability of rays as u-»»: a family 

of plane waves satisfying (5.11) but having no limiting direction. Clearly 

more than (5.11) must be assumed. We start by giving the preliminary 

P. DEFINITION I. By an asymptotic family {(ji } of travelling waves 

shall be meant one having the following property: Given any point P 

in the medium, not belonging to an exceptional figure r which is inde- 

pendent of u and of dimension at least 2 lower than the medium, there 

exists a neighborhood N of P , within which the directions of all A- 

lines approach limits, in a "regular and smooth" manner. More precisely, 

such that if P is any point fixed in N , the direction vector tangent at 

P to the unique A—line through this point (for sufficiently large u) will 

approach a limiting vector direction as w ■+», Further, this approach 

will also hold for the space derivatives of this field of directions in 

N of orders up to and including the fourth. Finally, the convergence 

is in all cases uniform on N . 
—■—■—   o 

This somewhat long-winded definition can be shortened and made 

more elegant by assuming the analyticity of all (t> —as we may, in view 
U) 

of the considerations cited in Appendix C. Then all that is needed is 

the requirement of uniform approach to limits of the directions themselves 

I 
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(I.e., of the three analytic functions contained In the symbol F' /IF* 1) 

on some fixed ö-dlmenslonal neighborhood N of P : (x ,y ,z ): the uniform 

convergence of their derivatives of all orders automatically tollows. 

We may add that In all examples {given In terms of special functions—as 

those of Appendix D—this situation always occurs when the A-llnes do 

approach limits (as In the last three examples cited). 

Consider the field of limiting directions of the A-llnes: by 

the assumptions of differentiability and uniformity of approach, It Is 

a "smooth" (I.e., 4th order dlfferentlable—usually analytic) field, 

except on P. A first application of the classical theory of ordinary 

differential equations shows that through each point P not on T  passes 

one and only one Integral curve A (I.e., tangent at each point to 

the direction of the field at that point). A second application of the 

general theory shows that the A-curve through any P (not on r) approaches 

the Integral curve A^ through P of the limiting field, as u-*■«', and that 

this approach Is uniform (through the fourth order of differentiation at 

least) In any bounded region, however large, not containing points on r. 

[A most convenient form of the general theorems used here Is In G.D. 

Blrkhoff's "Dynamical Systems", Chapter II]. 

We wish to show that the limiting curves A In the asymptotic 

family {$ }  are normal to a family of surfaces, Z(x,y,z) ■ constant; 

I.e., that a function Z  exists, "smooth" to at least the 4th order 

defined (but usually multiple-valued) except on T.    Here we apply a 

theorem of advanced calculus* that states that a field of directions, 

described, e.g., by a unit vector UaU(x,y,z) (whose components have the 

present order of smoothness) Is a field of normals to a family of 

♦References In Appendix D. 
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surfaces of the above type If and only if the field Is perpendicular 

to its curl; i.e., U«7xU - 0. This property will be established, 

in view of the way we have assumed the field of directions U * F' /IF' I 

converges to U, once it has been proved for the latter. To do this, we 

first consider any point P at which ♦ ?< 0 and take a neighborhood N o (0 0 o 

throughout which ^ j* 0: in N the functions 0 and S are defined, e.g. 

by (5.3) and (5.4); and F*  Is normal to the surface S ■ constant, (5.9). 

Hence, this vector field, and therefore u « F'/lF'l, is perpendicular to 

its curl. Now, as shown in Appendix C, even on internal boundaries the 

directions N are defined, and join smoothly onto those defined at other 

points. Hence the property of being perpendicular to its curl is extended 

by continuity to the internal boundaries: it therefore holds for the 

limiting, vector field U at every point not on r, whose dimension is, 

according to the above definition, at least two units lower than that of 

the medium. This suffices to show that the property of the A-lines of 

being normal to a family of surfaces (S = constant, one and only one 

through each point) is transmitted to their limits, the L-lines. 

It is appropriate to emphasize the purely geometrical nature 

of the results established above for asymptotic families: from their 

definition in terras of limiting directions at each point (not on r) we 

have concluded that the A -line through each point (not on r) approaches 

a limit curve A^ through that point; and further, that the very special 

property of orthogonality to each of a family of surfaces—one and only 

one of which passes through each given point not on r—applies also to 

the limit curves. While the proof outlined above is based on analytic 
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formulas, the result may be regarded as geometrically evident. So also 

may be the fact that the unique surface (E = const.) through any given 

P (not on D normal to the limiting A^-lines is actually the limit, as 

üi■*■«>,  of the surfaces (S • const., etc.) through P. An outline of a 

deeper discussion of these matters will be given in Appendix D. 

It Is also appropriate to note that these geometrical relations 

(or their analytical proofs) do not automatically establish the fact that 

the functions S+l  as w-^«o. This is because a familv of surfaces, such as 

I ■ const., does not determine the function Z  that may be used to represent 

it: thus E3 could serve to represent the above family as well as Z; and, 

in fact, any such family can always be represented in infinitely many 

different ways; this however would imply that the new function is a 

function of the first—of the form f(z:). Since obviously 7f (Z)/|7f (Z) | = 

71/|71|, the normals define the same direction fields. This state of 

affairs is illustrated by the fact that in the second example of Appendix 

D, S - p6/u (6 ■ tan 1 y/x, the polar coordinate angle, while the integer 

p is independent of w). Hence S -»-O, whereas I j 0,  and can be taken, 

e.g., as 6 or p6. 

As noted before, in view of this same example, the limiting 

A through a point P not on T  may or may not be the ray L associated with 

it by mutual tangency at P: to justify any application of the ray method, 

conditions that A ■ L must be established. An obvious criterion is 
CD 

that the function Z in  the representation (I ■ const.) of the family of 

surfaces normal to the A^-lines may be so chosen as to satisfy the 

eikonal equation |7E|2 = n2. Since, as we have observed, the whole 
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class f(Z) represent this same family of surfaces—and If one satisfies 

the elkonal the others In general will not—the application of this 

criterion Is somewhat Impracticable. Another criterion reposes on the 

Intrinsic geometrical shape of the A-and Ir lines associated at the point 

P: their curvature and (in the case of space curves) their torsion. 

Appendix D, after recalling the definitions of these fundamental concepts 

(and giving references), establishes formulas for them in the cases of 

associated A-and Ir lines. Now clearly if these two curves are to coalesce 

as ü)->-<
D
, the curvature and the torsion of these two curves must differ by 

an amount approaching zero. The formulas then show that our asymptotic 

family {$  } must be such that not only must (5.11) be valid in the sense 

of uniform convergence in some neighborhood N of each point P (not on r), 

but the derivatives of the left-hand member of (5.11) up to the second 

order must converge to zero in the same way. 

(5H)    The augmented version of (5.11) italicized above shall be 

referred to as (5H). So far it has been established only as a necessary 

condition for the ray treatment of power flow in an asymptotic family. 

We now have the following 

THEOREM I. Condition (5H) is not only necessary but sufficient 

for the validity of the ray treatment of power flow in an asymptotic 

family of travelling waves {$  } at  high frequencies. 

Equation (5.6) combined with (5H) shows that |7S | -»-n as ü)-»-«. 

On the other hand, the definition of asymptotic families states that the 

direction vector U ■ 7S /l7S I approaches the limit U . Therefore the 
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product 7S ■ |7S |U approaches the product of the limits, nU . Finally, 

since S » JvS «dr + const, (r is the position vector), the integration 

being along any fixed regular path, it follows (by the uniformity of 

the convergence of the integrand) that, as 0)-»-°°, S approaches a limit 

nil «dr + const, and that \7S = nU , so that, on taking Z » S , 
«0 oo     oo' ' ^       oo' 

we can satisfy the eikonal equation, since |7S |2 - n2. From this point, 

the elementary general theory (if Osgood, Chapter XIV.23)'* shows that the 

limits of the A-lines are in fact a family of rays. All this assumes 

that we are avoiding points of r. We pass to the next preliminary 

P. DEFINITION II. By a Fermat family of travelling waves shall 

be meant an asymptotic family {$  }  satisfying the condition (5H)—or, 

equivalently, the condition that S = lim S exists and satisfies the 

eikonal equation. 

Here we may observe that the reason for introducing S = üJG in 

Section 5 instead of the apparently more natural 0 is this simpler behavior 

of S in Fermat families. In the second example in Appendix D—the 

asymptotic but not Fermat family—it is 0 and not S that approached the 

required limit. 

The rest of the present study will be based on the notion of 

Fermat families—a concept to which we have been led in our attempt to 

justify the ordinary ray treatment. But certain questions of crucial 

importance introduce themselves: first, can we satisfy the physically 

realistic boundary conditions Imposed on the problems of hydro-acoustic 

propagation by a Fermat family, or do we have to use linear combinations 
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of such families? and second, In the latter case, Is such a combination 

of Fermat families also a Fermat family? And other Issues can be raised. 

The answer to the first question will depend on the precise 

nature of the boundary conditions.  If they are of the classical 

deterministic type, they cannot In anv but the simplest cases (e.g., 

in the third and fourth examples of Appendix D) be satisfied by a Fermat 

family. Even as simple a case as the fifth example, of reflection and 

refraction of plane waves at a plane boundary—with a resulting non- 

asymptotic family of travelling waves—shows the impossibility mentioned. 

The same examples, which combines Fermat families linearly. I.e., by the 

"principle of superposition" shows that the second question has a negative 

answer. In fact we have the following: 

THEOREM II.  If U } and U' } are two linearly Independent 

asymptotic families of travelling waves, their combination by the principle 

of superposition, i.e., {a<Ji + b^1 }, is never an asymptotic family (unless 

a - 0 or b = 0 or they tend to coalescence in the limit). 

The proof is given by a direct calculation based on the 

expressions (5.12) and (5.13). 

Of course the classical boundary conditions and the combination 

by the principle of superposition would also automatically prove that 

multi-path transmission is impossible. Since we know experimentally 

that it does occur and is very important, we are driven to the con- 

clusion that boundary conditions formulated as implied above do not 

represent the physical facts in such cases: that we have used the "wrong 
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model".    The following theorem shows one way out of this reflection problem: 

THEOREM III.    If in the combination of the two asymptotic 

families in Theorem II, we insert a "relative phase factor", i.e., 

replace b by b e     (where 6 is real),  then calculate the components 

of   F'  for this linear combination by formulas (5.13) and lastly take 

the mean of the result over a full period (i.e., integrate with respect 

to ö between 0 and 2IT/U) and divide the result by this period), it is 

found that the components of the    flux vector -*■   the linear combinations, 

by the real factors  Ia|2 and  |b|2, of those of    the original wave families. 

By letting u-»•<»,  this linear combination of these important 

physical quantities approaches the corresponding combination of their 

limits:  indirectly,  then, we can apply the asymptotic or the Fermat 

families—and thus restore the basis for the validity of ray methods. 

What is the physical basis of the phase averaging of Theortvn ..II" 

One answer (applicable to specular reflection) would be that the actu*". 

position of the reflecting plane is indeterminate within the limits of 

very short wave lengths, and thus produces the incoherence assumed,    "i; 

a more general answer is to be found in the medium itself.    These matters, 

will be examined further in Sections 10 and 11—most conveniently after 

the Hamiltonian picture of ray phenomena has been introduced, in Sections ? v 

This extension of power flux to phase space will be based in 

Sections 10 and 11 on the geometrical ideas just developed, for the sake 

of intuitive simplicity.    More sophisticated methods would do the corresponding 

task for the broadened conceptions to which we now turn. 
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Broadening of the definitions.    It is necessary to broaden the 

two preliminary Definitions I (asymptotic families) and II  (Fermat families), 

to apply to the case of multi-path transmission, as when two or more rays 

pass through the points of emission and reception, and when this does not 

Involve the type of reflection at a surface of discontinuity noted above, 

but continuous refractive bending.    Then the ray directions throughout ex- 

tensive volumes of the medium will not be unique: at any point P there will 

be as many different directions as there are rays joining it with the emitter. 

Since, on the other hand, for each fixed u, however large, the energy flow 

directions given by (5.13) at P are uniquely determined (when P is not on 

the 2-lower dimensional F), it follows that the latter single direction 

at P could not possibly approach the several ray directions through this 

point: no asymptotic family according to our preliminary definition could 

exist at such ranges from the emitter as allow multi-path transmission. 

In physical terms, such transmission will produce a complicated Interfer- 

ence patterm, varying rapidly with increasing u, and preventing the approach 

to any limit. 

This interference behavior results, of course, from the time 

differences of arrival at P of an emitted phase as it takes the several 

paths: the resultant at P will depend strongly on the frequency u.    Now 

this fact suggests the way out of our difficulties: carry the whole picture 

from that in the space occupied by the medium (xyz-space) to a picture in 

the "space-time" of the variables x, y, z, t.    For in all cases of radiant 

energy in classical physics, the path ("world line") connecting the point 

("event")   (x , y , z , t ) with (x, y, z, t) is unique (with rare exceptions 
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which cause no difficulties).    In other words, the times taken for a 

phase to travel from (x , y , z ) to (x, y, z) are different for the 

different rays connecting these points, so that t - t   will determine 

the ray in question. 

This transference to space-time requires us to return to the 

time dependent elementary travelling waves (5.12) ijt - Re , and the 

corresponding E and F given by the first two equations in (5.13).    Then 

in rephrasing Definition I we sould have to consider limits at a fixed 

point-and-time ("event")  (x, y, z, t) of these and related quantities 

as tu ■*■<».    We also have to consider, not simply the 3-vector F but the 

"4-vector" (F,E).    Accordingly, we broaden the earlier definitions as 

follows: 

DEFINITION I.    An asymptotic family {i|i  } of elementary time- 

dependent travelling waves is one which in a neighborhood of each point- 

and-epoch (x, y, z, t) has its 4-vecotr (F,E) approaching a limiting 

4-dlrection - i.e., the ratios of its four components appraoch limits. 

Here it is understood that points on a 2-lower dimensional   V 

may be excepted; and that the convergence is uniform in the neighborhood, 

extended slightly to complex values of the variables. 

In order co reach a corresponding definition of the Fermat 

■+ 
family. It is useful to introduce the velocity vector V of flow of energy, 

regarded as located in the medium.    Clearly V - F/E, and with an asymptotic 

family, this approaches a limit as a> -"» (with the usual exclusions). 

Locally, (5.12) and (5.13) show that (5.8) and (5.9) apply to F and E, 

*Belng, as explained in Appendix G, confined to 2-dimen8ional manifolds 
(the 1-dimensional caustics in the (x,y,t) case). 
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but with the second members multiplied by 2.    The length V of V is 

V - F/E  (F s length of F).    Our equations, after taking reciprocals 

involving 1/V, lead to the following: 

(16.1) ™\-$ 2 " w2 
V c       V J 

+ ^ |viogR|2 0. 

The first conclusion is that V 4 c, since otherwise the second 

parenthesis would be positive, and since the other two are non-negative, 

the sum could not vanish.    The second conclusion is that V, which depends 

on ü), will approach c if and only if    |7 log Rj/w -»-0.    This is again based 

on the non-negativeness of the first and second parenthesis.    Turning 

to (5.6) we see that the above approach will occur if and only if  (5.11) 

is valid - and with it, the consequence that  | 7 s|  - 1/c -^0.    These 

results, as noted earlier in this section, establish the approach to 

coincidence of the A-line through a given (x, y, z, t) to the L-line 

tangent to it at that point, as UJ-»-00.    Thus our definitive: 

DEFINITION II.    A Fermat family is an asymptotic family in 

which the limiting 4-directions  (ratios of the four components of 

(F,E))  are such that the energy speed V is the phase speed c. 

Our previous examples show that many families (^  } can fail 

to be asymptotic; that many asymptotic families exist which are not 

Fermat;  and that Fermat families exist.    Furthermore, Theorems I and II 

continue to be valid with the present broadened definitions of these 

terms. 
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It remains to show that under the physical conditions of Impor- 

tance to long range propagation, with smoothly varying but quite general 

physical functions (p,c) Fermat Families exist.    This task will be carried 

out In Appendix D; but It Is appropriate to close the present section 

with three remarks. 

First, the literature In which mathematically correct valida- 

tions of ray treatments on the basis of the wave equation, whlln very 

voluminous, does not appear to cover the case of multi-path transmission 

of acoustic energy, with caustics causing complicated multlple-valuedness 

3 
of the phase function.    Thus In Courant & Hilbert  , Vol.  II, Chap. VI, 

Sec. 5, the equations (3) and (20) contain such functions as 'V (our S) 

which at ranges of interest to us become multiple-valued.    See also the 

references given In that pace. 

Second, the method chat we shall use In Appendix G Is based on 

the elementary solution first established In sufficient generality by 
3 

J. Hadamard    In 1923 (Lectures on Caucny's Problem, etc.)    In our case 

of time-Independent coefficients, slowly varying in range, this solution 

simplifies and can be extended to the long ranges required.    Furthermore, 

our assumptions of analytic data allow great simplifications: by contour 

integration In the complex domain of the Initial time of a harmonic factor 

times the elementary solution, we obtain our Fermat families of emitted 

travelling waves without the need of Hadamard's complicated "finite part" 

of a divergent Integral: or the even greater complications of the "Improper 

functions"  (L.  Schwartz' "Distributions",  Including In particular Dlrac's 

Delta Function) which are comnon methods In the present mathematical 
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theory, used largely to avoid assumptions of analytlclty and use of 

complex Independent variables: to economize assumptions for mathematical 

form rather than physical necessity. 

Third, our proof In Appendix D requires a physically unimportant 

but mathematically crucial broadening of the notion of limit In our above 

Definitions 1 and II: Instead of "strong limits" (actual approach at each 

point (x,y,z,t)— with local uniformity) we must use "weak limits": the 

approach of Integrals of our functions over arbitrarily small and given 

regions (not changing with w). After all. It Is not the density F 

Itself, but the total flux of energy It produces across a small but 

finite piece of surface during a small finite Interval of time that Is 

physically meaningful and measurable. Similarly for the Integral of E 

over a small volume at a given Instant (epoch). 
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7. A Mechanical Analogue Model of Acoustic Rays 

Having established the close coincidence of rays with the 

lines of power flow at high frequency, our next step is to establish a 

better way of applying rays to transmission loss problems than the 

usual one, outlined in Sections 1 and 2. For this purpose it is neces- 

sary to borrow from the classical theory of dynamical systems certain 

mathematical tools. The exact and general approach will be set forth 

in the succeeding sections. The present section is intended to intro- 

duce the ray versus particle-trajectory ideas in a simple form that can 

be visualized. A still more elementary account of the particle-wave 

correspondence (in very special cases) is given in "Physics" (Physical 

Science Study Committee, D.C. Heath & Company, Boston I960)'. Chapter 

15 (The Particle Model of Light) studies surface refraction by est.-- 

tially the model used in this section. 

One purpose of the mechanical model described herein is to 

aid in bringing mechanical intuition to bear on the behavior of sound 

propagation by rays in a vertical plane. Such propagation occurs when 

the sound speed c depends not only on depth z but also on horizontal 

distance x along the direction of propagation—but not on distance 

across it; thus c ■ c(x,z). The special case when the acoustic profile 

is the same at all points, is Included in the model; this case, which 

is studied in Appendix B, is very simple, and the rays are easy to 

visualize, being periodic (see Figure B,l). As shown in Appendix B, 

they are given mathematically by explicitly solving their differential 

equations by quadratures. The construction and operation of the model 
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will be described here, Its physical justification being deferred to 

Section 8. 

The construction and validity of the model are based on two 

facts. Firstly, as will be shown In Section 8, the equations determin- 

ing the acoustic rays are Identical with those governing certain motions 

of a particle of unit mass under the sole action of a field of force 

derived from a potential V - - C2/2c2 ; here the constant of proportion- 

ality C, of dimensions of velocity squared, Is chosen arbitrarily and 

determines the scale of the construction.  Secondly, In the two- 

dimensional case of rays In the xz - plane, the motion under the action 

of the potential V ■ V(x,z) Is equivalent (to quantities of higher 

order) to the motion of a unit particle constrained to lie on an appro- 

priately defined smooth surface 2J and acted on only by gravity and the 

normal reaclton of ^3 • 

The construction of ^ Is as follows: First, turn the xz - 

plane from Its originally vertical position to a horizontal one; second, 

Introduce a third axis, y, directed downward; finally, construct ^ as 

the locus of the equation 

y - - V/g - C2/2c2a 

where g is the constant of gravity; thus V - -gy,  the gravitational 

potential. 

If, then,  the particle is started at any point P   of  ^   in 

any direction (tangent to ^   ) and with the speed v   ■ C/c 

(c    =• c at P ), its path will (to quantities of higher order in the 
0 0" 

vertical component of its velocity) trace out the ray tangent to the 

1 same initial direction.    Figure 7.1 Illustrates the situation In the case 
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PATH OF 
PARTICLE 

FIGURE 7.1 CASE C> C(Z):£ CYLINDRICAL 

PATH OF 
PARTICLE 

FIGURE 7-S CASE C*C(X,Z). WITH DUCT DOUBLING 
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1 
of c B c(z) and the motion gives periodic rays; Figure 7.1Jshows the 

more general case c •» c (x,z). 

The above choice of initial speed v = v makes the total r o 

energy E ■ v2/2 + V - 0  initially—and hence all along the path—a 

requirement that will become clear in Section 8.    Therefore, along each 

path, v^ ■ 2gy, so that v has its minimum at the highest point reached 

on^jby the ray.    The equation defining X* shows that it is always well 

below the xz-plane.    Hence v is never zero.    The only exceptions may be 

at the boundaries of the medium:    If we wish our model to illustrate 

bottom absorption, we note that the bottom is a vertical plane or 

cylindrical surface in Figures 7] and 71 on which z has relatively large 

velues.    Then we must think of it as made out of an absorbing sticky 

putty.    If we wish to represent surface reflection, we must bound2J by 

a plane parallel to the xy-plane with a relatively small constant z, 

and assume it is made of a perfectly elastic material:    at Impact, the 

velocity vector will suffer a discontinuity, but without resulting 

change In speed. 

A bundle of power-transmitting rays can be modelled as a set 

of many mutually non-interfering particles,  initially projected from a 

point (the "emitter").    Their rarefactions and condensations (at 

caustics) as well as their splitting into ducts  (Figure T-D"}can be 

visualized. 

While the pictures of the model shown in Figures 7-T and 7-0 are 

schematic and give a qualitative idea of the process of rays traced by 

the moving particle, a further step seems desirable, namely obtaining 

actual dimensions in representative cases.    For this purpose, we must 

first fix our units and next decide on a convenient value of the general 

scale factor C.    We shall use the MKS system (meter-kilogram-second). 
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On the basis of extensive oceanographlc observations, the sound speed 

In most cases lies In the Interval between 1475 M/S and 1325 M/S, only 

very rarely attaining either extreme. We shall, accordingly, measure c 

about the central value cj ■ 1500 M/S, setting c - cj + u: this 

"algebraic excess" speed u lies between * 25 M/S. 

As for C, a convenient scale for our model is obtained in two 

steps: First, we set C ■ cj / 2gh , where h is a length—the linear 

scale factor (it Is seen that this gives C the dimensions of a velocity 

squared, as required earlier). Next, after substituting this expression 

into the equation of 2j, we select that length h which gives the model a 

convenient size. We have 

■' i 

2gc' 

h f 1 - ^ + 

\     cl 

the dots In the binomial expansion denoting terms of higher order in the 

small quantity u/ci  . This ratio lies between * 25/1500 - * 1/60, so 

that the second term in equation for ^ is between * 1/30. 

To arrive at a useful choice of the scale constant h, we must 

realize that the deep channel propagation of interest here requires an 

ocean depth between two and three miles at least: let us take 3 kilo- 

meters as the length of the Interval of values of z in our model 

(0 < z < 3 x 103 M). Further, the usual convergence zone distance, of 

the order of thirty miles (about 50 kilometers) requires the model to be 

about 5 x 105 M long, so that some ten ray periods occur. Clearly, such 
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a 3 x 103 M by 5 x 105 M area can be viewed only from the altitude of an 

airplane. If the hills and valleys of the surface ^ are to be visible 

from such a distance, they must be of the order of hundreds of meters. 

Let us accordingly take h - lO^M. Then the xz-plane In our figures Is lO^M 

above the distance of the median horizontal plane of 22 • which lies 

between parallel planes 333 1/3 M above and below the median plane. 

Such changes In altitude y of ^could easily be seen from our airplane, 

and the motion of the particles discerned. If It were night and they 

were luminous, they would leave a path on a fixed camera, which would 

thus perform a mechanical analogue ray-tracing. 

To get the model to laboratory size, we can, without changing 

the mechanics of the model, scale It down by a factor of lO4. Then It 

becomes 30 cm wide, 50M long (or less. If one does not require ten con- 

vergence zones), and the median plane 100 cm deep, the surf ace 2^ lying 

between two planes 3.33 cm above and below the median. To Indicate 

that the median Is so much lower than the xz-plane, we have In Figures 

7.1 and 7.II joined these planes with dashed lines, indicating that their 

lengths are out of scale. 

I 
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8.    Rays. Particle Dynamicsf and Hamlltonlan Phase Space 

The acoustic rays being, by Fermat's Principle, the "paths of 

least time" between two points, are the solutions a of certain system 

ordinary differential equations.   These equations result from the appli- 

cation of the elements of the calculus of variations  (Euler-Lagrange 

equations) to this time-minimizing problem.    From the mathematics of 

these ray differential equations it follows that,  through any given 

point and in any given direction, there passes one and only one ray. 

On the other hand,  through two points, there are more possibilities: 

there may be no ray Joining them (shadow zones); Just one ray; or 

several (multi-path transmission).    These facts and their analytic 

formulation are given in Appendix A, and developed in more detail in a 

special case in Appendix B.    There, as everywhere elaa in the present 

study, the Independence of sound speed on time is abHumed. 

It has been known since the early developments of dynamical 

theory that the rays in a refractive medium of generally variable index 

of refraction n ■ 1/c  (i.e., heterogenlous but Isotropie), and a certain 

class of trajectories of a particle of unit mass, subjected solely to 

forces deriving from a potential field V ■ - n2/2 ■ —i/ic2, are 

identical.    There are two provisos for this ray-particle trajectory 

equivalence: 

First,  the time t in Fermat's Principle must be replaced in 

the particle's motion by a different variable, which we shall call the 

"pseudo-time" and denote by T  .    Their relationship is expressed as 

follows (s denoting arc length): 
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(8.1) ds/dt ;  ds/dt = 1/c » n ;  dx = c2 dt . 

Along each given path or ray, these equations determine, by a simple 

Integral, any two of the quantities (s, t, x) in terms of the third. 

The fact that the greater the sound speed c ■ ds/dt, the smaller the 

particle speed ds/di - n, so that the latter moves faster in a "denser" 

medium (higher index n) was most troubling to the Newton-Huygens 

"corpuscle" versus "wave" arguments about the nature of light. On 

examining Figures 7*1 and 7*D (Section 7), we see that the particle 

moves faster (more kinetic energy) the lower its position on the surface 

X, (less potential energy) i.e., the lower its sound speed). 

Second, not all motions of the particxc trace out rays—only 

those having a certain given value of the total energy. With the arbi- 

trary additive constant in the potential energy chosen as we have done 

above, the appropriate value f — the total energy must be zero. We 

recall that this was accomplished by the choice of initial speed of the 

particle in the model in Section 7. This second condition for equiva- 

lence of rays and particle paths may seem less surprising than the one 

of the preceding paragraph, since from a given initial point each 

initial velocity vector (with 3 independent components) determines one 

and only one particle trajectory, whereas the ray through that point is 

determined by its direction (2 independent parameters, e.g. direction 

angles). There are therefore 6 variables needed to specify a "state of 

motion" or "phase" (position & velocity; equivalently, position & 

momentum) of the particle, in contrast with 5 variables for the 
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position & direction phase for the rays. As we shall see, this lower 

dimensional space Is the locus of the equation setting the total energy 

equal to zero. 

The proof of the equivalence under the two hypotheses just 

stated Is In three steps: the first Is to write down the differential 

equations resulting from the application of Newton's laws of motion to 

the particle. The second step Is to apply our first assumption, chang- 

ing the Independent variable T In the equations of motion to t by the 

use of (8.1); and compare the result with the ray differential equa- 

tions, (A.2) of Appendix A. 

in rectangular coordinates (x,y,z) the equations of motion of 

the unit particle are 

(8.2) d^    3V  a_ni 
dT2" " ~ 3x " 3x 2 '  '" 

the dots standing for the corresponding equations In y and z. Along 

any given particle trajectory, (8.1) gives the following equations for 

change of variable of differentiation from i to t: 

d/dr - d/c2 dt - rfd/dt ; 

hence 

^■^(^)- 

After Inserting this Into  (8.2) an obvious manipulation yields the 

first ray equation (A.2), as desired; etc. 
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The last step brings Into play our second assumption, which can 

be expressed either by the special choice of the additive constant in the 

potential energy term V, implied by setting V - n2/2, or by requiring 

that the total energy along the sub-class of paths we are considering be 

zero: in view of (8.1), either assumptioi is equivalent to the other. 

In the language of classical mechanics, we have derived 

Maupertuls' principle of least action from Newton's equations for our 

particle, and have then identified the "action" with the "time" t along 

each ray, so that Fermat's principle of least time is obtained. Mathe- 

matically, we have merely re-written differential equations in a differ- 

ent form—and re-verbalized them, so that one physical picture is re- 

placed by another. The utility of this process is that it guides us In 

applying a highly developed branch of mathematics (modern dynamics) to 

our difficult problems of long-range transmission in a heterogenious 

medium, affected by random factors. Our first step is to write the 

differential equations of our problem in Hamilton's canonical form. 

In addition to the coordinates x,y,z of our particle, we intro- 

duce three more variables, the components of Its momentum, p , p , p . 
A      y      z 

Then we Introduce the following function H of these six variables,  the 

Hamlltonlan of our dynamical system 

(8.3) 
(' 

H - 1/2 (p 2 + p 2 + p 2 
I rx ry rz 4 

Using the symbole _3_ to denote partial differentiation with respect to the 

following set of seven Independent variables (i.e., holding all but one 

fixed): 

T, x, y,  z, px, p , pz , 
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and the symbol d to denote differentiation along a given trajectory (so 

that only T is varied arbitrarily, the other variables being functions 

of it, as explained below), Hamilton's canonical equations for our dynam- 

ical problem are the following 

(8.4) 

dx/dx - || , dy/dx - |j- . dz/dx - |S- 
rx ry        rz 

dpx/dT - - || , dpy/dT - - 1^ , dPz/dT - - |f 

The first three show that the momentum vector is the velocity 

vector (with respect to the pseudo-time T) of our unit particle, since 

they give dx/dx B p , etc. The last three equations become, on replacing 

the momenta by these values, identical with the Newtonian equations of 

motion. Therefore (8.A) and (8.2) are identical and we can use either 

system to determine the motions of the particle. What about the total 

energy? This is evidently equal to H . If any trajectory is given 

(I.e., any set of six functions (x p ) of T satisfying (8.4)), the 
z 

rate of change of H along it is found by the rules of partial differen- 

tiation to be 

dH  3H dx .    . 3H dpx . 
dx ' 8x dt  ••• + 3p dx + ••• rx 

which is seen at once from (8.4) to De zero. (Note that this would not 

have been true if c contained the time). Hence H - h, a constant: the 

"law of conservation of energy" for this system. 
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Now suppose we select the set of trajectories for which this 

constant h Is zero. The first three equations In (8.4) give 

p 2 + p 2 + p 2 - (dx/dt)2 + (dy/dt)2 + (dz/di)2 - (ds/di)2 
x    y    z 

Therefore, the assumption that H - 0 gives, according to (8.3), the 

relation (ds/di)2 ■ 1/c2 , and hence ds/dx ■ + 1/c , the (+) If we use 

the convention of measuring s In the sense of Increasing T , the (-) with 

the opposite convention. We shall use the former convention hereafter. 

Thus, we have established (8.1), and hence by the earlier reasoning, the 

equivalence of the sub-class of solutions of (8.4) for which H = 0 with 

the rays—the solutions of (A.2). 

We can now give a more geometrical meaning to the momenta along 

a ray. Applying (8.1) to (8.4) we see that 

p ■ dx/di a dx/cds a cos x/c ■ n cos x , 

and similarly for the other components; thus we express the momenta as 

the Index times the direction cosines; 

(8.5)        p - n cos a   p = n cos ß , p - n cos y. 
rx y z 

The direction angles(c1, ß, y) are made with the positively directed co- 

ordinate axes by the half-tangent to the ray in the sense of Increasing s. 

Our results lead to the following picture: The six values of 

the coordlnates-and-momenta of our particles constitute a possible phase 

for It; the totality of such phases—or "points" in "6-dlmenslonal 

space"—Is called phase space. The locus in this space of the equation 
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H = 0 is a 5-dlmenslonal manifold, the set of all possible coordlnates- 

and-directlona on our acoustic rays. By the basic theorems of systems of 

differential equations of the first order, such as (8.4), through each 

point of phase space passes one and only one trajectory (path in phase 

space) of our particle; and if the point in phase space Is located on 

the manifold H - 0, the unique trajectory through it will remain on this 

locus: the 5-dlmensional manifold H » 0 is "made up of" those phase- 

space paths which are the rays—or, in more familiar terms, whose pro- 

jections onto the physical xyz-space of the medium are the rays. To the 

question: "How does a point on a ray in the latter space acquire two 

extra coordinates?" the answer is: "by having the two variables of the 

direction of its tangent recorded".  It has "ascended" into the 5- 

dimenslonal spsce of the position-and-direction of the point which 

traces it: a "lift" is the modern mathematical term for this. 

We may see even at this stage one feature of the mechanism by 

which the ambiguities at caustics are resolved. In the 2-dimensional 

(x,z) case shown in Figure 2.II two rays A..A, and B.B, that intersect 

at a point P, always have different directions at P, and hence corres- 

pond to different points of phase space (3-dimenslonal, in the case of 

propagation in a plane). As P approaches a point P on the caustic of 

Figure {MI,the third coordinate (that of direction) of each of their 

corresponding points in phase space approaches a common value, the 

direction of the caustic at P : there Is a continuous change of each 
o 

ray in phase space into the unique ray (LC, tangent at P to the caustic. 

Otherwise stated, we can continuously change the ray A..A- into B.B, by 
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starting with A.A,, moving the point from P to P , and then back to P—but 

now using, in reverse, the sequence of directions of the lines through which 

B, B, passed in going into C..C,. 
1 o lo 

A very simple model (to be returned to in Section 16} shows 

the essential ideas; propagation in the vertical xz-plane Is assumed. 

Let us start with a cylindrical surface, that we may think of as of cir- 

cular cross section. On it a family of helices is traced, all having 

the same pitch, so that one and only one passes through each point. 

This could oe constructed by ruling parallel sloping lines on a rectan- 

gular sheet of paper, and rolling it up into a cylinder (the radius 

being chosen so that the lines join along the edges). Now think of the 

cylindrical surface as transparent and the lines opaque; and consider 

their shadow (orthogonal projection) on a plane, II , parallel to the 

cylindrical axis. The result is a family of curves, two through each 

point, all lying between the two parallel lines Lj, L2 , which bound the 

projection of the cylinder (Lj and L2 are the intersections with II of 

the two planes perpendicular to 11 and tangent to the cylinder). All the 

projections on n of the helices (actually, sine curves) are tangent to 

L] and L2: these lines are their envelopes and bear the same relation 

to them as caustics do to rays. This shows that a set of curves (the 

helices) which have no "peculiarity" at all on a surface (the cylinder) 

upon which they lie, may be represented in projection by curves (the 

sine curves between Lj and L2) which do have marked peculiarities. 

The fundamental question Is whether such peculiarities, as 

they occur in caustics of acoustic rays, have any significance in the 
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physics of propagation of acoustic energy—which Is, of course, the only 

reason for using rays in the first place. An essential point of the 

present study is to show that if the rays are considered in phase space, 

they can be used directly to calculate the propagation of energy without 

the difficulties of caustics, etc., which difficulties are reduced to 

"artifacts of the representation." But this requires certain concepts 

which must now be set forth. 

It is important to realize that our methods skip the wave- 

front and Huygens construction of Sections 1 and 2, as well as the 

eLkonal—just as modern dynamics uses Hamiltonlan theory but not the 

Hamilton-Jacobi partial differential equation (except locally or in 

simple cases). Its use will be extended and clarified in Section 16. 

We turn lastly to the special case of Section 7, when 

c "c(x,z),  *nd write the equations of motion of a particle con- 

strained to lie on the smooth surface £ constructed as described there. 

If X, Y, Z are the components of the forces of constraint, the equations 

of motion are 

d2x  v  £7  v x    d22  _ 
d^-X. d7 = Y + 8 • dT"Z ; 

and, of course, since the particle must lie on the surface 2^  , we must 

have (introducing the abbreviation    f(x, z)): 

y -    f(x, z) - - V/g » C2/2c2g 

Finally, the forces of (smooth' constraint result from the normal 

reaction of J^ , in an upward direction; i.e., opposite to that of the 
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+ y - axis. Since the direction components of this normal are 

f , - 1, f (first partlals of f(x, z)) we have 
X z 

X»Rf , Y--R, Z-Rf , 
x '      z ' 

where R Is the force of reaction and Is positive. Substituting the 

values given by the last two sets of equations Into the first, we obtain 

d2x       d? d2z 
^ - Rfx . ^ f (x. z) - - R + g . ^ - Rfz • 

Carrying out the differentiations In the second of these 

equations we have 

d ,, N r dx , , dz 
— f (x, z) - f -r- + f -T- 
dt x dr   z dx 

d2 

dl2 ■TT f(x, z) - f £|+f   £|+f     (^)2 + 2f     ^^+f     (^ 
dr^        z di''        xx\dT/ xz dt dt       zz ydi 

R (f 2 + f 2)        + 
X z 

This shows that the vertical component of the acceleration on IT , I.e., 

d2y/dT2, being a linear combination of the second derivatives and the 

squares of the first derivatives of f (which Is proportional to lie2), 

can be neglected. Hence, to this approximation, R " g, which converts 

the remaining equations of motion Into 

d2x 
dr7 

3V   d2 3V 
8fv - - TT • HTT " 8f, " - T? » 3x ' dr 3z 

As proved before, these are the ray equations In the dynamical form (8«2.). 
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9. Differential Systems and Their Integral Invariants* 

A recurring feature in our study of lines of power flow, rays 

and trajectories in phase space, is the system of differential equations 

of the first order such as (3.5) (and the previous one, containing dt), 

(3.1), and (8.4). These all come under a general form, which can be 

written symmetrically as 

(9.1) tH    dJl ^E 
Ui " u2 

= '" " un 

where Ui,...,U   are given functions of the n variables Ui u    .    If it n » n 

is wished to identify the independent variable among these n variables, 

we may re-write (9.1) in a less symmetrical form.    If, for example, 

U   / o , we may use u = u    as the independent variable, and set 

V, - IL/U    .    Then (9.1) becomes 
i       in 

(9.2) dui 

dü~ " Vi = Vi ^Ul un-l,U^      (i-l,....n-l)  . 

In the form (9.1) the system has a simple geometrical interpre- 

tation, easily visualized when n = 2 (the plane) or n = 3 (ordinary space). 

The denominators (assumed not all simultaneously zero) can be thought of 

as determining the direction of a line segment at each point (ui,...,u ), 

namely, the segment whose axial projections (direction numbers) are in the 

proportions Ui: U2:...: U . The solutions of (9.1), or "integral curves", 

are any curves in the space of the n variables, tangent at every one of 

their points to the line segment given there. In other words, (9.1) 

determines a field of directions; an integral curve is one having these 

directions as those of its tangents. The fundamental property of these 

*cf.. e.g., Goursat & Hedrick, Vol. II.^ 
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curves Is that, through any given point, passes one and only one Integral 

curve: they decompose space Into "filaments". This Is a theorem which 

presupposes a "regularity" of the denominators of (9.1) In the region 

considered: the continuous differentiability of the sort that Is always 

safely assumed In physical applications. It also assumes that at no 

point of our region are they all equal to zero. 

In the form (9.2) the system has a simple kinematic interpreta- 

tion, in terms of motion in the (n-l)-dimensional space of the dependent 

variables (u^,...^ .). If we interpret the independent variable u as 

"time", the derivatives in (9.2) are the velocities of a moving point in 

this space, so that the system (9.2) assigns a velocity vector of com- 

ponents V.,,.,,V .  to each point (u.,..^  ) and time u. The funda- 

mental property stated in the preceding paragraph now takes the follow- 

ing form: Given any point (u1 ,>..,u ,) and time u ; then there exists 

one and only one path, or trajectory, described by a moving point 

(u.,...u _1), whose coordinates are functions of u satisfying (9.2), and 

which, when u ■ u , is in the position given by (u..  u _..). In 

formulas, this means that there are n-1 functions f of the n given con- 

stants u. ,...,u  ..u , and also u, such that, on setting 

(9.3) Ul " fl^Ul  u n-l,U ,U^  (i"l,...,n-l) 

and interpreting du./du as the partial derivative of f with respect to 

u (the o-superscrlpt variables held constant), the equations (9.2) are 

true for all values of all n+1 variables (restricted to lie in the region 

of regularity of the functions V.). 

In the case n"4 our kinematic interpretation of (9.2) may be 

considered as picturing the flow of a fluid, which fills the region of 
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space of (ui,U2iU3), and moves so that, at each moment u, the field of 

velocities of its particles is given by (9.2).    Then (9.3) can be regarded 

as the transformation experienced by any point    P or figure (locus of 

points) traced in the fluid (marked, e.g., in ink or smoke) and partaking 

of its motion, as time u goes on.    While not visible physically when 

n > 4, it is convenient to apply the terminology of "flow" in all cases. 

In fact, all the essential properties to be used later that are intui- 

tively evident for n - 4 can be established mathematically for the general 

case. 

Analytically,  the effect of the flow transformation induced by 

the solution (9.3) of  (9.2) upon figures traced in the fluid can be found 

by the following general method.    If the figure i    a curve whose initial 

position   C    is given parametrlcally by setting the n-l coordinates equal 

to functions of a parameter a, during the course of the flow its succes- 

sive images are also given parametrlcally in terms of a by (9.3) after 

each u, has been replaced by the corresponding function of a Initially 

given.    The points of   C will then be functions of two variables:    time u 

and position along   C'. ot (of course u   is held fast).    Similarly, if a 

surface   S  is given parametrlcally in its initial position with the aid 

of two parameters a,3,  to find its parametric equations in its evolving 

positions, one simply replaces u. in (9.3) by the given function of a and 

ß.    For a region   V of dimension n-l (a piece of ordinary space when n=4) 

one applies (9.3) with (ui,...,u   ..) ranging over the given initial 

position of this region,    V   , 

A first integral of (9.1) is a (regular) function F=F(ui,...,u ) 

which is constant along every integral curve.    This is the same as saying 

68 

Arthur I) little,1 

mmmmmimwmmimm tMlMMtiUM 



)jjiwiji!iiiiixi!ipwwi''wqiy|^lll'w^'^'''w^ll*''"l'JI'''w-''''Mf''1'''■''''''•'" > »' •l>11 um • —■■ 

***#!iiu 

D 

that its differential dF Is zero along such a curve; or, applying (9.1), 

that F satisfies the partial differential equation 

(9.4) Ui ■—+...+ U ^- = o . 
3ui      n 3u 
3F  .   . „ 3F_ 

a 
n 

In geometric language, this means that the gradient VF (of components 

3F/3u ) is perpendicular to the direction Ui: U2:...JU .  Equivalently, 

it means that the locus F = K (constant) is tangent to that 

direction. Also, from the defining property of F, any integral curve of 

(9.1) having one point on the locus F = K lies entirely in this locus: 

we can then say that the locus is "made up" of integral curves. Con- 

versely, if n-1 first integrals F, produce loci F.=K. which intersect in 

a curve, this curve is evidently an integral curve. It is shown mathe- 

matically that every Integral curve in our region can be given as such an 

intersection. 

The first integral F, in the notation of (9.2) and its inter- 

pretation as a flow in (n-1)-dimensional space, can be described as a 

function of position and time whose rate of change along any trajectory 

is zero. This is because, in the notation in question, (9.A) may be 

written as 

(9.5) V! —-+.-.+ V . ^— + |^0 ; 1 dUi        n-1 dU  ,   dU 1 n-1 

and the left-hand side of this is precisely the derivative of F along the 

trajectory, since by the formulas of partial differentiation 

(9.6) dF=3F^^+     +^F dun-l  |   3F 
du      9ui  du      '"     3u    .  du 3u  ' 1 n-1 
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the values of du./du being given by (9.2). This has the following inter- 

pretation (phrased for the case n-4, but easily imagined in general). If 

initially (u-u ) the region of fluid for which F • K is colored by a dye, 

this colored region will change in shape and position during the flow, 

i.e., as the time u increases; but it will always be bounded by the 

surface F-K: it cannot cross this boundary. This surface will move and 

deform in the course of the flow, except when F does not contain u: then 

it is a fixed boundary. 

In the important special case that the functions V are indepen- 

dent of time u, the flow is stationary: the field of velocities in the 

(Uj U .) space is unchanging, and the trajectories are fixed curves. 

If V is an (i-1)-dimensional portion of the medium, given as 

V when u-u , what becomes of its volume (number of cubic units when n=4, 

and generalized) as V evolves in the course of the flow? If the flow Is 

incompressible, the volume of V will not change. If the flow is con- 

servative, the mass will not change. This means that there is a density 

function, p"p (ui u ^u), which has the property that for all choices 

of initial volume V 
o 

(9.7) /v p du1...dun_1 " I P0 dui.-.du^ 
O   j 0 

where a    denotes the result of replacing (u,,u) by (u ,u ).    By a theorem 
o 11 

of the calculus (explained in more detail in Appendix £),  for this to 

occur, p must satisfy the "equation of continuity" 

(9.8) a   (pv,)   +.,.+  *      (pVl)   +|L-o 
n-l 
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This reduces to 

(9.8') ^i+...+i!2zi 
OUI dU 

n-l 

In the special case of Incompressible flow, because then p  Is a constant 

and drops out. 

We have already seen examples of those equations of continuity 

(with n=4) in Sections 3 and 5, where it was not matter but energy that 

was conserved.    We now apply the ideas to the ray differential equations 

in their Hamiltonian form (8.4).     In this case n"7 and the line-up of 

variables is the following 

x        y        z        p        p       p        T rx       y        z 

ui       U2      U3       ui,      us      u6      u 

while that of the given functions is 

3H/3p   3H/3p   9H/3p   - 3H/3x  -3H/3y  -3H/3z 
x      y      z 

V      V       V        V      V       V 
12        3 4        5        6 

On substituting these values into (9.8') It becomes evident that the 

equation is satisfied: the flow that (8.4) induces in phase space is 

incompressible. This is Liouville's theorem, valid for every Hamiltonian 

system, and forming an essential basis of statistical mechanics. 

We have seen in Section 8 that the function H is a first inte- 

gral of (8.4), and that the acoustic rays form the locus/3:H»0.  This 

locus is a fixed one in phase space, since H is independent of T.  The 

trajectories in phase space lying in this locus induce a flow in it, but 
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taking place In a space of 5 dimensions rather than in 6. Now whereas the 

flow in this space is not in general incompressible (5-dimensional volumes 

change), there is a positive density function P , depending only on posi- 

tion on h,  and p satisfies the condition for conservation (9.7), but with 

V and V 5-dimensional regions ofß and du,...du _,, etc., replaced by 

the "element of 5-volume" for this locus. The proof of this and other 

related theorems will be taken up in Appendix E, using powerful general 

methods. We limit ourselves here to giving an intuitive argument apply- 

ing to a parallel case in ordinary 3-dlmensional space in which a steady 

flow of an incompressible fluid (liquid) Is taking place, leaving F, a 

function of position, invariant (i.e., F Is a first Integral of the 

equations defining the steady flow). 

Let f% be the surface F-0, and consider the near-by surface 

fi1 : F»h (for any small constant h). These are fixed surfaces, very 

close together, as shown in Figure 9.1. Think of a piece Aß. of B and 

draw the normals at its boundary, cutting off a piece A/? of ß' , all 

forming a cylinder-like region  AV . During the flow,  AV will move, 

Ficoue       9'I 
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Aß. and AK    sliding along A   and  £>', but its volume will remain constant. 

It will be bounded by the moving pieces Aß , Aß   , and their connecting 

cylinder-like surface.    For small dimensions of the figure and a short 

interval of time, we can regard h/An as the magnitude of the gradient of F, 

so that An » h/|VF|   ,  to terms of the first order.    To the same degree of 

approximation, the volume of AV ■ An • area of AÜ) ■ area of A£W|VF|   ; 

i.e.,  if the numerator is regarded as and element of surface dS * area of 

Aja, we see that the element of surface integration, dS/{VF|,  is unchanged 

by the flow, so that 

//p dS = //p    dS     ,    p = 1/ | VF |   . 

In the application to the Hamiltonian case, a corresponding 

equation holds, but with 

[/.        t        ;        ^ i i   -\ 
H+H+H+H     +H      +H 

x       y       z       Pv      Pv      PJ 

-1/2 

Applying the equations of Section 8, this reduces to 

2>l/2 P = 1/n (l+IVnlV     ,      (n = 1/c) 

Quantities that are left unchanged by certain transformations 

(as by the flow (9.3) induced by (9.2)) are called Invariants of these 

transformations.    A function such as a first integral F is an invariant 

function of position (ui,...,u      );  the mass of a piece of matter under- 

going a conservative flow is also an invariant quantity, but is not a 

function of position but an integral over a figure which is moved and 

deformed by the How:    such a quantity is called an integral invariant of 
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the system of equations (or of the transformations they Induce). The 

Integral of E In Section 3 that expresses the acoustic energy In a volume of 

the medium Is an Integral invariant of the system of power flow lines. 

The volume of an incompressible fluid, the "60" volume of Hamlltonian 

phase space and the "50" surface integral of 1/|VH| in the 5-dlmensional 

ray phase space ß are all Integral invariants. 

There is a 4-dimenslonal integral Invariant of importance to 

the present study of acoustic propagation; it may be obtained from the 

one mentioned at the close of the last paragraph. The intuitive explana- 

tion is very simple, and will be given in the analogous case of steady 

flow in ordinary space, deferring mathematical details to Appendix E. 

Figure 9.II shows a set of trajectories—fixed stream-lines, 

since the flow is stationary—forming a tube-like surface, Q , closed by 

two surfaces, A and B. A is any smooth surface closing the tube, while 

B is the result of sliding A continuously along the stream-lines. This 

means that each point P of A is moved through a distance D(P ), this 

FIGURE   3lL 
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distance being a regular function of position. Clearly, the net mass 

(measured by the density 1/|VF{) which enters this two-ended tube Is zero 

because of the steady nature of the flow . Also, nothing can pass through 

the tubular boundary; therefore what enters the tube through A must equal 

what leaves It through 6. But the amount which crosses any surface fixed 

In the fluid is the surface Integral of the normal component of the flux 

vector (density times velocity vector, of components pu, pv, pw). There- 

fore this integral taken over A is equal to the same one over B. If B 

is chosen as a surface into which A flows during a given Interval of 

time, the fact that the flux integral is a 2-dimensional Integral invari- 

ant is obvious; but B may be obtained by sliding A in other ways. 

But our example gives more than an Invariant integral over a surface 

that moves with a flow: it gives us an integral that has a much higher 

degree of invariance—that may be described as a "sliding Integral invariant." 

While more details will be given in Appendix E, we may add to our 

examples one of a rather different character, the circulation along a 

curve C in the physical space in which a flow of a fluid is taking place. 

If the components of the hydrodynamic velocity are u, v, w, the circula- 

tion along it, in a given direction, is defined as the line Integral of 

the tangential component, in that direction, of the velocity; 

circulation = J uix + v6y + w6z 
C   C 

Here 6^ is used to distinguish differentiation along the curve (time held 

fixed) from d used for differentiation along the trajectory (curve param- 

eter a held fixed). A fundamental theorem in hydrodynamics states that 

for a "perfect fluid" the circulation about every closed curve C is an 
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Integral Invariant of the flow.    Upon this theorem is based Lagrange's 

theorem of the permanence of the irrotational character of a perfect fluid 

initially irrotational, and thence the existence of a velocity potential. 

