
AD-A014. 917

TECHNIQUES OF RESPONSE SURFACE
* ESTIMATION, WITH APPLICATIONS IN
COMPUTER SIMULATION

Michael A. Cran'e

Control Analysis Corporation

Prepared for:

Office of Naval Research

August 1975

Reproduced From
Best Available Copy

DISTRIBUTED BY:

National Technical Informa.i;on Service
U. S. DEPARTMENT OF COMMERCE



INN.

I J

IF-tt

U f . .. , - , ..

sp".'414 YA.215

MNr

- K:-'. t.•, -.... "

Ž 1 • , . , . - ' P !

I : • - .J' • ',# - .•- ? . . . -• . 4 -, - --. , • .",-

7 "•,> ' ,-- a+.•• W &K;.h :t •t..k f .if iI

4 4 ....... .. , -. - .~ .. .; ,: 7 , --K.i.-:.•' --:. U:

: 43 F-- w , ::"" "'• ,'•'"'{°,i': A":•

-,.. •< -". F-. te .,:-Iep h-o r- •:I•*. (415) 3 " - 4 *

s-•k .'V o prin¾ eld VA ,2p1.



Unclassified
.Security Classification

DOCUMENT CONTROL DATA - R&D
(Sacurity classificatfon C4 11,•e, bodk, of abstract and indoxirg -WlnO(n must bw .,,@ated rlhen the overail rf.•O 0. Cleveathd)

I ORIGINATING ACTIVI'Y (Corporate author) Z4 REPORT SECURITV C LAJIAIIFICATION

CONTROL ANALYSIS CORPORATION 2b Unclassified

800 Welch Road - Palo Alto, CA 94304

3 l•EPORT TITLE

Techniques of Response Surface Estimation, With Applications in
Computer Simulation

4 DESCRIPTIVE NOTES (Type of report and Incluslve dales)

Technical Report
S. AUTHOR(S) (Last nanme. first norme, initial)

Michael A. Crane

6. REPO RT DATE 179 TOTAL NO. Of PAC, 7b. NO. or rsSAugust 1975 .21/_ 10
I SB CONTRACT OR GRANT NOl. S& ORIGINATOR's REPORT NUMIIR(S)

N00014-72-C-0086
b. PRtOJeCT NO. T-chnical Report No. 86-19

NR-047-106
*C. 9b. OTHEIIR P SORT NO(S) (Any other number* Mhat me- boa, signed

this report)

d

10 A VA IL ABILITYI/LIMITATION NOTICES

Distribution of this document is unlimited

11 SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Operations Research Program
Office 'of Naval Research
Arlington, VA 22217

13. ABSTRACT

A technique is presenti.d for obtaining confidence intervals and

confidence bands for a one-dimensional response'surface which is assumed

* to be a general-order polynomial. Specifically, suppose that A'is an

l nput parameter for an experiment and thpt estimates for ark output g(A)

are desired, where g is an (n-I). -order polynomial over an interval

ao<A< af+, If observations are made at n i-.-*..-..c values X- ai,

loi <_n, then under certain conditions confidence intervals may be obtained

for g(A), aoW <anl, and a confidence band may be obtained for the entire

function over this interval. The basic requirement for these results is

that central limit theorems exist which permit confidence interval estima-

tion at the n points A at. TN4o illustrations are given which satisfy

this requirement, including an Lpplication of the regenerative approach in

steady-stare simulation analysis.

nnlr) IA7q " .M71..-- -- .,



Secluitv Classificatiton_______
LINKI A L ifttj 0 LINK C

KI!fi WORDS 
R70LX 1*1 POLM 

of

Stau~tistica analysis of simulations

Confidc-nce intervals in simulations

Response surface estimationConfdene inervls fr plynoialj Confidence iantevas for polynomials

