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Introduction

This paper explores the use of zbstract data types as a modularization and
structuring technique in ihe design of programs, particularly large: programs including
compllers and operating systems. The emphasis is on design. The particular language
in which the program will be coded should be of relatively little importance In the
design process. We are interested in a technique for constructing specificatiors which
cen be converted at another time (and possibly by others) into an implementation.
Programming langisages which provide data type facilities to varying degrees have
been in existence since about 1967 when SIMULA-67 [1) appeared. Since then, there
has been an ever increasing number of such languages, notably ALGOL-68 (7],
PASCAL [8), and EL1 [6] There are more advanced languages currently under
development or proposed, including ALPHARD [9], CLU [3]}, and PASGUAL[B] A
useful bibliography of papers concerned with data types and programming languages

may be found in [5]

. Abstraction refers to the mental process which, when confronted with a set of

objects, can distinguish some objects from others on tre basis of what they have in
3 common. What is "abstracted out” is a unifying theme, called the type of those objects.
To pick a conventional example, the set { 7, 1.35, -6, "A’, 0.3E6 } contains three types
of entities: integers, reals, and characters. These are types which just about every
programming language provides. More abstractly, the set contains only two types:
numbers and characters. Even more abstractly, it contains only one type - constant.
When we prefix "data type" with “abstract” we mean an erbitrarily complex type which
characterizes a certain kind of behavior.

The concept of using abstractions in programs to control complexity is certainly
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not a new one. For very small programs it is sufficiort to use a straightforward
control flow through the program statements. Slightly larger to medium sized
programns require the use of procedures to group individual statements in a logical
manner, while a main program directs the flow of ccntrol among the various top-level
procedures. When dealing with large programs it becomes necessary to group the
individual procecdures into modules. The process by which this should be done is not
yet universally understood. This paper expresses the view that the use of data types
as a modularization principle is the right approach.

We will begin by discussing what it means to define a new data type and will
describe some basic dala structuring mechanisms. Numerous examples are given to
familiarize the reader with the notation, builcing up to the final example involving tne

vasign of a directory system.

1) Type Dafinitions

A type definition has {wo basic attributes:

1) functional specification: the behavior of a particular class of objects as
seen by users of that class.

2) algorithmic specification: the means by which that behavior Is
accomplished.

The distinction between functional and algorithmic specification is most
important. First, it allows programmers to construct implementations In parallel with
one another without any more information in common than their mutual interfaces.

Second, it ensures that a change in data structure or algorithm is localized as long as




the functional specifications remain unchanged. A type definition is really a module in

t.ic sense of the information boundaries discussed by Parnas [4] It provides a clear
design procedure for the rﬁodularization of a large program or system, where one has
been previously lacking.
Language defined types such as integer, roal, and boolean are cailed

scalar tyzes. The term scalar is intendpu’ to signify that values of such a type are
considered to be indivisible. The scalar tyre integer characterizes single values taken
from the range {-n,.,n}, in conjunction wit' a set of operations which may be applied
to integers, such as addition, subtraction, multiplication, etc. As far as 8 user of type
integer is concerned, he should not know about, and more importantly nct rely on, the
way in which integers are represented or the particular algorithms which implement
intéger arithmetic or his computer. Adher'ng to this principle makes program
pertability possible, since different machines may use different algorithms. We
generalize these notions to abstract data types and say N;at a .ype definition consists

of:

1) a representation for objects of the t/pe, known only to the definition
itself (algorithmic specification).

2) a set of operations which manipulate this representation, the names
and calling sequences of which are knuwn to users of the type

(functional specification), but the algorithms of which sre known only
to the definition itself (algorithmic specification).