And again,  the Helmholtz theory of vortices, the "vorticity" vector field 

resulting from the circulation through Stokes' theorem. 

These circumstances have their parallel in Hamiltonian Theory, 

where the "action Integral" 

/rp    öx + p    6y + p    6z Crx rv rz 'Cx 

is an Integral invariant—provided C is closed. As will be explained in 

Appendix E, from this all the other integral invariants of the Hamilton- 

ian system can be derived by simple formulas. 

In Appendix E this whole subject of integral invariants is studied 

in mathematical detail, and references to the literature are given. 
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X'.  Er.ergy Flow in Phase Spcce 

Having, as explained in Saccion 8, "lifted" the rays of the physical 

space of the medium .'nto thp 5-dlmensional phase-space Jo, and having 

shown in Section 6 that in a Fermat family of travelling waves {(ti } have 

their power flow or A-lines approaching coincidence (as u-»-«») wi;h an 

associated class of '.;>s .'■■  L-lines, it is necessary to make clear the 

implications of the.  acts for the phase space picture—both as regards 

its geometry and its relation to the flow of power. 

The first step is to "lift" each A-line of our Fermat family 

into the 5-dimensional *Q as follows: For each value of u and point 

P: (x,y,z) on a A-line ''not on F) we have a unique direction U tangent 

to it, in the sense of the flow of power, as explained in Section 6.  If 

(cos a, cos ß, cos y) are the components of this vector (its direction 

cosines), we define the three momenta by the equations p ■ n(x,y,z) cos a, 

p ■ n(x,y,z) cos £5, p = n(x,y,z) cos y; or, in vector notation, by 
y z 

p * n U .  Clearly, the point (x, y, z, p , p , p ) in 6-dimensional 

phase-space lies in the 5-dimensional Jo , since its coordinates as just 

defined satisfy H = 0. Evidently its orthogonal projection onto the 

space of the medium is the point P:(x,y,z) from which we started.  By 

applying this process to all points of a A-llne, it is lifted into a 

curve in JP.  In view of the smoothness of the original A-line, its lift 

also is smooth. Of course it will not in general be an integral curve 

of the canonical equations of the rays (8.4); but as u)-*«> it will approach 

coincidence with its associated tangent ray at P. 

Now let G be a small piece of surface in the medium, nowhere 

tangent to a limiting ray L of the Fermat family—and hence, for sufficiently 
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great w, nowhere tangent to any of its A-lines. We wish to study the 

flow of power across G by the use of rays—a method easy to explain for 

short ranges of propagation In terms of the constructions of Section 1, 

together with the approach of A- to L-llnes, but breaking down when 

caustics, etc., appear. Our flrsc step Is to lift G Into Jib by first 

defining a field of direction vectors, just one at each point of 6 , and 

then assigning as momentum vector the product of Its direction cosines 

by the values of n at the respective nolnts of G? . Of course, this can 

be done in as many different ways as there are ways of defining these 

fields of directions: the resulting lifts will be 2-dlmenslonal figures 

In the S-dlmenslonal phase space, two of which can only Intersect at 

points at which the corresponding directions In their fields happen to 

coincide. 

An Important case of this construction occurs when the field of 

directions assigned to points of (3 are those of the limiting rays L 

through these points: we would obtain a perfectly definite lift, which 

we shall denote by 6 . If on the other hand we use the directions of 

the A-llnes cutting ö we obtain (for each UJ) another non-lntersectlng 

lift G? . The same will be true of the 3-dlmenslonal figure obtained by 

lifting all the limiting rays chat cut (£> —and hence whose lifts cut (» — 

and also the 3-dlmenslonal lift of all the A-llnes (for the given UJ) which 

/- A 
cut (3 and therefore whose lifts cut Q   .    Any Intersections of these two 

3-dlmensional "worm-like" figures In the 5-dlmenslonal i^ will be "purely 

fortuitous"—as will intersections of two A-line "worms" for different 

values of u. These statements may have exceptions in special cases, as 

in the third and fourth examples of Appendix D where (■> and 6  coincide. 
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We may actually visualize the geometrical relations In the 

case of waves in the vertical xz-plane, to be studied at length in 

Sections 13-16. Then the phase-space Gn is 3-dimensional (shown in 

Figures 14-1, II); & is replaced by a piece of curve, and the lifts 

&    of the rays cutting it, and also the Cr , are ribbon-like figures, 

in general never intersecting. 

i spite of the fact that we do know that the worm of lifted 

A-lines cutting G? approaches that of the L-lines through (a as u-»-00, 

this in itself gives but an awkard handle on the power flux relations in 

Ji . To obtain a better hold on the question, we shall make the following 

modification of the construction—simple but drastic in its effects: 

What we shall do is, simply, to increase by two units the 

dimensionality of G : at each point P of G we take not only the unique 

direction of L there, but a cone of solid angle Q of directions about 

it, and, after multiplying each set of direction cosines by the value of 

n at P, obtain a set n of momenta lying in this cone. Obviously this n 

is a 2-dimensional piece, and when combined with each point of the 

2-dimensional G> , gives a 4-dimenslonal lift in /a . 

A simple and convenient way of making this construction is 

first to pick a reference ptint P Inside (5 ; second, to fix a cone Ü o o 

containing the direction U of the L-llne through P in its interior; 

and third, to take for the Ü  at any other point P a cone congruent and 

parallel to ^ : if the dimensions of ft are small enough in comparison 

with these of ft , as we will suppose, for each P onCr , the ft will contain 

the U at P in its interior. We may always represent any such cone 
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of directions as a region on the unit sphere centered at its vertex P; 

its spherical area will be the solid angle measured In steradians.    Such 

a combination of objects (P, U) is an element of the Cartesian product 

The corresponding combination (P,  n(P)U) is a point in £) ,  and 

their totality is the 4-dimensional lift of  (& that we are defining.    We 

shall denote it by  (ß, 11); only when n is constant throughout (& is it 

a Cartesian product  (£, H) =   G? x n.    Nevertheless, when both Q? and Q 

are very small,  the measure (4-dimensional volume) is, to quantities of 

higher order, given by the following formula, where n   is the value of 

n at P  : o 

(10.1)   measure (6, n) * n 2 measure (6 x ft) = n 2 area of G x area of fi 
o o 

This formula will be used in Section 11. 

Now consider the rays determined by all the points of (6, n): 

they are the integral curves of (8.4) passing through these points, and, 

when extended in range, form an elongated 5-dlmenslonal piece of /ä , to 

be denoted by &(&, U).    Since we are thinking of both & and Ü—and 

therefore n—as small in largest dimension, this piece is not only long 

but slender: it may be described as a "hyper-worm". 

Since every direction of the L-lines at points of &  are interior 

to the corresponding cones Ü,  it follows that the 2-dimensional lift Cr 

is interior to the A-dimensional (G , H), and hence the 3-dimensional 

"worm" formed by the lifted L-lines through it is inside the above 5- 

dimensional hyper-worm. 
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Suppose that the range interval through which the rays (i.e., 

their lifts) have been extended is thought of as large, but fixed. Since 

/- A 
as (*)->•00 the worm of A-lines through ü  approaches that of the L-lines 

through (5 , and since they form a set of Interior points to .6(6, 11), 

(strictly Interior, if the rays in the construction of the latter are 

extended very slightly at each end), it follows that for all sufficiently 

great u the whole worm of A-lines through &    will be inside ■&(&,  n). 

This attaches a power flow number to the hyper-worm fc>{&,  11): 

the acoustic power entering the A-worm through G, once the frequency 

has reached its value as required above. This power can be thought of 

as flowing along the hyper-worm, and crossing any of its "cross-cuts": 

the 4-dimenslonal figures in ß(ö, n) which divide it in two pieces in 

such a way that each ray forming it is cut at an angle into two pieces; 

and, further, that their (topological) position in the hyper-worm is 

such that they can be slid continuously along the rays that make it up 

into the original figure (G, H), In Appendix G an analytic basis will 

be given for the statements here submitted on an intuitive one (which. 

In general cases must be replaced by rigorous analysis of limits). Let the 

projection of the cross-cut into the space of the medium, in which 

(x, y, z, p , p , p ) becomes (x,y,z) with the direction determined by 

(p , p , p ) through it, is "in general" a solid (shaped, e.g., like a 

potato), through each point of which passes a continuous I-parameter 

family of directions, descrlbable as a narrow curved "fan". The limiting 

L-lines traverse this potato, being at each point tangent to the corre- 

sponding fan.  Second, it is possible to slide this cross-cut along the 
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rays that cut It so that It assumes a special position, exactly resembling 

the original (S, 11): The fans moving together along their rays have squeezed 

Into cones of small solid angle and the potato has become a surface 0'  like 

g. All the power entering the hyper-worm through &  crosses &':    this Is 

our power flow number—obviously a sliding Invariant. 

This Is the first step In the transference to phase space of the 

power flux quantities. It gives us a set function, I.e., a numerically valued 

function of  4-dlmenslonal pieces of Ja that can be regarded 3 cross-cuts; 

and since any small enough piece in this space which is nowhere tangent to 

a ray can be regarded as a cross-cut (I.e., of the hyper-worm made of all 

the rays that cut it), this Includes a large class of figures. We have 

seen that this set function is a sliding Invariant of the rays in phase 

space. It Is easy to see that it is "additive": the flow of power through 

both of two cross-cuts, which cannot be slid along their rays so as to 

overlap, is the sum of the flows through each. 

But this sliding invariant additive set function is not an 

invariant Integral—i.e., of a density over the set in question. This 

is because it is not "absolutely continuous"—the power flow across 

(G?, n) could remain constant and positive while the measure of this 

set approaches zero. To see this we have but to recall (10.1), and let 

ß shrink up about eachL-Hne through Ü,  the latter remaining constant: 

such "densicy" over the 4-dimensional cross-cut would jump from 0 to <»>. 

We are to regard this invariant set function as a "precursor" 

of an actual sliding integral invariant; but this requires the introduc- 

tion of infinite classes of Fermat families, acting together but with 

enough random to avoid the rigidity of the "principle of superposition". 

This will form the subject of the next section. 
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11. The Statistics of Acoustic Transmission 

In all studies of radiant energy two types of model may be 

used: firstly, the single solution i|> of the wave equation under quite 

specific boundary and initial conditions; and secondly, an aggregate or 

ensemble of such solutions, combining "incoherently", and producing the 

observed effects and regularities through the statistical characteristics 

of the ensemble, as well as the properties of its Individual members. In 

electromagnetic radiation, the first type of model is appropriately applied 

to radio and radar waves, and recently to laser radiation under simple 

conditions; the second type of model becomes necessary in most studies of 

light, particularly when the source is large in comparison with the wave- 

length, and in the Isotropie radiation in cavities.  In acoustics, the 

first type of model is appropriate in studies in which the configuration of 

the environment is simple and its dimensions not Inordinately greater than 

the wavelengths considered, as in room acoustics, lobe formation and other 

interference patterns near reflecting objects, and in many similar cases. 

On the other hand, the second type of model—the statistical ensemble of 

waves-is necessary to describe the actualities of hydroacoustlc radiation 

of wavelengths much shorter than the ranges, the depth of the mediuin,and 

the radius of curvature of the rays and power flow lines. This choice of 

model is not Just a matter of convenience—e.g., to obtain a tractable set 

of relations—but is forced upon us by those aspects of the physical situa- 

tion now to be outlined, which subject them to random. 

The first source of random, contributing a set of incoherent 

sound waves, is the nature of the acoustic emitters of interest to Naval 
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operations, such as submarines.    Such an object Is large and has many 

vibrating parts.    Even the pressure hull has a complicated pattern of 

vibration, distant parts seldom vibrating In perfect unison.    Added to this 

Is the Irregular nature of the mass of water through which It passes and 

which takes part In the acoustic emission, e.g. by cavltatlon and turbulence. 

The second source of random Is the medium—the actual behavior of 

the sea water.    There is Insufficient knowledge of Its effects:    while a 

single acoustic wave has been shown to maintain a remarkable degree of phase 

coherence over long ranges,  there Is no Indication that two waves, generated 

by different parts of the emitter, will maintain any observable degree of 

mutual coherence,     cf. Tatarski2 and others'  discussion of random turbulence. 

The third source of random in the acoustic radiation fields is the 

set of physical boundaries.    The simplest is the ocean surface.    While there 

is much evidence to regard it as acting as a "specular reflector" (in the 

range of frequencies and angles of Interest),  this term implies two proper- 

ties:    the return of all acoustic energy without appreciable loss at an 

angle of reflection equal to the angle of incidence;  and the maintenance of 

a definite phase relation between incident and reflected wave, so that 

energies combine by Interference rather than simple addition.    It is only in 

the first sense that the ocean surface appears to act as a specular reflec- 

tor.    A more complicated boundary is the bottom, which absorbs a fraction of 

the incident radiation and reflects the remainder.    With hard bottoms and 

moderate ranges,  the latter part is important as contributing to detection 

by "bottom bounce"; but it has a randomizing effect on what it returns.    In 

fact, recent studies have been made of the influence of bottom Irregular 1- 

ties on the random nature of the returned radiation. In the case of 
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very long range propagation, the repeated bottom absorptions of certain 

rays remove all their energy contribution, so that the bottom assumes the 

character of a perfect absorber. This, however. Implies an extreme regu- 

larity of the rays, the medium, and the bottom: It may be necessary to 

take Into account rays that are reflected only once by the bottom, (e.g., 

at a sea-mount)and then enter the radiation field In a phase and direction 

uncorrelated with the others. 

There Is a final reason for the appropriateness of statistical 

methods In the treatment of hydro-acoustic propagation:  the limitations of 

possible specific knowledge. The fine-structure of the environment—sound 

speed, all physical boundaries, etc.—have excessively complicated and 

essentially unpredictable variations in space and time. All that can ever 

be known of these features is in terms of averages, too coarse-grained to 

form a basis of more than a statistical treatment.  Fortunately, when 

properly applied, this gives all that is needed for practical operations. 

On the basis of these considerations, we have to formulate in 

precise terms the statistical assumptions regarding the radiation field to 

be used as the model of hydro-acoustic transmission.  The ideas are essen- 

tially simple—given the material set forth in the preceding sections. 

Suppose that v ■ (vi,..., ^w} is a set of elementary travelling 

wavetof common frequency UJ, all satisfying the loose boundary conditions 

appropriate to the practical problem. Each v. has its own vector field F! 

and corresponding power flow lines. We construct the small pieces A6 , Ai!, of 

surface© and of solid angle :l  (nowhere tangent to this surface), as in the 

preceding section.  The power lines of v.  may or may not have a bundle 

crossing A(B in a direction belonging to AiJ.  If they do, ii. will contribute 
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a certain quantity of acoustic power to the "hyper-worm" K = J5 (AC,Ai2): 

once entering it, it will stay in it, as explained before.* The first part 

of our statistical assumption is that all these waves are incoherent in 

phase; hence their total power contributions add. Let ?(y)  be the algebraic 

sum of all the power contributed by the set y to this K (algebraic sum, 

since the directions involved in the above construction may show negative 

power entering—i.e., positive power leaving, our K).  For the reasons given 

before, this total power entering K through its base figure (Äß , Ali) stays in 

it, and is what traverses any later cross-cut (what we get out of the worm 

is just what we feed it): it is a "sliding invariant"; but as yet, not 

expressible as an integral. This has all been explained in Section 10. 

The next step in the formulation removes the discreetness and re- 

sulting discontinuities In power flow directions due to confining the 

ensemble * to a finite awn. The method Is to use limits of such sums 

of elementary travelling waves, as their number Increases indefinitely 

while their individual energies approach zero. The ideas are comparable 

to those In the definition of an Integral as a limit of a sum. To put 

the matter precisely, we think of an infinite "triangular" collection 

of elementary travelling waves (of the same frequency u). Each one is 

N 
identified by two indices, as ij , in which 1 goes from 1 to N, giving a 

"horizontal" set or row of N waves; while N increases indefinitely, 

giving an infinitely deep "pile" of such horizontal rows, and thus the 

following triangular figure: 

N 
This actually assumes that each iK is in reality a Fermat family 
{iK(üj)} and that ID IS sufficiently great so that all the A-llnes are 
in K. Increasing u along the perpendicular to the page, our triangle 
y becomes an infinitely tall prism, with an infinite triangular base— 
from which we then cut off that part with too low values of w. 
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Corresponding with this triangular system of waves, we have a tri- 

N 
angular system of their energy densities E and of their power flux 

-»•N               N 
vectors F., where, as with iK , i " 1,2,...,N and N ■ 1,2,3  

These are the time-means, indicated in Section A with an accent— 

which we drop from now on for simplicity of notation. As in the case 

of the finite ensemble of waves first treated, we assume that the N 

N    N     N 
waves in each row ¥ ■ {'Kf..|^N} are incoherent in phase (our first 

N 
statistical assumption); and we again denote by P(y ) the total power 

they inject into K across its bounding end (AS, Aw). As before, it is a 

sliding invariant of the rays in £ . 

The second part of our statistical assumption is that for every choice 

of (Ag , hü)  the power ?([\' )  approaches a limit P(lt') as N increases 

indefinitely. Being a limit of sliding invariants, it too is a sliding 

invariant; but not yet expressed a? an integral. 

The Child and final part of our statistical assumption enables us 

to express P(y) as an integral over the 4-parameter figure (ß .fi) of a 

power flux density in phase space fi , with respect to a "A-volume" 

(measured by sums of products of elementary areas on 6 and areas on ft). 

* Technically stated, an assumption of "absolute continuity" of the 
limiting PCO. 
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This will make P(4') an integral invariant (in the more drastic "sliding" 

sense) and will therefore make the body of theorems governing such in- 

variants applicable to the problems of acoustic transmission. 

FIGURE 11 »I 

("S «',<*. (l^cj')... 

"'"»^Ml^J 

(,«»«< ^w^co.y). 

The concept of density of flux through (GJ ,n) Involves a limiting 

process. The geometrical relations are shown in Figure 11.la. First, 

select any point (x,y,z) on our given surface g and any direction from 

this point, (cos a, cos ß, cos y); these cosines are the coordinates of 

the representative point on the unit sphere 0, Second, construct a small 

piece A6 of 3 containing this (x,y,z), and also a small piece of AT. 

of ß containing (cos a, cos 0, cos Y). The power flow APCO through 

the elementary 4-dlmensional boundary (AIS «AQ) is defined as before. 

The assumption announced above is, firstly, that the ratio R. 
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(area A6 ) *(area Aft) 

approaches a limit as ^g and Ai^ shrink to their respective limiting 

points, (x,y,z) and (cos a, cos ß, cos y).    Evidently this limit will 

depend on the six coordinates of these two points, I.e., the point 

(x,y,z) and the given direction through It. But It will also depend 

on the nature and orientation of & In the Immediate neighborhood of 

(x,y,z). in this latter respect, however, a simple construction familiar 

In the study of the flow of fluids across surfaces (Illustrated In 

Figure 11.lb) shows that the dependence on £ reduces to a dependence 

solely on Its positively directed normal at (x,y,z) (of direction 

cosines cos a', cos ß', cos Y'); and It shows further that the dependence 

consists merely In the presence of a factor of cos 9 In the limit of the 

above ratio, where 6 is the angle between this normal and the direction 

chosen In Q! 

(11 V        cos 6 • cos a cos i' + cos i  cos 3' + cos -y cos y' 

Therefore the above limit assumption takes the form that, as 

A& ■* (x,y,z) and Aa - (cos J,...), R -► c, i.e., that 

(11.2)   R - c(x,y,z; cos *,  cos ^, cos *)cos 

The assumption of this approach to a limiting density needs to be 

supplemented by what may seem only a mathematical refinement—the usual 
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physical assumption of continuity (or plecewlze continuity)  of this 

limit as a function of Its seven variables, so that Its Integral over 

any (6 ,(2) Is, In fact, equal to power flow across this boundary.    With 

this addition to our third statistical assumption, the statistical 

description of our radiation field Is complete.    We are able to write 

the power flow across any (6» ,ft) In n as the Integral 

//// e C08   0 d&   ^ ' 

and we know that this Is a sliding Integral Invariant. 

It Is desirable to re-wrlte the above Integral  In  terms of the 

canonical coordinates  (x,y,z,p  ,p  ,p )  In 13 .    Applying the relations 

of  (8.5),  the first being p    ■ n(x,y,z)co8 a, we see that on the one 

hand p can be expressed as a function of the canonical coordinates; 

and on the other hand,   that when the direction reference point Is on 

tl.e unit sphere ü,  the corresponding momentum vector  (p  ,p   ,p )  Is on 

a concentric sphere n of radius n ■ n(x,y,z).    Hence,  their elements 

2 2 of area are related by the equation dn - n dH or df2 - c dH.    Hence, if 

we write 

f = f(x,y,z,px,py,pz) 

2 
■  e(x,y,z,cos a,  cos ß, cos y)c (x,y,z) 

we have f cos  6 du -  E  cos 0 dß,  so that our power flow Integral becomes 

(11.3)        P(4') - //// f cop 0 d(5   dn 
 ft       n 
*    Since so many limiting processes are Involved (including üJ->■'»), 
assumptions of uniformity are needed.    We prefer to regard the limiting 
steps as forming only an heuristic approach (11.3),   the truth of which 
we postulate in the physical description of a high frequency radiation 
field. 
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Acoustic Intensity.     The function f"f(x,y,z,p  ,p  ,p ) may be X      y       Z 

termed the flux density of power flow in phase space (due to the 

ensemble f) at the point (x,y,z,p ,p ,p ) of ß :  the flux density for 
x  y  z 

any orientation of A6 being f cos6, it achieves its maximum value when 

this surface element is so oriented that its normal is in the direction 

determined by (p ,p ,p ), since then 0=0 and cos 0=1. 

If in (11.3) only the integration over IT is carried out, and 

if this solid angle is chosen as the unit hemisphere having the fixed 
! 

j normal to A 6 as axis (so that 0 varies between 0 and n/2), the following 
j 

equations are obtained for the total flux of power through the element 

A (5 in the direction of its normal. Their results are in terms of 

ordinary xyz-space:  the three functions U»U(x,y,z), V*V(x,y,z), 

W"W(x,y,z), and the direction cosines of the normal to the element of 

surface AÖ. Denoting the result of this operation by P^.AG), the 

i equations are: 

(11.4) P(4',AG) = // f cosO dn = U cosa* + V cosß* + W cosy' , 

n 

in which (11.1) has been used and U,V,W are given by 

(11.5) U ' ff {  cosa dn ,  V = // f cosß dn ,  W - ff  f cosy dn , 

IT n n 

and where, in each case, f»f(x,y,z,n cosa, n cos3, n cosy).  Naturally, 

in carrying out the integrations, one would simplify the limits of inte- 

gration by a rotation of axes for IT so that the new z direction (North 

pole) is parallel to the normal to MB ; then the directions belonging to 

11 are expressed in terms of a co-latitude and longitude, which are 
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Integrated, respectively, from 0 to TT/2 and from 0 to 2TI. 

Applying (11.4)  to the special form of  (11.3) when ß    Is  the 

element AG   shows that the total flux of power through this element Is 

given by 

[A© ]  U cos a'  +  [AS ]  V cos ß' +  [A& ] W cos  y' 

where  [Aß ] denotes the area of the elementary surface    &(5   .     Conse- 

quently the vector of components  (U,V,W)  is the vector flux of power in 

medl"m,  produced by the radiation field corresponding to the statistical 

ensemble Y.    It is of course the same as the limit of the vector sum of 

->-N 
flux vectors F.  due to all the elementary waves of V.    The acoustic 

intensity at the point (x,y,2)  is the length of this vector flux 

2 2        2 1/2 
density:    Intensity - (U    + V   + W )      .    Note that the directional 

dependence of the phase space flux f has been averaged out in  (11.5): 

starting with fluxes F    which depend on (x,y,z)  only, we have ended 

with  the total flux due to V, of components  (U,V,W), which also depend 

only on (x,y,z).    The "mechanism" by which this directional dependence 

N introduced itself into f, R,  and PCO ■ Urn P(4' ),  is of course through 
N-MO 

N the selection process whereby the subset of waves in V    was  chosen, as 

well as the way this subset was treated (Integrated over n),  in calcu- 

lating P(fN). 

While this vector field  (U,V,W)  in xyz - space is what  is measured 

and used in practice,  its properties and algorithms of  calculation are 

based on those of the phase space flux f.    The detailed study of special 

cases is given in the succeeding sections; we close this one by proving 
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a theorem upon which all  the applications are based:     that  f Is constant 

along each ray In phase space fa.    Therefore,  It Is a first Integral, 

which,   In Important special cases may be the trivial one:     constant 

throughout j5 , or In those parts of It taking part In the  transmission. 

This theorem is a simple consequence of the existence.   In addition 

to the power flow Integral Invariant P^) given by (11.3),  of a basic 

sliding Integral Invariant common to all conservative Hamlltonlan 

systems. 

(11.6)        I, -   //   //cos 0  d6   dn   . 

As stated toward the close of Section 9, such a 4-dlmen8lonal 

Integral Invariant can be derived from the 5-dlmenslonal one based on 

the conservative density 1/|VH|.    The process was merely exemplified, 

using the lower dimensional case illustrated in Figure 9.1.    The simple 

rigorous derivation In Appendix E starts from the universal Hamlltonlan 

"action integral" noted at  the end of Section 9.    The domain of inte- 

gration in I,  can be any A-dlmensional piece of ft ,  for example, 

(G,n). 

We thus have two A-dlmenslonal sliding integral  invariants of the 

system of equations  (8.4)   in our 5-dlmenslonal phase space ß , namely 

P{4') and I,.    In view of a general theorem, the ratio of their 

integrands is constant along every Integral curve of  (8.4):     i.e.,   it 

is a first integral of this system (which may be the  trivial one: 

constant throughout ß ). 
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This theorem, proved by formulas in Appendix E,  can be made In- 

tuitively obvious as follows:     Let C be any Integral curve;  take the 

"hyper-worm" of neighboring Integral curves, containing C.    From the 

sliding Invarlance of P(4') and I, ,  their values over any A-dlmenslonal 

cross-cut of this hyper-worm are  Independent of the cross-cut;  hence, 

the same Is true of their ratios.    Passing to the limit as  the hyper- 

worm shrivels down to C, we see  that, on the one hand,  the limit of the 

ratio Is  the ratio of  the  Integrands at the point where  this  cross cut 

Intersects C; and on the other hand,  that this ratio Is  Independent of 

the position of this Intersection.    Hence,  It Is constant along C. 

Applied to the present case, we see that the ratio of  Integrands 

of PC*) and I,, namely 

(11.7)  r-- f ■ f(x,y,2,p  ,p  ,p ) cos  0 v   »/»   »i x'ry  rz 

is constant along each integral curve of the Hamiltonlan ray equation 

i 
(8.4).     This is the basis of  the Hamiltonlan treatment of  radiation fields- 

the whole remainder of the present work. 

A remark on the proviso.   Implied in all these derivations,  that 

0 is  the angle of our direction with the positively directed normal to 

(5 :    The choice of a direction across  G?  is arbitrary; but once made has 

to be adhered to consistently  in interpreting the formulas.     If we take 

it  in the direction of flow of  power in the propagation,  then P(4') 

represents the (positive)  power actually entering the "hyperworm" K; 

if  in the opposite sense,  the  Integral gives the power leaving  It  (which 

in such a case would be negative). 
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12.  A Method of Statistical Perturbations 

The three-fold statistical assumption describing the model of 

hydro-acoustic radiation, together with its consequences concerning the flow 

of power along sets of rays, formulated in the preceding section, has led 

to the theorem that the flux density function .'.  - f(x, y, z, p , p , p ) 
x  y  z 

is constant along any ray L in the phase space J5 : it is a first integral 

of the canonical ray equations (8.4) — but it may reduce to a constant 

throughout/a or certain of its subregions. 

From this property of f, an obvious method can be described for 

calculating transmission loss in the flow of power from an emitter A to a 

receiver B: Enclose each of these bodies in a surface,^, and £>B» the 

former Just containing A together with the water participating in the hydro- 

acoustic emission (often taken as a "standard sphere"); the latter so close 

about B that all acoustic power crossing it is detected by B. Since It is 

usually assumed that the acoustic situation at the emitter is known (or 

tentatively assumed, in the case of a hostile emitter), we can say that the 

values of f are known at all points and directions of G?.; I.e., at all 

points of the 4-dimenslonal (ßA, ^A) » where II. is the set of outwardly 

oriented p-vectors from &..    Suppose then that a certain ray L has been 

found to cut Q>A  in a direction belonging to JL>,l.e., in a point P of 

( (^ ., 11.) ; and also to cut G? „ in a direction in IL (the set of Inward 

directions to the latter), i.e. at the point P, of the 4-dlmensional 

((^ B, nB) . Then since f is constant along L, its value at P^^ equals its 
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value at P which, as we have just explained, is known. Thus, If all the 

rays which cut &. and (g „ have been found, f will be known at all  receiver 

points ( £ , n ) so that the total power received by B from A can be 

calculated by the formulas of the preceding section. 

The picture simplifies greatly if — as is usually assumed — 

f is constant over ( G *.,  H.).  (Actually the effect on B will be the same 

as if we only assume f constant over the smaller set ((*>»» n!) , where n' 

Is the part of II corresponding to directions from £7. of those rays that 

could possibly reach GDD)« Thus, f is constant and known throughout the 
0 

5-dlmensional "hyper-worm" £ composed of all rays in ß passing through 

( ß ., n.) .  As frequently stated in earlier sections, the rays can be 

regarded as the paths of a steady conservative flow in phase space /S.  If, 

then, the "fluid" becomes stained with ink as it crosses the 4-surface 

( G?A» ^A) 1" its emission from A, this region K is the stained part of 

/a :  it will stain that part ( G? B. 
n
B) A 

of the receiver surface ( ß B. Hg) 

by ink transported in X« But this ( (a B» H ). is the part through which 

flows the power sent from A to B, which power equals the known constant f 

multiplied by the "4-dimenslonal measure" of (ßR« ^g)., calculated by 

equation (11.4), the integration being over (GB» ^R^A* '^ie  outstanding 

difficulty is, of course, in finding the latter region, which requires 

integrating the ray differential equations (8.4). 

The picture will actually be drawn in Section 13^which deals with 

the "laminar" case c = c(z) and its extension c ■ c(r,z), in both of which 

the physical rays are in a vertical plane, the phase space/^ being 3-dimensional. 
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While the methods just described are theoretically perfect,   they 

become more and more impractical as  the range Increases,  since the mechanical 

or other computations needed to trace  the  individual rays become increasingly 

elaborate.     As will be shown in the simplified case in Section 13, with 

increasing range the rays, and the  inked  region they sweep out,  rapidly 

become highly contorted after a couple of convergence zones.    This could 

have been expected from an examination of the conventional text book figures 

traced in quite simple cases  (e.g..  Fig.  5.19 in Tolstoy and Clay      ).     It 

is the phenomenon of mixing in phase space, which has played such a fundamental 

role in the  ergodic theory   (see Appendix G). 

What is perhaps an even greater objection to all methods  (such 

as those described above)  in which individual rays have to be computed over 

long ranges   (several convergence zones)   is their inescapable artificiality; 

precise values of c as a function of position have to be assumed before  the 

computations can start;  and as every experimental oceanographer knows,  all 

such detailed assumptions are unrealistic.    On the other hand,  this very 

difficulty can lead to a simplified point of view which can focus  the attention 

on the realities of the process of  transmission loss computation and 

correspondingly simplify the work:     it  is  the statistical viewpoint and  the 

application of rather simple statistical methods.    It turns out that our 

Hamiltonian picture gives the statistical approach a most natural setting. 

Perturbations.    Our first step in implementing the ideas of  the 

preceding paragraph is to apply to the Hamiltonian equations of Section 8  the 

method of perturbations,  of fundamental use  in so many other branches of 
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physical science. The Idea of this method is simple: the term in the 

equations due to the external influence^(e.g., forces) which in our ray 

equations is the "potential" V defined as 

(12.1) V - V(x,y,z) - -l/?c2 - -n2/2, 

is broken up  into  the sum of two parts:    one part U is large and simple; 

the other part W is complicated but small.     The latter is regarded as  the 

"perturbing term".    Then a method of successive approximations is applied, 

starting from a  first approximation which is  the solution of what the 

canonical equations  (8.4) would become  if W were dropped from the Hamiltonlan 

(8.3), V being set equal to U.    The method can take many forms;  but  for our 

present purpose we shall orient it toward the evaluation of the first order 

effects of  the  perturbing function W,  stopping at the second stage and 

dropping higher powers of the perturbations in the equations. 

There are two essentially different situations in the application 

of  the above method, depending on whether W is known as a definite, although 

complicated  function of  (x,y,z), or whether it is only known through its statis- 

tical properties.    The first situation is  the classical one of physics  and 

celestial mechanics;  it would be applicable to  the case of acoustic rays if 

the acoustic profile changed in a known way with changes in geographical 

position,  e.g., with latitude.    The second is  the case of our present concern: 

it requires us  to formulate the statistical  facts representing our degree of 

knowledge or  Ignorance of V. 
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The desired statistical model is suggested by the conventional 

gathering of oceanographic data and predictions bearing on the medium of 

propagation:     the results take the form of averages at different places, 

depths,  and seasons.    Accordingly, we shall  think of an Idealized "population" 

of conditions,  expressed as a statistical ensemble    {V} of functions V,  one 

of which is  "drawn at random".    The population average — the expected 

value V of  this  function — shall be used  for  the given, known function: 

U » V.     In general,  the "population average" or expected value of any 

quantity determined by this statistical ensemble will be denoted by the 

bar. 

It  follows from the above choice of U that W a 0,  since 

W»V-U»V-V.    Furthermore,  since differentiations and integrations 

are linear operations and hence Interchangeable with this averaging, we 

have 

3W/3x    -    3W/3x » 0,  etc.. 

It follows also that if C is any curve in xyz-space and lfG:G(x,y,z) is any 

given function, the average of any line integral such as J    GOW/9x)ds is the 

line integral of the average: J    G(3W/3x)* ds, which is zero. On the other 

hand, integrals and other expressions containing non-linear factors, such 

as squares and products of W or its partial derivatives, will not necessarily 

have vanishing averages, except when special assumptions are made. Such 

special cases, which usually apply to terms containing uncorrelated products, 

will appear later. 
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Turning to the Hanlltonlan ray equations (8.A), we shall 

indicate by single accents the first approximation, obtained by replacing 

V(- -n^/2) in the Hamiltonian H of (8.3) by its average U. Then the equations 

(8.4) take the form Indicated by the first two that follow (in which 

U' - UU'.y'.z'): 

(12.2) dx'/dx - p', dp'/dt - -au'/ax', etc. 

The second approximation,  indicated by double accents  (and in 

which we write U" - U(x",y",  z") and W  - WU1 .y'.z')),  is defined as 

the solution of  the six equations,  of a type illustrated by the pair 

(12.3) dx'Vdi - p^, dp^/dt » -au'Vax" - aw'/ax'. 

It is observed that the perturbing term, involving W, is the derivative of 

this "random function" calculated for known values of the coordinates; i.e., 

for the x', y', z' determined by the first approximation. 

We introduce the first order perturbations, defined as . i 

(12.4) X - x" - x', Y - y" - y'. 

P - p" - p', P - p" - p' 
x rx      rx'      y    ry  ry, P, P" - P* rz  rz 

Since we are assuming that the initial values (i.e., at T « 0) of both 

approximations are the same (i.e., x^ > x'^, etc.), it follows that the 

perturbations are all zero for T - 0. We must find the differential 

equations satisfied by the perturbations (to quantities of the first order). 

For this purpose we first subtract each equation in (12.2) from the correspond- 

ing one in (12.3) and apply (12.4), thus obtaining e.g. 

100 Arthur D Little' 



ii 

(12.5) dX/dT - P 

dPx/dT - -Ou'Vax" - au'/ax') - aw'/ax' 

Next, we note that the first ulfference on the right Is the difference 

between the known (non-random!) function 3U/3x calculated for (x'.y'.z') and 

for (x",y",z"). As we are working only to the first order In the perturbations, 

we can expand It In a Taylor series about the known (non-random)(x*.y',^ , 

dropping all powers except the first In the perturbations. The result Is 

(12.6) d? /dx - U' X + U' Y + U'  Z + W 
x     xx     xy     xz     x 

In which the U' with the double subscripts denotes the corresponding second 

partial derivative, always calculated for the first approximation (single 

accent) values (which are determined and non-random); while W* * dW'/dx*. 

There results from this process six first order linear 

differential equations ((12.5), (12.6) and the corresponding pairs for the 

other two coordinates). The coefficients of the capital letters (random 

perturbations) are determined functions of T through their containing the 

first approximation functions x', etc., of this Independent variable.  Since 

they contain the random perturbing terms dW'/dx', etc., they are not 

homogeneous. 

On taking averages, we find that, since the perturbing terms 

disappear, the averages X, P , etc., satisfy the corresponding homogeneous 
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differential equations. Since the quantities are Initially all zero, an 

elementary basic theorem in such equations tells us that they all vanish 

identically: 

(12.7) X-Y-Z-P    -P    -P    -0 x      y       z ' 

This is, of course, only true to terms of the first order. 

In order to investigate the properties of the variances and 

co-variances, which,  in virtue of (12.7)  are the means of squares and 

products, X2, XY, etc., we must apply a slightly less elementary theorem 

in ordinary linear differential equations,  the proof of which is outlined 

in Appendix F in the simple form in which it is needed here.    The theorem 

tells us that we can write our perturbations as integrals of the following 

forms 

(12.8) 

X-^G^ (T.O w; (5) +Gxy (r.fr) VT  (C) +Gxä5(T,5) W» U)]d5 

V r^xx (T'?) Wx (5) + Kxy (T'e) K    a) + Kxz(T'5) W2 (5)ld5 

(along with two more pairs of similar type for (Y,P ) and Z,? )., in which 
y      z 

the first of the double subscripts Is replaced by y and by z, respectively). 

In these equations, the functions of (T £) with double subscripts are 

completely determined by the coefficienr.s of the perturbations (X, Px, etc.) 

in (12.5) and (12.6), which are, in turn, determinate functions, calculable 

in terms of the known function U. The random effects are produced only by 

the W-factors. From (12.8), by taking averages, the same result (12.7), 

obtained before by more elementary methods, would become obvious. But 

we now can deal with mean squares and products. 
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2 
We first write X in terms of products of integrals: the ex- 

i i i 
I ^        pression for X in (12.8) can be written as the sum of three integrals, so 

I 2 
that X is the sum of three squares and three cross products. He shall re- 

write these with the aid of a simple formula of the calculus, expressing the 

product of two integrals as the double integral (over a square-shaped region) 

of the product of the respective Integrals, in each of which different 

variables of integration have been inserted (the coordinates of the point on 

the square). In its simplest form (for any integrands, f and g) it is 

I I] -C f(S) dC • •^g(Od£ -//f(Og(n)dedn , 

the double integral on the right being over  the square 

(Cn):    0 < C< T, 0 <n< T. 

2 
Applying this to such a typical cross-product term in X   as 

/  G       (T.C)  W   (O  dC   • / G      (T,C) W   (S> dC oxx'x oxyy 

this becomes 

•tfc^T.e) G^ (T,n) w; (C) w^ (n) d C d n. 

The mean of this is the integral 

"  •^Gxx(T'0 Gxy (T'n) wi (5) W^ (n) dCdn. 

At this point, the first special assumption concerning the ensemble {W} is 

stated on physical grounds; that tbe gradients in two perpendicular directions 

of the random function W are independent. Therefore 
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WA (0 w« (n) - w« (0  • w' (n) - 0 
* y x y 

. i 

Hence the mean of this, as well as all other cross-products, vanish. 

Turning to a square, we have as before the double integral 

expression for their means, such as 

(12.9 )     //GW (r 0 Gw (T.n) w» (0 w« (n) dtdn. xx XX 

Here    we are dealing with a product of the values of one and the same random 

function W', calculated at positions Cand    n that may coincide or be more 

or less distant.    If they coincide, we have the variance    (W')^(O, obviously 

a positive quantity.    If they are miles apart, W'CO  and W'di) will be 

independent, and the mean in their product will contribute a zero value to the 

integrand    in      (12.9).    The distance between Cand n within which the 

dependence of W'(C) and W^n) becomes appreciable — which plays the role of 

a "relaxation intervalil-ls not known with any precision to modem oceanography; 

but it would seem physically natural to assume it not more than a mile or 

two — certainly considerably less than one convergence zone.    Therefore, only 

close to the diagonal €an of the square over which the integral in (12.9) is 

extended will there be any non-zero values of its integrand.    Various 

approximate expressions of (12.9) as an Integral along this diagonal could 

be given on the basis of natural assumptions; but in the incompleteness of 

our knowledge of the refinements of ocean statistics, the simplest approxi- 

mation may be the best:    to set the dashed factor equal to the variance 
2 

W (£)  time the Dirac delta function,    6(C-n); whereupon (12.9) becomes 

i 

I 
J 
I 
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(12.10)        /V  (T,5) W' (Oz dC 
O  XX 

Applying this analysis to the other terms, we obtain (dropping 

accents and independent variable signs): 

(12.11)      X?   .     /[G2
    W   + G2     W^+G2    W^JdS o      xx    x xy     y        xz    z 

Similarly 

(12.12)  XY - /T[G  G  V^+G  G  V^+G  G  W^Jd? 
o  xx yx x   xy yy y    xz yz x 

All the other variances and covariances of the random perturbations 

can be expressed explicitly by such formulas, using the coefficients in 

(12.8). The only general facts to retain from such results are, firstly, 

that the variances in the position along a ray are of the order of the 

variances in the gradient of the random unknown component W in the acoustic 

environment (roughly proportional to them); and increase with the distance 

(which is roughly proportional to T). Hence the standard deviation (root 

mean square) is roughly proportional to the square root of the distance 

along the ray, and to the standard deviation of the gradient of W. 

This places the validity of detailed computations of rays at 

long ranges in doubt, although the statistics of acoustic profiles in the 

ocean will have to be known to a much greater extent than they are at present 

to say just how far our computed rays suffer how much random deviation.  It 

also suggests that the ink-stained fluid passing across the emitter surface 
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£2 . may do more than contort Itself as In steady streaming: a picture of 

a more drastic mixing, analogous to turbulence, may be more appropriate. 

Then the whole of G?D (and Its directions IL,) would be reached by a diluted 

fluid from A; and the degree of dilution would determine the transmission 

loss. 

These matters. In much more detailed and concrete form, will be 

taken up In Section 13. 

1^6 
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13. Rays In a Vertical Plane with Azlmuthal Synmetry 

In the case of constant acoustic profile. I.e., when the acoustic 

quantities c, p, V characterizing the medium depend on depth z only (the 

"laminar case"), the rays are all In vertical planes, and, as shown In 

Appendix B, their differential equations can be solved by quadratures, 

expressed In terms of Integrals containing these quantities. But as soon as 

the profile varies (In a more or less known way) along the path, all the 

complications discussed In the preceding section enter the scene. This Is 

true In spite of the fact that by working In phase space rather than In 

geographic space, the earlier ambiguities (caustics, multiple-valued wave 

front functions, etc.) have been banished. The object of the sections 

13 - 16 Is to take one step beyond the laminar case, with the double regard 

for achieving a useful degree of realism and for a simplicity In graphical 

representation (a lower dimensionality than In the general case). This will 

allow a visual presentation of the Ideas and methods of the last two sections, 

and will lead to simplified numerical methods, useful In themselves. 

The facts developed here are derived from four assumptions which 

specialize the general conditions. As a matter of terminology, we shall 

call the vertical axis passing through a central reference point A In the 

emitter the emitter axis, and we shall take It as the z-axls In a system 

of cylindrical coordinates. This Is shown In Figure 13.lA(for convenience 

In an "upside down" position, since In the ocean z Increases with depth). 

T tatlon about the emitter axis Is measured by the azlmuthal angle 4», 

*  Usually called the case of "layered media". 
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while horizontal distance from the emitter axis Is the range r. Our first 

two assumptions of this section are as follows: 

1. The acoustic quantities (c. etc..) are functions of depth 

and range only (V ■ V(r.z)). 

2. V ■ U(2) + W(r,2) and W«U. This W may be the random perturbation 

of Sec. 12 (W ■ 0); or an irregular departure from lamlnarlty. 

Thus In our first approximation we are in the laminar case; range 

dependence enters only through the random perturbation W - V-V - W(r,z). 

The third and fourth assumptions are based upon a further specializa- 

tion which will now be explained. We start by picturing the emitter as 

radiating symmetrically in azimuth: power in all azimuths being the same. 

This is only an approximation, but deemed good enough to have been used 

very often. Next, we "backtrack" on our assumption of Section 11 (11.3), 

that rays through a given point could have a continuum of azimuthal 

directions: we shall confine them to the emitter's axial plane. Thus the 

A-dimenslonal density f Is replaced by a 3-dimen8ional fji.e., we set 

f - f 6(X-(|i), (for p's azimuth X and Dlrac's 6).  Consistently, we assume a 

corresponding azimuthal symmetry for the bounding surfaces of the ocean. 

In view of these assumptions, in conjunction with Assumption 1 above, 

the wave equations (3.1) possesses azimuthally symmetric solutions, 

since both Its coefficients c and the boundary conditions have this 

Independence of <j). Therefore the same is true of the Helmholtz equation 

(4.2) and consequently of the elementary travelling waves. Such pairs as (A,B) 

being Independent of azimuth (|>, it follows by (4.3) and (4.4) that the power 

flow lines will lie in co-axial planes (all containing the emitter axis). 

Furthermore, the power flux vectors will have the same azimuthal symnetry. 

Obviously not all solutions of our azimuthally symmetric equations and 
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symmetric boundaries will have this symmetry: our statement Is, simply, 

that such symmetrical solutions exist, and exist In sufficient numbers so 

that we can, without mathematical Inconsistency, construct our ensemble f out 

of them exclusively. Our third and fourth assumptions are consequences of 

selecting In the statistical ensemble V of Section 11 only such solutions 

I|I. which are functions of r and z only. 

; ^n cci*, T» it^ß^mc*, y) 

(i«» «' e<»fl', "< / O 

Figure 13.IA-Element  (A€,An) 
In Cylindrical Coordinates. 

/ 

Figure 13.IB.Momentum Vector b attached to 
(r,ft z) in 13.IA. ' 

To explore the consequences of the azlmuthal symmetry in the present 

situation, we recall uhe assumptions of Section 11 concerning the ensemble 

V,  formulated In (11.2) and (11.3), and depicted in Figure 11.1. We shall 

make an adaptation to the present case of the construction of the surface 

.3 and solid angle Q,requiring both to be figures of revolution about the 

z-azls through the common angle (<)).< 4» < «K). the former generated by a 

curve C traced in one of the co-axial planes; the latter, generated by the 
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arc r of a unit circle In the sane co-axlal plane, but centered at a point 

on the axis. Similarly, the small pieces A£» and An are generated by the 

revolution, through a common small sub-angle A$, of the small pieces AC 

and AF of C and r. The construction Is shown In Figure 13.1A but with Ü 

and AQ transported so that their vertex Is at a point (r,<J>,z) on Afi» , 

In analogy with Figure 11.1. Evidently (to quantities of higher order) 

Aß ■ rA^AC and AH « sin y  AF. Therefore, In surface Integration over 

( &  ,n), using the arc-length a along C (In a given sense) and the angle y 

(with the +z-axl8) along T, we have 

(13.1) dg _ rdijido,    du  - sinYdydili 

The equations (11.2) and (11.3) still hold In the ö-function Interpretation. 

Since all elements in the construction have azlmuthal symmetry, the 

same will be true of the power flux quantity f. Also, the angle 0 between 

the normal to 6 (at the limiting point of Aß ) and the limiting direction 

of AO, Is simply 9 - y-y  , where as In (11.1), y' and y are the angles that 

the normal and the limiting direction make with the +z-axls. Finally, 

since no power flow line In the present case has any azlmuthal component, 

power emitted In directions between any pair of co-axlal planes will always 

remain between them.  Putting these facts together, we have a basis for our 

last two assumptions: 

*»» 
3. The power flux density f In phase space Is a function of range 

r. depth z. and angle y only; and f - fSQ-^), 

4. No power crosses any co-axlal plane 4» ■ constant. 
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I i Figure 13.11    Coordinates In Typical Vertical Plane    fl» 
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The Hamlltonian In our cylindrical coordinates Is 

(13.2) H -(l/2)[(pj + pj/r2 + p^)]- V,    V - -n2/2. 

The canonical equations of the rays are 

2 
dr/dT » p , d^/dx ■ p /r , dz/dT - p 

r        (p z 

(13.3)- 

dp /dt - -3W/3r, dp /dt - 0, dz/dT - -9V/az 

[Of course when the new Independent variable t is Introduced through the 

2 
equation dt » n    dt and the momenta are eliminated,   (13.3) reduces to  the 

form  (B.2)  of equations in cylindrical coordinates.] 

The fifth equation in  (13.3)  shows  that p    - p  , a constant;  the 

second,  that p0 ■ r (d^/di).    Since we are only considering rays which 

cut the z-axls, where r ■ 0, we must have p    " 0;  therefore, again by the 

second equation, d^/dx - 0,  so that (t) ■ <j>   ,  a constant.    This fact,   that 

all the rays considered are in vertical planes, co-axial with the z-axls, 

is also derived  in Appendix B.    On the other hand,  Snell's law  (B.3) 
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or, in the present case, p - k (the Snell constant) is only true when 

3W/9r « 0, as we see from the fourth equation.  Now since we are regarding 

the perturbing term W as giving the departure from laminarity, W will 

depend on r, and hence Snail's law is valid only in the first approximation 

(i.e., when W is replaced by zero). 

Returning to the Hamiltonian system, (13.2) and (13.3) reduce, in 

view of the fact established above that p, = 0 and $ = «t0, to the form 

(13.4) H -i [p* + p* - n2] 

dr/dr - pr,   dz/di = pz ; 

(13.5). 

ldp /di - -9W/3r,        dp Ah ■ -3V/3z = -dV/dz - 9W/3z   • 
X z 

These are the equations of a particle moving in a plane of rectangular 

coordinates  (r,z),  under the action of forces derived from the potential 

V = V(r,z).    As  in Section 8, our rays are those solutions of  (13.4)   in 

the space of the variables  (r,  z,  p  ,  p )   for which the constant value of 
r  z 

our present Hamiltonian (13.4) is zero.  Thus our present phase space 

£j is 3-dimensional: we shall denote it by Jo~  to distinguish it from 

the one in the 5-dimensional case.  Finally, in terms of the arc length 

s along the ray and the relation ds = ndr, the first two equations (13.5) 

show that 

(13.6) p » ndr/ds ■ n sin y, P_ = ndz/ds « n cos y, 

which correspond with (8.5), and give the trigonometric reason for the 

equation H * Ü. 

*  Despite a too common tendency to regard Snell's law as having the same 
degree of generality as termat's principle. Cf. Appendix A. 

112 

Arthur D Little lr 



il 

1 t 

\ i 

u 

11 

i < 

n 

I ! 

I 

The "action Integral" along the curve C (c.f. Section 9, end) 

becomes In the present case 

1(C) -   J pr 6r + pz 6z 
M 0 

j j On applying the general methods of Appendix E,  this yields the 2-dlmenslonal 
' i  ' • 

sliding Integral  Invarlent which (In the notation of that appendix)   Is 

(13.7)    l2 - //(6pr/v  6r + 6pzA   6z) 

and which, with the choice of region of  Integration depicted In Figure  13#I 

becomes 

I j (13.8)    I    -     ]]    n cos 0 dadY 
1       C    r 

This I.  takes the place of the I.  of   (11.6).     Here C Is any curve In the 
i 

rz-plane,  do an element of arc-length along It,  y    the angle from the +Z-axl8 
i 

to  (the positively oriented) normal to C,  Ö ■ Y    ~ Y»  the angle between It 

and the direction of a ray.    Finally,   F  Is any angular Interval  (arc of 

the unit circle).    See Figure I3»nt . 

We must now express the power flux P In terms comparable to  (13.8). 

We first recall equation (11.3),  to which we apply the special choice of 
2 

(5    and n of Figure lM> and the expressions (13.1) for dö   and dn - n dft. 