* Polynomial approximation

Bounds for polynomials

Regenerative Approach in simulation i
INSTRUCTIONS

1. ORIGINATING ACTIVITY.* Enter the name and address isoposed by security. classification, using standard O'Atementa
of the Tonlrdetor. subcontractor. grantee, Department of Do- such cs:
tense activity or other organiratlon (corporate author) issuing (1) '*Quealific reqaaates a rey ob~ta~in copies of thisthe repor*. report frorm DDC."
2.. REC*RT SECURITY CLASSIFICATION: Enter the over- (2) "F'oreign ,:nnouncamrent ead liassminention of this
all ,security clmassification of the report, Indicate whetherreotb DIsntahrrd."Restricted Data" is irrclude4 Marking, in to be in accord- rpr yDCi o ulote,
ane with appropriote dewiity, regrilatices. (3) "U. S. Government t-gencies, may 31btaiin copies of

this report dfirectly frorn DC. Other qualified DDiC
2b. GROUP: Automatic downepaditig I& specified In DOD Di users shallI request through
rective 5200. 10 und Aryrord Forces Industrial Manuel. Enter
the group numtber, Also, when applicable, show that optional
,Mork ings have been umed for Group 3 and Group 4 as author. (4) "U.J S. military egerucies may obtain copies of this
ized. report directly forta DOC. Other qualified users

3. R MDORT T~rrl.X Crter the complete report title in all shalt request through
capital lottfrr.. Ti"jes in all case: Fthouldtbe unclassified.
If a meaný-ri:,ul t itle camnot he act cted without clessifica-
lion, shov Ii~le CI3-oAifLCUtIon in all capitals in parenthesis (5) "All distribution of this relot itsL controlled.. Orsl-
immedimetlr following the file*. ified DDC usera 6halt ree int Ibrougth

4. DESCE1Rl,'TIVr NiOTES, If appropriate, enter the type of________- ______

report. e.g., interim, prrgress. summary, anslual, or final. If the report how been firtoluned in the Office of Technical
Give the irecl ussve dulatr when a specific reporting period Is Services, Deparirnert of Coaus.rrrce. for sate to the public. lndi-
covered. cote this fact and entier lie price. it known.
S. A urriioý(;!t Enter tire name(s) of outhart'.) as shown on II SPPEENTARY NOTE Use for-additional espliase-.
or In the report. [mitsr tost name, firat name, middle initial. I.SPL
If mtlitery. ishow rank an.I birruoch of service. Trhe name of or ots
the pricripal 1.1.tiio LJ an UUAbetie MMinoruin r'q~leqremert. 12. SI'f)N"X)ItING MILITARV ACTIVITY.:Erote, the name of

ir. EPO~ DA~,. ntertie dot nf he epor as ay, the departmental project office or lat-ratory apjinzarl'rý (pair-6. RPORTDATý Ener irstdat of Itorepot a day in for) the research &cut develpopaest. Include address.
month. yr-sr. or tMonth, velic. If more than one date appears
on the rer,.'rt. uNic date of publication. 13. ABSTRACT: Poster an ahatstrat giving*a brief and factual
7*.TTLNýlFRFAE;Tettlpg on summary oi the doctrnemt minri ative of the report, even though

TOTL NI'!3XROF'PAGS: he ota pae cunt it may also appevk elses-here in tire bordy, of thoo technical re-
should frullvv' t-irmal pagiorition procedures, i~e.. enter the port. If tidditirhnal space it' r.quired. a contionution Gheet shall

,nuMber of latr a contairking. infuryruatwrrn he attache I.
7b. Xfr'fJI7!., OFlr.' iEI*NlS: Enter the total number of It It highly desirable drit ite abstract of classified reports
refer, rict-n itied in the rrt'ort. be unt'asesifrd. Pach rIare'rnsph of the abstract shall end with
RA. CONTP',f' r OR GRANT NUMBER: If appropriate, enter an indication of tOm military recsrinir cloasificotloa of the its-
the opir-O,2'* iniret of the contract or grant under which formation in the paragraph, represented as f(s). (s). (c). er (u).
the retors WI. " rit i.there is no limitation on ths length of the abstract. How-
Sb, S~c, &68.!. IPr?0J FLCT NUMB3ER Eners it e appropriate ever, the suggevied. length ia from ISO to 225 words..
muilijetar depurr~ner, vyserntftumbr, tuhask number, nmer, 14. KEY WORDS: Key words are techrnicslly meaningful termssuhpojet nn.6e, oste. nuber, tok nirbr, tc.or short phrases thist characteriz, a report and may ba used as
go. ORICAItATOR'S REPORT NUMABER(S): Finter the offi- Index entries for cataloging the rels-vrt. Key words rertot be %
cial report ri.hirter by' which tIre document will be identifiedi ssiect.'d so that no seurity clagaiflcation is required. Identi.
and cortrrorlert 17 itie originrating activity. This numbrer must fiers. ouch as eriulipment mno~let designtation. trade no-re, military
be unique to titls rr-port. project cods nani, 9009161011u11: locetion, may be used as key
9b. OtTHERI REI.PORT NU?,.,IER(S): If the reprort has been wordi but will be fnilowed by sn indication of technical cosn.
assigned any other report nrrmberrs (eiht', fry she orlginalor test. The assignmenet of links. sales. and wsigloto ios optional.
ot by shne sponsorr), sirro enter thks rnumbecr(s).

