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ABSTRACT

A technique is présented for obtaining confidencé interQals and
confidence bands»fof a one-dimensiorial response surface which is assumed
to be a generai—order polynomiél. Specifically, supéose that * is an
input parameter for an experiment and that estimates for-an output g(})
éré désired, whére g 1is an (n—l)th—order polyncnial over an interval
aoiki an+l'. If observations are made at n distinct valueé A= ay,
13<i <n, then under certain conditions confidence intervals may be obtained

for g()\), ang} <a

1® and a confidence band may be obtained for the entire

function over this interval. The basic requirement for these results is
that central limit theorems erxist which permit confidence interval estima-
tion at the n poinfs A= a;- Two illustrations are given which satisfy
this fgquirement, including an application of the reéenerative approach in

steady~state simulation analysish
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s . TECHNIQUES OF RES?ONSE SURFACE ESTIMATION,

%*
WITH APPLICATIONS IN COMPUTER SIMULATION

by

Michael A. Crane

1. lgssoducéibn

In this paper a method is presented for one~-dimensional response
surface estimétion when it is assumed that the response surface has a
general-order polynomial form. In particular, it is shown that if the ,"
response is of order n -'1 and if observations ar=2 taken at n distinct
values for the input or "treatment' variable, then under general conditions
it 1; possible to oStain large~-sample confidence.intervals for the response
at any value ¢f the input variable. Additionally, large-sample confidence
bands for the entire response function m;y be obtained.

Specifically, suppose that ) 1is an<1ﬁput parameter for a statistical
experiment and that estimates for an unknownléutpuc function g(x) are
desired, where g 1is an (nflth);ofder polynoﬁial over an-interval

32X Ay,

values of A, namely, A = ai,~1 < 1 < n with a

Suppose further that observatiqhs are made for n distinct

< a,< ...< a

0= 2 n s 31

In Section 2, conditions are given which allow one'to:compute confidence

intervals for g(\) at any point a, < A < a

0= oA In Sectio§ 3, confi~

dence bands for the function g(\) over 'ao <A< a 4 are derived. The
“basic requiremenf for these results is that central limit theorems exist

which permit confidence i‘nterval estimation at the n -points X = ai.

—

This research was sponsored under Office of Naval Research Contract
N00014~72-C-0086 (NR-047-106).
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The methods are illustrated in Section 4, where two examples are prévided
which satisfy this requirehcnc. The firsf example is the ty ical case
. A' where the experiment 2t X = a; gonsists df a sample of indeperndeat and
identically distributed variates f.om a population with mean g(ai). In
the second example, the observations at A= a, are based on random
{ . tours in an application of the regencrative approach in siﬁulation analysis;

see'[4, 5, 6, 7, 10].

The problem as stated above has been studied previously in the concext
of linear regression analysis. The interval estimation problem is discussed,

; ‘ for example; in Graybill {%2, pp. 121~122),‘and confidence bagdé.for a general .
lirear model are obtained by Bowden [2]. Hoﬁever, the resalts pze;entéd here
are to be distinguished from the linear regression models in that

1) fhe confidence interval and confidence band derivations dé hot

require distributioAal acsumptions,
2) fhe.variances at A =la are unknown and no relationship among

i

the variances is asdumed,

ot R e B, tn A

3) the response surface is a“general rolynomial, aﬁd.

} 4) 1t is not‘esseﬁtial that ali'observatipns be independgné, only

: o ' that n ‘independent experimghts be conducted and that'a'cént;al
limit theorem be applicable for ;he obserfatlonsqin each experi-

ment.