We are then able to write (11.3) as the iterated Integral 

*2 *2 
?(*)  -    /       d*   / r do      /        d;\      /  sin Y d Y  '  n2f i5(X-*) c.os0 

*! c ^ r 

[$ and   X   are two variables of integration, the first on  6  , the second 

on Q].    Now apply our Assumptions 1 and 3.   It is necessary to use the cylin- 

dric coordinate expression for the direction cosines of the normal and the 

momentum.    These are obtained by projecting these vectors on the horizontal 
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plane and then projecting the results on the two horizontal axes.    By 

trigonometry, we obtain for the normal 

cos a* ■ sin y' cos (J>, cos 6'  ■ sin y'sln $, 

and similarly, with the azimuth X of a general momentum vector,  Illustrated 

In Figure 13.IB, 

cos a ■ siny cosA,  cosß ■ sin y slnX 

Consequently,  after a trigonometric reduction, 

cos Q ■ cosa' cosa + cosß'  cosß + cosy'  cosy 

■ cos(X-(t))slny'   slny + cosy' cosy 

Inserting this Into the above expression for PW, we note that 

the X-integratlon, using the properties of the 6 function, converts 

co8(X-(|i)  Into cos 0-1; while the subsequent (^-Integration merely multiplies 

the resulting (^-independent integrand by the constant factor 412 - 4>-,; 

and we have, witK. Q m y'^y 

(13.9) PCO  - {$--<*,)     S da S     n2 r f cos e sin ydy. 
C        r 

As   the 2-dlinanslonal domain of integration (C,r)  is slid along the 

rays in our phase space Jh*   the power ?(*)  and the angular factor (it^-^) 

remain unchanged.    Therefore the coefficient of  (^--«K)   , the ipoiyr flux 

per unit azimuth angle. 

(13.10) p2 - ^c   ^r    n   r ^C08 esin Y dadx 

is a sliding Integral invariant, and hence, by the theorem cited in 

Section 11, the ratio of its integrand to that of I 2 is constant along 

the rays In ß   ; thus we have, using (13.6), 
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(13.11)   n-sln Y-r-f ■ Pr.r.f - Pr«r.f(rtz,p ) - const.(on each ray). 

It may of course be constant throughout all or part of £j. In any 
11 ^ 

case, for a ray issuing from the point (r ,z ) close to A in a direction 

at an angle Y^.C80 P- " P. " n(r *z  )C08 Y Vwe have O ^   Z    Z      O  0      o/' 

n(r,z) sin Y * r f (r,z,p ) - n sin Y  • r ? rz    o     o   o o 

Hence 

^* r^     n sin Y        Y*  P 
(13.12)   f(r,z,p ) -—  •  ■  • f ■ —=• • f 

T,        v    /    v , ,fz/      r     n sin Y     o  r  p   o 
r ,11 

n 
The presence of the quotient r /r on the right is what produces 

tha effect of "cylindrical spreading". 
4« 

) It is emphasized that all these results have been derived 

without assuming laminarity.    Moreover,  the assumptions which have led 

f 
it to them can be weakened, by postulating only that azimuthal symmetry 

applies when 4) varies through a limited angular range: the range just 

including the rays that could possibly reach the receiver. Thus the 

results can be applied to cases of some dissymetry of emission. 
i * 

In the case of laminarity — e.g., in the first approximation 

with W - 0 — Snell's Law applies, giving the result p - p0 - k; then 

(13.12) reduces to 

(13.13) f(r,z,p ) - — f . 
Z    IT   v 

* Nor, indeed, making use of the approximate laminarity expressed in 
Assumption 2. 
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Returning to the more general case, the fact that p Is always 

close to p makes (13.13) a good approximation. To calculate the acoustic 

Intenaity. equations (11.4) and (11.5) and the further considerations of 

Section 11 take on a somewhat simpler form in the case of azimuthal symmetry 

and the cylindrical coordinates. The same is true of the perturbation 

methods of Section 12. Thus in the cylindrical equivalents of (12.8) 

there are only two terms In the integrand, arising from the two non- 

vanishing derivatives of W. There are corresponding simplifications in 

the formulas corresponding to (12.11) and (12.12) derived from the 

earlier one. But basicilly it is not these various simplifications 

that are the important results of the azimuthal symmetry: the really 

useful consequences come from what can be inferred from the mixing and 

«tow 
random mixing In  the phase space ft.as we can,,visualize It. 

These consequences will be set forth graphically In the next 

Section. We can say in anticipation that there are intermediate range 

cases in which the constant in (13.11) is a function of p only, so that 

rf has this property, thus bringing far greater simplifications than any 

of the preceding paragraph. At still greater ranges, this quantity is a 

constant throughout a larger region of A, with still greater simplifica- 

tions. The derivation and use of these facts are most easily made with 

the use of a graphical device for representing the power relations, the 

surface of section. 
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14.    Graphical Representations and the Surface of Section 

This section continues the study of the azlmuthally symmetric 
i| 
* i propagation, with acoustic quantities depending on depth and range only 

and rays In vertical planes, of Section 13.    It takes the mathematical 

results established there and puts them Into graphical form, so that 

. their Inter-relations can be visualized.    In addition to clarification 
i i 

on the conceptual level,  the graphical presentation Is shown to lead to 

simple practical methods of predicting transmission loss at long and 

r| at Intermediate ranges.    Among other things,  the effects of such underwater 

obstructions as sea mounts and ridges can be examined and estimated 

graphically. 

The pictorial representation.      This graphical method Is made 

possible by the 3-dimensionality of our phase space ß>«, In contrast to 

the 5-dlmenslonallty of fP In the general case.    Our present».  Is In fact 

the locus of "points" (r,  z, p , p ) satisfying the equation 
IT Z 

| ,.        must represent its points in our ordinary 3-dlmensional space, and this 

2   2     2 
p + p  » n (r,z). To visualize the relationships in this manifold, we 
t   z 

is naturally done by means of a coordinate system.  In Figures 14.1 and 

14.11, which show the typical vertical plane through the emitter axis 

(4) * tji0, constant) of the rays in ordinary geographical space, the 

coordinates are (r,z) and they are restricted by the three conditions 

now to be given.  Firstly, r is positive. Secondly, z > z(surface)» a. 

This constant surface value a of z may be positive, negative, or zero, 

depending on our choice of the origin of the cylindrical coordinates: 

we may take a point on the ocean surface (then a ■ 0), at the emitter 
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A, or at the center of an acoustic duct (minimum c); In either case, a < 0. 

An origin above the surface would lead to a > 0; but this Is seldom used. 

Thirdly, z < z(bottom) - b. This Is an abvlous condition; but only If the 

bottom Is assumed to be flat do we have b ■ constant; otherwise, b - b(r), 

a function of range, corresponding with variations of the ocean bottom 

along the direction of propagation in our vertical plane. We shall, 

accordingly, take for our first two coordinates In the representation of 

JJia the r and z restricted as follows 

(14.1) r > o;   a £ z < Mr). 

The third coordinate In the representation of J\ must, at each 

given (r,z), specify the momenta p and p ; and vice versa. Since our r z 

J3.   Is made up of rays which are paths of power leaving the emitter 

axis, not approaching It,  their tangents are directed away from the 

z-axls, so that 0 < v < u  .    Evidently when (r,z) are given, each value 

of Y in this Interval determines p    and p  ,  in view of  (13.6); and vice 
L Z 

versa, each pair of values of the latter determines a unique value of y 

in the above Interval. Consequently the angle y could be used as the 

third coordinate in the specification of points in lib« . For some 

purposes y (or equlvalently the angle with the horizontal, (a > v/2-y)  is 

preferable; but for our present investigations simpler formulas and 

graphs are obtained by using the momentum component p - n(r,z) cos y. 

The possibility of this choice is due to the fact that as y Increases from 

0 to ir/2 and thence to TT, p will decrease from n to 0 and thence to -n, 

so that the Intervals (0 < y < ir) and (-n < p < n) are mapped in a 

continuous one-to-one correspondence, although with reversal of direction. 
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Note that this would not have been true If p had been used. We shall 

accordingly represent the points of JjS by values of (r,z,p ), satisfying 

(14.1) and also 

(14.2) -n(r,z) < P < n(r,z). 
ii 

ii 
Graphically, inequalities (14.1) and (14.2) determine a solid 

in the space of the rectangular coordinates (r,z,p ): this is our 

representation of Q«.  It is drawn schematically in Figure 14.1 for 

1 >•        the laminar case n » n(z) and in Figure 14.11 for the more general case 
I        n ■ n(z,r). Since in the former, the lateral boundaries of ft ..are the 

1,1 " ä 
loci of the equations p    ■ + n(z)   (not containing r)   they are cylindrical 

surfaces whose elements are parallel to the r-axls.    Furthermore, the 

locus of points in Äj for which p    = k (i.e. of given Snell constant) 

is made up of rays in the laminar case, since p    is then a first integral 

of the Hamlltonlan ray equations.    In terms of our coordinates  (r,z,p ), z 

this locus has the equation (derived from (13.6) and H = 0) 

**        (14.3) n(z)2 - P* - k2. 

tl Again the coordinate r is absent from the equation, whose locus is 

therefore a cylindrical surface of elements parallel to the r-axis. 

Such a cylinder is shown in Figure 14.1, with a ray having the corresponding 

value of k and therefore lying on this surface. The geometrical inter- 

pretation of the variables (13.6) shows that this curve must wind 

around the surface in a helix-like manner -- and with negative screw 

rotation as r increases. 
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FIGURE 14.1    PHASE SPACE IN LAMINAR CASE 

astix.    tiajßtA   imM ? * ^ 

ve -MaT»« •     vertical   f»1»«« of K*j<'     I 

tZ Zj— bott-o-ltn*      *^b 1     ^   ^1 

FIGURE 14.II PHASE SPACE IN GENERAL CASE 
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In the general case shown In Figure 14.11 the lateral boundaries 

of J? are the loci of p    - + n(r,z), and are not cylindrical — except 
* z 

approximately when n varies only slightly with r:    the "quasi-laminar" 

case.    As was noted in Section 13, p   is not constant along each ray; 

! 1 2 2 2 therefore the locus n    - p    ■ k    is not only not a cylindrical surface, 

but is not generated by rays:    a ray having a point on it will in general 

pass through it,  cutting it at an angle.    This angle will be close to 

', •' zero — sometimes greater,  sometimes less — in the quasi-laminar case. 
ii 

However,  in all cases the lateral boundaries are never crossed by the 

rays involved in propagation over appreciable distances, since they 

r, correspond to points where a ray Is directed downward  (y * 0)  or upward 

'' (Y ■ TT) .    In the laminar case these boundaries are made of rays that 

bounce up and down along the vertical (to be rapidly absorbed, of course). 

The ocean boundaries.    In all cases, any ray that meets the 
i : 

f 
i i horizontal boundary z = a   (the ocean surface) will experience a certain 

| degree of reflection,  absorption,  and scattering.    These effects are 

particularly complicated at short ranges, when the angles made with 

the surface are large,  and special physical assumptions are required for 

their treatment.    On the other hand, only nearly horizontal rays  (y close 

to IT/2, SO that p    is close to 0)  can be effective in longer range 
z 

propagation (many convergence zones): the assumption of specular 

reflection (with phase shift) has been found to be consistent with the 

physical observaMons. We shall make this assumption of loss-less 

specular reflection at the ocean surface for long and for Intermediate 

ranges. In consequence, any ray which cuts the surface at an angle 
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Y(>Tr/2) Is reflected so that Y is replaced by TT-Y (<Tr/2) . Therefore the 

point on the ray where It arrives at the surface, (r,a,p <0), lumps 

to the point where It departs, (r.a.p' - -p >0). This discontinuity 
■ - 2 2 

(break In the ray) as It Is pictured inJÖj corresponds to a sudden 

change In angle In the geographic space of the rz-plane. 

The behavior at the ocean bottom Is still more complicated, 

particularly at short ranges.    Each encounter Involves a complex mixture 

of absorption, and reflection    In directions and amounts depending on 

the physical nature as well as  the shape and depth of the bottom. 

Research on the subject ranges all the way from geological echo soundings, 

the extent of bottom bounce  (so Important in short range detection with 

certain types of bottom),  through phenomena at considerable ranges, when 

the repeated loss of power with each reflection takes out all that Is 

propagated.    This loss seems to be much greater under these circumstances 

than Is the case for surface reflection, and the simplifying assumption 

that for long and Intermediate ranges the cumulative absorption Is total 

has usually shown Itself to be justified  and will be made here.    The y 

of the ray through (r,z)  just touching bottom Is the critical angle. 

The surface of section.      The whole state of affairs described 

here can be given a graphical and kinematic Interpretation as follows: 

First, we cut the solid representing JjL  In Figures 14.1 and 14.11 by a 

vertical plane perpendicular to the r-axls (the locus of r - constant). 

The resulting figure Is a plane region E(or £(r)), bounded horizontally 

by the condition a < z < b(r ), and laterally by -n(r ,z)  < p_ < n(r ,z), 

as Is clear from (14.1 and  (14.2).    This I will be Independent of r    In 
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the laminar case (except when possible variations of depth b are considered); 

I I) but It will vary more or less as r Is changed In the non-laminar one. 

In all cases, (z,p ) serve as coordinates of points In E. z 

Every ray will cut Z In one and only one point as It traverses 

this surface with Increasing r.     (The only exceptions occur for vertical 

rays  (y " 0, TT)  In the laminar case).    This  Intersection will be called 

the ray's representative point.    Now let the vertical plane E(r) be 

moved continuously to the right — I.e.,  let r run continuously through 

Increasing values —:  the representative point on each ray will move 

continuously In Z,  except If It encounters the upper boundary z ■ a, 

when It will Jump to the corresponding symmetrical point by a reversal 

of sign of p , corresponding with surface reflection.    Another exception z 

occurs when a ray meets the lower boundary of E: z ■ b(r) . Since 

we are assuming total absorption at such encounters, we shall simply 
t 

I terminate such rays.    Thus we have defined a "flow" or continuous one- 
| 
;    . . parameter family of transformation» of E on Itself  (more explicitly, 
I     > 

of E(r0) onto E(r.j)), with the exceptional situation just noted on Its 
\ 

boundaries. 

This  transformation of E    Is area-preserving 

To prove this theorem, let A   be a plane reglor. within E (r ) 

bounded by the curve C   .    As r Increases fro-        co r,,  the poiu s of ' o o 1' ' A 
o 

and C will move Into points of new flares A. and C,: by construe, 'on 

the latter result from a sliding f the former along rays In ^ . 

Therefore the "phase Integral" 1(C) of Section 13, leading to (13.7), 
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has the same values: I(C ) - I(C,). But on these surfaces r is constant, 
o     1 

so Or - 0; hence the equation becomes 

C Pz 6z"4 Pz 6z' 0 1 

But these Integrals are the negatives of the areas of A    and A.,  as Is 

obvious by the geometrical Interpretation of each line Integral  (cf.  the 

^a^e of fcyf>x)i or alternatively, by application of Green's theorem in 

the   'lane.    We could have obtained the same result from the sliding 

invarlai 'e of I,:    on the plane r " r   ,   (13.7) shows that I, «Xf A  ^P   * &** 

and the Im grand is, in the notation of Appendix E, the element of area 

in the zp -pi we (apart from sign),  usually denoted by dzdp  .    Thus from 

the invarianct  of I^ we obtain the invariance of the area In question. 

A proof startii ? with (13.8) and the fact that on Z,   9 - TT/2 - Y. can 

also be given -   but reduces essentially to the one above.    It has been 

assumed in this    roof that the rays connecting A   and A.  nowhere meet 

the bottom; this Is essential.    On the other hand, the result can be 

extended  to specu ar reflection of rays at the water surface by an easy 

construction based on the symmetry in z-axis  . 

The surfac    I - Z(r) and the area-preserving continuous trans- 

formation — or'fl w"— Induced in it by the rays inß» ^s the applica- 

tion to the presen    case of the concept of the surface of section    and 

its transformation  , introduced into Hamiltonian dynamics by H. Polncari 

and his followers    t the turn of  the century.    See Poincare,5 Birkhoff.6 
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In the laminar case, the shape of E(r) Is Independent of r. 

During the Increase of r, the flow In Z (r) Is along curves K of given 

Snell constant k: they are the orthogonal projections onto l(r)  of 

the helix-like curves of the sort shown In Figure 14.1. The variety of 

possible paths In the laminar case Is shown In Figure 14.Ill when there 

Is a single duct (sound speed minimum) and In Figure 14.IV for two ducts. 

These correspond to stable horizontal rays, cutting Z In the point D 

and the two points D, and D2. Between the latter In Figure 14.IV Is a 

point J where the sound speed has a relative maximum, giving rise to 

an unstable horizontal ray, whose representative point J Is the multiple 

point of the locus of points having the same value of k; It has the form 

of a "figure eight". The representative point of any other ray with 

this same value of k moves along the figure eight, either approaching — 

but never reaching — J as r increased Indefinitely; or else moving 

away from It, taking a longer and longer "time" (r) as Its starting 

point is taken closer and closer to J. This situation becomes 

geometrically evident when the cylindrical surface having this figure 

eight as directrix and elements parallel to the r-axls Is drawn In ß as 

In Figure 14.1: It Is self-Intersecting along the unstable horizontal 

ray through J, and clearly no curve can succeed In winding about such 

cylindrical surface without Intersecting this unstable ray — a 

possibility ruled out by the uniqueness theorem of the differential 

equations controlling the rays . On the other hand, rays close to 

the stable horizontal rays (which cut I in D and In D. and D«) wind 

about their simple closed cylindrical surfaces parallel to the stable 

* Cf. e.g., Goursat & Hedrlr.k, Vol. 2. 
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horizontal ray, which Is Ins He the cylinders.    During the flow In £, 

li; their representative points  revolve about the fixed representative points 

D, Dj,  D«.    They are evidently periodic,  as shown analytically In Appendix 

B, but with periods depending on k. 

Certain special k-constant curves have been marked on Figures 

14.111 and 14.IV:    K    forms the lateral boundary of E; K.  bounds  the 

"Inner core"  (to be explained below);    rays whose representative points 

are between K   and K. are Important In bottom bounce and RAP propagation 

at short ranges.     Rays represented by points between K,  and K» propagate 
Ü 

I \ to long ranges by virtue of surface reflections  (RSR propagation) .     Rays 
it 

represented by points within lU remain entirely within the sound channel. 
} i 
is 

In the non-laminar case,  these sharp distinctions disappear, 

although represent an approximation. 

CT We may note that If i5    had been represented in the coordinates 

(r.z.y)  instead of  (r,z,p ),  all would have been similar to the above, 
z 

except that the lateral boundaries are vertical planes y  ■ O,TT; and I9 

would have had p öZA6Y for Integrand:  the transformation preserves 

r 
"mass" corresponding with p as density, not area. See Appendix E. 

Power flow In the surface of section: intermediate and long 

ranges. As shown in Section 13, the function p rf of (13.11) is constant 

along each ray in JÖj , except for those rays which meet the bottom, 

when it drops to zero — according to the assumption of total absorption. 

This means that the only part of I relevant to intermediate and long 

range propagation is what remains after the representative points of 

such terminating rays have been removed.  Calculations based on actually 
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observed acoustic profiles show that most of the area of I  Is removed 

In this process: only the part corresponding with the "central core" 

(the acoustic channel) is involved in Intermediate and long range propaga- 

tion. It is to this central core of I that the rest of the developments 

in this section apply. Of course for ranges of one or two convergence 

zones, rays corresponding to the omitted part of Z are the important 

ones, entering, as stated before, into the phenomena of the reliable 

acoustic path (RAP) and bottom bounce, so important in acoustic detection 

at these shorter ranges. The central core is bounded by K. : k - n(b)*. 

We incorporate the power flow density f in the expression 

(14.A) g " g(r,z,pz) ^ Pr r f(r,z,p2) 

which, as we have said, is constant along each ray cutting the central 

core of I:    during the flow induced in it by the rays, each representative 

point carries its individual value of g along with It; and each "level curve" 

g ■ const, in general deforms and moves in E as the flow progresses. 

Initially, i.e., at a range r = r close to the emitter A, the values of 

g are simple to describe: if the depth interval (z',z") spans the hight 

of the emitter together with its neighboring waters contributing radiation 

into the sound channel, then since the range of direction*y pointing 

into it correspond to the values of p at the boundaries of the central 

core—-i.e., to ±p (z), where p (z) - /n2(z) - nzOi)   ,  then the part 
z z 

of E(r ) over which g is not zero is the thin horizontal slice on which 

(14.5) z1 < z < z", - p,(z) < p < P,(z). 
z      z   z 

* For variable bottom b • b(r), b is replaced by Its minimum. CF. however, 
the sea-mounts examined later. 
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FIGURE 14.V     - Evolution of Mean Density with One Duct 

This shall be called the emitter's injection region, I. Our assumptions 

regarding the approximately uniform radiation in directions entering the 

sound channel and the azlmuthal symmetry have as consequence the approxi- 

mate constancy of g = g , except near its horizontal edges at z' and z", 

where it falls to zero quite abruptly but continuously. It is necessary 

to picture the evolution of this injection region I-*I(r) in E(r) during 

the course of the flow;   i.e.,  the  increase of range r. 

The rays through the injection region wind about  the axis of 

the dur^  as  suggested by Figure 14.1  in  the  laminar case;  and similarly, 

but less evenly,  in the more general one.    In the former case each ray 
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Is periodic, as shown in Appendix B; but with a period R that depends on 

the Snell constant:    R » R(k); therefore as r increases from r    to r    + R 

(I.e., by the period of a particular ray of the Injection region)  the 

points of this region will not In general return to their former positions 

— only those will whose period happens to be R.    Hence the Image of the 

Injection region In E(r    + R) will be the result of advancing points on 

each curve K: p    « k a different amount, depending on k.    This leads to 

the contorted Image Indicated schematically In Figure 14 V.    As r Is 

further Increased, this contortion Increases,  so that the Injection re- 

gion tends to Invade  the whole part of E between the extreme curves R. 

and K* corresponding to Snell constant extremes.    Since the rays In 

acoustic channels have been shown, under a wide range of actual conditions, 

to have periods varying by 30% or more depending on their Snell constant 

(as given by their Initial directions).  It Is clear that, as the range 

reaches some three convergence zones,  the Image of the Injection region 

Is twisted all around In the sub-region of £(r)to which it is confined. 

This subreglon is the area between the curves Ki, K*, and the loci of 

(14.3)  for the extreme values of k in the injection region, shown graphi- 

cally in Figure 14.V.    The calculation of these extreme values of k is 

done by substituting the limiting values (z',  p') and  (z*, p    " 0)  into 

(14.3),  etc.    Since the image of the Injection region contorts Increasingly 

as r increases still further, the picture that develops is one of its 

penetrating throughout the whole area of £(r)  between K.   and K*, so 

that every point is either in the Image or close to points In the Image. 

We have stated the matter as It applies to the laminar case.    It shows 

why it is natural to take the lower limit of the "Intermediate ranges" as 
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of the order of three convergence zones. In the non-laminar case the 

n ^ picture on E(r)  Is at least as irregular, but the Images of the Injection 

region are not precisely between curves such as K,  and K*:  see Section 16. 

We confine the rest of this section to the laminar case, deriving 

consequences frotf the considerations of the last paragraph:    the dependence 

of period    R - R(k)  on Snell constant k, so that points on different 

Snell curves are advanced by different amounts,  the cumulative effects 

contorting I(r) more and more so that it penetrates throughout the central 

core of E(r)  as r Increases.     [Sees.   15,  16 extend the results to W ^ 0.] 

H 
im Let us fix a small region AE on the central core of £(r); i.e.. 

u 

U 

li 

a region which does not vary with r.    As the flow on E(r)  progresses, 

the contorted I(r) will intersect AZ in a region AI(r)  - XCr)/!  A Z 

whose shape and area will vary with r.    We will assume that the area of 

AI(r)  approaches a  limit as r  Increases,  and,  in fact,  is close to this 

i limit after relatively few convergence zones.    A similar assumption was 

made by J.W.  Gibbs and by H.  Poincare       , who based it on the intuitive 

I 
I 
I 
I 
i 

analogy of the visible behavior of liquids on stirring or of smoke in a 

steady circulatory motion of air, and applied  it  to statistical mechanics. 

Only relatively recently have theorems been established which place 

such assumptions on a rigorous basis; they belong to ergodic theory; 

an outline of these questions in their bearing on the pre .sent situation 

will be found in Appendix G. 

Taking a fixed point   (z,p_)   in our fixed region AE.   let us z 

consider the behavior of our  lim AI(r)  as AZ shrimts down to it.     It 

seems clear that for    small AZ,      lim AI(r)   is proportional to the area 

*In his lectures on probability. 
**cf.  second,  third,   fourth and 
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of AS, the coefficient being a function of (z,p ); more precisely, It 
z 

would seem that there Is a density h defined by 

(14.6) h(z,p2) - 11m    11m 
AI^ 

AZ-H)   r*» LI 

This formula expresses the density h as a double limit, and, as J.W. Glbbs 

noted, would not exist If the order of taking limits In (14.6) were 

Inverted (I.e., first AJX) then r-*»). The result expressed In (14.6) 

can also be Justified by the ergodlc theory — given certain natural 

assumptions. 

It Is easy to see that h(z,p ) Is constant along each ray In fc~; 

for let (r,z,p2) and (r^z'.p') be two points on the same ray, and let 

the small region AE be traced In Z(r) containing (z,p ) and AZ* be Its 

Image In Efr'): It will contain (z) p'), and have the same area as 
z 

AZ — by the area-preserving property of our transformation on Z(r). By 

the same property, the area of AI(r) Is equal to that of Its Image, 

Al(rl). Thus the fraction Al(r)/AZ In (14.6) Is equal to the corresponding 

fraction AKr^/AZ1 for the image (r1, z', p') of (r,z,p ). Hence In 
z z 

the limit h(z,p ) * Mz', p'), as was to be shown, 
z z 

As the point (z,p ) moves In Z(r) with Increasing r, Its path 
z 

Is, as we have seen, one of the curves of given Snell constant k. Since 

It carries the value of h(z,p ) along with It, this function Is constant z 

along every such curve In Figure 14.V, and on each connected piece of a 

Snell curve In Figure 14.IV.    This means that with a single duct, when 

the Snell constant k Is given, the value of h(z,pz)  is determined — In 

other words,  the latter Is a function of the former: 
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h(z,pJ - F(k). z 

In the case of two ducts, this function could be double-valued, having 

one value on one connected piece (or half of the figure eight), and a 

different value on another connected piece of the curve for a given k: 

Instances of this occur In certain cases of shadow zones. Finally, there 

Is the Important possibility that the above function be constant — at least 

throughout certain of Its regions bounded by Snell curves. This would 

Imply that F(k) Is discontinuous, e.g., a step function. It Is In this 

way — and with h dropping to zero in some sub-regions of I— that shadow 

zones manifest themselves. 

The general expression of F(k) in terms of the given quantities 

and its evaluation in special cases are reasonably simple problems, and 

will be solved below. But first we wish to show that once F(k) Is found, 

the acoustic Intensity at any point (r,z) of the ocean and the transmission 

loss (TL) to that point can be calculated. 

The method is based on the assumption discussed above, namely, 

Ik that the quantity g(r,z,p ) defined in (14.4) — and which was shown in 

(13.12) to be constant along each individual ray — is also constant all 

over the initial injection region I. Let its value be denoted by q. 

First, we can express the acoustic Intensity over I (i.e., near 

the source) in terms of q—and vice versa. For this purpose we apply 

(13.10) to this region, C taken as the vertical segment z^z^" of (14.5), 

and the domain V  of integration being the angular interval 

(14.7) T:y <y<-n-y  , Y =sln"1[n(b)/n(z)] 
O 0 o 
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which corresponds to the second Inequality In (14.5). The angle of the 

normal Y1"1
^, so that cos 9" sin Y.  Since, further, 

r p f(r ,z ,p ) - q, equation (13.10) gives—with the aid of (13.6) — 

the result 

fz"       r'Yo fz" 
P2 ■ q l  n(z)dz I   sin YdY ■ 2q I    n(z) cos Y dz 

o 

Applying the law of the mean to the last integral, it is expressed 

exactly as 2q(z"-z,) p (z ), where z is suitably chosen in the interval 

(z1, z") — and with acceptable approximation if it is taken at the mid-point, 

as we shall do henceforth. The resulting P, is the power flux across I 

per unit azimuth ((j)).  To find the power flux per unit azimuthal arc 

(s «r iji) we must divide the expression by r . Finally, to find the power 

flux per unit area, we divide this further result by z"-z'.  Now the 

acoustic intensity is the power flux per unit area across an element of area 

for which this has a maximum value. In the present case this coincides 

with an element of our vertical cylindrical surface, generated by revolving 

the depth interval (z*, z") about the z-axis (taken through the emitter). 

This follows from the calculations In the above evaluation of P.. Hence 

(14.8)     acoustic intensity on I - 2ao (z )/r . 

After these preliminaries, we evaluate the corresponding quantity 

at an arbitrarily given point (r,z,p ) in the central core and at a long 
z 

enough range for (14.6) to give an acceptable approximation.  The whole 

matter turns on the replacement, in (13.10), of the density f by a sort 

of average, f, corresponding with the limiting processes underlying (14.6). 

The reasoning is as follows: 
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Let AI be a small fixed region In I(r). At those points of AZ 

through which rays pass that cut I—i.e., at points of AI(r) —the value 

of f is given by the equation derived from (14.A) and the assumption g=q: 

therefore fmq/rp  ; at all other points of AL, f-0. Therefore the total 

power flux through AE is this f multiplied by the area AI(r); and the power 

flux per unit zp - area is found by dividing this product by area AI, giving 
z 

f Al(r)/AI. The result of replacing this quotient of areas by its limit, 

(14.6), i.e., by h(z,p )=F(k), is the mean flux density, and we have In z 

I    U (14.9) f(r,z,p ) - -*-   F(k). 
I rpr 

j i 

• a 

We now insert this into equation  (13.10)  in place of f,  and integrate over 

an angular  interval T.,  defined as in  (14.7),  but now using for z the depth 

at  the receiver,  which lies Within its depth interval   (?',£").  We obtain 

(14.10) P2 -   <j jdo    j      nF(k)  cos 0 dy 

To express this power flux per unit azimuth as a flux per unit azlmuthal 

arc, we divide by r, as before. Now select for C an element of arc, AC, 

so that the a-integration reduces to multiplication by the latter. When 

the result is divided by AC, the following expression is obtained for the 

power flux per unit area (in physical space): 

pr. flux unl^ area = (o/r) /   nT(k) cos (Y-Y1) dy 

(K-IO)' 

ri 

= JR (r,z) sin Y' + Z(r,z) cos y' 
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where R and Z are the radial and vertical components of this flux vector 

(of. the U, V, W, In (11.5)).  We will show that 2-0, so that the acous- 

tic Intensity at the point (r.z) will be simply R, given below. 

In the Integration over Tt  the angle y  goes from a value y    for 

which k ■ n(z) sin y  - n(b), so that sin y, ■ n(b)/n(z); through the 

value ymTi/2  (k-n(z)); and thence to Tt-y. . This can be seen from Figures 

13.111 and IV, etc. In these two symmetrical sub-intervals of Ij, sin y 

and k run through the same (positive) values; whereas cos y  and p go z 

through equal and opposite values.    The explicit expression of £(r,z) 

obtained from (14.10)   shows that the Integrand Is n(z)F(k)cosY"P F(k); 
z 

and this, being reversed In sign in the second sub-Interval as compared 

with the first, leads to a zero Integral over r(, proving our statement 

that Z - 0. 

For R we have, applying (14.8), the expression 

(14.11) R  =  -  /   F(n sinY) n sin Y dY 

From the symmetry of the Integrand in the two sub-intervals of r(> it Is 

seen that this Integral may be written as twice the Integral over the 

first sub-interval (Y > ^/2), which corresponds to k running from n(b) 

to n(z). Hence, writing 

n sin ydy - -d(n cos y)  = -dp - kdp/p 
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n(z) 

(14.12)    R - •^L       f       F(k) —T^Tv    ■ acoustic Intensity at (r,z). r   J P_VJ!t't/ 

n(b) 

Since the vertical component Z Is zero, the maximum power flux per unit 

area Is in the radial direction; hence It Is the acoustic intensity, 

as stated. 

The transmission loss Is the ratio of the acoustic intensity 

at the given point (r,z) to that at the source e.g., on I.  From (14.8) 

and (14.12) It Is 

TL - -2-   -4-^   f F(k) -J^ 
Z 0    n(b)        Z 

[Note that "TL" Is most frequently measured In decibels, so that 

10 "TL" - 101ogin TL, givea In (14.13)]. 

It remains to find the function F(k). for this purpose, we 

first observe that (14.6) expresses the function h(z,p ) as a z 

density over the plane I, which, when Integrated over any fixed 

sub-region A of E, gives the Uniting area of intersection of I(r) 

with Z: 
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(14.14)       ( C   h(z,p ) dz dp - 11m area of A O I(r) J kJ z      z 
A r*« 

[proof: subdivide A Into a large number of small pieces AZ, add 

corresponding products h(z, p )AE, and pass to the limit]. z 

We shall take A - A(k),   the locus of points of 1  for which 

p    >, k.    Since the maximum value of k Is n(z), where z Is the depth at 

which n(z)  Is maximum (minimum sound speed c), we have k <, n(z). 

When k ■ n(z), A(k)  reduces to the point  (z, o),  corresponding to the 

stable horizontal ray.    As k decreases  from n(z)to Its minimum value 

n(b)   for the central core,  A(k)   grows  from this point to the whole 

central core, bounded by K.   of Figures 14.Ill,  IV, V.    The area of 

A(k)— also to be denoted by A(k)— Is,  as was seen earlier,  the 

contour Integral of p 6z about its boundary (p =k)  In the 

negative sense with respect to the enclosed region A(k). 

Consider the marginal region AA - A(k - Ak) - A(k),  I.e., 

the locus of points for which k - Ak ^ p    < k: it is bounded by Snell 

curves of the types shown in the above figures.    In the simplest case 

of a single relative maximum of n(z)   (III, V), AA is either a ring, 

or,  In the region RSR propagation,   the lower part of such a ring,   cut 

off by the ocean surface z = a,; but more complicated situations may 

occur.     In all cases, however,  the area of AA is given by contour 

integration of p 6z about its whole boundary. 
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Since the "Snell curves" on I are Invariant under the trans- 

formations In It  (produced by varying r), both A(k)  and AA are Invariant 

regions In this "flow".   Therefore their figure of Intersection with 

I(r), while contorting and changlr $ with r, always remains in AA and 

has an unchanging area.    Therefore the "limit" sign In (14*14) when A is 

taken as this region AA, may be dropped:    I.e.,  the Integral Is equal to 

the constant value of the area of AAni(r).    Taking,  In particular,  r-r , 

the value Is the area of the small  figure cut off by  lines of depths  z' 

and z" from the thin marginal AA;  cf.   the curvilinear quadrilaterals 

In Figure 14.V.    Whatever Its shape,   the area Is always given by contour 

Integration of P_6z. 

On the other hand, since our basic  (ergodlc)  assumption Is 

that h(z,p ) - F(k),  the integral on the left In (14.12)  Is easily  found, z 

when A = AA, to be the area of AA times F(k) where k is between k - Ak 

and k. Equating this product to the expression of the last paragraph, 

we obtain 

area of region {z,<z<z", k-Ak<pY.<k} 
(14.15)       F(k) = lim ., area of region {k -Ak<p <k} 

Ak->o " r 

This limit may not exist  for certain exception values of k.     If I and 

X, AZ  do not Intersect,  it is  zero  (shaddow zone);  if they do,  it is  in 

♦ general positive and finite; but at  possible discontinuities at 

boundaries of shaddow zones, no limit may be approached. 
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We shall evaluate F(k) at a non-exceptional point, and In the 

simple Illustrative case of Figure 14.V.     The denominator in (14,15), 

being the difference in the areas,  A(k - Ak)  - A(k),  is  to quantities of 

higher order,  - Al(k)Ak,    Now evidently 

•z2 /z2 
A(k) 2    J        |p   |dz -  2  y        /n^ - k^    dz. 

zl zl 

where z.  and z-  are the intersections with the z-axis of the curve 

p    ■ k  (i.e.,  n(z.)  ■ k).    When differentiated with respect to k, 

three terms  are obtained,  two contributed by the limits of integration 

(which are functions of k) — but these are both  zero.    The third term 

is given by differentiation under the  integral sign (Leibnitz'  rule), 

[its integrand becomes infinite at the two limits of integration, but,   in 

the general case when n'iz.) t 0, being a uniformly convergent improper 

integral,      this   formal process is valid].     Thus,   finally,  dropping 

higher order terms  in Ak, 

(14.16)       &A=-A,(k)Ak • Ak2 / kdz - R(k)  Ak 
■z1    /n^ - k^ 

where R(k)   is  the period of tie ray;  see Appendix B, in particular 

Figure BI and equation (B.6). 

Similarly,  the area in the numerator    is  given by an integral 

like that  forAA(k),  but with z'  and z" as  its limits of integration. 

To quantities  of higher order in Ak it  is an integral like  (14.16),  but 

again with the above change in limits of integration.    Therefore we 
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may cancel the Ak from numerator and denominator In (14.15), whereupon 

wt see that F(k) Is the ratio of the two integrals in question.     Since 

the depth interval of the emitting body,  z" - z',  is small, we write 

the numerator in the form 

(z" - z')  2k//n2(z )  - k2 (z^z <z") o o 

This expression, exact for a suitably chosen z (by the law of the 

mean), is correct to terms of higher order in z" - z' for any z in 

the interval. Thus we have 

2k      1 
(14.17) F(k) - (z" - z') 

y/n2,   \      .2  R^ ■(zo) - k 

with R(k) given by (14.16). 

It is useful to express this result in terms of the "aperture" 

of the region of initial Injection I: Taking as before z « (z"-z')/X 

the point A on the axis of our cylindrical coordinates with z ■ z , 

r«0, nay be described as a central reference point of the emitter. 

The angle subtended at A by the two points A1: (r=r , z-z') and 

A": (r-r , z-z") may be called the "aperture" of I; it is determined 

by 

Z. A'AA" - 2a,  tan a - (z" - z!,)/2r . 

Hence (14.17) becomes 

(14.18) F(k) -   —^7 Tv   ■   r    tana«-— 
Pz  (z0.

k)        0 R(b) 
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M-ß' ■* where      p  (z  ,k) ■ Yn (z^)  - k  , as usual* 
2     o 

Wich this expression for F(k)   Inserted Into (14.12) and 

(14.1.3), explicit formulas for tbe acoustic intensity and the trans- 

mission loss are obtained.    We write the latter in the form 

J1 n(z) /u2  JI 
(14.19)       TL-     ^^     To       r ^-^ 

a       TQ       /• 

(.k)  7    J p,(zn,k)    r R(k)  p,  (zrt,k) p (z.k) z    o in(b) z      o z 

This can be simplified by making the following physically 

reasonable  (and usual)  assumption, making the choice of the vertical 

segment  (z',z") more precise: 

The aperture is equal to the angle (2a ) between the two 

critical rays. 

Then p  (z   ,k)  ■ n(z )COSY    ■ n(z )sina    « n(z )  sin a so that, rz    o o o o o o 

in (14.19),(tan a)/p (z ) = c(r )sec a.     Since for the angles as close 

2 
to zero as occur here, sec a > 1 + [a ] > 1, this reduces to c(z ), 

and we obtain the  formula   (with the standard convention r    =1). 

(14.20)       TL - 0 ' 4k    d" R(k)py(zft,k)p  (z.k) 
/i \ z     o z n(b) 

This  formula coincides with the laminar case of the expression 

(25.1)  for the transmission loss in the correlative study of the 

present series: "Computation of Long Range Propagation Losses in a 

Duct"  (June 20, 1973).    The following line-up of  symbols is observed, 

142 

Arthur D little Im 



D 

the first line being those used In the present study, the second.   In 

the one cited: 

r z zo       pr, fc A(k) R(k) n(zo) 

:; z,zr      z8        P J X 1/c  (0,zf) 

The fact that such apparently different methods as the present 

one and  that of  the memorandum cited  give the same results  (in the lamin- 

ar case,  at least) may deserve some comments—beyond  the general truism 

that two correct methods should give the same result.    For not only are 

the two methods based on approximations, but on what may at first appear 

to be different models:  the present study starts with the explicit assump- 

tion that in the radiation field infinitely many rays—one in each direc- 

tion—pass through each point.    The reference starts with individual 

rays,  but  in its averaging process,  actually translates them horizontally, 

so that the result is  to have,  again,   infinitely many rays through each 

point.     Finally,  the mode of averaging in the present paper is over  the 

surface of section—or the rings into which it is subdivided by the 

Snell constant curves, whereas the method in the reference Is to average 

by horizontal translation in space.     The fact that  these two methods 

give the same result is a corollary of  the ergctdic  theory. 
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15.    Continuation:     The Statistically Laminar Case 

This section continues the study of rays in a vertical plane with 

azimuthal symmetry,  treated In the last  two sections,  and uses the model 

and the four assumptions of Section 13,   together with the graphical rep- 

resentation of  the phase space JS,     and  the surface of section E(r)  of 

Section 14.     Now,  however,  the sound speed and refractive index 1/c =n = 

n(r,z) will actually vary with r as well as with z.    This has the two 
i 

following consequences:    First,  the quantity p    is no longer a first 

Integral of  the ray differential equations—its value changes along each 

ray  (Snell's  law In the large,  p =k,  is  Invalid).    Secondly,  the trans- 

formations on the surface of section Z(r),  Induced by the rays and pro- 

duced by changing r, and which we have described as a "flow" in I,  is no 

longer a steady flow:    It' when r is Increased  to r'   the point  (z,p )   goes 

into the point  (z   ,p ),  it w 11  in general not be true that when r1   is 

Increased by the same amount  (r-r)  to f-i^r-i  +  (r -r),  the point  (z,p ) 

will go into  (z'fp1).    In mathematical  language, our one-parameter family z 

of transformations on I no longer has the group property.    The flow is, 

nevertheless,   incompressible        since this area-preserving property 

results from the Integral Invariants of any Hamiltorian system. 

From the first consequence  (p    not constant along a ray)  it 

follows that  the rays in    /j, are not confined  to cylindrical surfaces as 

in Figure 14.1,  and  the flow in I is not along fixed curves   (lines of 

steady flow,   the Snell curves of Figures  14.Ill,  IV, V).    And of course 

our ray differential equations cannot be solved by quadratures,  as in 

Appendix B. 

*     In Assi'mption  2,  W is a random perturbation and W = 0. 
t    To be regained  in Section 16 by a deformation when W is ncn-random but small. 
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11 From the second consequence (the non-steady nature of the flow In 

I—the absence of the group property) a still more radical change Is produced 

In the methods used In the laminar case:     the ergodlc theory does not 

apply.    Therefore, while we may still think Intuitively of the mixing of 

flowing regions on £, our earlier basis for such conclusions as those 

enbodled In (14.6) and Its consequences, no longer exists.    On the other 

hand—and this will come as no surprise to students of statistical phen- 

pmena In physics—those same environmental complexities,  that have derprlved 

us of the earlier methods, actually give simpler results, since the random 

departures from lamlnarlty tend to even things out at the larger ranges of 

concern. 

First let us see how the variation of profile with range, concern- 

ing which Assumption 2 of Section 13 has been postulated (V -IMJ(z)), yields 

Information concerning the first order perturbations In the rays when 

V-U(z) + W(r,z)  replaces V -U(z)   In the   canonical equations.    For this 

purpose we apply the model and the statistical methods to the perturbations 

given In Section 12.    The reasoning leading to equations  (12.2)-(12.7)   gives, 

in the case of cylindrical coordinates, where U is independent of r, 

dp /d^ - -3U/3r - 3W/9r • -3W/3r, 

and W -0  (to terms of first order).    Hence dp /dt-O, and p »p  ,lt8 initial 

value, which we may denote by k.    On the other hand, 

dp /d T ■ — (dp /dr)  - p  (dp /dr)  - T   -:—   p rr di      rr rr    rr 2    dr       r  . 
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Taking population menas as above, we find d p i'dzm0.    Thus p  Is constant 

along each ray. Hence the standard deviation a(p ), which equals the 
—T    — 2 

square root of p  - (p ) , is constant along each ray, and since Its Initial 

value Is zero (all perturbations being Initially zero, as noted In Section 

12), the perturbation of p Is a random quantity of zero standard deviation: 

In other words, a constant. This, of course. Is based on the approximation 

of first order terms In the calculations. The fact that when second order 

terms are Included, as in the calculation of second moments by formulas 

such as (12.11) and (12.12), the standard deviations in the random pertur- 

bations can be expressed as integrals of small but positive integrands, 

shows that the first order conclusion is false at a higher order of approx- 

imation.  In fact, as we have noted at the close of Section 12, a rough 

but reasonable estimate would be that o(p ) Increases as the squ'fc root 

of the range. A further application of the first order apprcxima . ion to 

the other coordinates and moments shows that, since the term containing 

r has a zero population mean (W=0), the steadiness of the flow in E (the 

group property) is valid for the mean positions as it was in the laminar 

case. 

These considerations have two important practical consequences: 

First, the methods used in the laminar case continue to give 

approximately valid quantitative results over long enough ranges for a 

random departure from laminarity to set in. 

Second, beyond the ranges within which the first order statistical 

calculations give acceptably accurate results, it is the higher order 

statistical quantities in the profiles—more explicitly, the variances 
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and covarlances in the ensemble iVr —that give the measure of the 

necessary corrections.    This has been indicated in Section 12.    Such 

ranges will be termed  "long ranges" to distinguish them from the "inter- 

mediate ranges", at which quasi-laminarity and ergodic mixing are accep- 

table, and the "short ranges" at which laminarity and deterministic 

calculations based on Individual rays give valid methods.    The import 

of our second conclusion for long ranges is  that since the second order 

statistical quantities of the acoustic medium are not only unknown, but are 

shown to be subject to random turbulence,     ; their values are 

less stable and permanent taan the first order quantities  (e.g., mean 

sound speeds at given positions and seasons)—the appropriate methods 

of calculating their effects are stochastic ones. 

The basis of such methods, as we shall apply them, are intuitive- 

ly simple and,   in their mathematical form,  long familiar in the statistical 

mechanics of systems  in equilibrium.    The intuitive picture to which we 

appeal is that of card shuffling, when no cards are lost or added to 

the pack; or of stirring of a fluid, provided no matter Is lost or gained. 

The result of such shuffling or stirring is a uniform spreading out of 

any initially identified set of cards throughout the pack or of a stained 

portion of the fluid  throughout its mass.    Our acoustical application is 

to the surface of section I,  the stained portion being the region of 

initial Injection I,  and the conservatlonal property the preservation 

of areas      (the Hamlltonlan Intp.gral Invariant)  and the conservation of 
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power flow..The result  is a statistically uniform dispersion of I throughout 

the parts of I corresponding to the sound channel.    This leads to a 

drastic simplification of  the formulas replacing (14.13)  and  (14.19), 

giving essentially the same result as would be obtained by replacing 

F(k)  by a constant—moreover, a constant easy to calculate. 

There is one complication In the application just mentioned: 

In contrast to the laminar case,  in which the sound channel corresponded 

to the central core of E, bounded by the Snell curve of rays of critical 

angle,  in th« present case such a central core can only be defined 

statistically,  in terms of means (first order statistics).    But then 

the variances will produce a random leakage or diffusion out of this 

central core:    in any given range interval, some rays will cross the 

core's boundary and may—possibly after a surface reflection—hit the 

bottom and be absorbed before they regain the core.    This produces a loss 

of power which,  in our present model,  is equivalent  to applying a factor 

slightly less than unity to each range interval Ar,   this factor being 

the same for any Interval of the same length.    The cumulative effect 

is to multiply the power, that would otherwise be transmitted, by the 

exponential factor e       , where a is the loss coefficient.    In the 

present state of our science, it is not possible to distinguish the 

exponential decay due to this leakage out of the duct from the possible 

effects of absorption and scattering, both of which multiply the trans- 

mitted power by a factor of the same type.    Any experimental observation 

leading to the measurement of such a coefficient a gives only the sum of 

coefficients due to all such effects. 
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In the quantitative expression of these largely Intuitive 

Ideas, we first define a "statistical central core" E, where, as In 

Section 14, the critical angle restriction Is applied by the second 

2 2 Inequality In  (14.5).    However, since the quantity n  (z)-n (b)  used 

~2 ~2 there now depends on r, we replace It by Its mean n    (z)-n (b).    The 

latter Is obtained at once from (12.1) and Assumption 2 In Section 13 , 

which shows that n  (r,z)  ■ -2U(z), etc., Independent of r.    The boundary 

of I will still be denoted by K.; and I(r ) will be the Injection band 

defined by (14.5):     It Is bounded by K. and the two lines of depths 

z'  and z"   as in Figure 14.V. 

Into I(r )   the total power (per unit azimuth) P4  is injected o * 

as in Section 14,  and this can again be pictured as the uniform stain- 

ing of this region by a dye of total amount P^ «    Again in the flow of 

the (2-dlmensional)   liquid in E (r), as r increases from r    to large 

values,  the dye is  transported and contorted;  but now there Is only a 

steady flow in the mean approximation:    we may picture the situation 

as a steady flow combined with a diffusion of  the stain into the un- 

stained parts of the liquid, adding to the spread of the pigmentation, 

whose density on E(^)  is g(r,z,pz)  - q on I,  - 0 off  I;  cf. (14.8). 

The picture that unfolds seems intuitively clear—and will 

be given a mathematical basis in the remainder of this section:    at 

long ranges the pigmentation becomes uniform over the region E(r). 

(Note that  E  (r )   and E(r)  are distant parallel regions, both congruent 
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to I).    At such ranges the intensity of pigmentation approaches a limit g(z,p ) 

z 

— and in the following sense: First, the quantity of dye in any fixed 

element AE of E(r) approaches limit AC as r-*»; second, AC/AE approaches 

g(z,p ) as AE-»-(z,p ).  [This is the same sort of double limitimg process 
Z Z 

as was used in (14.6) and in the replacement of t by f in the proof of (14.9) 

and (14.10)]. Now the nature of this uniform mixing and diffusion through- 

out E leads intuitively to the conclusion that g(z,p ) is a constant—i.e., z 

is Independent of   (z,p ).     Since the total power per unit azimuth is P9,  this 
Z '4 

constant limiting density must be P„/E.    On the other hand,   the relation 

between q and P9, derived  in the proof of  (14.8),   is ?_ » 2q(z"-z,)p (z ); 

we have t, .       _  .       /    wir g(2,p )  » 2qAzp  (z )/E  . 
z z     o 

Because of the uniformity of this density over  E,  the dyed fluid 

(power per unit azimuth)  received at a detector having a reception band I. 

(defined as I was, but at the detector's depth z and depth interval (;',?") 

of length AO  is the product of this area,  i.e.,   2A^p  (z),  by the above, z 

namely 

2qAzp  (z )   .  2 Acp  (z)/I 

The power flow through I,   in the azimuthal interval A<t) ■ As /r is the 

product of the above quantity by this &$,    The acoustic intensity at the 

receiver is the result, divided by the element of area,  ACAs. ,  I.e., 

^    2Az p  (z )    2p  (z)/I 
r z   o z 

Finally,  to find the transmission loss we divide this by the acoustic inten- 

sity at the source,  given by  (14.8), obtaining: 
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TL - -j^   2Azpz(z)/E 

which is exactly what  (14.13) would give if we set F(k)  - const.  ■ I /E. 

We now give a rigorous mathematical treatment substantiating—and 

In fact extending—the results of the intuitive picture just developed. 

The basis of the mathematical attack on the problem consists in a well 

known theorem in analysis,  the proof of which is outlined below and in 

Appendix G, and which states that under the application of our transforma- 

tion in I—now involving random factors—a certain logarithmic integral 

tends to decrease twoard a minimum.    Therefore after a steady state has 

been approximately reached  (i.e., at long ranges),   this  integral will be 

at or close to its minimum.     By a second theorem in analysis, the situation 

when this integral is minimum is the one of uniform distribution of I 

through I mentioned in our  intuitive description.    The logarithmic integral 

employed is essentially the "information" of modern communication theory, 

and its negative is J.W.  Gibbs'  "entropy".    The method based on this integral 

is that by which Gibbs established his "canonical distribution", and—in a 

much more complicated setting—Boltzmann established his "H-theorem". 