Tha binding of operations to particular types is vital to the description of

behavior. It is not enough to present a picture of a control block as the description of

a "process” in an operating system. What is necessary is an explanation of exactly




what can be done to a process, and specifically not how it is done. In fact control
block formats should not be disseminated at all; rather only a description of valld
operations which can be used on that data structure should be provided to users. One
of the most important things gained from this is the "sanctity” of a data structure.
Every data structure may be viewed as having an invariant relation which It is
characterized by (eg. the mathematical notions of "list" and “"tree”). It is easier to
verify the Invariance of this relation if the relevant changes to the structure are made
by a small number of “privileged” procedures. If you parcel out a data structure
address and the right to modify arbitrary fields in arbitrary ways, it is possible (likely,
in a brand new program) to find inconsistencies in the structure due to program pugs
anywhere in the entire system. If all the information that is distributed is operation
names, the scope of possible sources of error is greatly reduced to the implementation
of those very operations.

The next sections present a set of tools us:ful for the description of data

abstractions, and introduce some relatively Intuitive syntax.

2) Enumeration Types

Often in the course of writing a program in a standard language, a programmer
will find the need to express values of scalar types which are not provided by the
.language. For example; one might find an inventory program which, in orde- to
identify the cclor of an object, uses integers to represent red=1, yellow=2, etc. When

designing this program, it is not relevant to define the mapping between colors and

integers, since this is merely an implementation detail. A mecharism is needed for

def'ining a new type by exhibiting the set of constants which comprise its values. A




type so defined is called an enume ation type, the concept having been taken from

PASCAL. An example of the definition of enumeration types might be:
type color = {red,yellow,blue,green} end;

type weekday = {monday tuesday,wednesday,thursday,friday} end;

In order to declare variables as instances of particular types, we will use syntax

of the form:

declere payday,dayoff:weekday, shade:color;

The declaration states that payday and dayofft are variables which may only

possess values appropriate to type weekday, and that shade can only possess a value
appropriate to type color. These variables behave as do more common scalar variables

with respect to their appropriate constants. For example,

payday « wednesday;

would be valid, but

payday ¢ red;

would be meanirgless. Operations are defined for enumeration types as for example,




type color = {red,yellow,blue,green;
op complement(c:color):color =
case c of

begin

red: green;
yellow:  blue;
green: red;

blue: yellow

and

end;

The operations provided by a type are declared inside the scope of the
definition in order to exhibit modularity. The brzckets type and end delimit the
definition. To use one of these operations in a program description, it is necessary to
prefix the operatior‘\ name with the type name in order to permit several types to have
operations with the same name (and for readability). The complement operation takes
a single parameter of type color and returns a value of the same type. For example, If

the statements

shade«green;
shadee«color.complement(shade);

were executed, shade would obtain the value red. Even though in most languages an
implementation of these types will require the use of Integers, nevertheless the

irrelevance of the mapping may be preserved by declaring macros (or variables) for

use in place of the integer constants.




3) Composite Types

Given the ability to deflne new scalar types, we must now be able to buiid upon
those definitions to define more interesting types.

Consider as an example the definition of the type complex. We wish to
represent numbers in the complex picne and provide arithmetic operations on them.

We nend to specify to use:s that (he operaiions

ada{w,z:complex) complex
mul(w,z:complex): omplex

create(a,b:real):complex

will be available. Add will take two complex .iues and produce thz complex sum. Mul

will behave analogously. Create will form a new cumplex value equal to a+bl. In terms

_of algorithmic specification, we can represent a complex value by its real and imaginary

parts. Consider the folloviing defimtion:

type complex =
declarg r,ireal;

op add(w,z:complex):complex =
begin
declere sum:complex;

SUM.FEW.r+2.r;
sum.iew.i+2.i;
return sum
end;




op mul(w,z:complex):complex =
begin
declare prod:complex;
prod.rew.rsz.r-w.isz.i;
prod.iew.rszi+w.isz.r;
return prod
end;

op create(a,b:real):complex =
begin
declare c:complex;
crea; cieb
return ¢

ond
end;

The body of the definition contains some variable declarations (r and i) and some
operation definitions (add, mul, and create). When a variable of type complex is

declared, e.g.