2. Confidence Interval Estimation

Suppose that ) 1is an lnput parameter or "treatment" variahle for a
statistical experiment and that we wish to estimate some output parameter
" g(A) which is an unknown (n—l)th—order polynomial function of A over an in~

terval a, < A < a

% <. LA i.e.,
. ‘I . ] n-l
‘ 3 gfil,- zl + ZZ A+ “..,+ Ah A , nO =< A.i an+1

-2-

W




where the coefficients Zl’ 22; eey zn are unknown. In&epéndent experimercs
reculting in statisticai observations are made at n particular parameter
settings X = a, 1< 4 < n, with a, f-lal <ay, < .. <a <AL,

At the parémeter setting A = ai,Athe experimenﬁ produces Ni observations
resulting in sample statistiés P(ai, Ni) and ﬁ(ai, Ni). Fo; example, the

Ni observations migﬁt be independent and identically distributed sample var-
iates from a poprvlation with mean. g(ai), arnd f(Fif Ni) and f (ai; Ni)

might be the sample mean and sample standard deviation, respectively. "Alterna-
tively, the'observations migh: be based on random tours in an application of
the regenerative approach in simulation analysis. See Section 4 for details.

The function g may be expressed in terms of its values at the n

points a,, a

e., a , as follows:
1 n

2)

gla;)
A) = ¥(A .o
g(}) ) ' voey SAZay
g(én)
— - -1
n-1
{ 1 ay ..o a; |
where S o : .
vO) = (LA ... AThH L .
' ' : ' n-1
la ...2 .
. " no

t ' ‘ '
Let ?1(A) denote the L h component of Y (A). Note that the ma:rix to be

‘inverted is the Vandermonde matrix, and its inverse is well-known,cf. [Qi

pp. 124-125.




The following proposition forms a basis for a method to compute confi-~

dence intervalé for gf)) where a_ < )\ < a

; . Let a double arrow denote
0 — — n+l"

convergence in distribution and let N(y,g) denote a nmormally distributed

random variable with sean u and standard deviation g .

PROPOSITION 1. Suppose there esist n(ai) such that ﬁ(ai, Ni) _;)rﬁai)

o]

i in probability as Ni —3yw, 1 =1, 2, ..., n. Suppose further that

1

N’f[f(ai, N - ga,)]/ n(a;) = N0, 1)

‘as N, >, i =1, 2, ..., n. Then for aoixi a1’

cees N =D NCO, 1)

[EQ, Ny oo N = gD/ VO, N,

as Nj}.; o and Ni = [C1 Nl] (integer part) i =2, ..., n, where

CZ’ ceny Cn are arbitrary positive constants,
—~ . -
'?(al, Nl)
£(A, Nl; ey NV) = ¥ () .
r(an, N )
and . : _ i
' - n ' 1/2 '
-~ ' o , 2 2 .
VO Njy ey N = {f; ¥ L) Ay, Ni)(ni} .

Proof. From the conditions Qf the proposition, we may write

(c, 8 1V2(E (apu N - gla)|=> N(O,Na)), 1= L, 'eey n

as Nl-—aruand Nia [L N ], where we have set (;i a 1.

Since IC Nll ///(C N ) we have

-~/

s J—

. o ' ! o




/. . : .
(ci Np) /- [r (ai, N,) —_g(ai)] sy N(b, n(ai)>, i=1, ....n

or

Lo s ) ' . /2 '
N, [r(ai, N - g(ai,)]==? x{o, n(ai)/Ci ), 1 =1, ....n.

Since ?(ai, Ni)’ i=1, ..., n are independent, we have, by Theorem 3.2

of [1], convergence of the vector process

1 . 7 [~ : 1, 7]
Nfé [r(al. Nl) - g(al)] N(O, n(al)/cl’/2 )
=
1 ’ ‘ 1
5oa : 4
N, [r(an, Nn) - g(dn)] L_E(O, n.(an)/Cn )

where the limit random viriables are independent. Using the Continuous

Mapping Theorem, cf. [1} Theorem 5.1, we have

pre= Il ! ! 1
N/2(R(a), M) - og(ap)] L
e : = N0, () ¥ o nteprept'?