It). AVAIL %mitf.rTy/liAMITATRON NOTICE&: Enter any Rao
rtations on I V ýer tdisa,.nnation of tire report. other than thosel

D D I A o 1 73BtK UIC-las s i fi d

Sec-urity Class ificotical



CONTROL ANALYSIS CORPORATION

800 Welch Road

Palo Alto, California 94304

Technical Report No. 86-19

TECHNIQUES OF RESPONSE SURFACE ESTIMATION,

WITH APPLICATIONS IN COMPUTER SIMULATION

by

Michael A. Crane

DD CO
August,1975 SEP 22 197

This research was supported by the Office of Naval Research under Contract
NOOOi4-72-C-0086 .(NR-047-106).

Reproduction in whole or in part is permitted for any purpose of the United

States Government.

Approved for pid ti

Dtsu1bution- Vulr, tied



ABSTRACT

A technique is presented for obtaining confidence intervals and

confidence bands for a one-dimensional response surface which is assumed

to be a general-order polynomial. Specifically, suppose that X is an

input parameter for an experiment and that estimates for an output g(M)

are desi-ed, where g is an (n-1)thorder polyncoial over an interval

ao<X< a If observations are made at n distinct values X- ai,

10oi<n, then under certain conditions confidence intervals may be obtained

for g(A), ao<_X <an+l, and a confidence band may be obtained for the entire

function over this interval. The basic requirement for these results is

thatcentral limit theorems exist which permit confidence interval estima-

tion at the n points a = a Two illustrations are given which satisfy

this requirement, including an application of the regenerative approach in

steady-state simulation analysis.,



TECHNIQUES OF RESPONSE SURFACE ESTIMATION,

"WITH APPLI'2ATIONS IN COMPUTER SIMULATION

by

Michael A. Crane

1. Introduction

In this paper a method is presented for one-dimensional response

surface estimation when it is assumed that the response surface has a

general-order polynomial form. In particular, it is shown that if the

response is of order n - 1 and if observations ars taken at n distinct

values for the input or "treatment" variable, then under general conditions

it is possible to obtain large-sample confidence intervals for the response

at any value of the input variable. Additionally, large-sample confidence

bands for the entire response function may be obtained.

Specifically, suppose that A is an input parameter for a statistical

experiment and that estimates for an unknown output function g(X) are

desired, where g is an (n-l th)-order polynomial over an interval

a0 < X < an+l. Suppose further that observations are made for n distinct

values of A, namely, A = ai, I. < i < n with a 0 < .. < a n< an+l"

In Section 2, conditions are given which allow one to compute confidence

intervals for g(X) at any point a 0 ' < an+l.' In Section 3, confi-

dence bands for the function g(X) over a 0 < X < an+l are derived. The

,basic requirement for these results is that central limit theorems exist

which permit confidence 4 nterval estimation at the n points X = a..

This research was sponsored under Office of Naval Research Contract
N00014-72-C-0086 (NR-047-106).
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The methods are illustrated in Section 4, where two examples are provided

which satisfy this requiremenc. The tirst example is the typical1 case

where the experiment 2t X = a, consists of a sample of independent and
1

identically distributed variates f:om a population with mean g(a.). In
I-

the second example, the obseivations at X = a. are based on random

tours in an application of the regenerative approach in simulation analysis;

see [,4, 5, 6, 7, 10].

The problem as stated above has been studied previously in the context

of linear regression analysis. The iilerval estimation problem is discussed,

for example, in Graybill ig, pp. 121-1221, and confidence bands.for a general

linear model are obtained by Bowden [2]. However, the resalts ptesented here

are to be distinguished from the linear regresJion models in that

1) the confidence interval and confidence band derivations do not

require distributional aosumptions,

2) the, variances at A = a are unknown and no celationship among

the variances is assumed,

3) the response surface is a general polynomial, and

4) it is not essential that all'observations be independent, only

tha't n independent experiments be conducted and that a cential

limit theorem be applicable for the obser ations in each experi-

ment.'