declare x:complex;

or dynamically allocated, e.g.

complex.create(1,2)

the variables inside the definition of complex are allocated, just as when an integer
variable is declared the bit string by which it is represented is allocated. From outside
the definition it appears that x is an atomic entity to be used with the operations

provided, e.g.

complex.add(x,y).
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.From inside the type definition, as within, say, the mi:rocode which Implements integer
arithmetic, the structure of x is visible. In this case the structure consists of the
variables r and i. To access a particular structure, it Is necessary to épec%fy which
structure by prefixing the variables with the name of 4 complex variable. For example,

the use of w.r in the body of the ac'i operation refers to the r part of the complex

object w which was passed in as a parameter. The use of sum.i refers to the | part of

the locally declared complex object sum. An implen entation of this type In a language
with dynamic storage allocation will be straightforward, i.e. it will be .ossible to return
a pointer to a newly allocated structure representing the result of an operation. In
other languages it may be necessary to write the operations as subroutines, passing
the destination variabls as an output parameter. In FORTRAN, storage allocat?on could
be simulated by declaring an array of pairs, each index into the array representing a
single complex value. The informal language in which these examples are presented
assumes that functions can return values of arbitrary types.

An example of the use cf type complex might be:

declare x:complex;

x+<complex.add( complex.create(},-2), complex.create(2,3) )%

which would result in x acquiring the value 3+i.

Note that we were not forced to represent complex values in terms of their real
and imaginary parts. We are free to re-design the type definition as long as we
conform to the stated specifications of the operations. For example, we might decide
to use polar coordinates to represent a complex value, if that made the operations

more efficient. Although the create operation is still specified to produce the value
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a+bi from parameters a and b, there is nothing to prevent it from internally converting
to any other representation, and there is certainly nothing to prevent us from veriting
a different create operation which expects arguments with a new significance. e.g.

type complex =
declere rtheta:resl;

op c-eate(a,b:real):complex =
begin
declare c::omplex;
cresqri(asa+bsb);
c.thetaarcsin(b/c.r);
return ¢
end

end;

In addition to the allocation of the structure variables, when a varluble_of type
complex (or any type) is declared, the create operation is implicitly invloked. -Tﬁls I§ .
important in order to allow the data structure invariant relation (if there Is one) td bol
established. Although in this simple example this is unnecessary, It wlli become

necessary later on.’

4) Data Siructuring

A comprehensive presentatior of data structuring methods In relation to types
may be found in [2] We will discuss briefly some structuring mechenlsms In order to

have sdme syntactic base upon which to build.

T N T e
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4.1) Arrays

In the past, an array has generally been thought of as a {able indexed by
Integers, as is the case with a matrix. A matrix, however, is  type, having certaln
operations such as multiplication and inversion defined for It. An arrav is only a
structuring° mechanism and might as well be generalized to a more powerful mapping
than is possible with just integer domains. Think of the array as @ mapping from any

i : finite scalar type to any type at all. For example,
declere A:array[color] of integer;
declares a vector which is indexed by objects of type color and whose Individual

elements are integers. We could use such an array to represent the frequencles of

\.1@ various colors of light, e.g. A[red] = 6485.

_ A two dimensional array can be modeled as a vector of vectors, e.g.
3
 §
‘ declare A:array [1:10] of array[1:5] of real;
!
E
E so that A[i] denotes a row (or column, depending upon the Interpretation).
| 4.2) Records

Another means of grouping values is the record structure. The local data of any
type declaration can be thought of as a record. The variabl~ %o Of the local data

denote the fields of the record. These fields are accessed as previously noted, by

prefixing the field name by the name of the complete object. While arrays are used to
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group values of the same type records are used to group values of potentially
differing type. Often records are used to structure data in a hierarchical manner, as in