. .
A -
Ny [?(an, Nn)‘ g(an}]

or.
1 - . § 2 l/ .
Nfétr(x. Niys oees N -‘g(X)J/[g;; ¥ f(%)n (ai)/ci] s> N(o, 1).,
S%nce [C1 Nl]/Ci N1 -> 1 and fy (ai, Ni)f~> n(ai) in probability,

this implies

. n . ' B
3 i b2 2, Y T\
B, N s W) - g(A)l/[.gl v ) AT, Np/IG N,]]"2 = N, D




‘}ﬁffﬁﬁ@iﬂ%’%ﬁ"”’;I"I.'?"-jg‘-"l"’,’é"?};e‘f'?("“’3‘%':‘,'“‘l'_"5‘,““'}x‘fff‘,"’"ﬁ:‘rvﬁt“?"""ﬁ‘f i "v: Few B

. ( or
o [E(Ay Nl’ .y Nn) - g(:“)]/‘) ()\: va “ . Nr\) % &(Ov l}
which is the desired result.

The above proposition allows one to ohtain an approximate 100(1 -Y )%
confidence interval for g(l) as fellows. For Ni sufficiently large,

i=1, ..., n,

-1 Y, N

—¢ - < . - Y] 3, ;' .. <

P { (1 /,2)‘_ (e Ay Ny , Nn), g\ o0, “‘l’ » N) <
o7l - Y/2)} 21y
Ihig_may be rewritten as

| : _ - S 1 4 .
.P{?(A, Nyw eees N = OO, Ny e, N0 70 12y < B8O <
A “1

rA, N Nn) + v, Nis ees Nn)¢ a- *,',/2)} FL-v

giving the desired confidence interval.

Note that the confilence interval obtained at A = ai reduces tc

T( N +N‘V2 l S:) ¢';1(1-Y/'2)
tag, Nj) 2 N7 filay, Ny )

which 1is exactly the same confidence'intérval which could be obtained based

cn the Ri observations at A = a,.  Letting E(X,NNI, cees Nn) denote the

L

length »f the confidence {nterval obtained at- A, we sea2 that

~ ' 1 ; ~ . —1 .»
O Nys oees N = 2 V(A Nl’ o Nn)itb (L - v/2)
I n . 1 .
- 2 ~ 2 s -1 _
. 2{ g;a. ?i (M) (?1’ Ni)/Nt} : Q (1 Y/2)

. n - ' 56
b2 a2 N
-5?:‘ PR OIER(CH Ni)}

_6_
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whece R (ai, Ni) is the length obtained at A= a, .
i

3.  Confidence Band Estimation for the Function g(})

As noted in Section 2, we may obtain approximate 100(1 - Yi)Z confidence

e}
intervals [A%, A;] for g(l) a= A =a,, i=1,

..., RZ

‘ ) .
(1 Ay < g(ai) < Ai with probability (1 - Yi)’ i=1, ..., n,"
pore Al - 7 i 4 ol
where AL = r(ai, Ni) - N, n(ai, Ni) ¢ (1 - 'Yi/Z) and
A?' ’ —yp_ , -1 .. !
Al %(ai, Ni) +N, ﬁ(ai, Ni) (1 - Yi/2). Proposition 1
enables'one to obtain .onfidence intervals for g()) at any point ay < A f_aﬁ+l.

In t'+. = section, we show how (1) may be used to obtain a confidence band

, i < <
for theventire functica g(A) over ag < A<a -

Before stating the result, we shall need some additional notation.

Define the cclumn vectors Al(m) and Az(m), m=

For 1 £ j £ n, the jth

components of Al(m)

0,1, ..., n as follows.

and A2(m) are, respectively,

(
Al if j £ ma and m-j is even
D1 ] or j > m and j-m is odd,
Aymy =9 o
. AZ "1if j £ m and m~j is odd
L ] ~or- j > m and j-m is even,

’ 0
A2 if j < and m-j is even .
. . 3 or j > m and j-m is odd,
éj(m) = <
: Al if § £ m and m-j is odd -
3 or j > m and j-m is even,
\

The following proposition gives the desired confidence band for the function

g(*). With the stated probability, the inequalities in the proposition hold

-7-




- AL AN D 1P 3.

et B IR CIR NN T Bk

-

simultaneously for all values 2 - Ajian+1, given that (1) holds.