2. Confidence Interval Estimation

Suppose that A is an Input parameter or treatment" variable for a

statistical experiment and that we wt,;h to estimate some output parameter

g(A) which is an unknown (n-) th-order polynomial function of A over an in-

terval a <A < an+l, i.e.,

"1  n aO- < "n+l

-2-



wrtere the coefficients z,, z., ... , z are unknowin. ndlependent experimer s

retlting in statistical observations are made at n particular parameter

settings A a., 1 < i n, witai a < a < a 2 < < a < aa~l"
-0- 1 2n nl

At the parameter setting ai,. the experiment produces N.I observations

resulting in sample statistics "(a,, N.) and ý(a., N.). For exampie, the

N. observations might be independent and identically distributed sample var-
1

iates from a popt'lation with mean. g(a i), ar.d ?(ri, N.) and • (ai, N.)

might be the sample mean and sample standard deviation, respectively. Alterna-

tively, the'observations migh: be based on random tours in an application of

the regenerative approach in simulation analysis. See Section 4 for details.

The function g may be expressed in terms of its values at the n

points a 1 , a2 , a n as follows:

g(an)

g(A) TO'() I 0 < X< a I[g( .a )n

la ~n-1]-

where

•(•) (l • ... • -n)-1

inverted is the Vandermonde matrix, and its inverse is well-knowntcf. [n]

pp. 124-125.

-3-
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The following proposition forms a basis for a method to :ompute confi-

dence intervals for g(X) where a 0< < an+l Let a double arrow denote

convergence in distribution and let N(Q,g) denote a normally distributed

random variable with Lnean p and standard deviation a

PROPOSITION 1. Suppose there esist q(ai) such that q(ai, Ni) --- *rn(ai)

in probability as Ni coi = 1, 2, .... n. Suppose further that

NO[r(ai, Ni) - g(ai)]/ 9(ai) =- N(O, 1)

as N -- co, i = 1,2, ... , n. Then for a0 < < an+1,

[F(,, N1  N) -9 g(,,)/ n(X, N1, ... , N )=='N(O, I)

as N - c and Ni M [Ci N1] (integer part) i = 2, ... , n, where

C2 , ... , C are arbitrary positive constants,

'F ( a i ., N I )

•(,Nip ... , Nn T (A)

i(a n, Nn)

and

ý(A, Ni, .... N) Y 2 1(A) i2 (a, N)I

Proof. From tihe conditions of the proposition, we may write

[C1 N 11 2[r (a 1 , N1) - g(a 1 )lw'• N(0, n*()) i 1, ... , n

as N-- and Ni= [C1 N1], where we have set C1  1.

since jC N'1/,/(C iNi~2- we hv
i ~ ~ ~ ~ ~ ý . 1..•/i.""



(C. N) ci N.)g( ,

or

N (ai' Ni).- g(ai,,) N O, f(ai) C 2), i ...I n.

Since P(ai, Ni), i = 1', ... , n are independent, we have, by Theorem 3.2

of [1], convergence of the vector process

N [i(a, 1 - g(a N(O, n ()IC )

N14

N• [r(a N ]g(. N(O, n(a )/CI )
1 n n n n n

where the limit random viriables are independent. Using the Continuous

Mapping Theorem, cf. !I] Theorem 5.1, we have

Nf/2[[a 1 , N 1) - A
•~ s2 2 (1)Ci /2"

TO•) . + N[O, (E i (A) n J0)/i

N [?(an, Nn) - g(an).

1. n n l

or.

V2 T 2 ( 2)n2(a VC !/ N(O 1)
N1 [Ir(X, N1, ... ,N) -N g(nl]/[ )N, .

Since ICi N ]/Ci NI -;' I and fi (ai, N1) -- > n(ai) in probability,

this Implies

n

[E(A, N1  , ) - g(x)]/[, .I (A) ý"(a," N )/fC1 N] 4 N(O, 1)

-5-



or

-[( NV ... Nn) - g(,)]/. (\, N1, .. , N ) @ •N(0, LI

which is the desired result.