PL/I or COBOL. For this facility we will use the notation

declare r:record (f 1t 2:t2nufnit )

to declare 3 variable r which has n subfields (rfyrfo.rfy) of types (tto,aty)

respectively. The t; can be arbitrary, including other records. For example,

declare person:record (name:string,
age:integer,

salary:record (regular:real,

overtime:real));

The subfields of this variable are person.name, person.age, person.salary.regular,
and person.salary.overtime. It is possible to declare a table as an array of records,

e.g.

doclare T:array[1:100] of record (height,weight:integer);

in which case the fields would be accessed as T(i)height and T[i}weight. In genera!,

however, if a record is to be used in any non-trivial way, it should be embedded in a

type declaration, e.g.

declare T:array[1:100] of medicalrec;

where medicsirec defines the fields of the record as local data and provides operations

on that data. Since it is not unlikely that the structure of medicalrec wil change ot
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some point during system development, in this way we anticipate modifications by

restricting their scope.

4.3) References

A r.eferen'.e value is a pointer to an object, with the restriction that reference
variables can only reference objects of a single type. Typeless pointer variables are
the cause of many program bugs since they are free to point to arbitrary addresses.
References are much safer to use and make programs less devious In their Iodlc. The
reference concept is impcrtant with regard to the use of a dynamic storage aliocation
mechanism. We postulate the operations new and free for every data type, Sut make
them available for lllse only inside of a type definition. This is because of the need for
initialization of the data structure invariant relation discussed in section 1. From
outside of a type definition, the create operation must be used.

If ¢ is a reference to complex, i.e.

deciare c:ref complex;

then, inside of type complex, the statement

c+new complex;

causes the dynamic allocation of a complex object, and assigns a reference to that new

object to c. The statement

free c;

N .
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results in the storage vefersnced by c being released. All thet we can do with the
value of ¢ is to assign it to other ref complex variables or pass it as a procedure
argument, since as yet we have not defined any operations for reference types. In

particular, we will not allow statement- ‘i«ch as

CHC4y

which are likely to introduce errors. More importantly, these statemenis violate the
notion of tvpa, since if the address contained in ¢ is incremented by 2 it probably no
longer is the address of a complex variable. We will define an operator for references
called dercferencing, which converts & reference into the object it references. If ¢
contains a valid reference, then c1 is of type complex. For examyle, ct.r is the r field
of the complex object referenced by c. It is not legal to write c.r, since ¢ is not of
tyre comriex. This imposes more structure on the program specifications and prevents
many possible bugs. Ow: examples assume that T applies to the reference immediately
to its left. We will use the reference value null to indicate that no object is currently

being referenced.

5) A Small Abstraction

With the tools just presented, we can begin to describe some simple abstract
objects. Suppose we would like to model the concept of a "bag" full of data, in the
sense that once a datum is inserted in the bag, it can only be removed by trial and
error, since "reaching your hand” into the bag is done blindly. Assume that the bag is
to hold integers.

We need to provide certain key operations, namely:




empty(b:bag):boolean
put(b:bag,i:izteger)
take(b:bag):integer

and we would like to guarantee to the external world that a "taken” element is chosen

at random. There are several ways to specify this type. One way is to use 8 vector
to represent the state of the bag, although we have to piace an upper iimit on the size
! of the bag. Consider:
type bag =
declere  A.array[1:100] of integer,
top:inte ger;
op create:bag -
begin
declare b:ref bag;
benew bag;
bt.top«0;

return bt
ond;

So far we have specified that a bag will consist of 2 vector of iength 100 (A),
and an integer (top) which we will use to indicate the current size. We have specified
the create operation, since here it is necessary to perform initialization. The invariant
reiation of a bag is "the bag contains (top) elements” so we must set top to zero
whe..over a bag is created. If we had allowed the new operation to be used outside of

:he type definition, top could remain unitiaiized.