PROPOSITION 2. With probability (1‘-.Yl) a1 - YZ) e v o (1L =-7),
a

(2) ¥ AN <g) < voy A

for a A<
= %p-"Z%4 and m=20,1, 2, . . .,n.

Proof. Since the experiments at A = as i=1, ... ; n are independent,
all the inequalities (1) hol& simultaneously with probability

a - Yl) (1 - YZS e oeo. (1 - Yn). It is easy to see that,therinéqualities
(2) imply the inequalities (1), since ¥(a ) ék(n) = Aﬁ for k_% 1, 2 ana
1<m<n Itis Fherefore sufficient tovshow that (lj imply (2).‘

This fact, however, is proved in an earlier result by the author; see f3].

The above proposition may be interpreted as follows. For 1 fm<n-1

and a = A< am+i, the bounds for g(\) are obtained by forming two (n—l)th—

order polynomials péssing through subsets of the points Ai, caes Al and

n
Ai, v A:'. The upper bound polynomial is the unique polyhomial passing

through Ai, A2

k ' . ) '
< < - < < : 8
o1’ and Aj’ 1<j<ml, m+ 2 <3< n, where k_ alternates

between liand 2 for each integer step away from the interval [m, m + 1],

starting with k=1 for. j =m-1 or j =u+ 2. Similarly, the lower

bound pdlynbmial is the unique polynomial passing through Ai, A;+1 and
' k

alternating values for A, 1< j<m-1,m+ 2< j < n, starting with k = 2

for J=m=-1 or j=m+ 2, For a, A S ays the upper bound is the

polynomial passing through Ai, A;, Ag, Ai, etc., whereas the lower bound
polynomiai passes through Ai, AE, A;, Ai, etc. Similarly, for an < A <
2 .
' e 2 1
én+1"the upper bound polynomial passes through Ai, Ai_l, An—Z’ An;3’ Etc-{
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whereas the lower bound polynomial passes thro-gh Ai, A; 1’ A An_3, etc’.

4. Applications
The most straightforward application of Prr~positions 1 and 2 1s the

situation where the Ni observatiohs.ac_ A= a; "are independent and

identically distributed sampl i . .o
y “ ple variates Xil’ ot XiN " from a population

i

with mean g(ai) and standard deviation ﬂ(ai). Letting.

2|

.. N'
£(a,, N,) = N, -Z:l X,
S B

and
1/2

I_ N . ,
A B 1 Zf . 2
, n(ai" Ni) = LNi - 1 i='l (Xij - ‘T.' (3i’ Nl)) ]

we know from the Central Limit The)rem and the Law of Large Numbers that

Vo .
Ni [r(ai, N

P - 8lap]/mlap=>n(o, 1)

and

Alag, N —> ﬁ(ai) in probability

ags N,——®

{ , thus satisfying the Hypotheses in Proposition 1. Similarly,

. Proposition. 2 may be applied onceiconfidence intervals are obtained at

g(ai), i = l; I n.

We shall devote the rémainder‘of this'section tb argecond_application
which is b;sed on the regenerative approach for analyzing computer stmula-
tion.éxperiments,_ (keferenées [4, 5, 6, 7, lb] may be consulted for ﬁore
details on the regenerative method:)) A basic statistical problem'ih simula-
tions is touestimate the quéntity g(k) = K {E(K(X))} _ where - f 1is a general
real-valued function, } is anAinpu; ﬁdrameter, and {(A) is the stationary

random vector assoclated with {A(Q,A )is > 0}‘, the prccess'Béing simulated.