For brevity we shall represent points  (z,p )  on E by single capital 

letters such as M,  etc.;  and  the element dzdp  (or  6z^Sp )   of area in an 

integral over Z or a piece of it by the corresponding dM,  etc. Finally,   in 

Integrations over the whole of E, the symbol for this domain of integration 

will not be written. 
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Let M be a point on £  (r).    For each Individual V of the pop- 

ulation   {V}  , a 1-1 deterministic area-preserving transformation of 

Z (r) onto E  (r1)   (r^r)  is determined, by which M is transformed into 

a definite point, M1,  on if (r1).    For a different individual in {V} 

there will be a different image M'.    Because of the "randomness" of the 

choice that Nature makes of V in each actual case,  all that can be said 

of the image M'  is that,  given a piece of AZ of  E   (r1)   there Is a 

definite probability prob(M,  r; AZ.r1)  that the image M'  on E  (r') of 

the given point M on E   (r)   shall belong to AE. 

While all the results obtained in the sequel would be valid If 

this probability—which is an "additive set function" of AE—were used 

directly,  it is physically justifiable, and contributes to the familiarity 

of treatment,  if we assume the existence of a probability density 

(KM.rjM'.r")  - lim prob  (M.r^E,^)  / AE, 
AE^M* 

so that, for any subreglon E of E (r1) 

(15.1)  prob (M.r^.r') - // Q/M^MV) dM'. 
E* 

Clearly if what is given is not a precise position M on E  (r) 

but a probability distribution of such positions,  of density P(M), where, 

for any part E    of E  , 

// P(M)  dM - prob     (M is on E*-E*(r)), 
E^ 

the above formulas show us how to calculate the new   probability distribu- 
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tion P'CM') of Images on E  (r'):    by compound and total probability (and 

the usual subdivision of regions,  combination of possibilities,  limit 

taking, etc) we obtain 

(15.2)      P'tM') - // P(M)  Q(M,r; M'.r') dM 

This Is the familiar expression for changing probability densities In 

stochastic processes. When no confusion results, we shall drop the 

letters r and r', and write the factor in the Integrand as Q^M'); 

it is called the "kernel" of the transformation; it is obviously non- 

negative. 

Since the image of any point M on Z (r) is somewhere on Z  (r1) — 

*» by our earlier assumption—it follows by total probability that the 

integral of our kernel with respect to the second variable is unity! 

■■ 

- (15.3)  // Q(M, M') dM' = 1. 

11 
On the other hand, there is no reason adduced up to this point that 

ji 
11 
« would permit us to assume that its Integral with respect to the first 

— variable M should have any particular value, or indeed be independent 

of r. This is because we have not yet made use of the area-preserving 

property of the transformation (fo' each choice of V) on the surface of 

section. We now prove the following: 

I 

I 

l 

Theorem 1.  For the present kernel CKM.M'), 

(15.4)  ;/ Q (M.M') dM » 1 
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The basis of the proof Is the following: 

Lemma. Formula (15.2) transforms a uniform distribution on 

Z  (r):  P(M)"l/area I    - 1/f Into the same uniform distribution on 

Z  (r'):  P'CM') - 1/E 

Clearly If (15.2) Is applied with 

P (M) - F'tM') » 1/E 

the equation (15.4) follows, by cancelling this reciprocal area.  To 

establish the lemma It Is evidently sufficient to prove that each 

deterministic transformation corresponding to each Individual choice 

of V from the ensemble \y }   leaves the uniform distribution Invariant. 

Let E be any piece of I  (r) and E' its image in E (r'). Since a 

point M will be in E if and only if its image M' is in E , the (uncon- 

ditional) probabilities of each of these events are equal.  Since the 

areas of the regions E and E' are also equal (by the Hamiltonian 

property) we have 

prob (M in I ) prob (M' in E') 

area 7 area ?' 

From this, by taking limits as E  and l' approach M and M1 respectively, 

we get the equality of probability densities at M and its image M*. 

in its general form this result is useless, since M' depends on the 

randomly chosen V. But if applied to the case in which the density 
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0 
approached by the quotent on the left is uniform, it shows that the 

1 
one approached on the right is also uniform—and this for every choice 

of V—which proves our lemma. 
i i 
mi 

We now have the classical theorem of information theory, based 

[| on the "convexity" properties of the function u log u (defined by taking 

f, the natural logarithm when u is positive,  and as its limit,  zero,  as 

'• u -»■ 0 through positive values).    We write the non-linear functional 

i 
U (15.5)     G[P(M)]  = ;/P(M)  log P(M)   dM 

* • 
and have  the theorem: 

ii 

Ii Theorem 2.    For every transformation of type (15.2)  in which 

the kernel (HM.M')  satisfies   (15.4), 

(15.6)       GtP'Ol')] < G[P(M)], 

the equality occuring only when P(M) minimizes G[P(M)], or else when 

(15.2)   is  "trivial"  (deterministic). 

The proof,  in brief outline, consists in observing that,  in 

virtue of   (15.4),  transformation  (15.2)   replaces P(M)  by a weighted 

mean P'(M;)  - ^(M), where the kernel Q(M, M')  is the "weighting factor"-- 

actually,   a set of such factors,  depending on r,  r1, M'.     By the con- 

vexity  of u log u (graph concave up  for all u >^ 0),  every  the weighted 

mean uf values of this function is greater than the values of  the same 

function for weighted mean values of the variable: 

am 

r 
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u log u ^ u log u 

In the present case we have, with u replaced by F(M), 

u log u « // QCM.M') P(M) log (M) dM 

u log u - P'CM') log P' (M') 

Substituting these in the above convexity inequality, and then Integrating 

with respect to M' over I  , with application of (15.3), gives the desired 

conclusion (15.6). A more detailed study of convexity methods gives 

the last part of the theorem.  See Appendix G for more details. 

Theorem 3. The minimum value of G[P(M)] occurs when P(M) is the 

uniform distribution P(M) ■ 1/area I  »1/f . 

Information-minimizing expressions under various constraints 

(e.g., given moments) are usually sought by the formal methods of the 

calculus of variations. When such minimizing distributions exist (which 

is the exception rather than the. rule) , and when an explicit formula 

has been found for them, the fact that they actually have the minimum 

property is often easily established by elementary relations of convexity. 

In the present case we wish to show that for every distribution P(M), 

the uniform ones gives a < informational integral; I.e. that 

(15.7) // P(M) log P(M) dM - ;/-£- log -j- dM > 0 

On setting P*(M) = P(M) E    (which is the ratio of the given to the 

uniform probability density) It is seen at once that the above 
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difference can be written as 

// P*(M)  log P*  (M)  dM/I    -    P* log P* 

which is a mean using 1/1    as weighting factor.    It is therefore not 

! —   - 
less than P* log P*, by the convexity; and since 

I ii   
P* - // E ' P(M) dM/E -1 

;-, 

The validity of (15.7) follows—actually with (>) replaced by (>) when 

| j 1 P(M) is not uniform. 

From this result the formulas for the acoustical intensity at 

long ranges can be obtained in simple form, involving areas of the parts 

of the surface of section relevant to the positions of the sound source 

and the receiver. Before giving them, two remarks aie in order: 

First, the above results are independent of the coordinate 

system chosen on the surface of section.  We could equally well have 

I n chosen  (Z,Y)  rather than (z,p )  as noted in Section 14; then,   not 
** z 

I  , areas, but masses of density p would have been the representatives of 
r 

the basic phase integral invariant.  The corresponding density factor 

would have appeared in the definition of the informational integral, 

in which dM would be p dz dy instead of dzdp , etc.  The steady 

distribution approached would not be uniform with respect to unit area 

in the zy-plane, but only with respect to unit mass—with the above 

density.  Similarly if other coordinates are used in Z  . 
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Second,  unless there Is an integral Invariant of the stochastic 

transformations on £  , (15.7)   in  Theorem 2 is false;    we cannot assume 

that the minimization of G[P(M)] has any bearing whatsoever on our 

physical problem.    Counter-examples to Theorem 2  are, in fact,  easily 

given, since stochastic transformations  of the type (15.2)  could change 

a uniform distribution into a non-uniform one—whether with respect to 

unit area or to unit mass.    It is necessary to emphasize this state of 

affairs because various attempts are often made to get an answer without 

the necessary complete hypothesis of an integral invariant.    More recent 

developments of information theory have been based on the fact that, 

in last analysis,  this concept is a property of pairs of distributions     , 

making possible correct physical applications of a minimum principle. 

In the present case, our two distributions are P(M) and the Hamiltonian 

integral invariant. 

We turn now to the application of these theorems to the evo- 

lution, with increasing r,  of the power  flow density g(r,z,p )  ■ g(r,M) 

across E   (r)   (per unit azimuth). 

Up to now everything has been based on the notion that this 

quantity is determinate—its value being that of  g(r  ,M ), where M    and 

M lie on the same ray, determined by the given differential equations. 

Now, however,  the latter equations are not unique, depending as  they do 

on the particular choice of V from the ensemble {y}. Accordingly,  the 

density g(r,M)  is a chance variable  :     it could be zero if the ray 
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through it does not cut I(r ); or  <j   if it does. What then do we 

mean by this power flow density? Once the question Is put in this form, 

the answer seems obvious:  the power flow density at (r,M) Is the mean 

(or expected value) g(r,M) of the random variable g(r,M), over the 

"population" {V^.  Once this conception is adopted, the law of evoluclon 

of the density with increasing r is easy to formulate. 

i 

We have defined the "stochastic kernel" Q(M,M ) = QCM.rjM'.r') 

as the probability density of points M' of Intersection with E(r) at 

M:  QCM.M^dM' is the conditional probability that a ray given to pass 

through M at range r, shall cut Z(r') at a point in the elementary 

region dM' containing M'. What we need is the Inverse probability, 

Q(M,M'), where ^(M.M^dM is the conditional probability that a ray 

cutting Z (r') at M' did cut Z (r) at a point in dM (containing M).  This 

is given by Bayes' theorem on inverse probability: 

^(M^') = TKMXKM.M') / // TKMWM.M') dM, 

where TT(M)     is the a priori probability density of positions of the point 

M on I (r): 

Tr(M)  dM = prob.^M in dM on I    (r)^ 

This density Tr(M) is unknown; however, being a probability 

distribution on Z (r), it evolves with increase of r in accordance with 

(15.2)—i.e., replacing P by TT. Therefore as the ranges increase it 

will approach the value of least G-lnformation; I.e., a constant. 
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Then Bayes'  formula, combined with Theorem 1,  shows  that QCM.M')  - 

Q(MjM')>    Stated in common language,  this means that the transition 

probability M1  ->• M equals the transition probability M -»■ M'. 

Suppose first  that the actual  (deterministic) values of g(r,M) 

are given on Z](r)  thus determining the set  E(r, u,  Au)  of points for 

which g(r,M)  is between u and u + Au.    The probability that gCr'.M') 

lie in the same interval  is that the ray through (r'.M*) cut  E(r)   in the 

above set; vis. , 

QCM.M') dM . 
£(r,u,Au) 

If the interval of all possible values of g  (namely,   from 0 to   q)     is 

subdivided into a large number of small pieces such as Au,  and the sum 

of corresponding Integrals of the above form are multiplied by the 

corresponding u values and added,  a sum is obtained which, as the 

Au ■* 0,  approaches the required expected value gfr^M').    On the other 

hand,  the sum clearly approaches  the integral of g(r,M)Q(M,M,)dM over 

T (r).     Thus 

gtr'^')  - //  g(r,M)  Q  (M^1)  dM . 

This has been established on the supposition that g(r,M) Is a given 

function on E(r).  If, on the contrary, it is the random function 

corresponding to the random choice of V from -^V} , only g(r,M) can be 

known. But the above formula, being linear In the random quantity g, 

can be applied to the mean, thus leading to the formula: 
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(15.8) gdr'.M')  - // g (r   ,M )  Q  (M, M')  dM 

f  - 

il 
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ll bv   c {r% .M' 

But this is identical with (15.2) with P^M') and P(M) replaced 

by g^'.M') and g(r,M). Suppose that we divide (15.8) through by the 

common value ( P2 ) of the integrals of these two functions over E:  the 

resulting densities will have exactly the same mathematical properties 

as P^M') and P(M) do, namely, non-negativeness, integrating to unity 

over Z, and evolving (at long range) by the formula (15.2).  Consequent- 

ly the logarithmic integral expression G[g (r,M)/p ]—while no 

longer the "information"—obeys the purely mathematical theorems 

established for P(M):  it approaches a constant. 

Thus the intuitive picture of diffusive mixing in a liquid 

is justified.  But our methods actually allow a more general result to 

be established—getting rid of the restriction that on the initial injec- 

tion surface I of Z(r ), g(r ,z,p ) = q, = 0 off I.  For the equation 

(15.8) does not depend on this assumption:  all that is needed is that 

this initial function g be non-negative and integrate to the total power 

injected across I, per unit azimuth.  The same uniform spread at large 

ranges across E follows by exactly the same reasoning. 

On the other hand. Assumption 2 of Section 13 (V = U(z): quazi- 

laminarity) is essential to Sections 13, 14, 15. The case of gradual 

and non-random departures from laminarity, while treated numerically by 
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perturbation methods In the companion study (referenced at the end of 

Section 14), and coming under the general considerations of Sections 

3 through 12, Is not examined In terms of special theorems up to this 

point. 

We note In closing that the factor e        expressing the random 

"leakage" out of Z has been methodically left out from the above formulas 

and must be restored  In the final expression of  transmission loss. 
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16. Transmission Loss with Secular Non-Lamlnarlty 

The situation of Importance to Intermediate and long range 

acoustic reception is not one of strict lamlnarity c = c(z)—either when 

c is the given sound speed, as in Section 14, or when determined by 

averaging, as in Section 15. The actual situation, as shown by masses 

of oceanographic observations in many oceans and seas and at various 

seasons, is the one in which the sound speed c (and hence n = 1/c and 

2 
V = -n /2) vary not only with depth z, but also horizontally—with 

geographical position on the ocean.  If this horizontal variation were 

anywhere nearly as great as the variation with depth, no effective 

sound channel would exist, since the acoustic power of any signal would 

be too much refracted out of the channel, and would therefore be 

undetectable at the ranges of present concern. What does occur, as the 

oceanographic measurements indicate, is a slight but progressive change 

in acoustic profile over scores or hundreds of miles, a variation that 

has a cumulative effect on the transmission loss.  This situation we 

shall term secular non-laminarlty. More precise characterizations of 

this condition and of its effects on propagation loss calculations will 

be provided during the course of the mathematical developments now to 

be presented, in this special case of "quasi-larainarity". 

The directly practical object of the present section is to 

extend the transmission loss equations of Section 14, e.g., (14.19) and 

(14.20), to the case of secular non-laminarity, expressing the results 

in terms of the supposedly known acoustic profiles at two points: at 

the emitter and at the receiver. This will provide a theoretical basis 
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for the formulas and schemata of numerical computation contained In the 

correlative study of the present series, referenced at the close of Section 

14: "Computation of Long Range Propagation Losses In a Duct" (June 20, 

1973). The more Indirectly practical object of the present section Is the 

formulation of an approach to the calculation of transmission loss under 

far more general conditions of secular non-laminarIty, with c = c(x, y, z), 

the rays being twisted space-curves. 

It Is relevant to our subject to note that no mathematical treatment* 

seems to be available by which transmission loss can be computed under the 

conditions of secular non-lamlnarlty assumed In this section, and going 

as far as the one In the companion study referenced above—other than those 

based on the ray-by-ray constructions requiring massive quantities of 

specific data and much time on computing machines of very great capacity, 

and using unreallstlcally precise knowledge of oceanographlc fine-structure. 

The present method rests on two bases: a geometrical property of 

Integral surfaces of the ray equations In phase space; and a statistical 

assumption of ray Incoherence (Implied In Section 14 and outlined In the 

correlative study referred to above) allowing approximation by averages. 

At the risk of repetltlveness, three essentially equivalent treat- 

ments, of Increasing levels of mathematical technicality, will be given: 

first, an Intuitive extension of the laminar methods of Section 14; second, 

a treatment based on the geometric Interpretation of Polsson bracket 

relations; finally, a general mathematical approach requiring new adap- 

tations of classical theorems, and capable of extension to very general cases, 

* We are excepting derivations of formulas equivalent to the 2-profile one 
referenced above by some authors who confine themselves mainly to physical 
Intuition and formal analogy, without a rigorous derivation from precisely 
stated physical assumptions. 
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While of more general applicability, we shall for simplicity of 

presentation confine the study to the case of azimuthal symmetry, with 

the rays in vertical planes through an emitter reference point, and 

apply   the cylindrical coordinates and other general assumptions of 

I ; ; 2        2 
| . i Sections 13 and 14. Now our "potential" V = -n /2 = -l/2c depends on 

both r and z. The ray differential equations (13.5) in the phase space 

i; 

J&. may be written in the symmetrical form as follows (subscripts of 

V denoting partial derivatives): 

(16-1) dr = dz_  ^r_  ^z 
p   p"~V    ~V     T 

r   z    r     z 

As explained before, i^. is the locus of the equation 

(16.2) H = i (pj + p^) + V - 0 

in which locus each ray lies, one and only one through each point (r, 

z, p ); see Figures 14.1 and II. Equations (13.6)  which we now write 

in terms of the angle of inclination a of the tangent to each ray with 

the horizontal, show that 

(16.3)    p = n cos a,    p = n sin a,      dz/dr = tan a 

The geometry of integral surfaces. We shall apply to the 

points (r, z, p ) of £>_ some of the general elementary considerations 

of the early part of Section 9: in particular, the notion of the 

• "first integral" F which satisfies the partial differential equation 
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(9.4) related to the system of ordinary differential equations (9.1). 

In the present 3-dlmensional case, the latter are of course (16.1) in 

which the fourth variable (e.g., p ) can be expressed In terms of the 

other three (r,  z, p ) by means of   (16.2).    If this implicit method 
z 

seems to complicate the picture, we can of course use (16.3) to elimin- 

ate both p and p , thus having the three variables (r, z, a) as coordin- 
t        Z 

ates of points in fü),—unconnected by any equation, merely satisfying 

the simple Inequalities of obvious physical meaning (c.f. (14.1), (14.2)): 

. i 

(16.4) r > 0; 
3 

a <  z < b; -Tr/2 <  a  <   TT/2 

The partial differential equation for a first Integral 

F=F(r,  z,p,p)i8  (using subscripts for its partial derivatives): 

(16.5) pF+pF-VF      -VF      =0. 
r    r        z    z        r    p z    p rr z 

In the variables  (r,  z,  a)  the equations  (16.1) and  (16.5) 

become,  if we write m ■ log n = -r log (-V) + y log 2: 

(16.6) dr dz —da 
cos a      sin a      m    sin a - m_ cos a r Z 

=    ndx 

(16.7) cos a F    + sin a F    -  (m    sin a - m    cos a)  F    »0 r zr z a 

while  (16.4) still applies,  but   (16.3)  is redundant.    It turns out that 

the formulation (16.1) through (16.5) is more appropriate to our purposes 

than (16.6) and (16.7), which will not be used in our later investigations. 

I 
I 
! 
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Equations (16.5) and (16.7) are of course the expression of the 

fact that the differential dF along the rays (solutions, or integral 

curves) determined by (16.1) or (16.6) is zero; equivalently, that F 

remains constant along all such curves. It follows that if C is any 

constant for which the locus F = C is in Jp„, every ray either lies 

wholly on this locus, or has no point in common with it. Thus we can 

state that the locus F = C is made up of rays:  in general it is a 

surface swept out by all the rays through some curve in £>_.  Such a 

surface is an integral surface.  Not only is every integral surface 

made up of rays, but the intersection of a pair of integral surfaces is 

a ray (or a set of rays, usually distinct):  for evidently the ray 

through any point common to the two integral surfaces lies in each, and 

hence, in their intersection. 

Finally, there can be no more than two functionally independent 

(i.e., essentially different) first integrals.  Thus if (F., F-, FJ is 

a set of such integrals and if every F= C. , F_ = C-, is a single 

integral curve (the "general" case), F. must be constant along it; 

therefore when the values of F. and F? are given, that of F. is 

determined: by definition of "function", it is a function of the two 

former, 

(16.8) F3 = fi (F^ F2). 

Conversely, if F. and F_ are first integrals and \l  is any function of 

two variables, the F- as defined by (16.8) is a first integral. 
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We add to the above set of elementary facts on differential 

equations the further ones derived from the existence and uniqueness 

theorems in the same field—stated after r has been Introduced in (16.1) 

or   (16.6)  as the independent variable instead of T   (which plays no 

part in the geometry).      Let   (z   ,  p    ) be the values assumed by z and 

o o 
p    when r = r :    "initial values'1^  in which r    is to be a small range 

close to the emitter j    (z   , p    )  are the coordinates of the surface 

of section E(r0) defined in Section 14.    Through the "initial point" 

(r  ,  z  , p ) passes just one integral curve (ray in Jb-), along which 
Z j 

we have 

(16.9) z = Z (r; r0, z0, p° ) 

T,    / O   O   0 x 
Pz " Pz(r; r . z , P2 )• 

Since the letters with superscript zero are the initial values, when 

r is set equal to r  these two functions reduce to z and p respec- 

tively. Moreover, the roles of the plain and the zero-superscript 

variables may be interchanged;  the equations remain valid: 

(16.10) z0 = Z (r0; r' Z'  p2
) 

p, = P (r ; r, z, p ) 

This is the statement in formulas of the property of the (unique) 

integral curve through one point and containing a second being the one 

determined (uniquely) by the second. Of course one tacit assumption 

has been made: that a duct actually exists and that we are confining 

* Upper zeros are more convenient here than the lower zeros used before. 

168 

I 
I 

Arthur 1) I JttlelrK 



1 
IT s 
ii 
ii 

.. 

! 
; 4 

! 

our attention to the part of Ä_ composed of the rays remaining In the 

duct throughout the ranges considered  (cf.  the "central core" discussed 

In Section 14). 

Equations   (16.10)  automatically give us  two Independent  first 

Ü Integrals of our differential system:    we may suppose a numerical value 

given once and for all to r     (e.g.,  zero; or a nominal range taken as 

the unit range from the emitter).    Then we may write the right-hand 

members as Z(r, z, p )  and P     (r,  z, p ).    That each remains constant 

along every Integral curve Is  the evident consequence of the  fact  that 

the coordinates of a ray's  intersection with the surface  Z(r  )  are 

evidently determined by the ray Itself and do not change as we go along 

it.    This reasoning is general and shows how the n'th order differential 

equations discussed in Section 9 always have n-1 independent  first 

Integrals. 

In view of  the geometrical properties of our integral surfaces, 

we might hope to throw light on the Integral curves by examining the 

surfaces Z = constant and P    = constant.    This turns out,  however,  to be 
z 

an impracticable idea because of the extraordinary complexity of these 

loci, once one or two convergence zones have been reached:  this is not 

the result of the non-laminarlty assumed here, but the nature of fami- 

lies of rays in a duct. 

To understand this fact, let us assume the laminar case and 

attempt to visualize, in the fa» shown in Figure 14.1, the locus of 

Z(r, z, p ) =» constant = z .  It is generated by the rays which cut 

I(r ) in a horizontal line (depth z ): along this line the rays have a 
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continuous Infinitude of different values of the Snell constant k » p , 

and hence lie on different mutually nested cylindrical surfaces (only 

one Is shown In Figure 14.1).  Since the rays on each cylinder wind 

about it in helix fashion, but with a mean pitch (length of ray period) 

which is different on different cylinders, and in fact varies considera- 

bly with k, the complexity of the surface swept out by these variable 

pitch twisted rays can be well imagined.  It was indeed this rapidly 

developing complexity that justified our assumptions of "ergodic 

mixing" of regions on the surface of Section £(r) with Increasing r, 

and hence the simplifying limiting methods applied in Section 14—and 

to be used again in a more general form here. Exactly as complex is 

the structure of the locus of P (r, z, p ) = constant = p :  it is 
z      rz rz 

swept out by the rays through the corresponding vertical line segment 

in E(r ). 
o 

It is at this point that the special significance of the 

further first Integral, 

(16.11) p° - P (r0; r, z, p ) , r   r z 

which we will write P  (r, z, p  ),  becomes apparent.     [Of course  it  is 
t z 

not  independent of the other two,  and is expressed in terms of  them by 

use of  (16.2);  c.f.   (16.12)].    The point is that in the laminar case 

P   (r,  z,  p ) s p    (the constancy of which expresses Snell's law):  the r z r 

locus  in this case of each equation P    » constant = p    is a cylindrical 

surface in Jji-—a figure which even at very long ranges is "simple". 
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If,  then, the choice of Integral P    gives simple surfaces—in 

contrast to Z or P —in the laminar case, how does the situation stand z 

in the case of secular non-laminarity?  (We re-emphasize that  the property 

of being first integrals is possessed by the Z, P  , P  , defined by 
j! z      r 
»1 (16.10)  and   (16.11), in the non-laminar  case as well as in the   laminar). 

The answer to the above question is contained in a set  of 

general theorems in differential  equations that complement  the  classical 

existence and uniqueness theorems,  and are due to the work early In 

this  century of E.  Picard,  H.  Poincare and G-   D.  Birkhoff;   they  are 

brought together in all clarity of elementary detail in ehe first 

chapter of G.  D.  Birkhoff's "Dynamical  Systems"  (American Mathematical 

Society Colloquium Publications,  Volume IX,  1927).     That reference is 

concerned with the way in which  the solutions such as  (16.9)  depend 

on  the initial conditions.    Also,   in the case  that  the coefficients 

of  the differential equations,   such as   (16.1)  or  (16.6),  vary—e.g., 

when they contain continuously varying parameters—the effect   of such 

variation on the solutions is established.     It  is shown,  In particular, 

that  slight changes in coefficients produce slight  changes  in  any 

given first  integral   ("given",   e.g.,  by  its  initial values,  on   T.(r  )). 

Moreover,   the "smoothness"  (order of continuous derivations)   in the 

solutions will match that of the  continuously varying coefficients— 

going to the point of analyticity when the latter are analytic.     This 

is  established,  of course,  for a  finite, but  arbitrarily large,   range: 

corresponding with the physical  reality of  the situation studied here. 
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To apply these results to the case of secular non-lamlnarlty, 

let us take a fixed range, such as r , and set U(z) = V(r , z), W(r, z) = 

V(r, z) - U(z).  Then consider the family of differential equations ob- 

tained by replacing V in (16.1) or (16.6) by U(z) + e W(r, z), where 

e is a continuous parameter: as it goes from 0 to 1, the differential 

equations go from the laminar approximation to the non-laminar actuality. 

Since we are assuming secularity in the latter, the change in coefficients 

is slight, even when e= 1—in a sense to be made precise below. 

From the theorems cited, during this continuous increase in e 

the solutions (16.9), as well as the integrals Z, P and P  (which now 

are functions of e, r, z, p ) change continuously: a point at which 

an integral curve cuts any given E(r) changes only slightly if £ changes 

slightly; and similarly for the intersections with E(r) of any of the 

integral surfaces,  fiut there is this fundamental difference In the 

three latter cases: whereas the integral surfaces Z = z and P = p (G=0) 
z    z 

were excessively complicated and had intersections running all through 

lit),  so that a slight change will not change this feature—the Intersections 

with   P " k, on the other hand, are the slight deformations of simple 

closed curves (those shown in Figures 1A.III and V) and hence will 

remain simple and closed. This will cease only if r is so large that, 

even with the moderate change in coefficients produced by the above 

change in e away from zero, the cumulative effect of increase of range 

is too great.  In this connection we can state the following mathemati- 

cally more precise rendering of the first condition for "secular non- 

laminar ity": 
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The first part of our detlnitiün of secular non-lamlnarity ii: 

the range interval (r ,  r )      that as  e goes from 0 to 1,  the inter- 

sections with £(r) of the Inttgral surfaces P    « k remain simple 

closed curves,  cut in no an two points by any line z " z   . 

This will mean that these integral surfaces remain tubular and 

nested;   that they each have a locus on them of highest (shallowest)  and 

lowest   (deepest)   points,  z = z.. (r)  and  z = z»(r)  respectively; and  that 

for every intermediate depth  [z    (r)   <  z< z_  (r)]  just two values of 

p    correspond.    Of course the integral curves will wind about these 
Z 

tubular "deforms" of the laminar cylinders as they did when e = 0.     In 

other words,  the essential geometrical basis for the work on "ergodic 

mixing" and limiting behavior of the power flux, expounded In Section 

14,  can be carried over to its secular approximation.    We re-emphasize 

that the preservation of areas, being the result of the general Hamil- 

tonian property,  is valid in all cases—and so, accordingly,  is the 

fact that  the power flux density quantity g * p rf of (14.4)  is itself 

a first integral, as shown in the reasoning of Section 13 leading to 

(13.11).    There is of course always the tacit assumption that our 

constants are chosen so that the rays stay in the duct. 

At this stage we have four first integrals:    Z,  P  ,  P ,  g, 

all funcfions of  (r, z,  p ) or, equivalently, of (r,  z, a):    by 
z 

general principles, only two can be independent. The first three are 

connected by the relation 

1 

(16.12)  ?l  (r, z, p ) + ?l  (r, z, p ) » n2 (r0, Z (r, z, p )) 
t Z Z Z y 
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which Is an obvious consequence of  (16.10)  and  (16.11), applied to 

2 (16.2)   (writing V * -n /2).    On the other hand,  beyond the general fact 

that g must be some function of an Independent pair chosen from the 

first three of the above    (as in (16.8))} we know nothing.    We can, 

however,  be sure of one thing:    It is either very "complicated"—i.e., 

the loci g = constant are complicated integral  surfaces—or else it is 

a function of P    only.    This is because otherwise the intersections of 

g ■ constant with P    ■ constant would be  "simple" and could not wind 

about the  "tubes" given by the latter.     This heuristic argument is a 

sort of repetition of the ideas expounded in Section 14 with the aid 

of Figure 14.V,  and leading to the ergodic mixing and equations (14.6) 

and h(z,  p  )  " F(k)  in the laminar case. z 

The intuitive approach.       We are now in a position to parallel, 

in the present case,  the reasoning applied to  the laminar case in 

Sectlun 14,  which led from (13.10)   to the final expressions  (14.19)  and 

(14.20)   for the transmission loss in that case.    To begin with, we ., 

emphasize that the reasoning of Section 13 which established  (13.10) 

was based solely on the general assumption involving azimuthal symmetry, 

and not on that of laminarlty:    this allows  the use of  (13.10) as our pre- 

sent starting point. Furthermore, we shall assume that over the initial 

injection region I near the source  (I =  I(r ))   the power flux density 1 

(per unit  zp    - area)  is constant:        equlvalently, g is the positive 
z 

constant q; while g * 0 at points of Z(r ) not on I. This assumption I 
has the same reasons for validity as in the laminar case.    Introducing I 

the resulting expression for f(r  ,  z  ,   p )  into  (13.10), we obtain, 
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exactly as in theearller case, the equation (14.8) for the acoustic 

intensity over I at the source in terms of the constant q. 

On the oth - hand, the reasoning leading to (14.6) and h(z,p ) = 
z 

F(k.), and thence to the replacement of f by f, with the eventual deriva- 

tion of (14.9) and (14.10), has to be re-stated in modified form, for 

the three following reasons:  first, as noted before, the integral 

surfaces P » k are no longer horizontal cylinders, but irregular tubes 

running in a general way along the duct; second, we cannot without too 

great a stretch of realism speak of "limits as r ->• «*'—only of "accept- 

able approximations for the large values of r encountered in the type 

of acoustic detection under study"; third, the ergodlc theorems can no 

longer serve us, as they did in the laminar case, since in their proof, 

the group property (of the transformations on £(r)) is conventionally 

assumed: as noted in Section 15, this is absent in the non-laminar 

case. We shall first indicate on an intuitive basis the ideas which 

both parallel and modify those applied to the laminar case; and after 

this orientation, pass on to their more abstract mathematical valida- 

tion. 

If we think of the thin horizontal strip I = I(r ) shown in 

Figure 14.V as dyed black, and all the integral curves that cut it as 

carrying this black stain, we see that every region I(r) in which they 

inteisect Z(r) will likewise have this stain—all as in the earlier 

case. Furthermore, by the area invariance of the transformations on the 

surface of section £(r) with increasing r, the stained region I(r) will 

1 
*    To reappear after the canonical deformation applied below. 
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-he same zp-area as I—and so will the Image In I(r) of any piece 
z 

t i. As in the earlier case, the curves P » k on I(r) are tangent to 

the paths of the points on Z(r) as r increases; but in the present 

case trhey vary with r. Nevertheless, as they move, they form a 

moving boundary of the stained regions: in particular, the total 

stained area in the (irregular and varying) ring on i.(r) for which 

P has values between k and k + Ak does not change with r. We are 

particularly interested in this ring when Ak/k << 1.  In the present 

case the rays are not strictly periodic; but if we define their 

approximate period as the horizontal range interval from one point of 

greatest depth to the next one, we can say that this "pseudo-period" 

is very dependent on the "pseudo-Snell constant" k of the integral 

surface P ■ k upon which they lie. Consequently the advance along 

their paths in Z(r) will be different for the different paths, so that 

the picture of "contorsion" and "mixing" suggested in Figure 14.V will 

apply. This has the following consequence, corresponding in the present 

case to what was expressed by (14.6) etc. in the earlier one: 

Let AZ be a "simple" piece of the ring of E(r) in which P is 

between k and k + Ak, and let AI(r) - I(r)r\Aj: be the area of this 

piece that is stained by the dye injected into I.  Then the ratio of 

areas AI(r)/AL is approximately Independent of the position and (simple) 

shape of AZ on the ring—once the range r exceeds a few convergence 

zones. This is the present form of the earlier relation (14.6); but 

it requires an explanation: the stipulation that AT be a "simple" 

piece of the ring is intended to exclude constructions that could only 
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be formulated after the exact shape of I(r) became known. Examples of 

simple pieces would be the parts In the ring of a rectangular subdivl- 

i ■- 
slon of E(r); or a piece bounded by two curves of equations P ■ constant 

and two segments of the normals to one cut off by the other; etc. The 

I . ^ sufficiency of confining certain later constructions to the use of such 
I 

simple pieces appears below. As In Section 14 It Is supposed that AE, 

although always on X(r), does not "flow" as r Increases. 

From the above assumption, we may calculate the common ratio: 

let the ring (P between k and k + Ak) be subdivided Into n simple 

pieces of equal area, AZ.; the corresponding areas they cut from I(r) 
I 

will be equal, since according to the above assumption AI(r)./AI. is 

the same for all 1 " 1 n.  It follows at once that this 

common value Is equal to 

area of the part of I(r) In ring (k. k + Ak) 

total area of the ring (k, k + Ak) 

This Is, therefore, the value of the ratio of any M(r)t\l,    whatever 

the size of the (simple) sub-region AE of the ring may be. This con- 

clusion has the following consequences: 

First, by the invariance of areas in the transformation on 

the surface of section Z(r), and the fact that P = k is an integral 

surface, the above ratio is independent of r:  It depends on k and 

Ak only. 
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Second,  from the fact that to quantities of  the first order in 

Ak,  the numerator and denominator in the above fraction are proportional 

to Ak (the denominator,  by the properties of areas;   the numerator also,— 

once our assumption has been applied to its pieces)   It  follows that our 

fraction is  (approximately,   for small Ak)  a function of k only.    There- 

fore 

(16.13)        AIM p area of I(r)  in rinR  (k    k + AK) 
AE area of ring (k, k + Ak) 

Third,  became of the independence of the quantities in (16.13) 

of range r,  they can be calculated at r » r  .     But  there  I ■  Z(r ) and 

I ■ I(r )  have the form shown in Figure 14.V,  from the geometry of which 

we derive equation  (14.15)   for F(k) and therefore   (in the case descri- 

bed subsequently to that  formula) the expression  (14.17).    Of course 

R(k)  Is the "pseudo-period" at  the emitter;  but  it  is still given by 

(14.16). 

a.      a, 
Fourth.  Instead of  the power flux density  f = f(r,  z,  p )  across 

z 

Z(r), we can use, in (13.10), the function f(r, z, p ) = (q/rp )F(k), 
Z L 

just as we did in deriving  (14.9);  this will lead to   (14.10)  and similar 

consequences; but there are certain differences: 

Let us first  recall briefly the reasoning used before in the 

replacement of f by t:     by definition,  r when integrated over any piece 
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and this Is strictly equal to the area Al(r),  times  the value of r 

given in terms of q by the equation r p r = q assumed in the first | 
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paragraph of our  intuitive approach     as well as in Section 14 in the 

derivation of (14.8).    On the other hand,  the ratio of Ll(r)/Ll being 

approximately F(k) at long ranges, in virtue of  (16.13), it is seen 

that we get the same results at such ranges by the replacement of f by 

f as described above.    We are therefore justified in the use in the 

present case of  (14.10)  as well as its Immediate consequence  (14.10)'as 

expressing the acoustic intensity( power flux per unit surface crossed 

by the acoustic power) .    The new feature is in the evaluation of these 

integrals at the range r    of the receiver. 

Figure 16.1    Surface of Section at Receiver 

OCEAN SURFACE. 

OCEAN        ftOTTOK 

(a) Limiting Pseudo-Snell 
Curve  (j)(j)(j).   .   .   . 
P    - k 

(b)  Limiting Curve  (j)(J)(J)... 
with superposed mean Snell 
Curve  (i)(i)(l)   .   .   . 
P, " k';  r1<r<r2 
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The geometry of the situation Is Illustrated schematically In 

Figure 16.la which shows the curves P (r , z, p )  ■ k on Z.  « I(r ); It 
£ Z X 

may be regarded as the result of a moderate deformation of Figure 14.III. 

While still cutting a single segment from each horizontal line (z * 

constant), It Is no; longer precisely symmetric about the vertical 

z - axis. 

Suppose now that we denote the effective depth Interval of the 

receiver by (c'.C11). To find its angular interval r , or equivalently, 

the interval of p at the receiver, we note that this is the horizontal 

segment cut off from the horizontal line z = c (a depth between c' and 

C") from the curve P (r , z, p ) =» k, where k has its extreme value of 
t z 

k for all the rays in the duct. Actually, It is the minimum k, since 

these tubes expand as k decreases. Strictly speaking, this value will 

depend on the relation between the variations of both the acoustic pro- 

file and the bottom throughout the range: it is the least value of k 

for which the tubular Integral surface P « k is tangent to the bottom. 

On the assumption that the bottom is essentially flat and that there is 

little appreciable variation in the sound speed along It, we may accept 

the limiting k found at the source, where k » P » p - n(r ,b). There- 

fore the p -interval Is bounded by the two values of p satisfying 
z z 

(16.14) P (r1.. c, P ) - n(r0,b). 
r       z 

They are denoted by p* and p"   in Figure 16.1k: let  the corresponding k z     z 

angles be Y' and Y" . Thus T-: (y1, y")  and the two components of our . 

power flux are given by (14.10') with 
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(16.15) *"r    /        F(k) n cos Y d Y 

Y' 

F(k)  n sin Y d Y 

where k is the function of the variable of integration Y determined by 

the Implicit equations. 

(16.16) P (r1,  c,  PJ   - k,    p    - nCr1, O  cos Y 
L Z Z 

Since, as we have shown» F(k) Is still given by (14.7), the only remaining 

task in evaluating the transmission loss is to find a satlsfactorv approx- 

imation to the limits of integration in (16.15), determined bv (16.16). 

At the present intuitive level, we may reason as follows:  think of 

a fictitious medium of propagation, coinciding with the actual one in the 

range interval (r , r ), but whose index n(r , z) becomes independent of 

12 1 
r In the Interval (r , r ), throughout which n(r , z) - n(r , z); here 

2   1 
r - r exceeds all the periods of the laminar case that sets in as soon 

as r > r . Finally let the Junction between the Index, before and after 

the range r , take place smoothly (with continuous derivatives of all 

1  2 
orders throughout a thin junction layer). In (r , r ) we have laminarity 

so that p is a first Integral of the ray equations.  Since P (r, z, p ) 
L t Z 

continues to be such an Integral, the Intersections of their corresponding 

Integral surfaces, p " k* and P ■ k, will be integral curves. Since the 
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two surfaces do not In general coincide, these curves will wind about each 

surface In the manner become so familiar:  the same will be true of every 

"proturberence" of the latter over the former; this can be pictured In 

1    2 
terms of their Intersections with £(r) as r goes from r to r ; see Figure 

16.1(b). 

Now we shall "associate" pairs of Integral surfaces of the two kinds 

whenever the areas of their Intersections with Z(r) are equal: the con- 

servation of areas In I(r) with Increase of r shows that this association 

Is consistent for all r.  Finally, since the extreme curves are determined 

by the depths a and b of the ocean surface and bottom, and since (b-a)** 

average horizontal section p" - p' (the difference of the extreme values 
z   z 

of p ) over the depth Interval is the area in question, we see that by 
z 

associating p " k ' with P * k by the areas, we have in fact (at least 

for the extreme curves) associated the pseudo-Snell curve P = k on E(r) 

with the actual Snell curve which, in the above sense, is its "mean": 

the statistical assumption of ray Incoherence mentioned in our fourth 

paragraph, shall be construed as allowing us, in the calculation of the 

limits in (16.15), to replace the extreme P = k by its mean p ■ k'. 

When there is but negligible variation in depth b throughout the whole 

range (r , r ), we may readily see that for both extreme curves, k'-k. 

Applying this approximation to (16.15), etc., we are able to complete 

the derivation of (14.20) for the transmission loss; but emphasizing that 

the z ■ c, the depth of the receiver; that the n in the limits and Inte- I 

I 
grand is   n(r , z) ■ n(r , O at the receiver; whereas R(k) is given 

by (1A.16) at the emitter.  This completes the validation of (14.20) 
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and hence of (25.1) in the correlative study. But we wish to go beyond 
i ': 

-• this rather Intuitively geometrical treatment.    We therefore pass to our 

second more rigorous treatment, based on the geometric and kinematic pro- 

perties of the Polsson brackets. 

The most convenient starting point Is the canonical  form (16.1) 

of the Integral curves,  restricted by the inequalities  (16.4), but 

considered at first without the condition H - 0:    the rays are the sub- 

class of the integral curves of  (16.1)  for which H - 0  (so that  (16.3) 
ii 14 becomes valid).    We are dealing,  then, with the Hamiltonian system of 

coordinates  (r,  z)  and momenta  (p  , p ),  defining a 4-dlmensional phase i r     z 

space (a 5-dimensional "phase-space-time",  if T  is  included.)    The 

fundamental relative integral invariant of first degree is* 

II 

H 

? 

(16.17) ü)(6) - pr 6r + pz 6z - H6T 

Now our "simple" Integral P , defined as In (16.-11), contains pr: 

Pr-Pr(r. z, pr, pz). 

The properties of first integrals, integral surfaces, and 

integral curves in the case of Hamiltonian systems are most conveniently 

stated in terms of the Polsson Bracke^ notation:  if f and g are any 

functions of the 2n canonical variables qi and p1 (in our case, four), 

we write 

(16.18) lf,gl   «W^i   3Pi 3t,i/ 

3f3£_+ifia__— i^ -&- &~ 
3r 3p    3z 3p    3p,  3r   3P, 3* r        z     r        * 

* 
Cf. Appendix E, formulas (E.12), (E.14), (E.16) and (E.17) 
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Then It Is apparent that the canonical equations (E.12) can be written 

as dq./dt - [q., H] and dp./dt - [p., H]; and similarly, the rate of 

change along any Integral curve of a function F « F(q, p) of the canon- 

ical variables*Is dF/dt - [F, H]. Therefore the condition that F be a 

first Integral Is that [F, H] - 0.  It Is obvious from its definition 

that the Poisson bracket [f ,g] Is bilinear: linear In f and in g 

separately (constant coefficients); and that [f,f] ■ 0 and [f,g] ■ 

~[g,f].  Furthermore, differentiations based on the definition establish 

the Jacobl Identity 

[f, [g.h]] + [g. [h.f]] + [h, [f,g]] - 0 

These simple and well-knownt facts lead to some important con- 

clusions.  First, if the Hamiltonian H does not contain the time, 

dH/dt » [H,H] - 0, so that K is a first integral of the differential 

system which it defines—a fact that we have known and used to  select 

the sub-phase space H ■ 0 In the case of acoustical rays. Second, if 

F is any further first integral of the above system (a function of 

(q,p) independent of H and for which [F,Hls0), it has both a geometric 

and a kinematic property: the geometric property is the usual one 

possessed by any first integral and which we have discussed earlier 

(the loci F ■ constant being fixed in the "flow" determined by the 

♦This F has no relation to the earlier F - F(k). 

tC f. the exhaustive but not always rigorous treatment given in 
Chapters XI and XII of E.T. Whittaker "Analytical Dynamics" (Cambridge 
University Press, 1917). The older notation (f,g) is used for 
[f,g], the latter being used for the La^range Brackets. 
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differential equation and being made up of its Integral curves,  etc.) 

The kinematic property is peculiar to the Hamlltonlan nature of  the 

differential equations:    let us suppose that we write down a new Hamll- 

tonlan system of differential equations,  In which F and not H is taken 

as the Hamlltonlan;  they will have the form—using a as the  "time-like" 

independent variable— 

(16.19) dq^do  -   [qi,F]   ,   dp^do  =   [p^F]. 

They define a continuous 1-parameter family of transformations  ("flow") 
■ • 

of the 2n-dimensional phase space of (q,p) into itself.  [Since F does 

1 
not contain o,  they  form a group].    The condition that any   function 

G(q,p)  be a first integral  is again that  [G,F] ■ 0.    But since F was a 

first integral of the original canonical system based on H,   [F,H] = 0 = 

-[H,F]:     therefore H is also a  first integral of  the canonical system 

based on ^;    the loci H a constant—and in particular,   'he  locus H = 0 

of the acoustic rays—are  invariant under the F-transformations.    But 

there is more:    each integral curve of the H-equations retains this 

property—although it changes  its Individuality—under the F-transforma- 

tlons;  and reciprocally,  each  integral curve of the F-equations is 

carried into another such curve by the H-transformatlons. 

The proof of the latter  "kinematical" property—which is a 

simple special case of the theorems of Lie groups—can be given by 

showing that the F-transformation preserves the property of a  function's 

being a first integral of  the H-equations.    Thus if G is  such an integral 

we have  IG,H]  ■ C, which,   together with the given  [F,H]  - 0 show, by 
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Jacobl's identity applied to the triplet F,  G,  H,  that   [[G,F], H]  - 0, 

and hence that G + o[G,F]   is a first integral of the H-equations.    Since 

this is G + a(dG/do)—i.e.,  the result of applying the F-transformaf.ion 

to G (to first order quantities in a)—the property of G's remaining 

a first integral is proved to the first order:    and to all orders, by 

the routine reasoning of differential equations.    Since any integral 

curve of the H-equations can be represented as an intersection of  2n 

independent  first  integrals, and vice versa,   the kinetic property is 

thus prcvad.    Similarly  for the effect of the H-transformation on the 

F-integral curves. 

Our first acoustical application of these theorems Is to the 

laminar case.    Here we have the two first integrals,  H and F = p   . 

We find the F-transformation by solving the corresponding canonical 

system,  namely 

(16.20) £L = |F iz . |F ^z    . 0    ^L- - iF    . 0 
do      3p         '  do      3p da '  do 3z 

The solution is: 

(16.21) r - r0 + o,  z = z0, Pr = P°.  Pz " P°- 

This is a horizontal translation by the amount o.  If we look back at 

Figure 14.1,  it becomes evident that such a translation leaves the p -k 

cylinders invariant, and carries the family of rays winding about it 

into the same family:     every ray on the cylinder is congruent to every 

other, and the smallest positive increment of a which carries a given ray 

into itself—which we have called R - R(k)—is their common period. 
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I ii 
All this simply repeats what was shown In Appendix B and used through- 

out our treatment of the laminar case, (valid even when H - h f4 0) 

s • 

Jur approach to the secularly non-laminar case is to operate as 

we have lust done, but setting F = P (r, z, p ) instead of F = p , since 
^ """ " *-"- j-      2 * r 

it Is the former and not the latter which is a first integral of the ray 

equations. First, however, we must gain a more quantitative apprecia- 

tion of this function. This is accomplished by solving the canonical 

ray equations (16.1) by a method of successive approximations based on 

the smallness of e. 

He are not at this point setting H s 0; we are however writing 

V » U + EW, where U ■ U(z) and W = W(r,z), as explained earlier. We 

shall write H = H + eW, H being the lamirar Hamiltonian. Equations 
o      o 

(16.1) become 

^•=  [r,H]  =  [r,Ho]  + e[r.W] 

dp 
^ [P^HJ = [Pr.H0] + e[prW] = e[pr,W] 

together with the two further equations for z and p . The special z 

form of the second equation results from the fact  that   [p  ,H..]  = 0: 

it will allow us to infer the closeness of p    to its initial value rr 

p —and hence to p .  It is explained early in Appendix C that the 

assumption that c, and hence n, V, etc., are adequately represented 
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as analytic functions of the coordinates of position. With this assump- 

tion (and their linearity in e), the theorems cited earlier (the G. D. 

Birkhoff reference) apply, and we can assume that all solutions are 

analytic, in all their arguments, and can in particular be expanded in 

convergent power series in e.  Thus we can write in particular 

(16.22) r = r0 + er' + e r" + . . ., Pr - Pr + cp^ + e p^' + . . . 

When these are inser.cd in the above equations and like powers of e 

equated, we obtain the sequence of equations defining the successive 

approximations 

^ - l^Hl - 0 
dx =0 

(16.23)^1. tr.>H j . [ro>w]        dp. 

*£-   -  [r".Ho] - [r1^]     dp," 
—  - [P-, HO]  = [p; , W] 

together with another pair of columns for z and p. They are solved by 

recurrence, by a schema that can easily be developed as needed. For 

the present it is sufficient to observe that they show, on the basis 

of the definition of P (r,z,p ) given earlier, that this function is 

of the form r + eP (e,r,z,p ) ; cf. (16.9), (16.11) and (16.22), etc. 

Therefore, on setting F = P = p + eP in (16.19), we obtain * 

instead of (16.20) the following equations: j 
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ii (16.24) 

do       3p   r, 
dz - t 9  P da    3pz  r. 

do    L 3r  r* 

dPy     3  - Z - -E       P 
da    e3r  r ' . > 

This—or its equivalent (16.19)—is our second Hamlltonlan system. 

These equations are again of the general type studied In Section 

9; they define one and only one Integral curve through each point (r, z, 
i' 

; • ■ 

p  , p ) of phase space,  given analytically,  e.g.,  by expressing these . r     z 

quantities as functions of their initial values  (Indicated by zero super- 

scripts) and the parameter a.    But since this variable does not occur 

explicitly in the coefficients in (16.24)—any more  than T did in (16.1) 

—we may also use r as the independent variable,  a being eliminated from 

the equations just as   r was  in the earlier case.    But  the Integrand of 
f 

their fundamental sliding relative Integral invariant  is, by the 

general theory of Appendix E, 

(16.25) a)*(5)  - p    6r + p    6z - f &a,     F = P 

Also, the Hamlltonlan F, not containing o explicitly, is a first Integral 

of this system. 

As noted before, our choice of F = P in (16.19) = (16.24) is 

such as to guarantee that (16.24) and (16.1) share the two first inte- 

grals H and F; and further, that every F-transformatlon (determined by 
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a given value of a) shall carry any integral curve of  (16.1) into an 

Integral curve of the same system; and vice versa, any H-transfomation 

(specified by x) shall conserve the system of integral curves of  (16.24). 

These facts, combined with the geometrically "simple" nature of the 

Integral surfaces H - constant and F - constant allow the important rela- 

tionships to be exhibited graphically, as shown in Figure 16.11. 

&) 

r- Tube:    H - const h(0 for rays) 
/ F - P    = k r 

CM 

curves 

FIGURE 16.II; TUBE (a); GROUP PROPERTY (b). 

Note that since (16.24) differs by quantities of the first order 

in e from (16.20)—the Integral curves (16.21) bein^horizontal straight 

lines—we can suppose that those of (16.24) will be only moderately de- 

formed versions of such lines, and hence will run along the "tubes" 

F = P ■ k, without winding around them, as do the Integral curves (or 

rays, when H « 0) of (16.1). As a matter of fact, regarding the slopes 

1 
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of their projections on the rz-plane, tan a* • dz/dr calculated from 

(16.24) has a factor of e, while tan a ■ dz/dr calculated from (16.1) 

has no such factor:  the former are In general much less steep than the 

latter. Finally, the continuous change In the two classes of Integral 

curves with the continuous Increase of e from 0 will deform the curves 

but not change their topologlcal relations with the tubes or to one 

i ' another—until e reaches some sharply determined critical value which, 

as part of our definition of the "secularlty" of the non-laminarIty, 

I does not occur before e>l. 