We can specify the empty and put operations easily:
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op empty(b:bag):boolean = return (b.top=0);

op put(b:bag,integer) =
if b.lop=100 then error  comment overflow;
else
begin
b.topeb.top+l;
b.A[toplei
end;

Assuming a uniform random number generator, take can be specified as:

op take(b:bag):integer =
if b.top=0 then error  comment underflow;
else
begin
declare kji:integer;
kerandint(1,b.top)
i«b.A[K};
b.Ak)J-b.Altop]  commert fill in gap;
b.toeb.top-1;
refuni
end

ena of type bag;

If we desire to remove the restriction on the size of a bag, we can store the
bag contents in a list. To define a list of integers, we need to define each node in the

list and the rules for connecting them. We will f rst specify type node, so that we can

use its general purpose operations to manage a list:




type node =
daclere  val:integer,
next:ref node;
op create(i:integer):node =
begin
deciare n:ref node;
nenew node;
nt.valei;
nT.nextenull;
return nt
ond;

op destroy(n:node) = free n;

The operation calied follow causes nodel to point at node2:

op follow(nodel,node2:node) = node l.next«node?;

(Cperation successor returns tha current next value of nedel:

op successor(node 1:node):node = return nodel.nextt;

and operation value returns the current integer value of nodel:

op value(nodel:node):integer = return node!l.val

end cf type node;

A useful type of list for the purpose of defining type bag is a circuler list, so
that a random choice from a bag is accomplished by "spinning” the list before deletion.

A circular list of integers defined using type node could be:




19

type clist =
declare current:ref node,
size:integer;

op create:cliet =
begin
declare c:ref clist;

cenew clist;
cT.currentenutl;
cT.size«0;
return ct

end;

The insert operation maintains the proper circularity:

op insert(i:integer,c:clist) =
begin
declare t,n:ref node;

c.sizeec.size+l;

| nenode.create(i);
{ if c.size=0 then
begin

c.currenten;
node.follow(c.currentt,c.currentt)
ond

else
begin
tenode.successor(c.currentt);
node.follow(c.currentt,nt);
node.follow(nTt1)
end

end;

The circular list spin operation can be defined as:




i op spin(c:clisl) =
1 begin
declare n:integer;

nerandint(0,c.size);
, for i from 1 ton do
' c.currentenode.successor(c.currertt)

ond;

and the remove operation (which deletes the eiement after current) as;

op remove(c:clist):integer =
begin
declere t:ref node,
kiinteger;

if c.size=0 then crror  comment underflow;
elise if c.size=1 then
begin
kenode.value(c.currentt)
node.destroy(c.currentt);
¢.currentenull;
return k
end

L

S

begin
tenode.successor(c.currentt);
node.fcllow(c.currentt,node.successor(tT))
' kenode.value(tt);
! node.destroy(it)

retunk

ond

- -

end;

One more useful operation will tell us if the list is empty:

op empty(c:clist):boolean = return (c.size=0)

end of type clist;

Now type bag can be simply defined as:

Lt




type bag
declare c:clist;

comment the create operation for a clist performs the
necessary initialization for a bag;

op empty(b:bag):boolean) = return clist.empty(b.c);
op put(b:bag,i:integer) = clistinsert(ib.c);
op take(b:bag)integer =

begin

clist.spin(b.c);

return clist.remove(b.c)

end

end of type bag;

Note that we have completely re-designed the algorithmic specification of type

bag, but left the functional specifications unchanged. Any user of type bag would not
have had his programs affected (except for the size restriction having been removed).
Note also that the intermediate types nodo and clist can be re-used in the specification
of other list structures or more absiract types such as bag without the need for
duplication of code or effort. In addition, the three types make up three modules

suitable for independent programmer work assignments.