"The above proposition allows one to obtain an approximate 100(l -Y )%

confidence interval for g(Q) as follows. For N. sufficienrty large,

S.in,

P fY 1 ( ''2) < [^r(X, Nit.. N d, g(X)1N(XI NI n

-(1 /2) 1

This may be rewritten as

P { ( Ni, ... ' N)- n ( N1 , ... N) i( -Y/2) < g(A)

i(N, N ...... Nn) + v(A, N), ... , N),-( - y'2) &l.-y

giving the desired confidence interval.

Note that the confi 'ence interval obtained at A ai reduces to

i(ai, Ni) + Ni 2f(ai, Ni) -I(1i- Y/2) ,

which is exactly the same confidence' interval which could be obtained based

cn the R. observations at A X ai. Letting (A, N, ... N denote the
1n

length of the confidence interval obtained at- XA, we see that

Z(\, Ni, ... , Nn) n 2 ý(A, Nit ... ,I Nn (• - y/2)

n2 q 2 ( . 2 - y/2)2 = ^1 (ai N. I 1 Y2fo,
S2~

-6-



whe:e Z (a,, N. is the- ]ngth obtained at A a.

3. Coifidence Banr Estimation for the Function y(;)

As noted in Section 2, we may obtain approximate 100(1 - Y.)% confidence
1

intervals [A., A] for g(&) a- A a., i = 1, .o. n:
1 [ 1 2

S.. (1) A < g(ai) < A. with probability (I - ) i = 1 ... n,

1r4i N N i C-(i Yi/2) and:.where Ai =ra, Ni) - N~f(a., N) 1-Y 2 n

A2  (ai, N. +N- 2 (ai, N.) D i - /2). Proposition 1

enables one to obta,•in ,onfidence intervals for g(X) at any point a < < an+l.

In t'x, section, we :how how (1) may be used to obtain a confidence band

fir the entire func-:ica g(X) over a < A < an+l

Before stating the result, we ,shall need some additional notation.

1 2
Define the column vectors A ((m) and A (m), m = 0, 1, ... , n as follows.

Fn.th 1 2
For 1 < j n, the J components of A (i) and A (i) are, respectively,

1 I if j.< :n and m-j is evei.
or j > m and j-m is odd,

A()
2 if j _< m and m-j. is oddI~Aj

A or. j > m and' j-m is even,

A2  if j S m and m-j is even•
A

2 or j > m and j-m is odd,

A 1 if j ! m and m-j is odd

or j > m and j-m is even.

The following proposition gives the desired confidence band for the function

g(A). With the stated probability, the inequalities in the proposition hold

-7-



"simultaneously for all values a0 a < n+l1 given that (1) holds.

PROPOSITION 2. With probability (1. - (1 - Y2 ) -1 Y n

(2) Y(A) M (m) <g(A) < '(X) A2 (m)

for a <-- m+l and m 0, 1, 2, .. . ,n.

Proof. Since the experiments at a = a i = 1, . , n are independent,

all the inequalities (1) hold simultaneously with probability

(i- y1 ) (1 - Y2 . (1 - Yn). It is easy to see that the inequalities

k k(2) imply the inequalities (1) since Y (am) (m) A for k I, 2 andm' m

<1 j m < n. It is therefore sufficient to show that (1) imply (2).

This fact, however, is proved in an earlier result by the author; see [3].

The above proposition may be interpreted as follows. For 1 < m < n - 1

and a < X < am, the bounds for g(X) are obtained by forming two (n-) th-

order polynomials passing through subsets of the points Al, ... An and

2 A2. The upper bound polynomial is the unique polynomial passing

2 2 kAthrough A, A and A, < j < m-l, m + 2 < j < n, where k alternates

between 1 and 2 for each integer step away from the interval [m, m +1i],

starting with k = I for. j = m- I or j = r + 2. Similarly, the lower

bound polynomial is the unique polynomial passing through A , A and

alternating values for Ak, 1 < j < m - 1, m + 2 < j S n, starting with k w 2

for 'j - m - I or j = m + 2. For a0 A X < a1 , the upper bound is the
2 1 2 1

polynomial passing through Al, A2 , A3, A4 , etc., whereas the lower bound
polynomial passes through A A1 a < X <

a A2

an+l' the upper bound polynomial passes through A,,l,A n-2' Aný 3  etc.

-8-



whereas the lower bound polynomial passes thro.!gh AI A 2I A 1 A etc'.