These geometrical relations (or the equivalent analysis, given 

later) have two consequences: first, measuring horizontal shifts by 

increases in the parameter a in (16.24) rather than in terms of r, an 

exact period n can be defined for all the rays (the H-curves) on each 

tube F ■ k. For suppose that the unique H-curve and F-curve through 

the arbitrarily chosen point M on the tube F - k have their next inter- 

section at N; and that II is the increase in a in  :ne motion along the 

F-curve carrying M to N. Then the same Increase will carry the arc 

MN of the H-curve into another arc of H-curve, NN1, which (by the unique- 

ness of these curves through any given point) will coincide with the 

whole H-curve through M; hence II is the period of this particular H-curve. 

The fact that this same Increase in a brings every other H-curve on our 

tube into coincidence with itself is evident on the basis of the geometry 

and the other two properties just used. Of course this common period II 

depends on the tube, i.e., the values of the constants in its equations 

(F - k, H - h). In the case of the rays (H - 0) the tube and the corres- 

ponding period ere fully characterized by the single constant k*. we write 

n - n(k). 
191 

Arthur D Little Inr 



The second consequence Is still more Important:     It Is that we 

can adapt the construction of the surface of section E(r) to the present 

non-laminar case in such a way that the transformations induced in It by 

the rays will regain the group property*   This shows that the theorems 

of the classical ergodic theory of mixing can be applied with the same 

authority to the case of secular non-laminarity' as was done in Section 14 

in the laminar case:    the intuitive extension sketched earlier in the 

present Section is validated. 

The modified definition of the surface of section and the proof 

of the group property may be indicated by geometrical constructions based 

on Figure 16.11; its analytic paraphrasing will follow the geometric. 

First, we take the initial surface of section £(r ) - 2:(r ) as before. 

Second, we Increase the parameter a from its initial value (a0 ■ r0) by 

an arbitrarily fixed amount, and denote by i(a)  the locus of points in 

phase space into which the F-transformation defined by  (16.24)  carries 

the points on lE(r ).    Third, we "identify"—regard as congruent—any o 

point A. on any l(a^) with the unique point A- on any MO») whenever A. 

and A. lie on the same integral curve of (16.24)   (the same F-curve). 

Fourth, we define the ray-induced transformation of points of L(a.) 

into those of l(a?) by the property that they are the Intersections 

with these surfaces of the same H-curve  (ray).    The fact that this con- 

struction of images is self-consistent, and that it has the group 

property is based on the relations illustrated in Figure 16.11(b): 

* More exactly,  the "group germ" property:    a piece of a group, since 
the number of interatlons is limited by permissable range. 
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A. and A., lying In *(o.) and £(o.) and on the sane F-curve are, 

as we stated, congruent points. For any given s, let B. be the Image In 

r(a- + s) of A.—I.e., B. Is the Intersection with Z(a1 + s) of the ray 

through A,. Let B be the Intersection with Z(a2 + s) of the F-curve 

through B.: B. and B. are congruent points In £(0- + s) and ^(a. + s). 

Now during the course of the F-transformation, as a Increases from a. to 

to a-»  the H-curve arc A.B- through A. Is carried Into an H-curve arc 

through A.; by the uniqueness of such arcs through given points, this must 

be precisely the arc AIB«.  Hence the Identification of points on differ- 

ent surfaces i(a)  by the above rule of congruence Is compatible with the 

definition of the ray-Induced transformation on this surface of section. 

The group property of the transformation Induced In z(a) by the 

H-curves is an Imnedlate consequence of the above construction, combined 

with the group property of the H-transformations in phase space, noted 

earlier as the consequence of H not containing T (so that any solution 

of the H-equatlons retains this property—and gives the same integral 

curve—when T is Increased by any constant t: the "motlon"of points 

depends therefore only on this Increase t, and not on the original 

"epoch" T) . Suppose as before that B. is the image of A. under the H- 

transformation when T IS Increased by t.  Then by the considerations of 

the last, paragraph, B. is the image of A. when the epoch (e.g., x') Is 

Increased by the same amount t.  The preceding paragraph showed that 

any class of congruent points (i.e., lying on the same F-curve) will go 

into a class of congruent points under an H-transformatlon: here we 

have shown that the particular class the former goes into Is fully 
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determined by the Increase t In the parameter T—whatever the value of the 

latter.    Thus successive transformations of congruent classes,  first by 

an Increase t, then by t', will have the same result as the single trans- 

formation produced by the Increase t + t':  this is the group property. 

It will be noted  that when in  (16.24)  e » 0,   (16.24)  coincides 

with (16.20), and all our constructions reduce to those of Section 14 

for the laminar case. 

In the geometric representation of Figure 16.11,  the surface of 

section I (a)  is not a plane,  but may be described as a slightly deformed 

plane region:    the Z(r)  for the r chosen as the solution of   (16.24) 

calculated for a fixed    value of a In I(a).    The transformation Induced 

by the rays in this surface of section is conservative,  since (ü*(5) 

(which on £(a) has 6a s 0) when Integrated about the contour of any 

piece A£ is a sliding Invariant:     we might call It an "invariant mass"; 

but in the above representation it is not an area, although it reduces 

to an area as c -»- 0 and the surface of section reduces to I(r).    In 

another geometrical representation, in the system of coordinates intro- 

duced in the canonical transformation given below,  the surface of 

section and its invariant mass will regain the form of planes and 

areas. 

To sum up the results achieved by the Introduction of  the second 

Hamiltonlan based on F ■ P :     they prove that In the secularly non- 

laminar case those results of Section 14 that led.   In the laminar case, 

to  (14.10)'  and hence to our equations   (16.13)  through  (16.16)  «pply.    On 

the other hand,  to pass from this to the final transmission loss 
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formula  (14.20), we are still obliged to fall back on the earlier 

Intuitive approach to the second part of the definition of secular 

non-lamlnarlty. 

A canonical change of variables»   We can go further and give  the 

preceding somewhat Intuitively geometrical treatment a firm analytical 

underpinning.    This is done by making a canonical change of variables in 

our phase space—i.e., one which preserves the Hamiltonian properties. 

The new variables are suggested by applying the general method,   so 

basic to all the work in the present section, of looking for "geometrically 

simple" first integrals of the "unperturbed" (laminar)  system,  and using 

the fact that (by the theorems in the reference to G. D. Blrkhoff cited 

above)  this geometrical simplicity is retained in the "perturbed" system 

(e  > 0). 

In the case of  (16.1),  the only geometrically simple first  inte- 

grals even when e " 0   were  H and p —our whole treatment has been 

based on the cylindrical locus,   tubular when e>0,  obtained by setting 

H and P    equal to constants. 

In the case of  (16.24),  on the other hand,  every one of  the first 

integrals  is geometrically simple when e »0, as we see by reference  to 

(16.20)  and to its solutions given there.    Hence the perturbed   (e >  0) 

integrals,   i.e.,  those of  (16.24),  are geometrically simple.    Our 

change of variable may be described as a moderate deformation of phase 
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space through which the somewhat bent Integral surfaces are "flattened 

out"—and which at the sane time preserves the Hamlltonlan form of the 

new system (16.1). Since Integral curves are Intersections of Integral 

surfaces, this bending will bring the F-curves into horizontal straight 

lines—as were those of (16.20) when E - 0. 

The analytical technique is to make a canonical change of 

variables. The methods, insofar as they involve local properties of 

the functions, are old and familiar. They are set forth in Whittaker 

(I.e., above), and have been applied in a restricted form in the old 

quantum theory (see, e.g., the 4th and 7th mathematical appendices of 

A. Sommerfeld, "Atombau und Spektrallinien", Braunschweig, 1922).  But 

since long range propagation requires going beyond local properties, a 

special form has to be given to the present application of these methods. 

To give perspective and gain typographical simplicity, we shall 

consider the general local problem first*. It is desired to change from 

n position coordinates q and conjugate momenta p. to new q., p., in 

such a way as to preserve the Hamlltonlan form of any given system such 

as (16.1) or (16.14). In general, this requires that ^PJ'S'L differ from 

^•PJ^QJ by an exact differential of a function of any 2n Independent 

variables in the set of 4n.    There is a practical advantage (pointed 

out by Sommerfeld. I.e..) and a theoretical advantage (the group pro- 

perty, pointed out by G. D. Birkhoff, I.e., 11.11) in writing the above 

condition in a slightly modified form. Applying {(p.q.) - Pj^q., + ^Pi» 

etc., we can write the condition for a canonical (sometimes called a 
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"contact") transformation as follows: 

(16.26) SPj^ + E ^i6?! " tä^i*   •••» <!„; Pj» •••» Pn) 

which, when (q,p) are 2n independent variables, is equivalent to 

(16.27) 3G   -   3G 
Pi - 3^ ' ^i " 3^ • 

The property of   (q,p) being Independent, and the possibility of 

solving  (16.27)for  (q,p)   in terms of   (q,p)  are—at the local level— 

equivalent to one another and to the non-vanishing of a certain function- 

al determinant  (Jacobian).    The latter reduces to the determinant 

A -  | ^G/iq^p  |. 

When we take G ■ I q p  ,  the transformation defined by  (16.27) 

I 

obviously reduces to the Identity:     P. " P.. q.  " q., •    Our "slight 

deformation" of the phase space of   (r, z, p , p ) will make use of a 
t   z 

function G (r, z, p , p ) which reduces to rp + zp when e = 0 (no 
c. IT    Z IT       Z 

deformation in the laminar case!).  We also wish to have no deforma- 

tion "initially", i.e., when r = r , so that 

(16.28)     G (r0, z, p . p ) - rV + zp,,        (e^O) 
c        L   z       r     z 

The final requirement is that (16.2A) should reduce to (16.20) 

in the barred coordinates:  this is the "straightening out" of its 

Integral curves.  Inasmuch as in the un-barred coordinates F(q,p) = k 

(a constant) along each Integral curve, G must, in view of (16.27), 

satisfy the Hamilton- Tacobi partial differential equation 
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F(q, 3G/3p) « k; I.e. 

(16.29) F(r, 2. ff • ff > - k 

Now since F « P - p + eP , as shown above, 3F/3p will not 
r   r    r r 

vanish for the moderate values of e. Hence the solu*: .n of (16.29) 

with the boundary condition (16.28) is a "Cauchy problem" having a unique 

solution—and one which, by the geometrically simple form of its charac- 

teristics (the integral curves of (16.24)) has a unique solution, valid 

throughout the range interval (r , r ) of importance in the present 

section. For a proof, see e.g., Osgood, I.e., (XIV, 24, 25). 

When e " 0, (16.29) reduces to 3G/3r ■ k, whose solution sub- 

ject to (16.28) is rp + zp  (since we are defining k as p ). When 

e>0, G can be expressed as a convergent series in powers of e, starting 

with the above expression:  the presence of the constants (p , p ) in 

this and in condition (16.28) shows that G depends on them:  it is a 

function of (r, z, p , p ).  Fuithermore, A = 1 when e = 0 and differs 

from unity by terms of the first order in e when f: > 0, so we can 

assume A > 0 for tin  slight change as e = 1 ("secularity") . Finally, 

in the new (dashed) variables, F = p = k, so that equations (16.24) 

reduce to (16.20) in these variables:  the straightening out has been 

accomplished in the large—not just locally (as in the text-books ). 

Turning to (16.1), we must re-write it in terms of the dashed 

letters, using the new Hamiltonlan 

* H. Poincar^ being an honorable exception. 
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I 

H(r, z, pr, pz) - H(r, z, pr, Pz), 

obtained by simple substitutions of the undashed variables on the right 

by their functional expressions in terms of the new variables, defined 

by (16.27).  [H is a different function of its four variables than Is H 

of its variables:  their values are equal at points corresponding by 

the transformation (16.27)].  From the fact that [F, H] = 0 we infer 

that in the new variables [F, H] = 0 also, this being a formal property 

of Poisson brackets under canonical transformations in phase space. 

Therefore, since F « p , we see that 3H/3r - 0: our change of variables 

has restored lamlnarlty—together with all the properties and construc- 

tions of the previous sections that were based on that assumption—with 

one exception, to be noted below. 

The fact that the two equations [F, H] =0 and [F, H] = 0 are 

equivalent can be made evident geometrically, since they each express 

the same fact—that the F-transformatlon carries arcs of H-curves into 

such curves, and vice versa:  a relationship Independent of the choice 

of coordinates. 

The rays correspond with the subspace J5» for which H = 0 and in 

which the Integrand of the sliding relative Integral invariant is 

ü)(6) = p 6r + p 6z - H6T 
r    rz 

p Or + p 6z rr    *z 
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from which we derive, by the generalized Stokes* theorem, that 

6p - Or + op * <Sr Is an absolute sliding Integral Invariant, reducing 

to the element of area on any surface r ■ constant. Since in the new 

variables the F-*curves are the horizontal lines, with r ■ a, it is evi- 

dent that the modified surface of section f(a) coincides with £(r): con- 

structed exactly as was Z(r) in the laminar case. Finally, the power 

flux density £ across E(r) is defied precisely as in Section 14—simply 

replacing un-dashed by dashed variables. By this method, the definition 

of f and its substitution for f, together with the formulas (16.13) 

through (16.16) are validated—without the extra appeal to the intuition 

that was made in their derivations earlier in this Section. 

The exception noted above has to do with the figure Into which 

our "slight deformation" changes the horizontal line z - C or band 

t*<  z<c" at the receiver, where r - r ; cf. Figure 16.1. Evidently 

this shares the deformation and becomes bent—slightly but irregularly. 

We might re-interpret Figure 16.1(b) by regarding the symmetrical curve 

(i)(1)(1) . . . as the locus p ■ k in the space in which the dashed 

variables are the coordinates, so that it is the result of applying 

our deformation to (j)(j)(J) . . . , and since canonical transformations 

preserve fu  and/u, the area of (i)(i)(i) . . . will be equal to that 

of (J)(j)(j) . . . —as It was by construction in its earlier interpre- 

tation. On the other hand this deformation changes the horizontal 

receiver depth line z = c and band r;^ z <?" into slightly but irregularly 

bent figures, that are not horizontal (z # constant). To establish 

the final transmission loss formulas, we are again obliged to use an 
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Intuitive interpretation of the "secularity" of the departure from lamln- 

arlty.    We can, as before, extend our Interval by the additional one 

1      2 (r , r )  throughout which the acoustic profile no longer changes; and 

then replace the set of images of z » £,  etc.,  as r Increases over this 

Interval by a sort of average or equivalent horizontal line z * £, etc. 
i 

It is desirable, however,  to give a "cleaner" formulation in 

precise mathematical terms, from which the desired formula can be 

obtained as a logical deduction.    This will be done In our third and 

final treatment of  the transmission loss problem in the case of secular 
i 

non-lamlnarlty. We shall make use of a variety of known theorems and 
i 
l 

traditional methods, but bring them to bear on our problem In a manner 

that is new. It has the advantage of generalizabillty to xyz-space. 

The Method of Simultaneous Hamilton-Jacob! Equations. Our 

starting-point is the material set forth up to our intuitive approach, 

and also the early part of our second more rigorous treatment in which 

the Polssoa brackets are Introduced, formulas (16.17) through (16.25) 

are developed, and Figure 16.11 established. Our method will be to 

make a canonical transformation of the type (16.26) and (16.27); but far 

more drastic in its effect:  it will not only straighten out the surfaces 

F ■ k into horizontal cylinders, but it will deform the H-curves that 

wind around them into actual helices—which become straight lines when 

the cylinders, thought of as made out of paper, are cut along an element 

and flattened out into planes. 

I 
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Analytically, this takes the form of the introduction by the can- 

onical transformation of "angle" and "action" variables. The latter are 

constart along each Integral curve (they are first Integrals of the 

differential equations (16.1)) the former Increase at a constant rate, 

depending on the values of the former. Finally, the original coordinates 

(our present r, z, p , p ) are functions of the angle and action varla- 

bles, either proportional to, or periodic functions of, the angle 

variables. This will allow, among other things, a perfectly precise 

statement of the second part of the definition of "secular non-lamlnarity". 

The introduction of angle and action variables by a canonical 

transformation has long been familiar in celestial mechanics, where it 

is applied to perturbation theory. It had a temporary revival in the 

old (pre 1924) quantum theory (see Sommerfeld, I.e.). But in all such 

cases the potential in the Hamiltonian was a sum of functions of single 

position coordinates (when chosen in a proper way), and the Hamilton- 

Jacob! equation could be solved explicitly by the method of "separa- 

tion of variables"; therefore the answer to the whole problem could be 

given in terms of Integrals of known functions. This method was applied 

to the unperturbed problem, the original coordinates were expanded in 

multiple trigonometric series in the angle variables, and thus a con- 

venient starting point was obtained for a method of successive series 

approximations—complicated, but well fitted to modern computers.  Some 

of the same ideas were used in the formulation of the quantum conditions 

in the old theory and, in particular, to show their "adlabatlc invariance" 
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I 

—a property of great Interest at that time. 

The present method makes the canonical transformation to angle 

and action variables In the actual ("perturbed") case: V ■ V(r, z), 

making no assumption whatsoever concerning the separability of variables, 

Its basis Is to construct a line Integral which is a solution of the 

pair of simultaneous Hamilton-Jacobl equations 

H(r, z, 8G/r, 3G/8z) - h 
(16.30) 

F(r, z, 3G/r, 8G/3z) = k 

The fact that they are consistent—that they have a common solu- 

tion G ■ G(r, z, h, k)—Is a consequence of the fact that for our 

present H and F, [H, F] = 0; indeed this Is necessary as well as suffi- 

cient for the consistency of (16.30)*. Unfortunately the standard 

theory of these equations is either confined to special simple cases, 

or, when general, is purely local. When its results are extended to 

less restricted intervals of the variables, as is required in long range 

propagation, the functions develop singularities, become multiple-valued, 

or even cease to exist:  a difficulty already noted in Sections 1 and 2, 

with the solutions G = S of the first equation in (16.30) with h = 0— 

the "elkonal". 

* C . any treatment of simultaneous non-linear first order partial 

differential equations; e.g., E. Goursat "Lecons sur I'Integration 

des Equations aux Derlvees Partielles du Premier Odre" (A. Hermann, 

Paris, 1891). 
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In the following treatment the solution of (16.30)  that we con- 

struct as a line Integral will be shown to have the properties needed 

for the canonical transformation to angle and action variables.    The 

variables r, z, p , p    are subjected to the restrictions 
r      z 

(16.31)    0 < r0 < r < r1; a <  z < b; h'  < H < h"; p    < n(r, b). 

Here (h1, h") is an arbitrarily small but fixed Interval containing H = 

h " 0 at its interior. Since r - r is the range of propagation, we 

are evidently not confining ourselves to "local" mathematics. As a 

consequence of the first part of our definition of secular non-lamlnarity, 

under the restrictions (16.31) (which imply restrictions on 

k»F(r, z, p,p)) whenever (correspondingly restricted) values of 
r  z 

h and k are given, the locus H = h, F ■ k, has the form of the tube 

shown In Figure 16.11(a). This is reproduced in Figure 16.Ill, together 

with certain construction lines. 

f; 

E   H=K    F-t 

FIGURE 16.Ill 

I 
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in 

Let values of (r, z, h, k) satisfying (16.31) be given. The 

latter two determine the tube shown in Figure 16.1X1, while r determines 

the closed curve of its intersection with the vertical plane of given r. 

As for z, there may be no point, one point, or two points on this closed 

curve having precisely the depth z. Clearly, if we are to use (h, k) as 

"momenta" Instead of p , p , we need a more adequate position coordinate 

than z: this will introduce Itself automatically in the analysis that 

follows. 

Instead of starting with (r, z, h, k) we shall start with 

(X, h, k), where X is a point chosen arbitrarily on the tube of Figure 

16.Ill, its range r therefore lying in the interval (r , r ). We shall 

define a function G(X, h, k)—actually infinitely.multiple-valued, of 

simple type—as the line Integral of p 6r + p 6z along the path 
L Z 

A = A(X, h, k) shown in the figure:  the path starts at A:  (r , a, p , 0) 

on the surface (p being the non-negative solution of H = h) . It 

follows the vertical line segment AB to the polnc B where it first meets 

the tube determined by (h, k). Then it stays on the tube, taking any 

path h-v  from B to X. 
ÖA 

The arbitrariness of the path A  is what leads to the multiple- 

valuedness of the line integral; but this Is of a restricted type, as can 

be seen as follows:  let K be any closed curve on the tube that can be 

continuously shrunk to a point ("homotopic to zero"); then by sliding 

along the integral curves of the H-equatlon (which make up the tube), 

path K can be reduced to a line between two points, traced first in one 

205 

Arthur D Little, Itx; 



direction, then In the opposite one. Hence /(if of (16.25) around K Is 

zero, because of Its being a sliding (relative) Integral Invariant. Since 

the term F6o In u Is equal to k£a ■ 6(ka) on the tube (and a Is single- 

valued on It), Its contribution to the Integral around C Is zero. There- 

fore /..pör + päz'O (this equation could also have been derived 
K r    z 

from the oi of (16.17) using H Instead of F). 

From the fact thus established It follows that our Integral 

along BX will have the same value for all paths on the tube that join £ 

to X, provided one path can be moved continuously on the tube Into the 

other; but not In general for two paths that cannot be so moved (non- 

"homotoplc"). Let J - J(h, k) be the Integral of p fir + p 6z (or 
L Z 

equivalently of to or oi) around a single loop of the tube,  taken In the 

4p -♦ +z clockwise direction (negatively, with respect to the coordinate 

axes r, z, p    In  ,£.) •    As we know, this sliding Integral Invariant 
Z        Ö 

Is equal to the common area of Intersection of the tube with any plane 

r « constant (cf. Sections 13 and 1A). Evidently any path A __ can be 

reduced to any other, combined with an integral number of loops of the 

above type, described either clockwise or counter-clockwise. Therefore 

the value of G(X, h, k) Is determined up to a positive or negative 

Integral multiple of J(h, k). 

We also note that the part of the Integral along the vertical 

segment of the path, AB, Is zero, since along it fir = 0 and p = 0 and 
z 

thus integrand vanishes. 
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The usual methods of the advanced calculus show easily that 

(16.32) ■£-   G(X, h, k)  - p  .        ~   G(X, h, k) - p : i or T oz z 

but this has to be Interpreted:    the point X determines the values 

(r,  z),  and a sufficiently small Increment Ar or Az In either deter- 

mines a new position X'  of X; when GCX', h, k)  - G(X, h,  k)  is divided 

by the corresponding increment in the coordinate and the limit taken as 

the latter approaches zero,   (16.32)  is an easy result.    If the initial 

X were at a highest or lowest point, the Az would have to be negative 

or positive, respectively;   there would be ambiguity in the position of 

X',  but not in dG/dz, which would be zero  (cases in which the tube 

touches the water surface cau.r.e no material difficulty;  actually they 

can be treated by the mathematical device of  the "method of  images"). 

It is necessary to calculate the partial derivatives of 

G(X, h, k) with respect to h and k;  i.e., holding X fixed.    Since X was 

chosen on the tube after it had been determined by h and k,  this 

requires explanation:    X is to be thought of as specifying a definite 

position in the physical space of the medium of propagation, the rz-plane; 

to keep it fixed when (small)  changes are made in h or k,  resulting in 

changes in the shape and position of the tube, means that the  (r,   z) 

corresponding to X are not to change    and therefore that it merely 

slides along a horizontal straight line in the (r,  z,  p  ,  p )  - phase 

space,  along which the range r and depth z are constant. 
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Cur ON (KtAk, lO-TüBP 

FIGURE 16. IV 

First we shall calculate 8G/3h. When h changes to h + Ah 

(remaining within the Interval (h1, h")), the (h, k) - tube changes to 

a (h + Ah, k) - tube, X sliding to a new position X' along the horizontal 

line described above. To find the effect of this change on the value of 

G(X, h, k), we must remember that this function Is multiple-valued, two 

values differing by Integral multiples of J(h, k), which will Itself 

have a non-zero derivative with respect to h; we shall separate our 

problem Into two parts: finding the derivative of a particular branch 

of the function G (X, h, k) and then that of J(h, k). Figure 16.IV shows 

the basis of the definition of what we shall take as the "principal 

branch" G.., by standardizing the path A. 
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I 

First we render our tubes simply connected by making a "cut" In 

all of them:    through the highest point  (least z) where r = r    and 

p    <■ 0  (the points B and B' on the two tubes shown) we pass the unique 
z 

F-curve.  This amounts to cutting along the surface generated by all the 

i i 
1 J        F-curves passing through the segment of the z-axls, from the point on 

the surface z = a to the central point z =" z of the duct (at which c 

Is minimum, n maximum). We now restrict our paths A(BX), A^'X'), etc. 

In the definition of G.. (X, h, k) by never allowing them to Intersect 

the respective cut between their two extremities B, X or B', X1. 

Except for this restriction, these paths can be taken arbitrarily on 

their respective tubes:  since every such path can be moved continuously 

into any other having the same extremities, because of the simple connec- 

tivity of the cut tube, the corresponding line integrals are all equal 

and therefore are functions of X (or X') only. Of course the values 

they approach as X approaches a point on the cut from either side differ 

by J(h, k). 

We now take the line Integral of 

(16.25) a) = p 6r + p 6z - F6a 

around the closed path AB'X'XBB'A in that order:  B'X' and XB along the 

A curves restricted as above.  Since throughout the region containing 

this path F = k (only H = h changes at present), the last term in OJ* 

F6o « k6a ■ 6(ka) makes a zero contribution to the integral, the path 

being closed. On the line segment XX', r and z are constant, as we 

noted before; therefore 6r = 6z ■ 0. Therefore the line Integral about 
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the closed path reduces to that of p 6r + p 6z along AB'X', minus that 
r      z 

along ABX: by definition of G.  this is 

AG1 - Gj^CX', h + Ah, k) - G^X,  h, k) 

To find its value we make use of the fact that u is thq inte- 

grand of a sliding relative integral invariant of the F-equations 

(16.24): we can slide the path along the F-curves into the initial 

plane r ■ r without changing Its value. If C and C are the points 

into which X and X' are slid in this process, the path of integration 

becomes (leaving out AB' which makes a zero contribution) B'C'CBB1. 

But in this plane, 6r ■ 0, so  that the Integrand is p 6z: we know that 

Its integral is the area in the zp -plane enclosed by the path. Hence 
Z 

9G/3h is the limit of the ratio of this area to Ah as Ah ■> 0. 

This limit Is easy to find, since on the Initial plane r =» r , 

F, which was defined as P , reduces to p , and we have p = k. The curves 

. . 

on which the arc BC lies has the equation 

(16.33) k2 + p2 - n2 + 2h, rz   o 
n - n(r , z) 
o     o 

while that of B'C'  is What this becomes when h is replaced by h + Ah. 

B'B is a straight line but CC'  is merely a smooth curve cutting the 

two arcs.    We note that when each of these short curves  Is replaced by 

any other smooth curves in the initial plane through B and C, approaching 

zero as Ah -*- 0,  the included area will only be altered by Infinitesimals 

of higher order  (i.e., a vanishing percentage as Ah -♦■ 0).    Therefore we 

are able  to replace them by horizontal line segments  (z •> constant) 
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through B and C: denote their depths by z. and zc* Then if p > 0 at C, 

the area is 

r ^ k   + 2(h + Ah) dz -f fr: ~2  
k   + 2h     dz 

Dividing by Ah and letting Ah ■*■ 0 is equivalent to differentiating the 

second integral with respect to h.    We obtain 

(16.34) Ü1 f 
3h J 

dz 

z.     VvnZ - kZ + 1     '      o 2h 

When p < 0 at C, the area is best written as the area of the whole ring 

between the two curves of the type (16.33), minus the area given of the 

rest of the ring. By the obvious synmetry in the z-axls, the area sub- 

tracted leads in the limit to a subtraction of the Integral on the 

right in (16.34). On the other hand, the total area leads to the express- 

ion (16.36) derived below. 

We now remove the cuts on the tubes, so that G becomes multiple- 

valued and may be written G. + NJ, where N - 0, + 1, + 2, etc.  The 

derivative with respect to h will be given by that obtained above, to 

which is added N times that of J. The latter, being the Integral of u 

about a single loop around the tube, can be evaluated by sliding it 

into the plane r a r , where it becomes, as we know, the area enclosed 

by the curve (16.33): 

I 
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>.35)J(h,  k) -^Yn^ - k2 + 2h •  dz    - 2J      Jn2 - k2 + 2h •  dz (16 
S     f    u , 

zl 

Its h derivative Is therefore 

r2 dz 

Vn2 - k2 + z.     »    o 

(16.36) 
2h 

We obtain finally 

(16.37) ao f ^  dz ||.NJh(h. k)±J       , 
z,   ¥  n    - k   + 1   »     o 2h 

The evaluation of 3G/9k Is carried out along the same lines. 

The second  tube,  corresponding to the replacement of k by k + Ak,  Is 

inside the  first;  but the path AB'X'XBA Is defined as before  (Fig.  16.IV) 

In the Integral of u around it, we obtain,  in addition to  the difference 

G1(h,  k + Ak) - G-O», k), a non-vanishing contribution of Föa.    To 

calculate this, we note that on the part of the path that lies on the 

initial plane 6a ■ 0.    There remains 

/Föa -   /Föa +     /     F6a 

B'X' BX 

-  (k + Ak)   (ax, -    a0) - k(ox - a0) + k(ax - ax,) 

Where av and oYi  are the values of a measured along the F-curves connect- 
A A 

ing X and X' to the Initial plane, and k is a number between k and 
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k + Ak. The above expression reduces to 

(k - k) (axl - ax) + Ak(ax, ~ a ) 

On dividing by Ak and observing that (k - k)/Ak Is bounded, while 

a , -*■ o ,  we see that the contribution Is, finally, a« - a . 

Again we slide our closed path along the F-curves Into the 

Initial plane, obtaining a ring-shaped region whose boundaries lie on 

the curve (16.33), and a corresponding one with k replaced by k + Ak, 

together with the two short curves joining their pairs of extremities at 

z = z- and z = z-. The latter are, as before, modified to become hori- 

zontal lines of these depths. We have therefore the same difference of 

integrals as in the former case, k being different in the two integrands 

Instead of h.  Division by Ak and passage to the limit as this approaches 

zero gives, in the case that p > 0 at z , 

(16.38) Ü1 
3k 

= a-a - k 
o r dz 

^ k + 2h 

The case in which p    < 0 at z    is handled as before, replacing the line 
z       c 

integral by the k-derlvative of J minus the term containing the Integral 

in (16.38). We may note that the appearance of the negative sign in 

this term corresponds to the fact that when Ak > 0, the contour integral 

when slid into the Initial plane, is in counterclockwise sense, and so 

represents the negative of the enclosed area. This is because Snell 

curves and their tubes contract as k Increases, as is shown by (16.33). 

213 

Arthur D Little, Inc 



i 
We easily find the k-derlvative of J: 

(16.39) J, (h, k) - -kJ. (h, k) 
k n 

Hence, finally,  for the multiple-valued G, 

(i6.4o) |£.0.0o.k|£  . 

the last term being given by (16.37). 

We could now take G « G(r, z, h, k) in making a transformation 

such as  (16.27),   introducing the momenta (p-,  p_) =  (h, k), and new 

position variables,  given by the right-hand members in  (16.37) and 

(16.40); but the results would be unnecessarily complicated, and,  in 

fact,  lack a certain valuable "intrinsic" quality.    Rather than use the 

pair (h, k) we shall use the related pair,   (j,  k), where j Is the 

action variable,  defined by the equation 

(16.41) j = J(h,  k). 

Since, for any given k, J(h, k) is the area enclosed by the 

curve (16.33), and since as h increases across its interval (h', h") 

this curve expands and so its area increases continuously, (16.41) 

determines h as a function of j and k (within the appropriate intervals) 

which we may write h ■ h(j, k), and apply the rules of differentiation 

of implicit functions to calculating its derivatives.  Thus 
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^-^- -1/Jh(h, k). 

^H'  k) - -Jk(h, k)/Jh(h. k) - k, 

the latter by virtue of (16.39). 

We now express G In terms of J, k, writing 

r(X, J, k) = G(X, h(j, k), k) 

It follows at once from (16.37) and (16.40) and the formulas just 

established that 

IT « G. /J - N + Y- 
3j   h  h    — J. / 

dz 

. v^T k + 2h 

(16.42) 

3r  . 3G ^ 3G      o 
3k ' k 3h + Ik = a ~ ff 

The last member In the first equation is our definition of w: it is 

the "angle variable" corresponding to the "action variable" j = J. 

F-c "(Tv? 

W = 
Ak-*0    ajre^ cf uncj 

FIGURE 16.V 
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This variable w, which Increases by an Integer every time the 

path of Integration A from B to X makes an additional clockwise loop 

around the tube, has a simple Intrinsic definition, shown In Figure 

16.V. Let the surface of section f(a) be drawn through X and consider 

the ring between Its two Intersections with the (h, k) tube and the 

(h + Ah, k) tube. Through X, and also through the point 0 when E(o) Is 

cut by the F-curve through B, draw horizontal lines (l.e, lying In 

planes of constant z).  These will cut a piece OX from the ring. Divide 

it 
the contour Integral of u around this piece, by that around the whole 

boundary (two curves) of the ring—both in the same sense. The ratio 

will approach w as Its limit as Ah -*■ 0. The proof consists in sliding 

the figure along F-curves into the initial plane r =■ r , using the 

invariance of the integrals. The multiplicity corresponds with the 

possibility of interpreting the "piece" as a multiple-covering figure, 

having the same extremities 0 and X. 

We shall now apply the canonical transformation of (16.26) and 

(16.27), with the new momenta p. =• j, p« = k, G being replaced by 

T ■ r (r, z, J, k).  In virtue of (16.42), our new conjugate position 

variables are q. « w and q» » a - a . By the general theory of can- 

onical transformations, to find the new Hamiltonlans for (16.1) and (16.24) 

replace the coordinates in H and F by their expressions in terms of 

the new variables:  denoting the results by H and F we have, in virtue 

of (16.30). 
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H (w, a - ao, j, k) - h(j, k) 

F (w, a - ao, j, k) - k 

From these expressions the differential equations  (16.1) 

become 

dr" If" If" 1/Jh        (8lven ln <16-36)) 
IM iis  da  3H  3h  . (16.A3; —-•■— = ■—« k 

dr • 3k  3k 

dj    3h.dk     3h  n ld7 " " 3^ " 0' dT 0 - 3^ " 0 

The last two are nothing new—they merely asset t that j and k are first 

Integrals. The first two show that w and a increase at a constant rate, 

determined by the constant values of (J, k). 

The F-curves are the paths of translation parallel to the a-axls, 

since their differential equations show that w, J, k are all constant 

along them, while a Increases. This Is, of course, the same result as 

was obtained earlier, by the "deformation" based on the single equation 

(16.29). As before, a plays the role of a variable of horizontal trans- 

lation, carrying the class of H-curves for given (J , k) Into Itself, and 

each curve Into itself whenever a Increases by the "ray period" n(j,k). 

And w acts as an angle variable, increasing constantly along each H-curve, 

and in terms of which the original variables are periodic functions of 
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period unity - as shown by (16.42) etc. Thus, while any point X of our 

phase space Is determined by (w, o, J, k), X determines the latter only 

up to an additive Integer for w. 

After eliminating T from (16.43), Its solution can, with the aid 

of (16.36), be written In terms of the function L defined as follows: 

(16.44) L - L(w, a, J, k) - w 
iKj, k) ; 

(16.43) then shows that L(w, a, j, k) =■ L(w , a , J, k).  This means 

that L Is another first Integral of our H-equatlons: L, j, k form a set 

of three functionally Independent first Integrals — the total possible 

number of Independent Integrals of the H-equatlons In the 4-dlmensional 

phase space of the variables (r, z, p , p ). 
i        z 

We now return to the rays In the 3-dlmenslonal phase space jp,. 

for which b » 0.    We  lose one of our Independent Integrals since now 

j ■ J(0, k).    After Introducing this expression In place of j  in n and 

L, we write II - IT(k)  and L »  (w, a, k).    The two functions, k and L, 

furnish us    with the maximum possible number of independent Integrals, 

upon which any further first Integrals must depend,  by a relation such 

as  (16.8). 

We shall apply this  fact to the acoustic power density quantity 

g ■ rp f(r,   z, p  )  of   (14.4), which was shown in Section 13 to be con- 
X z 
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[1 

stant along the rays — a property obviously Independent of the variables 

In terms of which It Is expressed.    We shall write g s g(w,  a, k), and 

observe that It Is periodic In w. with unit period.    Being constant along 

the Integral curves of  (16.43) It Is a first Integral,  and hence a function 

of (k, L); and we have 

(16.45)        g(w, a, k) - fUk,  L) - n(k, w - a/n(k)), 

the function of two variables Q being periodic In the second, with unit 

period. It Is fully determined by the Initial conditions, on E(r ) 

where a » a « r . There (16.45) shows that g(w, a0, k) - n(k, w-a0/n(k)), 

where (k, w ) are the coordinates of a point on E(r ), with the "angular" 

property of w: (k, w + N) coinciding with (k, w). 

Let the Initial values g(w, a , k) be written as the function of 

two variables g (k, w), so that, for all (k, w) on I(r ) we have 

n(k, w - a7n(k)) - go(k, w) 

Introducing the new variable x = w - a /n(k),  this becomes 

Ü  (k, x) = go(k, x + a/lUk) 

and this, being an Identity In (k, x), Is valid when x - w-a/n(k), 

whereupon the left member coincides with the right member of (16.45) 
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which equation becomes 

(16.4o)      g(w, a, k) - go(k, w -(a-a
0)/n)k)). 

We are assuming the Initial values g  (k,  w)  as given by the nature 

of the acoustic emission.     Thus,  the assumption made in Section 14 and 

applied ever since is  that they have the constant value q on the injection 

region I and zero elsewhere on E(r ),  this constant q being connected 

with the acoustic intensity on I by  (14.8):   this result was established 

at the emitter and requires no assumption of laminarlty.     This assumption 

can be written in terms of the characteristic function x-i (X)  of the set 

I:  equal to 1 or 0 according to whether the point X of E(r )  is or Is 

not on I.    If X Is given the coordinates  (k, w), we can write this func- 

tion in the form xT(^>  w)» which must be periodic In w,  of unit period. 

Then our earlier assumption takes the form 

(16.47) go(k, w)  - qXjCk.w). 

This will be used in later calculations; but since our present analytical 

tools make it Just as easy to deal directly with any more general g (k, w), 

we shall carry out  the derivation of the transmission loss  formula first 

without using  (16.47). 

We turn now to the receiver:  its range is r    and depth z  ,  lying 

in the depth interval  (c",   ?").    We wish to calculate the acoustic Intensity 
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at the point (r , z ) of the ocean:  the maximum power flux per unit 

ocean area, across an element of area AS ■> AC'r A$, whose normal Is at 

an angle y' with the +z -  axis. All directions of radiation (angles y) 

are Included, I.e., y  ranges over the Interval T.. of all possible directions. 

Here AC Is an element of the curve C In the rz -  plane, shown In 
I 

Figures 13.Ill and IV. We recall the general formula (13.10) for the 
I 

acoustic flux per unit axlmuth. P., which was established under the sole 
I 

assumption of azlmuthaj. symmetry and not lamlnarlty.  Replacing C by 

AC and a by s (to avoid confusion with the present a), (13.10) becomes 

f f I       ds  /  n(r n sin y)  f cos 0 dy 
•'Ar     •'r 1       -'AC   " r 

where Q m y - y*  Is the angle between the fixed normal to AC at the point 

(r , z ) and the direction of radiation. 

After the substitution r n sin y f "  g» and the application of the 

law of the mean to the integration over AC, we have 

P9 =- AC  /  n g cos G dy, 
ri 

where it is sufficiently accurate to assume that the space coordinates 

in the integrand are replaced by (r , z ); we shall write, in particular, 

n » n ■ n(r , z ). To obtain the acoustic intensity, note that P.Aiji 

is the power flux through AC in the azimuthal opening A$, so we must 

divide this by the element of area AC r A^; then we must find the 
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direction y*  of maximum flux.     Everything is as In the derivation  (14.10) 

except for the fact that instead of qF(k)  In the Integrand we have the g 

given in  (16.46)  and in which the variables  (w, a, k)  are regarded as , | 

functions of  (r, z, p )   (using corresponding superscripts),  single-valued 

except for w which is determined only up to an additive integer,  quite 

immaterial in determining the value of g.    We have the following expression 

for the flux density in the direction y*! 

(16.48)    fi'd-tY') - ^ / Vo^. w - irnb-)"8 0 *y' 
r        T1 

We are now In a position to lay down in precise mathematical 

terms our 

Second defining assumption of secular non-lamlnarlty! 

In the above expression for the  flux density,  the factor g  (—)   In the 

integrand, which depends on the initial data and is periodic in o    - a 

with period n(k), may be replaces by its mean over a full period, namely 

by 

-lUk) 1        o 
(16.49) io00 - ^ J       8o(t. » -       ;^     ') ds  . 

This Is an assumption of ray-phase Incoherence, and reflects, as did our 
L 

various pictures of "ergodic mixing",   the fact that the periods  n(k)  vary 
r 

enough with k to obliterate,  after a few convergence zones,  any precise 

phase relations in the initial data. 
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The fact that g depends only on k follows from the property 

of periodic functions averaged over any full period, and which can be 

made evident by the change of variable of integration x - (a -a +s)/n(k), 

which converts the integral in (16.49) into 

J go(k, x) dx; 
Xl 

g  (k,x)  is periodic in x with period unity and x1 -  (a    - a  )/n(k): 

simply differentiate this integral with respect to x.;  the result is 

go(k,  x1 + 1) - go(k, x^ - 0. 

The mean g0Ck), with assumption (16.47), becomes the function of 

qF(k)  of Section 14 and based on  (14.6).    This  fact could be shown as 

previously by the Ideas of  the mixing of dyed regions —whose initial 

Intensity of dye is specified by the second member of  (16.47).    But we 

do not need any such further appeal to intuition:    our second assumption 

stated above in the replacement of g    in (16.48) by g    of  (16.49)  is 

all that is required. 

With this assumption  (16.48) becomes 

(16.50) fl-d-fy')  - -f     /    n    g (k) cos 9 dy 
r      JTl 

0 J   i   "l 
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Now this coincides with (14.10)' when g (k) Is replaced by qF (k), and 
o 

vice versa.    As In Section 14,   the domain P..  over which the angle y Is 

Integrated,  and which we have assumed to contain all possible directions 

of  rays within a duct In an ocean with at most a slowly varying bottom 

depth b  (I.e.,  Imperceptibly changing over a convergence zone distance), 

is easily seen to be symmetric about its center  (y * ^72);   therefore, 

the vertical component in (16.50) vanishes;   the radial    component alone 

giving the acoustic intensity:  just as  (14.10)'   led to  (14.11),   (14.12), 

and to  the transmission loss expression  (14.13),  so we can assume 

that  these equations apply to the present case—after the symbol qF(k) 

is replaced by g  (k). 

It remains to find a convenient expression of the g  (k) 

defined by  (16.49)  in terms of  the  initial values g  (k, w)  on £(r  ). 

This  is easily done by applying the basic  facts concerning the Integral 

Invariants in Hamiltonlan systems,  set forth In Appendix E and using as 

coordinates in ix our variables w,  a, k.    We have seen that both g(w,  a, k) 

and the L(w,  a, k)  defined by  (16.44)  are first integrals of the ray 

equations;  therefore by Cartan's  theorem the product g<5L, being express- 

ible exclusively in terms of such first  integrals and their differentials, 

is  the Integrand of an absolute sliding integral Invariant.    We are inter- 

ested  In it on the manifolds k ■ constant  (cf.  the "Snell tubes" of 

Figure 16.1(a) with h ■= 0).    On each of  these,  6k = 0,    and we have 

by  (16.46) 

(16.51) g6L - g (k, w-(o-aü)/n(k))   •   (6w-6o/n(k). o 
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Let us integrate this expression with respect to a  on the 

line segment from a ■ a to a - a + n(k), (w and k constant). This 

Is a piece of an element of the cylindrical Snell tube — cylindrical. 

In the space of our new variables. Since In the Integrand 6w - 0, the 

resulting Integral becomes precisely -g (k) defined In (16.49) (with 

the variable of Integraton a - a + s, an Immaterial change, when the 

Integration Is over a whole period). 

U. 

H t- U C A V 

£rr<rff4- n^k) 

INTO    P r/    K'T^'TH'        -- t AW^O  M-cpv.E^ 

FIGURE 16.VI 

Now slide the above path of Integration along the H-curves 

into (he plane Z(r ); see Figure 16.VI.  Since these stay on the cylinder, 

the new path lies along its intersection with the initial plane E(r ); 

and since its original a-length was the period n(k), it becomes a closed 

curve in E(r ), traced exactly once in the positive or counterclockwise 

sense, as is seen in the figure, inasmuch as the rays themselves wind 
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clockwise around the cylinder. 

By the Invarlance of the Integral, Its value can be calculated 

in the I(r ) plane, where 6a"0 and a ■ o , which leads by (16.51), to 

the contour Integral 

/ 
-g000 - /  g0(k, w)6w 

On returning to the old variables (z, p ) in the plane E(r ), 

with w replaced by its expression in (16.42), we obtain the result which, 

when—as can always be safely assumed — g is symmetric in p , reduces 

to 

2   rr2(k) Az 
(16.52)   g (k) - ^ /     g>. pi 

1 1 

oW"n(k)I(k) *0^V*1 Xr^i 

where g [z, p ] ■ g (k, w), representing the initial values in terms of o    z    o 

the old coordinates. And when in particular this is given by (16.47), 

with X-rCk, w) » XTI*. P 1 I we see that the integrand in (16.52) is zero 

except in the depth interval (z', z"), the width of I.  If^as in Section 

14,z is an appropriately chosen Intermediate depth, the law of the mean 

converts (16.52) into the form 
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I 

\ i' 

| 
i; 

'^ ■q(i" ■ '"'^SIF ^> ■qF<k)- 

the last,  in virtue of  (14.17), since R(k)  » n(k). 

From this point on, we merely replace g  (k) by the above value 

In  (16.50)  to  obtain,  passing through (14.12)  and  (14.13),   the trans- 

mission loss  formulas   a4.19)  and  (14.20), with R(k)  replaced by n(k). 

Concluding Remarks 

A.     The final  (mathematical) version of the method used is 

founded on six bases:   (1)  the Identification of geometrically simple first 

integrals of  the Hamlltonlan equations governing the rays in the un- 

perturbed  (laminar)  case;   (2)   the extension of their existence and simple 

geometrical nature in the perturbed case,   in the ranges corresponding 

to the physical problem of interest, by the theorems of analysis of the 

G.D.  Birkhoff  type;   (3)  the introduction of as many Hamlltonlan systems 

(all  in the same phase space of canonical coordinates) as  there are Inde- 

pendent geometrically simple first integrals of the gl ten  (perturbed) 

system;   (4)   the construction of a simultaneous solution of  the corresponding 
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set of Hamiltan-Jacobl equations by a line Integral, the validity and 

properties of which — over the long ranges of importance — is based on 

E. Cartan's theory of sliding intergral invariance; (5) the use of this 

solution to cha ige canonlcally to angle and action variables; (6) the 

application of the simple (linear or periodic) form of the ray equations 

in these coordinates to acceptable approximations of the transmission 

loss, based on mathematically precise and physically meaningful assumptions. 

B. The second defining property of secular non-laminarity could 

have been based on the possibility of a Fourier series expansion of our 

periodic functions imvolvlng the variable w: the approximation g of 

(16.49) would then appear as the constant term in the expansion of the 

general density g.  The reason for dropping the non-constant terms is 

the "smearing" of periods 11 (k) in the terms in exp 2Tri[w - a/ll(k)] as 

k varies— the familiar picture of "mixing" applied so often. 

C. The method has three obvious extensions: first, the one to 

the non-azimuthally symmetric case c = c(x, y, z) noted before.  Second, 

to the "random transformation" conception of the flow on the surface of 

section with the application of information theory — doing for the secularly 

non-laminary cases what was done in Section 15 for the laminar, and thus 

achieving a great simplification at long ranges.  Third, to the case of 

two ducts in the laminar and the perturbed situation: there will be a 

different sort of multiple-valuedness, setting in at certain critical values 

of the small constant k (cf. the "figure eight" Snell curves depicted 

in Figure 14.IV). 
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D. The case of duct splitting, having no laminar analogue, 

cannot have geometrically simple first Integrals established by the pertur- 

bation of a llmlnar situation. This does not exclude the possibility 

of directly studying the topology of the loci of P ■ k for the P 

defined as In (16.11), but with the condition h - 0 set aside.  To 

obtain an effective hold on the problem we can assume, for the reasons 

given early In Appendix C, that the coefficients (essentially c) are 

analytic In the coordinates for a region R of the space of complex values 

of, the latter; and that the physical space W  of the acoustic transmission 

and which corresponds to their real values, Is embedded In the Interior 

of R. Then the Integral P Is Itself analytic within the latter region, 

and the study of duct doubling Is that of the behavior of the solutions 

of P ■ k with changing r: the appearance or dlsappearai.ee of solutions 

Is Interpretted In terms of pairs of conjugate Imaginary silutlons (that 

were then all alongl) becoming real, and vice versa. The Introduction 

of angle and action variables by the line Integral solution of the 

simultaneous Hamllton-Jacobl equations, and their Fourier expansion has 

to be replaced by a more sophisticated unlformization of the loci H»h, 

P * F ■ k, by line Integrals in the complex domain R — all which ideas 

have their roots in the unlformization of algebraic loci by elliptic 

and hyperelliptlc integrals, of Hodge's theory of harmonic integrals 

on a real manifold, etc. 
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E. The method used In this Section Is a new combination of a " 

number of quite diverse classical fragments. Apart from Its applications 

to acoustic propagation in heterogeneous media. It has many other potential 

applications — to classical dynamics, to cite the most obvious one. 
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APPENDIX A 

THE MATHEMATICS OF RAYS AMD WAVE FRONTS; CERTAIN COtflON ERRORS 

The starting point In the ray treatment of propagation— 

for both underwater sound and geometrical optics—Is Fermat's Principle. 

This states that the path of propagation, the ray L, has the property 

that If any two points A and B are picked on L and If they are not 

"too far apart", the arc AB of L Is the path of least time of travel 

of the disturbance from A to B, In comparison with the time taken 

along any other curve joining A to B. Since the travel time T.R Is 

given by the following line Integral along the curve from A to B 

(A'1) TAB " ^A d8/c " ^A nds' 

(where ds Is the differential of arc length) the basic property of the 

ray Is that It minimizes the Integral In (A.l). 

The application of the elements of the calculus of variations 
i! 
** leads to the Euler differential equations.** Their form depends on the 

coordinate system. In rectangular coordinates (x,y,z), the element of 

2    2    2    2 
arc Is given by the formula ds - dx + dy + dz , and the Euler equa- 

tions are as follows, the travel time t being the independent variable: 

(A. 2)    d_( 2 dx* . 1 in  d_ 2 di   1 in  d_, 2^ _ 1 3n 
dt^ dt;  n 3x ' dtQn dt;  n 3y ' dt^ dt;  n 3« 

The elementary theorems applying to such equations tell us 

that they have solutions expressing the coordinates of the point 

*See Officer,1 p. 42; Tolstoy & Clay.1 p. 53. 
**cf. Osgood.1* Chapter XVII. 
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(x,y,z) (moving on the ray) as functions of the Independent variable 

t (the travel time along the ray In qi '.stlon). They also tell us that 

through any given point (x ,y ,z ) and tangent to any Initial direction 

through it, specified, e.g., by angular parameters (6,^ there passes 

one and only one ray.  In other words, there exist three functions 

giving the solution of (A.2) in the form 

(A.3) x - f(t, xo, yo, zo, e,$) 

y - g(t, xo, yo, zo, 6,$) 

z - h(t, xo, yo, zoi  M) 

As t varies (the other five variables being held fixed) the point with 

the above coordinates moves along the ray determined by the given 

values of the five parameters, starting at (x ,y ,z ) in the direction 

specified by (6,^) when t ■ 0. 