6) Parameterization

As we mentioned in the introduction, abstraction involves the noticing of
similarities. This requires that things which may be potentially dissimllar among a
group of objects have a wide range of freedom of variation. The use of parameters to
procedures is necessary to convey the notion of abstract operation. The "square”
operation gains its usefulness because it will square any number. When types are

given parameters, they acquire much wider applicability in a similar way.
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A parameterized type is called a type constructor, since the types resulting from
different parameter values may be widely differing. Consider the definition of type
string in terms of the primitive type character:

type string(n:integer) =

declare  A:array[l:n] of character,
len:integer initially n;
op concat(s,t:string):string =
begin
declare r:string(s.'en+t.len);
for i from 1 to s.len do r.A[iJ«s.A[i];
for i from 1 to t.len do r.A[s.len+i}-t.A[i}

return r
ond

A type constructor may be thought of as a macro. When its actuel parameters
are specified, it completely defines a new type. In the declaration of r in string.concat,
the parameter to its type is given as (s.len+t.len). A vector of this length (A) is

allocated, along with a word .(Ien) containirg this value. If not for tne ability to

parameterize a type definition, we would have to define a new type string for every

possible string length!

Even more important is the ability to use type names as parameters toltype
definitions. In our previous example, we made the unfortunate (and irr'elevpnt)
committment that the objects contained in a bag must be integers. If, houlrever, we had

written the definition of bag as:
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type bag =
; declare c:clist(integer);
etc.
. B end;

we would be using a much more general notion of list. In fact, there is no reason to

restrict a bag to only integers:

T e ———

type bag(t:type) =
declare c:clist(t);

ete.

end;

with { replacing all occurrences of integer. Type clist would be defined in the same
way as before, except tha' the type of the variable called current would be
determined from u parameter, as would the type of the variable called val in type
node.

It would not be hard to implement the notions of bag and clist in a language with
dynamic allocation and pointer facilities. In other languages it might be necessary to
re-implement them for every different parameter value (e.g. using arrays), but at least
the specifications do not have to be re-done.

In general, parameterization gives us the ability to precisely describe such
concepts as stack, queue, tree, etc., without tying cdown the types of values which are

not important to the structure of the data.
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| . 7) A Larger Design Example

A data type having many applications in systems programriing Is the hash table.
For this discussion, we characterize a hash table by the type of object used to |ndex

| the table, by the type of object stored in the table, and by the number of buckets

provided:

type hashtable(buckets:intager,index,result:type) =

Each bucket contains a list of elements .with the same hash value. Each element is an

(index,result) value pair. Assuming a type pair which we can use to group two values

of arbitrary type:

type pair(left,right:type) =
declare Ival:left,
rval:right;

op leftval(p:pair):left = return p.lval;
op rightval(p:pair):right = return p.rval;

op create(l:left,r:right):peir(leftright) =
begin
declare p:ref pair;

penew pair;

pT.lvalel;

pl.rvaier; ‘]
return pt

end

end;

and assuming ¢ definition for type list similar to LISP:
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type list(t:type) =
declare p:ref pair(i,list(l));

op head(l:list(t)):t = return pair.leftval(l.pt);
comment LISP car;

op tail(l:list(t)):list(t) = return pair.rightval(l.ot);
comment LISP cdr;

op cons(tv:t,lv:list(t)):list(f) =

begin
. declare q:ref list(t);

qelist.create;
q.pepair.create(tv,iv);
return qf
end;

op create:list(t) =
begin
declare l:ref list(t);
l-new list;
IT.penull;
return |7
end;

op empty(l:list):boolean = return (l.p=null)

end;

we can specify the structure of a hashtable as:

declare A:array[l:buckets] of list(pair(indexresult));

In order to find a resuit value given an index value, the eppropriate array
element must be found using a hash function. Then the list must be searched for the
index value. Since the hash table module knows nothing abcut the representation of

values of type index, it Is up to index itself to provide that hash function. For example,

B an it
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in ke case of indexing by strings, we would expect to find the operstion string, hash
defined. We can then define the hashtable.find operation as:

op find(h:hashtable,i:index):result =
return search(i,h.A[1+(index.hash(i) mod upperbound(h.A))]);

where search is a procedure (local to type hashtable only) to scan the list:

procedure search(i:index,!list(pair(index,result))):result =

begin
declare p:list{pair(index,result));
pel;
while not list.empty(p) do

if pair.leftval(list.head(p))=i then

return pair.rightval(list.head(p))
else plist.tail(p)

return result.undefined
end;

Note that if the search procedure does not find the index on the list, it returns
the undefined value of type result - a convenient way to indicate an error to the
caller. This of course assumes én operation called "undefined” for typel result.