) ) N ' ! . | -9—
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In the regenerative method,Awe observe the process {g(s, A):s'i_o} in

random cycles of lengths al(X); aé(K), .y GN(X)‘ and record in each cycle
the values Yl(A), YZ(A), “ees YN(K).where Yk(A) is the area under the
curyve f(g(s,l )) in the ktb cygle. The crucial conditions required for the
regenerative method to Be ﬁsed are.that the N ‘paits. {(Yk(k), ak(A))
k=1, 2, . ., N} are independent'and identically distributed o

and that g(A) = E {fl(k)} /ﬁ{a l(A)} . These cdnditiong hold, for example,
in simulating al GI/G/S,-gueué'with traffic intensity less than 1, letting

cycles be defired in terms of the beginning of successive busy periods.

Now define the column vector U ) = (Yk(A),, ak(k)) and let

e ™ e,
E) = .
ar, (A ,azz(x)

denote the covariance matrix for 'Uk(k). Denote the sample mean by

Y0, m

.
2™
k=1

i, oy = 1 =
- ar, N)

Z

and the sample covariance by

| 51,0, M) 8,0, K)
s, N) =

N : : . ' '
: g LU Oy - T, I, M-TR, W]
SZI(A, N) SZZ(A, N) : k=1 ~ =~

where the prime denotes transpose; Next, define point-estimates for g(A)

as follows:
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oy

bt

(1) Classical estimator

(2) Beale estirator

Yo, ™
a(d, N)

(1 +s 12 M/N YOO, N) a(h, N)]

. YO, o)
rb(k, N)

“a(h, N) [L+5s,,(x, M/N P, N)]

(3) Tin estimator

- s, (hs N) S,,0, N)
9t()\’ N) = M 1 + — 12 — - _22
a()\’ N) Y()‘) N) Ot()\, N) a (A: N)
(4) Jacknife estimator
1 N
P LN = < Z; 8 Xy M)

where 8 (0 M = NEQ, M/EQ, M) -

Finally, define

nc(A’ N) = [sll(k, N) - zrc(xs N) 812

and

RO, N -{kgl. (6, (A N)

Now let

OGN

N-1 () ¥, (A)/ 2, M .
jFk 3%k

A2 R
W) + 5o W s, By /G, W)

- 2,0, W%/ 1)} 1/2

- g(}\) ak(k)

and note that E({ Zk(l)} = 0 and define oz(k) - varW{ Zk(k)} . Since

the vectors {,‘lllk(k),' k > 1} are i.‘i.d.,

-11-

it follows that {,Zk()\), k > 1}

N
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bt

»h

are 1.i.d. By the central limit

variables, it follows that

N

theorem for partial sums of i.i.d. random

Yz, 2 50y = N0, D

k=1

ags N— «  which may be rewritt

1/2
N [fc(k, N)

Since (A, N) —> Ela, ()}
172
where nA) = oM/E{ay (M)}

en

- g(M)1 a(A, N)/ O(r).=> N(?, 1) .

a.e., it follows that

[E A, N) - g)]/n() => N@©, 1),

. Now it may be shown that

Nl/z[?c(x, M-t A, ] —> 0 a.e.,

Nl'/2

N1/2

and that ﬁc(x, N) —>»n (¥ an
N—"w . Hence; the condition

of the following substitutions:

@, N, T @, N

[?C(Ar‘N) - ft(xo N)] —ﬁ

0 a.e.,

(.0, M - 5,0, D] —> 0 ae.,

ﬁJ(A,N) —> n() 1in probability as

of Proposition 1 are satisfied with any

’ tt(ai, Ni) ~or r (ai, Ni)

su

A3 N

c §) or nJ(af’ Ni)_ .sub

To:illustrate the applicatio)

stituted for T(@,, N,),

£ Ny i=1, 2, ..., n;

tituted for fA(a, ), 1='1, 2, ..., n.