It is emphasized that the existence and various other prop- 

erties of these solutions upon which we shall base our reasoning and 

computational methods does not imply that the functions in (A.3) can 

necessarily be expressed by simple formulas In terms of standard 

functions: the restrictive conception of "analytic treatments" to the 

cases where this is possible has been discarded by mathematics 

centuries ago! The solutions (A.3) can always be computed numerically, 

to the order of accuracy with which n * 1/c is known; with modern 

computers this process can be done expedltiously. This fact is the 

basis of the ray tracing technique referred to in Section 1. 
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The object here Is to scrutinize the scientific validity of the process 

and of the applications of  it  that are usually made—in the light of the 

mathematical facts of the whole  situation.    Explicit calculations by 

practicable methods is a different subject. 

When two points A and B are given and are "not  to far apart" 

(in a certain mathematically precise sense),  one and only one ray pass- 

es between them.    Accordingly,  the coordinates  (x,y,z)  of the point 

tracing this ray could have been given by equations like  (A. 3),   (x0, 

yo»  zo)  being the coordinates of A, but with  (&,$)  replaced by (x. »y, ,2.) 

| .• the coordinates of B. a 

In spite of the six parameters in the latter case and the 

\\ 
• • five in the former, different sets of values of the parameters do not 

necessarily give different rays.  Actually the totality of rays is a 

four parameter family. This Is evident In the case n - constant, when 

the rays are straight lines:  If we take a pair of parallel referc; i .-. 

planes, the set of lines cutting both planes is in one-to-one 

correspondence with pairs of points, one in each plane, and hence v'.tti 

their two pairs of coordinates.  The exceptional lines, which are 

parallel to the reference planes, form a set depending on only thre«2 

parameters, as a simple construction shows. 

The second basic fact emerging from the standard methods of 

1 
1 
I 

calculus of variations is the characterization of the wave fronts W0, 

W, etc. of Figures M and M as surfaces of constant phase. This means 

that  the travel time Trtl,    along the ray from 0 to P0 is  the same for 

*cf.  Officer,1 p.  45. 
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all other rays from 0 to points PQ on W0; and similarly for the travel 

times from 0 to the various points of W.    Therefore, by subtraction, 

the travel time along the ray from P0 to P is the same as along any 

other ray (of our bundle through 0) ,  from P0    to P , joining the wave 

fronts W0 and W.    Finally, each of these wave fronts,  like W,  cuts all 

the rays through P at right angles.    Putting these properties together, 

we see that whether we define the wave fronts as surfaces of constant 

phase from 0 or as orthogonal surfaces to the rays through 0, we get 

the same surfaces W.     (Law of Malus and Huygen's contruction) . 

We return now to the basic problem of Section 1:    to find the 

spreading factor, the ratio of areas S/S    as S->P and S0-^P0.    We give 

the general principles    here, deferring more detailed calculations to 

the next section. 

In equations  (A, 3),  think of  (x0, y0,  zo)  as the coordinates 

of the point of emission 0.    This could be taken as the origin of our 

coordinate system,  so that these three numbers would become  (0, 0, 0); 

but this is not essential.    What  is essential is to think of  (x0, y0, 

z0)  as held fixed.    Then (A.3)   express the 2-parameter bundle of rays 

Issuing through 0, each characterized by its two direction parameters, 

9,^.     If one wishes an explicite geometrical interpretation,  one can 

choose these as the co-latitude and longitude of the intersection with 

a sphere (of unit radius and centered at 0)    of the tangent to the ray 

at 0.     In this construction it  is usual to take the north.pole on the 
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+z-axis and the Initial meridian ($-0) In the xz-plane. In conclusion, 

If we drop the fixed (x0, y0> z0) from (A. 3) we obtain the equations of 

our 2-parameter bundle of rays as 

(A.4) x - f(t,e,^, y - g(t,e,^, z - h(t,e,^) 

We have seen that for all  (x,y,z) on the wave front W,   t has a 

constant value.    Denote Its value for W by L,  and for W0 by t   .    Then 

the equations 

(A.5) x - £(tit  6,  ^), y - gitv  8.*),  z - h(.tit  M) 

_        are the parametric equations of the surface W when i ■ 1, and of W0 

* •* when 1"0.    The parameters"are the angular variables (9,*).    In the 

special case of Figure 1.1,  they can be taken as  the co-latitude and 
■M 

longitude;  but In the general case of Figure  l.II,  the wave  fronts are not 

spheres and the angles have to be regarded merely as general curvlli- 

near  (Gaussian) coordinates on the surface In question.    In all cases, 

* the element of area  (öS or iS  ,   say)  on the wave fronts W and W0 can be 

T expressed explicitly In terms of   (A.5). 

On the surface W (given by  (A.5) with 1 ■ 1), when 6  is kept 

I fixed and ^ allowed to vary,  the point  (x,y,z)  traces a curve   (called 

a ♦-curve);   it will trace another nearby    $-curve when the fixed value 

1 6  is  replaced by a neighboring  fixed value 6+66.    Similarly when $ 

is held fixed at one value,  and  then at a neighboring value f + (St, and 6 

* Cf.   Officer1 
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varies, we obtain two nearby    6-curves.    These are shown in Figure Al 

which pictures the curvilinear quadrilateral AS bounded by these four 

curves.     It also shows a "tangent" quadrilateral <SS which is a par- 

allelogram and is bounded by straight line segments—namely the vectors 

having  the following components  (subscripts denoting partial derivatlv^SJ: 

(x^   6*.   y^   6t,   z^   6$) (^ 66,  ye   66,   zQ   66) 

tangent to the 6- and ^-curves.    Areas AS and  68 differ by quantities 

of higher order (so that AS/6S -*-!).     The area of the latter parallelo- 

gram is the product of its two adjacent sides with the sine of the 

angle between them;  therefore it is  the absolute value of the vector 

product of its two vector sides.    Therefore 

.. 

Figure Al    Element of Area on W and Tangent Parallelogram 
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(A.6) 6S - I  r6    x     r.l       6© 6* 
2 2 2 1/2 

" Kye% - z0y^   + (z9x^ " xe%)  + (V$ " yGx^ J    69^; 

in the first line, vector notation is used, r being the vector of 

components (x,y,z),  and subcrlpts again denoting partial differentiation. 

Since the required spreading factor Is the limit of  the ratio 

ÄS/ASo it Is equal to that of  5S/6S  .     Hence, by  (A.6) applltu first 

with t - t, and then vlth t ■ t , we obtain 

(A-7) Spreading factor    6S/6S 
X   rJ  (t-^) 

rfl   X   rj   (t-t ) e ♦' 

This vector form has  not only the advantage of compactness, 

but of being Independent of the coordinate system,  a fact which we will 

use In the next appridlx. 

Thus we have  '.educed  the problem of finding the transmission 

loss to that of evaluating the quantity on the right in   (A. 7), which  evalua- 

tion will be provided as soon aa the solution  (A. 4) of  (A. 2)   Is obtained. 

The practical question of what  Is the most economical computation to 

find it numerically Is one Issue facing us; but It Is only one:    the 

over-riding Issue Is whether the assumptions which have  underlain 

the above discussion are correct in the Important cases.     The assump- 

tions have been two In number:     first,   that n (or c)  Is fixed  in t and 

known throughout the  region of  propagation;  second,  the absence of 

multiple-path transmission,  intersecting wave fronts, and caustics, which 

are examined In Section S. 
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We conclude this introductory discussion of Fermat's principle, 

rays, wave fronts, and spreading factors by examining certain deductions 

froia this principle known more or less  loosely as Snell's law, and certain 

pitfalls  its misinterpretation have sometimes caused.    And we shall also 

note a rather frequent fallacy in constructions of shadow zones by "critical 

rays". 

Snell's law and its misinterpretation.    It is convenient  to re- 

write  (A. 2) in terms of the arc length s, measured along the ray in the 

direction of propagation,  as the indepjendent variable instead of t,   using 

ds = cdt,    dt = nds, and the direction cosines of this ray direction, 

given by    dx/ds = cos a  etc.    The equations become 

/»ox d   / N       3n      d    , „ v       3n       d   , ..       9n (A.8) ^ (n cos a)   - -^ ,  — (n cos 3 ) = —,   -^ (n cos y) - ^ • 

Suppose that n is Independent of x;  the first of the above 

equations shows that n cos a—explicitly, n(y,z) cosa (y,z)—is constant 

along each ray:  for reasons that will appear,  this fact may be called 

Snell's law throughout the medium—with respect to directions parallel 

to the x-axis.     Conversely, when n cosa   is constant along each ray, 

9n/3x = 0, so that n is independent of x.     Similarly for the other 

variables. 

A usual form of Snell's law throughout the medium occurs when 

it is "layered",  i.e., when n is independent of two coordinates,   e.g., 

x and y:    n "■ n(z).    From the constancy of n cosa   and n cos 3 ,  and the 

relations between direction cosines,  we have 
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22 2 2 22 22 n sin   Y •= n  (1-cos y)  = n cos   a + n cos 

which Is constant, and similarly for n sin y.     Since y  Is the angle be- 

tween the ray and the normal to the layers (I.e., to the gradient of n), 

the fact that at two points P and P» on the same ray, n..sln Y, = 

n.slnYo» expresses Snell's law in Its familiar form in terms of the 

angles of Incidence at P.. and of refraction at P« in crost Ing the layer 

of the medium between these points.  Conversely, suppose that n siny   is 

constant along each ray. Differentiating the above equation and applying 

(A.8), etc., we obtain 

9n .    „ 3n  „ 
cos a— + cos ß T— = 0; 

8x        3y 

and this being  true for each ray direction  (i.e., regarding COP -   and 

cosß   as  Independent variables) we derive the identities 3n/«j   -   i! and 

3n/3y = 0,   so  that n depends  only on  z.     Thus,   Snell's law throughout  the 

medium in the above sense is valid if and on y if the medium is layered. 

In the discussion so far, we have assumed that  the properties 

of  the medium vary "smoothly"  from point  to point:   that n together with 

Its derivatives  through the second order are continuous:   this  (or a 

little less) will insure the derivability of   (A.2)  or  (A.8)  from 

Fermat's  principle  (A.l).     We now examine a different case,   that of 

two media  separated by a smooth interface  I,  each individually smooth 

in the above sense,  up to and  inclusive of £,  but experiencing a "finite 

jump" across E:   at each point X on Z,   the limit n..  of n as X is approached 

from one  side  is  not equal to  the  limit  n_ from the other side,   the jump 
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being n„ - n,.  It Is then possible to prove directly from Fermat's 

principle (A.l) that for any ray through P (I.e., time-mlnlmlzing path 

AXB), n- sin 6= ^ sin 6-, where 6 and 6? are the angles that the two 

pieces of the ray make with the normal to Z at X (the angles of Incidence 

and of refraction).  This deduction from Fermat's principle does not 

require n to be independent of any variable of position: It can be the 

most general function, smooth except at the Interface Z. This may be 

called Snell's law at an Interface. 

The proof makes use of classical methods of the calculus of 

variations, sufficiently Illustrated by the case of propagation In the 

xy-plane and with the interface Z  (now 1-dlmenslonal) taken as the x- 

axis. Let A be a point In the first medium (y < 0) and B in the second 

(y>0), and let the coordinates of X be (C|0).  To minimize the time 

T  along the path AXB, we must evidently take for the two pieces AX 
AB 

and XB the rays in each medium connecting A with X an.' X with B (uniquely 

determined when these three points are, as we are assuming, close enough 

together).  Each piece of ray will satisfy the Euler equations—and we 

shall now take x as the Independent variable. 

> oc 

A'.(*J<0 

Figure A-II.       Interface Relations 
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Evidently y " y(x,£)s  as x varies and 4 stays fixed,   (x,y) moves along 

the ray;  as  £ varies while x Is fixed,   (x,y) moves vertically from ray 

to ray.     It Is this function y(x,0 which must satisfy Euler's equation 

(single,  In this case) where x Is the Independent variable and £ a fixed 

parameter.    We use the notation      y'  « 3y/9x, y* - 9y/H. 

The time of propagation along AXB, when AX and XB are rays, 

will depend on the position of X,  I.e.,  on the value ?: 

.5 b 

AXB / nds +  / nds - T(0. 

To find its minimum we set the derivative T* (O - 0.    We may apply 

Leipnitz'  rule to each term  (differentiation under the Integral sign), 

adding the terms corresponding to the variable limits.    Thus from the 

first term, 

r        / 21/2 
J   nds -   | n(x,y(x,0)  [1 + y'U,?)   ]        dx 

we obtain 

1/2 
-±   /nds -   /  ^ (ntl + (y')2]  '   } dx 

+ n^.O)   [1 + (y^)2] 
1/2 

Here the subscript 1 means the limit of the function as the point X Is 

approached from below, while the accent on y denotes  the derivative 

with respect  to x,   £ being held fast. 

The  ^-derivative under the Integral is worked out,  the usual 

integration by parts applied to the term containing Sy'/SC ■ 3(3y/3C)/c*x; 

and the coefficients of 3y/3C gathered together:   their sum is zero,  by 
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Euler's equation for AX. There remains the integrated part, which, 

together with the term contributed by the variable upper limit, yields 

'Vi + y/a.o2    Vi + y/a. O' 

Since along the x-axis we have y(x,C) = y(C,0 = 0,   differentiation by 

C shows that y'CC.O + y*(C,C) = 0.    Replacing y* by -y'   in the above 
2 -1/2 

expression reduces it to n.. (C,0)   [1 + y'CCO   ] which is 

n. (5,0) cos o ;  or,  using the angle of incidence 6   ,   to n. sin 6. at X. 

A precisely similar treatment applies to the second term, Tvll, 

the result being—n^sinö       Since the derivative of T^g must be zero 

for the minimum, we have n1  sin 6    = n- sin 6   ,  Snell's law at an 

interface;  valid on ^ only. 

The confusion observed too often in memoranda and even in 

some published works is between Snell's law at an interface and Snell's 

law throughout the medium:  the first,  holding only at the lower dimensional 

interface figure 2,  but applying to any smooth interface between smooth 

but general media;   the second applying throughout the medium but valid 

only in the special cases of Independence of  the index on spacial dis- 

placements along one or more directions.    Knowing that the Interface 

law is perfectly general,  the pitfall lies  in assuming its validity 

throughout the medium.     In view of what has been established above, 

reasoning based on such an assumption is incorrect:   there is no 

possibility of extending the interface property to the whole general 

medium,  e.g.,  by approximating the latter by  thin homogenious layers. 
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etc.—In spite of the analogy with the contlnuous-versus lumped constants 

■* methods that succeed In many other physical situations. 

The "critical ray" fallacy.    Another Instance of wrong reasoning 

due to "lumping" continuous quantities   (in this case,  velocity gradients) 

I in ray propagation occurs when the acoustic profile of the medium—which 

we now suppose to be layered, with c   (and n)  dependent on depth z only— 

I  ; ; 
| *' is approximated by two or more straight lines.  Ever since its earliest 

I 
days,  the calculus of variations has shown that in any Interval 

I    J ' (z   <z < Zj), where c is linear the rays are arcs of circles.    Further- 
i 
I. more, Fermat's principle shows that at Junction points of two linear 

I    " 
representations of c  (e.g., z    If between z    and z. another line Is 

I 
i . used,  the two forming a connected broken line between z. and z~) the 

corresponding circular rays will be mutually tangent.    This leads to a 

greatly simplified construction of rays:  one merely draws a set of 
j 

consecutive tangent circular arcs, each circle having Its radius de- 

termined by the slope of  its Initial tangent and that of the linear 

I ; 
I    , . representation of c  (cf.   (D.7) in Appendix D).     Therefore It leads to a 
I 
f 

graphical evaluation of the spreading factor and thus of the transmission 
i 

loss, by the reasoning of Section 1.     It gives,  for example,  the con- 
I 

struction of shadow zones, the "critical ray", etc., shown in Figure A-III, 

! •• • 
when at the Junction point z. c has a maximum (as under a layer). Except 

at ranges such that other rays enter it, e.g., by reflection, no acoustic 

power from A enters  the shadow zone. 
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Figure A-III.       Circular Construction of Critical Ray and Shadow Zone 

Everything stated in the last paragraph Is mathematically above 

reproach, being rigorously derived from Fermat's principle in the case 

of broken line profiles.    Physically, on the other hand, we may have 

serious misgivings,  and in fact ask two questions:     First, are angular 

junction points such as   (z_,  c(z„)) physically possible?    The answer is 

easy to give:  because of diffusion of salinity,  heat conduction, and 

the mixing  (turbulence) on all scales,   the sound speed cannot fall to 

be a smooth function of position.    Even if by some process it could have 

a discontinuity In its gradient at a junction point at one epoch t = 0, 

these physical processes would at once obliterate it when t>0.    Second, 

isn't the linear approximation "good enough" for practical purposes? 

This second question has to be answered by mathematics, since 

it involves a precise structural and quantitative comparison of the 
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consequences of two different assumptions.    To begin with.  If c(z) and 

hence n(z) are smooth—I.e.,  continuous functions with continuous deriva- 

tive of at least the first two orders—the differential equations  (A.2} 

or (A. 8) are valid throughout the medium.    It then follows from the 

uniqueness theorem of their solutions that If two rays are tangent at 

any point,  such as P,  they must coincide throughout  their whole length. 

Hence,  the critical ray as  constructed in Figure A-III does not exist in 

Nature.    Furthermore,  the theorems on differential equations show that 

as the direction of the tangent at A to the ray varies continuously,  so 

does the depth z of  its  Intersection with any vertical line such as W, 

at all points where it cuts W without being tangent to it.    Therefore, 

if the angularity In the profile is rounded off so as to become smooth, 

as shown dotted in Figure A-III, a ray through A and Initially headed 

to pass through P will,  as  its initial direction varies  continuously, 

sweep through the whole sequence of W within the shadow zone.    There- 

fore this construction of  a zone in which no direct rays from A pass is 

Invalid.    More generally,  only an intersection with an absorbing boundary 

or the appearance of caustics can prevent the possibility of joining A 

to any second point in the medium by a ray:   these obstructions and these 

only can cause shadow zones.     Finally, when the profile is rounded off 

as shown in Figure A-III,   still having a maximum c at  z.,  the differential 

equations show that one ray through A approaches  the horizontal line 

z ■ z- as asymptote as  the range increases Indefinitely.     This whole 

situation appears in greater clarity in the graphical representation by 

the "surface of section"  In phase space,  given In Section 14. 
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How can "so little difference" In profiles as that between 

the angular and the rounded off one shown In Figure A-III make so great 

a difference In the structure of the whole system of rays? Suppose that 

the range In depth through which the two profiles differ shrinks to zero, 

In what manner, If any, will the rays In the rounded case approach those 

In the angular? The answer to the first question Is that the differential 

equations (A. 2) contain not only the profile function but Its first 

derivative; the angular profile has no derivative at z «■ z„; the 

derivative of c exists and Is constant at both sides of this point, but 

makes a finite jump as this point is crossed.  Therefore the coefficients 

of the differential equations are not "only slightly different". Finally, 

the assumption that as the smoothed profile approaches the angular, the 

solutions of the former will approach those of the latter Is erroneous: 

it would be correct If the approach of coefficients (derivatives of c) 

were uniform; but this Is not the case. The "lumping" of constants— 

here the gradient of the sound speed —leads in this case not to useful 

approximations but to false conclusions.  Shadow zones exist and are 

Important; but their position and intensity must be computed correctly— 

not a difficult process In view of the laminar!ty (c = c(z)) which may 

be assumed in the short ranges where we wish to know them.  See Appendix 

B. 
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APPENDIX B 

THE CASE OF CONSTANT ACOUSTIC PROFILE 
'I 
»• The most commonly used approximation to n ■ 1/c Is to assume 

that It depends on depth only.  This means that the "acoustic profile" 

(c plotted against depth) Is the same at all the times and places In 

which the propagation Is being studied. This situation, whether 
•» 

applied to a "flat earth" model or to a "spherical earth", has been 

!j 
. 1 called the laminar case —the properties of the sea being thought of as 

having a layered horizontal structure. We shall treat this case In 

the present section, using the "flat earth" model. 

We shall In general use rectangular coordinates (x,y,z) with 

z measured vertically downward, the xy-plane parallel to the ocean 

surface. The ray equations are then those of (A.2), and the acoustic 

profile Is given by 

(B.l) c - c(z),  n » 1/c ■ n(2) 

In the present case our work will gain In simplicity If we 

Introduce a system of cylindrical coordinates (r,$,z} based on the 

j ; above rectangular axes:  z Is the same as before, while r Is the 

horizontal range and ^ the azimuth (angle between the xz-plane and 

the plane determined by the point and the z-axls) so that x • r cos $ 

and y * r sin ^, and the element of arc Is now given by the formula 

2    2   2  2    2 
ds ■ dr + r d^» + dz .  With these expressions, Euler's equations 

take on the form 
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We shall assume that we have taken the z-axis passing 

through the point of emission 0.     Since n Is Independent of $ ,  the 

second equation In (B.2)  has Its second member zero,  from which It 

follows that, along each ray, 

2    2 d<|> n    r    -r—   ■    constant, at 

Since at the Initial point 0 of this ray r - 0,  this constant Is zero; 

In other words,  along the ray,   $ = constant.    But this means tuat the 

whole ray lies in the fixed vertical half-plane,  bounded by  the z-axls 

and characterized by the constant azimuth angle 0. 

Turning to the first equation In (B.2),   the second member Is 

seen to be zero:     Its first  term,  because n Is Independent of r;   Its 

second,  because of  the fact established In the last paragraph. 

Consequently 

2dr 
n -r- » k,  constant along the ray. 

Throughout this study,  differentials along Individual rays 

are denoted by (i,  In contrast  to differentials in which only the 

parameters specifying rays vary, denoted by ö_.     The last equation 

B-2 

Arthur D Little, Inc 



11 

ii 
then has a familiar geometrical Interpretation; not» that obvious 

substitutions lead to the equations 

/D -i\ 2dr        dr       _dr . . (B-3) n d^ " "ZdT "dl " n 8taY - k. 

where y  Is the angle between the positively directed z-axls and the 

tangent to the ray at the point on It being considered.  Our result, 

therefore. Is 

Snell's Law;   n(2) sin y ■ k 

The constant kcharacterizes the ray (through 0 and In the plane of 

given fixed $)',  we shall call k the "Snell constant" of the ray. One 

expression for k Is In terms of the depth z = z of the point of 

emission 0, (c(z ) " c )together with the initial direction at 0,Y ■ 6 

(obviously the co-latitude Introduced in Appendix A). Another useful 

expression Is In terms of the value at a point (If one exists) where 

the ray has a horizontal tangent, so that sin y B 1; at such a point 

the ray has either a highest or a lowest point (it "vertexes" or 

"bottoms"). Thus we may write Snell's law in the forms 

(B.4)       n(z) sin y ^ k = n sin 9 = n(max z) * n (min z)• 

Snell's law may be re-written in the form of a first order 

differential equation connecting the two variables r and z.  From one 

of the forms contained in (B.3), namely n dr = kds, and from the 

* I.e., "Snell's law throughout the medium"; cf. the discussion in 
Appendix A. 
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expression for the arc-length along a ray (with d^ ■ 0), ds ■ dr    + dzS 

we  eliminate ds,  thus obtaining 

(B.5) k2dz2 - (n2 -  k2) dr2 

From this a number of conclusions can be drawn.  First, that 

2   2 
n - k cannot be negative; and,since n and k are both non-negative, 

that n(z) >, k. This shows that all the rays of a given value of the 

Snell constant k are confined to the horizontal layers bounded by the 

planes z * z , where z. Is determined by the equation n(z.) • k.  A 

simple case is shown in Figure B-Ia, In vhich the acoustic profile c(z) 

has a single minimum at z = z , so that its reciprocal n(z) has a 

single maximum at this depth z .  For the value of k shown, there are 

two depths z. and z? for which n ■ k; thus the ray having this Snell 

constant must lie between these. Figure B-Ib shows the ray in the case 

in which the vertical line distant k units from the z-axis cuts the 

graph of n(z) at non-zero angles; i.e., with derivatives n'(Zj) >0 and 

n' (z_) <9.    The ray is the graph of the solution z = g (r) of (B.5). 

We shall return to the nature of this solution later. 

The second fact emerging from (B.5) is that the solution 

can be obtained by quadratures (the calculation of an indefinite 

integral).  For, on separating the variables (B.5) becomes 

(B. 6) +f ><iz 

r n (z) - k2 
- r + constant, 
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where Che   (+)  Is taken when the ray slopes down  (z and r both increas- 

ing) and the  (-) when It slopes up  (z decreases as r Increases).    Since 

n(z)  is given as a graph or table,   the integration may have to 

be done by numerical methods.    However,  when the profile  (and hence 

n(z))  is simple in character,  it may sometimes be approximated by 

formulas making an explicit working out of the integral possible. 

But in any case,   (B.6) defines r as a multiple valued function of z, 

having a single-valued inverse  (graphed in Figure B-lb). 

(B.7) z = g  (r,k). 

There are many other possibilities (not shown in the B-I 

figure) depending on the shape of the profile and the value of ';he 

given Snell constant:  thus B-II (end) shows the asymptotic ray when c 

has a maximum (contrast It with A-lII). 

The last conclusion is that the solution of the ray 

equations (JJ. 2)— which we have carried out geometrically— so that 

every ray is described by the equations 4» = constant, and z given by 

(B.7) (equivalent to (B.6))-- can be completed klnematically, i.e., so 

as to give our cylindrical coordinates (r,$,z) as functions of time, 

t, just as (A-. 4) gave the solution of (&. 2) as such functions.  For 

this purpose we have but to take from (B. 3) the relation dr = kdt/n (z), 

and use it to eliminate dr from (ß. 5), obtaining 

2, 
n (z)dz 

iz)  -  k* 
(B.8) +( r 2^

/—• = = t + constant 
' f n (3^ 
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Since r and  t Increase or decrease together,  the same rule of choice 

of signs applies to  (B.8)  as to  (B.6). 

We have therefore solved  (fi-.Z)   for the three coordinates 

(r,ij),z) of  a point tracing    a ray through 0 and In the Initial 

direction  (6,$)»  by determining them as  functions of  (t,6,(j>)  by means 

of  the above formulas.    We must now evaluate the spreading factor; 

In other words, we must calculate the area ratio of (A.7)  In the 

present case. 

We could of course return to the original rectangular axes, 

expressing   (x,y,z)  In terms of  the present cylindrical coordinates;  but 

this Indirect method leads to unnecessarily complicated computations. 

It Is better to calculate the vector product In terms of the vector 

components of  the 6-curves and the «t»-curves  (cf.   Figure A-I)  along 

the three mutually perpendicular directions at  (r,^, z)  In which r,<J>  , 

and z Increase, one at a time,   the other  two remaining fixed. 

Figure B-ii shows these directions, with  the components   (Ar,   rA$,  Az) 

of a typical vector Av  (not shown to avoid complicating the figure). 

h Ott 

10*1 

Figure   BrII 

Showing three mutually 
perpendicular direc- 
tions: 

r - direction 
^ - direction 
z - direction 

along which to resolve 
^-vector and 9-vectors 
(not shown) 
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A simplifying feature of the present   (laminar)   case Is that 

all figures   (rays and wave fronts) have rotational symmetry about the 

z-axls:  any ray through 0 going Into a ray through 0;    and every wave 

front    W   Is a surface of revolution about this axis.    This Is an 

Immediate consequence of the rotational symmetry of the physical 

conditions,   reflected In the absence of <p from the equations  (B.l), 

(B.3)  -  (B.7).     Therefore the ^-curves are circles In planes perpen- 

dicular to the z-axls,  centered on the latter,  and of radius r.    Hence 

the elementary vector described by a point on W wi ich has Its parameter 

9 fixed but Its  $ Increased by the amount 6$ Is In the ^-direction of 

Figure B-II and of length rSQ.     Its rectangular components In the 

(r,♦.^-directions are 

♦-vector; (0,  r6^,    0) 

To find the components of the corresponding 6-vector, which 

represents the desplacement of a point on W when 9 increases by the 

amount 66 (♦ remaining fixed), we may confine ourselves to a half- 

plane through the z-axls, and observe at once that the component in 

the ♦-direction is zero. The components in the r- and z-dlrections are 

the differentials  ör and 6z, computed on the assumption that both ♦ 

and t remain constant (the latter, because we are staying on a fixed 

wave front)— but that the Snell "constant" k. varies: it is constant 

along each ray, but varies from ray to ray, as we see from the 

formular derived from (B.4): 

6k. » 6(n sine) - n cos 9 69 
o        o 
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In the light of these facts, we have 

6-vector:  (r,0,z) 

—*     —r 
Hence the vector product re X    r      needed In (2.7)  has  the 

components In the  (r,   $,  z)-dlrectlons given as   follows: 

fg x 7    :   (-r 6z «♦,    0,    r Or 6<|i) 

2    2 1/2 
Therefore its absolute vale is r6$(6z + 6r )    " rö^ös, where 6s 

is the differential of are along the curve of intersection of the wave 

front W and the half-plane ^-constant.  In our figure of revolution, 

this expression is almost geometrically self-evident without calculating 

the vector product: our reason for doing this is to illustrate the much 

more general method. 

To find 6s, we note that in the half-plane through the 

z-axis, using the axes of r and z as horizontal and vertical 

retangular axes, the slope of a ray is ctny " dz/dr (differentials 

being taken along the ray); whereas the slope of the 6-curve is 6z/6r. 

These directions being mutually perpendicular, we have 6z/6r - -tany. 

Eliminate 6r and apply (B.3); we obtain 

V 2 
2    2    2       2        2     2  2 

6s  "or + 6z »  (ctn y + 1) öz = esc y&z (^-) 

The result is that 6s»[n(z)/k]|6z|, the absolute value sign being 

required by the fact that 6z may be positive or negative, while 6s is 

essentially positive. 
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It remains to express öz In terms of 69 (or, equlvalently, 

of 5k).  It Is at this point that- we must make the general relations 

given In (B.6) and (B.8) more precise. Let the ray respresented In 

Figure Bib emanate from the point source 0 where r=>0, z-z , t=0; out 

to the first vertexlng or bottoming, we have 

2   2 
kdz' t      n dz' 

(B.9)       „   ^  ;, .   „   .   ^  ^ . ,  .   2 

/kdz /•  n d; 

z z o o 

the signs being chosen as explained earlier. 

To find 6z we differentiate the second formula, setting 

6t-o (the arc being on W) and allowing only k end z to vary.  Solving 

the resulting equation for 6z In terms of 6k etc., and then substi- 

tuting the value found Into the earlier expression for 6s in terms of 

6z, we obtain 

P. 10)      ös = L(z, k) 6k 

where L(z,k)  involves an Integral and may be written in the two forms 

(B.U) Uz,k)  . ±1 [n2U)  .,2,  1/2    f      n^} d, 
zo     [n   (z)-k  ] 

z 

=C08Y 

/ 
z 

o 

n  (z)  dz 

f  2. .   .2,   3/2 
[n  (z)-k   ] 
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The second form makes use of (B.4).    The right-hand member Is essentially 

positive between 0 and the point of first horizontal tangent 

It follows that 

(B.12) 6S - r6^68    -    rL(z,k)  &k6t 

I    11 
I so that the required spreading factor Is given by 

rB 13N      «L. .  rL(ztk} on W 
I - (a'1*) 6S rL(z,k) on W * i  ' o        '     o 

A particularly simple form occurs when the Inner wave front 

** W  Is taken so close to the emitter 0 that the changes In Index n(z) 

In and on It can be Ignored. TheijW Is a sphere centered at 0 as In 
m ft 

Figure A-Ij If Its radius Is denoted by a  so that on the sphere 

•• Y ■ 9, r » a sin 6, z » z »a cos 6, nCz) - n 1    ' o o 

.. (B.ll)  shows  that on W ,  L(z,k)  « a/n    cos  9,  so  that  (B.12) becomes 

(using 6k ■ 6(n sin 9) - n    cos969 0 o o 
mm 

2 
(B,14) 6S    - "      6k 6^)    -      a    sln9  696$ . on coao 

•" o 

This Is,  of course,   the usual element of area on a sphere In spherical 
i 

coordinates.  In spite of the ^act that cos9 may be negative or vanish, 

the final expression Is free from such ambiguities or slgularltles. 

Note that, by construing these steps as calculations of a limit as 

9->Tr/2f everything Is valid even when the Inltall tangent at 0 Is 
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horizontal. 

In applying (IT. 14)  to the evaluation corresponding with  (B.13), 

we must realize that tkc common angle 66 rather than 6k has been 

cancelled; hence on W we must write  (B.12)  In the form  (using k.=n    sln6) 

6S - n    r cosO •   L(z,k)-6e6^ 

We thus obtain, Instead of (B.13), the spreading factor 

-||- - -f- ctne L(z,k) 
o   a 

which leads to the acoustic Intensity ratio (cf.[l.l]) 

re 2 
(T> 1$)        Acoustic intensity at P     _ o a tan6 . 
^ *    '        Acoustic intensity at P     "      6S "      n r L(z,k) 

A more usual expression assumes that the acoustic Intensity 

(flux of power per unit area) over the sphere W    is constant and hence 

that the total rate of emission of energy by the source,  E ,  Is the 

2 
spherical area Ana    time the acoustic intensity.    This  replaces  (B.15) 

by the expression 

E tanS 
(B.16) acoustic intensity at P    =    —; ~,—rr- J '»irr    n    L(z,k) o 

A concluding remark is In order concerning possible 

singularities in the integrand in (B.9).    These occur  for z such that 
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n(z) - k,  as at z.   and z. In Figure Bl; they correspond to horizontal 

tangency of the ray.    As noted above, no difficulty or exception occurs 

when horlzontallty takes  place at the emitter 0.     It Is the first point 

of horizontal tangency  farther out on the ray that must be examined. 

At shuch a point &,  slny ■ 1» k ■ n(&),  and the Integral In L(z,k) 

I    ■ becomes Infinite having the 3/2 power of z-z..  or z-z»  In the denominator 

i . 

4    I 

l 

of the Integrand  (see Fig.   3a).    On the other hand,  L(z,k)  Involves a 

factor that vanishes at  these points:     It Is an "Indeterminate form 

OKOO".    we find it by  I'Hospltal's rul6 , by writing It as the 

Integral divided by the  reciprocal of Its  coefficient:     the 

Indeterminate form ~r~»  which Is the limit of the ratio of the z 

dlrevatlves of the numerator and denominator.    An easy calculation gives 

m2 
L(z'k) - - ^r 

llm    L(z,k)     ■    —r 

! • 
In the case Illustrated In Figure Bl, the two derivatives  In 

the numerators are n'(z1)>o    and n'(z2)<0, so that  the values given by 

IB. 16) are positive and finite.    Inserting the values In (Jj. 16) 

(1*1,2), It becomes 

Eotan9   |n,(z1)| 
I. 17)        Acoustic Intensity at P "  r  

o 

B-13 

Arthur D Little Inc 



0 

On the other hand If, e.g., n* (z.) - 0, as would occur at a local 

minimum of n(z)<— a maximum of c(z)— (B.17) would suggest that the 

intensity at P is zero.    While this happens to be true,  the use of 

(B.17) in Its proof is not directly applicable, since an inspection 

of  (3.9) at such a point z    by routine methods of the calculus shows 

that, as z+z,, both r and t increase without limit :  there is at z-z 

a horizontal unstable ray that is approached as an asymptote by the 

ray under consideration (assumed not initially horizontal:  it would other- 

wise coincide with the horizontal asymptote). There is  In fact no 

first point of horizontal tangency to our ray.    This assumes that all 

acoustic profiles occurring in Nature    are smooth curves   (have 

continuous first derivatives).     All this has been discussed In Appendix 

A;   the asymptotic ray is shown In Figure B-II at the end. 

We have thus obtained explicit expressions  for  the rays 

emitted from 0 and the acoustic Intensity along them,  in the region so 

close to 0 that no multiple-path transmission occurs  (we are leaving 

out reflections).    This is usually of the order of  30 miles.    Our 

explicit expressions involve two Integrals containing the acoustic 

index   n(z).    The practical question of numerical computation  Is 

discufised in another study. 

What do the explicit analytic formulas obtained in this Appendix 

tell us about the difficulties at longer ranges (caustics, etc.), des- 

cribed in general qualitative terms In Section 2.    They were illustrated, 
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In the two-dimensional case by Figures 2-1 and 2-11. 

On applying our formulas to the analysis of these cases, 

exactly the same difficulties become apparent as have been Illustrated 

geometrically. Thus If W Is examined as the locus of the equation 

t ■ s(x,y,z)t (here, S(r,z)) for various Increasing constant values 

li of t, equations(B.9) show that S Is the function resulting from the 

elimination of k.  In other words, we must regard the first equation 

as determining k as a function of (r,z); the symbol k In the second 

equation Is Interpreted as the function thus obtained; the Integrand 

becomes therefore a function of the three variable, (r,z,z'), z' being 

the variable of Integration.  But the conditions that the first equa- 

tion determine k as a regular single-valued function of (4,z) are only 

satisfied "within a convergence zone" of the source; beyond such 

ranges, the singularities exhibited geometrically show up analytically. 

It may be remarked that the use of the elkonal equation 

|vs|2 = n2 gives rise to exactly the same results.  Transforming the 

Integrand in the second equation In (B.9) by writing 

7       • '    " X ,2 _ 1,2   w /n2 - k2 V  n2 - k2   'i/T' 

and then applying the first equation, we obtain 

I - kr +Jz     |/n
2 - k2 dj 

o 
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which Is precisely what would have been obtained If we had solved the 

elkonal equation by the method of separation of variables,  and then 

applied the Initial condition that at the point 0  (r - 0,   z - z ), 

t - 0 for all values of $.     But the above expression, while simple In 

Itself,  still contains k:     Its elimination from the first  equation In 

(B.9)  so as to obtain t - S   (r,z)  Involves all the difficulties of the 

former method. 

We close with a schematic illustration of the asymptotic ray 

occurring at a smooth maximum of c,  as contrasted with the "critical 

ray" at the angular maximum of Figure A-III.    With the aid of  formulas 

of  the sort developed above,   the spreading factor and hence the  (lowered) 

acoustic intensity in its neighborhood may be expressed   (and computed 

numerically):  it is seen as a region of rarified ray density. 

tlD 

/Lg-m^frgf 

Mr\ 
H-        - - "i iti ■ 

CO 

Figure B-III.       Critical Asymptotic Ray 
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APPENDIX C 

INDIVIDUAL TRAVELLING WAVES 

I    ,. The purpose of  this appendix is to examine more deeply than In 
\ 

** Section 5 the physical and mathematical nature of the boundary conditions 
I 
I and the Individual travelling wave,  deferring to Appendix D families of 
U 

such waves and their behavior with Increasing circular frecuency w. First, 

i " 
the reasons that allow us  to assume the analytlclty of  the functions are 

set forth.    Second,   the mathematical nature of  the boundary conditions is 

i    ** formulated.    Third,  a process of normalization is applied,  completing the 

definition of  the travelling waves and removing certain ambiguities that 

have plagued their extension to non-homogenlous media.     Finally,  the 

theorem is proved showing that even on internal boundaries, where A = B = 0, 

so that the definition of  S by   (5.3,  4,  5) is not directly applicable,  S 

can be extended by continuity to this locus and is single-valued in its 

neighborhood except for a finite jump of TT/W as this boundary is crossed; 

since this drops out from the gradient VS,  it causes no  indeterminacy In 

the direction of F',   cf.   (5.9), which latter approaches  tangency to the 

Internal boundary. 

The physical medium in which  the radiation occurs will be denoted 

by W  (and assumed to be  finite);   and its material boundaries,  by B.    The 

basis of the treatment will be the pairs of real-valued functions,  the ele- 

mentary travelling wave pair   (A,   B)  for  the circular  frequency u,  and the 

general Helmholtz equation   (4.2),  which we will write  as 

1 2 
(C.l) ± V  •   (p(|))  +k()) = 0,  k = a)n = w/c; 

P 

we recall that p and k depend on position bi.t not on time. 
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Analytic nature of the physical quantities.    The given quantities 

p and c are "physical" functions and can of course be known only approx- 

imately by measurements, or calculations based on observations—certainly 

the accuracy stops before atomic dimensions are reached!    Owing to diffu- 

sion and heat conduction they are continuous and have continuous gradients. 

It  is often useful to use discontinuous approximations:    e.g.,  a connected 

set of straight lines to represent an acoustic profile in studying layered 

media; or actual Jump discontinuities across boundaries.    But  in such 

cases care is necessary to make sure that results so based are not rssen- 

tially "artifacts" of the simplifying assumption. It is  easy to show 

mathematically that such physical functions as  p and c can be approximated 

arbitrarily closely by analytic  functions:    i.e.   functions  that can be 

expanded in convergent power series  in the coordinates in the neighborhood 

of each point of the space of  interest.     In dealing with matter In bulk,  as 

we are in this study,   the properties deduced from the analytic approximation 

show themselves to be valid  (at  least in the limit)  as the approximation 

gets better and better:    this has in fact been the basis of  centuries of 

success of the analytic assumption.    The same is not necessarily true of 

the other  (discontinuous)  forms of approximation mentioned above. 

The boundaries.    The detection boundary is but a mathematically 

constructed surface enclosing the defection equipment, which,   in the 

present context, exerts no physical effect on the radiation;   it will 

therefore be ignored henceforth. 

* As in the case of the "critical ray" in the conventional construction 
of shadow zones discussed at  the cose of Appendix A. 
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I The emission boundary E, on the other hand, corresponds to an 

essential feature of the field, since It contains the physical agents 

producing It: outside of E the wave equation (3.1) and (C.l) are valid; 

Inside It they do not always hold. We shall assume that the emitter Is 

4ä        relatively small. In the sense that E can be so drawn that Inside It 

—        the two "quiet" functions p and c are essentially constant.  Since this 

continues to be true when E Is replaced by E' sufficiently close «".o E-- 

e.g., obtained by slightly deforming It—we see that these two properties 

do not completely determine the emission-boundary.  This flexibility may 

,,        be used to give simple shapes to E; thus in our study in Sections 13, 14, 15 

and 16 of emission with azimuthal symmetry, we have chosen E to be a 

vertical cylinder of revolution; in other applications, a spherical E Is 

more useful.  In the general case, E can always be chosen to be an ana- 

lytic surface (I.e., the locus of equations Imposed on analytic fun tlons). 

Finally, the values of the wave functions A, B, (Ji, etc., can be assumed to 

satisfy analytic conditions on this analytic surface, for the reasons 

stated above.  It will follow that all the derivatives will be analytic 

also.  This possibility will have consequences that will be examined later. 

But the essontlp1 property of the emission boundary is that through it 

passes the power emitted, at each frequency at which this takes place. 

The boundary conditions should therefore give the total mean flux across 

E: 

I 
I 

(C.2)   // F' dG - // W2) [A ff - B ff ] dö - Fw (E) 
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Here N denotes  the unit vector ncraial  to the boundary, oriented outward 

from W,  and 9/3N Is the i-xrmal dpriva^ive—the normal component of  the 

gradient along N. 

Turning,   lastly,  to the physical boundaries, S, we observe  that 

they act as interfaces   • •'  •     ■ i>airs of media:    water and air at the 

ocean's surface; water and  quasi-solid matter at its bottom and borders. 

Across every such bounding surface,   two conditions must be fulfilled: 

the normal components of the velocities of each medium must coincide;  and 

so must  the normal pressures.     In terms of  the velocity potentials  ty and  ^1 

(the latter describing the bounding medium),   these conditions are expressed 

by the equations 

(c-3) at '  TF'   P3T  =   pi~    . 

The first equation results from the defining property of a velocity poten- 

tial;   the second, from the fact proved  in theoretical acoustics,   that 

-p 3^/3t is,  to the linear approximation used,  equal to the fluid press- 

ure.     We are using the subscript,   1,   for  all quantities  in the bounding 

medium.     [Note that many authors employ -^  instead of our i^, with corres- 

ponding reversals of signs for velocity and pressure].    When the bounding 

medium is more complicated and requires stress tensors or vicosity coeff- 

icients  to describe its motion,   the  conditions are expressed by more com- 

plicated  equations than the above  (see,  e.g.,  Tolstoy and Clay,  Chapter 

2).     But in all cases,  the conditions are linear.    This means that  if 
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(C. 3) are verified by the two pairs, (4*, ijO and (ii*,  ty^),  then they will 

also be verified by (ai|> + b^', a^ + bi|/'), where £ and b^ are any two 

constants. 

It is obvious that on the contrary the conditions on the emission 

boundary E are not linear: merely multiplying our functions (A, B) by a 

constant will multiply the mean power flux throughout W, and across E in 

particular, by the square of this constant—changing the strength of the 

source by that factor. 

There is, however, a method of forming linear combinations of solu- 

tions (A, B) which does not affect any mean flux vector F', and therefore 

continues to satisfy (Cl), (C.2), (C.3); it is the unlmodular transforma- 

tion (A, B) ->■ (A', B'): 

A' - aA + 8B 
(C.4) 

B* - yA + 6B Y  6 
1. 

A simple computation shows that 

A' 7 B' - B' 7 A'  "  (A 7 B - B 7 A) A  . 

Hence, for the preservation of the mean flux vector field, it is necessary 

and sufficient that A - 1.  Note that to take A - -1 (a reflection) would 

merely reverse the sense of each vector. Note also that if instead of 

A, B we had used the complex wave function C ■ A + IB of (5.12), (5.13), 

etc., and similarly for C', our formula (C.4) would determine C' as a 
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linear function of C, but an analytic one   (satisfying the Cauchy-Rlemann 

differential equations)   if and only if  6 - a and y ■ -ß;  this condition 
2 2 

leads to A ■ a    + ß    « 1,  and therefore  that  (C.4)   is simply a rotation 

of axes In the uv-plane of the variables u • A,  u « B:    it amounts  to 

adding a constant  "phase" to 0 or S of Section 5.    This special case of 

(C.4)  is the necessary and sufficient condition that the mean energy 

density E*  corresponding with (A, B)  be left unchanged, as a straightforward 

calculation based on  (4.3) will show.     Other special cases cf  (C.4)  are 

the "principal axis  transformation", with  6 ■ 1/a and  ß » y " 0;  and  the 

"shear", with a -  6 - 1 and ß - 0  (or with y ■ 0): it is easy to show 

that every unlmodular transformation (C.4)  is the "product" of these 

three special cases  (i.e.,  the result of    their successive performance). 

We shall use the flexibility offered by  (C.4)  to remove a notorious 

ambiguity in the concept of "travelling wave".     This ambiguity is men- 

tioned by Brekhovskikh [Chapter  III,  Section 17,   Section 6], who empha- 

sizes that  the splitting of the total radiation field near a reflecting 

barrier Into the sum of an incident and a reflected wave is unambiguous 

only in the case of homogenious media.    He Illustrates the ambiguity by 

an example due to Schelkunrir:     ihe complex valued function on the 

real z-axls Is 

C(z) ■ cos kz +  ee ß 

giving in our notation, by 
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A ■  (1 + e)  cos kz,    B -   e sin kz   . 

When c «  1,   the function describes an essentially standing wave.     But 

we can write 

C - R(z)  ei0(2) 

1/2 
with R - [(1 + e)2 cos2 kz + e2 sin2 kz] 

-1    i 
0 (z) - tan  ( Y~1— tan kz). 

And this expression takes the form of a travelling wave. 

A general way of characterizing the ambiguity is to say that, how- 

ever we may write an expression for a travelling wave, we may usually add 

standing waves of  the same frequency,  with a zero mean flux through the 

boundaries,  so that we have many radiation fields with the same mean 

flux of energy. 

Intuitively,   the essence of the notion of "travelling wave" is  the 

displacement of radiant energy and not  its accumulation in "stagnant 

pools".    To express  this idea precisely, we seek—for a given pair  (A,B)— 

that linear combination (A*, B') which, while giving the same vector  flux 

field,  has  the least total mean energy in the  field.    Evidently we must 

choose that  transformation of  type  (C.4) which minimizes the quantity 

total mean energy In   W,    E(Ü/)  -     JjJ E dxdydz. 
W 
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Writing,  for brevity, u and v being any real functions of  (x,y,z). 

iS Q(u,v)  ■ Jj)        p(Vu •   Vv + u)    n    uv)  dxdydz, 
(1/ 

we see that, according to (4.3), 

4E  (W)  -    Q (A, A)  + Q  (B,  B)   . 

Suppose that (A, B) Is, of all (A*, B') given by (C.4), the one which 

minimizes the E(W). Then the axial case of this transformation can only 

Increase It.  But this gives 

Q  (A1, A') + Q (B', B') - a2 Q (A, A) + Q (B,B)/a2 

and If the minimum of this must occur for  the identical tranformatlon— 

i.e., for a - 1—we must have Q(A, A)  * Q  (B, B).    Assuming this relation, 

we apply the shear (A1 ■ A, B' ■ yA + B), obtaining 

Q (A1,   A')  + Q (B', B')  -  (1 + Y2)   Q(A,  A)  + 2y Q/A,B)  + Q(B,B) 

In order that the left hand member be a minimum when y * 0  (the identity) 

we must have Q (A, B) - 0. 

Conversely, it is easily shown that when (A, B) satisfy the equa- 

tions 

(C.5) Q (A, A) - Q (B, B) ;  Q ( A. B) - 0 , 
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I 
then the total mean energy E (W) is a minimum. 

Definition.  The pair (A, B) of solutions of (C.l), (C.2), (C.3), 

for which (C.5) is true is called the travelling wave corresponding to 

this pair of solutions. 

On applying this criterion to the (A, B) of Schelkunoff's example, 

given above, we determine the coefficients in (C.4) so that the new 

(C.5) is satisfied. We find first that the integrand in Q(A, B) - 0. 

To complete the determination, we look for the a for which, alter the 

axial transformation A1 - aA, B' = B/a.QCA', A') » Q(B, B1). We obtain 

|  P        a - [E/(1 + e)]1/2  , so that 

* . ■ 

A1  -      >/e(l + e)      cos kz,  B'  -   ^/e  (1 + e)     sin kz 

ikz e(l +  e)    e      , determining a pure travelling wave 

without ambiguity. 

Another example is the application to waves along a homogenious 

stretched string,  along the x axis.    The general solution of the wave 

equation is f(x - ct) + g(x + ct).    On applying the criterion for 

minimum energy for a given energy flux, we find  that either g ■ 0 

(forward wave) ,  or  f ■ 0 (backward wave).    All other  familiar cases 

such as plane,  cylindrical, and spherical waves are divested of all 

ambiguity by applying this minimum energy criterion. 
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The branch-locus  theorem.    For  the reasons set  forth earlier  4     ..his 

appendix, we may assume that the quantities  p and n -  1/c appeal   .g In 

(C.l)  are analytic  throughout W and Its boundaries 8 and R,  th  c the 

latter are made up of analytic surfaces,  and  that all data a' , conditions 

on these boundaries are analytic.    Combining these propert  is with the 

fact that  (C.l)   Is an elliptic equation, we may assume,    .n view of  the 
3 

extensions of a classical  theorem (Courrant-Holbert,   T   , Chap. VI. 18)   that 

the solutions A,   B,  etc.  are analytic function thr' ighout W.    On the 

basis of this fact we shall prove the branch-loc  s  theorem: 

THEOREM.       In the travelling wavr   (A,  B)  satisfying  (C.l),  any 

regular 2-dlmen8lonal part F'  of the singu'ar locus  r of A » B » 0 causes 

no indeterminacy in direction of F'—whic . approaches  tangency r'—and 

causes only a finite jump in S by the cr istant TT/U in crossing r*. 

Being defined by analytic equations,  F  is  composed of 

smooth analytic pieces,  possibly JoJ ied  together at conical points or 

singular curves.     Let P   :   (x  ,  y  ,   i  )  be a point on a regular piece  f'  of 

of F   (i.e., not on such lower-dim nslonal singularities).    In a neighbor- 

hood N    of P  ,  the corresponding piece of T  can be represented as the 

locus of an equation of  the form f(x,  y,  z)  = 0, where f  is analytic 

and Vf y 0 throughout N  .    Then 1 / a classical  theorem in analytic func- 

tlons of several variables, s nee the vanishing of f  implies that of 

both A and B, we must have through ut a sufficiently small N  , 

* The Weierstrass Theorem. 
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ii 

A - afp,    B - bfq, 

where p and q are positive Integers,  and a^ and b^ are analytic and never both 
•» 

zero within N . 