4. Applications

The most straightforward application of Pr-positions 1 and 2 is the

situation where the Ni observations at. X a. are independent and

identically distributed sample variates Xil, "'', XiN from a population

with mean g(a.) and standard deviation fl(ai). Letting

a N i x ijJ1

'j=l
and 

N1/2

1 1 __, (Xi- a. N )2]n i 1.N N. = L

we know from the Central Limit The)rem and the Law of Large Numbers that

NV2 [r(ai, Ni) -g(ai)]/r 1 (ai)---N(O, 1)

and

j(ai, Ni) n f(ai) in probability

as Ni--, thus satisfying the hypotheses in Proposition 1. Similarly,

Proposition.2 may be applied once confidence intervals are obtained at

g i , ... . n.

We shall, devote the remainderof this'section to a second application

which is based on the regenerative approach for analyzing computer simula-

tion experiments. (References [4, 5, 6, 7, 101 may be consulted for more

details on the regenerative method.) A basic statistical problem in simula-

tions is to estimate the quantity g(X) = E ff(X(A))} where f is a general

real-valued function, A is an input parameter, and X(A) is the stationary

random vector associated with [A(s,A ):s > O} , the prccess being simulated.

-9-



In the regenerative method, we observe the process {X(s, X):s > 0} in

"random cycles of lengths c(A), ( A 2(() .... cc ') and record in each cycle

the values Y,(A), Y2(1), ... , (X) where Y. (A) is the area under the

th
curve f(X(s,X )) in the k cycle. The crucial conditions required for the

regenerative method to be used are that the N pairs { (Y ( X ))k 'k

Sk = 1, 2, . . N} are independent and identically distributed

* and that g(X) E (Y (A)} /E{f M(A)} . These conditions hold, for example,

in simulating a GI/G/S. queue with traffic intensity less than 1, letting

cycles be defired in terms of the beginning of successive busy periods.

Now define the column .... vector Uk(A) = (Yk(A) M ak( )) and let

a W(11 (A) c 1 2 (A)

a 1 2 (A) a 2 2 0() )
denote the covariance matrix for 'Uk((). Denotp the sample mean by

Y((X N)

"(A., 1 Uk()
X' N) k=l

and the sample 6ovariance by

Sl11 , N) s 12 X, N) N

w( NN N) E kl O,) - U(X, N)J][Uk())ýU(X, N)]ssl N)- 21 (X, N) s 22 (X, N) k -I 1

where the prime denotes transpose. Next, define point, estimates for g(X)

as follows:

"-10-



(1) Classical estimator

(A, N) =
C r(X,N)

(2) Beale estimator

b N= N [I + s,,(X, N)/N Y(X, N) O(X, N)]i ., Pb~~(A,, N) = Y( ' N) .J,

b -2
o (X, N) [1 + s 2 2 (A, N)/N 2 (X, N)]

(3) Tin estimator

F s~ N) S N)
i(,N=Y(A, N) 1+ 2 2 A, N)(NX, N) ) 1 +

t LA N) -2(,N
o •(X, N) Y(ý., N) ct(X, N) cc2(A, N)

(4) Jacknife estimator

j (AN) N LOk(X, N)

where Ok(X, ,') = N[Y(X, N)/Q(X, N)] - (N- 1) [E Y j( ct;()]j~k jik

Finally, define

S) (X, N) -2r (X, N) s (N) + r N) s (X, N')]I•.(, N)c1 c s12 C s22(X

II ~and .

ai(A, N) " [t k(X, N) £m(0, N)] 2 /(N-_)j 1/2

Now let

Zk(A) M Yk(A) - g(x) ck(A)

and note that E{ Zk(A)} - 0 and defin o2(X) - var 1 Zk(A) " Since

the vectors {Ik(X) k > 11 are i.i.d., it follows that; tk(A), k 1)

-1 1-



I

are i.i.d. By the central limit theorem for p-rtial sums of i.i.d. random

variables, it follows that

N SZ )/N1/2 C(X) = N(O, 1)
k=1

as N--0, which may be rewritten

1/2~
N/[ C(A, N) - g(AI1 c(X, N)! C(;).--m N(O, i)