n of Propisitions 1 and 2, consider a

-12-




-

simulation of the customer waiting time procesge {wn, n>1} in a GI/G/1

queue. Suppose we wish to study the sensitivity of the mean stationary wait-

"ing time 3(A) = E {W(M)} to the arrival rate A  over the range

25 X266, with the service rate u = 10. In what follows, we shall
illustrate the proposition for this simulation using tue "clessical"” esti-
mators ?é and- ﬁc, though’we could have chosen any of the estimators givgn
above. ’

In the queuelng simulation, we say that the kth busy cycle is initiated

with the arrival of the kth customer to find an empty queué. Suppose that

N, = N3 = 10,000 busy cycles are made at
&L

parameter settings A =a_ =3, a, =4, and A =a, = 5. Let ak(x)

denote the number of customers served in the kth busy cycle, and let Yk(k)

simulation runs consisting of N1

be the sum of thé waiting times for those cnustomers. Then it may be shown,
cf. [4], that {(YR(A), ak(x),‘k > 1} are independent and identically dis-
tributed, and E{ W)} = E{Yl(x)} /E{al(k)} . Hence, it is appropriate

to apply the regenerative method as discussed above. In particular, we can

= ‘-/ . S ' .
_compute, for i =1, 2, 3, Y\ai? SLL a(ai, Ni), sll(ai’ Ni)’ 512(31’ Ni)’

and 322(31, Ni) and“from these we can ?pmpu:e rc(ai' Ni) and, nc(ai, Ni)

as defined avove.

Suppose that, as a result of these computations for a simulation rua, ,

rc(al, Nl) = .04 7 r\c(al. Nl) = .20
- - ﬁ 3. =
’tC(aZ’ Nz) .06 c(az, Nz) .10
rc(a3, N3) = 10 nc(ﬂ3. N3) = .50

Recall that approximat= 100(1 - )4 confidence intervals at A,--ai are

! ' -~ ! . ~ ‘1 1/2 )
givgn by rc(atf Ni) : ”c(al' ﬂf) (1 Y/Z)/Ni . th e*gmple. if

-13-




95, confidence intervals ar= desired, these would be

.03608 < z(3) < .04392 with 957 confidence

.05412 £ g(4) £ .06588 with 95% confidence

| A

.09020 < g(5) .10980 with 95% confidence.

Now assume that g(A)=E {W())} 1is approximately quadratic for 2 < X} < 6.
From Proposition 1, an approximate 100(1 -Y)% confidence interval at X is

A,A‘ ~ A @"l - < X<
g}ven by  r(A, Ni, Ny, Ny o+ v(A, N, N, NY) (rL-v/2y, 2=7Z%6,

where
[.04
) ’ o va
r(i, Nl NZ’ V3) Y(A) 1.06
' .10
. 2 2 2 2 .2 20 1/2
A = 2 y . ¥ .
S, g = {00207 + ¥ Z0 a0+ Soad 502} 1/2/100
and
9 |71 1 10 -15 6
vy = (1 AAS) {1 4 16 =@ ArY |2 8 -112

1 5 25 ' : . 1/2 -1 1/2

Thus, for example, a 95% confidence interval for g(3.5) is

.04269 < g(3.5) < .05231 with 957 confidence.

Finally, using Proposition 2 together with the above confidence inte;Vals at

A = 3, 4, and 5, we obtain a 100(.95)32 confidence band for the function g(k)

over 2 2 A 2 6:

W) Al@ a0 < v (A% -

for a < )
. m —

I~

a and m=0, 1, 2, 3, where

~14-




.04392

= | .05412 atay -
.10980
.03608

= | .06588 alzy =
.10980 i

~15-

.036051

[ 2
.05412 AL =
.109&{J

.03603
.06588
.09020

A%(3) =

04392 |
66588 |

020 |
~.990_._4

-
.043¢2
.05412
.10980~J
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