*• Suppose that p > 1.  Then 

7A - fP'1 (f 7a + pa 7f). 

Therefore both A - 0 and VA ■ 0 on the 2-dlmenslonal piece of f for 

which f - 0.  Then by the Cauchy-Kovaleskl uniqueness theorme for ellip- 

tic partial differential equations In the analytic case, *   we should 

have A ■ 0 throughout N —and hence, by analytic continuation, throughout 

W—contrary to its assumed properties. Therefore p ■» 1,; and, similarly, 

q ■ 1; thus we have In N 

.VA
2
 + B

2
= IflV?"^ A - af, B - bf, R -VA + B = |f | \a + b - |f |r 

Now the defining equation (5.5) becomes. In N - I", 

a ■ o(f)r cos toS, b ■ o(f)r sin uS, where a(f) " |f |/f " + 1«  Since on 

crossing T',  f and therefore o(f) reverses sign. It follows that 0 * IDS 

Jumps by tr, so that S behaves as stated In the theorem. 

This shows th*>^ .,e field of unit directional vectors U » 

F ,,. ' - "o/i—^ wnich Is uniquely defined by (A.A) (or (5.9) or (5.13)) 

everywhere except on f. Is also defined on all 2-dlmenslonal pieces r' of 

T. Furthermore, this field is "smooth" (continuously dlfferentlable to 

any required order) at all such pieces, since its defining data are analytic. 

* Hadamard, "Lectures on Cauchy's Problem... 
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But this In Itself does not show that the field Is tangent to each V: 

In this sense, that r* Is an Internal boundary. 

To establish the tangency, we observe that at any point of 

N - I" we have 
o 

uVS - V0 -   (AVB - B7A)/R2 -  (a7b - bVa)/r 

Then we start from the equation of continuity of power flux, 

(C.3) V  .   p(A7B - B7A)  - 0 

which Is easily derived from (C.l) (write ♦ - A and then 41 ■ B; multiply 

the first by -A and the second by B; add; then manipulate the derivatives 

In an obvious way (this is an alternative proof V • F « 0)).  By replacing 

A and B by af and bf we obtain the equation 

(a7b - b7a) • 2f Vf + f2 V . (a7b - bVf)  - 0 

Apply this to any point of N other than on r, divide by f, and let 

(x, y, z) approach any point on P': this shows that VS • Vf - 0 on this 

surface: since, as stated above, Vf ^ 0 on T', Vf/|vf | Is the normal to 

T^and our statement of the tangency of the power flow lines to I" Is 

proved. 

C-12 

Arthur D Little Inc 



• ■ 

APPENDIX D 

WAVES. RAYS AND POWER FLOW LINES 

The purpose of this appendix Is to supply the mathematical details 

|  _ that underlie the more descriptive discussion In the text of the families 

• ■ {$ } and {ij/ } of elementary travelling waves, their power flow lines (A-lines) 

and rays (L-llnes) from the point of view of curvature and torsion. Appendix 

i :. 
G will show how, by using Hadamard's elementary solution of  the wave equation 

i   .. 
(corresponding physically to an Instantaneous pulse from a point), a mathe- 

matical process (intuitively, a sort of harmonic modulation of a train of 
| ;' 

. ■ pulses) will lead to a Fermat family In the broadened sense defined at the 

close of Section 6.  This goes beyond the conventional treatments by enabling 

us to handle the cases of multiple-valued phase front functions, caustics, and 

multiple-path transmission. We start by giving the six examples referenced 

in Section 6, and conclude with the needed differential geometry. 

The first example is that of the square homogenious drumhead, or 

membrane clamped at its edge. It Is discussed, e.g.. In Morse and Ingard, 

Chapter 5.2, where it is used to Illustrate the case of "eigenvalue degeneracy* 

(p. 206)—the only one in which a net mean displacement of energy is possible. 

Taking the units In such a way that p - c - 1 and the side of the square Is 

w units of length, the res' -jlutlons of the Helmholtz equation for a given 

frequency u come in pairs 

A ■ sin nx sin my,      B ■ ain  mx sin ny 

2   2   2 
with UJ - n + m .  Degenercy (distinct pairs) occur if and only if the 

positive integers (m, n) are different. Consider the case in which 
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m ■ 1 and n Is allowed to  increase without limit,  so that u    ■ 1 + n 

does likewise.    The locus of A =» 0 are the equi-spaced vertical lines 

for which sin nx - 0,   i.e.,  of equations x ■ kir/n,  k ■ 0,  1,   .   .   ., n. 

The locus of B ■ 0 are the horizontal lines,  y ■ Jfr/n,  j  ■ 0,  1 n. 

Therefore the singular locus of  the S defined  in Section 5 and Appendix 

C consists of the lattice points of coordinates  (kir/n,  jir/n).    These 

are regularly spaced  throughout  the square, and with increasing frequency 

(n •*■ <*>) crowd everywhere densely throughout this region.    There is cir- 

culation of power around each singular point, as an application of  (5.9) 

shows:    the A-lines become  tighter and tighter around  these crowding 

points and are evidently without relationship whatsoever  to  the L-lines 

which are all straight,     since  p and c are constant. 

The two further examples also involve the homogenious membranes, 

in the first case clamped about a circle;   It  is discussed at p.  209 of 

the preceding reference.     Separation of variables in Helmhotz'  equation 

gives the classical solution [cf.   (5.2.22) of preceding reference] 

which,  in the polar coordinates  (r, 6), we may write as the pair 

A ■ J    (ur)  cos p9  , B ■ J    (ur)  sin pö, 
P P 

where J    is the Bessel function of positive integral order p.    When the 

units are chosen so that  c »M ,   ui is to be replaced by ui/c   in   the above. 

The singular locus A » B » 0 Is  the locus at which J  (tur)  * 0: 
P 

formed by concentric circles of radii r " B /u, where B  is the q'th 7 pq pq 

zero of J (x)   [cf.   (5.2.23)  of reference];  and crowding increasingly 
P 

together as ui increases  Indefinitely.    On the other hand,  S has only 
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one branching singular locus: the origin, r - 0.  Everywhere else 0, 

and with It S - O/oi , are determined by (5.3) or (5.4), which show that 

G » p6 and S « (p/u))e.  This Illustrates the basic theorem proved at 

the end of Appendix C, that although the singular locus may be only 

I *; 
t     .. one dimension lower  that  the radiation space,  the directional ambl- 
i 

gulty part I8 always two dimensions lower.    Also,  since  the A-llnes are 

all concentric circles,    the circular parts of the singular locus are 
I 
*■ - - 

Internal boundaries. 

But the important point Illustrated by this second example is 

that the A-llnes, which are circles, cannot be replaced by the L-lines, 

which are all straight. 

The third example is also based on a homogenlous membrane stret- 

ched over the plane, but now provided with a point source of radiation, 

situated at the origin of the polar coordinate system.  The separation 

of variables applies as before, but the appropriate solutlou- of 

Bessel's equation with the central singularity represented by the 

source Is the pair of functions J and N  (the Bessel and Neumann 
P P 

functions).    These are often combined  into the two complex valued 

Hankel functions: 

H^  - J    + IN  , H(2)  - J    - IN . 
P P P      P P P 

Thus we have, in terms of real functions, four solutions (two, when 

p ■ 0), products of these (in which the variable is replaced by 

uir/c) by cos p9 and sin p6. The only ones relevant to emission are 
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Che ones containing both J and N , for example 

A ■ J (ur/c) cos pe ,   B ■ N (wr/c) cos p9 

In the simplest case, p ■ 0, and our solutions are J  (ur/c), N (ur/c). 

Since these are Independent of 4>, the function S «tan      (N /J )/u 

depends only on r, and hence the A-curves are radial straight lines; 

the one case in which they coincide with the L-curves  (rays).    When 

p > 0,  various elaborate A-curves are obtained,  quite unrelated to 

the L-curves, which are always straight;    In this case again the singu- 

lar branch locus is a single fixed point,  the origin; although the 

internal boundaries A ■ B ■ 0 are 1-dimensional,  crowding closer and 

closer together with increasing u—but non-existent when p ■ 0. 

In these examples,  the functions A and B were not velocity 

potentials but displacements.     The mathematical results are the same 

as for velocity potential in the acoustic case, the medium being a 

compressible fluid confined between two parallel absolutely rigid 

plates. 

The fourth example is a 3-dimensional acoustic one,  again as in 

the third example, a point source of emission in a homogenlous medium. 
i 

It is treated at length in Morse and Ingard. Chapter 7.1.  Introducing 

spherical coordinates (r, 6, ♦), the method of separation of variables 

in Helmholtz' equation leads to solutions which are products of func- 

tions of (6, $ ) which are surface spherical harmonics, by functions 

of r, which are powers of 1/r times e ^  —equlvalently, sines and 
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cosines of ur/c.    The simplest case Is the spherically symmetrical 

point source.  In which the solutions depend only on r; we have then, 

for example. 

A - — cos   (ur/c), B ■ — sin  (ur/c) 

Clearly S ■ r/c and  hence   |vs|    ■ 1/c   :     the elkonal equation.    The 

A-lines    are radial straight lines and coincide with the L-lines 

through the crigin.     Finally,  the singular locus A ■ B ■ 0 is non- 

existent; but the origin is a singularity of A.     In the higher order 

cases,  the solutions  Involve angular dependence,   through the surface 

spherical harmonics;   they correspond to multipole emission;  the A-lines 

are curved,  and only tend to straighten out with Increasing r:    In 

the "far field" the ray treatment becomes a satisfactory approximation. 

The fifth example is the case of reflection and refraction of 

a plane wave at the  Interface  (y - 0)  between homogenlous media,  the 

incident ray Impinging from the lower medium of constant p,  c (y < 0), 

2/ I           /< '        /to 

:/ 

f >c 
**!• 

vj^ 
^ 

FIGURE D.I.    REFLECTION AND REFRACTION 
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reflected back, as well as refracted Into the upper medium of constant P,. c 

(c^ < c); Figure D.I. 

If we set the three waves equal to 

4»  * ■ a exp  [lu (x sin ß    + y cos e)/c 

♦ refl    • b exp   [lu (x sin 0'  - y cos ß^/c] 

<l> refr# " r exP   [i"» (x 8ln $1 + 7 cos 81)/c1l, 

then the total radiation below the interface ia <k * 6.        + <t>    ^   i  this must 
Inc.   refl. 

be matched to that above the Interface, «L ■ $  -;  , by applying the two 

Interface conditions of Appendix C, which In the present case are that when 

y ■ 0, 3$/3y - d^./dy and p$  « Pi^i* These yield all the classical results, 

such as f}' ■ B, sin ß/c - sin ß,/c, (Snell's Interface law) as well as the two 

further equations 

(a-b) cos ß/c - r cos ß-i/c, ; (a + b) p » rp,. 

From these the classical properties of the coefficients of reflection and 

refraction are obtained. See Morse & Ingard Chapter 6.3, Brekhovsklkh, 

Chapters II and III. 

What Is Important to us Is the computation of the energy and power 

flux densities. We find from the formulas of Section 5, in upper medium 

F1 

x 
PjU r /cj sin &1  ,  F 

2 2. 
pjU r /c^ cos is. 

„1     2 2,2 
E - PjU r /c1 

just as we should expect; but In the lower medium 
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2 
D 
n 

II 

il 

-- 

1 

I 

F    -  (pü)2/c)   [(a2 + b2)  sin ß + 2 ab I  (üJ) ] 

F    -   [piü2  (a2 - b2)/c] cos 3 

E    -  (pü»2/2c2)   [a2 + b2 + 2 ab sin2 ß I(u)] 

where    I(ü)) ■  cos  (2ujycosß/c) may be described as the  "interference tern". 

As a)-»» It merely oscillates between +1, and thus the A-llne direction F  /F 7 — ' x    y 

approaches no limit — nor does the ration F  :F  :E. 

It Is noted, however,  that the power flux across a vertical element 

of length Ay >o Involves  the integral 

11 r1^    . c r ^' I        cos  (2u)y cos ß/c)  dy - ^ JT A sin  (2a)y cos ß/c); 
yl 

the A sin denoting the difference between the values at y. and y. + Ay. 

f jl 
I 1.       Since this is a term never exceeding c/cosß, divided by u, we see that it 

I I    f* approaches zero as u ->- «>; and this, for however small a positive Ay.    For 

the same reason, the interference contribution to the total energy contained 
| 
*       T- 

ln an arbitrary area AxAy vanishes in comparison with the fixed part as 

u) ->■ ».  In this sense — the "weak convergence" noted at the end of Section 6 

and to re-appear at the end of the later Appendix G — we can say that the 

ratios F  : F  : E approach those of the leading terms, namely 
A      y 

(a2 + b2) sin ß : (a2 - b2) cos ß : (a2 + b2)/2c 

Hence the lower family is, in this "weak" but physically meaningful sense, 

I        an assymptatic family.  It is not a Fermat family by the second definition 

of Section 6, since the energy speed F/E is never equal to the phase speed c. 
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Our sixth Is a counter-example:    while It has no physical significance 

as corresponding to an Idealized experiment or mechanically realizable 

radiation. It Is given for the following logical reason:    Many authors 

(Including the present one) have supposed that an acoustic wave which could 

be put into the form ij; - 4 e~ ült, with ♦    - R e     **, and in which R    and S 

and their derivatives remained small as functions of u, would have their 

power flow more and more nearly along a fixed set of rays, so that ray 

tracing could be used for transmission loss calculations.    This condition 

Is evidently a necessary one  (at least when sufficient detail of statement 

Is supplied).    The purpose of the present counter-example Is to show that 

It Is not sufficient.    We consider the case of a horoogenlous medium 

(p  , c , constant) and the plane wave 

^    - exp[lu(x cos a) + y sin üI)/C]. 

fy ry 

This satisfies the Helmholtz equation V <}i + -j ♦ m 0, and, for each fixed u, 

represents a plane wave In the direction (the normal to S ■ x cos u + y sin u.xK) 

making the angle <*) with the x-axls. Evidently R (- 1) and S have the properties 

of smallness (Including all their derivatives) which are supposed sufficient 

conditions for the "Increasingly accurate application rf geometrical optics 

at high frequency" ("Try this out on your Victrola!"). 

We conclude this discussion of special cases by pointing out the 

fallacy of certain treatments of "layered" or'laulnar" media — i.e., in 

which the physical quantities p and c depend on depth, z, only. As explained 

in Appendix C, the physical causes of their variation guarantee that they are 

smooth functions of the position variables — functions which may always be 

taken as analytic. On the other hand, certain modern authors 
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i 

I 
i 

i. 

I 

i 

f 
1 
I 

(e.g., L. M. Brekhovsklkh )  use an approximation lr< which the layered medium 

la replaced by a "finely layered medium" compoaed of a large number of thin 

homogenloua parallel "plates", separated by plane Interfaces at which 

conditions similar to those of our fifth example are applied. 

Given the above replacement of the smoothly layered medium by these 

parallel plates, the mathematical treatment Is perfectly clear.    But the 

assumption that the results In the second case approximate as closely as 

needed to those of the first must be rejected — both on physical and on 

mathematical grounds.    Physically,  the plates »rould give rise to a large numbei 

of waves reflected back from the Interfaces.    As  these Increase in number,  the 

waves' individual intensities  decrease, but increase in number:    no such effect 

T? has been observed in perfectly clear media.    Mathematically, the plate approxi- 

II 
mation simply approximates to the actual smoof.h coefficients in the wave equation 

by a step function. While the latter may converge (both uniformly and absolutely!) 

to the former as the layering becomes finer and finer, so that the smooth 

equation is the limit of the layered one, it does not follow that the solution 

of the limiting equation will be the limit of the approximate equation 1 It is 

the old question of change of order in double limits. Actually one can construct 

counter-examples; for example, with an index linear in z, the wave equation can 
Ml 

be solved by Bessel functions, and shows no back-reflection or other features 

M " ii 
^        of fine layering. 

The curvature and torsion of the L and the A-llnes. As outlined 

in Section 6, under certain conditions a study of the differential 

geometry of an L-and A-line, mutually tangent at a point P.:  (x., y1 , 

z.)—"associated" with one another at that point, as we characterised 

them in that section—will indicate their degree of coalescence with 

increasing circular frequency ui. The condition generally given for 

such coalescence is (5.11), namely 

(D.l) lim      1        7   »   (P V R)      „    0 

^     co2 pR Arthur D Little Inc 
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The travelling wave  (A, B) which defines, by equations  (5.5)^ 

the quantities R and S (within multiples of frequency v)  is supposed 

to have no branching singular locus within a distance D fron P , which 

D does not diminish as w increases Indefinitely—unlike the situation In 

the first of the examples given above. 

-»■ 

We shall use a vector notation,  in which P    of components 

(x,y,z) is a position vector of a point describing the L-line or the 

A-line, and la each case we use the arc-length s as the parametric 

variable.    Then the tangent vector T (of unit length, directed in the 

sense of increasing   s)  is given by the.formula 

(D.2) f - dP/ds. 

By definition of "curvature" K, and principal normal N, 

(D.3) K N - dT/ds • d2 l/ds2. 

■± -*■-*■ 
Finally, the binormal B being the common perpendicular to T and N, In 

a direction such that (T, N, B) is a vector triplet figure ("Frenet's 

trihedral") congruent with that formed by the unit vectors along the 

axes of coordinates, we have in terms of vector products 

(D.4) S - ? * N ' 

An elementary account of these concepts and the needed formulas 

is given in such texts on analysis as W.  F.  Osgood, Chapter   Yl . 

For a deeper  treatment,  such standard texts In differential geometry 

as L.  P. Eisenhart   and W.  Blaschke may be consulted. We shall assume 

these essentials here. 
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mm 
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i 

I 

We wish to compare these quantities and vectors for  the L and 

the A-llnes at P., and shall when necessary affix the corresponding 

subscript, L or A. 

Consider first the case of rays, L, with P, T, N, B,  and K 

implicitly understood to have  the subscript L.    In Appendix A the ray 

differential equations  (A.2)  are written in terms of "time  t" as 

the independent variable;   to express them in the form needed here, 

•• with arc length s as the Independent variable, we write ds - cdt 

f dt/n,    whereupon  these equations become,  in vector notation. 

(D.5) d2 I    L dm      dP „ , , —T—   + —      -r—   ■    7m , m ■  log n ■ -log c   • ds ds      ds ' 6 6 

Note that dm/ds » 7m.dP/ds,  and apply (D.2)  and  (D.3):     then  (D.5) 

assumes the form 

(D.6) K N    + (7m. T)  T -   7m   * 

To find the curvature K " KT , we take the scalar product of 

this equation with N, applying the fact that N»N ■ 1 and that 

N .f - 0 (the latter, shown by differentiation of T • f =» 1 and use 

of (D.3)). Then take the scalar product of this equation again with 

7m. An obvious elimination in the two resulting equations gives: 

(D.7) K^ - |7m|2 - (7m»lL)
2 - |TL x 7m|2  , 
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the latter by an elementary vector formula (Lagrange's identity).    Since 

the curvature is  (by definition)  essentially non-negative,   (D.7) 

determines it completely in terms of the gradient of a physically 

determined function, c, and the tangent direction.    The curvature thus 

being determined,  (D.6) determines the principal normal N.   in terms of 

the same quantities.    Finally,  the binormal is found taking the vector 

product of (D.6) with x, applying  (D.4) and the fact that T x T - 0. 

We obtain j 

(D.8) 1^ B    - f     * vm. 

We turn now to the power flow lines, A.    These, being normal to 

the loci S ■ constant,  are directed along VS,  and have the direction 

vector 

(D.9) TA - T " ll 

Using the arc s along A as parameter, we have by (D.2) 

<■>•"' '*-£-T^ = 
hence the directional derivative of any function f(P)  » f(x,  y,  z) 

along A is given by 

(D'H) if ,dP -4 VSjVf 
ds     ds VS 

To apply (D.3)   to A   , we must find the value,  in a useful 

form,  of 
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5;: 

(D,12)   dl     d     VS nc    d      1.1      d   nc 
dZ 'IT   fvsT    vs d7  fvsT   JvsT "dT vs ' I 

■ a 

I  *. 

For  this purpose, we introduce the following quantity,  analogueous 

(as will be seen later) to m: 

(D.13) li - log   |7S|   . 

For the first term on the right In (D.12) we have 

TT ^T " Ä <l'sl2'"1/2 ■  "I  I'3'"3   Ä   l'sl2 

Here a free use has been made of (D.ll). Thus we have 

'   - 's Ä    W -^ 3^ ■-*(?•'")• 

To find the second term on the right in (D.12), we start with 

(D.13) and write 

L2- 
ZJVSl 

The x-component of  this gradient vector  is found as follows: 

v. . i 7 iog ivsi2 . nhsu. 

3  (S2 + S2 + S2) » —i-r (S S  + S S   + S Szx) 
2|vs|2 3x   x  y  z ' Ivsl2 x xx  y yx  z 

i r sx        s        sz    1 
vsf [fvsf sxx+ fvsr syx+ fvlr SzxJ • VS 
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1       ds 

1      X 
IVSl   ds 

Similarly for the other two components. Thus we have 

VlJ-W ^vs' 

which Is the second term on the right in (D.12). 

Introducing the values found in the last two paragraphs into 

(D.12), we obtain, on applying (D.3), the following equation (in which 

A subscripts are implied): 

(D.14) K N + (Vn • ^) I - Vy, 

This is the exact analogue for A of (D.6) for L, the quantity y of 

(D.13) replacing m - log n of the previous case. By precisely the 

same vector manipulations we obtain the following analogues of (D.7) 

and (D.8): 

(D.15) K^ - M2 - (Vy • fy2 - 1^ * Vp|2 

(D.16) KA lA - T. x vv 

We pass now to the comparison of the L and the A curves, 

associated at P... From the definitions of m and u, we have 

(D.17) p - m - j log (c2 |7S|2) 

i4+4 ^ 
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Now In view of Che basic assumption (D.l), the right-hand metnber 

approaches zero as u Increases without limit, so that p - m -»■ 0. This 

result of (D.l) is, however, insufficient to establish the coalescence 

of the pair of associated curves, L and A: To begin with, in all the 

formulas developed above, it is the difference in the gradient. ry - 7m, 

which must approach zero. 

11 

a* 

0 

Figure D.H. Frenet Triteatral and Curvature Relations: 

Geometric Interpretation of Formulas (D.6), (D.8), (D.1A), (D.16), etc. 

I 
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But even this Is not sufficient:     Even If the three unit vectors 

(T,  N, B)  forming the Frenet Trihedral approach coincidence as u -*• <», 

and even though the rate of turning of N    and N.   (the curvatures IL   and 

K.)  approach coincidence,  the torsion or rate of change in direction of 

the binomial per unit advance In arc-length,  that is required: 

(D.18) Torsion 
d| 
ds 

d    f x vM 

ds      K 

From this and the earlier formulas,  the approach to equality of the 

torsions is a second order condition:     The partial derivatives  of the 

second order of p - m must approach zero as ui •*■ no. 

While intuition based on Figure 0.IIwould suggest that under these 

assumptions the curves would approach coalescence,  this requires a 

further assumption to ensure the result by a rigorous mathematical 

proof:    the rates at which the approach to zero of y - m and the first 

and second derivatives takes place must be uniform throughout  the region 

W of xyz-space considered.    This  complete hypothesis:    The uniform 

approach to zero of p - m and all  its  first and second order derivatives 

over W—which is equivalent to a  third order condition on S or  a fourth 

order one on R,  as (D.17) shows—is  our full hypothesis (5H) 

mentioned in Section 6 or, here,   (DH). 

Once this assumption is made,   the coalescence of the L and A curves 

follows by a classical theorem in the differential geometry of  space 

curves:     If the curvature and torsion are given functions of arc-length 

along a curve,   the curve is determined except for its position in space; 
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If a point P,  and a tangent direction T..  are given, it is completely 

determined.    This theorem is an immediate consequence of the uniqueness 

theorem in ordinary differential equations.    A simple and elementary 

proof  is given in Blaschke,1* Vol.  1,  Chap.   1,  Section 13.    What we need 

is, as a matter of fact,  the method of determining the curves:    The 

differential equations  (obtained from the Frenet formulas) have the 

curvature and torsion as coefflclence.    Thus two associated L and A-lines 

have the same initial conditions  (mutually  tangent at P,) and satisfy 

differential equations of the same form,  and whose coefflclence approach 

coincidence uniformly:    Therefore,  by the classical theory (Goursat- 

Hedrick,1* Vol.   II),  their solutions do likewise. 

It  is possible to give our hypothesis   (5H)      a more elegant  form 

in the  case of analytic functions A,  B,  c—an assumption we are allowed 

to make in the usual cases,  for the reasons set forth in Appendix C. 

The analyticity in the real domain W implies analytlclty in a complex 

(6-dlmenslonal)  domain Wf of the three coordinates regarded as complex 

variables.    What happans then a« GJ -► »T     It is possible  that the domain 

iih- shrinks ups   although alweyd f.o;itainliig itp r?al part W;  it is also 
i 

possible that  the limit in  (D.l)  is not approached uniformly.    On the 

other hand,  if we assume that a complex domain ÜH- exists which is  fixed 

for all (i),  and that the convergence of y - m to zero  (condition  (D.l)) 

is uniform in W+—then, by the theory of analytic functions of complex 

variables,  the derivatives of all orders of y - m will also approach 

zero uniformly within Wf;   similarly,   (5H) may be stated in the complex 

domain  for the functions R    and S    themselves without mentioning  their 

derivatives. 
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It Is possible to visualize  the condition in question:    Usually, 

c changes very little with many meters of change in position.    Hence, 

its derivatives are very small.    With w having the relation of  (D.H) 

to m means that all second and higher order derivatives of S are very 

small:     S is almost linear in the coordinates, and, hence, the travel- 

ling wave Is approximately a sine or  cosine  (or complex exponential) 

in a linear combination of the coordinates and the time. 
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APPENDIX E 

INTEGRAL INVARIANTS 

A century and a half's experience In dealing with the mathe- 

matics of mechanical systems has established the basic Importance    of 

Integral Invariants.    They had early applications to Hamlltonlan sys- 

tems of a finite number of degrees of freedom, and also to fluid 

dynamics.    Their role shows Itself to be crucial In statistical mech- 

anisms, where It  Is now clear that whether one uses them consciously 

or not,  they are unavoidable.    The later  sections of the present 

memorandum show the use of the Integral  Invariants in the method of 

rays and rav statistics In hydroacoustlc propagation.    We may add, 

finally, that many branches of modern pure and applied mathematics 

(e.g., differential geometry, group theory, quantum mechanics) are 

Increasingly incorporating the properties of Integral invariants Into 

their structure. 

Examples.     The most obvious example of an Integral Invariant 

Is provided by the conservation of mass of a region R which is part of 

a deformable medium in motion,  such as a flowing fluid.    If the den- 

sity and velocity components at the point  (x,  y,  z) and time t are p 

and  (u, v,  w),  the flow corresponds with the equations 

(E.l) dx d^ ciz 
dt " "' dt " ^ dt w, 
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and the mass of R—which we denote by R    to show that it Is moving with 

the flow—Is 

(E.2) M(R )  - ///   pdxdydz 
Rt 

It remains unchanged:    M(R ) - M(R    ), so that Its derivative Is zero. c    So 
This Is, of course, an alternative statement of the equation of contin- 

uity In either of Its equivalent forms 

o' •'o'    o 

(E.4) 3£ +3<£u   +8£v   +(3£W    m 

dt        3x        3y   ■    92 

The constancy of the Integral in (E.2)—for every choice of region—Is 

described by saying that It Is an integral Invariant of the system 

of differential equations (E.l).    Since there is no restriction on 

the region R.   (other than its "regularity":    i.e.,  being a possible 

shape of a piece of matter), the Integral invariant is said to be an 

absolute one.    The equivalence of  (E.2),   (E.3), and  (E.4)  is shown by 

using the formulas of change of variables in definite integrals and 

of differentiation of the Jacobian determinants.    Cf., e.g., W. F. 

Osgood, Advanced Calculus, Chapter XII and Chapter XIV, Sections 

23-26.(    ) 

In addition to the absolute integral invariant (E.2), there 

is in the flow of an ideal fluid a relative integral invariant:    in 
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order to remain unchanging with the flow It has to be taken about a 

closed manifold: the circulation cl(C ) around the closed curve 

C , defined by the equation 

(E.5) cl(C ) -  J  uöx + v6y + w6z . 

Ct 

Here the symbol C denotes not only the curve moving with the fluid, 

but an arbitrarily assigned direction along It.  The &_ Is used for 

1 the differential along C —to avoid confusion with d^, the differential 
I I 
| along a particle's trajectory defined by (E.l). 

The proof of the Invar lance of ci(C ) depends on the Hamll- 
'i 
i. 

tonlan form which the equations of particle motion can be given In 

the case of an Ideal fluid which Is either Incompressible or has Its 

pressure a function of density and  is acted on by body forces arriving 

from a force function V of  (x,  y,  z,  t).    For,  on writing 

(E.6)   H - H(x, y, z, t, u, v, w) - j (u2 + v2 + w2) + V + I ^2- 

I 
I i       " 

and using 3 to denote differentiation in the system of seven inde- 
s 

pendent variables shown in H in (E.6), the equations of particle 
r 

trajectorles are 

(E.7) 

du 
dt 

dx      3H      dx _  3H 
dt = 3u  ' dt ^ av 

dz   m  3H 
'  dt    '  3w 

3H      dv           3H 
3x  ' dt           3y 

dw           3H 
*  dt           3z   ' 
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the first three coinciding with (E.l), the last three, with the stan- 

dard hydrodynamical equations of conservation of momentum with the 

present type of fluid. 

Note the contrast in this usage of 9_ with that in (E.4). 

The first step in the application of (E.7) to the proof of 

the invariance of ci(C ) Is to express it as an integral about C , the 

position of the curve at some epoch taken as t = 0. We have 

ci(C ) - I  u6x + v<5y + v6z; 

but now the x, y, z must be thought of as functions of t and their 

"Initial values" x , y , z , for t = 0—the Initial point (x , y , z ) 
o' Jo      o r     o }o      o 

tracing the curve C as (x, y, z) traces C , and 6 being along either 

C or C ; i.e., it is a differential with respect to some parameter 

along the curves (e.g., arc-length along C ).  Since this parameter 

along the curve, and the time t along the particle trajectory, are 

Independent variables, we have d6x = 6dx, etc., this being the present 

form of the cross-derivative theorem. 

The second step in the proof is the differentiation of the 

above expression with respect to t: 

It ci(ct> "X,, (£ 5-'- £ " + £ " + » 5T^)+ " 3^)+ " 3TM 

■/ (£'«+ £-" ♦ £ " ♦ ASY A%y -«(If)) 

J 

.i 
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The third step Is to apply (E.7); and afterwards, go back to 

C as the path of Integration. dci(C )/dt becomes 

M 9H .   9H .   3H .  .  . /9H\ .  . /^H\ .  . /äH \\ 

which is readily transformed into 

(E.8) 
-^ ci(Ct)  -    f   6[(u2 + v2 + w2)/2 - HI. 

C 
t 

Since C    is closed and the bracket is single-valued,  the integral 

reduces to zero,  thus proving the invariance of  the integral in (E.5). 

The Integral invariance of  (E.5)   is the basis for both Lagrange's 

theory of irrotational flow and velocity potential,  and also for 

Helmholtz's theory of vortices. 

In the important special case of steady motion,   i.e., when 

the time does not enter explicitly into H in (E.6), absolute integral 

invariants exhibit a striking geometrical property, which we shall 

illustrate here in the case of the mass  (E.2). 

Since u, v, w no longer contain t,  the equations  (2.1)  for 

the trajectories may be re-written as 

(E.9) dx = li = dz 
u       v       w     * 

which determine a fixed set of curves, the stream lines, one and only 

one through each point (x, y, z): all fluid particles that ever pass 

through that point trace this same path, although at different epochs. 
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Let S be any piece of a smooth surface bounded by the curve C, 

and consider the class of stream-lines cutting it:  they form the solid 

bundle shown In Figure E.l, where for simplicity of drawing, S is taken 

as small and not tangent to a stream-line. 

Figure E -I 

Sliding Invariance of Mass Flux 

The rate of passage of matter across S is evidently given by 

the surface Integral over S of the normal component of the mass flux 

vector (pu, pv, pw); i.e., by 

(E.10)       F(S) - J f p(u cosa + v cosß + w cosy) dS , 
S 

where a,  3, y»  are the direction angles of  the normal  to S in the sense 

shown. 

Now consider the result of sliding all the points of  S along 

the stream-line through them,  by an arbitrary  (but continuously and 

E-6 

ArthurD'.tttk'If-K 



WMMMM 

smoothly varying) amount—In general different for the different points 

of S. In Its new position, it is the surface S1 bounded by C'; and the 

rate of passage of matter across It is 

(E.ll)        PCS') - jj    P(u cos  a' + v cos ß' + w cos y')  d S . 
S' 

Since with a steady flow there can be no change in the total amount of 

matter in a given region,  and since no matter crosses the tube formed 

by the stream-line through C and C, we must have FCS')  = F(S):    The 

integral in (E.10)  is invariant under the operation of sliding along 

the stream-lines. 

We shall see later how (E.ll)  corresponds  to a relative slid- 

ing integral Invariant about a closed curve generalizing the circula- 

tion about the boundary C'  of  S*—but now without the restriction of 

simultaneously  (a fixed value of t In the calculation of the Integrand 

over C). 

The general theory of integral invar lance in the  time- 

unchanging sense was  founded by H.  Poincare, who was  Interested in 

Hamlltonlan dynamical systems of n degrees of ireedom,   in whose 2n- 

dimensional phase-space of coordinates and momenta  (q,  p)   the equations 

of motion 

(E-12) ^i._iH      ^i_      _3H 
dt "  3pi  '    dt "      Zq± 
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establish a "flow".    By applying the 2a-«dimensional extension of the 

equation of continuity (E.4), with p - 1 and  (E.12)  replacing (E.l), 

It Is seen that this flow Is  Incompressible;    the 2n-fold   integral 

f f     dq. dp.   .   .   .   . dq    dp      over any flowing region R    is constant. 

This is Llouvllle's theorem,  an essential building block of statistical 

mechanics, as noted earlier.     It is also shown that the "circulation" 

in phase space,  i.e.. 

(E.13) /       L   Pi 5qi 
Ct      1 

is also a relative Integral Invariant—by essentially the proof outlined 

in the hydrodynamlc case given above.    From (E.13)  a sequence of abso- 

lute Integral Invariants of  increasing dimensionality are derived. 

All this is valid for a general Hamiltonian H containing the time expli- 

citly, and compares Integrals over manifolds at one and the same epoch t 

with what they become at an arbitrary but fixed later  epoch t':     the 

Invariance may be described as kinematlcal. 

5 
E.  Cartan took up  the whole subject from a different  point 

of view in which the Invariance of the integrals is more geometrical 

(but in a higher dimensional space):     the points of the manifolds of 

Integration are all slid along the integral curves, each an arbitrary 

amount,  as described above in connection with Figure E.I.     The invar- 

iance property may be described as sliding invariance.    Cartan showed 

that—under a possible change of dimensionality—the kinematical and 

the sliding invariance are coextensive:    kinematlcal invariance in 
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N-dlmenslonal "space" becomes sliding invariance in  (N + 1)-dimensional 

"space-time" of a related  integral,  easy to construct from the original 

one;  and    reciprocally,  every sliding invariant leads  to a  (truncated) 

kinematic Invariant in space of one dimension lower,  the removed dimen- 

sion being interpreted as  "time". 

Not only has the sliding invariant point of view greatly simpli- 

^ fied  the mathematical treatment, but   it is the form directly applicable 

** to acoustic rays.    Simple as such applications may be at  the conceptual 

^ level—provided one has  the habit of thinking in terms of a "space" of 

n coordinates and of smooth manifolds embedded in them—the formulas, 

i algebraic calculations and proofs of the sort found in the earlier 

literature are excessively complicated. As shown by E. Cartan and his 

followers, this is because the traditional notation (based on partial 

derivatives and determinants) is a misfit. A notation based on differ- 

entials and their skew-products not only provides simpler formulas, but 

|  f|        leads to powerful algorithms. 
«• 

Manifolds and oriented manifolds. In the physical applications 

of present concern, integrals over k-dimensional manifolds in n-dimensional 

space (n > k) are of constant occurence; and so are applications to 

them of the theorems of Gauss and Stokes and their generalizations. 

When integrating expressions having physical meaning over manifolds, 

such as S. , two different cases are encountered: S, may be a geometrical 

figure (k-dimensional spread of points); or it may be a different object 

entirely: a figure provided with an orientation. Tiie two kinds of 

i 
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Integrands reflect the two situations. We illustrate this contrast 

in the familiar cases of S. (a curve) and S„ (a surface) in ordinary 

xyz-space. Questions having definite answers when these figures are 

not oriented are, for Instance, what is the length of S-? The area 

of S,, or its mass (if it is a material of surface density a given at 

each point)? The first is answered by integrating /dx2 + dy2 + dz2 

over S.; the second and third by integrating the square root of a sum 

of squares of Jacobian determinants, or such a square root multiplied 

by a to give the mass. 

Quite different is the case in which we have a vector field 

of components (X, Y, Z) throughout our manifold, and (if it is a field 

of force) we ask for the value of the work done by this force on a 

particle moving along the curve S..; or else (if it is a field of 

velocities) we ask for the value of the flux through the surface S«: 

neither question has a definite answer, unless we regard S^ and S^ as 

being oriented figures; S1 must mean a curve as well as a direction 

along it (a "path"); and S- must be a surface with an orientation, so 

that we can say in which direction the flow takes place.  In both 

cases the numerical answer will be algebraic: positive, negative, or 

zero.  The requirement of orientability of surfaces and higher-dimensional 

manifolds Imposes a restriction:  the area, or mass of a material 

Mobius strip is meaningful, and so is the volume of fluid that encounters 

it per unit time; but not the volume that traverses it—in the ordinary 

usage of this term. 
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The orientation of manifolds Is a less obvious notion in spaces 

of higher dimension than two or  three;  e.g.,  in the space of  the varla- 

T bles  (x, y, z, p ,  p ,  p )  used  so frequently In the text,  along with j, x      y      z 

I 

IT 

the manifold which Is the locus of the equation H - 0.    in such cases, 

the concept of the indlcatrlx Is used.     It Is easily explained  In the 

•* spaces  that can be visualised—and has the advantage of being extenda- 

ble to a k-dimensional manifold  in n-dimenslonal space. 

I n 
I ■" The indlcatrlx on a curve S, resembles an arrow-head that 

marks the direction on the curve:  it is a pair of distinctly labeled 

points, e.g., marked (1, 2), with the direction from the first to the 

second.  An essential part of the idea is that the pair may b^ slid 

along S1, but must always remain "close together"—a restriction that 

can be stated precisely in terms of neighborhoods of points on S-. 

This "smallness" of the indlcatrlx is needed to exclude the possibility 

of reversing it in the case that S.. is closed (e.g., a circle), when 

otherwise (1, 2) could be brought into coincidence with (2, 1) and 

would net determine a unique orientation of S . 

In the case of a 2-dimensional manifold S„ (a surface) the 

usual method of orientation by defining the positive sense of the 

normals is applicable only when S? lies in 3-dimensional space.  It 

fails in higher dimensions:  even in A-dimensiona.l space there is a 

continuous infinitude of normals to S- at each one of its points (cf. 

the normals to a curve in 3-8pace). On the other hand, a "very small" 

closed oriented curve in the surface S«, which is allowed to slide 
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about in It while remaining "arbitrarily small", reveals the two 

following possibilities:    If, as in a sphere, the indicatrix can never 

reverse its sense, we say that the surface is orlentable and define its 

orientation in any particular case by the orientation of the indicatrix. 

If on the contrary,    as In the case of the Moblus strip,  this reversal 

can take place, we say that the surface is non-orientable.    These 

examples Illustrate two facts:    first,   that orientability as defined 

by the indicatrix is an internal property of the manifold,  and does 

not depend on the space in which it may lie; second,  that the definition 

can be extended by induction from lower  to higher dimensional manifolds. 

Thus an indicatrix I,   In S.   is defined firstly as a small "sphere-like" 

(k-1)-dimensional manifold   (one wh^ch encloses a part of S. ,  and which, 

with its interior, can be put into a one-to-one continuous correspondence 

with the set K,   of points in the space of  (x..,   .   .   .,  x.)  for which 

2 2 x,  +  .   .   ■  + x.  £ 1)—and secondly as this sphere-like manifold provided 

with an orientation (it is easily shown to be orientable).    Using this 

I.   we define orientability,  or its reverse,  for S. ,  and a particular 

orientation in the former case:     this is our inductive process. 

The rigorous background of  these notions are found  in any 

modern work on elementary topology. 

The general differential notation.    Returning to the first 

example given for the oriented curve   (path)  S  ,  the work done by the 

field   (X, Y,  Z)  is the line integral of the tangential component of 

the force in the direction in which S-   is oriented.    In terms of  the 
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direction cosines In this direction,  the work Is given by any one of  the 

three expressions  (ds being the arc differential In the direction of  S^) 

J    (X cos a + Y cos 3 + Z cos Y)ds 
Sl 

. f (x ^L + Y ^1 + z £L ) ds 
,/   v     ds ds ds / 
Sl 

- /      (X dx + Y dy + Z dz) 

^Sl 

The second  is derived from the first by .the direction cosine equations, 

cos a ■ dx/ds, etc;  and the third,  by cancellation of ds—which is 

permitted  by the properties of differentials.     It is this third express- 

Ion which is particularly Interesting to us:     it has the advantage of 

being free from any particular parameter  in the respresentation of the 

oriented curve S...    Thus if any other parameter,  t, were used, chosen 

to Increase  In the direction of the orientation of S^., which is given 

by such equations as 

Sj^: x - f(t), y = g(t), z = h(t), 

it would only be necessary to integrate    Xf     (t)  + Y g  (t) + Z h    (t) 

respect to  t between appropriate limits   (after replacing (x,  y,  z)   in 

the coefficients by their expressions in t)   to obtain the correct 

value of  the work.     This independence of parametrization—which is not, 

after all,   intrinsic  in the nature of the path S,  regarded as a physical 

entity—is  the advantage of the differential notation for the integrand. 

It nay be compared with the freedom from particular coordinate systems 

achieved by the vector notation.     It is an advantage that we wish to 
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;i 
exploit In higher dimensional cases, S,. 

In the example of the flow through the oriented surface S», 

(X, Y, Z) being the velocity components, let us first define the posi- 

tive normal as the one about which the indlcatrlx cycle in S» corresponds 

to positive screw rotation. If cos a, cos ß, cos y are the direction 

cosines of this positive normal, the flux through S« (volume traversing 

it In this positive direction per unit time) Is given by 

F(S2) = J J (X cos a + Y cos ß + Z cos y) d 5 

s2 

Here d 5 is the surface element of area, regarded as essentially posi- 

tive. 

Suppose that S- is given parametrically in terms of the 

parameters u, v: 

x - f(u,.v),  y » y (u, v), z = h(u, v); 

and suppose,  further,  that rotation in the positive sense in the 

uv-plane  (from + u to + v)  corresponds with circulation in the sense 

of the directrix of the corresponding points in S_.    Then by elementary 

differential geometry (cf.  Osgood, Chapter El ),  and as explained  in 

Figure A.I and In the derivation of equation (A.6)   in Appendix A 

(witn 6 - u,  <J) = v) , we have for the element of area d S = D du dv, 

where du dv is the corresponding element of area in the uv-plane 

(essentially positive)  and D is the  (essentially positive) length of 

the vector product  (9r/9u)  X (3r/9v).    Furthermore,    cosa, cosß,  cosy 
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are the components of this product, divided by D. Now the components 

of this vector product are the three determinants (with the usual 

cyclical convention of sign) in the matrix (subscripts denoting partial 

differentiation) 

Therefore 

9(y. z)  1 
cosa - -rr"—c- — , cosß 

3(u, v) D 
a(z. x) _ 1 H** y).l 
3(u, v)  D ' COSY  aCu, v) D 

Introducing these expressions Into the earlier formula for the flux, 

we have, after cancelling D, 

F(S9)  -        //     rx|i^ + Y|4^4+z|f-4ldu 
S   (u v)   L    3(u' v) 3(u, v) (u, v) J 

dv 

Once  (x, y,  z)  are replaced by their expressions in (u, v),  and region 

S-  (u, v)   in the uv-plane which is mapped onto S- is found,  the evalua- 

tion of F(S„) reduces to double integration of a function of  (u, v) 

over S2(u, v). 

In spite of appearances,  this formula has a form independent 

of the parametrlzation:    in a different parametrizatlon,  (u, v) would 

be single  valued differentiable functions of   (u1, v')—and vice versa. 

By the rules of change of variables in partial derivatives,  and of 

linear transformations of determinants,  the result would have exactly 
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the same form In the new parameters  (u1, v')  as In the old.    In view of 

this fact, mathematicians have sought to define a notation with a form 

independent of parametrizatlon; with results to be given here. 

Consider,  for example,  the coefficient of Z;   If du dv Is a 

product of du and dv  (as  Is the case with a net of rectangles on the 

uv-plane) we could write the coefficient In the form 

3(x.  y)     .     . -)  '  H    du dv 3(u, v) 

x    du u y    du ^u dx dy   | 

x    dv 
V 

y dv 'v 
~ d'x d'y 

where d Is the differential along a u-curve (v constant) and d', along 

a v-curve (u constant) .  This has suggested the abbreviation [dx dy] 

for the determinant; it Is a sort of product, but since [dy dx] = 

- [dx dy] It behaves skew-symmetrically. Notations have varied in the 

recent period, but are now fixed to read dx * dy, and called the 

exterior product. 

With this notation, we may write 

F(S2) - / / (X dy dz + Y dz- dx + Z dx- dy) 

S2 

which, by definition, calls for the following set of operations, 

starting with the given (X, Y, Z) and oriented S«: 

1. Express S„ parametrlcally in terms of any parameters (u, v) 

mapping the positive indlcatri . in (u, v) into the indicatrix 

of orientation of b». 
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2. Replace  (x,  y,   z)   In Lhe coefficients by their parametric 

expressions in  (u, v). 

3. Replace each exterior product, dy*dz, etc., by the corresponding 

Jacobian determinant 3(y, z)/3(u, v), times the essentially posi- 

tive element of area dudv of  the uv-plane. 

4. Integrate the result over the region S2(u, v)   of  the uv-plane 

which corresponds to S„, with respect to the variables of double 

integration,   (u,  v). 

This convention is general.     If S.   is an oriented k-dlmensional 

manifold  in n-space,   the integral over S.   of a sum of terms such as 

A dx. A .   .   . * dx.   is  to be interpreted  in terms of functional determin- 

ants:    each exterior product dx.. * .   .   . • dx,   is to be replaced by the 

functional determinant  3(x,,   .   .   .,  x,)/9(u1,   .   .   .,  u. ),  where 

(a.,   .   .     .,  u.)  are parameters figuring in the  (local)  representation 

of S. .    The result is  then integrated with respect  to  these in the 

parameter space.    In the case of a sphere  (and many other surfaces) 

a single parametrization is impossible:     it has to be divided into 

pieces,  each of which can be given in terms of an individual parameter 

system.     In the map from any of these  (local)  parameter systems to 

the corresponding piece of S., orientation is preserved. 

The exterior products can be manipulated algebraically: 

multiplied by a number   (or function),  added,  and multiplied together, 

provided  that any change of order of adjacent factors is understood to 
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reverse the sign of the product. Thus their properties parallel those 

of determinants. In particular, If two differentials in such a product 

are the same, the product must vanish. 

There is a further operation, belonging to the calculus 

rather than to algebra, that is important in the physical applications, 

that of differentiation, defined as follows: 

Let Ü  have the form of the Integrand on an oriented manifold 

S. : a sum of the type 

Ü m2^ A dx. - . . . Adx. 

We define the exterior differential dfi as follows 

dfi »/, dA * dx. * ... * dx, 

m 
Working out the differential dA » 53 (9A/3x.)dx. we have 

i-1 1 

dfi 
"^   iVl    9^    ^ ^   '   '   '    ^^ 

and removing all terms with a dx. coinciding with one of dx,,   .   .   ., dx, , 

we get an expression similar to ft but of one degree higher, and whose 

coefficients are first derivatives of  those of ft.     It  is easy to see 

that the   formalism of differentiation of the calculus extends to this 

exterior differential. 

To interpret dft in familiar cases,  return to  the first example 

(work)  in which the integrand had the form 
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« - X dx + y dy + Z dz 

According to the above definition we have 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
! 

dß - dX *dx + dY -dy + d Z -dz 

which becomes (subscripts denoting partial derivatives) 

dQ - (Z - Y ) dy -dz + (X - Z ) dz -dx + (Y - Y ) dx «dv. 
y   z  ■'       z   x x   y 

Evidently the coefficients are the curl of the vector  (X,  Y,  Z), while, 

as before,  the exterior products are the direction cosines of the 

normals,  times the element of area,  on any orlentable surface of 

which S1   Is the complete contour.    This Is the basis of Stokes* 

theorem. 

As a second Illustration,  consider the flux through S2 in 

the velocity field   (X, Y,  Z).    On writing the Integrand  In F(S2)  in 

the form 

n - X dy *dz + Y dz -dx + Z dx *dy 

we have 

dn - dX Ady -vdz + dY -dz *dx + dZ -dx -dy 

(X    + Y    + Z  )  dx -dy -dz x        y z 3 

which Is the basis of the divergence theorem of Gauss 
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All the straight-forward generalizations of these theorems 

are expressible In the notation of exterior differentials and differen- 

tiation. We note only two facts, the first being easy to prove, namely, 

If Ü  Is Itself a differential: ^ - du then dft - 0. The second fact 

Is much harder to prove; it is a converse to the former:  if dfl-O, then ^J 

Q  ■ du, but the coefficients in UJ may be multiple-valued—the theorem 

as a simple converse must be regarded as a local theorem. "' 

Some general theorems. We wish first to replace the relative .j 

Integral invariant (E.13) of the Hamlltonian system (E.12) by a sliding 

invariant, namely 

(E.14) /( S p 6q. - Hot), 
K  1 

where K is a closed curve in the (2n + 1)-dimensional "phase-space-time" 

of the n variables of position (q) of a system of n degrees of freedom, 

the n corresponding momenta (p) , and the time t. Now we must think of 

K as given by the parametric equations in the parameter u: 

K: ^  - q^u). P±  - P^u), t = t(u), (0 ^ u ^ h) 

where, since K is closed, the values of these 2n + 1 functions at 

u - h are the same, respectively, as at u = 0.  The differential 6^ is 

along K; i.e., it implies that u is the Independent variable. 

To express the operation of sliding along the Integral curves 

of the Hamlltonian equations of motion (E.12), we require a second 

parameter, v; then the above equations are replaced by the following: 
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(E.15)     Kv:   q^^ - q±  (u,v),   p1 - p1 (u,v),   t - t (u,v) 

j| The differential d^ will be used to Indicate the sliding of the points 

of K ■ K with increase of v.  Since the paths along which the sliding 

u 
occurs must be the integral curves of (E.12), the direction tangent 

j to them in (2n + l)-space (of components dq., dp., dt in (E.15), u 

being held fast) must coincide with the direction satisfying (E.12)— 

which equations may therefore be written in the form 

dq. dq dp,         dp   ... 
/r. te.s              H Mn vi                        'n  dt   . (E.16)     r;— "... * -— ■ -— ■ . . . » -— ■ -— « dv. 

Hpi HPn -Hqi        -Hqn   1 

As in the earlier case, the interpretation of the two systems of differ- 

entials in terms of the variables in (E.15) shows that th^ir order of 

application is interchangeable:  for any function f of these 2n + 1 
•p 

£ dependent variables, d6f » 6df. 

With these preliminaries,  the proof is quite similar  to that of 

^ the invariance of circulation given earlier.    The Integral   (E.14) 

..« becomes—when K - K ,  the path defined by  (E.15)—a function of v, 

which function we must show to be a constant:   i.e.,   to have a zero d 

differential.    Thinking of the variables in the integrand of  (E.14)  as 

standing for their values given in (E.15),  the integrand becomes a 
« to 

function of (u, v), which is integrated with respect to u between the 

limits u ■ 0 and u - h, v being regarded as a constant.  The result 

is a function of v, and our task is to show that its d^ differential 

(v varying) is zero.  By Leipnitz' rule, we may take the d^ under the 
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Integral sign, so that what we are concerned with Is the d^ differential 

of the Integrand In (E.14). 