It now remains to be able lo insert values into the hash table. The Insert
funclion must search the appropriate list and only add to the list if the value Is not

already there:
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op insert(h:hashtable,i:index,r:result):boolean =
begin
declare n:integer;

ne1+(index.hash(i) mod upperbound(h.A)%
if search(i,h.A[n])=rasult.undefined then
begin
A[n])«list.cons(pair.create(ir),A[n]);
return true
end

else return false
end;

Finally, the creation of a new hashtabla requires some initialization:

op create:haghtable =
begin
declare h:re! hashtable(buckets,index,result);
henew hashtable;
for i from 1 to upperbound(h1.A) do
h1.AfiJenull;

retur~ ht.
eond

end of type hashtable;

8) A Directory System

To illustrate the power of systems design using data types, we have chosen as
our final example a hypothetical directory system as mighf be found in an operating
system.

The directory system to be designed will be a hierarchical one, in which a node

name consists of a path through the directory structure to the appropriate descriptor.
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For exampie, the name A.B.C refers to directory A, subdire.tory B, descriptor C. There
should i)e no a priori ‘.;;:und on the number of directories, r;or on the depth of the
hierarchy. We will not restrict the definition to that of file directory, since the notion
of file Is not reievant to the structure. The purpose of the directory is to associate an
object of type descriptor (maybe filedescriptor) with one of type path. .The operations
provided for directories shouid inciude iookup and insertion functions. [f we.think'of (]
path name as a iist of strings, we can define type path as:
type path = .
declare l:list(string);
op first(p:path):string = return listhead(p.l);

op rest(p:path):path = return list.tail(p.l);

t
4

op empty(p:path):boolean = return list.empty(p.|);
op terminal(p:path):boolean = return path.empty(path.rest(p))

end;

The directory itself will contain objects which wili either be descriptors or sub-
directories. We will call this type direntry for directory entry. The structure of @
directory, then, wil! be a hashtable (as previousiy described) which is indexed by @

string and which contains direntry objects:

type directory(descriptor:type) =
declare H:hashiable(100,string,direntry(descriptor));

The hashtable will have 100 buckets, but we could have ieft that es a parameter

to directory.
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In order to look up a path in a directory, we must first find the direntry
corresponding to the path headr (via hashtable.find) and than look up the rest of the

path through the direntry:

op lookup(p:path,d:directory:descriptor) =
begin
declare t:ref direntry;

tehashtable.find(d.H,path.first(p));

if t1=direntry.undefined then

return descriptor.undefined
else returr. direntry.lookup(path.rest(p)t1)
end;

Insertion in a directory may require the creation of a direntry and its insertion In

the hashtable, or simply insertion in an existing dircntry:

op insert(p:path,d:directory,r:descriptor):bovlean =
begin
| declare t:ref direntr /;

thashtable.find(d.H,path.first(p));

if tT=direntry.undefined then
begin
tedirentry.create(p,r);
return hashtable.insert(d.H,path.first(p),r)
end
else return direntry.insert(path.rest(p)tt,r)
end;

Finally, the creation of a directory is accomplished by:
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op create:directory(descriptor) =
(nev/ directorv(descriptor))t

end of type directory;

Having finished the definition of type directory, we must now tackie the
definition of type direntry. A direntry has a name (part of a path) and either indicates

a descriptor or a8 sub-directory:

type direntry(descriptor:type) =
deciare  name:string,
node:boolean,
vaiue:ref descriptcr,
subdir:ref directory(descripior);