Since 'a( A, N) - E~ (') } a.e., it follows that

Nl/2[.c (A, N) - gOA)]/n(A) • N(O, 1)

where ?1(X) = o(X)/E {aI (A)}. Now it may be shown that

1/2N1[•e(A, N)- . (A, N)f - 0 a.e.,
c b

NI/2[r (X, N) - (X, N)] - 0 a.e.,
C J

NI/2[r 0, N) -j(,N)] 0 a. e. ,

and that e (A, N) ---- 1(A) an j(AtN) -• (A) in probability as

N ---4 co Hence, the conditioni of Proposition 1 are satisfied with any

'of the following substitutions:

r N) I b (ai, Ni t (ai* Ni) or rj(ai N )

substituted for r?(ai, Ni), i -. , 2 ... ,n;

nc(a , Ni) or n i(af, N ) substituted for n(a, N), i -1, 2, ... , n.

To-illustrate the application of Propisitions ! and 2, consider a

-12-



simulation of the customer waiting time proces- W n , n > I in a G1/(;/In-

- queue. Suppose we wish to study the sensitivity of the mean stationary wait-

ing time g(A) = E {W(A)} to the arrival rate X over the range

2 _< < 6, with the service rate 0 10. In what follows, we shall

illuszrote the proposition for this simulation using tile "clvssical" esti-

mators r and ri , though we could have chosen any of the estimators given""C c

above.

In the queueing simulation, we say that the kth busy cycle is initiated

with the arrival of the kth customer to find an empty queue. Suppose that

simulatJon runs consisting of NI = N = N3 = 10,000 busy cycles are made at

parameter settings A = a = 3 , X = a = 4,. and X = a 5. Let cc (A)
2 3 k

thdenote the number of customers served in the k busy cycle, and let Yk (A)

be the sum of the waiting times for those customers. Then it may be shown,

cf. [4], that {(Y (A), ck(X), k 1 I } are independent and identically dis-

tributed, and Ef W(A)1 = E{YI(A)} /E(ctI(X)} . Hence, it is appropriate

to apply the regenerative method as discussed above. In particular, we can

compute, for i - 1, 2, 3,, Y(ai, Ni), a (a 1 , Ni), s l(ai, Ni). si 2 (ai, N1 ),,

and s 2 2 (ai, Ni) and from these we can compute c(ai, Ni) 'and cai Ni)

as defined avove.

Suppose that, as a result of these computations for a simulation run,

(a , N•1) .04 (a V, Ni .20

r(a, N) .06 nc(2 N .30

r (a 3, N) - .10 t(a 3 ' N3) - .50

Recall that approximate 100(1 - y)% confidence intervals at A-.a are

-1- 1/2given by c a1 ' N-) + 1c (a1, N1.) G (1 - Y/2)/N . For example, if

-13-
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Ii
-T

95' confidence intervals arz desired, these would be

.03608 < g(3) < .04392 with 95% confidence

.05412 <_ g(4) < .06588 with 95% confidence

.09020 < g(5) < .10980 with 95% confidence.

Now assume that g() =E {W(X)} is approximately quadratic for 2 < A < 6.

From Proposition 1, an approximate 100(1 -y)% confidence interval at X is

given by ý(XN Ni, N2 P N) 3 + NI, N2, N3 2- N3/2) 2 < < < 6,

where

04,

r(A, Nil , N) = 3 (.) 06

10

ýi(X, Ni, N2 N) 2 X,) (.20) + T 2(X (30)' +,y 2 (k)(.50) 23 1/2,/100

and

1 3 9 ]1 riO -15. 6

() == (1 2 16 (1 X X - 8 2).- j
1 5 25 1/2 -1 1/2)

Thus, for example, a 95% confidence interval for g(3.5) is

.04269 < g(3.5) < .05231 with 95% confidence.

Finally, using Proposition 2 together with the above confidence intervals at

.3
X - 3, 4, and 5, we obtain a 100(.95) % confidence band for the function g(X)

over 2 < A < 6:

(A) A I(m) <g(X) < Y ()A2 (M)

for a < a and m r 0, 1, 2, 3, whpre

ii+-I

-14-



.03608 .04392 .03608I .0492
.(0) 06588 A (0)= .05412 A (1) i.05412] A 1) = .06•5-88

.09020) .10980 .10919D V.09,

F.04392 L.03608  .03608 .49
A(2) 1.05412] A 2 .06588 A (3) = .06588 A (3 0412

09020 "10980 .'i9_09020 .
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