The calculations are simplified by use of the notation 

(E.17) a)(6) - ^ p.   <5t}.   - H6t, u(d)  - E p    dq    - Hdt, 
i i 

We wish to prove the equation 

i 
I 
I 
I 
I 

(E.18) da.(6)  - 6oü<d)  = 0  , 

on the basis of (E.15) and (E.16). Using the latter, we have 

6H dt - dt E (Hpj. 6pi + Hqi 6qi) + Ht 6t dt 

- Z   {dqi  6vi~  dpi «q^ + Ht 6t dt 

dH St + H dt öt 

The truth of (E.18) follows from the application of the last two equa- 

tions, together with the interchangability of order: da ■ 6d. 

Returning to (E.14), and using the results just obtained, we 

have 

d  j       (46) -  f dü)(6) - j  6w(d) - (^(d) 

u = h 

u - 0 

since K is closed and the integrand single valued. This completes 

the proof. 

Note that the left-hand member of (E.18) is the exterior 
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rr differential of W; It can be written 

i ii 
fi ■ dp.  * dq. - dH - dt 

■  7 T 11 i 

Ü 

it 

We have shown that If In (E.15) v varies along the path, ft > 0.  If 

|| on the contrary (E.15) are regarded as defining a piece of surface S»— 

not in general either closed or tangent to any Integral curve of (E.12) 

—then ß Is not necessarily zero.  Our next theorem Is that fl Is the 

Integrand of an absolute sliding integral Invariant of (E.12). 

This theorem would follow immediately from the invarlance of 

(E.14) by the application of the (2n + 1)-dimensional generalization 

of Stokes' theorem to the piece of surface defined by (E.15) in their 

present interpretation. But since we do not wish to assume this gene- 

ralization here, we shall outline a direct analytic proof, quite simi- 

lar to the one given above.  We must Introduce into the functions of 

(u, v) in (E.15) a third parameter, w, which varies along the integral 

curves, and hence, when dv is replaced by dw, (E.16) are satisfied. 

We are to show that if n is integrated with respect to (u, v) over S5 

the w-dlfferentlal is zero.  Again Leipwltz' rule applies, and there 

is no real trouble in Justifying the following formal steps: 

S2        S2 

dfi 

The fact that dn ■ 0 follows from the form of Ü and differential mani- 

pulations involving  (E.16). 

E-23 

Arthur DljttlelrK 



Our last class of results are based on the following theorem 

of E. Cartan; 

The Integral fc    Q will be a sliding Invariant of a system of 
J sk 

differential equations (such as  (E.16), or, more generally  (9.1)  of 

Section 9)   if and only If f2 can be expressed In terms of the first 

Integrals of this system and their differentials. 

This is a local theorem (I.e., valid only In a sufficiently 

small neighborhood of a point of regular behavior of the differential 

equations).    The formal proof Involves the elementary properties of 

the N-l first integrals of a differential  system of order N.     [In 

(E.16) N - 2n + 1;  in (9.1), N - n].    Described intuitively, we 

"deform" the neighborhood in question so as to "straighten out" its 

Integral curves in this neighborhood.    Analytically,  this amounts to 

introducing the N-l first Integrals as Independent variables  (denote 

them by y1,   .   .   .   , y„  ,)  and any N'th function, independent of  the 

latter,  as the last variable y  . 

In the space of  (y.,   .   .   . ,  y )   the Integral curves are 

straight lines, one and only one through each point, and all parallel 

to the y„  - axis.    The Integrand Q. becomes an exprefslon In terming of 
N 

(y, y,)  and their differentials.    Since its Integral over any 
i        N 

S, in the space of these variables has a value that is unchanged by any 

sliding along lines parallel to the y - axis, the Integrand Ü  must 

contain neither this variable nor its differential. It is expressible 
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solely In terms of (VM» • • • »YM.! ) and their differentials. These being 

the first integrals of the differential equations. Cartan's theorem is 

proved. 

From Cartan's theorem it follows that from any two sliding invari- 

ants,  a third can be obtained by exterior multiplication.    Thus if ü 

and ft*  are two Integrands in our standard (exterior product)   form, 

O-fl'   is an integrand of the same form.    For if each factor is expressible 

in terms of the first integrals and their differentials,  the same will 

be true of this product.    Applying this to the case in which 

n - n '  - d(L   V± ^± - Hdt j =   X)   dpi-dqi - dH^dt   , 

we obtain a whole sequence of sliding absolute Integral invariants of 

even orders:    2,  4,  6,...,  2n.     The last one has an integrand reducing 

to that in Lionville's theorem (volume preservation in phase space) 

when it is specialized to the 2n-dimensional phase space with 

t ■ constant. 

Another consequence of Cartan's theorem is that if any ß is the 

Integrand of a sliding invariant,   so is its exterior differential du. 

This, naturally,  gives nothing new, when,  as in our 2-dimen8ional 

Hamiltonlan invariant,  dfi « 0 identically.    On the other hand,  a rather 

simple extension of Cartan's theorem applies to relative sliding 

invariants:    It is a straightforward matter to show that their Integrands 

can be expressed in terms of the first integrals and their differentials 
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to which Is added a perfect differential,  dG,  of a function G of all 

the coordinates:    When these are y  ,...,yN,  the  (non-Integral)  yN will 

be  Involved.    Therefore,  we would have,   for our u(5)defined before: 

N-l 
w(6) - £ f1(y1 yN_1)5yi 

+ &G(y1 yN) 

Taking the exterior differential,   the 6G term yields zero,  so  that dW 

N-l 
dW -   £   df.-dy. 

1-1      *      1 

and is, therefore, the Integrand of an absolute sliding Integral invar- 

iant. This is an alternative proof of the second theorem, the proof of 

which was outlined above. 

A final application of Cartan's theorem shows how, from a given 

sliding integral invariant of highest order, and given a first integral 

of the differential system, we can obtain such an invariant, of order 

one unit lower, valid on each manifold defined by setting this first 

Integral equal to a constant. 

Let u) be such an absolute Integral invariant of order N-l, and 

let Y(x..,... .JO be such a first integral. We may take it in our 

complete set of N-l first integrals, writing y1 ■ Y, and Yo' •••»yM-i 

being the remaining integrals. Then in these variables, 

ü) - L(y1,...,yN_1)dy1-dy2-.,.-dyN_1 

So far all that we know about L is that it exists, and that, setting 

y. - Y - y", any constant, the expression L(y°, y2,... ^^dy^ .. .-dy^ 
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has the Invariant form required.  To find Its expression, we must start 

with what we are given explicitly, namely Y as a function of (x.,... ,xN)l 

and u In terms of these coordinates and their differentials, i.e., as 

A1 dx-^^^dx^. + A- dx. »dx»* .. .^dXj. + PL,  dx. ^ ... ^dxN_1 

Let us introduce Y as a new coordinate, expressing one of the x 

coordinates in terns of it.    Suppose, e.g.,  that Y.. - SY/äXj. + 0: We 

can solve the equation YGc.,...,^) ■ y    ,  for x^. in terms of y«., and 

x-,...,xN_-.    Replacing x^ by this expression and dx^ by 

S * dVl\ -   (^ S +   •'•  + Vl dVl)/YN 

In the given expression for ui,  it becomes 

j-  C^ dx2-...«dxN_1 + A2 dx1-dx3-...-dxN_1 + ... + A^ d*^.. .-dx^^) 
N        "      " 

^yN_1 + ..' 

where u*  does not contain dyN_1.    Equating this to the earlier expres- 

sion, L dy.   ... dyN_-   (with the above choice of y«-,)» and taking the 

exterior product by dyN_1 of the resulting equation, we get the identity 

u'^dy« ,  ■ 0, and since ui'  does not have dyN_,  as a factor,   this identity 

in the N differentials implies that w'  = 0. 

The result of this is that  the difference between the two expressions 

L(y1.....yN.1)dyr...'>dyN_2 
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when multiplied exteriorly by dyN_1,  is  Identically zero.    This means 

that the difference must either vanish identically, or else contain dyN_1 

as an  (exterior)  factor,  as a rather simple manipulation of such 

"exterior polynomials" shows.     In either case we see that Q, on each 

manifold Y ■ constant,  reduces to our expression containing only the 

first Integrals y1»'"»yN_2 an^ their differentials, so that its integral 

is an absolute sliding invariant. 

This process is the general and rigorous parallel of the intuitive 

discussion at the end of Section 9, based on Figure 9.1 in the case N = 3. 

It can be applied repeatedly as further  first integrals are given.     In 

the case of Lionville's theorem obtained as described above,  there is 

an evident application when H does not  contain the time explicitly. 

Then H is a first integral,  so that the coefficient of dH in the In- 

dimensional Invariant is the exterior product of dt times a (2n-2)- 

dimenslonal expression, which is readily shown to be the integrand of a 

new integral Invariant—of fundamental  importance in hydro-acoustics. 

In this particular case, since our manifold is characterized by the 

equation H ■ 0,   there is a simpler direct way of deriving it. 

When we confine ourselves to the  5-dimensional locus H = 0 in the 

7-dimen8lonal phase-space-time t.he integrand of the absolute integral 

invariant 

E-28 

Arthur D Little, Inc 



i 
i 
I fi " dp  «dx + dp «dy + dp *dz - dH*dt ■ dp  ~dx + dp *dy + dp -dz 

m 

I 

4 

I   - 

I 

I 

which has been used In Sections 13,  14,  and 15 In the case of propagation 

in a vertical plane (aximuthal symmetry). 

Taking the exterior product ü2 = ü *  Ü, 

n2/2 ■ dx^dy^dp ^dp    + dx*dz*dp  "dp   + dy^dz^dp Adp 

which served as  the basis of the treatment of the general case In 

Sections 11 and 12.    Its geometrical  representation is shown in Figure 

11.1,  and its  integral I,  is evaluated in  (11.6), etc. 
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APPENDIX F 

AN INTEGRAL SOLUTION OF LINEAR DIFFERENTIAL SYSTEMS 

The system of six non-homogeneous linear differential equations 

(12.^6) of Section 12 are of the type (using x for the Independent variable 

and y..,..., y    for the unknown functions): 

(F.l) dy./dx - y,  q.. +    • • • + y„ q,,, + r> (l-l,...,n). i m n ^nl 

where the coefficients q , and the non-homogeneous terms r. are known 

functions of x. In the case of Section 12., n * 6 and the line-up of letters 

is 

x  y  z  Px  Py  P2  T 

yl ^2 y3 y4  y5  y6  X 

By "one solution" is meant such a horizontal row of n functions. 

It is known that there exists a "fundamental system" of solutions 

of the homogeneous equations to which (F.l) would reduce if every r^ were re- 

placed by zero. It Is a set of n solutions, unconnected by any linear 

relation with constant coefficients, and in terms of which every other 

solution of the homogeneous equations can be expressed as a homogeneous 

linear combination with constant coefficients. 

Let the j'th solution in this fundamental system be denoted by (z.i, -..z ), 

so that (for each j) the following homogeneous equations are satisfied 

(F.2) dz^/dx - z  qj^ + ...+ zJn qni, (1 - 1 n) . 
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These relations as well as the later manipulations are most 

easily expressed in matrix form. First we introduce the one-row matrices 

(n-vectors) 

Y 

R 

K 
r.  ... r 
1      n 

The coefficients in  (F.l) are written as the square matrix 

^l ^n 

q -     ...      q ^nl ^nn 

The n solutions  in our fundamental system form n rows of n variables; we 

write them as the square matrix 

Z - 

11 

'nl 

In 

nn 

Equation (F.l) now takes the form 

(F,3) dY/dx    «   YQ + R 

(using matrix products,  and element-by-element addition and differentiation, 

etc.); while the  fact that each of the n rows in Z satisfies the homogeneous 
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11 
11 
11 

11 
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equation becomes 

dZ/dx - ZQ 

Finally,  if C ■  | |c....c   | |  is a set of constants, every a linear combina- 

tion of the n solutions in Z with these constants as their coefficients is 

the one-row matrix written as CZ.    The fact that it satisfies the homogeneous 

equation is shown by the obvious manipulation 

d(CZ)/dx - C(dZ/dx)  -  (CZ)Q 

Our object is to find a solution of the non-homogeneous equation 

(F.l), which vanishes when x ■ 0 (there is only one such solution, by 

the uniqueness theorem).  It is easily found by Lagrange's method of 

"variation of constants". We write Y * CZ and regard C as a row of 

functions of x instead of constants. Then we have 

ii . ic z + c dZ 
dx  dx     dx 

In order that (F.3) be satisfied, we must have 

~ Z + CZQ - CZQ + R 

So that (dC/dx)Z = R.     Now since Z is a fundamental system, its 

determinant is never zero so that it has an inverse matrix Z . Hence 

dx 
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Therefore, we have but to take 

rx -1 C(x) -/o RCx') Z 
L  (x') dx' 

(x* denoting the variable of Integration)  and we obtain 

(F.A) Y(x)     - C(x)  Z(x)  - fX    RCx')  Z"1   (x')  Z(x)  dx' 
o 

the required solution of (F.3). 

Returning to the non-matrix form of writing, (F.4) becomes 

(for 1 - 1,...,n) 

(F.5) y^^ - f [r^x') ^ (x'^) +...+ ^(x') Kni (x'^dx', 
• 'O 

where K.-Cx^x)   Is    the element [Z      (x1)  Z  (x)]..;   i.e.,  the element in 

the i'th column and  the j'th row in this product of square matrices.    This 

is the form of the theorem used in Section 12,   (12.8).    There the six 

non-homogeneous  terms corresponded as follows with our present r. : 

0        0        0        aw'/Sy' aw'/ay' sw'/az* 

rl        r2        r3 r4 r5 r6 

Consequently the form used had a sum of only three terms under the 

integral — the perturbing terms SW/Sx',  etc;    hence the equations  (12.8). 
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i i APPENDIX G 

i TECHNICAL MATHEMATICAL SUPPLEMENT 

This appendix Is addressed to the mathematical reader who re- 

quires more details concerning the existence of Fermat families, and 

ergodlc and Information theory. It may be omitted by the general 

i reader of this report. 

The Fermat family of emitted radiation. The whole treatment of 

waves leading up to the use of rays and the formulation of power flow 
Eil 

In phase space has been based on the assumption of the existence of 

n 
[ ; Fermat families of travelling waves, In enough cases to handle the 

I    . phenomena of long range propagation.    In view of the treatments In the 
3 

literature [References are given In Courant & Hllbert  , Vol.  II, Chap. 

VI, Sec.  5], the short range situation Is completely understood and 

requires no further discussion In this place.     It can be handled by 

i rlgorlzlng the "W.K.B. methods".    On the other hand, as we have re- 

r , peatedly stated,  such methods require extension to cover the case when 

f    ' ' the functions become multiple-valued, as with the occurrence of caustics 
5 

and multiple-path transmission.    We turn,  therefore,  to the construction 
I    ■■ 
I of Fermat families under the requ*  -     more general conditions:    emission 

from a point M :     (x  , y  , z ), received at M:   (x,y,z). In a heterogene- o o      o     o 

ous but Isotropie medium.  In which p and c are analytic and Independent 

of time.    We shall assume—for reasons of simplicity rather than of 

principle—that the physical boundaries are so far away that they can 

be Ignored.    For similar reasons we shall define and study, for any 

fixed locality,  the finite number of wave trains from the emitter that 
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traverse It, corresponding with the finite number of paths.    This is 

sufficient for the purposes of Sections 10 and 11.    A global representa- 

tion is not required. 

As explained in the latter part of Section 6, we have to operate 

in space-time, and let t    be the moment of emission from M    of a phase 

which reaches M at the later moment t.    It is as a function of the two 

sets of variables,   (t   , M )   and (t,M)  that the elementary solution 
3 

u ■ u  (t  , M ;  t,P)  of J.  Hadamard    is constructed, with results that oo 

we now give in outline.    The details are supplied in his  "Lectures", 

Book II, Chapter III, under much more general conditions  than we need— 

and with correspondingly greater limitations of range of the results. 

D'Alembert's wave equation (3.1)  Is L(iJ))  ■ 0 where, using sub- 

scripts for partial differentiation 

LU]  - V-(p7 (J«) - pn2 i|(tt  , n - 1/c. 

This is an equation of hyperbolic type,  and has  the family of character- 

istic hypersurfaces   (3-dimentional manifolds), exhibited as the loci, 

for different values of the parameter K, of W(x,y,2,t)  ■ K, where W is 

a solution of the "characteristic equation" corresponding to (3.1), 

namely 

2Q[W]   -    |VW|2 - n2(W )2 - 0. t 

If  (P  ,  P  ,  P   , P  )   are any four variables,  the quadratic form, x      y      z      t y 

whose coefficients  are functions of  (x,y,z,t). 

2 2 2        2    2 
Q - 1/2  (P Z + P      + P      - nTP/) x x y z t 
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le called the characteristic form of the wave equation.    It serves as a 

4-dlmensional "Hamiltonian" ('•f. Section 8)  to define curves, called 

bjcharacteristics   (since they are the characteristics of the character- 

istics of the wave equation) and containing the rays as a sub-class. 

The bicharacteristics are the integral curves satisfying the canonical 

equations 

dx/da - 3Q/3Px - Px,  ...   , dt/da - 3Q/3P    - -n2P 

jj dPx/do - -3Q/3X dPt/da - -3Q/3t - 0, 

where a is em auxiliary parameter, the Independent variable, in terms of 

which the eight coordinates  (x,...,F )  are expressed.    Through each point 

of the S-dimensional phase space, one and only one bicharacterlstlc 

passes; cf.  Section 9. 

An important fact results from the Independence of coefficients 

of t, leading to the last equation above, which shows that P    - P  ,  a 

constant.    We may exclude the case that It is zero, since then the fourth 

equation would give t ■ constant, which is an un-needed degenerate case. 

The sign of this constant will determine, again by the fourth equation, 

whether t increases or decreases with the parameter a.    In our study of 

emission from M it is convenient to have them change in the same direc- 

tion, i.e., dt/da >0; accordingly we take P   < 0.    Note that we could 

then use t as the independent variable, eliminating a and dropping two 

of our eight equations, but loosing the space-time symmetry. 

Our equations show that along the bicharacteristics, Q does not 

change its value:    for evidently dQ/do > 0.    There are,  therefore,  three 

classes of bicharacteristics:    those for which Q>0  ("space-like"); for 
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which Q - 0 ("ray-like"); and for which Q < 0 ("tlme-llks").  These catch- 

words are those used In relativity, where c Is the speed of light. 

By differentiating the first four equations and then eliminating 

the P-quantlties by using the remaining four, our blcharacterlstlcs are 

seen to be solutions of four differential equations of the second order, 

(x,y,z,t) being the dependent variables, o the Independent.  To any set 

of Initial values of these and their o-derivatlves, there corresponds a 

unique blcharacterlstic.  Now in view of the fact that on the whole 

length of each blcharacterlstic, dt/do is not only positive but greater 

than a positive constant (-P*, times the greatest lower bound of 

2     2 
n ■ 1/c ), these curves continue indefinitely as measured by t: they 

never turn back. Thus each blcharacterlstic emanating with increasing 

a from the point (t , M ) is cut in exactly one point by each hyperplanc 

t - t. > t , and without being tangent to it. All this is the geometribal 

way of saying that t could be used Instead of o as Independent variabl i, 

We note in passing that our eight canonical equations for tb? 

blcharacterlstlcs based on Q can be reduced to six based on the H of 

(8.A) but without space-time symmetry: we have but to eliminate i    In 

2 
favor of T defined by dt ■»  c dt, write P = -P /P , etc., and H » Q/2P. 

The elimination of the P's and reduction of the 8 equations .:c 

4 of the second order in the space-time coordinates (x,y,z,t) amounts 

to a "projection" of phase space onto the latter: 

(x,y,p,t,Px,Py,Pz,Pt) + (x,y,z,t) = (M,t). 

But through each (M,t) infinitely many curves which are projections of 

blcharacterlstlcs may pass; and since they will have different P-values 
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there, their Q-value will In general be different. The characterizations 

of "space-like", etc., apply only to the individual curves, not to regions 

in space-time—contrary to the classical picture, which may only be valid 

locally. 

The set of all rays through a given point (M ,t ) with tgt 

("positive" rays) are the projections of those bicharacteristics through 

that point for which Q ■ 0. They form what is called the characteristic 

conoid, of vertex at (M ,t ), and correspond with the paths of signals 

emitted from M at the epoch t . They form a 2-parameter family of 

curves In 4-space-time, and a 1-parameter in 3-space-tlme.  Therefore 

the conoid Is a 3-dlmensional manifold in the former and a 2-dlmenslonal 

(surface) In the latter.  In all cases it is a characteristic surface 

of the wave equation; i.e., it is given (locally at least) as the locus 

of W(M,t) - K, where, on replacing 3W/3x, etc., by P , etc., Q(P ,...) - 0. 

The picture of the conoid Is simplest when c is constant (or 

nearly so). Then in the case of (x,y,t), the conoid is a cone of revolu- 

tion about an axis parallel to the t-axls, vertexed at (x ,y ,t ), and 

of semi-conical angle of tangent equal no c (or when c varies slightly, 

a slight deformation of this figure). The projection onto the xy-space 

has no vacant spaces and no multiple paths:  this is the classical 

picture. As we have just seen, it may lose its validity If c is more 

variable and the extent of space considered greater. 

A regular point of the conoid Is one at which it can be repre- 

sented locally as W " K, where not all four first derivatives of W vanish. 

At such a point it Is smooth; and it can have no tangent line parallel 

to the t-axls, since this would imply that 3W/9t = 0, and hence, by the 
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characteristic equation satisfied by W, that the sum of squares of the 

other derivatives vanishes, so that the latter are Individually zero. 

Irregular points (where such a representation is not possible) are either 

points where two smooth pieces of the conoid intersect (each of wnich 

can be represented as above but with different functions W) or else 

edges of regression, i.e., envelopes on the conoid of its generating 

rays. In either case the dimensionality of the locus of singularities 

is one lower than the space of the medium—two lower than the space- 

time. These statements follow from the general theory; they may have 

exceptions, but in the analytic case assumed, these will be still lower 

in dimensionality (e.g., when the singularity is a conical point). 

We return to the projection of the characteristic conoid vertexed 

at (M ,t ) and Its generating rays, upon the space of the medium. A 

point M of the latter may be said to be of "multiplicity m" (= 0,1,2,...) 

if Just m rays connect it with M ; m = 0 represents a point in a vacant 

region. Let M be a boundary point of regions of different multiplicity: 

clearly a vertical line through M1 touches the conoid, and since it cannot 

be tangent to it at a regular point (or at the intersection of two smooth 

pieces), it must touch it at a point of an edge of regression.  Thus the 

edges of regression of the conoid project into the caustics in the space 

of the medium—these being the boundaries of regions of different multi- 

plicities of the latter. 

To picture an edge of regression, we have but to take any smooth 

twisted curve C in (x,y,t) whose direction always makes an angle with 

the vertical, the tangent of which angle equals the value of c there 

2    2   2 2 
(it will be a solution of the Monge equation dx + dy - c dt =0). 
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A small characteristic conoid vertexed at a point of C will be tangent 

to It; and as Its vertex moves along C Its two parts will envelop a 

surface having C as edge of regression, and being a characteristic sur- 

face of the wave equation:    the conoid Itself, If C Is chosen properly. 

See Figure G-I. 

Let M be any point Inside a region of multiplicity m>l:    just 

m paths join It to M  .    Let  t',  t'1,...,  t        be the epochs at which a 

signal starting from M    at the epoch t    reaches M:    they are In general 

all different;  and since M Is not taken on a caustic, can cease to be 

so only If M is the projection of a point of intersection of two or more 

smooth pieces of the conoid.     As we have seen,  such exceptions are con- 

fined to loci of lower dimensionality than the space of the medium—as 

remarked late in Section 6.    Moreover, they correspond to m different 

analytical elements.     Indeed,  if t'  ■ t"  at M - M.^then the functions 

t'(M)  and t"(M),    with M in a neighborhood of M-,  can be expanded in 

convergent powers of the differences of the coordinates of M and M. : 

as power series they are quite different; they merely happen to take 

on the same value at M-. 

Quite different is the behavior of the multiple-valued function 

t ■ t(M) near a point M1   on a caustic:  the latter is a branch locus 

of this function,  one branch at least being non-anclytic  there  (compare 

2        3 the behavior of the function t defined by t    » x    in the  1-dimensional 

medium of x).    Since  the  elkonal function S of Sections  1  ^, etc.   is 

the above t(M),  the mechanism of its multiple-valuedness is  exhibited 

in this space-time figure. 
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FIGURE 6-X. MULTIPLE PATHS AND VALUES OF t 
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Hadamard's elementary solution u Is based on a function T of 

eight variables,  the space-time coordinates of "initial point"  (t   , M ) 
o  o 

and of the "final point" (t,M) on a bicharacteristic:  F is the square 

of the geodesic distance £ between them in space-time, based on the 

metric defined by the element of arc 

dG2 - dx2 + dy2 + dz2 - c2dt2 

associated with the wave equation. The elementary formalism of the 

calculus of variations shows that the Euler equations for an extremal 

of  dG coincide with the second order system in (x,y,z,t) derived as 

noted above from the canonical equations. Hence the geodesies in space- 

time are the bicharacteristics, and we easily calculate that the element 

dG along them is given by y2Q da  = y2Q da, since Q Is constant along 

each line. Hence, the geodesic distance is Y2Q a , a being the value 

of the parameter at the final point. It having initiated at zero.  Hence, 

2      2 
F « G  - 2Q o , so that r>0 for space-like bicharacteristics, r<0 

for time-like ones, and T » 0 for rays:  this is the equation of the 

characteristic conoid. A standard theorem in the calculus of variations 

is that |VG|  -nG=l;it follows at once that P satisfies the 

2   2   2 
first order partial differential equation |vr|  - n r  = Af. A 

crucial advantage in using T  Instead of Q i-8 that it is an analytic 

function of Its eight variables, whereas Q is not.  [References are in 

Hadamard, I.e.; this T  has no relation to our earlier usage of the same 

letter; and our present use of G is not Hadamard's]. 

The elementary solution u has a drastically different form 

according to whether the space-^lme is of odd or even dimensionality. 
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In the latter case there Is a logarithmic term, absent In the odd case. 

In radiation along a line (2-dlmen8lonal space-time) u - V log F, where 

V   Is a special analytic solution of the wave equation:    this Is Rlemann's 

function.    In radiation In a plane u - V/VT, while In the case of 

special propagation, of primary concern to this study*, we have 

u - U/r - V log r 

where U and V are analytic, and V satisfies the wave equation. Note 

that when c is constant, 

T - (x-x )2 + (y-y )2 + (z-z )2 - c2(t-t )2, V - 0, U - constant, 

and we have the familiar expression u - 1/r. 

There Is a special feature of importance in the present ca'^ f 

time-independent coefficients of our wave equation: any solution W'AJ 

remain a solution if any constant is added simultaneously to both t »«a 

t : this means that these variables enter F only through their difference 

t - t . Therefore F - F (t-t , M , M). Moreover. on following through 
O 0        0 

the steps of Hadamard's construction,  it can be shown that the same may 

be assumed for u, V, and U.    Furthermore, since for fixed values of 

(x  , y  ,  z  , t  ), u satisfies the wave equation In (x,y,z,t)—provided 
o      o      o      o 

F / 0—we can multiply u by a regular function of the subscripted vari- 

ables and integrate over any path of the latter, provided points of 

F " 0 are avoided.    We shall make use of these facts to construct a 

*Whlle we are very much concerned with the special case of "radiation in 
a vertical plane" we really mean "in space with azimuthal symmetry"—an 
absolutely different situation from the case of a medium enclosed between 
perfectly rigid parallel and vertical walls, or from an infinite line 
radiator, etc. 
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set of local Fermat families, having a total effect of asymptotic families, 

according to the broadened definitions at the close of Section 6. 

First It Is essential to note that In all cases of Interest to 

the present report the geodesic length G and Its square T  are multiple- 

valued—even In the simplest case of lamlnarlty and a single duct 
ill 

(minimum of c). This Is an essential part of the multi-path situation. 

Its analogue In geodesies on curved surfaces is illustrated In cases in 

which two points on the surface can be joined by many different geodesies, 

having different lengths. 

To understand the situation in our space-time picture, we may 

observe that the first order partial equation satisfied by G mentioned 

above 2Q = 1 when solved for G by the method of characteristics [Cf. 

3 
Courant-Hllbert , Vol. II, Chap. II, Sec. 7 et sec] gives the five 

quantities (xty,z,t,G) as single-valued regular functions of four vari- 

ables: the parameter (a or s, etc.) along each characteristic, and 

three others, which in our case (the initial values of the coordinates 

being held constant and only the momenta P varied) would be three varia- 

bles specifying the position of the momentum point on the manifold 2Q = 1. 

In other words, it gives (x,...,G) as single-valued functions of a point 

(a,P) on the Cartesian product of the real axis and this quadratic mani- 

fold. Under the traditional limitation to local assumptions, there is 

no difficulty In Inverting the (a,P)->>(x,y,z,t) map, thus expressing 

(a,P) as single-valued functions of (x,y,z,t), which are then substituted 

in place of (a,P) in the fifth expression G - G(o,P), which thus yield 

the single valued result G = G(x,y,z,t).  Of course, it is impossible 

in the large to Invert the (a,?)-»'(x,y,z,t) map: a and P are multiple- 
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valued functions of the coordinates, a multiple-valuedness which transmits 

2 
Itself to G as a function of them.    Similarly,  r ■ G    Is multiple-valued. 

The fact—derived directly from the general theory—that with 

our assumptions of analytlclty  (x,y,z,t,r)  are analytic and single-valued 

In terms of  (o,P)  shows just what kind of branching loci enter In the 

multiple-valuedness:    being given by analytic equations (the vanishing 

of certain Jacoblans formed from the above analytic functions) they are 

regular analytic manifolds of dimensionality one less than that of the 

space-time (3,  In the above case).    Therefore we can consider the dif- 

ferent single-valued analytic branches of T—as we shall now do. 

An examination of Hadamard's construction shows that his elementary 

solution Is valid locally  (near the point  (x  ,y   ,z  ,t  )) with U and V 

single-valued and analytic there.    These and all their properties except 

slngle-valuedness are extended by analytic continuation to the regions 

of present concern. 

We return to the construction of the Format families, confining 

attention now to regions of our space-time away from the branch loci, 

and to individual single-valued branches.     In this sense, we continue 

to use the expressions r, u, U and V.    We shall also operate in regions 

of space-time away from edges of regression of  the characteristic conoids, 

projecting Into the space of the medium away from caustics.    Our purpose 

is to derive,  from the instantaneous pulse emitted from (M  ,t )  repre- 

sented by u,  a continuous harmonically modulated train of waves. 

Let M be any fixed point  in such a region of the medium,  and 

t', t", etc.,  the points of time at which the  line through M and parallel 

to the t-axis cuts the conoid vertexed at  ^M  ,t    »0).    Cf.  Figure G-I. o    o 
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Since F depends on t,t only through the difference t - t , the conoid 

jl can be raised or lowered by the amount t , and we still have r(t-t ,M)«0 ii o o 
ii 

for t fixed but t taking on the valued t" - t-t1, t"- t-t", etc. o o        o 

|l We have seen that these solutions t'.t", etc. of the equation 
ii 

r(M,t) - 0 are analytic functions of the coordinates of M; we shall 

.. denote them by S » S(x,y,z), the multiple-valued elkonal function; 

-•- Indicating, when necessary. Its separate branches by accents. Since 

1 near  (t^M)  r(M,t)  Is analytic and vanishes when t-S ■ 0; and since 

3r/3t ^ 0 there  (no vertical tangent line to the conoid), Welerstrass' 
il 

factorization theorem tells us that r(M,t) -   (t-S)A, where A Is an 

11 
i| analytic function of  (x,y,z,t)  In a neighborhood of  (M,t).     It Is 

?1? convenient  (although not strictly necessary)   to assume further that M 

has been chosen not to be on any 2-dlmenslonal  locus of coincidence 

t'  - t'^etc.    Then A Is not  zero In the neighborhood of  (M,t).    On the 

basis of these assumptions and results, we proceed as follows. 

We get the general values of our functions by replacing t, when it 

occurs alone in the above, by t-t  ! we have 
'   o 

F - r (t ,M : t,M) - (t-t -S) A (t-t ,M ,M) 
o o o        o o 

Naturally we are confining all the variables to the above neighborhood. 

We now multiply u by(l/2Tri)exp (-iwt ) and, regarding t as a 

complex variable, integrate the product in the complex t -plane about 

circles centered at the points t1 , t" , etc., and with sufficiently 

small radii to exclude any possible Irregular points of the functions. 

The result is a sum of as many Integrals as there are t -values obtained 
o 

by the intersection process described.  Changing variables of Integration, 

by setting Z - t-t -S, dZ = dt ^whence exp(-iü)t )-exp[i(D(S-t)] iexp(lü)Z), 

our integral becomes, on taking outside the Integral the factor independent of Z 

*' " äifi  exPUü)(S-t)] Ju exp(iü)Z) dZ 
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Locally, this has the form of a classical travelling wave of frequency 

u), since the Integral will depend on w and the space coordinates only, 

and not the time. This Is because the Integrand u « u(t-t , M , M) - 
o  o 

u(Z + S(M ,M), M , M): and Z Is Integrated out.  But we must examine the 
o     o   ^ 

behavior of the terms with Increasing a>. 

The term U/r In u Is found at once by applying Cauchy's formula, 

since the denominator Is 

T - (t-t -S) A (t-t ,M ,M) - Z A(Z + S,M ,M) 
O 0  0 0 

while U - U(t-t ,M ,M) - U(Z + S,M ,M). Thus the integral, which we 
o o o 

denote by R1, is 

This, by Cauchy's integral formula is the value,  for Z - 0, of  the 

coefficient of dZ/Z, namely 

U(S(Mo,M), Mo,M) 

" A(S(M  .M), M  .M) o o 

An essential fact shown by this is that R is Independent of u and is a 

function merely of the space coordinates of M and M. The same was 

clearly true of S. Furthermore, all these functions are real for real 

values of the variables (as is easily seen by their definitions). Conse- 

quently this contribution to ty'  is R' exp[l(o (S-t)] and R'and S are real 

valued functions of position. Independent of time and frequency.  In fact, 

if this computation Is applied to the case of homogeneous media and the 

corresponding simple form of T  given above, we immediately get the same 

point radiator formula given above In our fourth example of Appendix D. 
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A corresponding derivation of our third example of the point 

radiator In the plane could be produced, starting from u - l/vT, 

2       2   2    2 
r - (x-x ) + (y-y )  - c (t-t ) ; only we would have to integrate about 

. • an appropriate closed path In the two-sheeted Rlemann surface for the 

complex square root, and then apply standard contour Integral expressions 

for the Hankel functions. 

Returning to the general case, we must now treat the logarithmic 

term in tfi'. We have, after the above change of variable of integration, 

-V log T - -V log A + V log Z 

p 
'■-    «• 

Since the first term is analytic in the neighborhood of our path of 
i: 

integration, its integral vanishes, by Cauchy's theorem. We are left 

then with the integral of the product of the analytic function, which 

we write for simplicity as f(Z) - V exp(la)Z), with the factor log Z, 

about a small circle of radius we may denote by r.  Let r* be the radius 

of a smaller concentric circle in the Z-plane, and consider the region 

Z   bounded by the two circles and the radial line (r'.r) on the axis of 

reals; see Figure G-II.  In this £ we take the determination of the 

logarithm with an imaginary part approaching zero as Z approaches the 

radial line from above; and therefore approaching Zirl as this line is 

approached from below.  Since throughout £ th« function f(Z) log Z so 

defined is analytic, Cauchy's theorem tells us that Its Integral about 

the whole boundary, followed in the directions shown by the arrows, 

vanishes. Hence, the Integral around the larger circle—which we want 

to find—is that about the smaller circle, plus the difference between 

the Integrals along the radial line of the two determinations of 
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Figure G-II-  Integration In the Complex Z-plane 

£(z) log Z; in other words, of 2iTi f(Z); and since Z - X on this line, 

this is 2iri J £(X) dX. Finally, on the small circle, an elementary 
r' 

inequality shows that it is less in absolute value than a  constant 

times r' log r', and hence approaches zero as r'-^O. Therefore the 

contribution of our logarithmic term is J   f (X) dX - J V(X) exp(i(i))0dX. 
o o 

Now V(X) being analytic In Its variables (all but X not being 

written explicitly), we may integrate by parts, obtaining 

/ V(X) exp(iü)X|)dX- ^Y V(X) d exp(ia)X) 
■'o Jo 

- T^ {[V(X) exp(lü)X)] -f   V'CX) exp(luX) dxl 
o Jo ' 

and the quantity in {} is easily shown to be bounded with increasing u. 

Therefore we have proved that the contribution of the logarithmic term 

in u approaches zero (and locally uniformly) as u  -»O.  By the analytlclty, 

the same will be true of its derivatives. 
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This Is enough to show—by obvious computations of F and E—that 

the one wave i^' corresponding to the path which Is the projection Into 

space of the blcharacterlstlc connecting M   with the t*  Intersection 

on the conoid  (see Figure G-l)  Is in fact a Fennat family.     But with 

many Intersections we have multiple paths, and our wave function 

ijj <> ijj1 + I/J" + ...;  In view of Theorem II of Section 6,  this would not 

be a Fermat family, because of the Interference terms In the products. 

It Is at this point that the extension of the definition, noted 

at the close of Section 6, has Its application:    the replacement of 

"strong" limits by "weak" ones—i.e., In averages.    In the products 

of two first order partial derivatives occurring In the calculation 

of F and E, If at least one factor comes from a logarithmic part of 

the elementary solution,  the product will approach zero  (strongly!) 
T 

as to-»-». The cross products of concern come from the non-logarlthmlc 

parts, e.g., from R1 exp[lu)(S,-t)] and R" exp[lcü(S"-t)]. Now the Inter- 

•• ference terms contain as factors sines and cosines of ^(S'-S"), multl- 

I 
I 
I 
I 
I 
I 
I 

I piled by analytic coefficients that are Independent of w since they 

come from R and S functions and their derivatives: they are of the 

form f(x,y,z) co8[wg(x,y,z)],or with a sine replacing the cosine. 

That the Integral of such an expression over any small region 

(not containing Irregular points of these functions) approaches zero 

as (ü-»-«> Is shown as follows: If g Is a constant, the two waves differ 

only by this fixed phase factor and they can be written as a single 

wave. If g Is not a constant, being analytic it must have at least 

one non-vanishing derivative except possibly on lower dimensional 

loci—which can be avoided, since they produce but an arbitrarily 
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small contribution to the Integral.    Suppose that, e.g., g    Is not Identically 

zero, and take our region of Integration such that Its absolute value is 

greater than some positive constant.    On writing 

f cos  a.g-±|£^-sln   ug^-sinug     ^ (~)j 

and applying the divergence theorem to its integral over our small region, 

we show that the bracket leads  to bounded volume and surface integrals; 

and so the factor l/u makes the product approach zero as 01-»-°°:    this shows 

the "weak" convergence to zero of the interference terms. 

To sum up what we have accomplished:    we have shown that in multi- 

path transmission from the emitter to the neighborhood of the receiver,  as 

many trains of waves  (functions satisfying the wave equation,  etc.)  as 

there are paths exist, each one of which satisfies, in this neighborhood, 

the conditions required by a Fermat family; and that  their total effect is. 

In terms of weak convergence,  an assymptotic family,  the energy and power 

flux being (vectorially)  additive.    This is what was  required in Sections 

10 and 11—in which the discussion was put into an intuitively geometrical 

form. 

It is hardly necessary to point out to the mathematical reader the 

major Incompletenesses of this discussion:    not only in carrying out many 

details, but in showing that a global, single-valued, wave \\i can be found 

by uniting our separate paths of integration into one in the Riemann multiple- 

space (general R.  surface)  upon which F, u,  and the related functions are 

single-valued.    Exact hypotheses would be needed, etc.; but this would go 

far beyond the scope of this report:    let  the above outline call attention 

to the basic Incompleteness of the classical treatments and serve as a 

stimulus to further workl 
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*• The Ergodlc Theory. This theory has been cited In Section 14, 

as a going beyond the intuitive picture of mixing of regions in the sur- 

face of section, appealed to in deriving (14.6).  It has been cited 

again in Section 16, in the more rigorous second method, in which the 
a* 

_ secular non-laminar case was transformed cmonically into a situation 

•• similar to the laminar one,  in which the ergodlc theory could apply. 

As already noted,  this application involves the replacement of the 

actual situation as it occurs at long but finite ranges by an idealized 

limit as the range increases indefinitely.    The justification is—as 
aw 

usual in such replacements of large finite situations by limiting ones 

-» in physics—in the assumption that a satisfactory approximation is thus 

obtained. 

The ergodic theory deals with a one-parameter group of measure- 

preserving transformations of a region of finite measure onto itself. 

The parameter was r (or T) in Section 14, e.nd a in 16.     The region trans- 

M formed was the part of the surface of section inside a Snell curve corre- 

sponding to the duct under consideration.    Tue measure was the area of 

any chosen piece of this surface. 

The theory has a long history, starting with Boltzmann and 

Maxwell's "Ergodic Hypothesis" in statistical mechanics,  its modifica- 

tion by P. and T.  Ehrenfest's "Quasl-Ergodic Hypothesis",  and the ideas 

of J.  W. Gibbs,  formulated by H.  Poincar^ as the "Ink Spot Problem". 

These authors simply hypothesized,  in Increasingly precise forms,  the 

results of applying intuition to the picture of mixing—as we have 
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described It In these pages.     The first set of proofs came In the early 

1930's:    v. Neumann's use of the present author's treatment of Hamiltonian 

systems by means of Hllbert space to prove the "Mean Ergodlc Theorem", 

G.  D.  Blrkhoff's subsequent proof of the "Ergodlc Theorem",  followed by 

work of these authors and E.   Hopf on the relations of  this theory to the 

"Ink Spot Problem".    The history of the subject up to 1932, as well as 

a statement of the theorems   (without proofs), Is contained In G.  D. 

Blrkhoff and the author's joint note "Recent Contributions to the 

Ergodlc Theory".      During the ensuing forty-three years  the activity 

In the pure mathematics suggested by these Investigations has become 

enormous and Is continuing In great volume.    Since, however. It has for 

the most part not been oriented toward physical applications, and Is not 

needed for the present ones,  It Is left out of account here. 

The formulation of the very restricted form of this theory needed 

in Sections 14 and 16 is discussed in simple terms but with complete 

mathematical rigor by F.  R.   Halmos    in his chapter entitled Mixing. 

Information Theory.     The application of the modern theory of 

Information to the discussion of random effects in Section 15—as well 

as its Implied possibility In the more general situation of Section 16— 

reposes on definitions and theorems based on the convexity of certain 

functions and functlonals.     The material in the literature is now very 

extensive; we give but one reference,  to Kullback. 
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APPENDIX H 

PROPAGATION OVER UNDERWATER OBSTRUCTIONS 

AND THE "COUPLING FACTOR" FALLACY 

Propagation over underwater obstructions.    A perennial problem In 

long range propagation of sound In the ocean Is the quantitative appraisal 

of the obstructive effects of geological formations such as sea mounts and 

ocean ridges.    When the ranges are long, any reflective effects of such 

obstructions disappear, and they can be regarded as pure absorbers:    their 

1 ^ effects are those of a very complicated and Incompletely charted absorbing 

surface  that forms the lower boundary of the medium propagation. 

The object of this appendix Is to apply the ray methods,   as set forth 

In Sections 13 and 14, to the case of what may be called generlcally "sea 

mounts":    completely absorbing geological projections from the ocean bottom 

that are limited In their dimension along the path of propagation to less 

than an average convergence zone.    Their effects on propagation loss are 

sufficiently Illustrated by the situation In which they protrude Into part 

of a deep sound channel In the laminar case  (c « 1/n, dependent on z only). 

As we know,  the differential equations of the rays can then be solved by a 

single quadrature, and each ray can be characterized by the vertical plane 

In which It lies and by Its Snell constant k, the Identifying parameter 

that can be thought of as  the reciprocal sound speed at Its highest  (or 

lowest)  point; c.f. Appendix B and Section 13. 
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FIGURE H-I.     EFFECT OF SEA MOUNT 

IN THE MEDIUM AND IN THE SURFACE OF SECTION 

OCEAN   BOTTOM 

Figure H-I shows In (b) a vertical plane section of a sea mount, 

together vlth a set of typical acoustic rays In this plane, all having 

the same Snell constant.    The plane section may be one of a set of 

coaxial planes drawn through a point emitter. In the simple case of 

cylindrical spradlng.    Or It may be one of a set of parallel planes In 

the  "plane wave" Idealization.     In any case, our first problem Is to 

find how much power the sea mount absorbs from this class of rays;  that 

Is,  from all the rays having this  common Snell constant.    The oval shown 

In  (a) will be explained after the scheme of evaluating the sea mount's 

effects has been stated. 

The method Is simplicity Itself:    If all these rays cut the sea mount, 

none of their power gets through.     If some of them do not cut It,  the 

following construction shows the  traction of power It intercepts:    All the 
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rays  for the given Snell constant being congruent,  they are obtained by 

moving one of them (as a rigid wire) horizontally.    Let the wire be moved 

to the left to the position (1) at which It first touches the sea mount, 

through the Intersecting positions such as  (2),  (3),  (4), to the position 

(5) where It touches the mount for the last time.    If the distance of 

«. displacement  from (1)  to  (5)  Is R    and the ray's wave-length Is R,  then 

"* the fraction of power Intercepted by the mount is their ratio, R /R. 

Thus after passing this obstruction,  the power becomes multiplied by the 

factor less  than um.ty:    1 - R /R. 
•, m 

To find the total effect of the sea mount, we subdivide the  class of 

rays Into sets belonging to narrow Snell constant Intervals, and then apply 

the above construction to a representative ray In each set.    The appropriate 

reduction factor is applied to the power In each Interval, and the results 

are summed over all Intervals. 

'£ If the obstruction has mary humps,  a similar construction is applied; 

but  the intersecting positions may have several pieces:    one still takes 

•m the ratio of their total length to the wave-length as the absorption factor. 

In the case of widely separated obstructions,  it would be unrealistic 

to assume strict laminarity throughout their whole range—or indeed chat 

the distances are accurately known.     Then one treats them as uncorrelattid 

absorbers,  applying each power decrement  factor so as to obtain a product. 

In the case of very long ranges,  traversing many obstructions,  these 

repeated multiplications  lead to an exponential approximation in which the 

obstructions are averaged into a single parameter:    decibelwise,  an effect 

proportional  to range is obtained Imitating a volumetric attenuation, but 

possibly Snell-constant-dependent. 
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In treating the problem, as we have, by simple geometry, we have 

Incurred a logical debt:    we must prove that what we have done Is In fact 

a correct deduction from the wave theory of propagation.    After all, other 

equally simple and plausible geometrical constructions have been given, 

which have turned out to be quite wrong—I.e., inconsistent with the wave 

theory. 

The validity of the above construction follows from Sections  13 and 

14 and Is easily illustrated by reference to Figures 14-1 and III of the 

latter.     We are now dealing with the case in which the depth function 

z ■ b(a)   is no  longer constant but decreases  to a minimum at the height 

of the sea mount and then returns to its constant value b used throughout 

Section 14. 

On comparing Figure H-I(a) with Figure 14-111, which gives the surface 

of section in the case under consideration, we note that 1(a)  exhibits as 

an oval a locus of points in the latter for a fixed value of the Snell 

constant k.    That part of the oval (1,  2, 3, 4, 5) which corresponds to 

the rays which cut the sea mount, such as  1,  2, 3, 4,  5, of 1(b),  Is 

indicated by deeper shading.    Now we have seen that, at the ranges 

considered,  the power flux density is a function F(k), and is  therefore 

the same at each point of the oval.    Hence the total power that would 

(in the unobstructed case)  cross the narrow ring between the ovals for 

the given k and for k + Ak is F(k)   times the area of the ring (to 

quantities of higher order in Ak), which area  (to the same order of 

approximation)  is the derivative of the total area within the oval—the 

A(k) of Section 14, times Ak — given by  (14.16), which shows  that it is 
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R(k)Ak, where R(k) « R, the ray period shown In Figure G-I.    By similar 

formulas based on those of Section 14,  the area of any part of the ring 

contiguous to any arc of the oval Is the corresponding horizontal distance 

(e.g., R )  through which the ray moves as Its point of Intersection with 

the oval traces this arc.    Cf. also Appendix B.    Hence In the case In which 

the sea mount obstructs rays through such an arc, the fraction of power 

i* lost Is the ratio of arcs (the factors Ak F(f)  cancelling) and Is therefore 

R /R, as stated.    Of course this ratio must be considered for each value of n 

k and the results combined by Integration. 

The  "coupling factor" fallacy.    When a signal source at A Injects 

sound Into the water, which Is received at a distant receptor B,  the amount 

of the received power—or rather,  the proportion of that received to that 

emitted PQ/P.—depends on the whole nature and condition of the physical 

system:    emitter-medlum-receptor.    The effect of the medium—the 

"transmission loss" in the strict sense, has been the main subject of the 

present Report.    As explained in Sections 11 and 13, this Is defined as 

the ratio I../I    of the Intensities (power flux per unit area In the medium 

without  regard to exact ray directions)  at  the respective points. 

Now we have shown that under a given glass of observatlonally similar 

conditions,  this ratio depends not only on the range r between A and B but 

on their depths z    and z,  as well.    This dependence Is essential, even 

after much fine-structure and effects of random have been averaged out, 

as In the "second approximation" mentioned In the Introduction and 

developed In Sections 14, 15, and 16   (dependence on profiles at A and B 

but not on Intermediate ones).    The nature of the dependence can be 
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exhibited by the shape of the ovals on the surface of section at these 

two points, with the consequent drastic variation of the Injection and 

reception horizontal strips. Cf. Figures 14-V and 16-1. Let us represent 

this transmission loss as I./I - L(rtz »z.).  Such a depth dependence Is 

In fact an observational truism. 

Returning to the over-all ratio ?„/?.,  we can write It as the product 

of three factors 

VPA - <VV (Ii/I0
) w 

The factor I /P.   represents the effectiveness with which the emitter A o    A 

creates, by Its strength P    as a source,  an acoustic intensity I    at a 
A O 

reference point In Its neighborhood.    Under normal degrees of physical 

variation, I   /P.   Is Independent of  the actual position of A,  and can be 
O       A 

regarded as determined by its physical nature as an emitter: it may 

valldly be called the emitter's coupling factor C    a I /P  . Similarly 

for C,, ■ P-Zl,   (or if we insist on symmetry,  I./P  ; but this will have 

no effect on the argument).    Consequently we have 

VPA " CA  ^'VV  S- 

Now the transmission loss is frequently regarded as a function of 

r: L(r),  Independent of z    and z., whereas  the observatlonally evident 

dependence of PR/PÄ on the depths z    and z..  is ascribed to the effect of 

depth on the degree of coupling, and thus our C    and C  , defined physically 

as we have done above, are replaced by the functions C.(z )  and C  (z.); 
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and hence we obtain the Identity In r,z  »z. : 

PB/PB " CAL(r'Zo'Zl)CB " CA(zo)L(r)CB(z1). 

This Is a mathematical possibility If and only If L(r,z  ,2.)  Is a 

• • product of three functions:    of r alone,  z    alone, and z    alone  (to show 

** that this follows  from the above equation,  divide It through by the 

product C.C ).    Since all the results of the present Report show that 
AD 

i j this is incorrect—even as a crude approximation—the above use of depth- 
il 

dependent coupling factors with depth-independent transmission loss is 
TT 
I i 
.. an error.    If, In spite of this fact, we take 10 log.« of the formulas, 

the decibel measure of the loss of strength from signal to receptor 

becomes a sum of  (negative) terms:    the decibel measures of the two 

couplings, and the classical expression of the transmission loss as range 

dependent only.     Such types of combinations of physical effects by adding 

their measures  in decibels, while very convenient and justified in many 

engineering studies, is not possible in the present case. 

.. 
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