To iook up a path in a direntry which is 3 node requires checking that the path

terminates at that point. If the direntry refers to a sub-directory, then the

directory.lookup operation is recursively applied:

op lookup(p:path,d:direntry):descriptor =
if d.node then
if path.empty(p) then return d.value?
else return descriptor.undefined
e!se return descriptor.lookup(p,d.subdirt);

To insert a descriptor in an existing direntry, we must do the insertion in the

sub-directory (if there is one):

op inseri(p:path,d:direntry,r.descriptor):boolesn =
if d.rode or pathempty(p) then return feise
eise return directory.insert(p,d.stbdirt,r);
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Creation of a new direntry (as required by the directory.insert operation) is
straightforward when the path is a terminal. When it Is not, creation of the direntry

requires creation of a sub-~directory:

op create(p:path,r:descriptor).direntry(descriptor) =
begin
declare d:ref direntry(descriptor);

denew direntry;
it path.terminal(p) then
begin
dT.name«path.first(p); -
dt.node«true;
dt.subdirenull;
dt.valueer
end
else
begin
dt.name«path.tirst(p);
df.node«false;
df.value«null;
d1.subdir«directory(descripter).create;
directory.insert(pathrest(p),dt.subdirt,r)
ond;

return d?
end;

In the end we have a precise description of ihe concept of directory. This
directory system may be used in conjunction with a file system (note that there is a
ditference between a file system and the directory structure it uses, as we have just
shown). It may also be used to store objects in a protection system, or tor any of a

number of other applications. Each of the types directory, direntry, hashtable, etc. may

be viewed as a module suitable for a programmer work assignment.

g e il -




Summary

There is much confusion in the programming ;ommunity today over such
concepts as modularity, structured programming, specifications, etc. What we have
presented here is a technique for employing all of these tools in unified form - i.e. data
types. We have, of course, omitted discussion of many topics associated with data
types, but have done so on the grouﬁds that we are concerned with design and
specification, and not coding. The freedom to use a specification language without
constraints of particular syntax is very important.
| The use of data typés as a modularization principle views a module as being
responsible for the maintenance of some invariance. The explicit advantage of this Is
that systém verification may be done selectively by module. An implication of this is
that most changes to the system will be restricted to a small number of modules, |f not

a single one.

Acknowledgement

I would like to thank Prof. A. N. Habermanr for reading and commenting on the

various drafts and, more importantly, for encouraging my interest in-this area.




33

REFERENCES

Dahl, O. J. et al, "Simula 67 Common Base Language,” Norwegian Computing Center,
Oslo (May 1968).

Hoare, C. A. R, "Notes on Data Structuring,” in Structured Programming, Academic
Press, London (1972).

Liskov, B. and Zilles, S., "Programming With Abstract Data Types,” SIGPLAN Notices
(April 1974) 50-59.

Parnas, D. L., "On the Criteria to be Used in Decomposing Systems into Modules,”
CACM !5,12 (Dec. 1972) 1053-1058.

Tennent, R. D.,, "PASQUAL: A Proposed Generalization of PASCAL,"” Department of
Computing and Information Science, Queens Unlversity, Kingston, Ont. (Feb.
1975).

Wegbreit, B, "The Treatment of Data Types in EL1,” CACM 17,5 (May 1974) 251-
264, .

van Wijngaarden, A. (ed.), "Report on the Algorithmic Language ALGOL 68,"
Numerische Mathematik 14, 79-218 (1969).

Wirth, N, “The Programming Language PASCAL (Revised Report),” Berichte der
Fachgruppe Computer-Wissenschaften, EidgenossischeTechnische Hochschule,
Zurich (1972).

Wulf, W. A, "ALPHARD: Towards a Language to Support Structured Programs,”
DLepartment of Computer Science, Carnegie-Mellon University, Pittsburgh, Pa.
(April 1974).




